2,371 Matching Annotations
  1. Jan 2024
    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the editor and the reviewers for their valuable and constructive feedback. In the revised manuscript, we have incorporated and addressed the suggestions provided by the reviewers.

      Reviewer #1 (Recommendations For The Authors):

      The primary recommendation is to provide additional language explaining how KinCytE will be updated.

      Response: We appreciate the reviewer’s insightful feedback regarding the KinCytE update. In response, we have included additional details in the “Development and use of KinCyte’ section as follows: “We welcome researchers to actively participate in advancing the development of KinCytE by sharing external screening data, especially data on new secreted factors and cell types that extend beyond macrophages. This collaborative effort promises to enhance our understanding of kinase-focused networks, opening new avenues for cutting-edge therapeutic approaches”. In addition, we explicitly state in the "Data, Software, and Availability" section, "To contribute data, kindly email the corresponding author and refer to Table S2 for guidance on the preferred file format."

      Reviewer #2 (Recommendations For The Authors):

      Would have been nice to see a validation of the regression models from outside of the training data. I would also consider removing statements like "We anticipate that KinCytE will be highly sought after by biologists... " , it reads like a grant application (and this is not)! Could tone the language down a bit. In the future, you might consider displaying your graphs as "biofabrics", they're much cleaner than "hairballs" (PMID: 23102059). Or potentially, show a hierarchical view where the selected cytokine (or other) is at the root, and you can immediately see what's connected. Anyway, the network display can be expanded. Consider maybe adding the nearest neighbors to the table on the right after selecting the node. Generally, though, I like how it works.

      There needs to be a button to download the graph as a .csv file. Maybe the subgraph after selecting a node (or set of nodes). Also, once you're at a graph view, it's hard to guess how to get back to the starting page. Maybe just one button with a "home" on it would fix that. On the Kinases Discovery, why are the gene symbols all lower case? Very cool!

      Response:: We greatly value the reviewer's constructive suggestions. To incorporate these, we have made the following changes:

      (1) "We anticipate that KinCytE will be highly sought after by biologists... " This sentence is removed.

      (2) A ‘SAVE CSV’ button is added to the bottom right of the Cytokine Explorer page, which allows the users to download the graph as a csv file.

      (3) A redesigned KinCyte logo now functions as the 'HOME' button, located at the top left of the webpage, ensuring that users can easily return to the homepage at any time.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The manuscript describes the synergy among PI3Kbeta activators, providing compelling results concerning the mechanism of their activation. The particular strengths of the work arise to a great extent from the reconstitution system better mimicking the natural environment of the plasma membrane than previous setups have. The study will be a landmark contribution to the signaling field.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript aims to provide mechanistic insight into the activation of PI3Kbeta by its known regulators tyrosine phosphorylated peptides, GTP-loaded Rac1 and G-protein beta-gamma subunits. To achieve this the authors have used supported lipid bilayers, engineered recombinant peptides and proteins (often tagged with fluorophores) and TIRF microscopy to enable bulk (averages of many molecules) and single molecule quantitation. The great strength of this approach is the precision and clarity of mechanistic insight. Although the study does not use "in transfecto" or in vivo models the experiments are performed using "physiologically-based" conditions and provide a powerful insight into core regulatory principles that will be relevant in vivo.

      The results are beautiful, high quality, well controlled and internally consistent (and with other published work that overlaps on some points) and as a result are compelling. The primary conclusion is that the primary regulator of PI3Kbeta are tyrosine phosphorylated peptides (and by inference tyrosine phosphorylated receptors/adaptors) and that the other activators can synergise with that input but have relatively weak impacts on their own.

      Although the methodology is not easily imported, for reasons of both cost and the experience needed to execute them well, the results have broad importance for the field and reverse an impression that had built in large parts of the broader signalling and PI3K communities that all of the inputs to PI3Kbeta were relatively equivalent, however, these conclusions were based on "in cell" or in vivo studies that were very difficult to interpret clearly.

      Reviewer #2 (Public Review):

      The manuscript of Duewell et al has made critical observations that help to understand the mechanisms of activation of the class IA PI3Ks. By using single-molecule kinetic measurements, the authors have made outstanding progress toward understanding how PI3Kbeta is uniquely activated by phosphorylated tyrosine kinase receptors, Gbeta/gamma heterodimers and the small G protein Rac1. While previous studies have defined these as activators of PI3Kbeta, the current manuscript makes clear the quantitative limitations of these previous observations. Most previous quantitative in vitro studies of PI3Kbeta activation have used soluble peptides derived from bis-phosphorylated receptors to stimulate the enzyme. These soluble peptides stimulate the enzyme, and even stimulate membrane interaction. Although these previous studies showed that the release of p85-mediated autoinhibition unmasks an intrinsic affinity of the enzyme for lipid membranes, they ignored what would be the consequence of these peptide sequences being present in the context of intrinsic membrane proteins. The current manuscript shows that the effect of membrane-conjugated peptides on the enzyme activity is profound, in terms of recruiting the enzyme to membranes. In this context, the authors show that G proteins associated with the membranes have an important contribution to membrane recruitment, but they also have a profound allosteric effect on the activity on the membrane, These are observations that would not have been possible with bulk measurements, and they do not simply recapitulate observations that were made for other class IA PI3Ks.

      An important observation that the authors have made is that Gbeta/gamma heterodimers and RAc1 alone have almost no ability to recruit PI3Kbeta to the membranes that they are using, and this is central to one of the most profoundly novel activation mechanisms offered by the manuscript. The authors propose that the nSH2- and Gbeta/gamma binding sites partially overlap, so that Gbeta/gamma can only bind once the nSH2 domain releases the p110beta subunit. This mechanism would mean that once the nSH2 is engaged by membrane-conjugated pY, the Gbg heterodimer can bind and increase the association of the enzyme with membranes. Indeed, this increased membrane association is observed by the authors. However, the authors also show that this increased recruitment to membranes accounts for relatively little increase in activity, and that the far greater component of activation is due to an allosteric effect of the membrane association on the activity of the enzyme. The proposal for competition between Gbg binding and the nSH2 is consistent with the behavior of an nSH2 mutant that cannot bind to pY and which, consequently, does not vacate the Gbg-binding site. In addition to the outstanding contribution to understanding the kinetics of activation of PI3Kbeta, the authors have offered the first structural interpretation for the kinetics of Gbg activation in synergy with pY activation. The proposal for an overlapping nSH2/Gbg binding site is supported by predictions made by John Burke, using alphafold multimer. Although there is no experimental structure to support this structural model, it is consistent with HDX-MS analyses that were published previously.

      Reviewer #1 (Recommendations For The Authors):

      1. The approx relative concentrations (surface densities ) of Rac1-GTP, GBetagammas and PY-peptides used in experiments in Fig 1 are not easy to understand and useful to give an intuitive feel for the relative sensitivity of the PI3Kbeta reporter to those inputs.

      In our revised manuscript, we provide densities of the individual signaling inputs used to reconstitute Dy647-PI3Kβ membrane recruitment (see Figure legend 1). We provide a more detailed explanation about our quantification method in subsequent figures where the membrane surface density of signaling inputs is varied to modulate the strength of PI3Kβ membrane localization and activity.

      Building off the quantification of Rac1-GTP and pY membrane density measurements presented in our initial manuscript submission, we now include an estimate of the GβGγ membrane density. For these new measurements, we recombinantly expressed and purified additional SNAP-GβGγ protein, which we fluorescently labeled with AlexaFluor 555. The membrane surface density of GβGγ was quantified at equilibrium using a combination of AF488-SNAP-GβGγ (bulk signal) and dilute AF555-SNAP-GβGγ (0.0025%), which allowed us to resolve and count the single molecule density (Figure 3A). We calculate the total surface density of GβGγ based on the AF555-SNAP-GβGγ dilution factor. In the methods section titled, “surface density calibration,” we describe our protocol.

      1. The estimates of the PIP3 concentrations/densities measured using the BTK reporter seem good but its unclear (to me) how they were derived.

      The density of PI(3,4,5)P3 lipids in our supported lipid bilayers was calculated based on the incorporation of a define molar ratio of PI(3,4,5)P3 in our small unilamellar vesicles. Based on the average footprint of 0.72 nm2 for a single lipid, we calculated the density of lipids per µm2. In the methods section titled, “kinetic measurements of PI(3,4,5)P3 lipid production,” we include the following description:

      “Assuming an average footprint of 0.72 nm2 for phosphatidylcholine (Carnie et al., 1979; Hansen et al., 2019), we calculated a density of 2.8 × 104 PI(3,4,5)P3 lipids/μm2 for supported membranes that contain an initial concentrations of 2% PI(4,5)P2. We assume that the plateau fluorescence intensity of the AF488-SNAP-Btk sensor following reaction completion in the presence of PI3Kβ represents the production of 2% PI(3,4,5)P3. The bulk membrane intensity of AF488-SNAP-Btk was normalized from 0 to 1, and then multiplied times the total density of PI(3,4,5)P3 lipids to generate kinetic traces that report the kinetics of PI(3,4,5)P3 production.”

      Minor points

      l164; Rac1(GTP) AND GBeta gammas. In this context it should be OR. Or have I misunderstood?

      l1093; kineticS measurementS.

      Thank you for pointing out these typos. We made the appropriate edits.

      The paper of Suire etal (Suire, S., Lécureuil, C., Anderson, K. E., Damoulakis, G., Niewczas, I., Davidson, K., Guillou, H., Pan, D., Jonathan Clark, Phillip T Hawkins, & Stephens, L. (2012). GPCR activation of Ras and PI3Kc in neutrophils depends on PLCb2/b3 and the RasGEF RasGRP4. The EMBO journal, 31(14), 3118-3129. https://doi.org/10.1038/emboj.2012.167) make the point that in vivo it appears that although Ras-activation is required for full activation of PI3Kgamma (and can activate PI3Kgamma in vitro directly) if you use tools to activate Ras in the absence of receptor and Gbetagamma signalling, it has no affect on PIP3 . This directly supports the authors conclusions.

      Thank you for sharing this citation. We incorporated the reviewer’s insight into our discussion section to broaden the significance of our work.

      Reviewer #2 (Recommendations For The Authors):

      There are only a few relatively minor points that could be addressed to improve the paper:

      1. Why is the density still going up after 10 minutes in Figure 1 Figure supplement 2? Doesn't this seem like a very long time? Are we seeing fast on/off combined with fast on/slow off? Are the particles eventually becoming stuck in odd places or are they slowly denaturing?

      Our movies do not indicate a slow accumulation of immobilized or stuck Dy647-PI3Kβ particles on the membrane surface. On the long timescale, we believe that a small fraction of Dy647-PI3Kβ molecular do exhibit longer dwell times on membranes containing a high density of pY (>6,000 molecules/µm2). This is likely due to membrane hopping of Dy647-PI3Kβ. In other words, rather than Dy647-PI3Kβ dissociating from the membrane surface directly into the solution, the Dy647-PI3Kβ molecule immediately rebinds to another membrane conjugated pY peptide. This type of behavior of a peripheral membrane binding protein is generally correlated with there being a higher surface density of the binding partner (Yasui et al., 2014). Characterization of potential Dy647-PI3Kβ membrane hopping will require additional experimentation (e.g. PI3Kβ mutants) and quantitative analysis that goes beyond the scope of this study.

      1. Lines 188-189. "By quantifying the average number of Alexa488-pY particles per unit area of supported membrane we calculated the absolute density of pY per μm2 (Figure 2D). I think this should be Figure 2C, right hand y-axis.

      Thank you for identifying our typo. We’ve corrected the text for clarity.

      1. Lines 102-193. "When Dy647-PI3Kβ was flowed over a membrane containing a low density of {less than or equal to} 500 pY/μm2, we observed rapid equilibration kinetics consistent with a 1:1 binding stoichiometry (Figure 2E).” There is no density shown in Fig. 2E. There is only "membrane intensity." Perhaps it was their intent to include a right-hand axis with density (number of particles/area), as they did in Figure 2C. However, they did not, so Figure 2E does not support the text. The value of Intensity/#py/um**2 does not appear to be the same for Figure 2C as for Figure 2E, assuming that the statement in the text is correct. The authors should include the density as a right-hand axis in 2E.

      We have reworded this portion of the results section for clarity. In reading the reviewers comment, we recognize that a more convincing way to support our claim of a 1:1 binding stoichiometry would be to show that there are ~500 Dy647-PI3Kβ/μm2 membrane bound complexes when the pY surface density equals ~500 pY/μm2. For us to make this connection, we would need to perform experiments using a Dy647-PI3Kβ concentration that fully saturates all the binding pY binding sites. However, at this elevated Dy647-PI3Kβ solution concentration, individual Dy647-PI3Kβ complexes can start to bind to a single phosphotyrosine of the dually phosphorylated peptide due to competition for pY binding sites. As an alternative to performing the experiment described above, we can infer binding stoichiometry from the shape of the membrane absorption kinetic traces. For example, a simple bimolecular interaction exhibits rapid equilibration kinetics with a hyperbolic shaped kinetic trace. Systems that have more complex binding equilibria, however, generally take longer to equilibrate (due to the change in KOFF) and can often be broken down into 2 or 3 distinct dissociation constants (KD). This type of kinetic analysis has previously been used to describe multivalent membrane binding interactions for the Btk-PI(3,4,5)P3 (Chung et al., 2019) and PI3Kγ-GβGγ (Rathinaswamy et al., 2021) complexes. Considering that there are multiple interpretations of the Dy647-PI3Kβ membrane absorption traces show in Figure 2E, we refrain from saying that our results explicitly reveal a 1:1 binding stoichiometry. Instead, we provide several possible explanations for the results. Ultimately, additional experiments and kinetic modeling of wild type and mutant PI3Kβ is necessary to define the binding stoichiometry under different conditions.

      1. Table 1. The authors have analysed the data to extract two dwell times and two diffusion coefficients. The legend should make this clear, referring to D1 as the slow diffusion component and D2 as fast diffusion, similarly, there are short and long dell times. This should be stated in the legend. There are two columns labelled "alpha". This presumably should be alpha1 and alpha2, the fractions of particles with short and long dwell times. The table legend should clarify this.

      In our revision, additional text has been added to the figure legends and Table 1.

      Text from Table 1: “Alpha (α) equals the fraction of molecules with the characteristic dwell time, τ1 (DT = dwell time). The fraction of molecules with the characteristic dwell time, τ2, equals 1-α. Alpha (αD) equals the fraction of molecules with the characteristic diffusion coefficient, D1. The fraction of molecules with diffusion coefficient, D2, equals 1-αD.”

      1. In the legend for Figure 5 figure supplement 1, for part D, the "Cumulative membrane of binding events..." The "of" should be deleted.

      Thank you for identifying this typo.

      1. Lines 423-426: "We found that PI3Kβ kinase activity is also relatively insensitive to either Rac1(GTP) or GβGγ alone. This is in contrast to previous reports that showed Rho-GTPases (Fritsch et al. 2013) and GβGγ (Katada et al. 1999; Hashem A. Dbouk et al. 2012; Maier, Babich, and Nürnberg 1999) can activate PI3Kβ, albeit modest, compared to synergistic activation with pY peptides plus Rac1(GTP) or GβGγ." It is not clear what this statement means. On the surface, it might be interpreted as saying that these previous studies had some flaw that led the authors to conclude that there is some activation caused by Rac1 or Gbeta/gamma on their own. The current manuscript is an important contribution to understanding the mechanism of synergistic activation, but it is also true that the Hansen and his colleagues have not used the same membranes as were used previously. The authors state that they have used a wide range of membrane compositions, but the only ones that have appeared in the manuscript are nearly pure PC (with 2% PIP2) or PC with 20% PS. Extensive studies with varying membrane compositions are beyond the scope of the current study, since the current manuscript concisely makes important observations regarding mechanism. However, it would be helpful for readers if the authors at least mention the differences in membrane compositions among the studies.

      The reviewer raises an important point concerning our interpretation of PI3Kβ activation data in relationship to existing literature. In our original submission, we made conclusions concerning how individual signaling inputs modulate PI3Kβ activity, without showing all our data or providing sufficient explanation. In our revised manuscript, we include PI3Kβ kinase activity measurements performed in the presence of either pY, Rac1(GTP), or GβGγ alone (Figure 5B-5C). These experiments were reconstituted on supported membranes in the absence or presence of 20% PS lipids. We found that increasing the density of anionic lipids increased the overall activity of PI3Kβ in the presence of pY or GβGγ alone. This is consistent with a subtle increase in PI3Kβ membrane affinity due to the negatively charged PS lipids. Mutations that disrupt the direct interaction between PI3Kβ and GβGγ eliminated the observed lipid kinase activity. We were unable to detect PI3Kβ activity in the presence of Rac1(GTP) alone. In conclusion, we’re able to detect some PI3Kβ activity in the presence of GβGγ alone, which is consistent with previous reports (Dbouk et al., 2010; Katada et al., 1999; Maier et al., 2000). In the future, a more comprehensive analysis will be required to map the relationship between PI3Kβ activity, membrane localization, and lipid composition. For example, previous reconstitutions have revealed differential activation of PI3Kα that depends on the most abundant lipid being phosphatidylethanolamine (PE) rather than phosphatidylcholine (PC) (Hon et al., 2012; Ziemba et al., 2016). PE lipids comprise 25-30% of the cellular plasma membrane (Yang et al., 2018) and have been used in previous studies to measure PI3K lipid kinase activity on small unilamellar vesicles (Dbouk et al., 2010; Hon et al., 2012).

      In this study, we elected to use a simplified membrane composition that minimized non-specific membrane localization of fluorescently labeled PI3Kβ. This allowed us to more clearly define the strength of individual and combinations of protein-protein interactions that regulate PI3Kβ localization and kinase activity. When reconstituting amphiphilic molecules (i.e. lipids) in aqueous solution a variety of structures, including micelles, inverted micelles, and planar bilayers can form based on the lipid composition (Kulkarni, 2019). The organization of these membrane structures is related to the molecular packing parameter of the individual phospholipids (Israelachvili et al., 1976). The packing parameter (P=v⁄((a•l_c))) depends on the volume of the hydrocarbon (v), area of the lipid head group (a), and the lipid tail length (l_c). When generating supported lipid bilayers on a flat two-dimensional glass surface, we aim to create a fluid lamellar membrane. We find that phosphatidylcholine (PC) lipids are ideal for making supported lipid bilayers because they have a packing parameter of ~1 (Costigan et al., 2000). In other words, PC lipids are cylindrical like a paper towel roll. In contrast, cholesterol and phosphatidylethanolamine (PE) lipids have packing parameters of 1.22 and 1.11, respectively (Angelov et al., 1999; Carnie et al., 1979). This gives cholesterol and PE lipids an inverted truncated cone shape, which prefers to adopt a non-lamellar phase structure. Due to the intrinsic negative curvature of PE lipids, they can spontaneously form inverted micelles (i.e. hexagonal II phase) in aqueous solution when they are the predominant lipid species (Israelachvili et al., 1980; Kobierski et al., 2022; Wnętrzak et al., 2013). In the methods section of our manuscript, we note that from our experience incorporation of PE lipids dramatically reduces the protein-maleimide coupling efficiency, displayed more membrane defects, and resulted in a larger fraction of surface immobilized Dy647-PI3Kβ. This could be related to the intrinsic negative curvature of PE membranes. However, further investigation is needed to decipher these issues.

      Angelov B, Ollivon M, Angelova A. 1999. X-ray Diffraction Study of the Effect of the Detergent Octyl Glucoside on the Structure of Lamellar and Nonlamellar Lipid/Water Phases of Use for Membrane Protein Reconstitution. Langmuir 15:8225–8234. doi:10.1021/la9902338

      Carnie S, Israelachvili JN, Pailthorpe BA. 1979. Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochim Biophys Acta 554:340–357. doi:10.1016/0005-2736(79)90375-4

      Chung JK, Nocka LM, Decker A, Wang Q, Kadlecek TA, Weiss A, Kuriyan J, Groves JT. 2019. Switch-like activation of Bruton’s tyrosine kinase by membrane-mediated dimerization. Proc Natl Acad Sci 116:10798–10803. doi:10.1073/pnas.1819309116

      Costigan SC, Booth PJ, Templer RH. 2000. Estimations of lipid bilayer geometry in fluid lamellar phases. Biochim Biophys Acta 1468:41–54. doi:10.1016/s0005-2736(00)00220-0

      Dbouk HA, Pang H, Fiser A, Backer JM. 2010. A biochemical mechanism for the oncogenic potential of the p110 catalytic subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci 107:19897–19902. doi:10.1073/pnas.1008739107

      Hansen SD, Huang WYC, Lee YK, Bieling P, Christensen SM, Groves JT. 2019. Stochastic geometry sensing and polarization in a lipid kinase–phosphatase competitive reaction. Proc Natl Acad Sci 116:15013–15022. doi:10.1073/pnas.1901744116

      Hon W-C, Berndt A, Williams RL. 2012. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases. Oncogene 31:3655–3666. doi:10.1038/onc.2011.532

      Israelachvili JN, Marcelja S, Horn RG. 1980. Physical principles of membrane organization. Q Rev Biophys 13:121–200. doi:10.1017/s0033583500001645

      Israelachvili JN, Mitchell DJ, Ninham BW. 1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 Mol Chem Phys 72:1525–1568. doi:10.1039/F29767201525

      Katada T, Kurosu H, Okada T, Suzuki T, Tsujimoto N, Takasuga S, Kontani K, Hazeki O, Ui M. 1999. Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors. Chem Phys Lipids 98:79–86. doi:10.1016/S0009-3084(99)00020-1

      Kobierski J, Wnętrzak A, Chachaj-Brekiesz A, Dynarowicz-Latka P. 2022. Predicting the packing parameter for lipids in monolayers with the use of molecular dynamics. Colloids Surf B Biointerfaces 211:112298. doi:10.1016/j.colsurfb.2021.112298

      Kulkarni CV. 2019. Calculating the “chain splay” of amphiphilic molecules: Towards quantifying the molecular shapes. Chem Phys Lipids 218:16–21. doi:10.1016/j.chemphyslip.2018.11.004

      Maier U, Babich A, Macrez N, Leopoldt D, Gierschik P, Illenberger D, Nürnberg B. 2000. Gβ 5 γ 2 Is a Highly Selective Activator of Phospholipid-dependent Enzymes. J Biol Chem 275:13746–13754. doi:10.1074/jbc.275.18.13746

      Rathinaswamy MK, Dalwadi U, Fleming KD, Adams C, Stariha JTB, Pardon E, Baek M, Vadas O, DiMaio F, Steyaert J, Hansen SD, Yip CK, Burke JE. 2021. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. Sci Adv 7:eabj4282. doi:10.1126/sciadv.abj4282

      Wnętrzak A, Lątka K, Dynarowicz-Łątka P. 2013. Interactions of alkylphosphocholines with model membranes-the Langmuir monolayer study. J Membr Biol 246:453–466. doi:10.1007/s00232-013-9557-4

      Yang Y, Lee M, Fairn GD. 2018. Phospholipid subcellular localization and dynamics. J Biol Chem 293:6230–6240. doi:10.1074/jbc.R117.000582

      Yasui M, Matsuoka S, Ueda M. 2014. PTEN Hopping on the Cell Membrane Is Regulated via a Positively-Charged C2 Domain. PLoS Comput Biol 10:e1003817. doi:10.1371/journal.pcbi.1003817

      Ziemba BP, Burke JE, Masson G, Williams RL, Falke JJ. 2016. Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Biophys J 110:1811–1825. doi:10.1016/j.bpj.2016.03.001

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Point to point response for the editors

      We are deeply grateful for the time you have devoted to reviewing this manuscript, and we sincerely thank you. Your insightful feedback has been instrumental in enhancing the quality of our work.

      In the revised version of the manuscript, we have carefully addressed each of the concerns you raised. Below, you will find a detailed summary of how your feedback has been incorporated to improve the overall content and clarity of the document.

      1. P2RX7 effects: In Figure 2, the vehicle treated P2RX7 knockout (panel M) shows an Ashcroft score of about 1.5 after BLM. Comparing this to the Ashcroft score of 3 after BLM in the wildtype (panel C) suggests that P2RX7 deletion is an effective way to reduce fibrosis by half!.

      The argument that HEI3090 also reduces fibrosis by activating P2RX7 is of course very difficult to convey and it seems contradictory that P2RX7 deletion and P2RX7 activation can be both anti-fibrotic. This is an unusual claim and confuses the reviewers as well as the future readers.

      This has many important health implications because activating an inflammatory pathway via P2RX7 and IL-18 could be risky in terms of a fibrosis treatment as inflammatory activation can also worsen fibrosis. The authors' own P2RX7 KO data (untreated vehicle groups) indeed confirms that P2RX7 can be pro-fibrotic.

      We thank the editors for their comment highlighting the lack of clarity in our message. Indeed, we verified whether the antifibrotic action of HEI3090 depends on the expression of P2RX7 by inducing lung fibrosis in P2RX7 KO mice. In doing so, we initially observed that P2RX7 plays a role in the development of BLM-induced lung fibrosis. This is illustrated by a decrease of 50% in the Ashcroft score, as shown in Figure 2M and Supplemental Figure 2C of the revised manuscript.

      To increase the clarity of your message, we added in the text the following paragraph:

      "We further verified whether the antifibrotic action of HEI3090 depends on the expression of P2RX7 by inducing lung fibrosis in p2rx7 knockout (KO) mice. In doing so, we initially observed that P2RX7 plays a role in the development of BLM-induced lung fibrosis. This is illustrated by a decrease of 50% in the Ashcroft score, with a mean value of 1.7 in P2RX7 knockout mice compared to 3 in wild-type mice (Figure 2M and Supplemental Figure 2C). It is important to note that p2rx7 -/- mice still exhibit signs of lung fibrosis, such as thickening of the alveolar wall and a reduction in free air space, in comparison to naïve mice that received PBS instead of BLM (see Supplemental Figure 2A). This result confirms a previous report indicating that BLM-induced lung fibrosis partially depends on the activation of the P2RX7/pannexin-1 axis, leading to the production of IL-1β in the lung. Additionally, in contrast to the observations in WT mice, HEI3090 failed to attenuate the remaining lung fibrosis in p2rx7 -/- mice, as measured by the Ashcroft score (Figure 2M), the percentage of lung tissue with fibrotic lesions, or the intensity of collagen fibers (Supplemental Figure 2D). These results show that P2RX7 alone participates in fibrosis and that HEI3090 exerts a specific antifibrotic effect through this receptor (see Supplemental Figure 2C)."

      Since we used the HEI3090 compound in this study and to be closer to the results, we have replaced the title of 2 chapters in the results section as followed:

      “HEI3090 inhibits the onset of pulmonary fibrosis in the bleomycin mouse model” instead of P2RX7 activation inhibits the onset of pulmonary fibrosis in the bleomycin mouse model and “HEI3090 shapes immune cell infiltration in the lungs" instead of P2RX7 activation shapes immune cell infiltration in the lungs

      We concur that the observation of both anti-fibrotic effects following P2RX7 deletion and P2RX7 activation appears contradictory. This specific aspect has been thoroughly addressed and extensively discussed in the revised manuscript.

      “A major unmet need in the field of IPF is new treatment to fight this uncurable disease. In this preclinical study, we demonstrate the ability of immune cells to limit lung fibrosis progression. Based on the hypothesis that a local activation of a T cell immune response and upregulation of IFN-γ production has antifibrotic proprieties, we used the HEI3090 positive modulator of the purinergic receptor P2RX7, previously developed in our laboratory (Douguet et al., 2021), to demonstrate that activation of the P2RX7/IL-18 pathway attenuates lung fibrosis in the bleomycin mouse model. We have demonstrated that lung fibrosis progression is inhibited by HEI3090 in the fibrotic phase but also in the acute phase of the BLM fibrosis mouse model, i.e. during the period of inflammation. This lung fibrosis mouse model commonly employed in preclinical investigations, has recently been recognized as the optimal model for studying IPF (Jenkins et al., 2017). In this model, the intrapulmonary administration of BLM induces DNA damage in alveolar epithelial type 1 cells, triggering cellular demise and the release of ATP. The extracellular release of ATP from injured cells activates the P2RX7/pannexin 1 axis, initiating the maturation of IL1β and subsequent induction of inflammation and fibrosis. In line with this, mice lacking P2RX7 exhibited reduced neutrophil counts in their bronchoalveolar fluids and decreased levels of IL1β in their lungs compared to WT mice (Riteau et al., 2010). Based on these findings, Riteau and colleagues postulated that the inhibition of P2RX7 activity may offer a potential strategy for the therapeutic control of fibrosis in lung injury. In the present study we provided strong evidence showing that selective activation of P2RX7 on immune cells, through the use of HEI3090, can dampen inflammation and fibrosis by releasing IL-18. The efficacy of HEI3090 to inhibit lung fibrosis was evaluated histologically on the whole lung’s surface by evaluating the severity of fibrosis using three independent approaches applied to the whole lung, the Ashcroft score, quantification of fibroblasts/myofibroblasts (CD140a) and polarized-light microscopy of Sirius Red staining to quantify collagen fibers. All these methods of fibrosis assessment revealed that HEI3090 exerts an inhibitory effect on lung fibrosis, underscoring the necessity for a thorough pre-clinical assessment of HEI3090's mode of action. Notably, HEI3090 functions as an activator, rather than an inhibitor, of P2RX7, further emphasizing the importance of elucidating its intricate mechanisms.”

      We trust that the detailed explanation provided therein will adequately persuade both the reviewers and future readers.

      1. The statistical concerns are based on the phrasing of "the experiment was stopped when significantly statistical results were observed". This is different from the power analysis approach that the authors describe in their latest rebuttal. However, it raises the question why the power analysis was performed using "on a one-way ANOVA analysis comparing in each experiment the vehicle and the treated group". The analyses in the manuscript use the Mann-Whitney test for several comparisons which ahs the assumption that the samples do NOT have a normal distribution. An ANOVA and t-tests have the assumption that samples are normally distributed. If the power analysis and "statistical forecasting" assumed a normal distribution and used an ANOVA, then shouldn't all the analyses also use a statistical test appropriate for normally distributed samples such as ANOVA and t-tests?

      Several of the data points in the figures seem to be normally distributed and therefore t-test for two group comparisons would be more appropriate. The most rigorous approach would be to check for normal distribution before choosing the correct statistical test and using the t-test/ANOVA in normally distributed data as well as Mann-Whitney for non-normally distributed data.

      We described in the Material and Method section of the revised manuscript our approach to determine the size of experimental group.

      “The determination of experimental group sizes involved conducting a pilot experiment with four mice in each group. Subsequently, a power analysis, based on the pilot experiment's findings (which revealed a 40% difference with a standard error of 0.9, α risk of 0.05, and power of 0.8), was performed to ascertain the appropriate group size for studying the effects of HEI3090 on BLM-induced lung fibrosis. The results of the pilot experiment and power analysis indicated that a group size of four mice was sufficient to characterize the observed effects. For each full-scale experiment, we initiated the study with 6 to 8 mice per group, ensuring a minimum of 5 mice in each group for robust statistical analysis. Additionally, we systematically employed the ROULT method to identify and subsequently exclude any outliers present in each experiment before conducting statistical analyses”.

      We now described in the Material and Method section how we carried out the statistical analyses.

      “Quantitative data were described and presented graphically as medians and interquartiles or means and standard deviations. The distribution normality was tested with the Shapiro's test and homoscedasticity with a Bartlett's test. For two categories, statistical comparisons were performed using the Student's t-test or the Mann–Whitney's test. For three and more categories, analysis of variance (ANOVA) or non-parametric data with Kruskal–Wallis was performed to test variables expressed as categories versus continuous variables. If this test was significant, we used the Tukey's test to compare these categories and the Bonferroni’s test to adjust the significant threshold. For the Gene Set Enrichment Analyses (GSEA), bilateral Kolmogorov–Smirnov test, and false discovery rate (FDR) were used. All statistical analyses were performed by biostatistician using Prism8 program from GraphPad software. Tests of significance was two-tailed and considered significant with an alpha level of P < 0.05. (graphically: * for P < 0.05, ** for P < 0.01, *** for P < 0.001).”

      We also added in the legend of each figure, the statistical analysis used to determine each p-values.

      1. Adoptive transfer: The concerns of the reviewers include an unclear analysis of the effects of adoptive transfer itself and the approaches used to analyze the data independent of the HEI3090 effect. For example, in Figure 4, the adoptive transfer IL18-/- cells (vehicle group) leads to an Ashcroft score of about 1 and among the lowest of the BLM exposed mice. Does that mean that IL18 is pro-fibrotic and that its absence is beneficial? If yes, it would go against the core premise of the study that IL18 is beneficial. Statistical comparisons of the all the vehicle conditions in the adoptive transfer would help clarify whether adoptive transfer of NLRP3-/-, IL18-/- in wild-type and P2RX7-/- mice reduces or increases fibrosis. Such multiple comparisons are necessary to fully understand the adoptive transfer studies and would also require the appropriate statistical test with corrections for multiple comparisons such as Kruskal-Wallis for data without normal distribution and ANOVA with post hoc correction for normal distribution.

      We added a new paragraph in the revised version of the manuscript to explain the adoptive transfer approach.

      “We wanted to further investigate the mechanism of action of HEI3090 by identifying the cellular compartment and signaling pathway required for its activity. Since the expression of P2RX7 and the P2RX7-dependent release of IL-18 are mostly associated with immune cells (Ferrari et al., 2006), and since HEI3090 shapes the lung immune landscape (Figure 3), we investigated whether immune cells were required for the antifibrotic effect of HEI3090. To do so, we conducted adoptive transfer experiments wherein immune cells from a donor mouse were intravenously injected one day before BLM administration into an acceptor mouse. The intravenous injection route was chosen as it is a standard method for targeting the lungs, as previously documented (Wei and Zhao, 2014). This approach was previously used with success in our laboratory (Douguet et al., 2021). It is noteworthy that this adoptive transfer approach did not influence the response to HEI3090. This was observed consistently in both p2rx7 -/- mice and p2rx7 -/- mice that received splenocytes of the same genetic background. In both cases, HEI3090 failed to mitigate lung fibrosis, as depicted in Figure 2M and Supplemental Figures 2D and 6A and B.”

      We added the Supplemental Figure 7 showing that the genetic background does not impact lung fibrosis at steady step levels where p-values were analyzed by one-way ANOVA, with Kruskal-Wallis test for multiple comparisons.

      Author response image 1.

      Supplemental Figure 7 : The genetic background does not impact lung fibrosis at steady step levels. p2rx7-/- mice were given 3.106 WT, nlrp3-/ , i118-/ or illb -l- splenocytes i_v_ one day prior to BLM delivery (i_n_ 2.5 LJ/kg) p2rx7-/- mice or p2rx7-/- mice adoptively transferred with splenocytes from indicated genetic background were treated daily i.p with mg/kg HE13090 or vehicle for 14 days. Fibrosis score assessed by the Ashcroft method. P-values were analyzed on all treated and non treated groups by one-way ANOVA, with Kruskal-Wallis test for multiple comparisons. The violin plot illustrates the distribution of Ashcroft scores across indicated experimental groups. The width of the violin at each point represents the density of data, and the central line indicates the median expression level. Each point represents one biological replicate. ns, not significant

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      We thank the referee for the positive review.

      Reviewer #2 (Public review):

      We thank the referee for his/her constructive comments

      1. The weakness of this work is the lack of clarification on the function of eIF2A in general. The novelty of this study was limited.

      We believe our study is valuable in providing strong evidence that eIF2A does not functionally substitute for eIF2 in tRNAi recruitment even when eIF2 function is impaired, and in showing that it does not contribute to translational control by uORFs or IRESs, thus ruling out the most likely possibilities for its function in yeast based on studies of the mammalian factor. We agree that the function of yeast eIF2A remains to be identified; however, we think this should be regarded as a limitation rather than a weakness in experimental design or data obtained in the current study.

      1. Related to this, it would be worth investigating common features in mRNAs selectively regulated (surveyed in Figure 3A).

      We did not embark on this because only 17 of the 32 transcripts showing TE reductions in Fig. 3A showed a pattern of TE changes consistent with a conditional requirement for eIF2A under conditions of reduced eIF2 function, exhibiting greater TE decreases when both eIF2 function was impaired by phosphorylation and eIF2A was eliminated from cells. Moreover, we could validate this conditional eIF2A dependence by LUC reporter for only a single mRNA, HKR1.

      Also, it would be worth analyzing the effect of eIF2A deletion on elongation (ribosome occupancy on each codon and/or global ribosome footprint distribution along CDS) and termination/recycling (footprint reads on stop codon and on 3′ UTR).

      We have analyzed the effects of deleting eIF2A on ribosome pausing at individual codons by calculating tri-peptide pause scores from our ribosome profiling data. The results shown in new Fig. 7 reveal that eIF2A plays no discernible role in stimulating the rate of decoding of any three-codon combinations.

      1. Regarding Figure 3D, the reporters were designed to include promoter and 5′ UTR of the target genes. Thus, it should be worth noting that reporter design was based on the assumption that eIF2A-dependency in translation regulation was not dependent on 3′ UTR or CDS region. The reason why the effects on ribosome profiling-supported mRNAs could not be recapitulated in reporter assay may originate from this design. This should be also discussed.

      We agree and included this stipulation in the DISCUSSION, while at the same time noting that the native mRNAs were examined in the orthogonal assay of polysome distributions.

      1. Related to the point above, the authors claimed that eIF2A affects "possibly only one" (HKR1) mRNA. However, this was due to the reporter assay which is technically variable and could not allow some of the constructs to pass the authors' threshold. Alternative wording for this point should be considered.

      We agree and revised text in the DISCUSSION to read: “A possible limitation of our LUC reporter analysis in Fig. 3D was the lack of 3’UTR sequences of the cognate transcripts, which might be required to observe eIF2A dependence. Given that native mRNAs were examined in the orthogonal assay of polysome profiling in Fig. 3E, the positive results obtained there for SAG1 and SVL3 in addition to HKR1 should be given greater weight. Nevertheless, our findings indicate a very limited role of yeast eIF2A in providing a back-up mechanism for Met-tRNAi recruitment when eIF2 function is diminished by phosphorylation of its α-subunit.”

      1. For Figure 3D, it would be worth considering testing the #-marked genes (in Figure 3C) in this set up.

      Actually, we did test 10 of the 17 mRNAs marked with “#”s in the reporter assays of Fig. 3C, which had been noted in the Fig. 3C legend.

      1. In box plots, the authors should provide the statistical tests, at least where the authors explained in the main text.

      At the first occurrence of a notched box plot (Fig. 2D), we explained in the main text that in all such plots, when the notches of different boxes do not overlap, their median values differ significantly with a 95% confidence level. In cases where overlaps between notches is difficult to assess by eye, we added the results of Mann-Whitney U tests with the p values indicated by asterisks, as explained in the legends. We added results of additional Mann-Whitney U tests to such box plots in Figs. 3B, 6A-C, and 6-supp. 1E & G and mentioned this in the corresponding legends.

      Reviewer #2 (Recommendations For The Authors):

      The first section of "Yeast eIF2A does not play a prominent role as a functional substitute for eIF2 in the presence or absence of amino acid starvation" can be subdivided into a couple of sections for better readability.

      Done.

      Although the authors have used SM to induce ISR in yeasts previously, the validation of eIF2alpha phosphorylation in Western blot would be helpful for readers. Also, it should be worth testing whether eIF2alpha phosphorylation was properly induced in eIF2A KO cells.

      The translational induction of GCN4 mRNA, which we have documented in WT and eIF2A∆ cells, provides a quantitative read-out of eIF2 functional attenuation superior to determining the proportion of eIF2α that is phosphorylated.

      For Figure 2B, the Venn diagram that shows the overlap between TE-changes genes in WT_SM/WT and those in eIF2A∆_SM/eIF2A∆ would be helpful (although a list was provided by the source data).

      The Venn diagram has been provided in a new figure, Figure 2-figure supplement 1B.

      For Figures 1C and 5A-B, the depiction of the positions of uORFs within the orange gene region would be helpful for readers.

      Done.

      For Figure 4A-C, the depiction of the IRES regions (if known) within the orange gene region would be helpful for readers.

      Done for the URE2 IRES, whose location is known.

      For Figures 1C, 4A-C, and 5A-B, the y-axis should have a label/scale.

      Added.

      For Figure 3C, the definition of #-marked genes should be concretely described (e.g., value range) in the legend.

      Added.

      For Figure 3D-E, the statistical test has been only shown in a couple of data. A full depiction of the statistical results for all the data sets may be helpful for readers.

      We explained that when notches in box plots do not overlap, their medians differ with 95% confidence. In cases where overlaps were difficult to discern, we added p values from Mann-Whitney U tests to the relevant box plots.

      For Figure 3E, it would be helpful if the authors could show the UV spectrum of the sucrose density gradient to show the regions isolated for the experiments.

      Added for a representative replicate gradient in the new figure, Figure 3-figure supplement 1.

      Reviewer #3 (Public Review):

      We thank the referee for his/her positive assessment of our study.

      Weaknesses:

      While no role of eIF2A in translation initiation is apparent, the authors do not determine what function eIF2A does play in yeast. Whether it plays a role in regulating translation in a different stress response is not determined.

      We agree that there are many additional possibilities to consider for functions of eIF2A in translation initiation, including different stress situations or mutant backgrounds; however, we regard this as a limitation rather than a weakness in the experimental design and data obtained in the current study in which we examined the most likely possibilities for eIF2A function in yeast based on studies of the mammalian factor.

      Reviewer #3 (Recommendations For The Authors):

      Curiously, the authors indicate that they could not replicate published results for eIF2A's repressor function for URE2, PAB1, or GIC1 translation. This is a little concerning and one wonders if the yeast strain used in the previous study is different in some way from the authors' strain. Did the authors obtain that strain to test it in their assays?

      The same WT and eIF2A∆ strains have been analyzed here and in the two cited studies on yeast IRESs.

      The authors do discuss the fact that eIF2A may function to regulate translation in response to different stresses. It would have been a strength to test an alternative stress in the current study. However, I also appreciate that this could be the subject of a future study.

      Agreed.

      One minor question I have is whether the yeast strains used possess L-A dsRNA virus? While it may not be that this virus would necessarily mask a role of eIF2A-dependent translation, do the authors have any specific thoughts on this? Would different results be obtained if cured strains were used?

      According to Ravoityte et al. (doi: 10.3390/jof8040381), the S. cerevisiae strain we employed, BY4741, harbors L-A-1 dsRNA; however, we have not explored whether curing the virus would alter the consequences of eliminating eIF2A.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We thank the two reviewers for their constructive criticism, which helped to significantly improve our manuscript.

      During the revision process, we had to realize that the localization pattern reported for H. neptunium LmdCN-mCherry was an artifact caused by bleed-through of the BacA-YFP signal in the mCherry channel. More detailed studies showed that the fusion protein was detectable by Western blot analysis but, for unknown reasons, did not produce any fluorescence signal. Therefore, we have now removed the localization data shown in previous Figure 8B,C and Figure 8—figure supplement 1.

      To provide more evidence for a functional interaction between BacA and LmdC in H. neptunium, we have now established an inducible CRISPR interference system for this species and used it successfully to deplete LmdC (new Figure 9A-F). The loss of LmdC causes morphological defects very similar to those observed for the ΔbacA(D) mutant. In line with the physical interaction of BacA with the cytoplasmic region of LmdC observed in vitro, these findings support the hypothesis that the two proteins act in the same pathway. Consistent with the results obtained in H. neptunium, the absence of BacA leads to the delocalization of LmdC in R. rubrum. Moreover, we now provide in vivo evidence for a critical role of the cytoplasmic region of LmdC in the interaction of this protein with BacA in R. rubrum cells (new Figure 11). Together, these new findings strongly support the model that BacA and LmdC form a conserved morphogenetic module involved in the establishment of complex cell shapes in bacteria.

      Please see below for a more detailed explanation of our new results and for our response to the issues raised in the first round of review.

      Reviewer #1 (Public Review)

      In their study, Osorio-Valeriano and colleagues seek to understand how bacterial-specific polymerizing proteins called bactofilins contribute to morphogenesis. They do this primarily in the stalked budding bacterium Hyphomonas neptunium, with supporting work in a spiral-shaped bacterium, Rhodospirillum rubrum. Overall the study incorporates bacterial genetics and physiology, imaging, and biochemistry to explore the function of bactofilins and cell wall hydrolases that are frequently encoded together within an operon. They demonstrate an important, but not essential, function for BacA in morphogenesis of H. neptunium. Using biochemistry and imaging, they show that BacA can polymerize and that its localization in cells is dynamic and cell-cycle regulated. The authors then focus on lmdC, which encodes a putative M23 endopeptidase upstream of bacA in H. neptunium, and find that is essential for viability. The purified LmdC C-terminal domain could cleave E. coli peptidoglycan in vitro suggesting that it is a DD-endopeptidase. LmdC interacts directly with BacA in vitro and co-localizes with BacA in cells. To expand their observations, the authors then explore a related endopeptidase/ bactofilin pair in R. rubrum; those observations support a function for LmdC and BacA in R. rubrum morphogenesis as well.

      An overall strength of this study is the breadth and completeness of approaches used to assess bactofilin and endopeptidase function in cells and in vitro. The authors establish a clear function for BacA in morphogenesis in two bacterial systems, and demonstrate a physical relationship between BacA and the cell wall hydrolase LmdC that may be broadly conserved. The eventual model the authors favor for BacA regulation of morphogenesis in H. neptunium is that it serves as a diffusion barrier and limits movement of morphogenetic machinery like the elongasome into the elongating stalk and/or bud. However, there is no data presented here to address that model and the role of LmdC in H. neptunium morphogenesis remains unclear.

      We hypothesize that BacA establishes a barrier that prevents the movement of elongasome complexes into the stalk, either directly by sterical hindrance and/or indirectly by promoting the formation of an annular region of high positive inner cell curvature that cannot be passed by the elongasome. To test this model, we have now analyzed the localization dynamics of RodZ, a core structural component of the elongasome complex, in wild-type and ΔbacAD cells. We found that wild-type cells show dynamic YFP-RodZ foci whose movement is limited to the mother cell and the nascent bud, with no signal ob-served in the stalk. In ΔbacAD cells, by contrast, the fusion protein is consistently detected in all regions of the cell, including nascent stalks (new Figure 5). These results support the idea that BacA is required to confine the elongasome to the mother cell and bud regions and, thus, set the limits of the different growth zones in H. neptunium. We also attempted to follow the localization dynamics of other elongasome components, such as PBP2, MreC and MreD, but none of the corresponding fluorescent protein fusions was functional.

      In the past, we tried intensively to generate conditional mutants of lmdC, but all attempts to place the expression of this gene under the control of the copper- or zinc-inducible promoters available for H. neptunium were unsuccessful. To clarify the role of LmdC in H. neptunium morphogenesis, we have now established an inducible CRISPR interference system for this species and managed to block the ex-pression of lmdC using an sgRNA directed against the 5' region of its non-coding strand. We observed that cells lacking LmdC show a phenotype very similar to that of the ΔbacA mutant. Together with the finding that the N-terminal cytoplasmic region of LmdC physically interacts with BacA, this result strongly supports the hypothesis that BacA and LmdC act in the same pathway, forming a complex that ensures proper morphogenesis in H. neptunium (new Figure 9).

      The data presented illuminate aspects of bacterial morphogenesis and the physical and functional relationship between polymerizing proteins and cell wall enzymes in bacteria, a recurring theme in bacterial cell biology with a variety of underlying mechanisms. Bactofilins in particular are relatively recently discovered and any new insights into their functions and mechanisms of action are valuable. The findings presented here are likely to interest those studying bacterial morphogenesis, peptido-glycan, and cytoskeletal function.

      Reviewer #2 (Public Review):

      This is an excellent study. It starts with the identification of two bactofilins in H. neptunium, a demonstration of their important role for the determination of cell shape and discovery of an associated endopeptidase to provide a convincing model for how these two classes of proteins interact to control cell shape. This model is backed up by a quantitative characterisation of their properties using high-resolution imaging and image analysis methods.

      Overall, all evidence is very convincing and I do not have many recommendations on how to improve the manuscript.

      In my opinion, there are only two issues that I have with the paper:

      1. The single particle dynamics of BacA is presented as analysed and I would like to give some suggestions how to maybe extract even more information from the already acquired data:

      1.1. Presentation: Figure 5A is only showing projections of single particle time-lapse movies. To convince the reader that it was indeed possible to detect single molecules it would be helpful if the authors present individual snapshots and intensity traces. In case of single molecules these will show step wise bleaching.

      We have now added a supplementary video that shows both time series and intensity traces of individual BacA-YFP molecules (Figure 6—Video 1). It verifies the step-wise bleaching of the particles observed and thus shows that we observe the mobility of single molecules. Moreover, we have now included a supplementary figure that shows all trajectories identified within representative cells. This visualization provides a more comprehensive view of our data and further supports the notion that our analysis is based on the detection of single molecules.

      1.2. Analysis: Figure 5B and Supplement Figure 1 are showing the single particle tracking results, revealing that there are two populations of BacA-YFP in the cell. However, this data does not show if individual BacA particles transition between these two populations or not. A more detailed analysis of the existing data, where one can try to identify confinement events in single particle trajectories could be very revealing and help to understand the behaviour of BacA in more detail.

      We agree that an analysis of the single-molecule traces for transitions between the mobile and static states would help to achieve a more detailed understanding of the polymerization behavior of BacA. We believe that the dynamic formation, reorganization and disappearance of BacA-YFP foci observed by time-lapse analysis (Figure 4) indicates that BacA undergoes reversible polymerization in vivo. A deeper investigation of this aspect is beyond the scope of the present study and will be performed at a later point.

      1. The title of Fig. 3 says that BacA and BacD copolymerise, however, the data presented to confirm this conclusion is actually rather weak. First, the Alphafold prediction does not show the co-polymer, and second, the in vitro polymerisation experiments were only done with BacA in the absence of BacD. Accordingly, the only evidence that supports this is their colocalization in fluorescence microscopy. I suggest either weakening the statement or changing the title adds more evidence.

      To support the idea that BacA and BacD interact with each other, we have now added images of cells producing BacA-YFP or BacD-CFP individually (new Figure 3—figure supplement 1B,C). The results obtained show that Bac-YFP alone still forms filamentous structures, whereas BacD-CFP condenses into tight foci in the absence of its paralog. However, when produced together with BacA-YFP, the two proteins colocalize into filamentous structures, supporting the notion that they interact with each other. However, we agree that it is unclear whether BacA and BacD copolymerize into mixed protofilaments or whether they form distinct protofilaments that then interact laterally to form larger bundles. We have therefore replaced the term “co-polymerize” with “assemble” in the heading of this section.

      Finally, did the authors think about biochemical experiments to study the interaction between the cytoplasmic part of LmdC and the bactofilins? These could further support their model.

      We show the interaction between the cytoplasmic region of H. neptunium LmdC and BacA in Figure 9G,H (previously Figure 8D,E). For technical reasons, it was not possible to synthesize a peptide com-prising the corresponding region of R. rubrum LmdC, so that our in vitro analysis is limited to the H. neptunium proteins.

      To further support the notion that BacA interacts with the cytoplasmic region of LmdC, we have now analyzed the localization behavior of two LmdC variants with amino acid exchanges in the conserved cytoplasmic β-hairpin motif (new Figure 11). Both variants no longer colocalize with BacA and are no longer enriched at the inner cell curve. Interestingly, these exchanges also affect the enrichment of BacA at the inner cell curvature, suggesting that BacA needs to interact with LmdC for proper localization. It is tempting to speculate that BacA polymers have a preferred intrinsic curvature and that the activity of the BacA-LmdC complexes adjusts cell curvature in a manner that facilitates their association with the inner curve.

      Reviewer #1 (Recommendations for The Authors):

      We have the following specific recommendations for the improvement of the manuscript:

      1. Several places would benefit from additional quantitation of data:

      a. Figure 1 and supplements: can cell shape be quantified in a more specific way? (e.g. principle component analysis of shape as in https://onlinelibrary.wiley.com/doi/10.1111/mmi.13218). It looks as if BacD production may partially rescue the bacA shape phenotype?

      We have made considerable efforts to establish methods to quantify morphological changes and protein localization patterns in Hyphomonas neptunium. Since standard software packages, such as Oufti or MicrobeJ, are not able to reliably detect stalks and, thus, typically identify buds as separate cells, we have developed our own analysis software (BacStalk; Hartmann et al, 2020, Mol Microbiol), that is optimized for the detection of thin cellular extensions. However, while this software works very well with wild-type cells, it also fails to recognize amorphous cells with multiple, ill-defined extensions. Given these problems in cell segmentation, it is currently not possible to use principle component analysis to obtain a robust measure of the morphological defects of bactofilin mutants in H. neptunium.

      b. Figures 2-S2b, 7D and 9-S1b - can the area under the peaks be quantified and compared across strains? Visual examination of the spectra makes it difficult to discern differences.

      A direct comparison of the peak areas between strains is not possible, because the absolute values depend on the amount of peptidoglycan used in the muropeptide analyses. It is very difficult to precisely quantify peptidoglycan, which makes it challenging to use equal amounts of material from different strains in the reactions. However, the relative proportion of different muropeptide species, as provided in Figure 2—Dataset 1, faithfully reflects the composition of peptidoglycan and can easily compared between strains.

      c. Figure 9E,F, 9-S4d - BacA and LmdC localization in R. rubrum is very difficult to assess. It does not look linear/filamentous in most cells and is difficult to tell if it is associated with the inner curvature. Can you quantify the position of the signal along the short axis of the cell to better demonstrate that?

      We agree that a better quantification of the distribution of protein along the cell envelope of R. rubrum is required to support the conclusions drawn. To address this issue, we have now used line scans to measure the fluorescence intensities along the inner and outer curve of cells (n=200 per strain) and visualized the data in the form of demographs. The results clearly show an enrichment of BacA and LmdC at the inner curve in wild-type cells and a disruption of this pattern in various mutant backgrounds (new Figures 10F,G,J and 11D,E).

      1. Figure 2-S2A. Does ∆bacD grow better than wild-type? It would also be useful to add growth curves of the bacA complemented strains.

      In the case of H. neptunium growth curves are often misleading, because cells start to aggregate at the late exponential phase due to abundant EPS formation. The degree of cell aggregation also depends on the morphology of cells, because EPS production is limited to the mother cell body, which makes it challenging to compare morphologically distinct mutant strains. We have now performed growth assays for all H. neptunium deletion and complementation strains used in the study and limited the analysis of doubling times to the early and mid-exponential phase, in which cells do not yet form visible aggregates. The results obtained are now included in the new Figure 1F and Figure 1—figure supplement 2D. They show that the doubling times of the different bactofilin mutants are close to that of the wild-type strain.

      1. Figure 4BC: From the demographs provided, BacA and BacD appear to have different localization dynamics. BacD seems to stay at the base of the stalk, nearest the mother cell, whereas BacA migrates towards to bud? Also, "length" is misspelt in the panels.

      During the transition to bud formation, we indeed observe that the localization patterns of BacA and BacD are in many cases not fully superimposable, with BacD lagging behind BacA and forming transient additional clusters in the vicinity of the stalk base. Examples are now shown in Figure 4—figure supplement 4). This effect explains the distinct patterns in the demographs. We have now modified the text accordingly. We have also corrected the spelling of “length” in the figure.

      1. Can BacD polymerize on its own? It colocalizes with BacA in E. coli but that does not necessarily mean it co-polymerizes.

      Please see our response to a similar issue (point 2) raised by Reviewer #1.

      1. Lines 263-266. You use E. coli PG as a substrate for LmdC in vitro because "peptidoglycan from H. neptunium shows only a low degree of cross-linkage and hardly any pentapeptides." Does this not have relevance to the physiological significance of the observed activity? Or do you presume that LmdC activity (and/or that of other endopeptidases) is very high in H. neptunium so it is difficult to detect additional activity using HnPG as a substrate? It would be useful to clarify this logic in the text.

      DD-crosslinks are formed by all major peptidoglycan biosynthetic complexes, including the elongasome and the divisome, so that their general relevance to cell growth in H. neptunium is beyond doubt. The low degree of crosslinkage observed suggests that H. neptunium contains high endopeptidase activity, which cleaves crosslinks after their formation by DD-transpeptidases. We have now added the explanation “likely due to a high level of autolytic activity” to make this point clearer. Whether LmdC makes a major contribution to the low level of crosslinkage remains to be determined. However, our data suggest that it mostly acts in complex with BacA, so that it may only cleave peptidoglycan locally and not have a global effect global on cell wall composition. It would not possible to detect the DD-endopeptidase activity of LmdC using H. neptunium peptidoglycan as a substrate, because it has a low content of DD-linked peptide chains. To facilitate the in vitro activity assay, we therefore used highly crosslinked peptidoglycan from a mutant E. coli strain.

      1. Lines 268-269: Is there some explanation for why monomers do not increase on LmdC treatment? Here quantitation of peaks before and after treatment would allow the reader to more precisely interpret these data.

      The absolute peak sizes are not comparable, because there is some variation in the amount of peptido-glycan included in the assays (see also our comments on point 1b raised by Reviewer #1) and the integrated peak areas (which correspond to the amounts of muropeptide species produced) depend on both the height and the width of the peaks, which vary to some degree in different HPLC runs. The relevant measure to compare the muropeptide profiles is therefore the relative content of different muropeptide species in the different conditions. For clarification, we have now added the following sentence to the legend of Figure 8D: “A quantification of the relative abundance of different muropeptide species in each condition, based on a comparison of the relative integrated peak areas, is provided in Figure 8—Dataset 1.” The control reaction lacking LmdC only contains peptidoglycan diluted in buffer and thus provides insight into muropeptide composition of untreated peptidoglycan.

      1. Lines 280-283: It would be interesting to know if the transmembrane domain of LmdC is required for its localization since it is dispensable for binding BacA and since LmdC still localizes to foci without BacA.

      Given that it is currently not possible to localize LmdC in H. neptunium, we were not able to perform this analysis.

      1. Line 296: it is also possible that LmdC localizes with another protein and does not independently assemble into larger complexes.

      Since the localization pattern reported for LmdC in the ΔbacAD background is no longer valid, we have not discussed this aspect in the revised version of our manuscript. However, in general, we do not exclude the possibility that LmdC could interact with other peptidoglycan biosynthetic proteins.

      1. Line 304-306 and Fig 9: Is the domain organization of RrLmdC the same as for HnLmdC? It would be useful to include its domain organization as well. Also, please add amino acid numbering to Figure 9B.

      We have now added a schematic showing the domain organization of LmdC from R. rubrum (new Figure 10B). The protein is highly similar to its homolog from H. neptunium.

      1. Line 340-341: "In both cases, they functionally interact with LmdC-type DD-endopeptidases to promote local changes in the pattern of peptidoglycan biosynthesis." This conclusion is not experimentally supported. Since LmdC is essential and you could not make a depletion strain in H. neptunium, it was not shown that the interaction with LmdC is how BacA promotes changes in PG patterning. HADA/FDAA labeling was not performed in R. rubrum, and no global changes in PG chemistry were observed in bacA or lmdC mutants, so you cannot claim BacA or LmdC influences PG patterning there, either. Either soften this statement to a hypothesis or otherwise rephrase.

      To further corroborate a functional interaction between BacA and LmdC, we have now established an inducible CRISPRi system to deplete LmdC from H. neptunium cells (see also our comments on the public review of Reviewer #1). We observe that the loss of LmdC leads to a phenotype very similar to that observed for the ΔbacA(D) mutant, supporting the idea that BacA and LmdC act in the same path-way. We have now also performed localization studies of the elongasome component RodZ in H. nep-tunium, which demonstrate that the spatial distribution of elongasome complexes is affected in the absence of the bactofilin cytoskeleton in H. neptunium. Combined with the observation that LmdC is a catalytically active DD-endopeptidase and its absence leads to morphological defects, these results indicate that BacA, together with LmdC, induces local changes in pattern of peptidoglycan biosynthesis, both by affecting elongasome movement and, likely, by reducing peptidoglycan crosslinking in the cell envelope regions it occupies.

      1. Figure 9-S4: there is no panel C (change D to C).

      Corrected.

      1. Lines 344-355: No data is presented here to support the barrier model of bactofilin function. In addition, it is unclear why cells would take on amorphous shapes instead of extended rod shapes/filaments if elongasome function was not constrained on the longitudinal axis. It would be helpful to have more discussion of the potential mechanisms of LmdC function in H. neptunium in this section of the discussion since that is the emphasis of the results section.

      To support the barrier model, we have now compared the localization dynamics of the elongasome component RodZ in wild-type and ΔbacAD cells. The results show that RodZ is excluded from the stalk in the wild-type background, whereas it readily enters the stalk in the mutant cells, leading to the expansion of stalks into large, amorphous extensions. Consistent with these findings, HADA labeling is not observed within the stalks in wild-type cells, whereas it is readily observed in the enlarged stalk structures (pseudohyphae) formed in the mutant cells.

      The current model of MreB movement suggests that MreB filaments have an intrinsic curvature and thus preferentially align along regions of similar curvature, which is along the circumference of the cell in rod-shaped geometries. However, previous work has shown that MreB starts to move along randomly oriented trajectories as soon as cells lose their rod-shaped morphology and adopt more spherical shapes (Hussain et al, 2018, eLife). In line with these findings, our current and our previous work (Cserti et al, 2017, Mol Microbiol) indicate that the expansion of the ovoid H. neptunium mother cell prior to the onset of stalk biosynthesis as well as bud formation are mediated by the elongasome complex. Thus, the elongasome can clearly also give rise to shapes other than rods. Interestingly, however, the H. neptunium elongasome also appears to drive the formation of the rod-shaped stalk, possibly by moving around the circumference of the stalk base. Thus, species- or growth phase-dependent regulatory mechanisms or, potentially, differences in the spatial arrangement of the glycan strands within the peptido-glycan layer may result in different modes of elongasome movement and, thus, modulate the morphogenetic activity of elongasome complexes.

      1. Lines 395-397: It is also possible that LmdC positioning is dependent on cell morphology, rather than directly on BacA, since morphology is so distorted in bacA mutant cells.

      We provide several lines of evidence showing that LmdC and BacA functionally and physically interact (see above), making it highly unlikely that the two proteins are not associated with each other. How-ever, our previous (Figure 10I,J) and new (Figure 11) results suggest that the physical interaction with LmdC and/or or the cell shape-modulating activity of the complex are required for the proper localization of BacA at the inner curve of the cell. This finding may indicate the existence of a self-reinforcing cycle, in which the morphological changes induced by BacA-LmdC assemblies stimulate the recruitment of additional assemblies to their site of action.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This study presents useful findings regarding the impact of forest cover and fragmentation on the prevalence of malaria in non-human primates. The evidence supporting the claims of the authors is, however, incomplete, as the sampling design cannot adequately address the geospatial issues that this study focuses on.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study as a concept is well designed, although there is still one issue I see in the methodology.

      I still have concerns with their attempts to combine the different scales of data. While the use of point data is great, it limits the sample size, and they have included the district to country level data to try and increase the sample size. The problem is that although they try to get an overall estimate at the district/state/country by taking 10 random sample points, which could be a method to get an estimate for the district/state/country. It would be a suitable method if the primates were evenly distributed across the district/state/country. The reality is that the primates are not evenly distributed across the district/state/country therefore the random point sampling is not a reasonable method to get an estimate of the environmental variables in relation to the macaques. For example if you had a mountainous country and you took 10 random points to estimate altitude, you would end up with a large number, but if all the animals of interest lived on the coast, your average altitude is meaningless in relation to the animals of interest as they are all living at low altitude. The fact that the model relies less on highly variable components and places more reliance on less variable components, is really not relevant as the district/state/country measurements have no real meaning in relation to the distribution of masques.

      A simple possible way forward could be to run the model without the district/state/country samples and see what the outcome is. If the outcome is similar then the random point method may be viable (but if it gives the same outcome as ignoring those samples then you don't need the district/state/country samples). If you get a totally different outcome then it should raise concerns about using the district/state/country samples.

      This paper is a really nice piece of work and is a valuable contribution but the district/state/country sample issue really needs to be addressed.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      A simple possible way forward could be to run the model without the district/state/country samples and see what the outcome is. If the outcome is similar then the random point method may be viable (but if it gives the same outcome as ignoring those samples then you don't need the district/state/country samples). If you get a totally different outcome then it should raise concerns about using the district/state/country samples.

      Thank you for your comments, and for the suggestions to address the issues identified in your main commentary by running an analysis on exclusively GPS geolocated data points. This was the original plan for analysis, but the available data identified in the literature review includes only 14 data points (macaque P. knowlesi prevalence surveys) with associated GPS coordinates. This was found to be too limited to obtain meaningful results from a regression analysis, and hence we then explored methods for utilising all available data to identify trends whilst accounting for spatial uncertainty in the analysis. As the point location only represents the location of capture and not the extent of the home range of the NHPs, we additionally feel there is value in exploring methods to encompass the wider surrounding habitat.

      We do appreciate the concerns you raise with the random point method being used to represent macaque survey sites when species of interest are not necessarily evenly distributed across an area. To investigate this, we ran sensitivity analysis on a subset of the dataset according to whether the points fall in areas of >50%, >75% or >90% predicted probability of macaque occurrence, with maps derived from published models of macaque suitability in Southeast Asia. For each of these thresholds, points that fall outside these areas were removed – such that, if a random point is located on a mountain range where there is 0 likelihood of macaque occurrence, it is excluded from the analysis. We found that restricting analysis to areas with highly probably macaque habitat still shows a robust effect of forest cover on NHP prevalence, and additionally that for the most conservative (>90%) habitat threshold there remains an effect of forest fragmentation on prevalence (SI Table S17c, Figure S15c). Given that using the full data set increases the uncertainty, as there is more variation in covariates between the replicates, this can be considered a more conservative approach to detecting an effect of environment as reported in the main findings.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1. A more thorough analysis of transition boundaries between different types of patterns would further strengthen the conclusions.

      We agree that the transition between different patterning regimes should be discussed more quantitatively in the manuscript. Specifically, we identified a highly sensitive parameter range where the disorder in the patterns rapidly increases as a function of the VEGF stimulus. We have improved our discussion of the transition between ‘orderedlike’ patterns and ‘disordered-like’ patterns in the main text as follows: “At relatively low VEGF levels, the patterns were mostly ordered, with small deviations from the expected ‘salt and paper’ geometry with a 25%-75% ratio of TipStalk (Fig. 2D). However, as the VEGF input increased, the fraction of Tips grew and the patterns became sharply more disordered over a relatively narrow range of magnitude of the VEGF input, which could be identified as a highly sensitive area separating more ‘ordered-like’ and ‘disordered-like’ patterns. Finally, increasing VEGF stimuli beyond the highly sensitive area further increased the disorder of the patterns, but with a lower VEGF sensitivity, over several more orders of magnitude of VEGF inputs”.

      Reviewer #2 (Recommendations For The Authors):

      Please refer to the Public Comments above for a broad review. Below, I provide specific concerns that could be addressed.

      Main comments

      1. Is the salt-and-pepper model observed for the case when there is no VEGF in the experiments? It would be good to confirm the same. If not, the analysis presented in Fig. 3 could be performed for this case and used as a baseline while referring to the data in Fig. 3.

      We thank the referee for the interesting suggestion. The pattern predicted by the model is not strictly salt-and-pepper in absence of VEGF, but the disorder quantified in terms of “incorrect” contacts between Tip cells is considerably lower (see for example the disorder quantification in supplementary figure 1C). We have included the Tip-Tip contact statistics for a case of VEGF=1 ng/ml (100-fold lower that the level used in Fig. 3 compare between model and experiment). In this case, there is clearly more spacing between Tip cells, thus demonstrating how high VEGF stimuli increase the probability of contacts between Tip cells. In the main text, we commented: “As a baseline comparison, the mathematical model with a 100-fold reduction of VEGF stimulus (1 ng/ml) exhibited a Tip-Tip distance statistics more closely comparable with the ‘salt-and-pepper’ model”.

      1. The authors mention in the Discussion (end of pg. 7) that ...a low level of exogeneous VEGF is essential to induce Delta-NOTCH signalling.. However, in the standard NOTCH signalling (Boareto et al.), we can get the salt-and-pepper pattern without any VEGF. Am I missing something? The authors may want to take a re-look.

      We appreciate the referee’s understanding of the mathematical model. The model used here still exhibits a bistable behavior between the low-Delta and high-Delta cell states even in the absence of VEGF input, as seen for example in the cell state distribution of Fig. 2B, and in agreement with the original model by Boareto et al. This behavior is reflective of the more general applicability of the model, as it describes Delta-NOTCH interactions in various systems. For endothelial cells, VEGF is indeed required to trigger this interaction, but this was not the primary focus of the paper, hence the original model was used. In the text referred to by the reviewer, we are discussing the role,of VEGF based in its known biological effects as well as modeling results. We anticipate that the future further adaptation of the model to,endothelial cells will refine its description of of cell interactions in the absence of VEGF.

      1. The size of cells (or spacing between cell nuclei) is highly variable (Fig. 3). Since it is known that the size of cell-cell junctions influences signalling, it would good to at least comment on the same, considering that the model in the paper consists of regular static hexagons. Similarly, it seems desirable to comment on expressing the distance between Tip cells (Fig. 3) in cell length units, when the cell lengths are so variable.

      We concur with the suggestion that our consideration of the cell-cell contact size in NOTCH signaling should be clarified in the manuscript.

      Sprinzak et al. reported in their 2017 article published in Developmental Cell that the cell-cell contact area does influence NOTCH Signaling. In this article, they found that NOTCH trans-endocytosis (TEC) for pairs with a larger contact width (25µm) is up to five times higher than for pairs with a smaller contact (2.5µm), as observed through the two-cell TEC assay. While TEC correlates with contact width across a range from 1 to 40µm, the values fluctuate significantly in the middle range, particularly when excluding extremely low cell-cell contact areas.

      In our experiments, we observed that the cell-cell contact area ranges from essentially infinitesimal corner-to-corner contact to roughly 50µm. We excluded the corner contacts, which might correspond to extremely low cell-cell contact areas, from the Tip-Tip distance measurements as depicted in Fig. 3B. We also made the assumption that variations in cell-cell contact size within tens of microns correlate weakly with the strength of NOTCH signaling. This assumption did not impede our effort to compare the overall trends with results from modeling using hexagonal cells, as shown in Figs 6 D&E. We have included this comment and the corresponding reference to elucidate our assumption in the results as follows: In our experiments, the observed cell-cell contact area varied, spanning from very low (cell corner-to-corner contact) up to approximately 50µm. Previous studies(14, 15) have clearly demonstrated the influence of the cell-cell contact area on NOTCH Signaling, but the values get nosy in the middle range, particularly when excluding extremely low cell-cell contact areas. Reflecting these findings, we excluded the corner contacts, which might correspond to extremely low cell-cell contact areas, from the Tip-Tip distance measurements as depicted in Fig. 3B. We also made an assumption that variations in cell-cell contact size within tens of microns correlate weakly with the strength of NOTCH signaling. This assumption did not impede our effort to compare the overall trends with results from modeling using hexagonal cells, as shown in Figs 3 D&E.

      1. The results presented in Fig. 6J are quite striking. However, the number of samples N = 10 and N = 11 seem somewhat low. How does one justify that the findings are not influenced by low number fluctuations?

      We acknowledge the reviewer's concerns regarding potential biases stemming from a limited number of samples. The analysis presented in Fig. 6J was specifically designed to complement and support the findings in Fig. 6H. In this context, the counts of sprout and mini-sprout dots correspond to the number of instances "including a sprout" and "including a mini-sprout."

      While the counts of sprouts and mini-sprouts in Fig. 6H might seem limited as highlighted by the reviewer, the statistical difference between the two groups was found to be significant. Nevertheless, we expanded our regions of interest to encompass neighboring cells, based on the rationale that the local environment might have closely interacting and similar features. The sample sizes in Figure 6J, represented as N=10 and N=11, equate to an examination of 70 cells and 77 cells, respectively. For instance, in the category "including a sprout," five out of ten groups indicated that all seven neighboring cells in a group exhibited fibronectin levels exceeding a given threshold, translating to 35 cells with fibronectin levels above this threshold. Given that the observed trends in distribution were consistently reasonable across the examinations of both 70 and 77 cells, we would like to state that we are confident in our results.

      1. It is written towards the end on pg. 5 that ... although all sprouts indeed formed from mini-sprouts, not all .... However, as can be seen from Fig. 4O, Sprouts can also be generated from Stalk cells. This should be corrected.

      Thank you for highlighting the discrepancy between our statement on page 5 and the observations in Fig. 4O. While all sprouts undergo a mini-sprout phase, the transition from Stalk to mini-sprout is not always be observed due to the limitations of our observational timeframe. We acknowledge this oversight and adjusted our statement to clarify that sprouts appearing to form directly from Stalks likely passed through an unobserved intermediate mini-sprout stage as follows: We found that all sprouts formed either directly from Stalks or from mini-sprouts, suggesting a non-observed transition from Stalk to mini-sprout due to observational timeframe limitations. Strikingly, however, not all minisprouts persisted and initiated sprout formation.

      1. No solid blue bars are shown in Fig. S2A as mentioned in the caption. Kindly correct.

      We apologize for the mistake. We have corrected the figure to show the blue bars depicting the experimental measurements for sprout distance probability.

      1. How are the high-Delta cells or high-NOTCH cells decided in experiments or simulations? Does it happen that Delta and NOTCH levels are comparable? In that case, what is done? This point could be clarified in the main manuscript or Materials and Methods.

      We agree with the reviewer that Tip cell definition should be clarified. In the model, we define a threshold level for cellular Delta to distinguish Tip and Stalk cells, which is now explained in the Methods section “Definition of Tip cells in the model”. As elaborated in the new section, Delta and NOTCH levels are never comparable due to the circuit’s bistable behavior. In experiments, Tip cells based on their key phenotypic characteristic — invasive migration into the surrounding collagen matrix rather than Delta or NOTCH levels. The details can be found in “Precise quantification of Tip cell spatial arrangement suggests disordered patterning in the engineered angiogenesis model” section and Figure 3A.

      Minor comments

      There are a good number of typos in the paper. The manuscript should be carefully checked and corrected for the same. Below, I provide a few instances.

      1. In the abstract towards the end, it should be "understanding" instead of "understating"

      2. On pg. 5, just before the beginning of the last paragraph, there is a typo "parodied" which should most likely be "provided"

      3. First paragraph on pg. 6 typo "spouts" instead of "Sprouts"

      4. Second paragraph on pg. 6, correctly write "testS"

      5. Near the beginning of pg. 8, should be "C. elegans" instead of "C. elegance"

      6. Figure 1 caption, towards the end, should be "Stalk" instead of "Salk"

      We sincerely appreciate your keen attention to detail. we have thoroughly reviewed the manuscript and made the necessary corrections, including those that you have highlighted.

      Reviewer #3 (Recommendations For The Authors):

      Major concern:

      The authors should discuss in more detail how their work can be used for a better understanding of the angiogenesis process in physiological conditions and in pathological conditions such as post-ischemic revascularization or tumor vascularization.

      We have included comments and the corresponding references to clarify the aspect the reviewer suggested: The results in this study can further inform our understanding of angiogenesis in physiological and pathophysiological conditions. In particular, in many circumstances, the levels of VEGF is determined by the degree of hypoxia, which can be highly elevated following oxygen supply interruption, e.g., in wound healing or ischemia, or due to progression of neoplastic growth. Our results suggest that in these cases, formation of sprouts can be dysregulated due to higher incidences of co-localizations of prospective Tip cells. In addition, since these conditions are frequently accompanied by altered synthesis of ECM, the sprout density can increase, which may lead to formation of denser and less developed vascular beds frequently observed as a result of tumor angiogenesis(42, 43). Our results thus suggest that the disorder and higher plasticity of the endothelial cell fate speciation at higher VEGF inputs can be a key contributor to some pathological states associated with persistently hypoxic conditions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      This article by Zhai et al, investigates sterol transport in bacteria. Synthesis of sterols is rare in bacteria but occurs in some, such as M capsulatus where the sterols are found primarily in the outer membrane. In a previous paper the authors discovered an operon consisting of five genes, with two of these genes encoding demethylases involved in sterol demethylation. In this manuscript, the authors set out to investigate the functions of the other three genes in the operon. Interestingly, through a bioinformatic analysis, they show that they are an inner membrane transporter of the RND family, a periplasmic binding protein, and an outer membrane-associated protein, all potentially involved with lipid transport, so providing a means of transporting the lipids to the outer membrane. These proteins are then extensively investigated through lipid pulldowns, binding analysis on all three, and X-ray crystallography and docking of the latter two.

      Strengths

      The lipid pulldowns and associated MST binding analysis are convincing, clearly showing that sterols are able to bind to these proteins. The structures of BstB and BstC are high resolution with excellent maps that allow docking studies to be carried out. These structures are distinct from sterol-binding proteins in eukaryotes.

      We thank the reviewer for their favorable impression of this work.

      Weaknesses

      While the docking and molecular dynamics studies are consistent with the binding of sterols to BstB and BstC, this is not backed up particularly well. The MST results of mutants in the binding pocket of BstB have relatively little effect, and while I agree with the authors this may be because of the extensive hydrophobic interactions that the ligand makes with the protein, it is difficult to make any firm conclusions about binding.

      We agree with the reviewer that at this point, there is no experimental evidence to define the sterol binding site in BstB. While in the manuscript we allude to the extensive hydrophobic interactions as being especially stabilizing and difficult to eliminate with one or two mutations, we are now also aware that hydrogen-bonding interactions with the polar head of the sterols are quite important (see data on BstC, where disruption of that interaction significantly reduces the equilibrium affinity for sterols). Our MD simulations show that at least 3 protein amino acids can participate in H-bonding with the sterols. Moreover, recent work from our lab show that even ligand site waters can extend an H-bonding network around the polar head of the lipid (Zhai et al., ChemBioChem 2023, 24, e202300156), thereby enabling H-bonding with amino acids that are further away from the ligand site. It is therefore difficult to predict which mutations will sufficiently destabilize the binding. While this question is one we will tackle in future studies focused on obtaining high-resolution substrate-bound structures of BstB or homologs, the findings reported here are still relevant and timely, and we posit will spur the discovery of functional homologs, including some in organisms that are more tractable.

      The authors also discuss the possibility of a secondary binding site in BstB based on a slight cavity in domain B next to a flexible loop. This is not backed up in any way and seems unlikely.

      The reviewer is correct in that the evidence for this second binding site weak. While the crystallographic structure shows a highly hydrophobic region and the binding studies suggests cooperativity exists in the binding of the 4methylsterol substrate, the docking studies do not strongly support binding at that site. As such, we have clarified in the manuscript that a second hydrophobic cavity is observed, but that its role in ligand interaction remains unexplored.

      Reviewer #2 (Public Review):

      Summary:

      In eukaryotes, sterols are crucial for signaling and regulating membrane fluidity, however, the mechanism governing cholesterol production and transport across the cell membrane in bacteria remains enigmatic. The manuscript by Zhai et al. sheds light on this topic by uncovering three potential cholesterol transport proteins. Through comprehensive bioinformatics analysis, the authors identified three genes bstA, bstB, and bstC encoding proteins which share homology with transporters, periplasmic binding proteins, and periplasmic components superfamily, respectively. Furthermore, the authors confirmed the specific interaction between these three proteins and C-4 methylated sterols and determined the structures of BstB and BstC. Combining these structural insights with molecular dynamics simulation, they postulated several plausible substrate binding sites within each protein.

      Strengths:

      The authors have identified 3 proteins that seem likely to be involved in sterol transport between the inner and outer membrane. The structures are of high quality, and the sterol binding experiments support a role for these proteins in sterol transport.

      We thank the reviewer for this positive view of our work.

      Weaknesses:

      While the author's model is very plausible, direct evidence for a role of BstABC in transport, or that the 3 proteins function together in a single pathway, is limited.

      The reviewer is correct that we were unable to demonstrate that the three proteins work together to transport 4methylsterols. This is not for lack of trying. We first attempted gene deletion studies, and as mentioned in the manuscript (with more details now provided in the experimental section), this appeared to be lethal. We then attempted in vitro exchange experiments, in which the proteins would be used to transfer sterols from sterol-loaded “heavy” liposomes to a sterol-free “light” liposomes – such exchange assays are frequently performed with eukaryotic sterol transporters (see Chung et al., Science 2015, https://doi.org/10.1126/science.aab1370). These assays were not successful because 1) sterols incorporated poorly into liposomes made with E. coli polar lipids and yielded leaky liposomes; 2) use of liposomes prepared with the TLE of M. capsulatus proved more stable, but no appreciable exchange was observed; we reasoned that this might be due to the absence of an energy source for BstA, the RND component for which we have expressed and purified only the soluble periplasmic domain. Given the technical difficulty of these in vitro transport experiments, we will continue to pursue in vivo demonstration of function as new homologs are identified.

      Reviewer #3 (Public Review):

      Summary:

      The work in this manuscript builds on prior efforts by this team to understand how sterols are biosynthesized and utilized in bacteria. The study reports a new function for three genes encoded near sterol biosynthesis enzymes, suggesting the resulting proteins function as a sterol transport system. Biochemical and structural characterization of the two soluble components of the pathway establishes that both proteins can bind sterols, with a preference for 4methylated derivatives. High-resolution x-ray structures of the apoproteins reveal hydrophobic cavities of the appropriate size to accommodate these substrates. Docking and molecular dynamics simulations confirm this observation and provide specific insights into residues involved in substrate binding.

      Strengths:

      The manuscript is comprehensive and well-written. The annotation of a new function in a set of proteins related to bacterial sterol usage is exciting and likely to enable further study of this phenomenon - which is currently not well understood. The work also has implications for improving our understanding of lipid usage in general among bacterial organisms.

      We thank the reviewer for this synopsis of our work.

      Weaknesses:

      The authors might consider moving some of the bioinformatics figures to the main text, given how much space is devoted to this topic in the results section.

      We have taken this advice and moved Figure S1 to the main manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1. In the analysis of the MST data, the authors quote Hill coefficients. How reliable are these numbers? For BstB, for instance, it seems unlikely that more than one molecule would bind. Can the analysis be done without needing to include Hill coefficients?

      We used fits that did and did not invoke cooperativity – see below. We are certain that both BstA and BstB are better fit with cooperativity invoked.

      Author response image 1.

      1. In looking at the maps associated with the structures, which were included in the review package, I see that two citric acid molecules fit beautifully into the density where currently PEG has been modelled. This needs to be fixed and some comments may be appropriate in the manuscript.

      We thank the reviewer for calling our attention to this. Citric acid has now been added to the model, and we reason that these are present in the structure because citric acid was used in the crystallization condition. The revised model is now present in the PDB.

      1. It is not necessary to show the two molecules in the asymmetric unit in Figure 4 given that it is not a dimer. This doesn't add anything to the manuscript.

      We now show a single molecule of BstC in Figure 4 (now Figure 5).

      1. I wouldn't consider the loops shown in Figure S4 as disordered. They have slightly higher B-values but are not completely mobile.

      We did not refer to these loops as disordered. In the text, we say they “exhibit poor electron densities, suggesting conformational sampling of more than one state (Fig. S4A).”

      Reviewer #2 (Recommendations For The Authors):

      pg 7, "hinting at an astounding distinction": I might suggest a word other than astounding that conveys how statistically unlikely, unusual, etc. this result is.

      Thank you – we have removed “astounding”.

      pg 7, paragraph 2: Here the authors show that in the SSN analysis, BstB proteins cluster separately and suggest this implies a distinction in function. However, they also show that PhnD homologs do not cluster separately (distributed across multiple clusters), yet presumably have similar functions. I am not familiar with SSN, but it seems to me that the second statement about PhnD implies that the first statement about BstB might not be valid, i.e., if PhnD doesn't cluster based on function, on what basis can we conclude that BstB does? On what basis does clustering occur in the SSN analysis? Might it be driven by things other than function? This comment also concerns the final paragraph of this section.

      The reviewer is correct in that PhnD homologs occupy separate clusters of the SSN. Many of these homologs were crystallized with phosphate-like compounds, but it is possible that they have non-overlapping substrate scopes and are therefore functionally distinct. As for the basis of clustering, the SSN is fully sequence-based. What has been observed is that proteins with highly similar sequences can have similar functions – but this is not always true.

      pg 8, paragraph 1: The authors suggest that BstABC may be essential. This is probably not a critical claim and it might be simplest to just remove it, but if it is mentioned, the authors should probably explain what was attempted that failed, so a reader can assess the strength of the evidence supporting essentiality. For example, I don't see anything in the methods about genetic manipulations of M. capsulatus, so currently, this falls within the realm of "Data not shown".

      We have provided additional information about the experimental techniques used to do this. This statement was included so that it is understood that the reason for the experimental failure is unlikely to be technical in nature, as we have successfully deleted some sterol related genes while others remain intractable.

      Fig. 2A: It is unclear to me what is being plotted here, perhaps more experimental detail is required in the form of labels and/or legend. Is this a quantification of each sterol in each fraction separated by GC? There are essentially no methods provided for the GC-MS experiments. A reference is provided, but I think providing detailed methods for these specific experiments will provide a higher degree of scientific rigor. I am not sure what is standard for GCMS, but perhaps showing spectra in the supplement that establish the identity of the bound molecules as species I and II would be appropriate?

      Additional experimental details have been provided and the figure legend changed to be more clear. Moreover, we now clearly state that the chromatograms shown were used to identify lipids due to retention times for spectra that were previously published in Wei et al., 2016.

      pg 10-11, comparison with PhnD structure: Perhaps it is worth mentioning a 3rd possible explanation for the relative opening/closing of the cleft is simply crystal packing? I don't think it necessarily has to imply anything about a difference in function. Also, the focus seems to be on this pairwise comparison, but perhaps more insights could be gleaned from an analysis that included a wider range of homologs, especially if any are thought to bind hydrophobic substrates.

      This could be true, and we have included a statement to that effect. We are unaware of homologs shown to bind to large, hydrophobic molecules.

      I think that BstB is shown upside-down in sup movies relative to other figures. If it isn't changed, perhaps adding some labels would help orient the reader.

      We have rotated the movies to be more consistent with the figures.

      Fig. S7: No units are indicated for Kds (uM?).

      Thank you – this has been fixed.

      pg 11, paragraph 2. "adjacent to three residues: Glu118, Tyr120 and Asn192": The residue number used in the text doesn't seem to match the numbering in the PDB file. I think these residues correspond to Glu98, Tyr100, and Asn172 in the PDB file.

      We regret this error. The correct numbering for both structures is now present in the deposited PDB files (7T1M for BstB and 7T1S for BstC).

      pg 12, final paragraph: The authors present binding data for BstB variants with mutations in the putative sterol binding pocket identified in the structural and MD analyses. However, these mutants had no effect on binding. The authors rationalize this in terms of the size of the interface and hydrophobic nature (which indeed, may be correct and is very plausible), and it is worth noting that many of their mutations are to Ala and would largely preserve the hydrophobic nature of the cleft. However, these mutants raise questions about where sterols actually bind. No experimental evidence is presented that substrates bind in the cleft, it is only hypothesized based on structural homology, MD simulations, etc. These mutations formally provide evidence against the hypothesis being tested; I think that has to be discussed a bit more directly, alongside the caveats the authors already discuss about hydrophobicity, etc.

      This is a valid point by the reviewer, and it is one we have attempted to address with our statement in the manuscript and in our response to reviewer 1. We have modified the relevant text to more clearly state that there is as of yet no experimental evidence for the binding of sterols to the cavity identified via molecular docking.

      pg 13: Presumably this is not the full-length lipoprotein, but has been truncated/mutated in some way? Some statement of roughly what was purified/crystallized should be stated.

      The SI methods on protein purification states that the genes of BstB and BstC without their respective signal peptides were obtained.

      pg 13, last paragraph "TN1 exhibits hybrid hydrophobicity, with the sides horizontal to cavities being hydrophobic while the vertical sides are more hydrophilic". I don't really follow the horizontal vs vertical sides. Perhaps this could be described in a different way.

      Noted and changed to “TN1 is closer to the N-terminal face of the structure, while CA1 and CA2 are proximal to the C-terminal face and form two open hydrophobic pockets; TN1 exhibits a mixture of hydrophobic and hydrophilic amino acids (Fig. 4B and Fig. S9B, Table S4).”

      pg 15-16, "Comparison to eukaryotic sterol transporters": Perhaps this would be better suited for the discussion section? Could also be streamlined; it is mostly discussing and comparing eukaryotic sterol binding domains to each other, not to BstABC.

      Given that BstB and BstC are the first identified proteins (and putative transporters) for bacterial sterol engagement, we thought a careful description of the existing sterol transporters (which are all eukaryotic) was warranted.

      Reviewer #3 (Recommendations For The Authors):

      I have just two minor suggestions for the authors if they wish to comment on or address them.

      1. Do the three proteins (BstA/B/C) form any sort of complex? Perhaps this property was not assessed - but it seemed possible that the B and C components might constitute a shuttle for the membrane-bound transporter?

      This is an important observation – the unliganded version of these proteins show no appreciable affinity for each other. However, BstB (which would be expected to engage both with BstA and BstC) belongs to a family of proteins known to undergo significant conformational change upon substrate binding. It is possible that with substrate present, complexes are formed – we have yet to investigate this.

      1. In Figure S1, panel C - it appears that the label for the BstC cluster may have migrated away from the intended location. In this figure, it might also be useful to indicate in the caption the meaning of the red coloring of the nodes?

      The label is now fixed – thank you for drawing our attention to this.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the three reviewers and the reviewing editor for their positive evaluation of our manuscript. We particularly appreciate that they unanimously consider our work as “important contributions to the understanding of how the CAF-1 complex works”, “The large amounts of data provided in the paper support the authors' conclusion very well” and “The paper effectively addresses its primary objective and is strong”. We also thank them for a careful reading and useful comments to improve the manuscript. We have built on these comments to provide an improved version of the manuscript, and address them point by point below .

      Reviewer #1 (Public Review):

      Summary:

      This paper makes important contributions to the structural analysis of the DNA replication-linked nucleosome assembly machine termed Chromatin Assembly Factor-1 (CAF-1). The authors focus on the interplay of domains that bind DNA, histones, and replication clamp protein PCNA.

      Strengths:

      The authors analyze soluble complexes containing full-length versions of all three fission yeast CAF-1 subunits, an important accomplishment given that many previous structural and biophysical studies have focused on truncated complexes. New data here supports previous experiments indicating that the KER domain is a long alpha helix that binds DNA. Via NMR, the authors discover structural changes at the histone binding site, defined here with high resolution. Most strikingly, the experiments here show that for the S. pombe CAF-1 complex, the WHD domain at the C-terminus of the large subunit lacks DNA binding activity observed in the human and budding yeast homologs, indicating a surprising divergence in the evolution of this complex. Together, these are important contributions to the understanding of how the CAF-1 complex works.

      Weaknesses:

      1. There are some aspects of the experimentation that are incompletely described: <br /> In the SEC data (Fig. S1C) it appears that Pcf1 in the absence of other proteins forms three major peaks. Two are labeled as "1a" (eluting at ~8 mL) and "1b" (~10-11 mL). It appears that Pcf1 alone or in complex with either or both of the other two subunits forms two different high molecular weight complexes (e.g. 4a/4b, 5a/5b, 6a/6b). There is also a third peak in the analysis of Pcf1 alone, which isn't named here, eluting at ~14 mL, overlapping the peaks labeled 2a, 4c, and 5c. The text describing these different macromolecular complexes seems incomplete (p. 3, lines 32-33): "When isolated, both Pcf2 and Pcf3 are monomeric while Pcf1 forms large soluble oligomers". Which of the three Pcf1-alone peaks are oligomers, and how do we know? What is the third peak? The gel analysis across these chromatograms should be shown.

      We thank the reviewer for his/her careful reading of the manuscript. Indeed, we plotted two curves in Figure S1C in a color that does not match the legend, leading to confusion. Curve 1, Pcf1 alone, depicted in red, should appear in pink as indicated in the legend and in the SDS-PAGE analysis below. Curve 1 exhibits two peaks, labeled as 1a and 1b. With an elution volume of 8.5mL close to the dead volume of the column, peak 1a corresponds to soluble oligomers, while peak 1b (10.4mL) likely corresponds to monomeric Pcf1. Curve 5 (Pcf1 + Pcf2 mixture) was in pink instead of purple as indicated in the legend. This curve consists of three distinct peaks (5a, 5b, and 5c). The SDS-PAGE analysis revealed the presence of oligomers of Pcf1-Pcf2 (5a, 8.3mL), the Pcf1-Pcf2 complex (5b, 9.8mL), and Pcf2 alone (5c, 13.6 mL).

      The color has now been corrected in the revised manuscript.

      More importantly, was a particular SEC peak of the three-subunit CAF-1 complex (i.e. 4a or 4b) characterized in the further experimentation, or were the data obtained from the input material prior to the separation of the different peaks? If the latter, how might this have affected the results? Do the forms inter-convert spontaneously?

      We conducted all structural analyses and DNA/PCNA interactions Figures (1-4, S1-S4) with freshly SECpurified samples corresponding to the 4b peak (9.7mL). Aliquots were flash-frozen with 50% glycerol for in vitro histone assembly assays (Figure 5).

      1. Given the strong structural predication about the roles of residues L359 and F380 (Fig. 2f), these should be mutated to determine effects on histone binding.

      We are pleased that our structural predictions are considered as strong. We agree that investigating the role of the L359 and F380 residues will be critical to further refine the binding interface between histone H3-H4 and CAF-1. An in vitro and in vivo analysis of such mutated forms, alongside the current Pcf1-ED mutant characterized in this article and additional potential mutated forms, has the potential to provide a better understanding of the dynamic of histone deposition by CAF-1. However, these additional approaches would require to reach another step in breaking this enigmatic dynamic.

      1. Could it be that the apparent lack of histone deposition by the delta-WHD mutant complex occurs because this mutant complex is unstable when added to the Xenopus extract?

      We cannot formally exclude this possibility, and this could potentially applies to all mutated forms tested. However, in the absence of available antibodies against the fission yeast CAF-1 complex, we cannot test this hypothesis for technical reasons. Nevertheless, we feel reassured by the fact that the in vitro assays of nucleosome assembly are overall consistent with the in vivo assays. Indeed, all mutated forms tested that abolished or weakened nucleosome assembly also exhibited synthetic lethality/growth defect in the absence of a functional HIRA pathway, including the delta WHD mutated form. This genetic synergy, that reflects a defective histone deposition by CAF-1, is not specific to the fission yeast S. pombe and was previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002). This further supports the evolutionary conservation based on genetic assay as a read out for defective histone deposition by CAF-1.

      Reviewer #1 (Recommendations For The Authors):

      • p. 4: "An experimental molecular weight of 179 kDa was calculated using Small Angle X-ray Scattering (SAXS), consistent with a 1:1:1 stoichiometry (Figure S1e). These data are in agreement with a globular complex with a significant flexibility (Figure S1f)." There needs to be more description of the precision of the molecular weight measurement, and what aspects of these data indicate the flexibility.

      The molecular weight was estimated using the correlation volume (Vc) defined by (Rambo & Tainer, Nature 2013, 496, 477-481). The estimated error with this method is around 10%. We added this information together with supporting arguments for the existence of flexibility: “An experimental molecular weight of 179 kDa was calculated using Small Angle X-ray Scattering (SAXS). Assuming an accuracy of around 10% with this method (Rambo and Tainer 2013), this value is consistent with a 1:1:1 stoichiometry for the CAF-1 complex (calculated MW 167kDa) (Figure S1e). In addition, the position of the maximum for the dimensionless Kratky plot was slightly shifted to higher values in the y and x axis compared to the position of the expected maximum of the curve for a fully globular protein (Figure S1f).

      This shows that the complex was globular with a significant flexibility.”

      • p. 6, lines 21-22: "In contrast, a large part of signals (338-396) did not vanish anymore upon addition of a histone complex preformed with two other histone chaperones known to compete with CAF-1 for histone binding..." Given the contrast made later with the 338-351 region which is insensitive to Asf1/Mcm2, it would be clearer for the reader to describe the Asf1/Mcm2-competed regions as residues 325-338 plus 352-396. Note that the numerical scale of residues doesn't line up perfectly with the data points in Figure 2d, and this should be fixed as well.

      We thank this reviewer for spotting this typographical error; we intended to write "In contrast, a large part of signals (348-396) did not vanish anymore… “. We modified paragraph as suggested by the reviewer because we agree it is clearer for the reader : “In contrast, only a shorter fragment (338-347) vanished upon addition of Asf1-H3-H4-Mcm2(69-138), a histone complex preformed with two other histone chaperones, Asf1 and Mcm2, known to compete with CAF-1 for histone binding (Sauer et al. 2017) and whose histone binding modes are well established (Figure 2e) (Huang et al. 2015, Richet et al. 2015). This finding underscores a direct competition between residues (325-338) and (349-396) within the ED domain and Asf1/Mcm2 for histone binding.”

      The slight shift in the numerical scale Figure 2d was also corrected.

      • p. 8. Lines 22-24: "EMSAs with a double-stranded 40bp DNA fragment confirmed the homogeneity of the bound complex. When increasing the SpCAF-1 concentration, additional mobility shifts suggest, a cooperative DNA binding (Figure 3a)." I agree that the migration of the population is further retarded upon the addition of more protein. However, doesn't this negate the first sentence? That is, if multiple CAF-1 complexes can bind each dsDNA molecule, can these complexes be described as homogeneous?

      We fully agree with the reviewer's comment and have removed the notion of homogeneity from the first sentence. “EMSAs with a double-stranded 40bp DNA fragment showed the formation of a bound complex.”

      • Figure S2b Legend: "1H-15N HSQC spectra of Pcf1_ED (425-496)." The residue numbers should read 325-396.

      The typo has been corrected.

      • Is the title for Figure 5 correct?: "Figure 5: Rescue using Y340 and W348 in the ED domain, the intact KER DNA binding domain and the C-terminal WHD of Pcf1 in SpCAF-1 mediated nucleosome assembly." I don't see that any point mutation rescue experiments are done here.

      The title of figure 5 has been modified for “Efficient nucleosome assembly by SpCAF-1 in vitro requires interactions with H3-H4, DNA and PCNA, and the C-terminal WHD domain”.

      • Figure S6C. I assume the top strain lacks the Pcf2-GFP but this should be stated explicitly.

      The following sentence “The top strain corresponds to a strain expressing wild-type and untagged Pcf2 as a negative control of GFP fluorescence” is now added to the figure legend. The figure S6C has been modified accordingly to mention “Pcf2 (untagged)” and state more explicitly.

      • Regarding point #3 in the public review, a simple initial test of this idea would be to determine if similar amounts of wt and mutant complexes can be immunoprecipitated at the endpoint of the assembly reactions.

      In the absence of available antibodies against the fission yeast CAF-1 complex, we cannot test this hypothesis for technical reasons. However, the in vitro assays of nucleosome assembly are overall consistent with the in vivo assays. Indeed, all mutated forms tested that abolished or weakened nucleosome assembly also exhibited synthetic lethality/growth defect in the absence of a functional HIRA pathway, including the delta WHD mutated form. This genetic synergy, reflecting defective histone deposition by CAF-1, is not specific to the fission yeast S. pombe, as it was previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002), further supporting the evolution conservation in the genetic assay as a read out for defective histone deposition by CAF-1.

      • Foundational findings that should be cited: The role of PCNA in CAF-1 activity was first recognized by pioneering studies in the Stillman laboratory (PMID: 10052459, 11089978). The earliest recombinant studies of CAF-1 showed that the large subunit is the binding platform for the other two, showed that the KER and ED domains were required for histone deposition activity, and roughly mapped the p60-binding site on the large subunit (PMID: 7600578). Another early study roughly mapped the binding site for the third subunit and showed that biological effects of impairing the PCNA binding synergized with defects in the HIR pathway (PMID: 11756556), a genetic synergy first demonstrated in budding yeast (PMID: 9671489).

      We thank the reviewer for providing these important references that are now cited in the manuscript. PMID: 10052459 and 11089978 are cited page 2 line 18 and 19, PMID: 7600578 page 19 line 5 and PMID: 11756556 and 9671489 page 18 line 2.

      Reviewer #2 (Public Review):

      Summary:

      The authors describe the structure-functional relationship of domains in S. pombe CAF-1, which promotes DNA replication-coupled deposition of histone H3-H4 dimer. The authors nicely showed that the ED domain with an intrinsically disordered structure binds to histone H3-H4, that the KER domain binds to DNA, and that, in addition to a PIP box, the KER domain also contributes to the PCNA binding. The ED and KER domains as well as the WHD domain are essential for nucleosome assembly in vitro. The ED, KER domains, and the PIP box are important for the maintenance of heterochromatin.

      Strengths:

      The combination of structural analysis using NMR and Alphafold2 modeling with biophysical and biochemical analysis provided strong evidence on the role of the different domain structures of the large subunit of SpCAF-1, spPCF-1 in the binding to histone H3-H4, DNA as well as PCNA. The conclusion was further supported by genetic analysis of the various pcf1 mutants. The large amounts of data provided in the paper support the authors' conclusion very well.

      Reviewer #2 (Recommendations For The Authors):

      The paper by Ochesenbein describes the structural and functional analysis of S. pombe CAF-1 complex critical for DNA replication-coupled histone H3/H4 deposition. By using structural, biophysical, and biochemical analyses combined with genetic methods, the authors nicely showed that a large subunit of SpCAF1, SpPCF-1, consists of 5 structured domains with four connecting IDR domains. The ED domain with IDR nature binds to histone H3-H4 dimer with the conformational change of the other domain(s). SpCAF-1 binds to dsDNA by using the KER domain, but not the WHD domain. The experiments have been done with great care and a large amount of the data are highly reliable. Moreover, the results are clearly presented and convincingly written. The conclusion in the paper is very solid and will be useful for researchers who work in the field of chromosome biology.

      Major points:

      1. DNA binding of the KER mutant shown in Figures S3h and S3i, which was measured by the EMSA, looks similar to that of wild-type control in Figure S3f, which is different from the data in Figures 3b and 3e measured by the MST. The authors need a more precise description of the EMSA result of the KER mutant shown in Figures 3 and S3. The quantification of the EMSA result would resolve the point (should be provided).

      A proposed by this reviewer, we performed quantification of all EMSA presented in Figure 3 and Figure S3. We quantified the signal of the free DNA band to calculate a percentage of bound DNA in each condition. All EMSA experiments were conducted in duplicate, allowing us to calculate an average value and standard deviation for each interaction. Representative curves and fitted values are reported below in the figure provided for the reviewer (panel a data for Pcf1_KER domain with two fitting models, panel b for the entire CAF-1 complexes and mutants, panel c for the isolated Pcf1_KER domains), all fitted values in panel d. Importantly, as illustrated in panel a, the complete model for a single interaction (complete KD model, dashed line curve) does not adequately fit the data. In contrast, a function incorporating cooperativity (Hill model) better accounts for the measured data (solid line curve). Consistently, we also used the Hill model to fit the binding curves measured with the MST technique. As also specified now in the text, the Hill model allows to determine an EC50 value (concentration of protein resulting in the disappearance of half of the free DNA band intensity) and a Hill coefficient value (representing cooperativity during the interaction) for each curve.

      We measure a value of 3.4 ± 0.4 μM for the EC50 of SpCAF-1 WT, which is higher than the value measured by MST (0.7 ± 0.1 μM). Higher values were also calculated for all mutants and isolated Pcf1_KER domains compared to MST. These discrepancies could raise from the fact that the DNA concentration used in the two techniques were very different (20nM for MST experiments and 1μM for EMSA). Unlike the complete KD model, which includes in the calculation the DNA concentration (considered here as the "receptor"), the Hill model is fitted independently of this value. This model assumes that the “receptor” concentration is low compared to the KD. Here we calculate EC50 values on the same order of magnitude as the DNA concentration (low micromolar), The quantification obtained by EMSA is thus challenging to interpret. In contrast, values fitted by the MST measurements are more reliable since this limitation of low “receptor” concentration is correct.

      Therefore, although measurements of EC50 and Hill coefficient from EMSA are reproducible, they may be confusing for quantifying apparent affinity values through EC50. Nevertheless, this quantitative analysis of EMSA, requested by the reviewer, has highlighted an interesting characteristic of the KER mutant that is consistent across both methods: even though the EMSA pointed by the reviewer (Figures S3h and S3i compared to the wild-type control in Figure 3d and Figure S3f) show similar EC50 values, the binding cooperativity is different. Binding curves for the KER mutants is no longer cooperative (Hill coefficient ~1), and this is observed for all KER curves (isolated Pcf1_KER domain and the entire SpCAF-1 complex) with both methods, EMSA and MST. We thus decided to emphasize this characteristic of the KER mutant in the text (page 9 line 30-32). “Importantly, this mutant also shows a lower binding cooperativity for DNA binding, as estimated by the Hill coefficient value close to 1, compared to values around 3 for the WT and other mutants.”

      Since EMSA quantifications did not show a loss of “affinity” (as measured by the EC50 value) for the KER* mutants, compared to the WT contrary to MST measurements and because the DNA concentration was close to the measured EC50, we consider that EC50 values calculated by EMSA do not represent a KD value. If we add this quantification, we should discuss this point in detail. Thus, for sake of clarity, we prefer to put in the manuscript EMSA measurements as illustrations and qualitative validations of the interaction but not to include the quantification.

      Author response image 1.

      Quantitative analysis of interaction with DNA by EMSA. a: quantification of the amount of bound DNA for the Pcf1_KER domain (blue points with error bars). The fit with a KD model is shown as a dashed line, and the fit with a Hill model with a solid line. b: Examples of quantifications and fits (Hill model) for reconstituted SpCAF-1 WT and mutants. c: Examples of quantifications and fits (Hill model) for Pcf1_KER domains WT and mutant. d: EC50 values and Hill coefficients obtained for all EMSA experiments presented in Figure 3 and S3.

      1. As with the cooperative DNA binding of CAF-1, it is very important to show the stoichiometry of CAF-1 to the DNA or the site size. Given a long alpha-helix of the KER domain with biased charges, it is also interesting to show a model of how the dsDNA binds to the long helix with a cooperative binding property (this is not essential but would be helpful if the authors discuss it).

      We agree that having a molecular model for the binding of the KER helix to DNA would be especially interesting, but at this point, considering the accuracy of the tools currently at our disposal for predicting DNA-protein interactions, such a model would remain highly speculative.

      1. Figure 5 shows nucleosome assembly by SpCAF-1. SpCAF-1-PIP* mutant produced a product with faster mobility than the control at 2 h incubation. How much amounts of SpCAF-1 was added in the reaction seems to be critical. At least a few different concentrations of proteins should be tested.

      The slightly faster migration of the SpCAF-1-PIPis not systematically reproduced and we observed in several experiments that the band corresponding to supercoiled DNA migrated slightly above or below the one for the complementation by the SpCAF-1-WT (see Author response image 2 below). Thus this indicates that after 2 hours incubation the supercoiling assay with the SpCAF-1-PIP mutant compared to those achieved with the SpCAF-1-WT. To further document whether the WT or the PIP mutant are similar or not, we monitored difference of their nucleosome assembly efficiency by testing their ability to produce supercoiled DNA over shorter time, after 45 minute incubation. Under these conditions, we reproducibly detected supercoiled forms at earlier times with SpCAF-1-WT when compared to the SpCAF-1-PIP* (see figure 5 and Author response image 2). These observations indicate that mutation in the PIP motif of Pcf1 affects the rate of supercoiling in a distinct manner when compared to the other mutations that dramatically impair SpCAF-1 capacity to promote supercoiling.

      Author response image 2.

      Minor points:

      1. Page 8, line 26 or Table 1 legend: Please explain what "EC50" is.

      The definition of EC50, together with a reference paper for the Hill model have been added in the text page 8 lines 23-26, “The curves were fitted with a Hill model (Tso et al. 2018) with a EC50 value of 0.7± 0.1µM (effective concentration at which a 50% signal is observed) and a cooperativity (Hill coefficient, h) of 2.7 ± 0.2, in line with a cooperative DNA binging of SpCAF-1.”, in the Table 1 figure legend and in the method section (page 26).

      1. Page 13, lines 9, 11: "Xenopus" should be italicized.

      This is corrected

      1. Page 14, second half: In S. pombe, the pcf1 deletion mutant is not lethal. It is helpful to mention the phenotype of the deletion mutant a bit more when the authors described the genetic analysis of various pcf1 mutants.

      This point has been added on page 15, line 1.

      1. Figure 1d and Figure S2a: Captions and labels on the X and Y axes are overlapped or misplaced.

      This is corrected

      1. Figure 5: Please add a schematic figure of the assay to explain how one can check the nucleosome assembly by looking at the form I, supercoiled DNAs.

      A new panel has been added to Figure 5. This scheme depicts the supercoiling assay where supercoiled DNA (form I) is used as an indication of efficient nucleosome assembly. The figure legend has also been modified accordingly.

      Reviewer #3 (Public Review):

      Summary:

      The study conducted by Ouasti et al. is an elegant investigation of fission yeast CAF-1, employing a diverse array of technologies to dissect its functions and their interdependence. These functions play a critical role in specifying interactions vital for DNA replication, heterochromatin maintenance, and DNA damage repair, and their dynamics involve multiple interactions. The authors have extensively utilized various in vitro and in vivo tools to validate their model and emphasize the dynamic nature of this complex.

      Strengths:

      Their work is supported by robust experimental data from multiple techniques, including NMR and SAXS, which validate their molecular model. They conducted in vitro interactions using EMSA and isothermal microcalorimetry, in vitro histone deposition using Xenopus high-speed egg extract, and systematically generated and tested various genetic mutants for functionality in in vivo assays. They successfully delineated domain-specific functions using in vitro assays and could validate their roles to large extent using genetic mutants. One significant revelation from this study is the unfolded nature of the acidic domain, observed to fold when binding to histones. Additionally, the authors also elucidated the role of the long KER helix in mediating DNA binding and enhancing the association of CAF-1 with PCNA. The paper effectively addresses its primary objective and is strong.

      Weaknesses:

      A few relatively minor unresolved aspects persist, which, if clarified or experimentally addressed by the authors, could further bolster the study.

      1. The precise function of the WHD domain remains elusive. Its deletion does not result in DNA damage accumulation or defects in heterochromatin maintenance. This raises questions about the biological significance of this domain and whether it is dispensable. While in vitro assays revealed defects in chromatin assembly using this mutant (Figure 5), confirming these phenotypes through in vivo assays would provide additional assurance that the lack of function is not simply due to the in vitro system lacking PTMs or other regulatory factors.

      Our work demonstrates that the WHD domain is important CAF-1 function during DNA replication. Indeed, the deletion of this domain lead to a synthetic lethality when combined with mutation of the HIRA complex, as observed for a null pcf1 mutant, indicating a severe loss of function in the absence of the WHD domain. We propose that these genetic interactions, previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002) are indicative of a defective histone deposition by CAF-1. Moreover, our work establishes that this domain is dispensable to prevent DNA damage accumulation and to maintain silencing at centromeric heterochromatin, indicating that the WHD domain specifies CAF-1 functions. Moreover, our work further demonstrates that, in contrast to the S. cerevisiae and human WHD domain, the S. pombe counterpart exhibits no DNA binding activity. We thus agree that the WHD domain may contribute to nucleosome assembly in vivo via PTMs or interactions with regulatory factors that may potentially lack in in vitro systems. However, addressing these aspects deserves further investigations beyond the scope of this article.

      1. The observation of increased Pcf2-gfp foci in pcf1-ED cells, particularly in mono-nucleated (G2phase) and bi-nucleated cells with septum marks (S-phase), might suggest the presence of replication stress. This could imply incomplete replication in specific regions, leading to the persistence of Caf1-ED-PCNA factories throughout the cell cycle. To further confirm this, detecting accumulated single-stranded DNA (ssDNA) regions outside of S-phase using RPA as an ssDNA marker could be informative.

      We cannot formally exclude that cells expressing the Pcf1-ED mutated form exhibit incomplete replication in specific regions, an aspect that would require careful investigations. However, the microscopy analysis (Fig. 6c and S6c) of this mutant showed no alteration in the cell morphology, including the absence of elongated cells compared to wild type, a hallmark of checkpoint activation caused by ssDNA (Enoch et al. Gene & Dev 1992). Therefore, investigating the consequences of the interplay between the binding of CAF-1 to PCNA and histones on the dynamic of DNA replication, is of particular interest but out of the scope of the current manuscript.

      1. Moreover, considering the authors' strong assertion of histone binding defects in ED through in vitro assays (Figure 2d and S2a), these claims could be further substantiated, especially considering that some degree of histone deposition might still persist in vivo in the ED mutant (Figure 7d, viable though growth defective double ED*+hip1D mutants). For example, the approach, akin to the one employed in Fig. 6a (FLAG-IPs of various Pcf1-FLAG-tagged mutants), could also enable a comparison of the association of different mutants with histones and PCNA, providing a more thorough validation of their findings.

      We have provided in the current manuscript data establishing how Pcf1 mutated forms interacted with PCNA (Fig. 6a, 6b). Regarding the interactions with histone H3-H4, the approach based on immunoprecipitation using various Pcf1-FLAG tagged mutants has been unsuccessful in our hands. Indeed, we were unable to obtain robust and reproducible interactions between Pcf1 or its various mutated form with H3-H4. This is likely because Co-IP approaches do not probe for direct interactions. Indirect interactions between Pcf1 and H3-H4 are potentially bridged by additional factors, including the two other subunits of CAF-1, Pcf2 and Pcf3, or Asf1. Therefore, we are not in a position to address in vivo the direct interactions between Pcf1 and histone H3-H4.

      1. It would be valuable for the authors to speculate on the necessity of having disordered regions in CAF1. Specifically, exploring the overall distribution of these domains within disordered/unfolded structures could provide insightful perspectives. Additionally, it's intriguing to note that the significant disparities observed among mutants (ED, PIP, and KER*) in in vitro assays seem to become more generic in vivo, except for the indispensability of the WHD-domain. Could these disordered regions potentially play a crucial role in the phase separation of replication factories? Considering these questions could offer valuable insights into the underlying mechanisms at play.

      We agree that the potential mechanistic role of partial disorder in CAF-1 is particularly interesting. Disordered regions of human CAF-1 have been reported to form nuclear bodies with liquid-liquid phase separation properties to maintain HIV latency (Ma et al EMBO J. 2021). As suggested, this raises the question of how disordered domains of Pcf1 could promote phase separation for replication factories, if such phenomenon happens in vivo. Moreover, numerous factors of the replisome also harbor disordered regions (Bedina, A. et al, 2013. Intrinsically Disordered Proteins in Replication Process. InTech. doi: 10.5772/51673), adding complexity in disentangling experimentally such questions. We have added these elements at the end of the discussion in the revised manuscript (page 20, lines 23-29). “Such plasticity and cross-talks provided by structurally disordered domains might be key for the multivalent CAF-1 functions. Human CAF-1 has been reported to form nuclear bodies with liquid-liquid phase separation properties to maintain HIV latency (Ma et al. 2021). This raises the question of a potential role of the disordered domains of Pcf1, together with other replisome factor harbouring such disordered regions (Bedina 2013), in promoting phase separation of replication factories, if such phenomenon happens in vivo. Further studies will be needed to tackle these questions.”

    2. Author Response

      The following is the authors’ response to the original reviews.

      We thank the three reviewers and the reviewing editor for their positive evaluation of our manuscript. We particularly appreciate that they unanimously consider our work as “important contributions to the understanding of how the CAF-1 complex works”, “The large amounts of data provided in the paper support the authors' conclusion very well” and “The paper effectively addresses its primary objective and is strong”. We also thank them for a careful reading and useful comments to improve the manuscript. We have built on these comments to provide an improved version of the manuscript, and address them point by point below .

      Reviewer #1 (Public Review):

      Summary:

      This paper makes important contributions to the structural analysis of the DNA replication-linked nucleosome assembly machine termed Chromatin Assembly Factor-1 (CAF-1). The authors focus on the interplay of domains that bind DNA, histones, and replication clamp protein PCNA.

      Strengths:

      The authors analyze soluble complexes containing full-length versions of all three fission yeast CAF-1 subunits, an important accomplishment given that many previous structural and biophysical studies have focused on truncated complexes. New data here supports previous experiments indicating that the KER domain is a long alpha helix that binds DNA. Via NMR, the authors discover structural changes at the histone binding site, defined here with high resolution. Most strikingly, the experiments here show that for the S. pombe CAF-1 complex, the WHD domain at the C-terminus of the large subunit lacks DNA binding activity observed in the human and budding yeast homologs, indicating a surprising divergence in the evolution of this complex. Together, these are important contributions to the understanding of how the CAF-1 complex works.

      Weaknesses:

      1. There are some aspects of the experimentation that are incompletely described: <br /> In the SEC data (Fig. S1C) it appears that Pcf1 in the absence of other proteins forms three major peaks. Two are labeled as "1a" (eluting at ~8 mL) and "1b" (~10-11 mL). It appears that Pcf1 alone or in complex with either or both of the other two subunits forms two different high molecular weight complexes (e.g. 4a/4b, 5a/5b, 6a/6b). There is also a third peak in the analysis of Pcf1 alone, which isn't named here, eluting at ~14 mL, overlapping the peaks labeled 2a, 4c, and 5c. The text describing these different macromolecular complexes seems incomplete (p. 3, lines 32-33): "When isolated, both Pcf2 and Pcf3 are monomeric while Pcf1 forms large soluble oligomers". Which of the three Pcf1-alone peaks are oligomers, and how do we know? What is the third peak? The gel analysis across these chromatograms should be shown.

      We thank the reviewer for his/her careful reading of the manuscript. Indeed, we plotted two curves in Figure S1C in a color that does not match the legend, leading to confusion. Curve 1, Pcf1 alone, depicted in red, should appear in pink as indicated in the legend and in the SDS-PAGE analysis below. Curve 1 exhibits two peaks, labeled as 1a and 1b. With an elution volume of 8.5mL close to the dead volume of the column, peak 1a corresponds to soluble oligomers, while peak 1b (10.4mL) likely corresponds to monomeric Pcf1. Curve 5 (Pcf1 + Pcf2 mixture) was in pink instead of purple as indicated in the legend. This curve consists of three distinct peaks (5a, 5b, and 5c). The SDS-PAGE analysis revealed the presence of oligomers of Pcf1-Pcf2 (5a, 8.3mL), the Pcf1-Pcf2 complex (5b, 9.8mL), and Pcf2 alone (5c, 13.6 mL).

      The color has now been corrected in the revised manuscript.

      More importantly, was a particular SEC peak of the three-subunit CAF-1 complex (i.e. 4a or 4b) characterized in the further experimentation, or were the data obtained from the input material prior to the separation of the different peaks? If the latter, how might this have affected the results? Do the forms inter-convert spontaneously?

      We conducted all structural analyses and DNA/PCNA interactions Figures (1-4, S1-S4) with freshly SECpurified samples corresponding to the 4b peak (9.7mL). Aliquots were flash-frozen with 50% glycerol for in vitro histone assembly assays (Figure 5).

      1. Given the strong structural predication about the roles of residues L359 and F380 (Fig. 2f), these should be mutated to determine effects on histone binding.

      We are pleased that our structural predictions are considered as strong. We agree that investigating the role of the L359 and F380 residues will be critical to further refine the binding interface between histone H3-H4 and CAF-1. An in vitro and in vivo analysis of such mutated forms, alongside the current Pcf1-ED mutant characterized in this article and additional potential mutated forms, has the potential to provide a better understanding of the dynamic of histone deposition by CAF-1. However, these additional approaches would require to reach another step in breaking this enigmatic dynamic.

      1. Could it be that the apparent lack of histone deposition by the delta-WHD mutant complex occurs because this mutant complex is unstable when added to the Xenopus extract?

      We cannot formally exclude this possibility, and this could potentially applies to all mutated forms tested. However, in the absence of available antibodies against the fission yeast CAF-1 complex, we cannot test this hypothesis for technical reasons. Nevertheless, we feel reassured by the fact that the in vitro assays of nucleosome assembly are overall consistent with the in vivo assays. Indeed, all mutated forms tested that abolished or weakened nucleosome assembly also exhibited synthetic lethality/growth defect in the absence of a functional HIRA pathway, including the delta WHD mutated form. This genetic synergy, that reflects a defective histone deposition by CAF-1, is not specific to the fission yeast S. pombe and was previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002). This further supports the evolutionary conservation based on genetic assay as a read out for defective histone deposition by CAF-1.

      Reviewer #1 (Recommendations For The Authors):

      • p. 4: "An experimental molecular weight of 179 kDa was calculated using Small Angle X-ray Scattering (SAXS), consistent with a 1:1:1 stoichiometry (Figure S1e). These data are in agreement with a globular complex with a significant flexibility (Figure S1f)." There needs to be more description of the precision of the molecular weight measurement, and what aspects of these data indicate the flexibility.

      The molecular weight was estimated using the correlation volume (Vc) defined by (Rambo & Tainer, Nature 2013, 496, 477-481). The estimated error with this method is around 10%. We added this information together with supporting arguments for the existence of flexibility: “An experimental molecular weight of 179 kDa was calculated using Small Angle X-ray Scattering (SAXS). Assuming an accuracy of around 10% with this method (Rambo and Tainer 2013), this value is consistent with a 1:1:1 stoichiometry for the CAF-1 complex (calculated MW 167kDa) (Figure S1e). In addition, the position of the maximum for the dimensionless Kratky plot was slightly shifted to higher values in the y and x axis compared to the position of the expected maximum of the curve for a fully globular protein (Figure S1f).

      This shows that the complex was globular with a significant flexibility.”

      • p. 6, lines 21-22: "In contrast, a large part of signals (338-396) did not vanish anymore upon addition of a histone complex preformed with two other histone chaperones known to compete with CAF-1 for histone binding..." Given the contrast made later with the 338-351 region which is insensitive to Asf1/Mcm2, it would be clearer for the reader to describe the Asf1/Mcm2-competed regions as residues 325-338 plus 352-396. Note that the numerical scale of residues doesn't line up perfectly with the data points in Figure 2d, and this should be fixed as well.

      We thank this reviewer for spotting this typographical error; we intended to write "In contrast, a large part of signals (348-396) did not vanish anymore… “. We modified paragraph as suggested by the reviewer because we agree it is clearer for the reader : “In contrast, only a shorter fragment (338-347) vanished upon addition of Asf1-H3-H4-Mcm2(69-138), a histone complex preformed with two other histone chaperones, Asf1 and Mcm2, known to compete with CAF-1 for histone binding (Sauer et al. 2017) and whose histone binding modes are well established (Figure 2e) (Huang et al. 2015, Richet et al. 2015). This finding underscores a direct competition between residues (325-338) and (349-396) within the ED domain and Asf1/Mcm2 for histone binding.”

      The slight shift in the numerical scale Figure 2d was also corrected.

      • p. 8. Lines 22-24: "EMSAs with a double-stranded 40bp DNA fragment confirmed the homogeneity of the bound complex. When increasing the SpCAF-1 concentration, additional mobility shifts suggest, a cooperative DNA binding (Figure 3a)." I agree that the migration of the population is further retarded upon the addition of more protein. However, doesn't this negate the first sentence? That is, if multiple CAF-1 complexes can bind each dsDNA molecule, can these complexes be described as homogeneous?

      We fully agree with the reviewer's comment and have removed the notion of homogeneity from the first sentence. “EMSAs with a double-stranded 40bp DNA fragment showed the formation of a bound complex.”

      • Figure S2b Legend: "1H-15N HSQC spectra of Pcf1_ED (425-496)." The residue numbers should read 325-396.

      The typo has been corrected.

      • Is the title for Figure 5 correct?: "Figure 5: Rescue using Y340 and W348 in the ED domain, the intact KER DNA binding domain and the C-terminal WHD of Pcf1 in SpCAF-1 mediated nucleosome assembly." I don't see that any point mutation rescue experiments are done here.

      The title of figure 5 has been modified for “Efficient nucleosome assembly by SpCAF-1 in vitro requires interactions with H3-H4, DNA and PCNA, and the C-terminal WHD domain”.

      • Figure S6C. I assume the top strain lacks the Pcf2-GFP but this should be stated explicitly.

      The following sentence “The top strain corresponds to a strain expressing wild-type and untagged Pcf2 as a negative control of GFP fluorescence” is now added to the figure legend. The figure S6C has been modified accordingly to mention “Pcf2 (untagged)” and state more explicitly.

      • Regarding point #3 in the public review, a simple initial test of this idea would be to determine if similar amounts of wt and mutant complexes can be immunoprecipitated at the endpoint of the assembly reactions.

      In the absence of available antibodies against the fission yeast CAF-1 complex, we cannot test this hypothesis for technical reasons. However, the in vitro assays of nucleosome assembly are overall consistent with the in vivo assays. Indeed, all mutated forms tested that abolished or weakened nucleosome assembly also exhibited synthetic lethality/growth defect in the absence of a functional HIRA pathway, including the delta WHD mutated form. This genetic synergy, reflecting defective histone deposition by CAF-1, is not specific to the fission yeast S. pombe, as it was previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002), further supporting the evolution conservation in the genetic assay as a read out for defective histone deposition by CAF-1.

      • Foundational findings that should be cited: The role of PCNA in CAF-1 activity was first recognized by pioneering studies in the Stillman laboratory (PMID: 10052459, 11089978). The earliest recombinant studies of CAF-1 showed that the large subunit is the binding platform for the other two, showed that the KER and ED domains were required for histone deposition activity, and roughly mapped the p60-binding site on the large subunit (PMID: 7600578). Another early study roughly mapped the binding site for the third subunit and showed that biological effects of impairing the PCNA binding synergized with defects in the HIR pathway (PMID: 11756556), a genetic synergy first demonstrated in budding yeast (PMID: 9671489).

      We thank the reviewer for providing these important references that are now cited in the manuscript. PMID: 10052459 and 11089978 are cited page 2 line 18 and 19, PMID: 7600578 page 19 line 5 and PMID: 11756556 and 9671489 page 18 line 2.

      Reviewer #2 (Public Review):

      Summary:

      The authors describe the structure-functional relationship of domains in S. pombe CAF-1, which promotes DNA replication-coupled deposition of histone H3-H4 dimer. The authors nicely showed that the ED domain with an intrinsically disordered structure binds to histone H3-H4, that the KER domain binds to DNA, and that, in addition to a PIP box, the KER domain also contributes to the PCNA binding. The ED and KER domains as well as the WHD domain are essential for nucleosome assembly in vitro. The ED, KER domains, and the PIP box are important for the maintenance of heterochromatin.

      Strengths:

      The combination of structural analysis using NMR and Alphafold2 modeling with biophysical and biochemical analysis provided strong evidence on the role of the different domain structures of the large subunit of SpCAF-1, spPCF-1 in the binding to histone H3-H4, DNA as well as PCNA. The conclusion was further supported by genetic analysis of the various pcf1 mutants. The large amounts of data provided in the paper support the authors' conclusion very well.

      Reviewer #2 (Recommendations For The Authors):

      The paper by Ochesenbein describes the structural and functional analysis of S. pombe CAF-1 complex critical for DNA replication-coupled histone H3/H4 deposition. By using structural, biophysical, and biochemical analyses combined with genetic methods, the authors nicely showed that a large subunit of SpCAF1, SpPCF-1, consists of 5 structured domains with four connecting IDR domains. The ED domain with IDR nature binds to histone H3-H4 dimer with the conformational change of the other domain(s). SpCAF-1 binds to dsDNA by using the KER domain, but not the WHD domain. The experiments have been done with great care and a large amount of the data are highly reliable. Moreover, the results are clearly presented and convincingly written. The conclusion in the paper is very solid and will be useful for researchers who work in the field of chromosome biology.

      Major points:

      1. DNA binding of the KER mutant shown in Figures S3h and S3i, which was measured by the EMSA, looks similar to that of wild-type control in Figure S3f, which is different from the data in Figures 3b and 3e measured by the MST. The authors need a more precise description of the EMSA result of the KER mutant shown in Figures 3 and S3. The quantification of the EMSA result would resolve the point (should be provided).

      A proposed by this reviewer, we performed quantification of all EMSA presented in Figure 3 and Figure S3. We quantified the signal of the free DNA band to calculate a percentage of bound DNA in each condition. All EMSA experiments were conducted in duplicate, allowing us to calculate an average value and standard deviation for each interaction. Representative curves and fitted values are reported below in the figure provided for the reviewer (panel a data for Pcf1_KER domain with two fitting models, panel b for the entire CAF-1 complexes and mutants, panel c for the isolated Pcf1_KER domains), all fitted values in panel d. Importantly, as illustrated in panel a, the complete model for a single interaction (complete KD model, dashed line curve) does not adequately fit the data. In contrast, a function incorporating cooperativity (Hill model) better accounts for the measured data (solid line curve). Consistently, we also used the Hill model to fit the binding curves measured with the MST technique. As also specified now in the text, the Hill model allows to determine an EC50 value (concentration of protein resulting in the disappearance of half of the free DNA band intensity) and a Hill coefficient value (representing cooperativity during the interaction) for each curve.

      We measure a value of 3.4 ± 0.4 μM for the EC50 of SpCAF-1 WT, which is higher than the value measured by MST (0.7 ± 0.1 μM). Higher values were also calculated for all mutants and isolated Pcf1_KER domains compared to MST. These discrepancies could raise from the fact that the DNA concentration used in the two techniques were very different (20nM for MST experiments and 1μM for EMSA). Unlike the complete KD model, which includes in the calculation the DNA concentration (considered here as the "receptor"), the Hill model is fitted independently of this value. This model assumes that the “receptor” concentration is low compared to the KD. Here we calculate EC50 values on the same order of magnitude as the DNA concentration (low micromolar), The quantification obtained by EMSA is thus challenging to interpret. In contrast, values fitted by the MST measurements are more reliable since this limitation of low “receptor” concentration is correct.

      Therefore, although measurements of EC50 and Hill coefficient from EMSA are reproducible, they may be confusing for quantifying apparent affinity values through EC50. Nevertheless, this quantitative analysis of EMSA, requested by the reviewer, has highlighted an interesting characteristic of the KER mutant that is consistent across both methods: even though the EMSA pointed by the reviewer (Figures S3h and S3i compared to the wild-type control in Figure 3d and Figure S3f) show similar EC50 values, the binding cooperativity is different. Binding curves for the KER mutants is no longer cooperative (Hill coefficient ~1), and this is observed for all KER curves (isolated Pcf1_KER domain and the entire SpCAF-1 complex) with both methods, EMSA and MST. We thus decided to emphasize this characteristic of the KER mutant in the text (page 9 line 30-32). “Importantly, this mutant also shows a lower binding cooperativity for DNA binding, as estimated by the Hill coefficient value close to 1, compared to values around 3 for the WT and other mutants.”

      Since EMSA quantifications did not show a loss of “affinity” (as measured by the EC50 value) for the KER* mutants, compared to the WT contrary to MST measurements and because the DNA concentration was close to the measured EC50, we consider that EC50 values calculated by EMSA do not represent a KD value. If we add this quantification, we should discuss this point in detail. Thus, for sake of clarity, we prefer to put in the manuscript EMSA measurements as illustrations and qualitative validations of the interaction but not to include the quantification.

      Author response image 1.

      Quantitative analysis of interaction with DNA by EMSA. a: quantification of the amount of bound DNA for the Pcf1_KER domain (blue points with error bars). The fit with a KD model is shown as a dashed line, and the fit with a Hill model with a solid line. b: Examples of quantifications and fits (Hill model) for reconstituted SpCAF-1 WT and mutants. c: Examples of quantifications and fits (Hill model) for Pcf1_KER domains WT and mutant. d: EC50 values and Hill coefficients obtained for all EMSA experiments presented in Figure 3 and S3.

      1. As with the cooperative DNA binding of CAF-1, it is very important to show the stoichiometry of CAF-1 to the DNA or the site size. Given a long alpha-helix of the KER domain with biased charges, it is also interesting to show a model of how the dsDNA binds to the long helix with a cooperative binding property (this is not essential but would be helpful if the authors discuss it).

      We agree that having a molecular model for the binding of the KER helix to DNA would be especially interesting, but at this point, considering the accuracy of the tools currently at our disposal for predicting DNA-protein interactions, such a model would remain highly speculative.

      1. Figure 5 shows nucleosome assembly by SpCAF-1. SpCAF-1-PIP* mutant produced a product with faster mobility than the control at 2 h incubation. How much amounts of SpCAF-1 was added in the reaction seems to be critical. At least a few different concentrations of proteins should be tested.

      The slightly faster migration of the SpCAF-1-PIPis not systematically reproduced and we observed in several experiments that the band corresponding to supercoiled DNA migrated slightly above or below the one for the complementation by the SpCAF-1-WT (see Author response image 2 below). Thus this indicates that after 2 hours incubation the supercoiling assay with the SpCAF-1-PIP mutant compared to those achieved with the SpCAF-1-WT. To further document whether the WT or the PIP mutant are similar or not, we monitored difference of their nucleosome assembly efficiency by testing their ability to produce supercoiled DNA over shorter time, after 45 minute incubation. Under these conditions, we reproducibly detected supercoiled forms at earlier times with SpCAF-1-WT when compared to the SpCAF-1-PIP* (see figure 5 and Author response image 2). These observations indicate that mutation in the PIP motif of Pcf1 affects the rate of supercoiling in a distinct manner when compared to the other mutations that dramatically impair SpCAF-1 capacity to promote supercoiling.

      Author response image 2.

      Minor points:

      1. Page 8, line 26 or Table 1 legend: Please explain what "EC50" is.

      The definition of EC50, together with a reference paper for the Hill model have been added in the text page 8 lines 23-26, “The curves were fitted with a Hill model (Tso et al. 2018) with a EC50 value of 0.7± 0.1µM (effective concentration at which a 50% signal is observed) and a cooperativity (Hill coefficient, h) of 2.7 ± 0.2, in line with a cooperative DNA binging of SpCAF-1.”, in the Table 1 figure legend and in the method section (page 26).

      1. Page 13, lines 9, 11: "Xenopus" should be italicized.

      This is corrected

      1. Page 14, second half: In S. pombe, the pcf1 deletion mutant is not lethal. It is helpful to mention the phenotype of the deletion mutant a bit more when the authors described the genetic analysis of various pcf1 mutants.

      This point has been added on page 15, line 1.

      1. Figure 1d and Figure S2a: Captions and labels on the X and Y axes are overlapped or misplaced.

      This is corrected

      1. Figure 5: Please add a schematic figure of the assay to explain how one can check the nucleosome assembly by looking at the form I, supercoiled DNAs.

      A new panel has been added to Figure 5. This scheme depicts the supercoiling assay where supercoiled DNA (form I) is used as an indication of efficient nucleosome assembly. The figure legend has also been modified accordingly.

      Reviewer #3 (Public Review):

      Summary:

      The study conducted by Ouasti et al. is an elegant investigation of fission yeast CAF-1, employing a diverse array of technologies to dissect its functions and their interdependence. These functions play a critical role in specifying interactions vital for DNA replication, heterochromatin maintenance, and DNA damage repair, and their dynamics involve multiple interactions. The authors have extensively utilized various in vitro and in vivo tools to validate their model and emphasize the dynamic nature of this complex.

      Strengths:

      Their work is supported by robust experimental data from multiple techniques, including NMR and SAXS, which validate their molecular model. They conducted in vitro interactions using EMSA and isothermal microcalorimetry, in vitro histone deposition using Xenopus high-speed egg extract, and systematically generated and tested various genetic mutants for functionality in in vivo assays. They successfully delineated domain-specific functions using in vitro assays and could validate their roles to large extent using genetic mutants. One significant revelation from this study is the unfolded nature of the acidic domain, observed to fold when binding to histones. Additionally, the authors also elucidated the role of the long KER helix in mediating DNA binding and enhancing the association of CAF-1 with PCNA. The paper effectively addresses its primary objective and is strong.

      Weaknesses:

      A few relatively minor unresolved aspects persist, which, if clarified or experimentally addressed by the authors, could further bolster the study.

      1. The precise function of the WHD domain remains elusive. Its deletion does not result in DNA damage accumulation or defects in heterochromatin maintenance. This raises questions about the biological significance of this domain and whether it is dispensable. While in vitro assays revealed defects in chromatin assembly using this mutant (Figure 5), confirming these phenotypes through in vivo assays would provide additional assurance that the lack of function is not simply due to the in vitro system lacking PTMs or other regulatory factors.

      Our work demonstrates that the WHD domain is important CAF-1 function during DNA replication. Indeed, the deletion of this domain lead to a synthetic lethality when combined with mutation of the HIRA complex, as observed for a null pcf1 mutant, indicating a severe loss of function in the absence of the WHD domain. We propose that these genetic interactions, previously reported in S. cerevisiae (Kaufman et al. MCB 1998; Krawitz et al. MCB 2002) are indicative of a defective histone deposition by CAF-1. Moreover, our work establishes that this domain is dispensable to prevent DNA damage accumulation and to maintain silencing at centromeric heterochromatin, indicating that the WHD domain specifies CAF-1 functions. Moreover, our work further demonstrates that, in contrast to the S. cerevisiae and human WHD domain, the S. pombe counterpart exhibits no DNA binding activity. We thus agree that the WHD domain may contribute to nucleosome assembly in vivo via PTMs or interactions with regulatory factors that may potentially lack in in vitro systems. However, addressing these aspects deserves further investigations beyond the scope of this article.

      1. The observation of increased Pcf2-gfp foci in pcf1-ED cells, particularly in mono-nucleated (G2phase) and bi-nucleated cells with septum marks (S-phase), might suggest the presence of replication stress. This could imply incomplete replication in specific regions, leading to the persistence of Caf1-ED-PCNA factories throughout the cell cycle. To further confirm this, detecting accumulated single-stranded DNA (ssDNA) regions outside of S-phase using RPA as an ssDNA marker could be informative.

      We cannot formally exclude that cells expressing the Pcf1-ED mutated form exhibit incomplete replication in specific regions, an aspect that would require careful investigations. However, the microscopy analysis (Fig. 6c and S6c) of this mutant showed no alteration in the cell morphology, including the absence of elongated cells compared to wild type, a hallmark of checkpoint activation caused by ssDNA (Enoch et al. Gene & Dev 1992). Therefore, investigating the consequences of the interplay between the binding of CAF-1 to PCNA and histones on the dynamic of DNA replication, is of particular interest but out of the scope of the current manuscript.

      1. Moreover, considering the authors' strong assertion of histone binding defects in ED through in vitro assays (Figure 2d and S2a), these claims could be further substantiated, especially considering that some degree of histone deposition might still persist in vivo in the ED mutant (Figure 7d, viable though growth defective double ED*+hip1D mutants). For example, the approach, akin to the one employed in Fig. 6a (FLAG-IPs of various Pcf1-FLAG-tagged mutants), could also enable a comparison of the association of different mutants with histones and PCNA, providing a more thorough validation of their findings.

      We have provided in the current manuscript data establishing how Pcf1 mutated forms interacted with PCNA (Fig. 6a, 6b). Regarding the interactions with histone H3-H4, the approach based on immunoprecipitation using various Pcf1-FLAG tagged mutants has been unsuccessful in our hands. Indeed, we were unable to obtain robust and reproducible interactions between Pcf1 or its various mutated form with H3-H4. This is likely because Co-IP approaches do not probe for direct interactions. Indirect interactions between Pcf1 and H3-H4 are potentially bridged by additional factors, including the two other subunits of CAF-1, Pcf2 and Pcf3, or Asf1. Therefore, we are not in a position to address in vivo the direct interactions between Pcf1 and histone H3-H4.

      1. It would be valuable for the authors to speculate on the necessity of having disordered regions in CAF1. Specifically, exploring the overall distribution of these domains within disordered/unfolded structures could provide insightful perspectives. Additionally, it's intriguing to note that the significant disparities observed among mutants (ED, PIP, and KER*) in in vitro assays seem to become more generic in vivo, except for the indispensability of the WHD-domain. Could these disordered regions potentially play a crucial role in the phase separation of replication factories? Considering these questions could offer valuable insights into the underlying mechanisms at play.

      We agree that the potential mechanistic role of partial disorder in CAF-1 is particularly interesting. Disordered regions of human CAF-1 have been reported to form nuclear bodies with liquid-liquid phase separation properties to maintain HIV latency (Ma et al EMBO J. 2021). As suggested, this raises the question of how disordered domains of Pcf1 could promote phase separation for replication factories, if such phenomenon happens in vivo. Moreover, numerous factors of the replisome also harbor disordered regions (Bedina, A. et al, 2013. Intrinsically Disordered Proteins in Replication Process. InTech. doi: 10.5772/51673), adding complexity in disentangling experimentally such questions. We have added these elements at the end of the discussion in the revised manuscript (page 20, lines 23-29). “Such plasticity and cross-talks provided by structurally disordered domains might be key for the multivalent CAF-1 functions. Human CAF-1 has been reported to form nuclear bodies with liquid-liquid phase separation properties to maintain HIV latency (Ma et al. 2021). This raises the question of a potential role of the disordered domains of Pcf1, together with other replisome factor harbouring such disordered regions (Bedina 2013), in promoting phase separation of replication factories, if such phenomenon happens in vivo. Further studies will be needed to tackle these questions.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      Ngoune et al. present compelling evidence that Slender cells are challenged to infect tsetse flies. They explore the experimental context of a recent important paper in the field, Schuster et al., that presents evidence suggesting the proliferative Slender bloodstream T. brucei can infect juvenile tsetse flies. Schuster et al. were disruptive to the widely accepted paradigm that the Stumpy bloodstream-form is solely responsible for tsetse infection and T. brucei transmission potential. Evidence presented here shows that in all cases, Stumpy form parasites are exponentially more capable of infecting tsetse flies. They further show that Slender cells do not infect mature flies.

      However, they raise questions of immature tsetse immunological potential and field transmission potential that their experiments do not address. Specifically, they do not show that teneral tsetse flies are immunocompromised, that tsetse flies must be immunocompromised for Slender infection nor that younger teneral tsetse infection is not pertinent to field transmission.

      Strengths:

      Experimental Design is precise and elegant, outcomes are convincing. Discussion is compelling and important to the field. This is a timely piece that adds important data to a critical discussion of host: parasite interactions, of relevance to all parasite transmission.

      Thank you

      Weaknesses:

      As above, the authors dispute the biological relevance of teneral tsetse infection in the wild, without offering evidence to the contrary. Statements need to be softened for claims regarding immunological competence or relevance to field transmission.

      We have modified the revised version to soften these claims (l.156 and l.159). Please, note that the limited immunocompetence of teneral flies has been extensively studied by the labs of S. Aksoy at Yale and M. Lehane at Liverpool. In the discussion, we provide key references from these two labs 18-21. Our comment on the relevance to field transmission is simply based on field observations of the fly biology.

      Reviewer #2:

      Summary:

      Contrary to findings recently reported by Schuster S et al., this short paper shows evidence that the stumpy form of T. brucei is probably the most pre-adapted form to progress with the life cycle of this parasite in the tsetse vector.

      Strengths:

      One of the most important pieces of experimental evidence is that they conduct all fly infection experiments in the absence of metabolites like GlcNAc or S-glutathione; by doing so, the infection rates in flies infected with slender trypanosomes seem very low or non-existent. This, on its own, is a piece of important experimental evidence that the Schuster S et al findings may need to be revisited.

      Thank you

      Weaknesses:

      I consider that the authors should have included their own experiments demonstrating that the addition of these chemicals enhances the infection rates in flies receiving bloodmeals containing slender trypanosomes.

      The main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies, not to reproduce the results obtained by Schuster et al.. We think that the suggested experiment is not necessary as L-Glutathion is well-known to enhance infection rates by reducing the fly immune response efficiency (Ref 24). Most of the experimental infections with procyclic or ST forms (even at low densities) published by our lab and others, especially for studying parasite stages in the salivary glands, were actually performed by complementing the infective meal with L-Glutathion for this reason.

      Reviewer #3:

      The dogma in the Trypanosome field is that transmission by Tsetse flies is ensured by stumpy forms. This has been recently challenged by the Engstler lab (Schuster et al.), which showed that slender forms can also be transmitted by teneral flies. In this work, the authors aimed to test whether transmission by slender forms is possible and frequent.

      For this, the authors repeated Tsetse transmission experiments but with some key critical differences relative to Schuster et al. First, they infected teneral and adult flies. Second, their infective meals lacked two components (N-acetylglucosamine and glutathione), which could have boosted the infection rates in the Schuster et al. work. In these conditions, the authors observed that most stumpy form infections with teneral and adult flies were successful while only 1 out of 24 slender-form infections was successful. Adult flies showed a lower infection rate, which is probably because their immune system is more developed.

      Given that in Tsetse-infested areas most transmission is likely ensured by adult flies, the authors conclude that the parasite stage that will have a significant epidemiologic impact on transmission is the stumpy form.

      Strengths:

      • This work tackles an important question in the field.

      • The Rotureau laboratory has well-known expertise in Tsetse fly transmission experiments.

      • Experimental setup is robust and data is solid.

      • The paper is concise and clearly written.

      Thank you

      Weaknesses:

      • The reason(s) for why this work has lower infection rates with slender forms than Schuster et al. remain unknown. The authors suggested it could be because of the absence of N-acetylglucosamine and/or glutathione, but this was not formally tested. Could another source of variation be the clone of EATRO1125 AnTat1.1 (Paris versus Munich origin)? To reduce the workload, such additional experiments could be done with just one dose of parasites.

      Differences between the strain clones, the cell culture conditions and/or the fly colony maintenance conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

      • The characterization of what is slender and stumpy is critical. The authors used PAD1 protein expression as the sole reporter. While this is a robust assay to confirm stumpy, an analysis of the cell cycle would have been helpful to confirm that slender forms have not initiated differentiation (Larcombe S et al. 2023, preprint).

      In this study, ST are indeed defined by their general morphology and by the expression of PAD1 proteins at the cell membrane as assessed by IFA. This is the simplest and most accurate ST proxy accessible by IFA. We do not think that monitoring in more details the cell cycle would provide key information here. If some SL forms had initiated differentiation in our experiments, then, the low infection rates observed with SL would have reinforced the fact that mostly mature PAD1+ ST are infectious for flies .

      • Statistical analysis is missing. Is the difference between adult and teneral infections statistically significant?

      An ANOVA statistical analysis was performed and a dedicated section was added to the revised version.

      For all conditions, MG infection rate comparisons between adult and teneral flies were statistically significant.

      Recommenda8ons for the authors:

      Reviewer #1:

      While some perceived outcomes pertaining to immunological competence and transmission relevance of teneral flies are overstated, the overall tone of the paper is inappropriately apologe7c. The authors obviously don't want to offend their colleagues but the current wri7ng style obscures meaning, making the paper a bit 'flowery' and difficult to read.

      Ngoune et al. have important outcomes that need to be stated more directly.

      Words such as 'unequivocally' are not appropriate to Schuster et al's outcomes. As your study shows, their findings are experimentally based, with inherent caveats, and are therefore sugges7ve, not demonstrated or proven.

      The word 'unequivocally' has been removed from the revision.

      Reviewer #3:

      The Engstler lab cul7vates AntTaT1.1 in methylcellulose (Munich clone, if I am not mistaken). The Rotureau lab uses the Paris AntTaT1.1 clone and uses no methylcellulose. Given that methylcellulose helps stumpy forma7on, it seems important to show that the results of this paper are reproducible with the Munich clone grown in the presence of methylcellulose.

      Differences between the strain clones and culture conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary of the reviewers’ discussion:

      • The development of MSI-1 as a post-transcriptional regulator of gene expression in Escherichia coli represents a valuable addition to the synthetic biology toolkit. MSI-1 has advantages over transcriptional regulators because it has the potential to target single genes in operons. Allosteric control of MSI-1 by oleic acid increases its versatility.

      Authors’ response: We thank the reviewers and editor for this evaluation.

      • We recommend that authors add experiments to test the mechanism of regulation by MSI-1 or soften their claims about translational regulation. We also recommend that the authors expand their discussion of other natural and synthetic regulatory systems that target translation.

      Authors’ response: In this revision, we have added new experimental results from RT-qPCR, bulk fluorometry, and flow cytometry assays to further support our conclusions. We have also enlarged the Introduction and Discussion.

      • Adding an experiment to quantify the effect of oleic acid with the most strongly regulated reporter construct (i.e., flow cytometry with redesign-3) would substantially increase the impact of the work.

      Authors’ response: We have done this experimental quantification (see the new Fig. 5d).

      Reviewer #1 (Public Review):

      The authors develop reporter constructs in E. coli where gene expression, presumably translation, is repressed by MSI-1. This is a potentially useful tool for synthetic biologists, with the advantage over transcriptional regulation that one gene in an operon could be targeted. That being said, an important caveat of translational regulation that is not addressed in the manuscript is the potential for downstream effects on RNA stability and/or transcription termination. The authors' MSI-1-regulated reporter constructs could also be useful for mechanistic studies of MSI-1.

      Authors’ response: We thank the reviewer for such appreciation of our work. Regarding the potential effects on RNA stability or transcription termination, we would like to highlight our results with the sfGFP-mScarlet bicistron (Fig. 6c), showing the specific regulation of sfGFP by MSI-1* and not of mScarlet. Anyway, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2).

      The author's initial construct design led to only weak regulation by MSI-1, presumably because the MSI-1 binding sites were not suitably positioned to repress translation initiation. A more rationally designed construct led to considerably greater repression. One weakness of the paper is that the authors did not use their redesigned construct that is more strongly repressed to demonstrate allosteric regulation by oleic acid using a comparable assay (e.g., flow cytometry) to that used in other experiments. The potential for allosteric regulation is a major strength of the MSI-1 system, so this is a significant gap. Similarly, the authors use the weakly regulated constructs to assess the effect of MSI-1 binding site mutations and for their mathematical modeling; these experiments would be better suited to the more strongly regulated construct.

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system (see the new Fig. 5d). Regarding the kinetic study, we focused on the reporter system with just one recognition motif for simplicity. A reporter system with two recognition motifs, thereby recruiting two different proteins, increases the complexity to distill the effect of point mutations.

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 5. Panels c-f look at colonies on plates, with numbers from these data being difficult to compare with either the bulk fluorescence or single-cell fluorescence values shown in other figures. Supplementary Figure 8 shows data for single cells; these data would be more appropriate in Figure 5, with the plate-based data moving to the supplement. Moreover, measuring the effect of oleic acid on the redesign-3 reporter using flow cytometry would assess the impact of oleic acid on the most strongly regulated reporter; this would be the most impactful analysis.

      Authors’ response: We have redone Fig. 5 to include flow cytometry data (also for the system implemented with the redesign-3 reporter).

      1. Paragraph starting line 438. The authors should briefly discuss the potential for translational repression leading to reduced RNA stability, and in the case of rapid repression that impacts transcription-coupled translation, its impact on Rho-dependent transcription termination. These factors could alter the expression of neighboring genes.

      Authors’ response: As we have shown with the RT-qPCR experiment, the mRNA level of the target gene does not change in response to protein binding. We agree that mRNA stability could potentially be changed by using other RNA-targeting proteins. But in our view, a reduction of RNA stability is not a regulation of translation. We have added the following sentence in the Discussion: “The additional use of RNA-binding proteins able to alter mRNA stability might lead to the implementation of more complex circuits at the posttranscriptional level.”

      1. Figure 1. It would be informative to include a control where cells have an empty plasmid rather than a plasmid expressing MSI-1, to address leakiness of MSI-1 expression.

      Authors’ response: We have constructed a void plasmid as suggested and performed new bulk fluorometry assays. The new Fig. S8 shows the tight control of MSI-1* expression with the PLlac promoter. No apparent leakage is observed.

      1. Line 132. Where were the two sequences positioned with respect to each other than the start codon? It would be helpful to show the sequence in Figure 1.

      Authors’ response: The precise sequence is shown in the inset of Fig. 1b. The motif is placed just after the start codon.

      1. Line 135. The authors envisioned repression mechanism isn't clear from the text, specifically the meaning of "block the progression" and "initial phase". As far as I know, there is no precedent for RNA-binding proteins repressing translation in bacteria by preventing translation elongation. Presumably, repression in the context described here would be due to MSI-1 binding over the ribosome-binding site, although the predicted hairpin may also occlude binding of initiating 30S ribosomes in the absence of MSI-1 binding.

      Authors’ response: It is difficult to know the exact mode of action. In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.”

      1. Figure 1e is overly complicated and hence is difficult to interpret. The key result is that mScarlet expression is unchanged as a function of lactose concentration. It is sufficient to show the inset graph as a supplementary figure panel and to conclude that regulation of sfGFP is at a post-transcriptional level. Similarly, the inset in Figure 4b is unnecessary.

      Authors’ response: The inset of Fig. 1e shows that the growth rate of the cells is almost constant when lactose varies. A change in growth rate will affect protein expression. The use of a two-reporter system, one regulated translationally and the other not, is instrumental to extract from fluorescence data estimates of transcription and translation rates. Of course, showing that mScarlet expression is almost constant when lactose varies would be sufficient, but we believe that performing a fine treatment of the data helps to better understand the regulatory system from a mathematical and mechanistic point of view. Therefore, despite increasing the complexity of the figure, we prefer to keep the representation of the Crick spaces (following Alon’s terminology, see our ref. 32). We have tried to carefully explain Fig. 1e in the text.

      1. Figure 1f and Figure 4c would be easier to interpret as two-dimensional plots.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      1. I don't think Figure 2e is relevant. The key result is shown in Figure 2f, i.e., the effect of mutations on regulation by MSI-1.

      Authors’ response: We agree with the reviewer that the key result is shown in panel f. However, we prefer to keep panel e in Fig. 2 because, even if negative, this result may incite further research. In addition, we avoid the rearrangement of the whole figure.

      1. Lines 311-313. Without additional evidence that the mutants are toxic, I suggest removing this text.

      Authors’ response: As suggested, we have removed that claim.

      Reviewer #2 (Public Review):

      Summary:

      Dolcemascolo and colleagues describe the use of the mammalian RNA-binding protein Musashi-1 (MSI-1) to implement translational regulation systems in E. coli. They perform detailed in vitro studies of MSI-1 and its binding to different RNA sequences. They provide compelling evidence of the effectiveness of the regulatory system in multiple circuits using different mRNA sequence motifs. They harness allosteric inhibition of MSI-1 by omega-9 monounsaturated fatty acids to demonstrate a fatty-acid-responsive circuit in E. coli.

      Strengths:

      The experimental results are compelling and the characterization of the binding between MSI-1 and different RNA sequences is thorough and performed via multiple complementary techniques. Several new useful circuit components are demonstrated.

      Authors’ response: We thank the reviewer for such appreciation of our work.

      Weaknesses:

      MSI-1 provides 8.6-fold downregulation of sfGFP with an optimized mRNA sequence. In some applications, a larger degree of repression may be required.

      Authors’ response: We agree with the reviewer in this point. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.”

      Reviewer #2 (Recommendations For The Authors):

      Overall, I think this paper is very well done and quite thorough. I only have minor suggestions:

      • For Figures 1f and 4c, it is quite hard to interpret the fraction of cells above the threshold with the 3d perspective. It would be clearer to use a more standard 2d plot where the histograms are offset along the y-axis and the threshold is indicated by a vertical line.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      • For Figure 4b, the highlighting of different sequence regions in red3 appears to be offset by one base (e.g. AAU is highlighted rather than AUG).

      Authors’ response: This has been corrected.

      • For line 504, it seems that MSI-1 is used for two different proteins. A different name should be assigned to this 200-residue protein to avoid confusion with the other MSI-1.

      Authors’ response: We now use the term MSI-1h* for the human version of the protein.

      • The note (Page S12) that A_0 + A_R = alpha/delta only applies in steady-state conditions, which should be stated.

      Authors’ response: We have specified that.

      • It seems that some authors work for the companies that sell some of the instruments/consumables used for the assays, specifically switchSENSE and LigandTracer. This may be something that should be declared under Competing Interests for the paper.

      Authors’ response: We are sorry for having missed this point. We have included a Competing Interests section to state that “RAHR and WFV work for Dynamic Biosensors. GPR and JB work for Ridgeview Instruments”.

      Reviewer #3 (Public Review):

      Summary:

      In this work, the authors co-opt the RRM-binding protein Musashi-1 to act as a translational repressor. The novelty of the work is in the adoption of the allosteric RRM protein Musashi-1 into a translational reporter and the demonstration that RRM proteins, which are ubiquitous in eukaryotic systems, but rare in prokaryotic ones, may act effectively as post-translational regulators in E. coli. The extent of repression achieved by the best design presented in this work is not substantially improved compared to other synthetic regulatory schemes developed for E. coli, even those that similarly regulate translation (eg. native PP7 repression is approximately 10-fold, Lim et al. J. Biol. Chem. 2001 276:22507-22513). Furthermore, the mechanism of regulation is not established due to missing key experiments. The work would be of broader interest if the allosteric properties of Musashi-1 were more effective in the context of regulation. Unfortunately, the authors do not demonstrate that fatty acids can completely de-repress expression in the experimental system used for most of their assays, nor do they use this ability in their provided application (NIMPLY gate).

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system, showing substantial de-repression of the system with the biochemical compound. We have redone Fig. 5 and modified the Results section accordingly. Aligned with the reviewers and editor, we believe that this new result helps to improve our manuscript.

      Strengths:

      The first major achievement of this work is the demonstration that a eukaryotic RRM protein may be used to posttranscriptionally regulate expression in bacteria. In my limited literature search, this appears to be the first engineering attempt to design an RBP to directly regulate translation in E. coli, although engineered control of translation via other approaches including alterations to RNA structure or via trans-acting sRNAs have been previously described (for review see Vigar and Wieden Biochim Biophys. Acta Gen. Subj. 2017, 1861:3060-3069). Additionally, several viral systems (e.g. MS2 and PP7) have been directly co-opted to work in a similar fashion in the past (utilized recently in Nguyen et al. ACS Synthetic Biol 2022, 11:1710-1718).

      Authors’ response: We thank the reviewer for such appreciation of our work.

      The second achievement of this work is the demonstration that the allosteric regulation of Musashi-1 binding can be utilized to modulate the regulatory activity. However, the liquid culture demonstration (Suppl. Fig 8) shows that this is not a very effective switch, with de-repressed reporter activity showing substantial change but not approaching un-repressed activity. This effect is stronger when colonies are grown on a solid medium (Fig. 5).

      Authors’ response: As we have previously indicated, the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system in liquid culture showed substantial de-repression with the biochemical compound. It is now stated in the text the following: “Nevertheless, the system implemented with the redesign-3 reporter displayed a better dynamic behavior in response to lactose and oleic acid. In particular, the percentage of cells in the ON state increased from 0 (with 1 mM lactose) to 71% upon addition of 20 mM oleic acid (Fig. 5d).” This new result helps to improve our manuscript.

      Weaknesses:

      In this work, the authors codon optimize the mouse Musashi-1 coding sequence for expression in E. coli and demonstrate using an sfGFP reporter that an engineered Musashi-1 binding site near the translational start site is sufficient to enable a modest reduction in reporter gene expression. The authors postulate that the reduction in expression due to inhibition of ribosome translocation along the transcript (lines 134/135), as an expression of a control transcript (mScarlet) driven by the same promoter (Plac) but without the Musashi-1 recognition site does not demonstrate the same repression. However, the situation could be more complex. Other possibilities include inhibition of translation initiation rather than elongation, as well as accelerated mRNA decay of transcripts that are not actively translated. The authors do not present any measurements of sfGFP mRNA levels.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In addition, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      In subsequent sections of the work, the authors create a series of point mutations to assess RNA-protein binding and assess these via both a sfGFP reporter and in vitro binding assays (switchSENSE). Ultimately, it is difficult to fully rationalize and interpret the behavior of these mutants in the context provided. The authors do identify a relationship between equilibrium constant (1/KD) and fold-repression. However, it is not clear from the narrative why this relationship should exist. Fold-repression is one measure of regulator efficacy, but it is an indirect measure determined from unrepressed and repressed expression. It is not clear why unrepressed expression (in the absence of the protein) is expected to be a function of the equilibrium constant.

      Authors’ response: A mathematical derivation from mass action kinetics on why the fold change scales with 1/KD is provided in Note S2. It is the ratio between the unrepressed and repressed expression (i.e., fold change) what scales with 1/KD, but not the expression of a particular state. This kind of relationship has been previously established in the case of transcription regulation [see e.g. Garcia & Phillips, PNAS (2011), our ref. 39]. Our mathematical modeling results expand previous work by providing a single picture from which to analyze transcription and translation regulation.

      Subsequent rational redesign of the Musashi-1 binding sequence to produce three alternative designs shows that fold-repression may be improved to approximately 8.6-fold. However, the rationalization of why the best design (red3) achieves this increase based on either the extensive modelling or in vitro measured binding constants is not well articulated. Furthermore, this extent of regulation is approximately that which can be achieved from the PP7 system with its native components (Lim et al. J. Biol. Chem. 2001 276:22507-22513).

      Authors’ response: In the case of translation control, the regulation is more challenging because the target is quickly degraded, especially in bacteria (in contrast to transcription control, where the target is stable). This is acknowledged in the manuscript. Even though, it is possible to engineer synthetic circuits with sRNAs or RNA-binding proteins with sufficient dynamic range. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.” Regarding the articulation of the results for the mutants and mathematical model, see our responses in the following questions.

      The application provided for this regulator (NIMPLY gate), is not an inherently novel regulatory paradigm, and it does not capitalize on the allosteric properties of Musashi-1, but rather treats Musashi-1 as a non-allosteric component of a regulatory circuit.

      Authors’ response: The NIMPLY gate refers to lactose and aTC as inputs. Considering oleic acid as an additional input will lead to a more complex logic. In the last Results section, we wanted to show that the post-transcriptional mechanism engineered with Musashi-1 can be useful specifically regulate a gene within an operon, to implement combinatorial regulation (i.e., coupling transcription and translation control), and to reduce protein expression noise. To these ends, the allosteric ability of the Musashi-1 was not so determinant. In this regard, it would be true that such fine regulatory effects might be achieved as well with non-allosteric RNA-binding proteins, such as MS2CP or PP7CP.

      Reviewer #3 (Recommendations For The Authors):

      1. In the introduction the authors should adequately address the native bacterial mechanisms that allow posttranscriptional regulation in bacteria as well as better discuss previous examples of translational repressors.

      Authors’ response: We have added the following paragraph in the Introduction: “Even though bacteria do not appear to exploit proteins to regulate translation in a gene-specific manner, it is worth noting that some bacteriophages do follow this mechanism to modulate their infection cycle. These are the cases, e.g., of the coat proteins of the phages MS2 (infecting Escherichia coli) or PP7 (infecting Pseudomonas aeruginosa), which regulate the expression of the cognate phage replicases through protein-RNA interactions [18]. However, one limitation for synthetic biology developments is that such phage proteins are not allosteric. At the post-transcriptional level, bacteria mostly rely on a large palette of cis- and trans-acting non-coding RNAs to either activate or repress protein expression, resulting in the regulation of translation initiation, mRNA stability, or transcription termination, and even allowing sensing small molecules [1,15]. Thus, there should be efforts to replicate this functional versatility with proteins in bacteria.”

      1. Given the location of the Musashi-1 binding site in the sfGFP reporter, it may be blocking translation initiation, rather than blocking the progression of the ribosome once attached (line 134/135). The schematic in Fig 1a. is also not overly clear in describing the differences in mechanisms between eukaryotic and prokaryotic systems described in the text.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

      1. The authors did not directly examine mRNA levels of their reporter to establish translational regulation. In many cases, inhibition of translation is accompanied by an increased degradation rate in bacterial systems. The authors do not seem to recognize this as a possible amplifier in their system, relying exclusively on normalization via another transcript produced from the same promoter (mScarlet).

      Authors’ response: For this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      1. The results presented for mutations 1-5 are not consistent with the author's models for what is occurring. In particular, mutant 1 displays a reduction in reporter production in the absence of Musashi-1, but the production in the presence does not change from the unaltered sequence. The claim that mutation 1 (in the UAG binding site) results in less binding and ultimately in less regulation is not substantiated since this loss of regulation is due to a reduction in unrepressed expression rather than an increase in expression when Musashi-1 is present.

      Authors’ response: We respectfully disagree with this appreciation. In the case of mutant 1, if the Musashi protein recognized the target mRNA with the same affinity as in the original scenario, the red bar would be much lower. Because the Musashi protein hardly recognizes the mutant-1 mRNA, the blue and red bars are quite similar. To clarify this point, we have added the following text in the manuscript: “Despite that mutation substantially reduced sfGFP expression in absence of MSI-1*, the presumed repressed state upon addition of lactose did not change much, suggesting the difficulty of the protein for targeting the mutated mRNA.”

      1. Given point 5 above, it is not clear to me why one would expect the 1/KD to be predictive fold-repression in the presence and absence of the repressor. I would rather see the relationship described as predictive in Fig. 2f (fold change vs. 1/KD) rather than the non-linear relationship. It is difficult to qualitatively evaluate the fit quality with the way the data are currently presented.

      Authors’ response: Note S2 provides a mathematical derivation from mass action kinetics on why the fold change scales with 1/KD. The R2 value that we provide for the fitting corresponds to the linear regression between fold and 1/KD, as specified in the figure legend. However, we think that the representation of fold vs. KD in log scale is more illustrative in this case.

      1. It is not clear what conclusion is determined from the computational modeling, or how this work contributes to the narrative presented. It does not seem like what is learned from these experiments is utilized for novel designs. Furthermore, several of the assumptions within the model may be problematic including the high rate of "elongation leakage" described and the lack of justification for RNA degradation rates utilized.

      Authors’ response: The mathematical modeling was performed to rationalize our experimental data. Our idea was more to recapitulate the observed dynamics than to guide the design of new systems. Our model might be exploited to this end in further research, as the reviewer suggests. Besides, elongation leakage is a concept that applies to both transcription and translation regulation systems, and it is not more than the ability of the RNA polymerase or ribosome to elongate even if there is a protein bound to the nucleic acid. This parameter can be set to 0 in the model if appropriate. Moreover, we cite the paper by Bernstein et al., PNAS (2002), our ref. 38, to justify that in E. coli the average mRNA half-life is about 5 min (i.e., degradation rate of 0.14 min-1).

      1. The data presented in Figure 4 are not presented in a consistent way. While it would be somewhat redundant, including the 0 and 1 mM lactose data for red3 in Figure 4a would be helpful for comparison purposes.

      Authors’ response: We have added the requested bar plot in Fig. 4a.

      1. The presence of additional Musashi-1 sites upstream of the start codon in red3, and their impact on impact on the fold-repression may support an inhibition of the translation initiation model rather than an inhibition of elongation.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors aim to address a critical challenge in the field of bioinformatics: the accurate and efficient identification of protein binding sites from sequences. Their work seeks to overcome the limitations of current methods, which largely depend on multiple sequence alignments or experimental protein structures, by introducing GPSite, a multi-task network designed to predict binding residues of various molecules on proteins using ESMFold.

      Strengths:

      1. Benchmarking. The authors provide a comprehensive benchmark against multiple methods, showcasing the performances of a large number of methods in various scenarios.

      2. Accessibility and Ease of Use. GPSite is highlighted as a freely accessible tool with user-friendly features on its website, enhancing its potential for widespread adoption in the research community.

      We thank the reviewer for acknowledging the contributions and strengths of our work! Weaknesses:

      1. Lack of Novelty. The method primarily combines existing approaches and lacks significant technical innovation. This raises concerns about the original contribution of the work in terms of methodological development. Moreover, the paper reproduces results and analyses already presented in previous literature, without providing novel analysis or interpretation. This further diminishes the contribution of this paper to advancing knowledge in the field.

      The novelty of this work is primarily manifested in four key aspects. Firstly, although we agree with the reviewer that we did employ several existing tools such as ProtTrans and ESMFold to extract sequence features and predict protein conformations, these techniques were hardly explored in the field of binding site prediction. We have successfully demonstrated the feasibility of substituting multiple sequence alignments with language model embeddings and training with “less accurate” predictive structures, providing a new solution to overcome the limitations of current methods for genome-wide applications. Secondly, though a few methods tend to capture geometric information based on protein surfaces or atom graphs, surface calculation and property mapping are usually time-consuming, while massage passing on full atom graphs is memory-consuming and thus challenging to process long sequences. Besides, these methods are sensitive towards details and errors in the predictive structures. To facilitate large-scale annotations, we have innovatively applied geometric deep learning to protein residue graphs for comprehensively capturing backbone and sidechain geometric contexts in an efficient and effective manner (Figure 1). Thirdly, we have not only exploited multi-task learning to integrate diverse ligands and enhance performance, but also shown its capability to easily extend to the binding site prediction of other unseen ligands (Figure 4 D-E). Last but not least, as a Tools and Resources article, we have provided a fast, accurate and user-friendly webserver, as well as constructed a large annotation database for the sequences in Swiss-Prot. Leveraging this database, we have conducted extensive analyses on the associations between binding sites and molecular functions, biological processes, and disease-causing mutations (Figure 5), indicating the potential of our tool to unveil unexplored biology underlying genomic data.

      1. Benchmark Discrepancies. The variation in benchmark results, especially between initial comparisons and those with PeSTo. GPSite achieves a PR AUC of 0.484 on the global benchmark but a PR AUC of 0.61 on the benchmark against PeSTo. For consistency, PeSTo should be included in the benchmark against all other methods. It suggests potential issues with the benchmark set or the stability of the method. This inconsistency needs to be addressed to validate the reliability of the results.

      We thank the reviewer for the constructive comments. Since our performance comparison experiments involved numerous competitive methods whose training sets were disparate, it was difficult to compare or rank all these methods fairly using a single test set. As described in the “GPSite outperforms state-of-the-art methods” section, 358 out of 375 proteins in our protein-protein binding site test set share >30% sequence identity with the training sequences of PeSTo. To address this, we meticulously re-split our entire protein-protein binding site dataset to generate a new test set that avoids any overlap with the training sets of both GPSite and PeSTo and performed a separate evaluation. This is quite common in this field. For instance, in the study of PeSTo [Nat Commun 2023], the comparisons of PeSTo with MaSIF-site, SPPIDER, and PSIVER were conducted using one test set, while the comparison with ScanNet was performed on a separate test set. Based on the reviewer’s suggestion, in the revised version of the manuscript, we intend to include other comparative methods alongside PeSTo on the new test set or retrain our model directly on PeSTo's training set for comparison, which should enhance the completeness of our results.

      1. Interface Definition Ambiguity. There is a lack of clarity in defining the interface for the binding site predictions. Different methods are trained using varying criteria (surfaces in MaSIF-site, distance thresholds in ScanNet). The authors do not adequately address how GPSite's definition aligns with or differs from these standards and how this issue was addressed. It could indicate that the comparison of those methods is unreliable and unfair.

      We thank the reviewer for the comments. The precise definition of ligand-binding sites is elucidated in the “Benchmark datasets” section. Specifically, the datasets of DNA, RNA, peptide, ATP, HEM and metal ions used to train GPSite were collected from the widely acknowledged BioLiP database [PMID: 23087378]. In BioLiP, a binding residue is defined if the smallest atomic distance between the target residue and the ligand is <0.5 Å plus the sum of the Van der Waal’s radius of the two nearest atoms. In the meanwhile, most comparative methods regarding these ligands were also trained on data from BioLiP, thereby ensuring fair comparisons.

      However, since BioLiP does not include data on protein-protein binding sites, studies for protein-protein binding site prediction may adopt slightly distinct label definitions, as the reviewer suggested. Here, we employed protein-protein binding site data from our previous study [PMID: 34498061], where a protein-binding residue was defined as a surface residue (relative solvent accessibility > 5%) that lost more than 1 Å2 absolute solvent accessibility after protein-protein complex formation. This definition was initially introduced in PSIVER [PMID: 20529890] and widely applied in various studies (e.g., PMID: 31593229, PMID: 32840562). SPPIDER [PMID: 17152079] and MaSIF-site [PMID: 31819266] have also adopted similar surface-based definitions as PSIVER. On the other hand, ScanNet [PMID: 35637310] employed an atom distance threshold of 4 Å to define contacts while PeSTo [PMID: 37072397] used a threshold of 5 Å. However, it is noteworthy that current methods in this field including ScanNet [Nat Methods 2022] and PeSTo [Nat Commun 2023] directly compared methods using different label definitions without any alignment in their benchmark studies, likely due to the subtle distinctions among these definitions. For instance, the study of PeSTo directly performed comparisons with ScanNet, MaSIF-site, SPPIDER, and PSIVER. Therefore, we followed these previous works, directly comparing GPSite with other protein-protein binding site predictors. In our revised manuscript, we will provide more details for the binding site definitions to avoid any potential ambiguity.

      While GPSite demonstrates the potential to surpass state-of-the-art methods in protein binding site prediction, the evidence supporting these claims seems incomplete. The lack of methodological novelty and the unresolved questions in benchmark consistency and interface definition somewhat undermine the confidence in the results. Therefore, it's not entirely clear if the authors have fully achieved their aims as outlined.

      The work is useful for the field, especially in disease mechanism elucidation and novel drug design. The availability of genome-scale binding residue annotations GPSite offers is a significant advancement. However, the utility of this tool could be hampered by the aforementioned weaknesses unless they are adequately addressed.

      We thank the reviewer for acknowledging the advancement and value of our work, as well as pointing out areas where improvements can be made. As discussed above, we will carry out the corresponding revisions in the next version of the manuscript to enhance the completeness and clearness of our work.

      Reviewer #2 (Public Review):

      Summary:

      This work provides a new framework, "GPsite" to predict DNA, RNA, peptide, protein, ATP, HEM, and metal ions binding sites on proteins. This framework comes with a webserver and a database of annotations. The core of the model is a Geometric featurizer neural network that predicts the binding sites of a protein. One major contribution of the authors is the fact that they feed this neural network with predicted structure from ESMFold for training and prediction (instead of native structure in similar works) and a high-quality protein Language Model representation. The other major contribution is that it provides the public with a new light framework to predict protein-ligand interactions for a broad range of ligands.

      The authors have demonstrated the interest of their framework with mostly two techniques: ablation and benchmark.

      Strengths:

      The performance of this framework as well as the provided dataset and web server make it useful to conduct studies.

      The ablations of some core elements of the method, such as the protein Language Model part, or the input structure are very insightful and can help convince the reader that every part of the framework is necessary. This could also guide further developments in the field. As such, the presentation of this part of the work can hold a more critical place in this work.

      We thank the reviewer for recognizing the contributions of our work and for noting that our experiments are thorough.

      Weaknesses:

      Overall, we can acknowledge the important effort of the authors to compare their work to other similar frameworks. Yet, the lack of homogeneity of training methods and data from one work to the other makes the comparison slightly unconvincing, as the authors pointed out. Overall, the paper puts significant effort into convincing the reader that the method is beating the state of the art. Maybe, there are other aspects that could be more interesting to insist on (usability, interest in protein engineering, and theoretical works).

      We sincerely appreciate the reviewer for the constructive and insightful comments. As to the concern of training data heterogeneity raised by the reviewer, it is noteworthy that current studies in this field, such as ScanNet [Nat Methods 2022] and PeSTo [Nat Commun 2023], tend to directly compare methods trained on different datasets in their benchmark experiments. Therefore, we have adhered to the paradigm in these previous works. According to the detailed recommendations by the reviewer, we will improve our manuscript by incorporating additional ablation studies regarding the effects of predicted structures and language model representations. Besides, we will refine the Discussion section to focus more on the achievements of this work and its potential applications including protein engineering. A comprehensive point-by-point response to the reviewer’s recommendations will be provided alongside the revised manuscript. This will ensure that all concerns and suggestions are adequately addressed.

      Reviewer #3 (Public Review):

      Summary

      The authors of this work aim to address the challenge of accurately and efficiently identifying protein binding sites from sequences. They recognize that the limitations of current methods, including reliance on multiple sequence alignments or experimental protein structure, and the under-explored geometry of the structure, which limit the performance and genome-scale applications. The authors have developed a multi-task network called GPSite that predicts binding residues for a range of biologically relevant molecules, including DNA, RNA, peptides, proteins, ATP, HEM, and metal ions, using a combination of sequence embeddings from protein language models and ESMFold-predicted structures. Their approach attempts to extract residual and relational geometric contexts in an end-to-end manner, surpassing current sequence-based and structure-based methods.

      Strengths

      1. The GPSite model's ability to predict binding sites for a wide variety of molecules, including DNA, RNA, peptides, and various metal ions.

      2. Based on the presented results, GPSite outperforms state-of-the-art methods in several benchmark datasets.

      3. GPSite adopts predicted structures instead of native structures as input, enabling the model to be applied to a wider range of scenarios where native structures are rare.

      4. The authors emphasize the low computational cost of GPSite, which enables rapid genome-scale binding residue annotations, indicating the model's potential for large-scale applications.

      We thank the reviewer for recognizing the significance and value of our work!

      Weaknesses

      1. One major advantage of GPSite, as claimed by the authors, is its efficiency. Although the manuscript mentioned that the inference takes about 5 hours for all datasets, it remains unclear how much improvement GPSite can offer compared with existing methods. A more detailed benchmark comparison of running time against other methods is recommended (including the running time of different components, since some methods like GPSite use predicted structures while some use native structures).

      We thank the reviewer for the valuable suggestion. Empirically, it takes about 30 min for existing MSA-based methods to make predictions for a protein with 500 residues, while it only takes less than 1 min for GPSite (including structure prediction). However, it is worth noting that some predictors in our benchmark study are solely available as webservers, and it is challenging to compare the runtime between a standalone program and a webserver due to the disparity in hardware configurations. Therefore, we will include comprehensive runtime comparisons between the GPSite webserver and other existing servers in the revision to illustrate the practicality and efficiency of our method.

      1. Since the model uses predicted protein structure, the authors have conducted some studies on the effect of the predicted structure's quality. However, only the 0.7 threshold was used. A more comprehensive analysis with several different thresholds is recommended.

      We thank the reviewer for the comment. We assessed the effect of the predicted structure's quality by evaluating GPSite’s performance on high-quality (TM-score > 0.7) and low-quality (TM-score ≤ 0.7) predicted structures. We did not employ multiple thresholds (e.g., 0.3, 0.5, and 0.7), as the majority of proteins in the test sets were accurately predicted by ESMFold. Specifically, as shown in Figure 3B, Appendix 3-figure 2 and Appendix 2-table 5, the numbers of proteins with TM-score ≤ 0.7 are small in most datasets. Consequently, there is insufficient data available for analysis with lower thresholds, except for the RNA test set. Notably, Figure 3C presents a detailed inspection of the proteins with TM-score < 0.5 in the RNA test set. Within this subset, GPSite consistently outperforms the state-of-the-art structure-based method GraphBind with predicted structures as input, regardless of the prediction quality of ESMFold. Only in cases where structures are predicted with extremely low quality (TM-score < 0.3) does GPSite fall behind GraphBind input with native structures. This result further demonstrates the robustness of GPSite.

      1. To demonstrate the robustness of GPSite, the authors performed a case study on human GR containing two zinc fingers, where the predicted structure is not perfect. The analysis could benefit from more a detailed explanation of why the model can still infer the binding site correctly even though the input structural information is slightly off.

      We thank the reviewer for the comment. We have actually explained the potential reason for the robustness of GPSite in the second paragraph of the “GPSite is robust for low-quality predicted structures” section. In summary, although the whole structure of this protein is not perfectly predicted, the binding domains of peptide, DNA and Zn2+ are actually predicted accurately as evidenced by the superpositions of the native and predicted structures in Figure 3D and 3E. Therefore, GPSite can still make reliable predictions.

      1. To analyze the relatively low AUC value for protein-protein interactions, the authors claimed that it is "due to the fact that protein-protein interactions are ubiquitous in living organisms while the Swiss-Prot function annotations are incomplete", which is unjustified. It is highly recommended to support this claim by showing at least one example where GPSite's prediction is a valid binding site that is not present in the current Swiss-Prot database or via other approaches.

      We thank the reviewer for the valuable recommendation. We will perform such analysis in the revised manuscript.

      1. The authors reported that many GPSite-predicted binding sites are associated with known biological functions. Notably, for RNA-binding sites, there is a significantly higher proportion of translation-related binding sites. The analysis could benefit from a further investigation into this observation, such as the analyzing the percentage of such interactions in the training site. In addition, if there is sufficient data, it would also be interesting to see the cross-interaction-type performance of the proposed model, e.g., train the model on a dataset excluding specific binding sites and test its performance on that class of interactions.

      We thank the reviewer for the suggestion. We would like to clarify that the analysis in Figure 5C was conducted at “protein-level” instead of “residue-level”. As described in the second paragraph of the “Large-scale binding site annotation for Swiss-Prot” section, a protein-level ligand-binding score was assigned to a protein by averaging the top k residue-level predictive binding scores. This protein-level score indicates the overall binding propensity of the protein to a specific ligand. We gathered the top 20,000 proteins with the highest protein-level binding scores for each ligand and found that their biological process annotations from Swiss-Prot were consistent with existing knowledge.

      As for the cross-interaction-type performance raised by the reviewer, we will include such analysis in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We would like to thank the reviewers for their feedback. Below we address their comments and have indicated the associated changes in our point-by-point response (blue: answers, red: changes in manuscript).

      Reviewer #1:

      Overall, the hypotheses and results are clearly presented and supported by high quality figures. The study is presented in a didactic way, making it easy for a broad audience to understand the significance of the results. The study does present some weaknesses that could easily be addressed by the authors.

      We thank the reviewer for appreciating our work and providing useful suggestions for improvement.

      1) First, there are some anatomical inaccuracies: line 129 and fig1C, the authors omit m.dial septum projections to area CA1 (in addition to the entorhinal cortex). Moreover, in addition to CA1, CA3 also provides monosynaptic feedback projections to the medial septum CA3. Finally, an indirect projection from CA1/3 excitatory neurons to the lateral septum, which in turn sends inhibitory projections to the medial septum could be included or mentioned by the authors. This could be of particular relevance to support claims related to effects of neurostimulations, whereby minutious implementation of anatomical data could be key.

      If not updating their model, the authors could add this point to their limitation section, where they already do a good job of mentioning some limitations of using the EC as a sole oscillatory input to CA1.

      We acknowledge that our current model strongly simplifies the interconnections between the medial septum and the hippocampal formation, but including more anatomical details is beyond the scope of this manuscript and would be a topic for future work. Nevertheless, we followed the reviewer’s advice to stress this point in our manuscript. First, we moved a paragraph that was initially in the “methods” section to the “results” section (L.141-150 of the revised manuscript):

      “Biologically, GABAergic neurons from the medial septum project to the EC, CA3, and CA1 fields of the hippocampus (Toth et al., 1993; Hajós et al., 2004; Manseau et al., 2008; Hangya et al., 2009; Unal et al., 2015; Müller and Remy, 2018). Although the respective roles of these different projections are not fully understood, previous computational studies have suggested that the direct projection from the medial septum to CA1 is not essential for the production of theta in CA1 microcircuits (Mysin et al., 2019). Since our modeling of the medial septum is only used to generate a dynamic theta rhythm, we opted for a simplified representation where the medial septum projects only to the EC, which in turn drives the different fields of the hippocampus. In our model, Kuramoto oscillators are therefore connected to the EC neurons and they receive projections from CA1 neurons (see methods for more details).”

      Second, we expanded the corresponding paragraph in the limitation section to discuss this point further (L.398-415 of the revised manuscript):

      “We decided to model septal pacemaker neurons projecting to the EC as the main source of hippocampal theta as reported in multiple experimental studies (Buzsáki, 2002; Buzsáki et al., 2003; Hangya et al., 2009). However, experimental findings and previous models have also proposed that direct septal inputs are not essential for theta generation (Wang, 2002; Colgin et al., 2013; Mysin et al., 2019), but play an important role in phase synchronization of hippocampal neurons. Furthermore, the model does not account for the connections between the lateral and medial septum and the hippocampus (Takeuchi et al., 2021). These connections include the inhibitory projections from the lateral to the medial septum and the monosynaptic projections from the hippocampal CA3 field to the lateral septum. An experimental study has highlighted the importance of the lateral septum in regulating the hippocampal theta rhythm (Bender et al., 2015), an area that has not been included in the model. Specifically, theta-rhythmic optogenetic stimulation of the axonal projections from the lateral septum to the hippocampus was shown to entrain theta oscillations and lead to behavioral changes during exploration in transgenic mice. To account for these discrepancies, our model could be extended by considering more realistic connectivity patterns between the medial / lateral septum and the hippocampal formation, including glutamatergic, cholinergic, and GABAergic reciprocal connections (Müller and Remy, 2018), or by considering multiple sets of oscillators each representing one theta generator.”

      1. The authors test conditions of low theta inputs, which they liken to pathological states (line 112). It is not clear what pathology the authors are referring to, especially since a large amount of 'oscillopathies' in the septohippocampal system are associated with decreased gamma/PAC, but not theta oscillations (e.g. Alzheimer's disease conditions).

      In the manuscript, we referred to “oscillopathies” in a broad sense way as we did not want to overstate the biological implications of the model or the way we modeled pathological states. To our knowledge, several studies have yielded inconsistent results regarding the specific changes in theta or gamma power in Alzheimer’s disease, and the most convincing alteration seems to be the theta-gamma phase-amplitude coupling (PAC) (for review see e.g., Kitchigina, V. F. Alterations of Coherent Theta and Gamma Network Oscillations as an Early Biomarker of Temporal Lobe Epilepsy and Alzheimer’s Disease. Front Integr Neurosci 12, 36 (2018)), as also mentioned by the reviewer.

      In this study, the most straightforward way to reduce theta-gamma PAC was to reduce the amplitude of the oscillators’ gain, which affected theta power, gamma power, and theta-gamma PAC (Figure 5 of the revised manuscript). Affecting their synchronization level (i.e., the order parameter) did not affect any of these variables (Figure 5 – Figure Supplement 4).

      In order to alter theta-gamma PAC without affecting theta or gamma power, we believe that more complex changes should be performed in the model, likely at the level of individual neurons in the hippocampal formation. For example, cholinergic deprivation has been previously used in a multi-compartment model of the hippocampal CA3 to mimic Alzheimer’s disease and to draw functional implications on the slowing of theta oscillations and the storage of new information (Menschik, E. D. & Finkel, L. H. Neuromodulatory control of hippocampal function: towards a model of Alzheimer’s disease. Artif Intell Med 13, 99–121 (1998)).

      This has now been added to the limitations section (L.458-465 of the revised manuscript):

      “Finally, we likened conditions of low theta input to pathological states characteristic of oscillopathies such as Alzheimer’s disease, as these conditions disrupted all aspects of theta-gamma oscillations in our model: theta power, gamma power, and theta-gamma PAC (Figure 5). However, it should be noted that changes in theta or gamma power in these pathologies are often unclear, and that the most consistent alteration that has been reported in Alzheimer’s disease is a reduction of theta-gamma PAC (for review, see Kitchigina, 2018). Future work should explore the effects of cellular alterations intrinsic to the hippocampal formation and their impact on theta-gamma oscillations.”

      1. While relevant for the clinical field, there is overall a missed opportunity to explain many experimental accounts with this novel model. Although to this day, clinical use of DBS is mostly restricted to electrical (and thus cell-type agnostic) stimulation, recent studies focusing on mechanisms of neurostimulations have manipulated specific subtypes in the medial septum and observed effects on hippocampal oscillations (e.g. see Muller & Remy, 2017 for review). Focusing stimulations in CA1 is of course relevant for clinical studies but testing mechanistic hypotheses by focusing stimulation on specific cell types could be highly informative. For instance, could the author reproduce recent optogenetic studies (e.g. Bender et al. 2015 for stimulation of fornix fibers; Etter et al., 2019 & Zutshi et al. 2018 for stimulation of septal inhibitory neurons)? Cell specific manipulations should at least be discussed by the authors.

      We acknowledge the importance of cell-type-specific manipulation in the septo-hippocampal circuitry. However, our model was designed to study neurostimulation protocols that affect the hippocampal formation, not the medial septum, which is why only the hippocampal formation is composed of biophysically realistic (i.e., conductance-based) neuronal models. To replicate the various studies mentioned by the reviewer (which are all very relevant), we would need to implement a biophysical model of the medial septum, which would be an entirely new project.

      Nevertheless, we can use the existing model to replicate optogenetic studies that induced gamma oscillations in excitatory-inhibitory circuits, using either ramped photostimulation targeting excitatory neurons (Adesnik et al., 2010; Akam et al., 2012; Lu et al., 2015), or pulsed stimulation driving inhibitory cells in the gamma range (Cardin et al., 2009; Iaccarino et al., 2016). In fact, such approaches have been demonstrated not just in the hippocampus but also in the neocortex, and represent a hallmark of local excitatory-inhibitory circuits. To account for these experimental results and replicate them, we have added 4 new figures (Figure 2 and its 3 figure supplements) and an extensive section in the results part (L.151-217 of the revised manuscript):

      “From a conceptual point of view, our model is thus composed of excitatory-inhibitory (E-I) circuits connected in series, with a feedback loop going through a population of coupled phase oscillators. In the next sections, we first describe the generation of gamma oscillations by individual E-I circuits (Figure 2), and illustrate their behavior when driven by an oscillatory input such as theta oscillations (Figure 3). We then present a thorough characterization of the effects of theta input and stimulation amplitude on theta-nested gamma oscillations (Figure 4 and Figure 5). Finally, we present some results on the effects of neurostimulation protocols for restoring theta-nested gamma oscillations in pathological states (Figure 6 and Figure 7).

      Generation of gamma oscillations by E-I circuits

      It is well-established that a network of interconnected pyramidal neurons and interneurons can give rise to oscillations in the gamma range, a mechanism termed pyramidal-interneuronal network gamma (PING) (Traub et al., 2004; Onslow et al., 2014; Segneri et al., 2020;). This mechanism has been observed in several optogenetic studies with gradually increasing light intensity (i.e., under a ramp input) affecting multiple different circuits, such as layer 2-3 pyramidal neurons of the mouse somatosensory cortex (Adesnik et al., 2010), the CA3 field of the hippocampus in rat in vitro slices (Akam et al., 2012), and in the non-human primate motor cortex (Lu et al., 2015). In all cases, gamma oscillations emerged above a certain threshold in terms of photostimulation intensity, and the frequency of these oscillations was either stable or slightly increased when increasing the intensity further. We sought to replicate these findings with our elementary E-I circuits composed of single-compartment conductance-based neurons driven by a ramping input current (Figure 2 and Figure S2). As an example, all the results in this section will be shown for an E-I circuit that has similar connectivity parameters as the CA1 field of the hippocampus in our complete model (see section “Hippocampal formation: inputs and connectivity” in the methods).

      For low input currents provided to both neuronal populations, only the highly-excitable interneurons were activated (Figure 2A). For a sufficiently high input current (i.e., a strong input that could overcome the inhibition from the fast-spiking interneurons), the pyramidal neurons started spiking as well. As the amplitude of the input increased, the activity of the both neuronal populations became synchronized in the gamma range, asymptotically reaching a frequency of about 60 Hz (Figure 2A bottom panel). Decoupling the populations led to the abolition of gamma oscillations (Figure 2B), as neuronal activity was determined solely by the intrinsic properties of each cell. Interestingly, when the ramp input was provided solely to the excitatory population, we observed that the activity of the pyramidal neurons preceded the activity of the inhibitory neurons, while still preserving the emergence of gamma oscillations (Figure S2 A). As expected, decoupling the populations also abolished gamma oscillations, with the excitatory neurons spiking a frequency determined by their intrinsic properties and the inhibitory population remaining silent (Figure S2B).

      To further characterize the intrinsic properties of individual inhibitory and excitatory neurons, we derived their input-frequency (I-F) curves, which represent the firing rate of individual neurons in response to a tonic input (Figure S3A). We observed that for certain input amplitudes, the firing rates of both types of neurons was within the gamma range. Interestingly, in the absence of noise, each population could generate by itself gamma oscillations that were purely driven by the input and determined by the intrinsic properties of the neurons (Figure S3B). Adding stochastic Gaussian noise in the membrane potential disrupted these artificial oscillations in decoupled populations (Figure S3C). All subsequent simulations were run with similar noise levels to prevent the emergence of artificial gamma oscillations.

      Another potent way to induce gamma oscillations is to drive fast-spiking inhibitory neurons using pulsed optogenetic stimulation at gamma frequencies, a strategy that has been used both in the neocortex (Cardin et al., 2009) and hippocampal CA1 (Iaccarino et al., 2016). In particular, Cardin and colleagues systematically investigated the effect of driving either excitatory or fast-spiking inhibitory neocortical neurons at frequencies between 10 and 200 Hz (Cardin et al., 2009). They showed that fast-spiking interneurons are preferentially entrained around 40-50 Hz, while excitatory neurons respond better to lower frequencies. To verify the behavior of our model against these experimental data, we simulated pulsed optogenetic stimulation as an intracellular current provided to our reduced model of a single E-I circuit. Stimulation was applied at frequencies between 10 and 200 Hz to excitatory cells only, to inhibitory cells only, or to both at the same time (Figure S4). The population firing rates were used as a proxy for the local field potentials (LFP), and we computed the relative power in a 10-Hz band centered around the stimulation frequency, similarly to the method proposed in (Cardin et al., 2009). When presented with continuous stimulation across a range of frequencies in the gamma range, interneurons showed the greatest degree of gamma power modulation (Figure S4). Furthermore, when the stimulation was delivered to the excitatory population, the relative power around the stimulation frequency dropped significantly in frequencies above 10 Hz, similar to the reported experimental data (Cardin et al., 2009). The main difference between our simulation results and these experimental data is the specific frequencies at which fast-spiking interneurons showed resonance, which was slow gamma around 40 Hz in the mouse barrel cortex and fast gamma around 90 Hz in our model. This could be attributed to several factors, such as differences in the cellular properties between cortical and hippocampal fast-spiking interneurons, or the differences between the size of the populations and their relevant connectivity in the cortex and the hippocampus.”

      Author response image 1.

      Figure 2. Emergence of gamma oscillations in coupled excitatory-inhibitory populations under ramping input to both populations. A. Two coupled populations of excitatory pyramidal neurons (NE = 1000) and inhibitory interneurons (NI = 100) are driven by a ramping current input (0 nA to 1 nA) for 5 s. As the input becomes stronger, oscillations start to emerge (shaded green area), driven by the interactions between excitatory and inhibitory populations. The green inset shows the raster plot (neuronal spikes across time) of the two populations during the green shaded period (red for inhibitory; blue for excitatory). When the input becomes sufficiently strong (shaded magenta area), the populations become highly synchronized and produce oscillations in the gamma range (at approximately 50 Hz). The spectrogram (bottom panel) shows the power of the instantaneous firing rate of the pyramidal population as a function of time and frequency. It reveals the presence of gamma oscillations that emerge around 2s and increase in frequency until 4 s, when they settle at approximately 60 Hz. B. Similar depiction as in panel A. with the pyramidal-interneuronal populations decoupled. The absence of coupling leads to the abolition of gamma oscillations, each cell spiking activity being driven by its own inputs and intrinsic properties.

      Author response image 2.

      Figure S2 (Figure 2 – Figure Supplement 1). Emergence of gamma oscillations in coupled excitatoryinhibitory populations under ramping input to the excitatory population. Similar representation as in Figure 2, but with the input provided only to the excitatory population. All conclusions remain the same. In addition, the inhibitory population does not show any spiking activity in the decoupled case.

      Author response image 3.

      Figure S3 (Figure 2 – Figure Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective I-F curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      Author response image 4.

      Figure S3 (Figure 2 – Figure Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective I-F curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      Beyond these weaknesses, this study has a strong utility for researchers wanting to explore hypotheses in the field of neurostimulations. In particular, I see value in such models for exploring more intricate, phase specific effects of continuous, as well as close loop stimulations which are on the rise in systems neuroscience.

      We thank the reviewer for this appreciation of our work and its future perspectives.

      Recommendations For The Authors:

      Line 144, the authors mention that their MI values are erroneous in absence of additive noise - could this be due to the non-sinusoidal nature of the phase signal recorded, and be fixed by upscaling model size?

      We thank the reviewer for this question and suggestion. The main reason behind the errors in the computation of the MI lies in the complete absence of oscillations at specific frequencies. Filtered signals within specific bands produced a power of 0 (or extremely low values), as seen in the power spectral densities. In such cases, the phase signal was not mathematically defined, but the toolbox we used to compute it still returned a numerical result that was inaccurate (for more details on the computation of the MI see Tort et al., 2010). To mitigate this numerical artefact, we decided to add uniform noise in the computed firing rates. This strategy is illustrated on Figure S6 (Figure 3 – Figure Supplement 2), which we have copied below for reference. Alternative approaches could probably have been used, such as increasing the noise in the membrane potential so that neurons would start spiking with firing rates that show more realistic power spectra, even in the absence of external inputs.

      Author response image 5.

      Figure S6 (Figure 3 – Figure Supplement 2). Quantification of PAC with and without noise. A. Quantifying PAC in the absence of noise produced inaccurate identification of the coupled frequency bands, due to the complete absence of oscillations at some frequencies. All analyses are based on the CA1 firing rates (top traces) during a representative simulation. Power spectral densities of these firing rates (left) indicate that some frequencies have a power of 0. PAC of the excitatory population was assessed using two graphical representations, the polar plot (middle) and comodulogram (right), and quantified using the MI. The comodulogram was calculated by computing the MI across 80% overlapping 1-Hz frequency bands in the theta range and across 90% overlapping 10-Hz frequency bands in the gamma range and subsequently plotted as a heat map. In the absence of noise, a slow theta frequency centered around 5 Hz is found to modulate a broad range of gamma frequencies between 40 and 100 Hz. The value indicated on the comodulogram indicates the average MI in the 3-9 Hz theta range and 40-80 Hz gamma range. As in Figure 2, the polar plot represents the amplitude of gamma oscillations (averaged across all theta cycles) at each phase of theta (theta range: 3-9 Hz, phase indicated as angular coordinate) and for different gamma frequencies (radial coordinate, binned in 1-Hz ranges). B. Adding uniform noise to the firing rate (with an amplitude ranging between 15 and 25% of the maximum firing rate) improved the identification of the coupled frequency bands. In this case, the slower theta frequency centered around 5 Hz modulates a gamma band located between 45 and 75 Hz.

      Reviewer #2:

      The main strength of this model is its use of a fairly physiologically detailed model of the hippocampus. The cells are single-compartment models but do include multiple ion channels and are spatially arranged in accordance with the hippocampal structure. This allows the understanding of how ion channels (possibly modifiable by pharmacological agents) interact with system-level oscillations and neurostimulation. The model also includes all the main hippocampal subfields. The other strength is its attention to an important topic, which may be relevant for dementia treatment or prevention, which few modeling studies have addressed. The work has several weaknesses.

      We thank the reviewer for appreciating our detailed description of the hippocampal formation and the focus on neurostimulation applications that aim at treating oscillopathies, especially dementia.

      1. First, while investigations of hippocampal neurostimulation are important there are few experimental studies from which one could judge the validity of the model findings. All its findings are therefore predictions. It would be much more convincing to first show the model is able to reproduce some measured empirical neurostimulation effect before proceeding to make predictions.

      We acknowledge that the results presented in Figures 4-7 of the revised manuscript cannot be compared to existing experimental data, and are therefore purely predictive. Future experimental work is needed to verify these predictions.

      Yet, we would also like to stress that the motivation behind this project was the inadequacy of previous models of theta-nested gamma oscillations (Onslow et al., 2014; Aussel et al., 2018; Segneri et al., 2020) to account for the mechanism of theta phase reset that occurs during electrical stimulation of the fornix or perforant path (Williams and Givens, 2003). Since we could not use these previous models to study the effects of neurostimulation on theta-nested gamma oscillations, we had to modify them to account for a dynamical theta input, which is the main methodological novelty that is reported in our manuscript (Figures 1 and 3 of the revised manuscript).

      Despite the scarcity of experimental studies that could confirm the full model, we sought to replicate a few experimental findings that employed optogenetic stimulation to induce gamma oscillations in individual excitatory-inhibitory circuits. Although not specific to the hippocampus, these studies have shown that gamma oscillations can be induced using either ramped photostimulation targeting excitatory neurons (Adesnik et al., 2010; Akam et al., 2012; Lu et al., 2015), or pulsed stimulation driving inhibitory cells in the gamma range (Cardin et al., 2009; Iaccarino et al., 2016). To account for these experimental results and replicate them, we have added 4 new figures (Figure 2 and its 3 figure supplements) and an extensive section in the results part (L.141-217 of the revised manuscript). The added section and related figures are indicated in our response to reviewer 1, comment 3 (p 2-7).

      2.1. Second, the model is very specific. Or if its behavior is to be considered general it has not been explained why.

      Although the spatial organization and cellular details of the model are indeed very specific, its general behavior, i.e., the production of theta-nested gamma oscillations and theta phase reset, are common to any excitatory-inhibitory circuit interconnected with Kuramoto oscillators. To illustrate this point, we have generalized our approach to the neural mass model developed by Onslow and colleagues (Onslow ACE, Jones MW, Bogacz R. A Canonical Circuit for Generating Phase-Amplitude Coupling. PLoS ONE. 2014 Aug; 9(8):e102591). These results are represented in a new supplementary figure (Figure3 – Figure Supplement 4), and briefly described in a new paragraph of the results section (L.262-268 of the revised manuscript):

      “Importantly, our approach is generalizable and can be applied to other models producing theta-nested gamma oscillations. For instance, we adapted the neural mass model by Onslow and colleagues (Onslow et al., 2014), replaced the fixed theta input by a set of Kuramoto oscillators, and demonstrated that it could also generate theta phase reset in response to single-pulse stimulation (Figure S8). These results illustrate that the general behavior of our model is not specific to the tuning of individual parameters in the conductancebased neurons, but follows general rules that are captured by the level of abstraction of the Kuramoto formalism.”

      Author response image 6.

      Figure S8 (Figure 3 – Figure Supplement 4). A neural mass model of coupled excitatory and inhibitory neurons driven by Kuramoto oscillators generates theta-nested gamma oscillations and theta phase reset. A. Two coupled neural masses (one excitatory and one inhibitory) driven by Kuramoto oscillators, which represent a dynamical oscillatory drive in the theta range, were used to implement a neural mass equivalent to our conductance-based model represented in Figure 1. Neural masses were modeled using the WilsonCowan formalism, with parameters adapted from Onslow et al. (2014) (𝑊𝐸𝐸 = 4.8, 𝑊𝐸𝐼 = 𝑊𝐼𝐸 = 4, 𝑊𝐼𝐼 = 0). B. The normalized population firing rates exhibit theta-nested gamma oscillations (middle and bottom panels) in response to the dynamic theta rhythm (top panel). A stimulation pulse delivered at the descending phase of the rhythm to both populations (marked by the inverted red triangle) produces a robust theta phase reset, similarly to Figure 3A.

      This simplified model is described in more details in the methods (L.694-710 of the revised manuscript). Additionally, the generation of gamma oscillations by individual excitatory-inhibitory circuits is now described in details in the added section “Generation of gamma oscillations by E-I circuits” (L.159-217 of the revised manuscript), which has already been discussed in our response to reviewer 1, comment 3 (p 2-7).

      2.2. For example, the model shows bistability between quiescence and TNGO, however what aspect of the model underlies this, be it some particular network structure or particular ion channel, for example, is not addressed.

      We thank the reviewer for mentioning this point, which we have now addressed. The “bistable” behavior that we reported occurs for values of the theta input that are just below the threshold to induce selfsustained theta-gamma oscillations (Figure 5 of the revised manuscript, point B). Moreover, the presence of the Calcium-Activated-Nonspecific (CAN) cationic channel, which is expressed by pyramidal neurons in the entorhinal cortex, CA3, and CA1 fields of the hippocampus, is necessary for this behavior to occur. Indeed, abolishing CAN channels in all areas of the model suppresses this behavior. We have now addressed this point in a new supplementary figure (Figure 5 – Figure Supplement 4) and a short description in the text (L.287-303 of the revised manuscript).

      “In the presence of dynamic theta input, the effects of single-pulse stimulation depended both on theta input amplitude and stimulation amplitude, highlighting different regimes of network activity (Figure 5 and Figure S9, Figure S10, Figure S11). For low theta input, theta-nested gamma oscillations were initially absent and could not be induced by stimulation (Figure 5A). At most, the stimulation could only elicit a few bursts of spiking activity that faded away after approximately 250 ms, similar to the rebound of activity seen in the absence of theta drive. For increasing theta input, the network switched to an intermediate regime: upon initialization at a state with no spiking activity, it could be kicked to a state with self-sustained theta-nested gamma oscillations by a single stimulation pulse of sufficiently high amplitude (Figure 5B). This regime existed for a range of septal theta inputs located just below the threshold to induce self-sustained theta-gamma oscillations without additional stimulation, as characterized by the post-stimulation theta power, gamma power, and theta-gamma PAC (Figure 5D). Removing CAN currents from all areas of the model abolished this behavior (Figure S12), which is interesting given the role of this current in the multistability of EC neurons (Egorov et al., 2002; Fransen et al., 2006) and in the intrinsic ability of the hippocampus to generate thetanested gamma oscillations (Giovannini et al., 2017). For the highest theta input, the network became able to spontaneously generate theta-nested gamma oscillations, even when initialized at a state with no spiking activity and without additional neurostimulation (Figure 5C).”

      Author response image 7.

      Figure S12 (Figure 5 – Figure Supplement 4). CAN currents are necessary for the production of selfsustained theta-gamma oscillations in response to single-pulse stimulation. A. Same as Figure 5B. B. Similar simulation as panel A., but without the presence of CAN currents in the EC, CA3 and CA1 fields of the hippocampus. Removing CAN currents from the model abolishes self-sustained theta-nested gamma oscillations in response to a single stimulation pulse (for the parameters represented in Figure 5, point B).

      Furthermore, we realized that the terminology “bistable” may not be justified as we could not perform a systematic bifurcation analysis, which is typically carried out in simpler neural mass models (e.g., Onslow et al., 2014; Segneri et al., 2020). Therefore, we decided to rephrase the sentences about “bistability” to keep a more general terminology. The following sentences were revised:

      L.20-23: “We showed that, for theta inputs just below the threshold to induce self-sustained theta-nested gamma oscillations, a single stimulation pulse could switch the network behavior from non-oscillatory to a state producing sustained oscillations.”

      L.305-309: “Based on the above analyses, we considered two pathological states: one with a moderate theta input (i.e., moderately weak projections from the medial septum to the EC) that allowed the initiation of selfsustained oscillations by single stimulation pulses (Figure 5, point B), and one with a weaker theta input characterized by the complete absence of self-sustained oscillations even following transient stimulation (Figure 5, point A).”

      L.316-317: “In the case of a moderate theta input and in the presence of phase reset, delivering a pulse at either the peak or trough of theta could induce theta-nested gamma oscillations (Figure 6A and 6C).”

      L.353-357: “A very interesting finding concerns the behavior of the model in response to single-pulse stimulation for certain values of the theta amplitude (Figure5). For low theta amplitudes, a single stimulation pulse was capable of switching the network behavior from a state with no spiking activity to one with prominent theta-nested gamma oscillations. Whether such an effect can be induced in vivo in the context of memory processes remains an open question.”

      2.3. Similarly for the various phase reset behaviors that are found.

      We would like to clarify the fact that the observed phase reset curves (reported in Figure 3D) are a direct consequence of the choice of an appropriate phase response function for the Kuramoto oscillators representing the medial septum. This choice is inspired by experimentally measured phase response curves from CA3 neurons. These aspects are described briefly in the introduction and in more details in the methods, as indicated below:

      L.101: “This new hybrid dynamical model could generate both theta-nested gamma oscillations and theta phase reset, following a particular phase response curve (PRC) inspired by experimental literature (Lengyel et al., 2005; Akam et al., 2012; Torben-Nielsen et al., 2010).”

      L.528-537: “Hereafter, we call the term 𝑍(𝜃) the phase response function, to distinguish it from the PRC obtained from experimental data or simulations (see section below "Data Analysis", "Phase Response Curve"). Briefly, the PRC of an oscillatory system indicates the phase delay or advancement that follows a single pulse, as a function of the phase at which this input is delivered. The phase response function 𝑍(𝜃) was chosen to mimic as well as possible experimental PRCs reported in the literature (Lengyel et al., 2005; Kwag and Paulsen, 2009; Akam et al., 2012). These PRCs appear biphasic and show a phase advancement (respectively delay) for stimuli delivered in the ascending (respectively descending) slope of theta. To accurately model this behavior, we used the following equation for the phase response function, where 𝜃𝑝𝑒𝑎𝑘 represents the phase at which the theta rhythm reaches its maximum and the parameter 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 controls the desired phase offset from the peak:

      Author response image 8.

      On the figure below, we illustrate the phase response curves of CA3 neurons measured by Lengyel et al., 2005 (panel A.), and compare it with our simulated phase response curves (panel B.). Note that the conventions for phase advance and phase delay are reversed between the two panels.

      Finally, we would like to acknowledge that the model “is not derived from experimental phase response curves of septal neurons of which there is no direct measurement”, as mentioned by the reviewer in their comment 4 below. Despite the lack of experimental data specific to medial septum neurons, we argue that this phase response function is the only one that mathematically supports the generation of self-sustained theta-nested gamma oscillations in our current model. This statement is illustrated by Figure S7 (Figure 3 – Figure Supplement 3) and is mentioned in the results (L.249-261 of the revised manuscript):

      We modeled this behavior by a specific term (which we called the phase response function) in the general equation of the Kuramoto oscillators (see methods, Equation 1). Importantly, introducing a phase offset in the phase response function disrupted theta-nested gamma oscillations (Figure S7), which suggests that the septohippocampal circuitry must be critically tuned to be able to generate such oscillations. The strength of phase reset could also be adjusted by a gain that was manually tuned. In the presence of the physiological phase response function and of a sufficiently high reset gain, a single stimulation pulse delivered to all excitatory and inhibitory CA1 neurons could reset the phase of theta to a value close to its peaks (Figure 3A). We computed the PRC of our simulated data for different stimulation amplitudes and validated that our neuronal network behaved according to the phase response function set in our Kuramoto oscillators (Figure 3D). It should be noted that including this phase reset mechanism affected the generated theta rhythm even in the absence of stimulation, extending the duration of the theta peak and thereby slowing down the frequency of the generated theta rhythm.

      Author response image 9.

      Figure S7 (Figure 3 – Figure Supplement 3). Network behavior generated by Kuramoto oscillators with nonphysiological phase response functions. Each panel is similar to Figure 3A, but with a different offset added to the phase response function of the Kuramoto oscillators (see methods, Equation 4). The center frequency was set to 6 Hz in all of these simulations. Overall, theta oscillations in these cases are less sinusoidal and show more abrupt phase changes than in the physiological case. A. A phase offset of −𝜋∕2 leads to an overall theta oscillation of 4 Hz, with a second peak following the main theta peak. B. A phase offset of +𝜋∕2 reduces the peak of theta, resetting the rhythm to the middle of the ascending phase. C. A phase offset of 𝜋 or -𝜋 leads to the CA1 output resetting the theta rhythm to the trough of theta.

      2.4. We may wonder whether a different hippocampal model of TNGO, of which there are many published (for example [1-6]) would show the same effect under neurostimulation. This seems very unlikely […]

      [1] Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends in neurosciences. 2015 Nov 1;38(11):725-40.

      [2] Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences. 2007 Aug 14;104(33):13490-5.

      [3] Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. Journal of Neuroscience. 2011 Aug 10;31(32):11733-43.

      [4] Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase-amplitude coupling in a hippocampal CA1 microcircuit. PLOS Computational Biology. 2023 Mar 23;19(3):e1010942.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

      The highlighted publications, while very important in their findings regarding theta-gamma phase-amplitude coupling, focused on specific subfields of the hippocampus. In our work, we aimed to develop a model that includes the different anatomical divisions of the hippocampal formation, while still exhibiting theta-nested gamma oscillations, which is why we decided to expand the model by Aussel et al. (2018). Exploring the behavior of all these different hippocampal models under neurostimulation is beyond the scope of the current manuscript.

      Nevertheless, we have added a new figure (Figure 3 – Figure Supplement 4) showing an adaptation of our modeling approach to a generic neural mass model of theta-nested gamma oscillations (Onslow et al., 2014), which illustrates the generalizability of our findings and is described in details in our response to comment 2.1. Moreover, we have further addressed the comments of the reviewers regarding bistability and phase response curves in our responses to comments 2.2 and 2.3.

      Furthermore, we have added references to all 6 of these publications in the revised version of the manuscript:

      L.43-50: Moreover, the modulation of gamma oscillations by the phase of theta oscillations in hippocampal circuits, a phenomenon termed theta-gamma phase-amplitude coupling (PAC), correlates with the efficacy of memory encoding and retrieval (Jensen and Colgin, 2007; Tort et al., 2009; Canolty and Knight, 2010; Axmacher et al., 2010; Fell and Axmacher, 2011; Lisman and Jensen, 2013; Lega et al., 2016). Experimental and computational work on the coupling between oscillatory rhythms has indicated that it originates from different neural architectures and correlates with a range of behavioral and cognitive functions, enabling the long-range synchronization of cortical areas and facilitating multi-item encoding in the context of memory (Hyafil et al., 2015)."

      L.415-426: “In terms of neuronal cell types, we also made an important simplification by considering only basket cells as the main class of inhibitory interneuron in the whole hippocampal formation. However, it should be noted that many other types of interneurons exist in the hippocampus and have been modeled in various works with higher computational complexity (e.g., Bezaire et al., 2016; Chatzikalymniou et al., 2021). Among these various interneurons, oriens-lacunosum moleculare (OLM) neurons in the CA1 field have been shown to play a crucial role in synchronizing the activity of pyramidal neurons at gamma frequencies (Tort et al., 2007), and in generating theta-gamma PAC (e.g., Neymotin et al., 2011; Ponzi et al., 2023). Additionally, these cells may contribute to the formation of specific phase relationships within CA1 neuronal populations, through the integration between inputs from the medial septum, the EC, and CA3 (Mysin et al., 2019). Future work is needed to include more diverse cell types and detailed morphologies modeled through multiple compartments.”

      2.5. […] and indeed the quiescent state itself shown by this model seems quite artificial.

      We would like to clarify the fact that the “quiescent state” mentioned by the reviewer is a simply a state where the theta input is too low to induce theta-nested gamma oscillations. In this regime, neurons are active only due to the noise term in the membrane potential, which was adjusted based on Figure S3 (Figure 2 – Figure Supplement 2, shown below), at the minimal level needed to disrupt artificial synchronization in decoupled populations. For an input of 0 nA, we acknowledge that this network is indeed fully quiescent (i.e., does not show any spiking activity). However, as soon as the input increases, spontaneous spiking activity starts to appear with an average firing rate that depends on the input amplitude and is characterized by the input-frequency curves (panel A.). Please note that adding more noise could eliminate the observed quiescence in the absence of any input, but that it would not affect qualitatively the reported results.

      Author response image 10.

      Figure S3 (Figure 2 – Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective IF curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      2.6. Some indication that particular ion channels, CAN and M are relevant is briefly provided and the work would be much improved by examining this aspect in more detail.

      We thank the reviewer for acknowledging the importance of these ion channels. We have now added a new supplementary figure (Figure 5 – Figure Supplement 4), which is described in more details in our response to comment 2.2 and illustrates the role of the CAN current in the generation of theta-nested gamma oscillations following a single stimulation pulse. Moreover, we would like to stress that the impact of CAN currents in the ability of the hippocampus to generate theta-nested gamma oscillations intrinsically, i.e., in the absence of persistent external input, has already been investigated in details by a previous computational study cited in our manuscript (Giovannini F, Knauer B, Yoshida M, Buhry L. The CAN-In network: A biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus. Hippocampus. 2017 Apr;809 27(4):450–463).

      2.7. In summary, the work would benefit from an intuitive analysis of the basic model ingredients underlying its neurostimulation response properties.

      We thank the reviewer for this suggestion. By addressing the reviewer’s previous comments (reviewer 2, comments 2.1 and 2.2), which overlap partly with the first reviewer (reviewer 1, comment 3), we believe we have improved the manuscript and have provided key information related to the way the model responds to neurostimulation.

      3..) Third, while the model is fairly realistic, considerable important factors are not included and in fact, there are much more detailed hippocampal models out there (for example [5,6]). In particular, it includes only excitatory cells and a single type of inhibitory cell. This is particularly important since there are many models and experimental studies where specific cell types, for example, OLM and VIP cells, are strongly implicated in TNGO.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

      We thank the reviewer for pointing out these interesting avenues for future studies. As indicated in previous responses (reviewer 1, comment 1; reviewer 2, comment 2.4), we have added several paragraphs to discuss these limitations, the rationale behind our simplifications, and potential improvements. In particular, we have added the following paragraphs to discuss our simplifications in terms of connectivity and cell types:

      Anatomical connectivity:

      L.141-150: “Biologically, GABAergic neurons from the medial septum project to the EC, CA3, and CA1 fields of the hippocampus (Toth et al., 1993; Hajós et al., 2004; Manseau et al., 2008; Hangya et al., 2009; Unal et al., 2015; Müller and Remy, 2018). Although the respective roles of these different projections are not fully understood, previous computational studies have suggested that the direct projection from the medial septum to CA1 is not essential for the production of theta in CA1 microcircuits (Mysin et al., 2019). Since our modeling of the medial septum is only used to generate a dynamic theta rhythm, we opted for a simplified representation where the medial septum projects only to the EC, which in turn drives the different subfields of the hippocampus. In our model, Kuramoto oscillators are therefore connected to the EC neurons and they receive projections from CA1 neurons (see methods for more details).”

      Cell types:

      L.415-426: “In terms of neuronal cell types, we also made an important simplification by considering only basket cells as the main class of inhibitory interneuron in the whole hippocampal formation. However, it should be noted that many other types of interneurons exist in the hippocampus and have been modeled in various works with higher computational complexity (e.g., Bezaire et al., 2016; Chatzikalymniou et al., 2021). Among these various interneurons, oriens-lacunosum moleculare (OLM) neurons in the CA1 field have been shown to play a crucial role in synchronizing the activity of pyramidal neurons at gamma frequencies (Tort et al., 2007), and in generating theta-gamma PAC (e.g., Neymotin et al., 2011; Ponzi et al., 2023). Additionally, these cells may contribute to the formation of specific phase relationships within CA1 neuronal populations, through the integration between inputs from the medial septum, the EC, and CA3 (Mysin et al., 2019). Future work is needed to include more diverse cell types and detailed morphologies modeled through multiple compartments.”

      3.2. Other missing ingredients one may think might have a strong impact on model response to neurostimulation (in particular stimulation trains) include the well-known short-term plasticity between different hippocampal cell types and active dendritic properties.

      We agree with the reviewer that plasticity mechanisms are important to include in future work, which we had already mentioned in the limitations section of the manuscript:

      L.436-443: “Importantly, we did not consider learning through synaptic plasticity, even though such mechanisms could drastically modify synaptic conduction for the whole network (Borges et al., 2017). Even more interestingly, the inclusion of spike-timing-dependent plasticity would enable the investigation of stimulation protocols aimed at promoting LTP, such as theta-burst stimulation (Larson et al., 2015). This aspect would be of uttermost importance to make a link with memory encoding and retrieval processes (Axmacher et al., 2006; Tsanov et al., 2009; Jutras et al., 2013) and with neurostimulation studies for memory improvement (Titiz et al., 2017; Solomon et al., 2021).”

      1. Fourth the MS model seems somewhat unsupported. It is modeled as a set of coupled oscillators that synchronize. However, there is also a phase reset mechanism included. This mechanism is important because it underlies several of the phase reset behaviors shown by the full model. However, it is not derived from experimental phase response curves of septal neurons of which there is no direct measurement. The work would benefit from the use of a more biologically validated MS model.

      We would like to confirm that the phase reset mechanism is indeed at the core of using Kuramoto oscillators to model a particular system. For more details about our choice of a phase response function and the obtained results in terms of phase response curves, we refer the reader to our response to comment 2.3.

      Generally speaking, we chose to use Kuramoto oscillators as it is the simplest model that can provide an oscillatory input to another system while including a phase reset mechanism. This set of oscillators was used to replace the fixed sinusoidal wave that represented theta inputs in previous models (Onslow et al., 2014; Aussel et al., 2018; Segneri et al., 2020). Kuramoto oscillators are a well-established model of synchronization in various fields of physics. They have also been used in neuroscience to model the phase reset of collective rhythms (Levnajić et al. 2010), and the effects of DBS on the basal ganglia network in Parkinson’s disease (Tass et al. 2003, Ebert et al. 2014, Weerasinghe et al. 2019).

      More detailed models of the medial septum exist in the literature (e.g., Wang et al. 2002, Hajós et al. 2004) and model the GABAergic effects of the septal projections onto the hippocampal formation. However, it is not trivial to infer the connectivity parameters and the degree of innervation between the hippocampus and the medial septum. Furthermore, the claims made in our study do not necessarily depend on the nature of the projections between the two areas. Therefore, we decided to represent the medial septum in a conceptual way and focus mostly on the effects of these projections rather than replicating them in detail.

      Aussel, Amélie, Laure Buhry, Louise Tyvaert, and Radu Ranta. “A Detailed Anatomical and Mathematical Model of the Hippocampal Formation for the Generation of Sharp-Wave Ripples and Theta-Nested Gamma Oscillations.” Journal of Computational Neuroscience 45, no. 3 (December 2018): 207–21. https://doi.org/10.1007/s10827-018-0704-x.

      Ebert, Martin, Christian Hauptmann, and Peter A. Tass. “Coordinated Reset Stimulation in a Large-Scale Model of the STN-GPe Circuit.” Frontiers in Computational Neuroscience 8 (2014): 154. https://doi.org/10.3389/fncom.2014.00154.

      Hajós, M., W.E. Hoffmann, G. Orbán, T. Kiss, and P. Érdi. “Modulation of Septo-Hippocampal θ Activity by GABAA Receptors: An Experimental and Computational Approach.” Neuroscience 126, no. 3 (January 2004): 599–610. https://doi.org/10.1016/j.neuroscience.2004.03.043.

      Levnajić, Zoran, and Arkady Pikovsky. “Phase Resetting of Collective Rhythm in Ensembles of Oscillators.” Physical Review E 82, no. 5 (November 3, 2010): 056202. https://doi.org/10.1103/PhysRevE.82.056202.

      Onslow, Angela C. E., Matthew W. Jones, and Rafal Bogacz. “A Canonical Circuit for Generating PhaseAmplitude Coupling.” Edited by Adriano B. L. Tort. PLoS ONE 9, no. 8 (August 19, 2014): e102591. https://doi.org/10.1371/journal.pone.0102591.

      Segneri, Marco, Hongjie Bi, Simona Olmi, and Alessandro Torcini. “Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models.” Frontiers in Computational Neuroscience 14 (2020). https://doi.org/10.3389/fncom.2020.00047. T ass, Peter A. “A Model of Desynchronizing Deep Brain Stimulation with a Demand-Controlled Coordinated Reset of Neural Subpopulations.” Biological Cybernetics 89, no. 2 (August 1, 2003): 81–88. https://doi.org/10.1007/s00422-003-0425-7.

      Wang, Xiao-Jing. “Pacemaker Neurons for the Theta Rhythm and Their Synchronization in the Septohippocampal Reciprocal Loop.” Journal of Neurophysiology 87, no. 2 (February 1, 2002): 889–900. https://doi.org/10.1152/jn.00135.2001.

      Weerasinghe, Gihan, Benoit Duchet, Hayriye Cagnan, Peter Brown, Christian Bick, and Rafal Bogacz. “Predicting the Effects of Deep Brain Stimulation Using a Reduced Coupled Oscillator Model.” PLoS Computational Biology 15, no. 8 (August 8, 2019): e1006575. https://doi.org/10.1371/journal.pcbi.1006575.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript by Wagstyl et al. describes an extensive analysis of gene expression in the human cerebral cortex and the association with a large variety of maps capturing many of its microscopic and macroscopic properties. The core methodological contribution is the computation of continuous maps of gene expression for >20k genes, which are being shared with the community. The manuscript is a demonstration of several ways in which these maps can be used to relate gene expression with histological features of the human cortex, cytoarchitecture, folding, function, development and disease risk. The main scientific contribution is to provide data and tools to help substantiate the idea of the genetic regulation of multi-scale aspects of the organisation of the human brain. The manuscript is dense, but clearly written and beautifully illustrated.

      Main comments

      The starting point for the manuscript is the construction of continuous maps of gene expression for most human genes. These maps are based on the microarray data from 6 left human brain hemispheres made available by the Allen Brain Institute. By technological necessity, the microarray data is very sparse: only 1304 samples to map all the cortex after all subjects were combined (a single individual's hemisphere has ~400 samples). Sampling is also inhomogeneous due to the coronal slicing of the tissue. To obtain continuous maps on a mesh, the authors filled the gaps using nearest-neighbour interpolation followed by strong smoothing. This may have two potentially important consequences that the authors may want to discuss further: (a) the intrinsic geometry of the mesh used for smoothing will introduce structure in the expression map, and (b) strong smoothing will produce substantial, spatially heterogeneous, autocorrelations in the signal, which are known to lead to a significant increase in the false positive rate (FPR) in the spin tests they used.

      Many thanks to the reviewer for their considered feedback. We have addressed these primary concerns into point-by-point responses below. The key conclusions from our new analyses are: (i) while the intrinsic geometry of the mesh had not originally been accounted for in sufficient detail, the findings presented in this manuscript paper are not driven by mesh-induced structure, (ii) that the spin test null models used in this manuscript [(including a modified version introduced in response to (i)] are currently the most appropriate way to mitigate against inflated false positive rates when making statistical inferences on smooth, surface-based data.

      a. Structured smoothing

      A brain surface has intrinsic curvature (Gaussian curvature, which cannot be flattened away without tearing). The size of the neighbourhood around each surface vertex will be determined by this curvature. During surface smoothing, this will make that the weight of each vertex will be also modulated by the local curvature, i.e., by large geometric structures such as poles, fissures and folds. The article by Ciantar et al (2022, https://doi.org/10.1007/s00429-022-02536-4) provides a clear illustration of this effect: even the mapping of a volume of pure noise into a brain mesh will produce a pattern over the surface strikingly similar to that obtained by mapping resting state functional data or functional data related to a motor task.

      Comment 1

      It may be important to make the readers aware of this possible limitation, which is in large part a consequence of the sparsity of the microarray sampling and the necessity to map that to a mesh. This may confound the assessments of reproducibility (results, p4). Reproducibility was assessed by comparing pairs of subgroups split from the total 6. But if the mesh is introducing structure into the data, and if the same mesh was used for both groups, then what's being reproduced could be a combination of signal from the expression data and signal induced by the mesh structure.

      Response 1

      The reviewer raises an important question regarding the potential for interpolation and smoothing on a cortical mesh to induce a common/correlated signal due to the intrinsic mesh structure. We have now generated a new null model to test this idea which indicates that intrinsic mesh structure is not inflating reproducibility in interpolated expression maps. This new null model spins the original samples prior to interpolation, smoothing and comparison between triplet splits of the six donors, with independent spins shared across the triplet. For computational tractability we took one pair of triplets and regenerated the dataset for each triplet using 10 independent spins. We used these to estimate gene-gene null reproducibility for 90 independent pairwise combinations of these 10 spins. Across these 90 permutations, the average median gene-gene correlation was R=0.03, whereas in the unspun triplet comparisons this was R=0.36. These results indicate that the primary source of the gene-level triplet reproducibility is the underlying shared gene expression pattern rather than interpolation-induced structure.

      In Methods 2a: "An additional null dataset was generated to test whether intrinsic geometry of the cortical mesh and its impact on interpolation for benchmarking analyses of DEMs and gradients (Fig S1d, Fig S2d, Fig S3c). In these analyses, the original samples were rotated on the spherical surface prior to subsequent interpolation, smoothing and gradient calculation. Due to computational constraints the full dataset was recreated only for 10 independent spins. These are referred to as the “spun+interpolated null”.

      Author response image 1.

      Figure S1d, Gene predictability was higher across all triplet-triplet pairs than when compared to spun+interpolated null.

      Comment 2

      It's also possible that mesh-induced structure is responsible in part for the "signal boost" observed when comparing raw expression data and interpolated data (fig S1a). How do you explain the signal boost of the smooth data compared with the raw data otherwise?

      Response 2

      We thank the reviewer for highlighting this issue of mesh-induced structure. We first sought to quantify the impact of mesh-induced structure through the new null model, in which the data are spun prior to interpolation. New figure S1d, S2d and S3c all show that the main findings are not driven by interpolation over a common mesh structure, but rather originate in the underlying expression data.

      Specifically, for the original Figure S1a, the reviewer highlights a limitation that we compared intersubject predictability of raw-sample to raw-sample and interpolated-to-interpolated. In this original formulation improved prediction scores for interpolated-to-interpolated (the “signal boost”) could be driven by mesh-induced structure being applied to both the input and predicted maps. We have updated this so that we are now comparing raw-to-raw and interpolated-to-raw, i.e. whether interpolated values are better estimations of the measured expression values. The new Fig S1a&b (see below) shows a signal boost in gene-level and vertex level prediction scores (delta R = +0.05) and we attribute this to the minimisation of location and measurement noise in the raw data, improving the intersubject predictability of expression levels.

      In Methods 2b: "To assess the effect of data interpolation in DEM generation we compared gene-level and vertex-level reproducibility of DEMs against a “ground truth” estimate of these reproducibility metrics based on uninterpolated expression data. To achieve a strict comparison of gene expression values between different individuals at identical spatial locations we focused these analyses on the subset of AHBA samples where a sample from one subject was within 3 mm geodesic distance of another. This resulted in 1097 instances (spatial locations) with measures of raw gene expression of one donor, and predicted values from the second donor’s un-interpolated AHBA expression data and interpolated DEM. We computed gene-level and vertex-level reproducibility of expression using the paired donor data at each of these sample points for both DEM and uninterpolated AHBA expression values. By comparing DEM reproducibility estimates with those for uninterpolated AHBA expression data, we were able to quantify the combined effect of interpolation and smoothing steps in DEM generation. We used gene-level reproducibility values from DEMs and uninterpolated AHBA expression data to compute a gene-level difference in reproducibility, and we then visualized the distribution of these difference values across genes (Fig S1a). We used gene-rank correlation to compare vertex-level reproducibility values between DEMs and uninterpolated AHBA expression data (Fig S1b)."

      Author response image 2.

      Figure S1. Reproducibility of Dense Expression Maps (DEMs) interpolated from spatially sparse postmortem measures of cortical gene expression. a, Signal boost in the interpolated DEM dataset vs. spatially sparse expression data. Restricting to samples taken from approximately the same cortical location in pairs of individuals (within 3mm geodesic distance), there was an overall improvement in intersubject spatial predictability in the interpolated maps. Furthermore, genes with lower predictability in the interpolated maps were less predictable in the raw dataset, suggesting these regions exhibit higher underlying biological variability rather than methodologically introduced bias. b, Similarly at the paired sample locations, gene-rank predictability was generally improved in DEMs vs. sparse expression data (median change in R from sparse samples to interpolated for each pair of subjects, +0.5).

      1. How do you explain that despite the difference in absolute value the combined expression maps of genes with and without cortical expression look similar? (fig S1e: in both cases there's high values in the dorsal part of the central sulcus, in the occipital pole, in the temporal pole, and low values in the precuneus and close to the angular gyrus). Could this also reflect mesh-smoothing-induced structure?

      Response 3

      As with comment 1, this is an interesting perspective that we had not fully considered. We would first like to clarify that non-cortical expression is defined from the independent datasets including the “cortex” tissue class of the human protein atlas and genes identified as markers for cortical layers or cortical cells in previous studies. This is still likely an underestimate of true cortically expressed genes as some of these “non-cortical genes” had high intersubject reproducibility scores. Nevertheless we think it appropriate to use a measure of brain expression independent of anything included in other analyses for this paper. These considerations are part of the reason we provide all gene maps with accompanying uncertainty scores for user discretion rather than simply filtering them out.

      In terms of the spatially consistent pattern of the gene ranks of Fig S1f, this consistent spatial pattern mirrors Transcriptomic Distinctiveness (r=0.52 for non-cortical genes, r=0.75 for cortical genes), so we think that as the differences in expression signatures become more extreme, the relative ranks of genes in that region are more reproducible/easier to predict.

      To assess whether mesh-smoothing-induced structure is playing a role, we carried out an additional the new null model introduced in response to comment 1, and asked if the per-vertex gene rank reproducibility of independently spun subgroup triplets showed a similar structure to that in our original analyses. Across the 90 permutations, the median correlation between vertex reproducibility and TD was R=0.10. We also recalculated the TD maps for the 10 spun datasets and the mean correlation with the original TD did not significantly differ from zero (mean R = 0.01, p=0.2, nspins =10). These results indicate that folding morphology is not the major driver of local or large scale patterning in the dataset. We have included this as a new Figure S3c.

      We have updated the text as follows:

      In Methods 3a: "Third, to assess whether the covariance in spatial patterning across genes could be a result of mesh-associated structure introduced through interpolation and smoothing, TD maps were recomputed for the spun+interpolated null datasets and compared to the original TD map (Fig S3c)."

      In Results: "The TD map observed from the full DEMs library was highly stable between all disjoint triplets of donors (Methods, Fig S3a, median cross-vertex correlation in TD scores between triplets r=0.77) and across library subsets at all deciles of DEM reproducibility (Methods, Fig S3b, cross-vertex correlation in TD scores r>0.8 for the 3rd-10th deciles), but was not recapitulated in spun null datasets (Fig S3c)."

      Author response image 3.

      Figure S3c, Correlations between TD and TD maps regenerated on datasets spun using two independent nulls, one where the rotation is applied prior to interpolation and smoothing (spun+interpolated) and one where it is applied to the already-created DEMs. In each null, the same rotation matrix is applied to all genes.

      Comment 4

      Could you provide more information about the way in which the nearest-neighbours were identified (results p4). Were they nearest in Euclidean space? Geodesic? If geodesic, geodesic over the native brain surface? over the spherically deformed brain? (Methods cite Moresi & Mather's Stripy toolbox, which seems to be meant to be used on spheres). If the distance was geodesic over the sphere, could the distortions introduced by mapping (due to brain anatomy) influence the geometry of the expression maps?

      Response 4

      We have clarified in the Methods that the mapping is to nearest neighbors on the spherically-inflated surface.

      The new null model we have introduced in response to comments 1 & 3 preserves any mesh-induced structure alongside any smoothing-induced spatial autocorrelations, and the additional analyses above indicate that main results are not induced by systematic mesh-related interpolation signal. In response to an additional suggestion from the reviewer (Comment 13), we also assessed whether local distortions due to the mesh could be creating apparent border effects in the data, for instance at the V1-V2 boundary. At the V1-V2 border, which coincides anatomically with the calcarine sulcus, we computed the 10 genes with the highest expression gradient along this boundary in the actual dataset and the spun-interpolated null. The median test expression gradients along this border was higher than in any of the spun datasets, indicating that these boundary effects are not explained by the interpolation and cortical geometry effects on the data (new Fig S2d). The text has been updated as follows:

      In Methods 1: "For cortical vertices with no directly sampled expression, expression values were interpolated from their nearest sampled neighbor vertex on the spherical surface (Moresi and Mather, 2019) (Fig 1b)."

      In Methods 2: "We used the spun+interpolated null to test whether high gene gradients could be driven by non-uniform interpolation across cortical folds. We quantified the average gradient for all genes along the V1-V2 border in the atlas, as well as for 10 iterations of the atlas where the samples were spun prior to interpolation. We computed the median gradient magnitude for the 20 top-ranked genes for each (Fig S2d)."

      Author response image 4.

      Figure S2d Mean of gradient magnitudes for 20 genes with largest gradients along V1-V2 border, compared to values along the same boundary on the spun+interpolated null atlas. Gradients were higher in the actual dataset than in all spun version indicating this high gradient feature is not primarily due to the effects of calcarine sulcus morphology on interpolation

      Comment 5

      Could you provide more information about the smoothing algorithm? Volumetric, geodesic over the native mesh, geodesic over the sphere, averaging of values in neighbouring vertices, cotangent-weighted laplacian smoothing, something else?

      Response 5

      We are using surface-based geodesic over the white surface smoothing described in Glasser et al., 2013 and used in the HCP workbench toolbox (https://www.humanconnectome.org/software/connectome-workbench). We have updated the methods to clarify this.

      In Methods 1: "Surface expression maps were smoothed using the Connectome Workbench toolbox (Glasser et al. 2013) with a 20mm full-width at half maximum Gaussian kernel , selected to be consistent with this sampling density (Fig 1c)."

      Comment 6

      Could you provide more information about the method used for computing the gradient of the expression maps (p6)? The gradient and the laplacian operator are related (the laplacian is the divergence of the gradient), which could also be responsible in part for the relationships observed between expression transitions and brain geometry.

      Response 6

      We are using Connectome Workbench’s metric gradient command for this Glasser et al., 2013 and used in the HCP workbench pipeline. The source code for gradient calculation can be found here: https://github.com/Washington-University/workbench/blob/131e84f7b885d82af76e be21adf2fa97795e2484/src/Algorithms/AlgorithmMetricGradient.cxx

      In Methods 2: >For each of the resulting 20,781 gene-level expression maps, the orientation and magnitude of gene expression change at each vertex (i.e. the gradient) was calculated for folded, inflated, spherical and flattened mesh representations of the cortical sheet using Connectome Workbench’s metric gradient command (Glasser et al. 2013).

      b. Potentially inflated FPR for spin tests on autocorrelated data."

      Spin tests are extensively used in this work and it would be useful to make the readers aware of their limitations, which may confound some of the results presented. Spin tests aim at establishing if two brain maps are similar by comparing a measure of their similarity over a spherical deformation of the brains against a distribution of similarities obtained by randomly spinning one of the spheres. It is not clear which specific variety of spin test was used, but the original spin test has well known limitations, such as the violation of the assumption of spatial stationarity of the covariance structure (not all positions of the spinning sphere are equivalent, some are contracted, some are expanded), or the treatment of the medial wall (a big hole with no data is introduced when hemispheres are isolated).

      Another important limitation results from the comparison of maps showing autocorrelation. This problem has been extensively described by Markello & Misic (2021). The strong smoothing used to make a continuous map out of just ~1300 samples introduces large, geometry dependent autocorrelations. Indeed, the expression maps presented in the manuscript look similar to those with the highest degree of autocorrelation studied by Markello & Misic (alpha=3). In this case, naive permutations should lead to a false positive rate ~46% when comparing pairs of random maps, and even most sophisticated methods have FPR>10%.

      Comment 7 There's currently several researchers working on testing spatial similarity, and the readers would benefit from being made aware of the problem of the spin test and potential solutions. There's also packages providing alternative implementations of spin tests, such as BrainSMASH and BrainSpace, which could be mentioned.

      Response 7

      We thank the reviewer for raising the issue of null models. First, with reference to the false positive rate of 46% when maps exhibit spatial autocorrelation, we absolutely agree that this is an issue that must be accounted for and we address this using the spin test. We acknowledge there has been other work on nulls such as BrainSMASH and BrainSpace. Nevertheless in the Markello and Misic paper to which the reviewer refers, the BrainSmash null models perform worse with smoother maps (with false positive rates approaching 30% in panel e below), whereas the spin test maintains false positives rates below 10%.

      Author response image 5.

      We have added a brief description of the challenge and our use of the spin test.

      In Methods 2a: "Cortical maps exhibit spatial autocorrelation that can inflate the False Positive Rate, for which a number of methods have been proposed(Alexander-Bloch et al. 2018; Burt et al. 2020; Vos de Wael et al. 2020). At higher degrees of spatial smoothness, this high False Positive Rate is most effectively mitigated using the spin test(Alexander-Bloch et al. 2018; Markello and Misic 2021; Vos de Wael et al. 2020). In the following analyses when generating a test statistic comparing two spatial maps, to generate a null distribution, we computed 1000 independent spins of the cortical surface using https://netneurotools.readthedocs.io, and applied it to the first map whilst keeping the second map unchanged. The test statistic was then recomputed 1000 times to generate a null distribution for values one might observe by chance if the maps shared no common organizational features. This is referred to throughout as the “spin test” and the derived p-values as pspin."

      Comment 8

      Could it be possible to measure the degree of spatial autocorrelation?

      Response 8

      We agree this could be a useful metric to generate for spatial cortical maps. However, there are multiple potential metrics to choose from and each of the DEMs would have their own value. To address this properly would require the creation of a set of validated tools and it is not clear how we could summarize this variety of potential metrics for 20k genes. Moreover, as discussed above the spin method is an adequate null across a range of spatial autocorrelation degrees, thus while we agree that in general estimation of spatial smoothness could be a useful imaging metric to report, we consider that it is beyond the scope of the current manuscript.

      Comment 9

      Could you clarify which version of the spin test was used? Does the implementation come from a package or was it coded from scratch?

      Response 9

      As Markello & Misic note, at the vertex level, the various implementations of the spin test become roughly equivalent to the ‘original’ Alexander-Bloch et al., implementation. We used took the code for the ‘original’ version implemented in python here: https://netneurotools.readthedocs.io/en/latest/_modules/netneurotools/stats.html# gen_spinsamples.

      This has been updated in the methods (see Response 7).

      Comment 10

      Cortex and non-cortex vertex-level gene rank predictability maps (fig S1e) are strikingly similar. Would the spin test come up statistically significant? What would be the meaning of that, if the cortical map of genes not expressed in the cortex appeared to be statistically significantly similar to that of genes expressed in the cortex?

      Response 10

      Please see response to comment 3, which also addresses this observation.

      Reviewer #2 (Public Review):

      The authors convert the AHBA dataset into a dense cortical map and conduct an impressively large number of analyses demonstrating the value of having such data.

      I only have comments on the methodology.

      Comment 1

      First, the authors create dense maps by simply using nearest neighbour interpolation followed by smoothing. Since one of the main points of the paper is the use of a dense map, I find it quite light in assessing the validity of this dense map. The reproducibility values they calculate by taking subsets of subjects are hugely under-powered, given that there are only 6 brains, and they don't inform on local, vertex-wise uncertainties). I wonder if the authors would consider using Gaussian process interpolation. It is really tailored to this kind of problem and can give local estimates of uncertainty in the interpolated values. For hyperparameter tuning, they could use leave-one-brain-out for that.

      I know it is a lot to ask to change the base method, as that means re-doing all the analyses. But I think it would strengthen the paper if the authors put as much effort in the dense mapping as they did in their downstream analyses of the data.

      Response 1

      We thank the reviewer for the suggestion to explore Gaussian process interpolation. We have implemented this for our dataset and attempted to compare this with our original method with the 3 following tests: i) intertriplet reproducibility of individual gene maps, ii) microscale validations: area markers, iii) macroscale validations: bio patterns.

      Overall, compared to our original nearest-neighbor interpolation method, GP regression (i) did not substantially improve gene-level reproducibility of expression maps (median correlation increase of R=0.07 which was greater for genes without documented protein expression in cortex): ii) substantially worsened performance in predicting areal marker genes and iii) showed similar but slightly worse performance at predicting macroscale patterns from Figure 1.

      Given the significantly poorer performance on one of our key tests (ii) we have opted not to replace our original database, but we do now include code for the alternative GP regression methodology in the github repository so others can reproduce/further develop these methods.

      Author response image 6.

      ii) Genes ranked by mean expression gradient from current DEMs (left) and Gaussian process-derived interpolation maps (right). Established Human and macaque markers are consistently higher-ranked in DEM maps. iii) Figure 1 Interpolated vs GP regression

      Author response table 1.

      Comment 2

      It is nice that the authors share some code and a notebook, but I think it is rather light. It would be good if the code was better documented, and if the user could have access to the non-smoothed data, in case they was to produce their own dense maps. I was only wondering why the authors didn't share the code that reproduces the many analyses/results in the paper.

      Response 2

      We thank the reviewer for this suggestion. In response we have updated the shared github repository (https://github.com/kwagstyl/magicc). This now includes code and notebooks to reproduce the main analyses and figures.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      Comment 11

      p4 mentions Fig S1h, but the supp figures only goes from S1a to S1g

      Response 11

      We thank the reviewer for capturing this error. It was in fact referring to what is now Fig S1h and has been updated.

      Comment 12

      It would be important that the authors share all the code used to produce the results in the paper in addition to the maps. The core methodological contribution of the work is a series of continuous maps of gene expression, which could become an important tool for annotation in neuroimaging research. Many arbitrary (reasonable) decisions were made, it would be important to enable users to evaluate their influence on the results.

      Response 12

      We thank both reviewers for this suggestion. We have updated the github to be able to reproduce the dense maps and key figures with our methods.

      Comment 13

      p5: Could the sharp border reflect the effect of the geometry of the calcarine sulcus on map smoothing? More generally, could there be an effect of folds on TD?

      Response 13

      Please see our response to Reviewer 1, Comment 1 above, where we introduce the new null models now analyzed to test for effects of mesh geometry on our findings. These new null models - where original source data were spun prior to interpolation suggest that neither the sharp V1/2 border or the TD map are effects of mesh geometry. Specifically: (i) , the magnitudes of gradients along the V1/2 boundary from null models were notably smaller than those in our original analyses (see new figure S2d), and (ii) TD maps computed from the new null models showed no correlation with TD maps from ur original analyses (new Figure S3c, mean R = 0.01, p=0.2, nspins =10).

      Comment 14

      p5: Similar for the matching with the areas in Glasser's parcellation: the definition of these areas involves alignment through folds (based on freesurfer 'sulc' map, see Glasser et al 2016). If folds influence the geometry of TDs, could that influence the match?

      Response 14

      We note that Fig S3c provided evidence that folding was not the primary driver of the TD patterning. However, it is true that Glasser et al. use both neuroanatomy (folding, thickness and myelin) and fMRI-derived maps to delineate their cortical areas. As such Figure 2 f & g aren’t fully independent assessments. Nevertheless the reason that these features are used is that many of the sulci in question have been shown to reliably delineate cytoarchitectonic boundaries (Fischl et al., 2008).

      In Results: "A similar alignment was seen when comparing gradients of transcriptional change with the spatial orientation of putative cortical areas defined by multimodal functional and structural in vivo neuroimaging(Glasser et al., 2016) (expression change running perpendicular to area long-axis, pspin<0.01, Fig 2g, Methods)."

      Comment 15

      p6: TD peaks are said to overlap with functionally-specialised regions. A comment on why audition is not there, nor language, but ba 9-46d is? Would that suggest a lesser genetic regulation of those functions?

      Response 15

      The reviewer raises a valid point and this was a result that we were also surprised by. The finding that the auditory cortex is not as microstructurally distinctive as, say V1, is consistent with other studies applying dimensionality-reduction techniques to multimodal microstructural receptor data (e.g. Zilles et al., 2017, Goulas et al., 2020). These studies found that the auditory microstructure is not as extreme as either visual and somatomotor areas. From a methodological view point, the primary auditory cortex is significantly smaller than both visual and somatomotor areas, and therefore is captured by fewer independent samples, which could reduce the detail in which its structure is being mapped in our dataset.

      For the frontal areas, we would note that i) the frontal peak is the smallest of all peaks found and was more strongly characterised by low z-score genes than high z-score. ii) the anatomical areas in the frontal cortex are much more highly variable with respect to folding morphology (e.g. Rajkowska 1995). The anatomical label of ba9-46d (and indeed all other labels) were automatically generated as localisers rather than strict area labels. We have clarified this in the text as follows:

      In Methods 3a: "Automated labels to localize TD peaks were generated based on their intersection with a reference multimodal neuroimaging parcellation of the human cortex(Glasser et al., 2016). Each TD was given the label of the multimodal parcel that showed greatest overlap (Fig 2b)."

      Comment 16.

      p7: The proposition that "there is a tendency for cortical sulci to run perpendicular to the direction of fastest transcriptional change", could also be "there is a tendency for the direction of fastest transcriptional change to run perpendicular to cortical sulci"? More pragmatically, this result from the geometry of transcriptional maps being influenced by sulcal geometry in their construction.

      Response 16

      Please see our response to Reviewer 1, Comment 1 above, where we introduce the new null models now analyzed to test for effects of mesh geometry on our findings. These models indicate that the topography of interpolated gene expression maps do not reflect influences of sulcal geometry on their construction.

      Comment 17

      p7: TD transitions are indicated to precede folding. This is based on a consideration of folding development based on the article by Chi et al 1977, which is quite an old reference. In that paper, the authors estimated the tempo of human folding development based on the inspection of photographs, which may not be sufficient for detecting the first changes in curvature leading to folds. The work of the Developing Human Connectome consortium may provide a more recent indication for timing. In their data, by PCW 21 there's already central sulcus, pre-central, post-central, intra-parietal, superior temporal, superior frontal which can be detected by computing the mean curvature of the pial surface (I can only provide a tweet for reference: https://twitter.com/R3RT0/status/1617119196617261056). Even by PCW 9-13 the callosal sulcus, sylvian fissure, parieto-occipital fissure, olfactory sulcus, cingulate sulcus and calcarine fissure have been reported to be present (Kostovic & Vasung 2009).

      Response 17

      Our field lacks the data necessary to provide a comprehensive empirical test for the temporal ordering of regional transcriptional profiles and emergence of folding. Our results show that transcriptional identities of V1 and TGd are - at least - present at the very earliest stages of sulcation in these regions. In response to the reviewers comment we have updated with a similar fetal mapping project which similarly shows evidence of the folds between weeks 17-21 and made the language around directionality more cautious.

      In Results: "The observed distribution of these angles across vertices was significantly skewed relative to a null based on random alignment between angles (pspin<0.01, Fig 2f, Methods) - indicating that there is indeed a tendency for cortical sulci and the direction of fastest transcriptional change to run perpendicular to each other (pspin<0.01, Fig 2f).

      As a preliminary probe for causality, we examined the developmental ordering of regional folding and regional transcriptional identity. Mapping the expression of high-ranking TD genes in fetal cortical laser dissection microarray data(Miller et al., 2014) from 21 PCW (Post Conception Weeks) (Methods) showed that the localized transcriptional identity of V1 and TGd regions in adulthood is apparent during the fetal periods when folding topology begins to emerge (Chi et al. 1977; Xu et al. 2022) (Fig " S2d).

      In Discussion: "By establishing that some of these cortical zones are evident at the time of cortical folding, we lend support to a “protomap”(Rakic 1988; O'Leary 1989; O'Leary et al. 2007; Rakic et al. 2009) like model where the placement of some cortical folds is set-up by rapid tangential changes in cyto-laminar composition of the developing cortex(Ronan et al., 2014; Toro and Burnod, 2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of the measured genetic-folding alignment might also be induced by mechanical distortion of the tissue during folding(Llinares-Benadero and Borrell 2019; Heuer and Toro 2019). However, no data currently exist to conclusively assess the directionality of this gene-folding relationship."

      Comment 18

      p7: In my supplemental figures (obtained from biorxiv, because I didn't find them among the files submitted to eLife) there's no S2j (only S2a-S2i).

      Response 18

      We apologize, this figure refers to S3k (formerly S3j), rather than S2j. We have updated the main text.

      Comment 19 p7: It is not clear from the methods (section 3b) how the adult and fetal brains were compared. Maybe using MSM (Robinson et al 2014)?

      Response 19

      We have now clarified this in Methods text as reproduced below.

      In Methods 3b: "We averaged scaled regional gene expression values between donors per gene, and filtered for genes in the fetal LDM dataset that were also represented in the adult DEM dataset - yielding a single final 20,476*235 gene-by-sample matrix of expression values for the human cortex at 21 PCW. Each TD peak region was then paired with the closest matching cortical label within the fetal regions. This matrix was then used to test if each TD expression signature discovered in the adult DEM dataset (Fig 2, Table 3) was already present in similar cortical regions at 21 PCW."

      Comment 20

      p7: WGCNA is used prominently, could you provide a brief introduction to its objectives? The gene coexpression networks are produced after adjusting the weight of the network edges to follow a scale-free topology, which is meant to reflect the nature of protein-protein interactions. Soft thresholding increases contrast, but doesn't this decrease a potential role of infinitesimal regulatory signals?

      Response 20

      We agree with the reviewer that the introduction to WGCNA needed additional details and have amended the Results (see below). One limitation of WGCNA-derived associations is that it will downweigh the role of smaller relationships including potentially important regulatory signals. WGCNA methods have been titrated to capture strong relationships. This is an inherent limitation of all co-expression driven methods which lead to an incomplete characterisation of the molecular biology. Nevertheless we feel these stronger relationships are still worth capturing and interrogating. We have updated the text to introduce WGCNA and acknowledge this potential weakness in the approach.

      In Results: "Briefly, WGCNA constructs a constructs a connectivity matrix by quantifying pairwise co-expression between genes, raising the correlations to a power (here 6) to emphasize strong correlations while penalizing weaker ones, and creating a Topological Overlap Matrix (TOM) to capture both pairwise similarities expression and connectivity. Modules of highly interconnected genes are identified through hierarchical clustering. The resultant WGCNA modules enable topographic and genetic integration because they each exist as both (i) a single expression map (eigenmap) for spatial comparison with neuroimaging data (Fig 3a,b, Methods) and, (ii) a unique gene set for enrichment analysis against marker genes systematically capturing multiple scales of cortical organization, namely: cortical layers, cell types, cell compartments, protein-protein interactions (PPI) and GO terms (Methods, Table S2 and S4)."

      Comment 21

      WGCNA modules look even more smooth than the gene expression maps. Are these maps comparable to low frequency eigenvectors? Autocorrelation in that case should be very strong?

      Response 21

      These modules are smooth as they are indeed eigenvectors which likely smooth out some of the more detailed but less common features seen in individual gene maps. These do exhibit high degrees of autocorrelation, nevertheless we are applying the spin test which is currently the appropriate null model for spatially autocorrelated cortical maps (Response 7).

      Comment 22

      If the WGCNA modules provide an orthogonal basis for surface data, is it completely unexpected that some of them will correlate with low-frequency patterns? What would happen if random low frequency patterns were generated? Would they also show correlations with some of the 16 WGCNA modules?

      Response 22

      We agree with the reviewer that if we used a generative model like BrainSMASH, we would likely see similar low frequency patterns. However, the inserted figure in Response 7 from Makello & Misic provide evidence that is not as conservative a null as the spin test when data exhibit high spatial autocorrelation. The spatial enrichment tests carried out on the WGCNA modules are all carried out using the spin test.

      Comment 23

      In part (a) I commented on the possibility that brain anatomy may introduce artifactual structure into the data that's being mapped. But what if the relationship between brain geometry and brain organisation were deeper than just the introduction of artefacts? The work of Lefebre et al (2014, https://doi.org/10.1109/ICPR.2014.107; 2018, https://doi.org/10.3389/fnins.2018.00354) shows that clustering based on the 3 lowest frequency eigenvectors of the Laplacian of a brain hemisphere mesh produce an almost perfect parcellation into lobes, with remarkable coincidences between parcel boundaries and primary folds and fissures. The work of Pang et al (https://doi.org/10.1101/2022.10.04.510897) suggests that the geometry of the brain plays a critical role in constraining its dynamics: they analyse >10k task-evoked brain maps and show that the eigenvectors of the brain laplacian parsimoniously explain the activity patterns. Could brain anatomy have a downward effect on brain organisation?

      Response 23

      The reviewer raises a fascinating extension of our work identifying spatial modes of gene expression. We agree that these are low frequency in nature, but would first like to note that the newly introduced null model indicates that the overlaps with salient neuroanatomical features are inherent in the expression data and not purely driven by anatomy in a methodological sense.

      Nevertheless we absolutely agree there is likely to be a complex multidirectional interplay between genetic expression patterns through development, developing morphology and the “final” adult topography of expression, neuroanatomical and functional patterns.

      We think that the current manuscript currently contains a lot of in depth analyses of these expression data, but agree that a more extensive modeling analysis of how expression might pattern or explain functional activation would be a fascinating follow on, especially in light of these studies from Pang and Lefebre. Nevertheless we think that this must be left for a future modeling paper integrating these modes of microscale, macroscale and functional anatomy.

      In Discussion: "Indeed, future work might find direct links between these module eigenvectors and similar low-frequency eigenvectors of cortical geometry have been used as basis functions to segment the cortex (Lefèvre et al. 2018) and explain complex functional activation patterns(Pang et al. 2023)."

      Comment 24

      On p11: ASD related to rare, deleterious mutations of strong effect is often associated with intellectual disability (where the social interaction component of ASD is more challenging to assess). Was there some indication of a relationship with that type of cognitive phenotype?

      Response 24

      Across the two ABIDE cohorts, the total number of those with ASD and IQ <70, which is the clinical threshold for intellectual disability was n=10, which unfortunately did not allow us to conduct a meaningful test of whether ID impacts the relationship between imaging changes in ASD and the expression maps of genes implicated in ASD by rare variants.

      Comment 25

      Could you clarify if the 6 donors were aligned using the folding-based method in freesurfer?

      Response 25

      The 6 donors were aligned using MSMsulc (Robinson et al., 2014), which is a folding based method from the HCP group. This is now clarified in the methods.

      In Methods 1: "Cortical surfaces were reconstructed for each AHBA donor MRI using FreeSurfer(Fischl, 2012), and coregistered between donors using surface matching of individuals’ folding morphology (MSMSulc) (Robinson et al., 2018)."

      Comment 26

      The authors make available a rich resource and a series of tools to facilitate their use. They have paid attention to encode their data in standard formats, and their code was made in Python using freely accessible packages instead of proprietary alternatives such as matlab. All this should greatly facilitate the adoption of the approach. I think it would be important to state more explicitly the conceptual assumptions that the methodology brings. In the same way that a GWAS approach relies on a Mendelian idea that individual alleles encode for phenotypes, what is the idea about the organisation of the brain implied by the orthogonal gene expression modules? Is it that phenotypes - micro and macro - are encoded by linear combinations of a reduced number of gene expression patterns? What would be the role of the environment? The role of non-genic regulatory regions? Some modalities of functional organisation do not seem to be encoded by the expression of any module. Is it just for lack of data or should this be seen as the sign for a different organisational principle? Likewise, what about the aspects of disorders that are not captured by expression modules? Would that hint, for example, to stronger environmental effects? What about linear combinations of modules? Nonlinear? Overall, the authors adopt implicitly, en passant, a gene-centric conceptual standpoint, which would benefit from being more clearly identified and articulated. There are citations to Rakic's protomap idea (I would also cite the original 1988 paper, and O'Leary's 1989 "protocortex" paper stressing the role of plasticity), which proposes that a basic version of brain cytoarchitecture is genetically determined and transposed from the proliferative ventricular zone regions to the cortical plate through radial migration. In p13 the authors indicate that their results support Rakic's protomap. Additionally, in p7 the authors suggest that their results support a causal arrow going from gene expression to sulcal anatomy. The reviews by O'leary et al (2007), Ronan & Fletcher (2014, already cited), Llinares-Benadero & Borrell (2019) could be considered, which also advocate for a similar perspective. For nuances on the idea that molecular signals provide positional information for brain development, the article by Sharpe (2019, DOI: 10.1242/dev.185967) is interesting. For nuances on the gene-centric approach of the paper the articles by Rockmann (2012, DOI: 10.1111/j.1558-5646.2011.01486.x) but also from the ENCODE consortium showing the importance of non-genic regions of the genome ("Perspectives on ENCODE" 2020 DOI: 10.1038/s41586-021-04213-8) could be considered. I wouldn't ask to cite ideas from the extended evolutionary synthesis about different inheritance systems (as reviewed by Jablonka & Lamb, DOI: 10.1017/9781108685412) or the idea of inherency (Newman 2017, DOI: 10.1007/978-3-319-33038-9_78-1), but the authors may find them interesting. Same goes for our own work on mechanical morphogenesis which expands on the idea of a downward causality (Heuer and Toro 2019, DOI: 10.1016/j.plrev.2019.01.012)

      Response 26

      We thank the reviewer for recommending these papers, which we enjoyed reading and have deepened our thinking on the topic. In addition to toning down some of the language with respect to causality that our data cannot directly address, we have included additional discussion and references as follows:

      In Discussion: "By establishing that some of these cortical zones are evident at the time of cortical folding, we lend support to a “protomap”(Rakic 1988; O'Leary 1989; O'Leary et al. 2007; Rakic et al. 2009) like model where the placement of some cortical folds is set-up by rapid tangential changes in cyto-laminar composition of the developing cortex(Ronan et al., 2014; Toro and Burnod, 2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of the measured genetic-folding alignment might also be induced by mechanical distortion of the tissue during folding(Llinares-Benadero and Borrell 2019; Heuer and Toro 2019). However, no data currently exist to conclusively assess the directionality of this gene-folding relationship.

      Overall, the manuscript is very interesting and a great contribution. The amount of work involved is impressive, and the presentation of the results very clear. My comments indicate some aspects that could be made more clear, for example, providing additional methodological information in the supplemental material. Also, making aware the readers and future users of MAGICC of the methodological and conceptual challenges that remain to be addressed in the future for this field of research.

      Reviewer #2 (Recommendations For The Authors):

      Comment 1

      The supplementary figures seem to be missing from the eLife submission (although I was able to find them on europepmc)

      Response 1

      We apologize that these were not included in the documents sent to reviewers. The up-to-date supplementary figures are included in this resubmission and again on biorxiv.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study combines genetically barcoded rabies viruses with spatial transcriptomics in vivo in the mouse brain to decode connectivity of neural circuits. The data generated by the combination of these approaches in this new way is mostly convincing as the authors provide validation and proof-of-concept that the approach can be successful. While this new combination of established techniques has promise for elucidating brain connectivity, there are still some nuances and caveats to the interpretations of the results that are lacking especially with regards to noting unexpected barcodes either due to unexpected/novel connections or unexpected rabies spread.

      In this revised manuscript, we added a new control experiment and additional analyses to address two main questions from the reviewers: (1) How the threshold of glycoprotein transcript counts used to identify source cells was determined, and (2) whether the limited long-range labeling was expected in the trans-synaptic experiment. The new experiments and analyses validated the distribution of source cells and presynaptic cells observed in the original barcoded transsynaptic tracing experiment and validated the choice of the threshold of glycoprotein transcripts. As the reviewers suggested, we also included additional discussion on how future experiments can improve upon this study, including strategies to improve source cell survival and minimizing viral infection caused by leaky expression of TVA. We also provided additional clarification on the analyses for both the retrograde labeling experiment and the trans-synaptic tracing experiment. We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. Detailed changes to address specific comments by reviewers are included below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this preprint, Zhang et al. describe a new tool for mapping the connectivity of mouse neurons. Essentially, the tool leverages the known peculiar infection capabilities of Rabies virus: once injected into a specific site in the brain, this virus has the capability to "walk upstream" the neural circuits, both within cells and across cells: on one hand, the virus can enter from a nerve terminal and infect retrogradely the cell body of the same cell (retrograde transport). On the other hand, the virus can also spread to the presynaptic partners of the initial target cells, via retrograde viral transmission.

      Similarly to previously published approaches with other viruses, the authors engineer a complex library of viral variants, each carrying a unique sequence ('barcode'), so they can uniquely label and distinguish independent infection events and their specific presynaptic connections, and show that it is possible to read these barcodes in-situ, producing spatial connectivity maps. They also show that it is possible to read these barcodes together with endogenous mRNAs, and that this allows spatial mapping of cell types together with anatomical connectivity.

      The main novelty of this work lies in the combined use of rabies virus for retrograde labeling together with barcoding and in-situ readout. Previous studies had used rabies virus for retrograde labeling, albeit with low multiplexing capabilities, so only a handful of circuits could be traced at the same time. Other studies had instead used barcoded viral libraries for connectivity mapping, but mostly focused on the use of different viruses for labeling individual projections (anterograde tracing) and never used a retrograde-infective virus.

      The authors creatively merge these two bits of technology into a powerful genetic tool, and extensively and convincingly validate its performance against known anatomical knowledge. The authors also do a very good job at highlighting and discussing potential points of failure in the methods.

      We thank the reviewer for the enthusiastic comments.

      Unresolved questions, which more broadly affect also other viral-labeling methods, are for example how to deal with uneven tropism (ie. if the virus is unable or inefficient in infecting some specific parts of the brain), or how to prevent the cytotoxicity induced by the high levels of viral replication and expression, which will tend to produce "no source networks", neural circuits whose initial cell can't be identified because it's dead. This last point is particularly relevant for in-situ based approaches: while high expression levels are desirable for the particular barcode detection chemistry the authors chose to use (gap-filling), they are also potentially detrimental for cell survival, and risk producing extensive cell death (which indeed the authors single out as a detectable pitfall in their analysis). This is likely to be one of the major optimisation challenges for future implementations of these types of barcoding approaches.

      As the reviewer suggested, we included additional discussion about tropism and cytotoxicity in the revised Discussion. Our sensitivity for barcode detection is sufficient, since we estimated (based on manual proofreading) that most barcoded neurons had more than ten counts of a barcode in the trans-synaptic tracing experiment. The high sensitivity may potentially allow us to adapt next-generation rabies virus with low replication, such as the third generation ΔL rabies virus (Jin et al, 2022, biorxiv) in future optimizations.

      Overall the paper is well balanced, the data are well presented and the conclusions are strongly supported by the data. Impact-wise, the method is definitely going to be useful for the neurobiology research community.

      We thank the reviewer for her/his enthusiasm.

      Reviewer #2 (Public Review):

      Although the trans-synaptic tracing method mediated by the rabies virus (RV) has been widely utilized to infer input connectivity across the brain to a genetically defined population in mice, the analysis of labeled pre-synaptic neurons in terms of cell-type has been primarily reliant on classical low-throughput histochemical techniques. In this study, the authors made a significant advance toward high-throughput transcriptomic (TC) cell typing by both dissociated single-cell RNAseq and the spatial TC method known as BARseq to decode a vast array of molecularly labeled ("barcoded") RV vector library. First, they demonstrated that a barcoded-RV vector can be employed as a simple retrograde tracer akin to AAVretro. Second, they provided a theoretical classification of neural networks at the single-cell resolution that can be attained through barcoded-RV and concluded that the identification of the vast majority (ideally 100%) of starter cells (the origin of RV-based trans-synaptic tracing) is essential for the inference of single-cell resolution neural connectivity. Taking this into consideration, the authors opted for the BARseq-based spatial TC that could, in principle, capture all the starter cells. Finally, they demonstrated the proof-of-concept in the somatosensory cortex, including infrared connectivity from 381 putative pre-synaptic partners to 31 uniquely barcoded-starter cells, as well as many insightful estimations of input convergence at the cell-type resolution in vivo. While the manuscript encompasses significant technical and theoretical advances, it may be challenging for the general readers of eLife to comprehend. The following comments are offered to enhance the manuscript's clarity and readability.

      We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. We separated out the theoretical discussion about barcode sharing networks as a separate subsection, explicitly stated the rationale of how different barcode sharing networks are distinguished in the in situ trans-synaptic tracing experiment, and added additional discussion on future optimizations. Detailed descriptions are provided below.

      Major points:

      1. I find it difficult to comprehend the rationale behind labeling inhibitory neurons in the VISp through long-distance retrograde labeling from the VISal or Thalamus (Fig. 2F, I and Fig. S3) since long-distance projectors in the cortex are nearly 100% excitatory neurons. It is also unclear why such a large number of inhibitory neurons was labeled at a long distance through RV vector injections into the RSP/SC or VISal (Fig. 3K). Furthermore, a significant number of inhibitory starter cells in the somatosensory cortex was generated based on their projection to the striatum (Fig. 5H), which is unexpected given our current understanding of the cortico-striatum projections.

      The labeling of inhibitory neurons can be explained by several factors in the three different experiments.

      (1) In the scRNAseq-based retrograde labeling experiment (Fig. 2 and Fig. S3), the injection site VISal is adjacent to VISp. Because we dissected VISp for single-cell RNAseq, we may find labeled inhibitory neurons at the VISp border that extend short axons into VISal. We explained this in the revised Results.

      (2) In the in situ sequencing-based retrograde labeling experiment (Fig. 3,4), the proximity between the two injection sites VISal and RSP/SC, and the sequenced areas (which included not only VISp but also RSP) could also contribute to labeling through local axons of inhibitory neurons. Furthermore, because we also sequenced midbrain regions, inhibitory neurons in the superior colliculus could pick up the barcodes through local axons. We included an explanation of this in the revised Results.

      (3) In the trans-synaptic tracing experiment, we speculate that low level leaky expression from the TREtight promoter led to non-Cre-dependent expression in many neurons. To test this hypothesis, we first performed a control injection in which we saw that the fluorescent protein expression were indeed restricted to layer 5, as expected from corticostriatal labeling. Based on the labeling pattern, we estimated that about 12 copies of the glycoprotein transcript per cell would likely be needed to achieve fluorescent protein expression. Since many source cells in our experiment were below this threshold, these results support the hypothesis that the majority of source cells with low level expression of the glycoprotein were likely Cre-independent. Because these cells could still contribute to barcode sharing networks, we could not exclude them as in a conventional bulk trans-synaptic tracing experiment. In future experiments, we can potentially reduce this population by improving the helper AAV viruses used to express TVA and the glycoprotein. We included this explanation in Results and more detailed analysis in Supplementary Note 2, and discussed potential future optimizations in the Discussion. This new analysis in Supplementary Note 2 is also related to the Reviewer’s question regarding the threshold used for determining source cells (see below).

      1. It is unclear as to why the authors did not perform an analysis of the barcodes in Fig. 2. Given that the primary objective of this manuscript is to evaluate the effectiveness of multiplexing barcoded technology in RV vectors, I would strongly recommend that the authors provide a detailed description of the barcode data here, including any technical difficulties or limitations encountered, which will be of great value in the future design of RV-barcode technologies. In case the barcode data are not included in Fig. 2, I would suggest that the authors consider excluding Fig. 2 and Fig. S1-S3 in their entirety from the manuscript to enhance its readability for general readers.

      In the single-cell RNAseq-based retrograde tracing, all barcodes recovered matched to known barcodes in the corresponding library. We included a short description of these results in the revised manuscript.

      1. Regarding the trans-synaptic tracing utilizing a barcoded RV vector in conjunction with BARseq decoding (Fig. 5), which is the core of this manuscript, I have a few specific questions/comments. First, the rationale behind defining cells with only two rolonies counts of rabies glycoprotein (RG) as starter cells is unclear. Why did the authors not analyze the sample based on the colocalization of GFP (from the AAV) and mCherry (from the RV) proteins, which is a conventional method to define starter cells? If this approach is technically difficult, the authors could provide an independent histochemical assessment of the detection stringency of GFP positive cells based on two or more colonies of RG.

      In situ sequencing does not preserve fluorescent protein signals, so we used transcript counts to determine which cells expressed the glycoprotein. We have added new analyses in the Results and in Supplementary Note 2 to determine the transcript counts that were equivalent to cells that had detectable BFP expression. We found that BFP expression is equivalent to ~12 counts of the glycoprotein transcript per cell, which is much higher than the threshold we used. However, we could not solely rely on this estimate to define the source cells, because cells that had lower expression of the glycoprotein (possibly from leaky Cre-independent expression) may still pass the barcodes to presynaptic cells. This can lead to an underestimation of double-labeled and connected-source networks and an overestimation of single-source networks and can obscure synaptic connectivity at the cellular resolution. We thus used a very conservative threshold of two transcripts in the analysis. This conservative threshold will likely overestimate the number of source cells that shared barcodes and underestimate the number of single-source networks. Since this is a first study of barcoded transsynaptic tracing in vivo, we chose to err on the conservative side to make sure that the subsequent analysis has single-cell resolution. Future characterization and optimization may lead to a better threshold to fully utilize data.

      Second, it is difficult to interpret the proportion of the 2,914 barcoded cells that were linked to barcoded starter cells (single-source, double-labeled, or connected-source) and those that remained orphan (no-source or lost-source). A simple table or bar graph representation would be helpful. The abundance of the no-source network (resulting from Cre-independent initial infection of the RV vector) can be estimated in independent negative control experiments that omit either Cre injection or AAV-RG injection. The latter, if combined with BARseq decoding, can provide an experimental prediction of the frequency of double-labeled events since connected-source networks are not labeled in the absence of RG.

      We have added Table 2, which breaks down the 2,914 barcoded cells based on whether they are presynaptic or source cells, and which type of network they belong to. We agree with the reviewer that the additional Cre- or RG- control experiments in parallel would allow an independent estimate of the double labeled networks and the no-source networks. We have included added a discussion of possible controls to further optimize the trans-synaptic tracing approach in future studies in the Discussion.

      Third, I would appreciate more quantitative data on the putative single-source network (Fig. 5I and S6) in terms of the distribution of pre- and post-synaptic TC cell types. The majority of labeling appeared to occur locally, with only two thalamic neurons observed in sample 25311842 (Fig. S6). How many instances of long-distance labeling (for example, > 500 microns away from the injection site) were observed in total? Is this low efficiency of long-distance labeling expected based on the utilized combinations of AAVs and RV vectors? A simple independent RV tracing solely detecting mCherry would be useful for evaluating the labeling efficiency of the method. I have experienced similar "less jump" RV tracing when RV particles were prepared in a single step, as this study did, rather than multiple rounds of amplification in traditional protocols, such as Osakada F et al Nat Protocol 2013.

      We imaged an animal that was injected in parallel to assess labeling (now included in Supplementary Note 2 and Supp. Fig. S5). The labeling pattern in the newly imaged animal was largely consistent with the results from the barcoded experiment: most labeled neurons were seen in the vicinity of the injection site, and sparser labeling was seen in other cortical areas and the thalamus. We further found that most neurons that were labeled in the thalamus were about 1 mm posterior to the center of the injection site, and thus would not have been sequenced in the in situ sequencing experiment (in which we sequenced about 640 µm of tissue spanning the injection site).

      In addition, we found that the bulk of the cells that expressed mCherry from the rabies virus only partially overlapped with the area that contained cells co-expressing BFP with the rabies glycoprotein. Moreover, very few cells co-expressed mCherry and BFP, which would be considered source cells in a conventional mono-synaptic tracing experiment. The small numbers of source cells likely also contributed to the sparseness of long-range labeling in the barcoded experiment.

      These interpretations and comparisons to the barcoded experiment are now included in Supplementary Note 2.

      Reviewer #3 (Public Review):

      The manuscript by Zhang and colleagues attempts to combine genetically barcoded rabies viruses with spatial transcriptomics in order to genetically identify connected pairs. The major shortcoming with the application of a barcoded rabies virus, as reported by 2 groups prior, is that with the high dropout rate inherent in single cell procedures, it is difficult to definitively identify connected pairs. By combining the two methods, they are able to establish a platform for doing that, and provide insight into connectivity, as well as pros and cons of their method, which is well thought out and balanced.

      Overall the manuscript is well-done, but I have a few minor considerations about tone and accuracy of statements, as well as some limitations in how experiments were done. First, the idea of using rabies to obtain broader tropism than AAVs isn't really accurate - each virus has its own set of tropisms, and it isn't clear that rabies is broader (or can be made to be broader).

      As the reviewer suggested, we toned down this claim and stated that rabies virus has different tropism to complement AAV.

      Second, rabies does not label all neurons that project to a target site - it labels some fraction of them.

      We meant to say that retrograde labeling is not restricted to labeling neurons from a certain brain region. We have clarified in the text.

      Third, the high rate of rabies virus mutation should be considered - if it is, or is not a problem in detecting barcodes with high fidelity, this should be noted.

      Our analysis showed that sequencing 15 bases was sufficient to tolerate a small number of mismatches in the barcode sequences and could distinguish real barcodes from random sequences (Fig. 4A). Thus, we can tolerate mutations in the barcode sequence. We have clarified this in the text.

      Fourth, there are a number of implicit assumptions in this manuscript, not all of which are equally backed up by data. For example, it is not clear that all rabies virus transmission is synaptic specific; in fact, quite a few studies argue that it is not (e.g., detection of rabies transcripts in glial cells). Thus, arguments about lost-source networks and the idea that if a cell is lost from the network, that will stop synaptic transmission, is not clear. There is also the very real propensity that, the sicker a starter cell gets, the more non-specific spread of virus (e.g., via necrosis) occurs.

      We agree with the reviewer that how strictly virus transmission is restricted to synapses remains a hotly debated question in the field, and this question is relevant not only to techniques based on barcoded rabies tracing, but to all trans-synaptic tracing experiments. A barcoding-based approach can generate single-cell data that enable direct comparison to other data modalities that measure synaptic connectivity, such as multi-patch and EM. These future experiments may provide additional insights into the questions that the reviewer raised. We have included additional discussion about how non-synaptic transmission of barcodes because of the necrosis of source cells may affect the analysis in the Discussion.

      Regarding the scenario in which the source cell dies, we agree with the reviewer and have clarified in the revised manuscript.

      Fifth, in the experiments performed in Figure 5, the authors used a FLEx-TVA expressed via a retrograde Cre, and followed this by injection of their rabies virus library. The issue here is that there will be many (potentially thousands) of local infection events near the injection site that TVA-mediated but are Cre-dependent (=off-target expression of TVA in the absence of Cre). This is a major confound in interpreting the labeling of these cells. They may express very low levels of TVA, but still have infection be mediated by TVA. The authors did not clearly explore how expression of TVA related to rabies virus infection of cells near the rabies injection site. A modified version of TVA, such as 66T, should have been used to mitigate this issue. Otherwise, it is impossible to determine connectivity locally. The authors do not go to great lengths to interpret the findings of these observations, so I am not sure this is a critical issue, but it should be pointed out by the authors as a caveat to their dataset.

      We agree with the reviewer that this type of infection could potentially be a major contributor to no-source networks, which were abundant in our experiment. Because small no-source networks were excluded from our analyses, and large no-source networks were only included for barcodes with low frequency (i.e., it would be nearly impossible statistically to generate such large no-source networks from independent infections), we believe that the effect of independent infections on our analyses were minimized. We have added a control experiment in Fig S5 and Supplementary Note 2, which further supported the hypothesis that there were many independent infections. We also included additional discussion about how this can be assessed and optimized in future studies in the Discussion.

      Sixth, the authors are making estimates of rabies spread by comparison to a set of experiments that was performed quite differently. In the two studies cited (Liu et al., done the standard way, and Wertz et al., tracing from a single cell), the authors were likely infecting with a rabies virus using a high multiplicity of infection, which likely yields higher rates of viral expression in these starter cells and higher levels of input labeling. However, in these experiments, the authors need to infect with a low MOI, and explicitly exclude cells with >1 barcode. Having only a single virion trigger infection of starter cells will likely reduce the #s of inputs relative to starter neurons. Thus, the stringent criteria for excluding small networks may not be entirely warranted. If the authors wish to only explore larger networks, this caveat should be explicitly noted.

      In the trans-synaptic labeling experiment, we actually used high rabies titer (200 nL, 7.6e10 iu/mL) that was comparable to conventional rabies tracing experiments. We did not exclude cells with multiple barcodes (as opposed to barcodes in multiple source cells), because we could resolve multiple barcodes in the same cell and indeed found many cells with multiple barcodes. We have clarified this in the text.

      Overall, if the caveats above are noted and more nuance is added to some of the interpretation and discussion of results, this would greatly help the manuscript, as readers will be looking to the authors as the authority on how to use this technology.

      In addition to addressing the specific concerns of the reviewer as described above, we modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers and expanded the discussion on future optimizations.

      Reviewer #1 (Recommendations For The Authors):

      The scientific problem is clearly stated and well laid out, the data are clearly presented, and the experiments well justified and nicely discussed. It was overall a very enjoyable read. The figures are generally nice and clear, however, I find the legends excessively concise. A bit too often, they just sort of introduce the title of the panel rather than a proper explanation of what it is depicted. A clear case is for example visible in Fig 2, where the description of the panels is minimal, but this is a general trend of the manuscript. This makes the figures a bit hard to follow as self-contained entities, without having to continuously go back to the main text. I think this could be improved with longer and more helpful descriptions.

      We have revised all figure legends to make them more descriptive.

      Other minor things:

      In the cDNA synthesis step for in-situ sequencing, I believe the authors might have forgotten one detail: the addition of aminoallyl dUTP to the RT reaction. If I recall correctly this is done in BARseq. The fact that the authors crosslink with BS-PEG on day 2, makes me suspect they spike in these nucleotides during the RT but this is not specified in the relevant step. Perhaps this is a mistake that needs correction.

      The RT primers we used have an amine group at 5’, which directly allows crosslinking. Thus, we did not need to spike in aminoallyl dUTP in the RT reaction. We have clarified this in the Methods.

      Reviewer #2 (Recommendations For The Authors):

      Throughout the manuscript, there are frequent references to the "Methods" section for important details. However, it can be challenging to determine which specific section of the Methods the authors are referring to, and in some cases, a thorough examination of the entire Methods section fails to locate the exact information needed to support the authors' claims. Below are a few specific examples of this issue. The authors are encouraged to be more precise in their references to the Methods section.

      In the revised manuscript, we numbered each subsection of Methods and updated pointers and associated hyperlinks in the main text to the subsection numbers.

      • On page 7, line 14, it is unclear how the authors compared the cell marker gene expression with the marker gene expression in the reference cell type.

      We have clarified in the revised manuscript.

      • On page 7, line 33, the authors note that some barcodes may have been missed during the sequencing of the rabies virus libraries, but the Methods section lacked a convincing explanation on this issue (see my point 2 above).

      We included a separate subsection on the sequencing of rabies libraries and the analysis of the sequencing depth in the Methods. In this new subsection, we further clarified our reasoning for identifying the lack of sequencing depth as a reason for missing barcodes, especially in comparison to sequencing depth required for establishing exact molecule counts used in established MAPseq and BARseq techniques with Sindbis libraries.

      • On page 9, line 44, the authors state that they considered a barcode to be associated with a cell if they found at least six molecules of that barcode in a cell, as detailed in the Methods section. However, the rationale behind this level of stringency is not provided in the Methods.

      We initially chose this threshold based on visual inspection of the sequencing images of the barcoded cells. Because the labeled cell types were consistent with our expectations (Fig. 4E-G), we did not further optimize the threshold for detecting retrogradely labeled barcoded cells.

      • I have noticed that some important explanations of figure panels are missing in the legends, making it challenging to understand the figures. Below are typical examples of this issue.

      In addition to the examples that the reviewer mentioned below, we also revised many other figure panels to make them clear to the readers.

      • In Fig. 2, "RV into SC" in panel C does not make sense, as RV was injected into the thalamus. There is no explanation of the images in this panel C.

      We have corrected the typo in the revision.

      • In Fig. 3, information on the endogenous gene panel for cell type classification (Table S3) could be mentioned in the legend or corresponding text.

      We now cite Table S3 both in Fig 3 legend and in the main text. We also included a list of the 104 cell type marker genes we used in Table S3.

      • In panel J, it is unclear why the total number of BC cells is 2,752, and not 4,130 as mentioned in the text.

      This is a typo. We have corrected this in the revision. The correct number (3,746) refers to the number of cells that did not belong to either of the two categories at the bottom of the panel, and not the total number of neurons. To make this clear, we now also include the total number of barcoded cells at the top of the panel.

      • In Fig. 4, the definitions of "+" and "−" symbols in panels K and L are unclear. Also, it seems that the second left column of panel K should read "T −."

      We corrected the typo in K, further clarified the “Area” labels, and changed the “S” label in 4K to “−”. This change does not change the original meaning of the figure: when considering the variance explained in L4/5 IT neurons, considering the subclass compositional profile is equivalent to not using the compositional profiles of cell types, because L4/5 IT neurons all belong to the same subclass (L4/5 IT subclass). Although operationally we simply considered subclass-level compositional profiles when calculating the variance explained, we think that changing this to “−” is clearer for the readers.

      • In Fig. 5, panel E is uninterpretable.

      We revised the main text and the figure to clarify how we manually proofread cells to determine the QC thresholds for barcoded cells. These plots showed a summary of the proofreading. We also revised the figures to indicate that they showed the fraction of barcoded cells that were considered real after proofreading. In the revised version, we moved these plots to Fig. S5.

      • In Fig. S1, I do not understand the identity of the six samples on the X-axis of panel A (given that only two animals were described in the main text) and what panel B shows, including the definition of map_cluster_conf and map_cluster_corr.

      In the revised Fig. S1, we made it more explicit that the six animals include both animals used for retrograde tracing (2 animals) and those used for trans-synaptic tracing (4 animals). We updated the y axis labels to be more readable and cited the relevant Methods section for definitions.

      • In Fig. S2, please provide the definitions of blue and red dots and values in panel A, as well as the color codes and size of the circles in panel B. My overall impression from panel B is that there is no significant difference between RV-infected and non-infected cells. The authors should provide more quantitative and statistical support for the claim that "RV-infected cells had higher expression of immune response-related genes."

      We toned down the statement to “Consistent with previous studies […], some immune response related genes were up-regulated in virus-infected cells compared to non-infected cells.” Because the main point of the single-cell RNAseq analysis was that rabies did not affect the ability to distinguish transcriptomic types, the change in immune response-related genes was not essential to the main conclusions. We clarified the red and blue dots in panel A and changed panel B to show the top up-regulated immune response-related genes in the revised manuscript.

      • In Fig. S3, the definitions of the color code and circle size are missing.

      We have added the legends in Fig. S3.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We appreciate the reviewers for their insightful feedback, which has substantially improved our manuscript. Following the suggestions of the reviewers, we have undertaken the following major revisions:

      a. Concerning data transformation, we have adjusted the methodology in Figures 2 and 3. Instead of normalizing c-Fos density to the whole brain c-Fos density as initially described, we now normalize to the c-Fos density of the corresponding brain region in the control group. b. We have substituted the PCA approach with hierarchical clustering in Figures 2 and 3.

      c. In the discussion section, we added a subsection on study limitations, focusing on the variations in drug administration routes and anesthesia depth.

      Enclosed are our detailed responses to each of the reviewer's comments.

      Reviewer #1:

      1a. The addition of the EEG/EMG is useful, however, this information is not discussed. For instance, there are differences in EEG/EMG between the two groups (only Ket significantly increased delta/theta power, and only ISO decreased EMG power). These results should be discussed as well as the limitation of not having physiological measures of anesthesia to control for the anesthesia depth.

      1b. The possibility that the differences in fos observed may be due to the doses used should be discussed.

      1c. The possibility that the differences in fos observed may be due kinetic of anesthetic used should be discussed.

      Thank you for your suggestions. We have now discussed EEG/EMG result, limitation of not having physiological measures of anesthesia to control for the anesthesia depth, The possibility that the differences in fos observed may be due to the doses, The possibility that the differences in Fos observed may be due kinetic of anesthetic in the revised manuscript (Lines 308-331, also shown below).

      Lines 308-331: "...Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Supplementary Figure 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression. Although the difference in EEG power between the ISO group and the home cage control was not significant, the increase in EEG power observed in the ISO group was similar to that of KET (0.47 ± 0.07 vs 0.59 ± 0.10), suggesting that both agents may induce loss of consciousness in mice. Regarding EMG power, ISO showed a significant decrease in EMG power compared to its control group. In contrast, the KET group showed a lesser reduction in EMG power (ISO: -1.815± 0.10; KET: -0.96 ± 0.21), which may partly explain the higher overall c-Fos expression levels in the KET group. This is consistent with previous studies where ketamine doses up to 150 mg/kg increase delta power while eliciting a wakefulness-like pattern of c-Fos expression across the brain [1]. Furthermore, the observed differences in c-Fos expression may arise in part from the dosages, routes of administration, and their distinct pharmacokinetic profiles. This variation is compounded by the lack of detailed physiological monitoring, such as blood pressure, heart rate, and respiration, affecting our ability to precisely assess anesthesia depth. Future studies incorporating comprehensive physiological monitoring and controlled dosing regimens are essential to further elucidate these relationships and refine our understanding of the effects of anesthetics on brain activity"

      1. Lu J, Nelson LE, Franks N, Maze M, Chamberlin NL, Saper CB: Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 2008, 508(4):648-662.

      2b. I am confused because Fig 2C seems to show significant decrease in %fos in the hypothalamus, midbrain and cerebellum after KET, while the author responded that " in our analysis, we did not detect regions with significant downregulation when comparing anesthetized mice with controls." Moreover the new figure in the rebuttal in response to reviewer 2 suggests that Ket increases Fos in almost every single region (green vs blue) which is not the conclusion of the paper.

      Your concern regarding the apparent discrepancy is well-founded. The inconsistency arose due to an inappropriate data transformation, which affected the interpretation. We have now rectified this by adjusting the data transformation in Figures 2 and 3. Specifically, we have recalculated the log relative c-Fos density values relative to the control group for each brain region. This revision has resolved the issue, confirming that our analysis did not detect any regions with significant downregulation in the anesthetized mice compared to controls. We have also updated the results, discussion, and methods sections of Figures 2 and 3 to accurately reflect these changes and ensure consistency with our findings.

      Author response image 1.

      Figure 2. Whole-brain distributions of c-Fos+ cells induced by ISO and KET. (A) Hierarchical clustering was performed on the log relative c-Fos density data for ISO and KET using the complete linkage method based on the Euclidean distance matrix, with clusters identified by a dendrogram cut-off ratio of 0.5. Numerical labels correspond to distinct clusters within the dendrogram. (B) Silhouette values plotted against the ratio of tree height for ISO and KET, indicating relatively higher Silhouette values at 0.5 (dashed line), which is associated with optimal clustering. (C) The number of clusters identified in each treatment condition at different ratios of the dendrogram tree height, with a cut-off level of 0.5 corresponding to 4 clusters for both ISO and KET (indicated by the dashed line). (D) The bar graph depicts Z scores for clusters in ISO and KET conditions, represented with mean values and standard errors. One-way ANOVA with Tukey's post hoc multiple comparisons. ns: no significance; ***P < 0.001. (E) Z-scored log relative density of c-Fos expression in the clustered brain regions. The order and abbreviations of the brain regions and the numerical labels correspond to those in Figure 2A. The red box denotes the cluster with the highest mean Z score in comparison to other clusters. CTX: cortex; TH: thalamus; HY: hypothalamus; MB: midbrain; HB: hindbrain.

      Author response image 2.

      Figure 3. Similarities and differences in ISO and KET activated c-Fos brain areas. (A) Hierarchical clustering was performed on the log-transformed relative c-Fos density data for ISO and KET using the complete linkage method based on the Euclidean distance matrix, with clusters identified by a dendrogram cut-off ratio of 0.5. (B) Silhouette values are plotted against the ratio of tree height from the hierarchical clustered dendrogram in Figure 3A. (C) The relationship between the number of clusters and the tree height ratio of the dendrogram for ISO and KET, with a cut-off ratio of 0.5 resulting in 3 clusters for ISO and 5 for KET (indicated by the dashed line). (D) The bar graph depicts Z scores for clusters in ISO and KET conditions, represented with mean values and standard errors. One-way ANOVA with Tukey's post hoc multiple comparisons. ns: no significance; ***P < 0.001. (E) Z-scored log relative density of c-Fos expression within the identified brain region clusters. The arrangement, abbreviations of the brain regions, and the numerical labels are in accordance with Figure 3A. The red boxes highlight brain regions that rank within the top 10 percent of Z score values. The white boxes denote brain regions with an Z score less than -2.

      1. There are still critical misinterpretations of the PCA analysis. For instance, it is mentioned that " KET is associated with the activation of cortical regions (as evidenced by positive PC1 coefficients in MOB, AON, MO, ACA, and ORB) and the inhibition of subcortical areas (indicated by negative coefficients) " as well as " KET displays cortical activation and subcortical inhibition, whereas ISO shows a contrasting preference, activating the cerebral nucleus (CNU) and the hypothalamus while inhibiting cortical areas. To reduce inter-individual variability." These interpretations are in complete contradiction with the answer 2b above that there was no region that had decreased Fos by either anesthetic.

      Thank you for bringing this to our attention. In response to your concerns, we have made significant revisions to our data analysis. We have updated our input data to incorporate log-transformed relative c-Fos density values, normalized against the control group for each brain region, as illustrated in Figures 2 and 3. Instead of PCA, we have applied this updated data to hierarchical clustering analysis. The results of these analyses are consistent with our original observation that neither anesthetic led to a decrease in Fos expression in any region.

      1. I still do not understand the rationale for the use of that metric. The use of a % of total Fos makes the data for each region dependent on the data of the other regions which wrongly leads to the conclusion that some regions are inhibited while they are not when looking at the raw data. Moreover, the interdependence of the variable (relative density) may affect the covariance structure which the PCA relies upon. Why not using the PCA on the logarithm of the raw data or on a relative density compared to the control group on a region-per-region basis instead of the whole brain?

      Thank you for your insightful suggestion. Following your advice, we have revised our approach and now utilize the logarithm of the relative density compared to the control group on a region-by-region basis. We attempted PCA analyses using the logarithm of the raw data, the logarithm of the Z-score, and the logarithm of the relative density compared to control, but none yielded distinct clusters.

      Author response image 3.

      As a result, we employed hierarchical cluster analysis. We then examined the Z-scores of the log-transformed relative c-Fos densities (Figures 2E and 3E) to assess expression levels across clusters. Our analysis revealed that neither ISO nor KET treatments led to a significant suppression of c-Fos expression in the 53 brain regions examined. In the ISO group alone, there were 10 regions that demonstrated relative suppression (Z-score < -2, indicated by white boxes) as shown in Figure 3.

      Fig. 2B: it's unclear to me why the regions are connected by a line. Such representation is normally used for time series/within-subject series. What is the rationale for the order of the regions and the use of the line? The line connecting randomly organized regions is meaningless and confusing.

      Thank you for your suggestion. We have discontinued the use of PCA calculations and have removed this figure.

      Fig 6A. The correlation matrices are difficult to interpret because of the low resolution and arbitrary order of brain regions. I recommend using hierarchical clustering and/or a combination of hierarchical clustering and anatomical organization (e.g. PMID: 31937658). While it is difficult to add the name of the regions on the graph I recommend providing supplementary figures with large high-resolution figures with the name of each brain region so the reader can actually identify the correlation between specific brain regions and the whole brain, Rationale for Metric Choice: Note that I do not dispute the choice of the log which is appropriate, it is the choice of using the relative density that I am questioning.

      Thank you for your constructive feedback. In line with your suggestion, we have implemented hierarchical clustering combined with anatomical organization as per the referenced literature. Additionally, we have updated the vector diagrams in Figure 6A to present them with greater clarity.

      Furthermore, we have revised our network modular division method based on cited literature recommendations. We used hierarchical clustering with correlation coefficients to segment the network into modules, illustrated in Figure 6—figure supplement 1. Due to the singular module structure of the KET network and the sparsity of intermodular connections in the home cage and saline networks, the assessment of network hub nodes did not employ within-module degree Z-score and participation coefficients, as these measures predominantly underscore the importance of connections within and between modules. Instead, we used degree, betweenness centrality, and eigenvector centrality to detect the hub nodes, as detailed in Figure 6—figure supplement 2. With this new approach, the hub node for the KET condition changed from SS to TeA. Corresponding updates have been made to the results section for Figure 6, as well as to the related discussions and the abstract of our paper.

      Author response image 4.

      Figure 6. Generation of anesthetics-induced networks and identification of hub regions. (A) Heatmaps display the correlations of log c-Fos densities within brain regions (CTX, CNU, TH, HY, MB, and HB) for various states (home cage, ISO, saline, KET). Correlations are color-coded according to Pearson's coefficients. The brain regions within each anatomical category are organized by hierarchical clustering of their correlation coefficients. (B) Network diagrams illustrate significant positive correlations (P < 0.05) between regions, with Pearson’s r exceeding 0.82. Edge thickness indicates correlation magnitude, and node size reflects the number of connections (degree). Node color denotes betweenness centrality, with a spectrum ranging from dark blue (lowest) to dark red (highest). The networks are organized into modules consistent with the clustering depicted in Supplementary Figure 8. Figure 6—figure supplement 1

      Author response image 5.

      Figure 6—figure supplement 1. Hierarchical clustering of brain regions under various conditions: home cage, ISO, saline, and KET. (A) Heatmaps show the relative distances among brain regions assessed in naive mice. Modules were identified by sectioning each dendrogram at a 0.7 threshold. (B) Silhouette scores plotted against the dendrogram tree height ratio for each condition, with optimal cluster definition indicated by a dashed line at a 0.7 ratio. (C) The number of clusters formed at different cutoff levels. At a ratio of 0.7, ISO and saline treatments result in three clusters, whereas home cage and KET conditions yield two clusters. (D) The mean Pearson's correlation coefficient (r) was computed from interregional correlations displayed in Figure 6A. Data were analyzed using one-way ANOVA with Tukey’s post hoc test, ***P < 0.001.

      Author response image 6.

      Figure 6—figure supplement 2. Hub region characterization across different conditions: home cage (A), ISO (B), saline (C), and KET (D) treatments. Brain regions are sorted by degree, betweenness centrality, and eigenvector centrality, with each metric presented in separate bar graphs. Bars to the left of the dashed line indicate the top 20% of regions by rank, highlighting the most central nodes within the network. Red bars signify regions that consistently appear within the top rankings for both degree and betweenness centrality across the metrics.

      1. I am still having difficulties understanding Fig. 3.

      Panel A: The lack of identification for the dots in panel A makes it impossible to understand which regions are relevant.

      Panel B: what is the metric that the up/down arrow summarizes? Fos density? Relative density? PC1/2?

      Panel C: it's unclear to me why the regions are connected by a line. Such representation is normally used for time series/within-subject series. What is the rationale for the order of the regions?

      Thank you for your patience and for reiterating your concerns regarding Figure 3.

      a. In Panel A, we have substituted the original content with a display of hierarchical clustering results, which now clearly marks each brain region. This change aids readers in identifying regions with similar expression patterns and facilitates a more intuitive understanding of the data.

      a. Acknowledging that our analysis did not reveal any significantly inhibited brain regions, we have decided to remove the previous version of Panel B from the figure.

      b. We have discontinued the use of PCA calculations and have removed this figure to avoid any confusion it may have caused. Our revised analysis focuses on hierarchical clustering, which are presented in the updated figures.

      Reviewer #2:

      1. Aside from issues with their data transformation (see below), (a) I think they have some interesting Fos counts data in Figures 4B and 5B that indicate shared and distinct activation patterns after KET vs. ISO based anesthesia. These data are far closer to the raw data than PC analyses and need to be described and analyzed in the first figures long before figures with the more abstracted PC analyses. In other words, you need to show the concrete raw data before describing the highly transformed and abstracted PC analyses. (b) This gets to the main point that when selecting brain areas for follow up analyses, these should be chosen based on the concrete Fos counts data, not the highly transformed and abstracted PC analyses.

      Thank you for your suggestions.

      a. We have added the original c-Fos cell density distribution maps for Figures 2, 3, 4, and 5 in Supplementary Figures 2 and 3 (also shown below). To maintain consistency across the document, we have updated both the y-axis label and the corresponding data in Figures 4B and 5B from 'c-Fos cell count' to 'c-Fos density'.

      b. The analyses in Figures 2 and 3 include all brain regions. Figures 4 and 5 present the brain regions with significant differences as shown in Figure 3—figure supplement 1.

      Author response image 7.

      Figure 2—figure supplement 1. The c-Fos density in 53 brain areas for different conditions. (home cage, n = 6; ISO, n = 6 mice; saline, n = 8; KET, n = 6). Each point represents the c-Fos density in a specific brain region, denoted on the y-axis with both abbreviations and full names. Data are shown as mean ± SEM. Brain regions are categorized into 12 brain structures, as indicated on the right side of the graph.

      Author response image 8.

      Figure 3—figure supplement 1. c-Fos density visualization across 201 distinct brain regions under various conditions. The graph depicts the c-Fos density levels for each condition, with data presented as mean and standard error. Brain regions with statistically significant differences are featured in Figures 4 and 5. Brain regions are organized into major anatomical subdivisions, as indicated on the left side of the graph.

      1. Now, the choice of data transformation for Fos counts is the most significant problem. First, the authors show in the response letter that not using this transformation (region density/brain density) leads to no clustering. However, they also showed the region-densities without transformation (which we appreciate) and it looks like overall Fos levels in the control group Home (ISO) are a magnitude (~10-fold) higher than those in the control group Saline (KET) across all regions shown. This large difference seems unlikely to be due to a biologically driven effect and seems more likely to be due to a technical issue, such as differences in staining or imaging between experiments. Was the Homecage-ISO experiment or at least the Fos labeling and imaging performed at the same time as for the Saline-Ketamine experiment? Please state the answer to this question in the Results section one way or the other.

      a. “Home (ISO) are a magnitude (~10-fold) higher than those in the control group saline (KET) across all regions shown.” We believe you might be indicating that compared to the home cage group (gray), the saline group (blue) shows a 10-fold higher expression (Supplementary Figure 2/3). Indeed, we observed that the total number of c-Fos cells in the home cage group is significantly lower than in the saline group. This difference may be due to reduced sleep during the light-on period (ZT 6- ZT 7.5) in the saline mice or the pain and stress response caused by intraperitoneal injection of saline. We have explained this discrepancy in the discussion section.Line 308-317(also see below)

      “…Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Figure 1—figure supplement 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression…”

      b. Drug administration and tissue collection for both Homecage-ISO and Saline-Ketamine groups were consistently scheduled at 13:00 and 14:30, respectively. Four mice were administered drugs and had tissues collected each day, with two from the experimental group and two from the control group, to ensure consistent sampling. The 4% PFA fixation time, sucrose dehydration time, primary and secondary antibody concentrations and incubation times, staining, and imaging parameters and equipment (exposure time for VS120 imaging was fixed at 100ms) were all conducted according to a unified protocol.

      We have included the following statement in the results section: Line 81-83, “Sample collection for all mice was uniformly conducted at 14:30 (ZT7.5), and the c-Fos labeling and imaging were performed using consistent parameters throughout all experiments. ”

      1. Second, they need to deal with this large difference in overall staining or imaging for these two (Home/ISO and Saline/KET) experiments more directly; their current normalization choice does not really account for the large overall differences in mean values and variability in Fos counts (e.g. due to labeling and imaging differences).

      3a. I think one option (not perfect but I think better than the current normalization choice) could be z-scoring each treatment to its respective control. They can analyze these z-scored data first, and then in later figures show PC analyses of these data and assess whether the two treatments separate on PC1/2. And if they don't separate, then they don't separate, and you have to go with these results.

      3b. Alternatively, they need to figure out the overall intensity distributions from the different runs (if that the main reason of markedly different counts) and adjust their thresholds for Fos-positive cell detection based on this. I would expect that the saline and HC groups should have similar levels of activation, so they could use these as the 'control' group to determine a Fos-positive intensity threshold that gets applied to the corresponding 'treatment' group.

      3c. If neither 3a nor 3b is an option then they need to show the outcomes of their analysis when using the untransformed data in the main figures (the untransformed data plots in their responses to reviewer are currently not in the main or supplementary figs) and discuss these as well.

      a. Thank you very much for your valuable suggestion. We conducted PCA analysis on the ISO and KET data after Z-scoring them with their respective control groups and did not find any significant separation.

      Author response image 9.

      As mentioned in our response to reviewer #1, we have reprocessed the raw data. Firstly, we divided the ISO and KET data by their respective control brain regions and then performed a logarithmic transformation to obtain the log relative c-Fos density. The purpose of this is to eliminate the impact of baseline differences and reduce variability. We then performed hierarchical clustering, and finally, we Z-scored the log relative c-Fos density data. The aim is to facilitate comparison of ISO and KET on the same data dimension (Figure 2 and 3).

      b. We appreciate your concerns regarding the detection thresholds for Fos-positive cells. The enclosed images, extracted from supplementary figures for Figures 4 and 5, demonstrate notable differences in c-Fos expression between saline and home cage groups in specific brain regions. These regions exhibit a discernible difference in staining intensity, with the saline group showing enhanced c-Fos expression in the PVH and PVT regions compared to the home cage group. An examination of supplementary figures for Figures 4 and 5 shows that c-Fos expression in the home cage group is consistently lower than in the saline group. This comparative analysis confirms that the discrepancies in c-Fos levels are not due to varying detection thresholds.

      Author response image 10.

      b. We have added the corresponding original data graphs to Supplementary Figures 2 and 3, and discussed the potential reasons for the significant differences between these groups in the discussion section (also shown below).

      Lines 308-317: "...Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Figure 3—figure supplement 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression.…”

    1. Author Response

      We thank the reviewers for their detailed and constructive criticisms of our work. They raise many important questions (such as the issue of defining context) that we have also been thinking about extensively and they provide new and insightful avenues that have the potential to meaningfully improve the manuscript. We also appreciate that they commented on the novelty and importance of this work. Going forward, we will address the methodological concerns raised as best as we can and thereby hope to make the evidence for our conclusion more compelling

    1. Author Response

      eLife assessment

      This study provides direct evidence showing that Kv1.8 channels underly several potassium currents in the two types of sensory hair cells found in the mouse vestibular system. This is an important finding because the nature of the channels underpinning the unusual potassium conductance gK,L in type I hair cells has been under scrutiny for many years. Although most of the experimental evidence is compelling and the analysis is rigorous, the evidence supporting some of the claims related to Kv1.4 channels is incomplete. The study will be of interest to cell and molecular biologists and auditory neuroscientists.

      We are thankful to the editor and reviewers for their thorough assessment of our work and insightful feedback. Our responses to the comments and suggestions are below.

      Reviewer #1 (Public Review):

      Summary:

      In this paper, the authors provide a thorough demonstration of the role that one particular type of voltage-gated potassium channel, Kv1.8, plays in a low voltage-activated conductance found in type I vestibular hair cells. Along the way, they find that this same channel protein appears to function in type II vestibular hair cells as well, contributing to other macroscopic conductances. Overall, Kv1.8 may provide especially low input resistance and short time constants to facilitate encoding of more rapid head movements in animals that have necks. Combination with other channel proteins, in different ratios, may contribute to the diversified excitability of vestibular hair cells.

      Strengths:

      The experiments are comprehensive and clearly described, both in the text and in the figures. Statistical analyses are provided throughout.

      Weaknesses:

      None.

      Reviewer #2 (Public Review):

      The focus of this manuscript was to investigate whether Kv1.8 channels, which have previously been suggested to be expressed in type I hair cells of the mammalian vestibular system, are responsible for the potassium conductance gK,L. This is an important study because gK,L is known to be crucial for the function of type I hair cells, but the channel identity has been a matter of debate for the past 20 years. The authors have addressed this research topic by primarily investigating the electrophysiological properties of the vestibular hair cells from Kv1.8 knockout mice. Interestingly, gK,L was completely abolished in Kv1.8-deficient mice, in agreement with the hypothesis put forward by the authors based on the literature. The surprising observation was that in the absence of Kv1.8 potassium channels, the outward potassium current in type II hair cells was also largely reduced. Type II hair cells express the largely inactivating potassium conductance gK,A, but not gK,L. The authors concluded that heteromultimerization of non-inactivating Kv1.8 and the inactivating Kv1.4 subunits could be responsible for the inactivating gK,A. Overall, the manuscript is very well written and most of the conclusions are supported by the experimental work. The figures are well described, and the statistical analysis is robust.

      My only comment relates to the statement regarding the results providing "evidence" that Kv1.4 form heteromultimers with Kv1.8 channels (see Discussion). The only data I can see from the results is that Kv1.4 channels are expressed in the membrane of type II hair cells, which is not sufficient evidence for the above claim. Is the distribution of Kv1.8 and Kv1.4 overlapping in type II hair cells? Have the authors attempted to perform some pharmacological studies on Kv1.4? For example, would gK,A be completely blocked by a Kv1.4 antagonist? Addressing at least some of these questions would strengthen your argument.

      Author response: With respect to the “evidence” for heteromultimerization of Kv1.4 and Kv1.8: We agree that there is not conclusive evidence but have pulled together reasons to suggest that the fast inactivation of Kv1.8-dependent gA in type II hair cells reflects a contribution from Kv1.4 subunits. The reasons we note are mostly from other sources: 1) Kv1.4 subunits are the only Kv1 alpha subunits known to make channels with intrinsic rapid inactivation (Bertoli et al., 1994); 2) Kv1.4 is highly expressed in type II hair cells, but not type I hair cells, in mouse utricle (McInturff et al., Biol. Open., 2018; Jan et al., Cell Reports, 2021; Orvis et al., Nat. Methods, 2021); 3) previous work from M. Correia and colleagues suggested Kv1.4 as the likely source of A-current in pigeon vestibular hair cells; 4) some rat type II hair cells show comparatively strong Kv1.4-like immunoreactivity (our Fig. 5). While we consider heteromultimerization of Kv1.4 and Kv1.8 alpha subunits a plausible explanation consistent with available data from different sources, we agree that the question is not at all settled, and indeed raise the possibility that KV beta subunits, which are also differentially expressed by type I and II hair cells, play a role. Experiments to definitively advance or refute this hypothesis are beyond the scope of this paper.

      Reviewer #3 (Public Review):

      Summary:

      This paper by Martin et al. describes the contribution of a Kv channel subunit (Kv1.8, KCNA10) to voltage-dependent K+ conductances and membrane properties of type I and type II hair cells of the mouse utricle. Previous work has documented striking differences in K+ conductances between vestibular hair cell types. In particular, amniote type I hair cells are known to express a non-typical low-voltage-activated K+ conductance (GK,L) whose molecular identity has been elusive. K+ conductances in hair cells from 3 different mouse genotypes (wildtype, Kv1.8 homozygous knockouts, and heterozygotes) are examined here and whole-cell patch-clamp recordings indicate a prominent role for Kv1.8 subunits in generating GK,L. Results also interestingly support a role for Kv1.8 subunits in type II hair cell K+ conductances; inactivating conductances in null mice are reduced in type II hair cells from striola and extrastriola regions of the utricle. Kv1.8 is therefore proposed to contribute as a pore-forming subunit for 3 different K+ conductances in vestibular hair cells. The impact of these conductances on membrane responses to current steps is studied in the current clamp. Pharmacological experiments use XE991 to block some residual Kv7-mediated current in both hair cell types, but no other pharmacological blockers are used. In addition, immunostaining data are presented and raise some questions about Kv7 and Kv1.8 channel localization. Overall, the data present compelling evidence that the removal of Kv1.8 produces profound changes in hair cell membrane conductances and sensory capabilities. These changes at hair cell level suggest vestibular function would be compromised and further assessment in terms of balance behavior in the different mice would be interesting.

      Strengths:

      This study provides strong evidence that Kv1.8 subunits are major contributors to the unusual K+ conductance in type I hair cells of the utricle. It also indicates that Kv1.8 subunits are important for type II hair cell K+ conductances because Kv1.8-/- mice lacked an inactivating A conductance and had reduced delayed rectifier conductance compared to controls. A comprehensive and careful analysis of biophysical profiles is presented of expressed K+ conductances in 3 different mouse genotypes. Voltage-dependent K+ currents are rigorously characterized at a range of different ages and their impact on membrane voltage responses to current input is studied. Some pharmacological experiments are performed in addition to immunostaining to bolster the conclusions from the biophysical studies. The paper has a significant impact in showing the role of Kv1.8 in determining utricular hair cell electrophysiological phenotypes.

      Weaknesses:

      1. From previous work it is known that GK,L in type I hair cells has unusual ion permeation and pharmacological properties that differ greatly from type II hair cell conductances. Notably GK,L is highly permeable to Cs+ as well as K+ ions and is slightly permeable to Na+. It is blocked by 4-aminopyridine and divalent cations (Ba2+, Ca2+, Ni2+), enhanced by external K+, and modulated by cyclic GMP. The question arises, if Kv1.8 is a major player and pore-forming subunit in type I and type II cells (and cochlear inner hair cells as shown by Dierich et al. 2020) how are subunits modified to produce channels with very different properties? A role for Kv1.4 channels (gA) is proposed in type II hair cells based on previous findings in bird hair cells and immunostaining for Kv1.4 channels in rat utricle presented here in Fig. 6. However, hair cell-specific partner interactions with Kv1.8 that result in GK,L in type I hair cells and Cs+ impermeable, inactivating currents in type II hair cells remain for the most part unexplored.

      Author response: Our results raise the question of how Kv1.8/Kcna10 is regulated to produce gK,L in type I hair cells, which has different properties from the Kv1.8 conductance expressed heterologously (Lang et al., Am. J. Physiol. Renal Physiol., 2000; Ranjan et al., Front. Cell. Neurosci., 2019; Dierich et al., Cell Reports, 2020) and the Kv1.8 conductance inferred in inner hair cells (Dierich et al., 2020). We lay out several possibilities in the Discussion, but testing these suggestions is beyond the scope of the present paper.

      The relatively high Cs+ permeability of gK,L (0.31 pCs/pK, Rüsch & Eatock, J. Neurophysiol., 1996; Rennie & Correia, J. Membr. Biol., 2000) suggests there is something different about the selectivity filter and pore region of gK,L relative to most Kv1 family members. Although the intrinsic Cs+ permeability of heterologously expressed Kv1.8 is not reported. While we note that the pore region in Kv1.8 differs from other Kv1 subunits by a single amino acid (a glycine instead of alanine at position 411 – placed by AlphaFold in the pore helix of hKCNA10, Jumper et al., Nature, 2021), the effect of this difference is not known. A separate study is needed to determine why gK,L has a high Cs+ permeability relative to other Kv channels.

      For type II hair cells, the Cs+ permeability of Kv currents has not been fully characterized. Internal Cs+ does appear to reduce outward current more effectively in type II hair cells (Lang & Correia, J. Neurophysiol., 1989; Sokolowski et al., Dev. Biol., 1993) than in type I hair cells (Rüsch & Eatock, J. Neurophysiol., 1996; Rennie & Correia, J. Membr. Biol., 2000).

      With respect to cochlear inner hair cells, note that the assignment of Kv1.8 by Dierich et al. (2021) to a delayed rectifier in cochlear inner hair cells (IHCs) was based on inference – that is, existing inner ear expression databases show that Kv1.8 is expressed in IHCs, and heterologous Kv1.8 channels have a current resembling that observed in IHCs after block of multiple other K channels. We agree with Dierich et al. that Kv1.8 is an attractive candidate for the residual conductance in cochlear IHCs based on comparison with its properties in heterologous expression data. Together their study and our study suggest that Kv1.8 takes on quite different voltage dependence depending on the hair cell environment, and it will be an interesting challenge to sort out the reasons.

      1. Data from patch-clamp and immunocytochemistry experiments are not in close alignment. XE991 (Kv7 channel blocker) decreases remaining K+ conductance in type I and type II hair cells from null mice supporting the presence of Kv7 channels in hair cells (Fig. 7). Also, Holt et al. (2007) previously showed inhibition of GK,L in type I hair cells (but not delayed rectifier conductance in type II hair cells) using a dominant negative construct of Kv7.4 channels. However, immunolabelling indicates Kv7.4 channels on the inner face of calyx terminals adjacent to hair cells (Fig. 5). Some reconciliation of these findings is needed.

      Author response: Our pharmacology with XE991 suggests a small but significant population of Kv7 channels in type I and II hair cells (Fig 7). With the immunogold technique, Kharkovets et al. (PNAS, 2000) and Hurley et al. (J. Neurosci., 2006) counted significant Kv7.4 particles in type I hair cells, although the particles occurred at much greater density in the postsynaptic calyx membrane facing the hair cell. These results lead us to propose that the Kv7 channel we identified pharmacologically includes the Kv7.4 subunit, possibly in combination with other Kv7 subunits (Lysakowski et al., J. Neurosci., 2011). By this argument, the absence of clear hair cell staining in the confocal images of Fig. 5A is likely to reflect differences in methods, which include the use of different mouse strains, different sensitivities of immunogold vs. confocal imaging, and different antibodies.

      Holt et al. (J. Neurosci., 2007) indeed saw inhibition of gK,L in hair cells grown in organotypic cultures of the neonatal mouse utricle after viral expression of a dominant negative Kv7.4 construct. However, other studies show that Kv7 antagonists do not block gK,L (Hurley et al., J. Neurosci., 2006), and the Jentsch group, which first proposed Kv7.4 as a likely candidate for gK,L (Kharkovets et al., PNAS, 2000), ultimately showed that knocking out Kv7.4 and Kv7.5 expression failed to eliminate gK,L (Spitzmaul et al., J. Biol. Chem., 2013). Together, these results suggest that in Holt et al. (2007), the inhibition of gK,L by transfection with the dominant negative KCNQ4 construct may have occurred through unintended interactions with native gK,L channels. The young age of the neonatal cultured and transfected utricles raises the possibility of a developmental effect – that functional Kv7 channels are needed for the developmental transition to a Kv1.8 conductance. Consistent with this idea is the observation that Kv7 current is present in neonatal hair cells, where it is a relatively large proportion of Kv current in type I HCs before they acquire gK,L (Hurley et al., J. Neurosci., 2006). Alternatively, the overexpression of nonfunctional Kv7.4 channels in virally-transfected hair cells may have inhibited or delayed gK,L acquisition through a more general effect on membrane proteins.

      1. Strong immunosignal appears in the cuticle plates of hair cells in addition to signal in basal regions of hair cells and supporting cells. Please provide a possible explanation for this.

      Author response: There is significant non-specific staining of apical cell surfaces and supporting cell membranes in addition to specific staining of hair cell basolateral membranes. We infer non-specific staining when immunolabeling is present in the knockout tissue, as it is for the apical surfaces and supporting cell membranes—compare Fig. 5B.3 (control tissue) with Fig. 5B.4 (Kv1.8 null mutant). Non-specific immunostaining can occur with polyclonal antibodies (specific to several epitopes) if the antibodies are not affinity-purified, but we used an affinity-purified antibody. The apical surfaces are reputed to be “sticky” (susceptible to non-specific staining) but the non-specific labeling in the basal parts of supporting cells is more puzzling. One possibility is that the Kv1.8 antibody weakly recognized closely related Kv1.1 channels, which are more strongly expressed in supporting cells than hair cells (Scheffer et al., J. Neurosci., 2015).

      1. A previous paper reported that a vestibular evoked potential was abnormal in Kv1.8-/- mice (Lee et al. 2013) as briefly mentioned (lines 94-95). It would be very interesting to know if any vestibular-associated behaviors and/or hearing loss were observed in the mice populations. If responses are compromised at the sensory hair cell level across different zones, degradation of balance function would be anticipated and should be elucidated.

      Author response: We agree; some of these questions are the subject of another paper in preparation.

    1. Author Response

      Reviewer 1:

      Comment 1.1: The distinction of PIGS from nearby OPA, which has also been implied in navigation and ego-motion, is not as clear as it could be.

      Response1.1: The main functional distinction between TOS/OPA and PIGS is that TOS/OPA responds preferentially to moving vs. stationary stimuli (even concentric rings), likely due to its overlap with the retinotopic motion-selective visual area V3A, for which this is a defining functional property (e.g. Tootell et al., 1997, J Neurosci). In comparison, PIGS does not show such a motion-selectivity. Instead, PIGS responds preferentially to more complex forms of motion within scenes. In this revision, we tried to better highlight this point in the Discussion (see also the response to the first comment from Reviewer #2).

      Reviewer 2:

      Comment 2.1: First, the scene-selective region identified appears to overlap with regions that have previously been identified in terms of their retinotopic properties. In particular, it is unclear whether this region overlaps with V7/IPS0 and/or IPS1. This is particularly important since prior work has shown that OPA often overlaps with v7/IPS0 (Silson et al, 2016, Journal of Vision). The findings would be much stronger if the authors could show how the location of PIGS relates to retinotopic areas (other than V6, which they do currently consider). I wonder if the authors have retinotopic mapping data for any of the participants included in this study. If not, the authors could always show atlas-based definitions of these areas (e.g. Wang et al, 2015, Cerebral Cortex).

      Response 2.1: We thank the reviewers for reminding us to more clearly delineate this issue of possible overlap, including the information provided by Silson et al, 2016. The issue of possible overlap between area TOS/OPA and the retinotopic visual areas, both in humans and non-human primates, was also clarified by our team in 2011 (Nasr et al., 2011). As you can see in the enclosed figure, and consistent with those previous studies, TOS/OPA overlaps with visual areas V3A/B and V7. Whereas PIGS is located more dorsally close to IPS2-4. As shown here, there is no overlap between PIGS and TOS/OPA and there is no overlap between PIGS and areas V3A/B and V7. To more directly address the reviewer’s concern, in the next revision, we will show the relative position of PIGS and the retinotopic areas (at least) in one individual subject.

      Author response image 1.

      The relative location of PIGS, TOS/OPA and the retinotopic visual areas. The left panel showed the result of high-resolution (7T; voxel size = 1 mm; no spatial smoothing) polar angle mapping in one individual. The right panel shows the location of scene-selective areas PIGS and TOS/OPA in the same subject (7T; voxel size = 1 mm; no spatial smoothing). While area TOS/OPA shows some overlap with the retinotopic visual areas V3A/B and V7, PIGS shows partial overlap with area IPS2-4. In both panels, the activity maps are overlaid on the subjects’ own reconstructed brain surface.

      Comment 2.2: Second, recent studies have reported a region anterior to OPA that seems to be involved in scene memory (Steel et al, 2021, Nature Communications; Steel et al, 2023, The Journal of Neuroscience; Steel et al, 2023, biorXiv). Is this region distinct from PIGS? Based on the figures in those papers, the scene memory-related region is inferior to V7/IPS0, so characterizing the location of PIGS to V7/IPS0 as suggested above would be very helpful here as well. If PIGS overlaps with either of V7/IPS0 or the scene memory-related area described by Steel and colleagues, then arguably it is not a newly defined region (although the characterization provided here still provides new information).

      Response 2.2: The lateral-place memory area (LPMA) is located on the lateral brain surface, anterior relative to the IPS (see Figure 1 from Steel et al., 2021 and Figure 3 from Steel et al., 2023). In contrast, PIGS is located on the posterior brain surface, also posterior relative to the IPS. In other words, they are located on two different sides of a major brain sulcus. In this revision we have clarified this point, including the citations by Steel and colleagues.

      Comments 2.3: Another reason that it would be helpful to relate PIGS to this scene memory area is that this scene memory area has been shown to have activity related to the amount of visuospatial context (Steel et al, 2023, The Journal of Neuroscience). The conditions used to show the sensitivity of PIGS to ego-motion also differ in the visuospatial context that can be accessed from the stimuli. Even if PIGS appears distinct from the scene memory area, the degree of visuospatial context is an alternative account of what might be represented in PIGS.

      Response 2.3: The reviewer raises an interesting point. One minor confusion is that we may be inadvertently referring to two slightly different types of “visuospatial context”. Specifically, the stimuli used in the ego-motion experiment here (i.e. coherently vs. incoherently changing scenes) represent the same scenes, and the only difference between the two conditions is the sequence of images across the experimental blocks. In that sense, the two experimental conditions may be considered to have the same visuospatial context. However, it could be also argued that the coherently changing scenes provide more information about the environmental layout. In that case, considering the previous reports that PPA/TPA and RSC/MPA may also be involved in layout encoding (Epstein and Kanwisher 1998; Wolbers et al. 2011), we expected to see more activity within those regions in response to coherently compared incoherently changing scenes. These issues are now more explicitly discussed in the revised article.

      Reviewer 3:

      Comment 3.1: There are few weaknesses in this work. If pressed, I might say that the stimuli depicting ego-motion do not, strictly speaking, depict motion, but only apparent motion between 2s apart photographs. However, this choice was made to equate frame rates and motion contrast between the 'ego-motion' and a control condition, which is a useful and valid approach to the problem. Some choices for visualization of the results might be made differently; for example, outlines of the regions might be shown in more plots for easier comparison of activation locations, but this is a minor issue.

      Response 3.1: We thank the reviewer for these constructive suggestions, and we agree with their comment that the ego-motion stimuli are not smooth, even though they were refreshed every 100 ms. However, the stimuli were nevertheless coherent enough to activate areas V6 and MT, two major areas known to respond preferentially to coherent compared to incoherent motion.

      Epstein, R., and N. Kanwisher. 1998. 'A cortical representation of the local visual environment', Nature, 392: 598-601.

      Wolbers, T., R. L. Klatzky, J. M. Loomis, M. G. Wutte, and N. A. Giudice. 2011. 'Modality-independent coding of spatial layout in the human brain', Curr Biol, 21: 984-9.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This study presents valuable findings about synaptic connectivity among subsets of unipolar brush cells (UBCs), a specialized interneuron primarily located in the vestibular lobules of the cerebellar cortex. The evidence supporting the claims are interesting although incomplete in some areas. The work will be of interest to cerebellar neuroscientists as well as those focussed on synaptic properties and mechanisms. Although several compelling pieces of data were presented, substantial work remains to be conducted in order for the hypothesis and predictions of the manuscript to confirm how these factors play out in the actual brain circuit and how it would impact the processing of feedback or feedforward activity that would be required to promote behavior.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Hariani et al. presents experiments designed to improve our understanding of the connectivity and computational role of Unipolar Brush Cells (UBCs) within the cerebellar cortex, primarily lobes IX and X. The authors develop and cross several genetic lines of mice that express distinct fluorophores in subsets of UBCs, combined with immunocytochemistry that also distinguishes subtypes of UBCs, and they use confocal microscopy and electrophysiology to characterize the electrical and synaptic properties of subsets of so-labelled cells, and their synaptic connectivity within the cerebellar cortex. The authors then generate a computer model to test possible computational functions of such interconnected UBCs.

      Using these approaches, the authors report that:

      1. GRP-driven TDtomato is expressed exclusively in a subset (20%) of ON-UBCs, defined electrophysiologically (excited by mossy fiber afferent stimulation via activation of UBC AMPA and mGluR1 receptors) and immunocytochemically by their expression of mGluR1.

      2. UBCs ID'd/tagged by mCitrine expression in Brainbow mouse line P079 is expressed in a similar minority subset of OFF-UBCs defined electrophysiologically (inhibited by mossy fiber afferent stimulation via activation of UBC mGluR2 receptors) and immunocytochemically by their expression of Calretinin. However, such mCitrine expression was also detected in some mGluR1 positive UBCs, which may not have shown up electrophysiologically because of the weaker fluorophore expression without antibody amplification.

      3. Confocal analysis of crossed lines of mice (GRP X P079) stained with antibodies to mGluR1 and calretinin documented the existence of all possible permutations of interconnectivity between cells (ON-ON, ON-OFF, OFF-OFF, OFF-ON), but their overall abundance was low, and neither their absolute or relative abundance was quantified.

      4. A computational model (NEURON ) indicated that the presence of an intermediary UBC (in a polysynaptic circuit from MF to UBC to UBC) could prolong bursts (MF-ON-ON), prolong pauses (MF-ON-OFF), cause a delayed burst (MF-OFF-OFF), cause a delayed pause (MF-OFF-ON) relative to solely MF to UBC synapses which would simply exhibit long bursts (MF-ON) or long pauses (MF-OFF).

      The authors thus conclude that the pattern of interconnected UBCs provides an extended and more nuanced pattern of firing within the cerebellar cortex that could mediate longer lasting sensorimotor responses.

      The cerebellum's long known role in motor skills and reflexes, and associated disorders, combined with our nascent understanding of its role in cognitive, emotional, and appetitive processing, makes understanding its circuitry and processing functions of broad interest to the neuroscience and biomedical community. The focus on UBCs, which are largely restricted to vestibular lobes of the cerebellum reduces the breadth of likely interest somewhat. The overall design of specific experiments is rigorous and the use of fluorophore expressing mouse lines is creative. The data that is presented and the writing are clear. However, despite some additional analysis in response to the initial review, the overall experimental design still has issues that reduce overall interpretation (please see specific issues for details), which combined with a lack of thorough analysis of the experimental outcomes undermines the value of the NEURON model results and the advance in our understanding of cerebellar processing in situ (again, please see specific issues for details).

      Specific issues:

      1. All data gathered with inhibition blocked. All of the UBC response data (Fig. 1) was gathered in the presence of GABAAR and Glycine R blockers. While such an approach is appropriate generally for isolating glutamatergic synaptic currents, and specifically for examining and characterizing monosynaptic responses to single stimuli, it becomes problematic in the context of assaying synaptic and action potential response durations for long lasting responses, and in particular for trains of stimuli, when feed-forward and feed-back inhibition modulates responses to afferent stimulation. I.e. even for single MF stimuli, given the >500ms duration of UBC synaptic currents, there is plenty of time for feedback inhibition from Golgi cells (or feedforward, from MF to Golgi cell excitation) to interrupt AP firing driven by the direct glutamatergic synaptic excitation. This issue is compounded further for all of the experiments examining trains of MF stimuli. Beyond the impact of feedback inhibition on the AP firing of any given UBC, it would also obviously reduce/alter/interrupt that UBC's synaptic drive of downstream UBCs. This issue fundamentally undermines our ability to interpret the simulation data of Vm and AP firing of both the modeled intermediate and downstream UBC, in terms of applying it to possible cerebellar cortical processing in situ.

      The goal of Figure 1 was to determine the cell types of labeled UBCs in transgenic mouse lines, which is determined entirely by their synaptic responses to glutamate (Borges-Merjane and Trussell, 2015). Thus, blocking inhibition was essential to produce clear results in the characterization of GRP and P079 UBCs. While GABAergic/glycinergic feedforward and feedback inhibition is certainly important in the intact circuit, it was not our intention, nor was it possible, to study its contribution in the present study. Leaving inhibition unblocked does not lead to a physiologically realistic stimulation pattern in acute brain slices, because electrical stimulation produces synchronous excitation and inhibition by directly exciting Golgi cells, rather than their synaptic inputs. The main inhibition that UBCs receive that are crucial to determining burst or pause durations is not via GABA/glycine, but instead through mGluR2, which lasts for 100-1000s of milliseconds. The main excitation that drives UBC firing is mGluR1 and AMPA, which both last 100-1000s of milliseconds. Thus, these large conductances are unlikely to be significantly shaped by 1-10 ms IPSCs from feedforward and feedback GABA/glycine inhibition. Recent studies that examined the duration of bursting or pausing in UBCs had inhibition blocked in their experiments, presumably for the reasons outlined above (Guo et al., 2021; Huson et al., 2023).

      Below is an example showing the synaptic currents and firing patterns in an ON UBC before and after blocking inhibition. The GABA/glycinergic inhibition is fast, occurs soon after the stimuli and has little to no effect on the slow inward current that develops after the end of stimulation, which is what drives firing for 100s of milliseconds.

      Author response image 1.

      Example showing small effect of GABAergic and glycinergic inhibition on excitatory currents and burst duration. A) Excitatory postsynaptic currents in response to train of 10 presynaptic stimuli at 50 Hz before (black) and after (Grey) blocking GABA and glycine receptors. The slow inward current that occurs at the end of stimulation is little affected. B) Expanded view of the synaptic currents evoked during the train of stimuli. GABA/glycine receptors mediate the fast outward currents that occur immediately after the first couple stimuli. C) Three examples of the bursts caused by the 50 Hz stimulation in the same cell without blocking GABA and glycine receptors. D) Three examples in the same cell after blocking GABA and glycine receptors.

      The authors' response to the initial concern is (to paraphrase), "its not possible to do and its not important", neither of which are soundly justified.

      As stated in the original review, it is fully understandable and appropriate to use GABAAR/GlycineR antagonists to isolate glutamatergic currents, to characterize their conductance kinetics. That was not the issue raised. The issue raised was that then using only such information to generate a model of in situ behavior becomes problematic, given that feedback and lateral inhibition will sculpt action potential output, which of course will then fundamentally shape their synaptic drive of secondary UBCs, which will be further sculpted by their own inhibitory inputs. This issue undermines interpretation of the NEURON model.

      The argument that taking inhibition into account is not possible because of assumed or possible direct electrical excitation of Golgi cells is confusing for two interacting reasons. First, one can certainly stimulate the mossy fiber bundle to get afferent excitation of UBCs (and polysynaptic feedback/lateral inhibitory inputs) without directly stimulating the Golgi cells that innervate any recorded UBC. Yes, one might be stimulating some Golgi cells near the stimulating electrode, but one can position the stimulating electrode far enough down the white matter track (away from the recorded UBC), such that mossy fiber inputs to the recorded UBC can be stimulated without affecting Golgi cells near or synaptically connected to the recorded UBC. Moreover, if the argument were true, then presumably the stimulation protocol would be just as likely to directly stimulate neighboring UBCs, which then drove the recorded UBC's responses. Thus, it is both doable and should be ensured that stimulation of the white matter is distant enough to not be directly activating relevant, connected neurons within the granule cell layer.

      Finally, the authors present three examples of UBC recordings with and without inhibitory inputs blocked, and state "Thus, these large conductances are unlikely to be significantly shaped by 1-10 ms IPSCs from feedforward and feedback GABA/glycine inhibition" and "GABA/glycinergic inhibition...has little to no effect on the slow inward current that develops after the end of stimulation". This response reflects on original concerns about lack of quantification or consideration of important parameters. In particular, while the traces with and without inhibition are qualitatively similar, quantitative considerations indicate otherwise. First, unquantified examples are not adequate to drive conclusions. Regardless, the main issue (how inhibition affects actual responses in situ) is actually highlighted by the authors current clamp recordings of UBC responses, before and after blocking inhibition. The output response is dramatically different, both at early and late time points, when inhibition is blocked. Again, a lack of quantification (of adequate n's) makes it hard to know exactly how important, but quick "eye ball" estimates of impact include: 1) a switch from only low frequency APs initially (without inhibition blocked) to immediate burst of high frequency APs (high enough to not discern individual APs with given figure resolution) when inhibition is blocked, 2) Slow rising to a peak EPSP, followed by symmetrical return to baseline (without inhibition blocked) versus immediate rise to peak, followed by prolonged decay to baseline (with inhibition blocked), 3) substantially shorter duration (~34% shorter) secondary high frequency burst (individual APs not discernible) of APs (with inhibition blocked versus without inhibition blocked), and 4) substantial reduction in number of long delayed APs (with inhibition blocked versus without inhibition blocked). Thus, clearly, feedback/lateral inhibition is actually sculpting AP output at all phases of the UBC response to trains of afferent stimulations. Importantly, the single voltage clamp trace showing little impact of transient IPSCs on the slow EPSC do not take into account likely IPSC influences on voltage-activated conductances that would not occur in voltage-clamp recordings but would be free to manifest in current clamp, and thereby influence AP output, as observed.

      So again, our ability to understand how interconnected UBCs behave in the intact system is undermined by the lack of consideration and quantification of the impact of inhibition, and it not being incorporated into the model. At the very least a strong proviso about lack of inclusion of such information, given the authors' data showing its importance in the few examples shown, should be added to the discussion.

      Thank you for this substantive explanation. Your points are well described and we agree that the single experiment shown is not strong evidence for a lack of importance of Golgi cell inhibition, especially on the temporal dynamics of spiking. Previous work has clearly shown that Golgi cells have several important roles in shaping the activity of the granular layer, including affecting the temporal dynamics of granule cell spikes. However, the work presented here focuses on the feedforward circuitry of UBCs and the large inward and large outward glutamatergic currents that drive spiking or pausing for 100s of milliseconds. Our model does not focus on the aspects that are most sensitive to Golgi cell inhibition, including timing of the first spikes in the UBC’s response. Nor does our model focus on short term plasticity, which we thought was reasonable because the slow currents in UBCs are quite insensitive to the temporal characteristics of glutamate release (See the example in the previous rebuttal). Our model does not include long term plasticity, which is also affected by Golgi cells. For these reasons we agree that the model presented does not explain how feedforward UBC circuits might “play out in the actual brain circuit and how it would impact the processing of feedback or feedforward activity that would be required to promote behavior.” We have included a new paragraph in the discussion clarifying the limitations of this study and the model, reproduced below.

      "Limitations of the model

      Here we addressed how feedforward glutamatergic excitation and inhibition is transformed from one UBC to the next depending on their subtype. The model focuses on AMPA receptor mediated excitation and mGluR2 mediated inhibition. One limitation of the model is that it does not consider feedforward and lateral inhibition from Golgi cells, which shape the spiking of UBCs in response to afferent stimulation. Golgi cells receive mossy fiber input and inhibit UBCs through their corelease of GABA and glycine (Dugue et al., 2005; Rousseau et al., 2012). Golgi cells control the temporal dynamics of the firing of granule cells as well as their gain (Rossi et al., 2003; Kanichay and Silver, 2008) and are critical to larger scale dynamics of the cerebellar cortical network (D‘Angelo, 2008). Purkinje cells provide additional inhibition to ON UBCs that could influence how UBC circuits transform signals (Guo et al., 2016). A more complex model that implements Golgi cells and other critical circuit elements will be needed to investigate the role of feedforward UBC circuits in cerebellar network dynamics and motor behaviors in vivo."

      1. No consideration for involvement of polysynaptic UBCs driving UBC responses to MF stimulation in electrophysiology experiments. Given the established existence (in this manuscript and Dino et al. 2000 Neurosci, Dino et al. 2000 ProgBrainRes, Nunzi and Mugnaini 2000 JCompNeurol, Nunzi et al. 2001 JCompNeurol) of polysynaptic connections from MFs to UBCs to UBCs, the MF evoked UBC responses established in this manuscript, especially responses to trains of stimuli could be mediated by direct MF inputs, or to polysynaptic UBC inputs, or possibly both (to my awareness not established either way). Thus the response durations could already include extension of duration by polysynaptic inputs, and so would overestimate the duration of monosynaptic inputs, and thus polysynaptic amplification/modulation, observed in the NEURON model.

      We are confident that the synaptic responses shown are monosynaptic for several reasons. UBCs receive a single mossy fiber input on their dendritic brush, and thus if our stimulation produces a reliable, short-latency response consistent with a monosynaptic input, then there is not likely to be a disynaptic input, because the main input is accounted for by the monosynaptic response. In all cells included in our data set, the fast AMPA receptor-mediated currents always occurred with short latency (1.24 ± 0.29 ms; mean ± SD; n = 13), high reliability (no failures to produce an EPSC in any of the 13 GRP UBCs in this data set), and low jitter (SD of latency; 0.074 ± 0.046 ms; mean ± SD; n = 13). These measurements have been added to the results section.

      In some rare cases, we did observe disynaptic currents, which were easily distinguishable because a single electrical stimulation produced a burst of EPSCs at variable latencies. Please see example below. These cases of disynaptic input, which have been reported by others (Diño et al., 2000; Nunzi and Mugnaini, 2000; van Dorp and De Zeeuw, 2015) support the conclusion that UBCs receive input from other UBCs.

      Author response image 2.

      Example of GRP UBC with disynaptic input. Three examples of the effect of a single presynaptic stimulus (triangle) in a GRP UBC with presumed disynaptic input. Note the variable latency of the first evoked EPSC, bursts of EPSCs, and spontaneous EPSCs.

      Author response: "UBCs receive a single mossy fiber input on their dendritic brush, and thus if our stimulation produces a reliable, short-latency response consistent with a monosynaptic input, then there is not likely to be a disynaptic input."

      This statement is not congruent with the literature, with early work by Mugnaini and colleagues (Mugnaini et al. 1994 Synapse; Mugnaini and Flores 1994 J. Comp. Neurol.) indicating that UBCs are innervated by 1-2 mossy fibers, which are as likely other UBC terminals as MFs. This leaves open the possibility that so called monosynaptic responses do, as originally suggested, already include polysynaptic feedforward amplification of duration. While the authors also indicate that isolated disynaptic currents can be observed when they occur in isolation, a careful examination and objective documentation of "monosynaptic" responses would address this issue. Presumably, if potential disynaptic UBC inputs occur during a monosynaptic MF response, it would be detected as an abrupt biphasic inward/outward current, due to additional AMPA receptor activation but further desensitization of those already active (as observed by Kinney et al. 1997 J. Neurophysiol: "The delivery of a second MF stimulus at the peak of the slow EPSC evoked a fast EPSC of reduced amplitude followed by an undershoot of the subsequent slow current"). If such polysynaptic inputs are truly absent and are "rare" in isolation, some estimation of how common or not such synaptic amplification is, would improve our understanding of the overall significance of these inputs.

      We are confident that these currents are monosynaptic, because, as suggested, we carefully analyzed the latency, jitter and reliability, which was added to the previous revision. The latency and jitter are strong (quantitative) evidence that the first EPSC evoked was monosynaptic. While some UBCs have been reported to have multiple brushes, or brushes that branch and may contact multiple mossy fibers, or receive synaptic input onto their somas, these cases are rare in our experience in this age of mouse and there is no evidence for them in this dataset. For every trace we made a careful examination and documented that no delayed EPSCs were present. The presence of delayed EPSCs (or ‘abrupt biphasic inward/outward currents’ as described in Kinney et al 1997) would indeed suggest the presence of disynaptic activity or multiple inputs to the UBC, but these would be easily identified, even during a stimulation train. For these reasons we feel that we have established that polysynaptic feedforward amplification of duration is not present

      We agree that the monosynaptic responses could be due to the stimulation of UBC axons. However, the absence of delayed EPSCs again suggests that if stimulation of a presynaptic UBC axon was producing the currents in the recorded UBC, then the axon was severed from the soma and AIS, because this region is necessary for the cell to produce more than a single spike per stimulation. We added a sentence describing the potential for the monosynaptic EPSCs to be due to the stimulation of presynaptic UBC axons.

      Your point is well taken that a discussion of how common or rare these UBC to UBC connections is necessary to more clearly explain how we interpret their significance and we have expanded the paragraph in the discussion that does so. Thank you for this suggestion.

      1. Lack of quantification of subtypes of UBC interconnectivity. Given that it is already established that UBCs synapse onto other UBCs (see refs above), the main potential advance of this manuscript in terms of connectivity is the establishment and quantification of ON-ON, ON-OFF, OFF-ON, and OFF-OFF subtypes of UBC interconnections. But, the authors only establish that each type exists, showing specific examples, but no quantification of the absolute or relative density was provided, and the authors' unquantified wording explicitly or implicitly states that they are not common. This lack of quantification and likely small number makes it difficult to know how important or what impact such synapses have on cerebellar processing, in the model and in situ.

      As noted by the reviewer, the connections between UBCs were rare to observe. We decided against attempting to quantify the absolute or relative density of connections for several reasons. A major reason for rare observations of anatomical connections between UBCs is likely due to the sparse labeling. First, the GRP mouse line only labels 20% of ON UBCs and we are unable to test whether postsynaptic connectivity of GRP ON UBCs is the same as that of the rest of the population of ON UBCs that are not labeled in the GRP mouse line. Second, the Brainbow reporter mouse only labels a small population of Cre expressing cells for unknown reasons. Third, the Brainbow reporter expression was so low that antibody amplification was necessary, which then limited the labeled cells to those close to the surface of the brain slices, because of known antibody penetration difficulties. Therefore, we refrained from estimating the density of these connections, because each of these variables reduced the labeling to unknown degrees and we reasoned that extrapolating our rare observations to the total population would be inaccurate.

      A paper that investigated UBC connectivity using organotypic slice cultures from P8 mice suggests that 2/3 of the UBC population receives UBC input, based on the observation that 2/3 of the mossy fibers did not degenerate as would be expected after 2 days in vitro if they were severed from a distant cell body (Nunzi and Mugnaini, 2000). It remains to be seen if this high proportion is due to the young age of these mice or is also the case in adult mice. Even if these connections are indeed rare, they are expected to have profound effects on the circuit, as each UBC has multiple mossy fiber terminals (Berthie and Axelrad, 1994), and mossy fiber terminals are estimated to contact 40 granule cells each (Jakab and Hamori, 1988). We have added a comment regarding this point to the discussion.

      To address this issue, the authors added the following text to the discussion section: "We did not estimate the density of these UBC to UBC connections, because the sparseness of labeling using these approaches made an accurate calculation impossible. Previous work using organotypic slice cultures from P8 mice estimated that 2/3 of the UBC population receives input from other UBCs (Nunzi & Mugnaini, 2000), although it is unclear whether this is the case in older mice."

      While accurate, the addition doesn't really address the situation, which is that apparently the reported connections are rare. Adding the information about 2/3 of UBCs having UBC inputs in culture, implies the opposite might be true (i.e. that they might be quite common), which is in contrast to the authors' data, so should be reworded for clarity, which should also incorporate the considerations covered in point #2 above. I.e. if the authors do establish that none of their recordings have polysynaptic inputs, and if they determine that the number of cells that showed isolated di-synaptic inputs is indeed rare, then it suggests that these specific polysynaptic connections are in fact rare.

      Thank you for pointing this out. We agree that adding this information is somewhat contradictory to our results and we have added more to this section in the discussion, provided below.

      Anatomically identifiable connections between UBCs were not present in all brain slices and finding them required a careful search. UBC labeling was sparse due to the highly specific genetic labeling techniques and further sparsification by the Brainbow reporter, which made it impossible to estimate the density of these UBC to UBC connections. Electrophysiological evidences suggest that UBC to UBC connections are not common, because spontaneous EPSCs that would indicate a spontaneously firing presynaptic UBC are only rarely observed in UBCs recorded in acute brain slices. In an analysis of feedforward excitation of granule layer neurons, only 4 out of 140 UBCs had this indirect evidence of a firing presynaptic UBC (van Dorp and De Zeeuw, 2015), which suggests that UBC to UBC connections may be rare. On the other hand, previous work using organotypic slice cultures from P8 mice estimated that 2/3 of the UBC population receives input from other UBCs (Nunzi & Mugnaini, 2000). This suggests a much higher density of UBC to UBC connections, but could be due to the young age of the brains used, which is before UBCs have matured (Morin et al., 2001), and also due to increased collateral sprouting that can occur in culture (Jaeger et al., 1988). Another study imaged 2-4 week old rat cerebellar slices at an electron microscopic level and found that 4 out of 14 UBC axon terminals contacted UBC brushes (Diño et al., 2000). Future work is necessary to accurately estimate the density and impact of these feedforward UBC circuits.

      1. Lack of critical parameters in NEURON model.

      A) The model uses # of molecules of glutamate released as the presumed quantal content, and this factor is constant.

      However, no consideration of changes in # of vesicles released from single versus trains of APs from MFs or UBCs is included. At most simple synapses, two sequential APs alters release probability, either up or down, and release probability changes dynamically with trains of APs. It is therefore reasonable to imagine UBC axon release probability is at least as complicated, and given the large surface area of contact between two UBCs, the number of vesicles released for any given AP is also likely more complex.

      B) the model does not include desensitization of AMPA receptors, which in the case of UBCs can paradoxically reduce response magnitude as vesicle release and consequent glutamate concentration in the cleft increases (Linney et al. 1997 JNeurophysiol, Lu et al. 2017 Neuron, Balmer et al. 2021 eLIFE), as would occur with trains of stimuli at MF to ON-UBCs.

      A) The model produces synaptic AMPA and mGluR2 currents that reproduce those we recorded in vitro. We did not find it necessary to implement changes in glutamate release during a train as the model was fit to UBC data with the assumption that the glutamate transient did not change during the train. If there is a change in neurotransmitter release during a train, it is therefore built into the model, which has the advantage of reducing its complexity. UBCs are a special case where the postsynaptic currents are mediated mostly by the total amount of transmitter released. Most of the evoked current occurs tens to hundreds of milliseconds after neurotransmitter release and is therefore much more sensitive to total release and less sensitive to how it is released during the train. The figure below shows the effect of reducing the amount of glutamate released by 10% on each stimulus in the model. Despite a significant change in the pattern of neurotransmitter release, as well as a reduction in the total amount of glutamate, the slow EPSC still decays over the course of hundreds of milliseconds.

      B) The detailed kinetic AMPA receptor model used here accurately reproduces desensitization, which in fact mediates that the slow ON UBC current. This AMPA receptor is a 13-state model, including 4 open states with 1-4 glutamates bound, 4 closed states with 1-4 glutamates bound, 4 desensitized states with 1-4 glutamates bound, and 5 closed states with 0-4 glutamates bound. The forward and reverse rates between different states in the model were fit to AMPA receptor currents recorded from dissociated UBCs and they accurately reproduced the ON UBC currents evoked by synaptic stimulation in our previous work (Balmer et al., 2021).

      Author response image 3.

      Effect of short-term depression of neurotransmitter release. A) The top trace shows the glutamate transient that drives the AMPA receptor model used in our study. No change in release is implemented, although the slow tail of the transient summates during the train. The bottom trace shows the modeled AMPA receptor mediated current. B) In this model the amount of glutamate released on each stimulus is reduced by 10%. The duration of the slow AMPA current is similar, despite a profound change in the pattern of neurotransmitter exposure.

      While the authors have not added the suggested additional parameters, their clarifications regarding the implications of existing parameters, and demonstration of reasonable fits to experimental data, and lack of substantial effect of simulating reduced vesicle release probability,

      1. Lack of quantification of various electrophysiological responses. UBCs are defined (ON or OFF) based on inward or outward synaptic response, but no information is provided about the range of the key parameter of duration across cells, which seems most critical to the current considerations. There is a similar lack of quantification across cells of AP duration in response to stimulation or current injections, or during baseline. The latter lack is particularly problematic because in agreement with previous publications, the raw data in Fig. 1 shows ON UBCs as quiescent until MF stimulation and OFF UBCs firing spontaneously until MF stimulation, but, for example, at least one ON UBC in the NEURON model is firing spontaneously until synaptically activated by an OFF UBC (Fig. 11A), and an OFF UBC is silent until stimulated by a presynaptic OFF UBC (Fig. 11C). This may be expected/explainable theoretically, but then such cells should be observed in the raw data.

      To address this reasonable concern of a general lack of quantification of electrophysiological responses we have added data characterizing the slow inward and outward currents evoked by synaptic stimulation in GRP and P079 UBCs in the results section and in new panels in Figure 1. We report the action potential pause lengths in P079 UBCs and burst lengths in ON UBCs in the results section. However, we favor the duration of the currents to the length of burst and pause, because the currents do not depend on a stable resting membrane potential, which is itself difficult to determine in intracellular recordings of these small cells. In a series of recent publications that focused on UBC firing, the authors argue that cell-attached recordings are necessary to determine accurately the burst and pause lengths, as well as spontaneous firing rates (Guo et al., 2021; Huson et al., 2023). (The trade-off of these extracellular recordings is that the monosynaptic nature of the input is nearly impossible to confirm.) Spontaneous firing rates were variable within both GRP and P079 UBCs from silent to firing regularly or in bursts, as previously reported (Kim et al., 2012; van Dorp and De Zeeuw, 2015). For clarity, we chose to model the GRP UBCs as silent unless receiving synaptic input and P079 UBCs as active unless receiving synaptic input. As the reviewer suggests, we have observed UBCs firing in the patterns similar to those shown in the model UBCs having input from spontaneous presynaptic UBCs. Below are some examples of spontaneous EPSCs and IPSCs in UBCs that suggest the presence of a presynaptic UBC.

      Author response image 4.

      Examples of UBCs that receive spontaneous input. A) Three ON UBCs that had spontaneous EPSCs, suggesting the presence of an active presynaptic UBC. B) Two OFF UBCs that had spontaneous outward currents.

      The authors have added additional analysis and discussion, which adequately addresses this concern.

      Reviewer #2 (Public Review):

      In this paper, the authors presented a compelling rationale for investigating the role of UBCs in prolonging and diversifying signals. Based on the two types of UBCs known as ON and OFF UBC subtypes, they have highlighted the existing gaps in understanding UBCs connectivity and the need to investigate whether UBCs target UBCs of the same subtype, different subtypes, or both. The importance of this knowledge is for understanding how sensory signals are extended and diversified in the granule cell layer.

      The authors designed very interesting approaches to study UBCs connectivity by utilizing transgenic mice expressing GFP and RFP in UBCs, Brainbow approach, immunohistochemical and electrophysiological analysis, and computational models to understand how the feed-forward circuits of interconnected UBCs transform their inputs.

      This study provided evidence for the existence of distinct ON and OFF UBC subtypes based on their electrophysiological properties, anatomical characteristics, and expression patterns of mGluR1 and calretinin in the cerebellum. The findings support the classification of GRP UBCs as ON UBCs and P079 UBCs as OFF UBCs and suggest the presence of synaptic connections between the ON and OFF UBC subtypes. In addition, they found that GRP and P079 UBCs form parallel and convergent pathways and have different membrane capacitance and excitability. Furthermore, they showed that UBCs of the same subtype provide input to one another and modify the input to granule cells, which could provide a circuit mechanism to diversify and extend the pattern of spiking produced by mossy fiber input. Accordingly, they suggested that these transformations could provide a circuit mechanism for maintaining a sensory representation of movement for seconds.

      Overall, the article is well written in a sound detailed format, very interesting with excellent discovery and suggested model.

      I believe the authors have provided appropriate responses and have consequently revised the manuscript in a convincing manner. Although I am not an expert in physiology, I find the explanations and clarifications to be acceptable.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      1. The name of the new method "inter-haplotype distance" is more confusing than helpful, as the haplotype information is not critical for implementing this method. First, the mutation spectrum is aggregated genome-wide regardless of the haplotypes where the mutations are found. Second, the only critical haplotype information is that at the focal site (i.e., the locus that is tested for association): individuals are aggregated together when they belong to the same "haplotype group" at the focal site. However, for the classification step, haplotype information is not really necessary: individuals can be grouped based on their genotypes at the given locus (e.g., AA vs AB). As the authors mentioned, this method can be potentially applied to other mutation datasets, where haplotype information may well be unavailable. I hope the authors can reconsider the name and remove the term "haplotype" (perhaps something like "inter-genotype distance"?) to avoid giving the wrong impression that haplotype information is critical for applying this method.

      We appreciate the reviewer's concern about the name of our method. The reviewer is correct that haplotype information is not critical for our method to work, and as a result we've decided to simply rename the approach to "aggregate mutation spectrum distance" (abbreviated AMSD). For simplicity, we refer to the method as IHD throughout our responses to reviewers, but the revised manuscript now refers to AMSD.

      1. The biggest advantage of the IHD method over QTL mapping is alleviation of the multiple testing burden, as one comparison tests for any changes in the mutation spectrum, including simultaneous, small changes in the relative abundance of multiple mutation types. Based on this, the authors claim that IHD is more powerful to detect a mutator allele that affects multiple mutation types. Although logically plausible, it is unclear under what quantitative conditions IHD can actually have greater power over QTL. It will be helpful to support this claim by providing some simulation results.

      This comment prompted us to do a more detailed comparison of IHD vs. QTL power under conditions that are more similar to those observed in the BXD cohort. While preparing the original manuscript, we assumed that IHD might have greater power than QTL mapping in a population like the BXDs because some recombinant inbred lines have accumulated many more germline mutations than others (see Figure 1 in Sasani et al. 2022, Nature). In a quantitative trait locus scan (say, for the fraction of C>A mutations in each line) each BXD's mutation data would be weighted equally, even if a variable number of mutations was used to generate the phenotype point estimate in each line.

      To address this, we performed a new series of simulations in which the average number of mutations per haplotype was allowed to vary. At the low end, some BXDs accumulated as few as 100 total germline mutations, while others have accumulated as many as 2,000. Thus, instead of simulating a mean number of mutations on each simulated haplotype, we allowed the mean number of mutations per haplotype to vary from N to 20N. By simulating a variable count of mutations on each haplotype, we could more easily test the benefits of comparing aggregate, rather than individual, mutation spectra between BXDs.

      In these updated simulations, we find that IHD routinely outperforms QTL mapping under a range of parameter choices (see Author Response image 1). Since IHD aggregates the mutation spectra of all haplotypes with either B or D alleles at each locus in the genome, the method is much less sensitive to individual haplotypes with low mutation counts. We include a mention of these updated simulations on lines 135-138 and describe the updated simulations in greater detail in the Materials and Methods (lines 705-715).

      Author response image 1.

      Power of IHD and QTL mapping on simulated haplotypes with variable counts of mutations. We simulated germline mutations on the specified number of haplotypes (as described in the manuscript) but allowed the total number of mutations per haplotype to vary by a factor of 20.

      1. The flip side of this advantage of IHD is that, when a significant association is detected, it is not immediately clear which mutation type is driving the signal. Related to this, it is unclear how the authors reached the point that "...the C>A mutator phenotype associated with the locus on chromosome 6", when they only detected significant IHD signal at rs46276051 (on Chr6), when conditioning on D genotypes at the rs27509845 (on Chr4) and no significant signal for any 1-mer mutation type by traditional mapping. The authors need to explain how they deduced that C>A mutation is the major source of the signal. In addition, beyond C>A mutations, can mutation types other than C>A contribute to the IHD signal at rs46276051? More generally, I hope the authors can provide some guidelines on how to narrow a significant IHD signal to specific candidate mutation type(s) affected, which will make the method more useful to other researchers.

      We thank the reviewer for pointing out this gap in our logic. We omitted specific instructions for narrowing down an IHD signal to specific mutation type(s) for a few reasons. First, this can be addressed using mutational signature analysis methods that are in widespread use. For example, upon identifying one or more candidate mutator loci, we can enter the mutation spectra of samples with each possible mutator genotype into a program (e.g., SigProfilerExtractor) to determine which combinations of mutation types occur proportionally more often in the genomes that harbor mutators (see Figure 3c in our manuscript). A second approach for narrowing down an IHD signal, highlighted in Figure 3a (and now described in the text of the Results section at lines 256-261), is to simply test which mutation type proportion(s) differ significantly between groups of samples with and without a candidate mutator (for example, with a Chi-square test of independence for each mutation type).

      Although this second approach incurs a multiple testing burden, the burden is offset somewhat by using IHD to identify mutator loci, rather than performing association tests for every possible mutation type to begin with. Although Figure 3a only shows the significant difference in C>A fraction among BXDs with different mutator locus genotypes, Figure 3-figure supplement 1 shows the complete set of 1-mer spectrum comparisons. It is possible that this second approach would not prove very useful in the case of a mutator with a “flat” signature (i.e., a mutator that slightly perturbs the rates of many different mutation types), but in our case it clearly shows which mutation type is affected.

      1. To account for differential relatedness between the inbred lines, the authors regressed the cosine distance between the two aggregate mutation spectra on the genome-wide genetic similarity and took the residual as the adjusted test metric. What is the value of the slope from this regression? If significantly non-zero, this would support a polygenic architecture of the mutation spectrum phenotype, which could be interesting. If not, is this adjustment really necessary? In addition, is the intercept assumed to be zero for this regression, and does such an assumption matter? I would appreciate seeing a supplemental figure on this regression.

      The reviewer raises a good question. We find that the slope of the "distance vs. genetic similarity" regression is significantly non-zero, though the slope estimate itself is small. A plot of cosine distance vs. genome-wide genetic similarity (using all BXDs) is shown below in Author response image 2:

      Author response image 2.

      Relationship between cosine distance and genetic similarity in the BXDs. As described in the Materials and Methods, we computed two values at each marker in the BXDs: 1) the cosine distance between the aggregate mutation spectra of BXDs with either B or D genotypes at the marker, and 2) the correlation between genome-wide D allele frequencies in BXDs with either B or D genotypes at the marker. We then regressed these two values across all genome-wide markers.

      This result indicates that if two groups of BXDs (one with D genotypes and one with B genotypes at a given locus) are more genetically similar, their mutation spectra are also more similar. Since the regression slope estimate is significantly non-zero (p < 2.2e-16), we believe that it's still worth using residuals as opposed to raw cosine distance values. This result also suggests that there may be a polygenic effect on the mutation spectrum in the BXDs.

      We have also generated a plot showing the cosine distance between the mutation spectra of every possible pair of BXDs, regressed against the genetic similarity between each of those pairs (Author Response image 3). Here, the potential polygenic effects on mutation spectra similarity are perhaps more obvious.

      Author response image 3.

      Pairwise cosine distance between BXD mutation spectra as a function of genetic similarity. We computed two values for every possible pair of n = 117 BXDs: 1) the cosine distance between the samples' individual 1-mer mutation spectra and 2) the correlation coefficient between the samples' genome-wide counts of D alleles.

      Private Comments

      1. It will also be useful to see how the power of IHD and QTL mapping depend on the allele frequency of the mutator allele and the sample size, as mutator alleles are likely rare or semi-rare in natural populations (such as the human de novo mutation dataset that the authors mentioned).

      This is another good suggestion. In general, we'd expect the power of both IHD and QTL mapping to decrease as a function of mutator allele frequency. At the same time, we note that the power of these scans should mostly depend on the absolute number of carriers of the mutator allele and less on its frequency. In the BXD mouse study design, we observe high frequency mutators but also a relatively small sample size of just over 100 individuals. In natural human populations, mutator frequencies might be orders of magnitude smaller, but sample sizes may be orders of magnitude larger, especially as new cohorts of human genomes are routinely being sequenced. So, we expect to have similar power to detect a mutator segregating at, say, 0.5% frequency in a cohort of 20,000 individuals, as we would to detect a mutator segregating at 50% frequency in a dataset of 200 individuals.

      To more formally address the reviewer's concern, we performed a series of simulations in which we simulated a population of 100 haplotypes. We assigned the same average number of mutations to each haplotype but allowed the allele frequency of the mutator allele to vary between 0.1, 0.25, and 0.5. The results of these simulations are shown in Author response image 4 and reveal that AMSD tends to have greater power than QTL mapping at lower mutator allele frequencies. We now mention these simulations in the text at lines 135-138 and include the simulation results in Figure 1-figure supplement 4.

      Author response image 4.

      Power of AMSD and QTL mapping on simulated haplotypes with variable marker allele frequencies. We simulated germline mutations on the specified number of haplotypes (as described in the manuscript), but simulated genotypes at the mutator allele such that "A" alleles were at the specified allele frequency.

      1. In the Methods section of "testing for epistasis between the two mutator loci", it will be helpful to explicitly lay out the model and assumptions in mathematical formulae, in addition to the R scripts. For example, are the two loci considered independent when their effects on mutation rate is multiplicative or additive? Given the R scripts provided, it seems that the two loci are assumed to have multiplicative effects on the mutation rate, and that the mutation count follows a Poisson distribution with mean being the mutation rate times ADJ_AGE (i.e., the mutation opportunity times the number of generations of an inbred line). However, this is not easily understandable for readers who are not familiar with R language. In addition, I hope the authors can be more specific when discussing the epistatic interaction between the two loci by explicitly saying "synergistic effects beyond multiplicative effects on the C>A mutation rate".

      The reviewer raises a good point about the clarity of our descriptions of tests for epistasis. We have now added a more detailed description of these tests in the section of the Materials and Methods beginning at line 875. We have also added a statement to the text at lines 289-291: “the combined effects of D genotypes at both loci exceed the sum of marginal effects of D genotypes at either locus alone.” We hope that this will help clarify the results of our tests for statistical epistasis.

      Reviewer 2 (Public Review):

      1. The main limitation of the approach is that it is difficult to see how it might be applied beyond the context of mutation accumulation experiments using recombinant inbred lines. This is because the signal it detects, and hence its power, is based on the number of extra accumulated mutations linked to (i.e. on the same chromosome as) the mutator allele. In germline mutation studies of wild populations the number of generations involved (and hence the total number of mutations) is typically small, or else the mutator allele becomes unlinked from the mutations it has caused (due to recombination), or is lost from the population altogether (due to chance or perhaps selection against its deleterious consequences).

      The reviewer is correct that as it currently exists, IHD is mostly limited to applications in recombinant inbred lines (RILs) like the BXDs. This is due to the fact that IHD assumes that each diploid sample harbors one of two possible genotypes at a particular locus and ignores the possibility of heterozygous genotypes for simplicity. In natural, outbreeding populations, this assumption will obviously not hold. However, as we plan to further iterate on and improve the IHD method, we hope that it will be applicable to a wider variety of experimental systems in the future. We have added additional caveats about the applicability of our method to other systems in the text at lines 545-550.

      Private Comments

      1. On p. 8, perhaps I've misunderstood but it's not clear in what way the SVs identified were relevant to the samples used in this dataset - were the founder strains assembled? Is there any chance that additional SVs were present, e.g. de novo early in the accumulation line?

      Our description of this structural variation resource could have been clearer. The referenced SVs were identified in Ferraj et al. (2023) by generating high-quality long read assemblies of inbred laboratory mice. Both DBA/2J and C57BL/6J (the founder strains for the BXD resource) were included in the Ferraj et al. SV callset. We have clarified our description of the callset at lines 247-248.

      It is certainly possible that individual BXD lines have accumulated de novo structural variants during inbreeding. However, these "private" SVs are unlikely to produce a strong IHD association signal (via linkage to one of the ~7,000 markers) at either the chromosome 4 or chromosome 6 locus, since we only tested markers that were at approximately 50% D allele frequency among the BXDs.

      1. On p. 13, comparing the IHD and QTL approaches, regarding the advantage of the former in that it detects the combined effect of multiple k-mer mutation types, would it not be straightforward to aggregate counts for different types in a QTL setting as well?

      The mutation spectrum is a multi-dimensional phenotype (6-dimensional if using the 1-mer spectrum, 96-dimensional if using the 3-mer spectrum, etc.). Most QTL mapping methods use linear models to test for associations between genotypes and a 1-dimensional phenotype (e.g., body weight, litter size). In the past, we used QTL mapping to test for associations between genotypes and a single element of the mutation spectrum (e.g., the rate of C>A mutations), but there isn't a straightforward way to aggregate or collapse the mutation spectrum into a 1dimensional phenotype that retains the information contained within the full 1-mer or 3-mer spectrum. For that reason, we developed the "aggregate mutation spectrum" approach, as it preserves information about the complete mutation spectrum in each group of strains.

      The reviewer is correct that we could also aggregate counts of different mutation types to, say, perform a QTL scan for the load of a specific mutational signature. For example, we could first perform standard mutational signature analysis on our dataset and then test for QTLs associated with each signature that is discovered. However, this approach would not solve the second problem that our method is designed to solve: the appropriate weighting of samples based on how many mutations they contain.

      1. pp. 15-16: In the discussion of how you account for relatedness between strains, I found the second explanation (on p. 16) much clearer. It would be interesting to know how much variance was typically accounted for by this regression?

      As shown in the response to Reviewer 1, genotype similarity between genotype groups (i.e., those with either D or B genotypes at a marker) generally explains a small amount of variance in the cosine distance between those groups (R2 ~= 0.007). However, since the slope term in that regression is significantly non-zero, correcting for this relationship should still improve our power relative to using raw cosine distance values that are slightly confounded by this relationship.

      1. Similarly, in the section on Applying the IHD method to the BXDs (pp. 18-19), I think this description was very useful, and some or all of this description of the experiment (and how the DNMs in it arise) could profitably be moved to the introduction.

      We appreciate the reviewer’s feedback about the details of the BXD cohort. Overall, we feel the description of the BXDs in the Introduction (at lines 65-73) is sufficient to introduce the cohort, though we now add some additional detail about variability in BXD inbreeding duration (at lines 89-93) to the Introduction as well, since it is quite relevant to some of the new simulation results presented in the manuscript.

      1. A really minor one, not sure if this is for the journal or the authors, but it would be much better to include both page and line numbers in any version of an article for review. My pdf had neither!

      We apologize for the lack of page/line numbers in the submitted PDF. We have now added line numbers to the revised version of the manuscript.

      Reviewer 3 (Public Review):

      1. Under simulated scenarios, the authors' new IHD method is not appreciably more powerful than conventional QTL mapping methods. While this does not diminish the rigor or novelty of the authors findings, it does temper enthusiasm for the IHD method's potential to uncover new mutators in other populations or datasets. Further, adaptation of this methodology to other datasets, including human trios or multigenerational families, will require some modification, which could present a barrier to broader community uptake. Notably, BXD mice are (mostly) inbred, justifying the authors consideration of just two genotype states at each locus, but this decision prevents out-of-the-box application to outbred populations and human genomic datasets. Lastly, some details of the IHD method are not clearly spelled out in the paper. In particular, it is unclear whether differences in BXD strain relatedness due to the breeding epoch structure are fully accounted for in permutations. The method's name - inter-haplotype distance - is also somewhat misleading, as it seems to imply that de novo mutations are aggregated at the scale of sub-chromosomal haplotype blocks, rather than across the whole genome.

      The reviewer raises very fair concerns. As mentioned in response to a question from Reviewer 1, we performed additional simulation experiments that demonstrate the improved power of IHD (as compared to QTL mapping) in situations where mutation counts are variable across haplotypes or when mutator alleles are present at allele frequencies <50% (see Author response image 2 and 3, as well as new supplements to Figure 1 in the manuscript). However, the reviewer is correct that the IHD method is not applicable to collections of outbred individuals (that is, individuals with both heterozygous and homozygous genotypes), which will limit its current applications to datasets other than recombinant inbred lines. We have added a mention of these limitations to the Results at lines 138-141 and the Discussion at lines 545-550, but plan to iterate on the IHD method and introduce new features that enable its application to other datasets. We have also explicitly stated that we account for breeding epochs in our permutation tests in the Materials and Methods at lines 670-671. Both Reviewer 1 and Reviewer 3 raised concerns about the name of our method, and we have therefore changed “inter-haplotype distance” to “aggregate mutation spectrum distance” throughout the manuscript.

      1. Nominating candidates within the chr6 mutator locus requires an approach for defining a credible interval and excluding/including specific genes within that interval as candidates. Sasani et al. delimit their focal window to 5Mb on either side of the SNP with the most extreme P-value in their IHD scan. This strategy suffers from several weaknesses. First, no justification for using 10 Mb window, as opposed to, e.g., a 5 Mb window or a window size delimited by a specific threshold of P-value drop, is given, rendering the approach rather ad hoc. Second, within their focal 10Mb window, the authors prioritize genes with annotated functions in DNA repair that harbor protein coding variants between the B6 and D2 founder strains. While the logic for focusing on known DNA repair genes is sensible, this locus also houses an appreciable number of genes that are not functionally annotated, but could, conceivably, perform relevant biological roles. These genes should not be excluded outright, especially if they are expressed in the germline. Further, the vast majority of functional SNPs are non-coding, (including the likely causal variant at the chr4 mutator previously identified in the BXD population). Thus, the author's decision to focus most heavily on coding variants is not well-justified. Sasani et al. dedicate considerable speculation in the manuscript to the likely identity of the causal variant, ultimately favoring the conclusion that the causal variant is a predicted deleterious missense variant in Mbd4. However, using a 5Mb window centered on the peak IHD scan SNP, rather than a 10Mb window, Mbd4 would be excluded. Further, SNP functional prediction accuracy is modest [e.g., PMID 28511696], and exclusion of the missense variant in Ogg1 due its benign prediction is potentially premature, especially given the wealth of functional data implicating Ogg1 in C>A mutations in house mice. Finally, the DNA repair gene closest to the peak IHD SNP is Rad18, which the authors largely exclude as a candidate.

      We agree that the use of a 10 Mb window, rather than an empirically derived confidence interval, is a bit arbitrary and ad hoc. To address this concern, we have implemented a bootstrap resampling approach (Visscher et al. 1996, Genetics) to define confidence intervals surrounding IHD peaks. We have added a description of the approach to the Materials and Methods at lines 609-622, but a brief description follows. In each of N trials (here, N = 10,000), we take a bootstrap sample of the BXD phenotype and genotype data with replacement. We then perform an IHD scan on the chromosome of interest using the bootstrap sample and record the position of the marker with the largest cosine distance value (i.e., the "peak" marker). After N trials, we calculate the 90% confidence interval of bootstrapped peak marker locations; in other words, we identify the locations of two genotyped markers, between which 90% of all bootstrap trials produced an IHD peak. We note that bootstrap confidence intervals can exhibit poor "coverage" (a measure of how often the confidence intervals include the "true" QTL location) in QTL mapping studies (see Manichaikul et al. 2006, Genetics), but feel that the bootstrap is more reasonable than simply defining an ad hoc interval around an IHD peak.

      The new 90% confidence interval surrounding the IHD peak on chromosome 6 is larger than the original (ad hoc) 10 Mbp window, now extending from around 95 Mbp to 114 Mbp. Notably, the new empirical confidence interval excludes Mbd4. We have accordingly updated our Results and Discussion sections to acknowledge the fact that Mbd4 no longer resides within the confidence interval surrounding the IHD peak on chromosome 6 and have added additional descriptions of genes that are now implicated by the 90% confidence interval. Given the uncertainties associated with using bootstrap confidence intervals, we have retained a brief discussion of the evidence supporting Mbd4 in the Discussion but focus primarily on Ogg1 as the most plausible candidate.

      The reviewer raises a valid concern about our treatment of non-DNA repair genes within the interval surrounding the peak on chromosome 6. We have added more careful language to the text at lines 219-223 to acknowledge the fact that non-annotated genes in the confidence interval surrounding the chromosome 6 peak may play a role in the epistatic interaction we observed.

      The reviewer also raises a reasonable concern about our discussions of both Mbd4 and Ogg1 as candidate genes in the Discussion. Since Mbd4 does not reside within the new empirical bootstrap confidence interval on chromosome 6 and given the strong prior evidence that Ogg1 is involved in C>A mutator phenotypes (and is in the same gene network as Mutyh), we have reframed the Discussion to focus on Ogg1 as the most plausible candidate gene (see lines 357360).

      Using the GeneNetwork resource, we also more carefully explored the potential effects of noncoding variants on the C>A mutator phenotype we observed on chromosome 6. We have updated the Results at lines 240-246 and the Discussion at line 439-447 to provide more evidence for regulatory variants that may contribute to the C>A mutator phenotype. Specifically, we discovered a number of strong-effect cis-eQTLs for Ogg1 in a number of tissues, at which D genotypes are associated with decreased Ogg1 expression. Given new evidence that the original mutator locus we discovered on chromosome 4 harbors an intronic mobile element insertion that significantly affects Mutyh expression (see Ferraj et al. 2023, Cell Genomics), it is certainly possible that the mutator phenotype associated with genotypes on chromosome 6 may also be mediated by regulatory, rather than coding, variation.

      1. Additionally, some claims in the paper are not well-supported by the author's data. For example, in the Discussion, the authors assert that "multiple mutator alleles have spontaneously arisen during the evolutionary history of inbred laboratory mice" and that "... mutational pressure can cause mutation rates to rise in just a few generations of relaxed selection in captivity". However, these statements are undercut by data in this paper and the authors' prior publication demonstrating that a number of candidate variants are segregating in natural mouse populations. These variants almost certainly did not emerge de novo in laboratory colonies, but were inherited from their wild mouse ancestors. Further, the wild mouse population genomic dataset used by the authors falls far short of comprehensively sampling wild mouse diversity; variants in laboratory populations could derive from unsampled wild populations.

      The reviewer raises a good point. In our previous publication (Sasani et al. 2022, Nature), we hypothesized that Mutyh mutator alleles had arisen in wild, outbreeding populations of Mus musculus, and later became fixed in inbred strains like DBA/2J and C57BL/6J. However, in the current manuscript, we included a statement about mutator alleles "spontaneously arising during the evolutionary history of inbred laboratory mice" to reflect new evidence (from Ferraj et al. 2023, Cell Genomics) that the mutator allele we originally identified in Mutyh may not be wild derived after all. Instead, Ferraj et al. suggest that the C>A mutator phenotype we originally identified is caused by an intronic mobile element insertion (MEI) that is present in DBA/2J and a handful of other inbred laboratory strains. Although this MEI may have originally occurred in a wild population of mice, we wanted to acknowledge the possibility that both the original Mutyh mutator allele, as well as the new mutator allele(s) we discovered in this manuscript, could have arisen during the production and inbreeding of inbred laboratory lines. We have also added language to the Discussion at lines 325-327 to acknowledge that the 67 wild mice we analyzed do not comprise a comprehensive picture of the genetic diversity present in wild-derived samples.

      We have added additional language to the Discussion at lines 349-357 in which we acknowledge that the chromosome 6 mutator allele might have originated in either laboratory or wild mice and elaborate on the possibility that mutator alleles with deleterious fitness consequences may be more likely to persist in inbred laboratory colonies.

      1. Finally, the implications of a discovering a mutator whose expression is potentially conditional on the genotype at a second locus are not raised in the Discussion. While not a weakness per se, this omission is perceived to be a missed opportunity to emphasize what, to this reviewer, is one of the most exciting impacts of this work. The potential background dependence of mutator expression could partially shelter it from the action of selection, allowing the allele persist in populations. This finding bears on theoretical models of mutation rate evolution and may have important implications for efforts to map additional mutator loci. It seems unfortunate to not elevate these points.

      We agree and have added additional discussion of the possibility that the C>A mutator phenotypes in the BXDs are a result of interactions between the expression of two DNA repair genes in the same base-excision network to the Discussion section at lines 447-449.

      Private comments

      1. The criteria used to determine or specify haplotype size are not specified in the manuscript. I mention this above but reiterate here as this was a big point of confusion for me when reading the paper. Haplotype length is important consideration for overall power and for proper extension of this method to other systems/populations.

      We may not have been clear enough in our description of our method, and as suggested by Reviewer 1, the name "inter-haplotype distance" may also have been a source of confusion. At a given marker, we compute the aggregate mutation spectrum in BXDs with either B or D genotypes using all genome-wide de novo mutations observed in those BXDs. Since the BXDs were inbred for many generations, we expect that almost all de novo germline mutations observed in an RIL are in near-perfect linkage with the informative genotypes used for distance scans. Thus, the "haplotypes" used in the inter-haplotype distance scans are essentially the lengths of entire genomes.

      1. Results, first paragraph, final sentence. I found the language here confusing. I don't understand how one can compute the cosine distance at single markers, as stated. I'm assuming cosine distance is computed from variants residing on haplotypes delimited by some defined window surrounding the focal marker?

      As discussed above, we aggregate all genome-wide de novo mutations in each group of BXDs at a given marker, rather than only considering DNMs within a particular window surrounding the marker. The approach is discussed in greater detail in the caption of Figure 1.

      1. Nominating candidates for the chr6 locus, Table 1. It would be worth confirming that the three prioritized candidates (Setmar, Ogg1, and Mbd4) all show germline expression.

      Using the Mouse Genome Informatics online resource, we confirmed that all prioritized candidate genes (now including Setmar and Ogg1, but not Mbd4) are expressed in the male and female gonads, and mention this in the Results at lines 228 and 233-234.

      1. Does the chr6 peak on the C>A LOD plot (Figure 2- figure supplement 1) overlap the same peak identified in the IHD scan? And, does this peak rise to significance when using alpha = 0.05? Given that the goal of these QTL scans is to identify loci that interact with the C>A mutator on chr4, it is reasonable to hypothesize that the mutation impact of epistatic loci will also be restricted to C>A mutations. Therefore, I am not fully convinced that the conservative alpha = 0.05/7 threshold is necessary.

      The chromosome 6 peak in Figure 2-figure supplement 1 does, in fact, overlap the peak marker we identified on chromosome 6 using IHD. One reason we decided to use a more conservative alpha of (0.05 / 7) is that we wanted these results to be analogous to the ones we performed in a previous paper (Sasani et al. 2022, Nature), in which we first identified the mutator locus on chromosome 4. However, the C>A peak does not rise to genome-wide significance if we use a less conservative alpha value of 0.05 (see Author response image 5). As discussed in our response to Reviewer 1, we find that QTL mapping is not as powerful as IHD when haplotypes have accumulated variable numbers of germline mutations (as in the BXDs), which likely explains the fact that the peak on chromosome 6 is not genome-wide significant using QTL mapping.

      Author response image 5.

      QTL scan for the fraction of C>A mutations in BXDs harboring D alleles at the locus near Myth QTL scan was performed at a genome-wide significance alpha of 0.05, rather than 0.05/7.

      1. Is there significant LD between the IHD peaks on chr6 and chr4 across the BXD? If so, it could suggest that the signal is driven by cryptic population structure that is not fully accounted for in the author's regression based approach. If not, this point may merit an explicit mention in the text as an additional validation for the authenticity of the chr6 mutator finding.

      This is a good question. We used the scikit-allel Python package to calculate linkage disequilibrium (LD) between all pairs of genotyped markers in the BXD cohort, and found that the two peak loci (on chromosomes 4 and 6) exhibit weak LD (r2 = 4e-5). We have added a mention of this to the main text of the Results at lines 212-213. That being said, we do not think the chromosome 6 mutator association (or the apparent epistasis between the alleles on chromosomes 4 and 6) could be driven by cryptic population structure. Unlike in human GWAS and other association studies in natural populations, there is no heterogeneity in the environmental exposures experienced by different BXD subpopulations. In humans, population structure can create spurious associations (e.g., between height and variants that are in LD and are most common in Northern Europe), but this requires the existence of a phenotypic gradient caused by genetic or environmental heterogeneity that is not likely to exist in the context of inbred laboratory mice that are all the progeny of the same two founder strains.

      1. Discussion, last sentence of the "Possible causal alleles..." section: I don't understand how the absence of the Mariner-family domain leads the authors to this conclusion. Setmar is involved in NHEJ, which to my knowledge is not a repair process that is expected to have a specific C>A mutation bias. I think this is grounds enough for ruling out its potential contributions, in favor of focusing on other candidates, (e.g., Mbd4 and Ogg1).

      The reviewer raises a good point. Our main reason for mentioning the absence of the Marinerfamily domain is that even if NHEJ were responsible for the C>A mutator phenotype, it likely wouldn't be possible for Setmar to participate in NHEJ without the domain. However, the reviewer is correct that NHEJ is not expected to cause a C>A mutation bias, and we have added a mention of this to the text as well at lines 379-382.

      1. Discussion, second to last paragraph of section "Mbd4 may buffer...": The authors speculate that reduced activity of Mbd4 could modulate rates of apoptosis in response to DNA damage. This leads to the prediction that mice with mutator alleles at both Mutyh and Mbd4 should exhibit higher overall mutation rates compared to mice with other genotypes. This possibility could be tested with the authors' data.

      The reviewer raises a good question. As mentioned above, however, we implemented a new approach to calculate confidence intervals surrounding distance peaks and found that this empirical approach (rather than the ad hoc 10-Mbp window approach we used previously) excluded Mbd4 from the credible interval. Although we still mention Mbd4 as a possible candidate (since it still resides within the 10 Mbp window), we have refactored the Discussion section to focus primarily on the evidence for Ogg1 as a candidate gene on chromosome 6.

      In any case, we do not observe that mice with mutator alleles at both the chromosome 4 and chromosome 6 loci have higher overall mutation rates compared to mice with other genotype combinations. This may not be terribly surprising, however, since C>A mutations only comprise about 10% of all possible mutations. Thus, given the variance in other 1-mer mutation counts, even a substantial increase in the C>A mutation rate might not have a detectable effect on the overall mutation rate. Indeed, in our original paper describing the Mutyh mutator allele (Sasani et al. 2022, Nature), we did not identify any QTL for the overall mutation rate in the BXDs and found that mice with the chromosome 4 mutator allele only exhibited a 1.11X increase in their overall mutation rates relative to mice without the mutator allele.

      1. Methods, "Accounting for BXD population structure": An "epoch-aware" permutation strategy is described here, but it is not clear when (and whether) this strategy is used to determine significance of IHD P-values.

      We have added a more explicit mention of this to the Methods section at lines 670-671, as we do, in fact, use the epoch-aware permutation strategy when calculating empirical distance thresholds.

      1. The simulation scheme employed for power calculations is highly specific to the BXD population. This is not a weakness, and perfectly appropriate to the study population used here. However, it does limit the transferability of the power analyses presented in this manuscript to other populations. This limitation may merit an explicit cautionary mention to readers who may aspire to port the IHD method over to their study system.

      This is true. Our simulation strategy is relatively simple and makes a number of assumptions about the simulated population of haplotypes (allele frequencies normally distributed around 0.5, expected rates of each mutation type, etc.). In response to concerns from Reviewer 1, we performed an updated series of simulations in which we varied some of these parameters (mutator allele frequencies, mean numbers of mutations on haplotypes, etc.). However, we have added a mention of the simulation approach's limitations and specificity to the BXDs to the text at lines 545-550.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Author response:

      Reviewer #1:

      The main objective of this study is to achieve the development of a synthetic autotroph using adaptive laboratory evolution. To accomplish this, the authors conducted chemostat cultivation of engineered E. coli strains under xylose-limiting conditions and identified autotrophic growth and the causative mutations. Additionally, the mutational mechanisms underlying these causative mutations were also explored with drill down assays. Overall, the authors demonstrated that only a small number of genetic changes were sufficient (i.e., 3) to construct an autotrophic E. coli when additional heterologous genes were added. While natural autotrophic microorganisms typically exhibit low genetic tractability, numerous studies have focused on constructing synthetic autotrophs using platform microorganisms such as E. coli. Consequently, this research will be of interest to synthetic biologists and systems biologists working on the development of synthetic autotrophic microorganisms. The conclusions of this paper are mostly well supported by appropriate experimental methods and logical reasoning. However, further experimental validation of the mutational mechanisms involving rpoB and crp would enhance readers' understanding and provide clearer insights, despite acknowledgement that these genes impact a broad set of additional genes. Additionally, a similar study, 10.1371/journal.pgen.1001186, where pgi was deleted from the E. coli genome and evolved to reveal an rpoB mutation is relevant to this work and should be placed in the context of the presented findings.

      We thank the reviewer for pointing this study out. It is very interesting that a mutation in a similar region in RpoB was observed in a related context of Pgi loss of activity. We have added a reference to this study in our text (Page 11, line 21).

      he authors addressed rpoB and crp as one unit and performed validation. They cultivated the mutant strain and wild type in a minimal xylose medium with or without formate, comparing their growth and NADH levels. The authors argued that the increased NADH level in the mutant strain might facilitate autotrophic growth. Although these phenotypes appear to be closely related, their relationship cannot be definitively concluded based on the findings presented in this paper alone. Therefore, one recommendation is to explore investigating transcriptomic changes induced by the rpoB and crp mutations. Otherwise, conducting experimental verification to determine whether the NADH level directly causes autotrophic growth would provide further support for the authors' claim.

      We appreciate the valuable comment and agree that the work was lacking such an analysis. Due to various reasons we have opted to use a proteomic approach which we feel fulfills the same purpose as the transcriptomics suggestion. We found interesting evidence in up-regulation of the fdoGH operon (comprising the native formate dehydrogenase O enzyme complex) which could indicate why there is an increase in NADH/NAD+ levels. We also hypothesize that this upregulation might be important more generally by drawing comparisons to natural chemo-autotrophs.

      Further experimental work (which we were not able to include in the current study) could help validate this link by deleting fdoGH and observing a loss of phenotype and, on the flip side, directly overexpressing the fdoGH operon and observing an increase in the NADH/NAD+ ratio. Indeed, if this overexpression were to prove sufficient for achieving an autotrophic phenotype without the mutations in the global transcription regulators, it would be a much more transparent design.

      We have added a section titled "Proteomic analysis reveals up-regulation of rPP cycle and formate-associated genes alongside down-regulation of catabolic genes" to the Results based on this analysis.

      • It would be beneficial to provide a more detailed explanation of the genetic background before the evolution stage, specifically regarding the ∆pfk and ∆zwf mutations. Furthermore, it is suggested to include a figure that provides a comprehensive depiction of the reductive pentose phosphate pathway and the bypass pathway. These will help readers grasp the concept of the "metabolic scaffold" as proposed by the authors.

      We agree with the reviewer that this could be helpful and we added a reference to the original paper Gleizer et al. 2019 that reported this design and also includes the relevant figure. We feel that the figure should not be added to the current manuscript as we continue to show that this design is not relevant in the context of the three reported mutations and such a figure could distract the attention of the reader from the main takeaways of the current study.

      • Despite the essentiality of the rpoB mutation (A1245V) to the autotrophic phenotype in the final strain, the inclusion of this mutation in step C1 does not appear to be justified. According to line 37 on page 3, the authors chose to retain the unintended mutation in rpoB based on its essentiality to the phenotype observed in other evolved strains. However, it should be noted that the mutations found in the evolved strain I, II, and III (P552T or D866E) were entirely different from the unintended mutation (A1245V) during genetic engineering. This aspect should be revised to avoid confusion among readers.

      Thank you for pointing this issue out, we added a clarification in the text (page 4 line 7) to avoid such confusion. We believe this point is much clearer now.

      The rpoB mutation which was shown to be essential in the study is indeed known to be common in ALE experiments in E. coli. Thus, I searched the different rpoB mutations in ALEdb in E. coli and I was able to find a similar mutation in a study where pgi was knocked out and then evolved. https://doi.org/10.1371/journal.pgen.1001186 This study seems very relevant given that pgi was a key mutation in the compact set of this work and the section "Modulation of a metabolic branch-point activity increased the concentration of rPP metabolites" informs that loss of function mutations in pgi were also found. The findings of this study should thus be put in the context of the previous related ALE study. I would recommend a similar analysis of crp mutations from studies in ALEdb to see if there are similar mutations in this gene as well or if this a unique mutation.

      We thank the reviewer for bringing this publication to our attention. We have addressed this observation in the main text (page 11 , line 21). We agree that it could have some connection to the pgi mutation yet we would not want to overspeculate about this role, as we also found the exact same mutation (A1245V) as an adaptation to higher temperature in another E. coli study (Tenaillon et al. 2012). We would like to bring forward the fact that the two reported rpoB mutations are always accompanied by another mutation with pleiotropic effects, either in the transcription factor Crp or in another RNA polymerase subunit (e.g RpoC). As such many epistatic effects could occur, one of which we also report here in page 13, line 18. In conclusion, although there could be a connection between the rpoB and pgi mutations, it could be a mere coincidence and the two mutations could exhibit two distinct roles in two distinct phenotypes.

      We also would like to thank the reviewer for suggesting a similar analysis for crp and found another mutation at a nearby residue with strong adaptive effects and mentioned it in our main text.

      Can the typical number of mutations found in a given ALE experiment be directly compared to those found in this study? It seems like a retrospective analysis of other ALE studies to show how many mutations typically occur in an ALE study and sets which were found to be causal to reproduce the phenotype of interest (through similar reverse engineering in the starting strain) should be presented. Again, the authors cite ALEdb which should provide direct numbers of mutations found in similar ALE studies with E. coli and one could then examine them to find sets of clearly causal mutations which recreate phenotypes of interest. Such an analysis would go a long way in supporting the main finding of "small number" of mutations.

      Discussion, page 12, line 42. "This could serve as a promising strategy for achieving minimally perturbed genotypes in future metabolic engineering attempts". There is an entire body of work around growth-coupled production which can be predicted and evolved with a genome-scale metabolic model and ALE. Thus, if this statement is going to be made, relevant studies should be cited and placed in context.

      The reviewer raises an important point which could indeed yield an interesting perspective. However, it would be difficult to perform this comparison in practice since many of the studies published on ALEdb have not isolated essential mutations from other mutation incidents nor have they determined the role of each mutation in the reported phenotypes. For example, many ALE trajectories include a hypermutator that greatly increases the number of irrelevant mutations and it is nearly impossible to sieve through them to find an essential set.

      Moreover, it is hard to compare the “level of difficulty” of achieving one phenotype over another and therefore feel that even though such an analysis would be insightful, it requires an amount of work which is outside the scope of this study.

      Finally, we would like to highlight our approach of using the iterative approach, isolating the relevant consensus mutations and repeating this process until no evolution process is required, we are not aware of prior studies that used this approach.

      We now clarified what we mean by "promising strategy" in the discussion in order to avoid any false claims about novelty (page 16 line 32): "Using metabolic growth-coupling as a temporary 'metabolic scaffold' that can be removed, could serve as a promising strategy for achieving minimally perturbed genotypes in future metabolic engineering attempts."

      Reviewer #2:

      Synthetic autotrophy of biotechnologically relevant microorganisms offers exciting chances for CO2 neutral or even CO2 negative production of goods. The authors' lab has recently published an engineered and evolved Escherichia coli strain that can grow on CO2 as its only carbon source. Lab evolution was necessary to achieve growth. Evolved strains displayed tens of mutations, of which likely not all are necessary for the desired phenotype.

      In the present paper the authors identify the mutations that are necessary and sufficient to enable autotrophic growth of engineered E. coli. Three mutations were identified, and their phenotypic role in enhancing growth via the introduced Calvin-Benson-Bassham cycle were characterized. It was demonstrated that these mutations allow autotrophic growth of E. coli with the introduced CBB cycle without any further metabolic intervention. Autotrophic growth is demonstrated by 13C labelling with 13C CO2, measured in proteinogenic amino acids. In Figures 2B and S1, the labeling data are shown, with an interval of the "predicted range under 13CO2".

      Here, the authors should describe how this interval was derived.

      The methodology is clearly described and appropriate.

      The present results will allow other labs to engineer E. coli and other microorganisms further to assimilate CO2 efficiently into biomass and metabolic products. The importance is evident in the opportunity to employ such strain in CO2 based biotech processes for the production of food and feed protein or chemicals, to reduce atmospheric CO2 levels and the consumption of fossil resources.

      Please describe in the methodology how the interval of the predicted range of 13C labeling was derived for Figures 2B and S1. Was it calculated by the dilution factor during 4 generations, or did you predict the label incorporation individually with a metabolic model?

      The text needs careful editing, some sentences are incomplete and there are frequent inconsistencies in writing metabolites and enzymes.

      P2L6: unclear sentence (incomplete?)

      P2L19: pastoris with lower case "p"

      P2L40: incomplete sentence

      P2L42: here, and at many other places, the writing of RuBisCO needs to be aligned. It is an abbreviation and should begin with a capital letter. Most commonly it is written as RuBisCO which I would suggest - please unify throughout the text.

      P3L3: formate dehydrogenase ... metabolites and enzymes with lower case letter. And, no hyphen here.

      P5L4: delete the : after unintentionally

      P6L16: carboxylation of RuBP (it is not CO2 that is carboxylated - if any, CO2 is carboxylating)

      P7L25: phosphoglucoisomerase (lower case)

      P8L5: in line

      P8L9: part of glycolysis/ ...

      P10L4: pentose phosphates (lower case, no hyphen).

      P10L4: all metabolites lower case

      P12L28: incomplete sentence

      P18L4: Escherichia coli in italics P18L15: Pseudomonas sp. in italics P18L16: ... promoter and with a strong ...

      P20, chapter Metabolomics: put the numbers of 12C and 13C in superscript P23L9: pentose phosphates ; all metabolites in lower case (as above) P23: all 12C and 13C with superscript numbers.

      Response to reviewer #2:

      We thank the reviewer for their comments, and for pointing out the need to clarify how we derived the predicted range of 13C labeling. We edited the text accordingly, and added the relevant calculation to the methods section (under the “13C Isotopic labeling experiment”). We would like to also thank the reviewer for the required text improvements, which were implemented. 

      Reviewer #3:

      The authors previously showed that expressing formate dehydrogenase, rubisco, carbonic anhydrase, and phosphoribulokinase in Escherichia coli, followed by experimental evolution, led to the generation of strains that can metabolise CO2. Using two rounds of experimental evolution, the authors identify mutations in three genes - pgi, rpoB, and crp - that allow cells to metabolise CO2 in their engineered strain background. The authors make a strong case that mutations in pgi are loss-of-function mutations that prevent metabolic efflux from the reductive pentose phosphate autocatalytic cycle. The authors also argue that mutations in crp and rpoB lead to an increase in the NADH/NAD+ ratio, which would increase the concentration of the electron donor for carbon fixation. While this may explain the role of the crp and rpoB mutations, there is good reason to think that the two mutations have independent effects, and that the change in NADH/NAD+ ratio may not be the major reason for their importance in the CO2-metabolising strain.

      We thank the reviewer for their comments and constructive feedback.

      We agree that there is probably a broader effect caused by the rpoB and crp mutations, besides the change in the NADH/NAD+ ratio. Hence, we performed a proteomics analysis, comparing the rpoB and crp mutations on a WT background to an autotrophic E.coli, searching for a mutual change in both strains compared to their "ancestors". We found up-regulation of rPP cycle and formate-associated genes, and a down-regulation of catabolic genes. We added a section dedicated to this matter under the title "Proteomic analysis reveals up-regulation of rPP cycle and formate-associated genes alongside down-regulation of catabolic genes".

      Specific comments:

      1. Deleting pgi rather than using a point mutation would allow the authors to more rigorously test whether loss-off-function mutants are being selected for in their experimental evolution pipeline. The same argument applies to crp.

      We appreciate this recommendation and indeed tried to delete pgi, but the genetic manipulation caused a knockout of other genes along with pgi (pepE, rluF, yjbD, lysC) so in the time available to us we cannot confidently determine whether the deletion alone is sufficient and can replace the mutation.

      Regarding crp, we do not think there is a reason to believe the mutation is a loss-of-function. In any case, the proteomics-based characterization of the crp mutation is now included in the SI.

      1. Page 10, lines 10-11, the authors state "Since Crp and RpoB are known to physically interact in the cell (26-28), we address them as one unit, as it is hard to decouple the effect of one from the other". CRP and RpoB are connected, but the authors' description of them is misleading. CRP activates transcription by interacting with RNA polymerase holoenzyme, of which the Beta subunit (encoded by rpoB) is a part. The specific interaction of CRP is with a different RNA polymerase subunit. The functions of CRP and RpoB, while both related to transcription, are otherwise very different. The mutations in crp and rpoB are unlikely to be directly functionally connected. Hence, they should be considered separately.

      Indeed, the fact that the proteins are interacting in the cell does not necessarily mean that the mutations are functionally connected. We therefore added as further justification in the new section:

      "As far as we know, the mutations in the Crp and RpoB genes affect the binding of the RNA polymerase complex to DNA and/or its transcription rates. Depending on the transcribed gene target, the effect of the two mutations might be additive, antagonistic, or synergistic. Since each one of these mutations individually (in combination with the pgi mutation) is not sufficient to achieve autotrophic growth, it is reasonable to assume that only the target genes whose levels of expression change significantly in the double-mutant are the ones relevant for the autotrophic phenotype”.

      In our proteomics analysis we considered each mutation separately. We found that in some cases the two mutations together have an additive effect, but in other cases we found that the two mutations together affect differently on the proteome, compared to the effect of each mutation alone. Since both mutations are essential to the phenotype, we decided to go with the approach of addressing the two mutations as one unit for the physiological and metabolic experiments.

      1. A Beta-galactosidase assay would provide a very simple test of CRP H22N activity. There are also simple in vivo and in vitro assays for transcription activation (two different modes of activation) and DNA-binding. H22 is not near the DNA-binding domain, but may impact overall protein structure.

      The mutation is located in “Activating Region 2”, interacting with RNA polymerase. We tried an in-vivo assay to determine the CRP H22N activity and got inconclusive results, we believe the proteomics analysis serves as a good method for understanding the global effect of the mutation.

      1. There are many high-resolution structures of both CRP and RpoB (in the context of RNA polymerase). The authors should compare the position of the sites of mutation of these proteins to known functional regions, assuming H22N is not a loss-of-function mutation in crp.

      We added a supplementary figure regarding the structural location of the two mutations, where it is demonstrated that crp H22N is located in a region interacting with the RNA polymerase and rpoB A1245V is located in proximity to regions interacting with the DNA.

      1. RNA-seq would provide a simple assay for the effects of the crp and rpoB mutations. While the precise effect of the rpoB mutation on RNA polymerase function may be hard to discern, the overall impact on gene expression would likely be informative.

      Indeed we agree that an omics approach to infer the global effect of these mutations is beneficial, we opted to use a proteomics approach and think it serves the purpose of clarifying the final, down-stream, effect on the cell.

      1. Page 2, lines 40-45, the authors should more clearly explain that the deletion of pfkA, pfkB and zwf was part of the experimental evolution strategy in their earlier work (Gleizer et al., 2019), and not a new strategy in the current study.

      We thank you for pointing this out, and edited the text accordingly.

      1. Page 3, line 27. Why did the authors compare the newly acquired mutants to only two mutants from the earlier work, not all 6?

      The 6 clones that were isolated in Gleizer et al., had 2 distinct mutation profiles. During the isolation process the lineage split into two groups. Three out of the 6 clones (clones 1,2,6) came from the same ancestor, and the other three (clones 3,4,5) came from another ancestor. Hence, these two groups shared almost all of their mutations (see Venn diagram). We decided to use for our comparison the representative with the highest number of mutations from each group (clones 5 and 6).

      Author response image 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Continuous attractor networks endowed with some sort of adaptation in the dynamics, whether that be through synaptic depression or firing rate adaptation, are fast becoming the leading candidate models to explain many aspects of hippocampal place cell dynamics, from hippocampal replay during immobility to theta sequences during run. Here, the authors show that a continuous attractor network endowed with spike frequency adaptation and subject to feedforward external inputs is able to account for several previously unaccounted aspects of theta sequences, including (1) sequences that move both forwards and backwards, (2) sequences that alternate between two arms of a T-maze, (3) speed modulation of place cell firing frequency, and (4) the persistence of phase information across hippocampal inactivations. I think the main result of the paper (findings (1) and (2)) are likely to be of interest to the hippocampal community, as well as to the wider community interested in mechanisms of neural sequences. In addition, the manuscript is generally well written, and the analytics are impressive. However, several issues should be addressed, which I outline below.

      Major comments:

      1. In real data, population firing rate is strongly modulated by theta (i.e., cells collectively prefer a certain phase of theta - see review paper Buzsaki, 2002) and largely oscillates at theta frequency during run. With respect to this cyclical firing rate, theta sweeps resemble "Nike" check marks, with the sweep backwards preceding the sweep forwards within each cycle before the activity is quenched at the end of the cycle. I am concerned that (1) the summed population firing rate of the model does not oscillate at theta frequency, and (2) as the authors state, the oscillatory tracking state must begin with a forward sweep. With regards to (1), can the authors show theta phase spike preference plots for the population to see if they match data? With regards to (2), can the authors show what happens if the bump is made to sweep backwards first, as it appears to do within each cycle?

      Thank you for raising these two important points. As the reviewer mentioned, experimental data does show that the population activity (e.g., calculated from the multiunit activity of tetrode recording) is strongly modulated by theta. While we mainly focused on sweeps of bump position, the populational activity also shows cyclical firing at the theta frequency (we added Fig. S7 to reflect this). This is also reflected in Fig. 4d where the bump height (representing the overall activity) oscillates at individual theta cycles. The underlying mechanism of cyclical population activity is as follows: the bump height is determined by the amount of input the neuron received (which located at the center of the bump). While the activity bump sweeps away from the external input, the center neuron receives less input from the external input, and hence the bump height is smaller. Therefore, not only the position sweeps around the external input, also the populational activity sweeps accordingly at the same frequency.

      For the “Nike” check marks: we first clarify that the reason for we observed a forward sweep preceding a backward sweep is that we always force the artificial animal runs from left to right on the track where we treated “right” as “forward”. At the beginning of simulation, the external input to the network moves towards right, and therefore the activity bump starts from a position behind the animals and sweeps towards right (forward). In general, this means that the bump will never do a backward sweep first in our model. However, this does not mean that the forward sweeps precede the backward sweeps in each theta cycle. Experimentally, to determine the “0” phase of theta cycles, the LFP signal in CA1 was first bandpass filtered and then Hilbert transformed to get the phase at each time point. Then, a phase histogram of multiunit activity in CA1 was calculated across locomotor periods; the phase of maximal CA1 firing on the histogram was then defined to be “0” phase. Since we didn’t model LFP oscillation in the attractor model, we cannot obtain a “0” phase reference like the experimental procedure. Instead, we define the “0” phase using the “population activity quenched time”, where phase “0” is defined as the minimum population activity during oscillation cycles, which happens when the activity bump is farthest from the animal position. In this way, we observed a “Nike” pattern where the activity bump begins with a backward sweep towards the external input and then followed up with a forward sweep. This was showed in Fig. 3b in the main text.

      1. I could not find the width of the external input mentioned anywhere in the text or in the table of parameters. The implication is that it is unclear to me whether, during the oscillatory tracking state, the external input is large compared to the size of the bump, so that the bump lives within a window circumscribed by the external input and so bounces off the interior walls of the input during the oscillatory tracking phase, or whether the bump is continuously pulled back and forth by the external input, in which case it could be comparable to the size of the bump. My guess based on Fig 2c is that it is the latter. Please clarify and comment.

      Thank you for your comment. We added the width of the external input to the text and table (see table 1). The bump is continuously pulled back and forth by the external input, as guessed by the reviewer. Experimentally, theta sweeps live roughly in the window of place field size. This is also true in our model, where theta sweep length depends on the strength of recurrent connections which determines the place field size. However, it also depends on the adaptation strength where large adaptation (more intrinsic mobility) leads to large sweep length. We presume that the reason for the reviewer had the guess that the bump may live within a window bounded by the external input is that we also set the width of external input comparable to the place field size (in fact, we don’t know how wide the external location input to the hippocampal circuits is in the biological brain, but it might be reasonable to set the external input width as comparable to the place field size, otherwise the location information conveyed to the hippocampus might be too dispersed). We added a plot in the SI (see Fig. S1) to show that when choosing a smaller external input width, but increasing the adaptation strength, the activity bump lives in a window exceeding the external input.

      We clarified this point by adding the following text to line 159

      “... It is noteworthy that the activity bump does not live within a window circumscribed by the external input bump (bouncing off the interior walls of the input during the oscillatory tracking state), but instead is continuously pulled back and forth by the external input (see Fig. S1)...”

      1. I would argue that the "constant cycling" of theta sweeps down the arms of a T-maze was roughly predicted by Romani & Tsodyks, 2015, Figure 7. While their cycling spans several theta cycles, it nonetheless alternates by a similar mechanism, in that adaptation (in this case synaptic depression) prevents the subsequent sweep of activity from taking the same arm as the previous sweep. I believe the authors should cite this model in this context and consider the fact that both synaptic depression and spike frequency adaptation are both possible mechanisms for this phenomenon. But I certainly give the authors credit for showing how this constant cycling can occur across individual theta cycles.

      Thank you for raising this point. We added the citation of Romani & Tsodyks’ model in the context (line 304). As the reviewer pointed out, STD can also act as a potential mechanism for this phenomenon. We also gave the Romani & Tsodyks’ model credit for showing how this “cycling spanning several theta cycles” can account for the phenomenon of slow (~1Hz) and deliberative behaviors, namely, head scanning (Johson and Redish, 2007). We commented this in line 302

      “... As the external input approaches the choice point, the network bump starts to sweep onto left and right arms alternatively in successive theta cycles (Fig. 5b and video 4; see also Romani and Tsodyks (2015) for a similar model of cyclical sweeps spanning several theta cycles) ...”

      1. The authors make an unsubstantiated claim in the paragraph beginning with line 413 that the Tsodyks and Romani (2015) model could not account for forwards and backwards sweeps. Both the firing rate adaptation and synaptic depression are symmetry breaking models that should in theory be able to push sweeps of activity in both directions, so it is far from obvious to me that both forward and backward sweeps are not possible in the Tsodyks and Romani model. The authors should either prove that this is the case (with theory or simulation) or excise this statement from the manuscript.

      Thank you for your comment. Our claim about the Tsodyks and Romani (2015) model's inability to account for both forward and backward sweeps was inappropriate. We made this claim based on our own implementation of the Tsodyks and Romani (2015) model and didn’t find a parameter region where the bump oscillation shows both forward and backward sweeps. It might be due to the limited parameter range we searched from. Additionally, we also note some difference in these two models, where the Romani & Tsodyks’ model has an external theta input to the attractor network which prevent the bump to move further. This termination may also prevent the activity bump to move backward as well. We didn’t consider external theta input in our model, and the bump oscillation is based on internal dynamics. We have deleted that claim from line 424 in the revised paper, and revised that portion of the manuscript by adding the following text to line 424:

      “…Different from these two models, our model considers firing rate adaptation to implement symmetry breaking and hence generates activity propagation. To prevent the activity bump from spreading away, their model considers an external theta input to reset the bump location at the end of each theta cycle, whereas our model generates an internal oscillatory state, where the activity bump travels back due to the attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our model reveals how the adaptation strength affect the direction of theta sweeps, as well as offers a more detailed understanding of theta cycling in complex environments…”

      1. The section on the speed dependence of theta (starting with line 327) was very hard to understand. Can the authors show a more graphical explanation of the phenomenon? Perhaps a version of Fig 2f for slow and fast speeds, and point out that cells in the latter case fire with higher frequency than in the former?

      Thank you for raising this valuable point. There are two different frequencies showed in Fig. 6 a,c &d. One is the bump oscillation frequency, the other is the firing frequency of single cell. To help understanding, we included experimental results (from Geisler et al, 2007) in Fig. 6a. It showed that when the animal increases its running speed, the LFP theta only increases a bit (compare the blue curve and the green curve), while the single cell firing rate oscillation frequency increases more. In our model, we first demonstrated this result using unimodal cells which have only significant phase precession (Fig. 6c). While the animal runs through the firing field of a place cell, the firing phase will always precess for half a cycle in total. Therefore, faster running speed means that the half cycle will be accomplished faster, and hence single cell oscillation frequency will be higher. We also predicted the results on bimodal cells (Fig. 6d). To make this point clearer, we modified Fig. 6 by including experimental results, and rewrote the paragraph as follows (line 337):

      “…As we see from Fig. 3d and Fig. 4a&b, when the animal runs through the firing field of a place cell, its firing rate oscillates, since the activity bump sweeps around the firing field center of the cell. Therefore, the firing frequency of a place cell has a baseline theta frequency, which is the same as the bump oscillation frequency. Furthermore, due to phase precession, there will be a half cycle more than the baseline theta cycles as the animal runs over the firing field, and hence single cell oscillatory frequency will be higher than the baseline theta frequency (Fig. 6c). The faster the animal runs, the faster the extra half cycle is accomplished. Consequently, the firing frequency of single cells will increase more (a steeper slope in Fig. 6c red dots) than the baseline frequency.…”

      1. I had a hard time understanding how the Zugaro et al., (2005) hippocampal inactivation experiment was accounted for by the model. My intuition is that while the bump position is determined partially by the location of the external input, it is also determined by the immediate history of the bump dynamics as computed via the local dynamics within the hippocampus (recurrent dynamics and spike rate adaptation). So that if the hippocampus is inactivated for an arbitrary length of time, there is nothing to keep track of where the bump should be when the activity comes back online. Can the authors please explain more how the model accounts for this?

      Thank you for the comments. The easiest way to understand how the model account for the experimental result from Zugaro et al., (2005) is from Eq. 8:

      This equation says that the firing phase of a place cell is determined by the time the animal traveled through the place field, i.e., the location of the animal in the place field (with d0,c0 and vext all constant, and tf the only variable). No matter how long the hippocampus is inactivated (for an arbitrary length of time), once the external input is on, the new phase will continue from the new location of the animal in the place field. In other words, the peak firing phase keeps tracking the location of the animal. To make this point clearer, we modified Fig. 6 by including experimental results from Zugaro et al., (2005), and updated the description from line 356:

      “…Based on the theoretical analysis (Eq. 8), we see that the firing phase is determined by the location of the animal in the place field, i.e., vext tf. This means that the firing phase keeps tracking the animal's physical location. No matter how long the network is inactivated, the new firing phase will only be determined by the new location of the animal in the place field. Therefore, the firing phase in the first bump oscillation cycle after the network perturbation is more advanced than the firing phase in the last bump oscillation cycle right before the perturbation, and the amount of precession is similar to that in the case without perturbation (Fig. 6e) …”

      1. Can the authors comment on why the sweep lengths oscillate in the bottom panel of Fig 5b during starting at time 0.5 seconds before crossing the choice point of the T-maze? Is this oscillation in sweep length another prediction of the model? If so, it should definitely be remarked upon and included in the discussion section.

      We appreciate the reviewer’s valuable attention of this phenomenon. We thought it was a simulation artifact due to the parameter setting. However, we found that this phenomenon is quite robust to different parameter settings. While we haven’t found a theoretical explanation, we provide a qualitative explanation for it: this length oscillation frequency may be coupled with the time constant of the firing rate adaptation. Specifically, for a longer sweep, the neurons at the end of the sweep are adapted (inhibited), and hence the activity bump cannot travel that long in the next round. Therefore, the sweep length is shorter compared to the previous one. In the next round, the bump will sweep longer again because those neurons have recovered from the previous adaptation effect. We think this length oscillation is quite interesting and will check that in the experimental data in future works. We added this point in the main text as a prediction in line 321:

      “…We also note that there is a cyclical effect in the sweep lengths across oscillation cycles before the animal enters the left or right arm (see Fig. 5b lower panel), which may be interesting to check in the experimental data in future work (see Discussion for more details) …”

      And line 466:

      “…Our model of the T-maze environment showed an expected phenomenon that as the animal runs towards the decision point, the theta sweep length also shows cyclical patterns (Fig. 5b lower panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next round, the activity bump exhibits a longer sweep again because those neurons have recovered from the previous adaptation effect. We plan to test this phenomenon in future experiments...”

      1. Perhaps I missed this, but I'm curious whether the authors have considered what factors might modulate the adaptation strength. In particular, might rat speed modulate adaptation strength? If so, would have interesting predictions for theta sequences at low vs high speeds.

      Thank you for raising up this important point. As we pointed out in line 279: “…the experimental data (Fernandez et al, 2017) has indicated that there is a laminar difference between unimodal cells and bimodal cells, with bimodal cells correlating more with the firing patterns of deep CA1 neurons and unimodal cells with the firing patterns of superficial CA1 neurons. Our model suggests that this difference may come from the different adaptation strengths in the two layers…”. Our guess is that the adaptation strength might reflect some physiological differences of place cells in difference pyramidal layers in the hippocampus. For example, place cells in superficial layer and deep layer receive different amount of input from MEC and sensory cortex, and such difference may contribute to a different effect of adaptation of the two populations of place cells.

      Our intuition is that animal’s running speed may not directly modulate the adaptation strength. Note that the effect of adaptation and adaptation strength are different. As the animal rapidly runs across the firing field, the place cell experiences a dense firing (in time), therefore the adaptation effect is large; as the animal slowly runs across the field, the place cell experiences sparse firing (in time), and hence the adaptation effect is small. In these two situations, the adaption strength is fixed, but the difference is due to the spike intervals.

      From Eq. 45-47, our theoretical analysis shows several predictions of theta sequences regarding to the parameters in the network. For example, how the sweep length varies when the running speed changes in the network. We simulated the network in both low running speed and high running speed (while kept all other parameters fixed), and found that the sweep length at low speed is larger than that at high speed. This is different from previously data, where they showed that the sweep length increases as the animal runs faster (Maurer et al, 2012). However, we are not sure how other parameters are changed in the biological brain as the animal runs faster, e.g., the external input strength and the place field width might also vary as confounds. We will explore this more in the future and investigate how the adaptation strength is modulated in the brain.

      1. I think the paper has a number of predictions that would be especially interesting to experimentalists but are sort of scattered throughout the manuscript. It would be beneficial to have them listed more prominently in a separate section in the discussion. This should include (1) a prediction that the bump height in the forward direction should be higher than in the backward direction, (2) predictions about bimodal and unimodal cells starting with line 366, (3) prediction of another possible kind of theta cycling, this time in the form of sweep length (see comment above), etc.

      Thank you for pointing this out. We updated the manuscript by including a paragraph in Discussion summarizing the prediction we made throughout the manuscript (from line 459):

      ‘’…Our model has several predictions which can be tested in future experiments. For instance, the height of the activity bump in the forward sweep window is higher than that in the backward sweep window (Fig. 4c) due to the asymmetric suppression effect from the adaptation. For bimodal cells, they will have two peaks in their firing frequency as the animal runs across the firing fields, with one corresponding to phase precession and the other corresponding to phase procession. Similar to unimodal cells, both the phase precession and procession of a bimodal cell after transient intrahippocampal perturbation will continue from the new location of the animal (Fig. S5). Interestingly, our model of the T-maze environment showed an expected phenomenon that as the animal runs towards the decision point, the theta sweep length also shows cyclical patterns (Fig. 5b lower panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next round, the activity bump exhibits a longer sweep again because those neurons have recovered from the previous adaptation effect. We plan to test this phenomenon in future experiments…’

      Reviewer #2:

      In this work, the authors elaborate on an analytically tractable, continuous-attractor model to study an idealized neural network with realistic spiking phase precession/procession. The key ingredient of this analysis is the inclusion of a mechanism for slow firing-rate adaptation in addition to the otherwise fast continuous-attractor dynamics. The latter which continuous-attractor dynamics classically arises from a combination of translation invariance and nonlinear rate normalization. For strong adaptation/weak external input, the network naturally exhibits an internally generated, travelling-wave dynamics along the attractor with some characteristic speed. For small adaptation/strong external stimulus, the network recovers the classical externally driven continuous-attractor dynamics. Crucially, when both adaptation and external input are moderate, there is a competition with the internally generated and externally generated mechanism leading to oscillatory tracking regime. In this tracking regime, the population firing profile oscillates around the neural field tracking the position of the stimulus. The authors demonstrate by a combination of analytical and computational arguments that oscillatory tracking corresponds to realistic phase precession/procession. In particular the authors can account for the emergence of a unimodal and bimodal cells, as well as some other experimental observations with respect the dependence of phase precession/procession on the animal's locomotion. The strengths of this work are at least three-fold: 1) Given its simplicity, the proposed model has a surprisingly large explanatory power of the various experimental observations. 2) The mechanism responsible for the emergence of precession/procession can be understood as a simple yet rather illuminating competition between internally driven and externally driven dynamical trends. 3) Amazingly, and under some adequate simplifying assumptions, a great deal of analysis can be treated exactly, which allows for a detailed understanding of all parametric dependencies. This exact treatment culminates with a full characterization of the phase space of the network dynamics, as well as the computation of various quantities of interest, including characteristic speeds and oscillating frequencies.

      1. As mentioned by the authors themselves, the main limitation of this work is that it deals with a very idealized model and it remains to see how the proposed dynamical behaviors would persist in more realistic models. For example, the model is based on a continuous attractor model that assumes perfect translation-invariance of the network connectivity pattern. Would the oscillating tracking behavior persist in the presence of connection heterogeneities?

      Thank you for raising up this important point. Continuous attractor models have been widely used in modeling hippocampal neural circuits (see McNaughton et al, 2006 for a review), and researchers often assumed that there is a translation-invariance structure in these network models. The theta sweep state we presented in the current work is based on the property of the continuous attractor state. We do agree with the reviewer that the place cell circuit might not be a perfect continuous attractor network. For a simpler case where the connection weights are sampled from a Gaussian distribution around J_0, the theta sweep state still exhibit in the network (see Fig. S8 for an example). We also believe that the model can be extended to more complex cases where there exist over-representations of the “home” location and decision points in the real environment, i.e., the heterogeneity is not random, but has stronger connections near those locations, then the theta sweeps will be more biased to those location. However, if the heterogeneity breaks the continuous attractor state, the theta sweep state may not be presented in the network.

      1. Can the oscillating tracking behavior be observed in purely spiking models as opposed to rate models as considered in this work?

      Thank you for pointing this out. The short answer is yes. If the translation-invariance of the network connectivity pattern hold in the network, i.e., the spiking network is still a continuous attractor network (see the work from Tsodyks et al, 1996; and from Yu et al. "Spiking continuous attractor neural networks with spike frequency adaptation for anticipative tracking"), then the adaptation, which has the mathematical form of spike frequency adaptation (instead of firing rate adaptation), will still generate sweep state of the activity bump. We here chose the rate-based model because it is analytically tractable, which gives us a better understanding of the underlying dynamics. Many of the continuous attractor model related to spatial tuning cell populations are rate-based (see examples Zhang 1996; Burak & Fiete 2009). However, extending to spike-based model would be straightforward.

      1. Another important limitation is that the system needs to be tuned to exhibit oscillation within the theta range and that this tuning involves a priori variable parameters such as the external input strength. Is the oscillating-tracking behavior overtly sensitive to input strength variations?

      Thank you for pointing this out. In rodent studies, theta sequences are thought to result from the integration of both external inputs conveying sensory-motor information, and intrinsic network dynamics possibly related to memory processes (see Drieu and Zugaro 2019; Drieu at al, 2018). We clarified here that, in our modeling work, the generation of theta sweeps also depends on both the external input and the intrinsic dynamics (induced by the firing rate adaptation). Therefore, we don’t think the dependence of theta sweeps on the prior parameter – the external input strength – is a limitation here. We agreed with the reviewer that the system needs to be tuned to exhibit oscillation within the theta range. However, the parameter range of inducing oscillatory state is relatively large (see Fig. 2g in the main text). It will be interesting to investigate (and find experimental evidence) how the biological system adjusts the network configuration to implement the sweep state in network dynamics.

      1. The author mentioned that an external pacemaker can serve to drive oscillation within the desired theta band but there is no evidence presented supporting this.

      Thank you for pointing this out. We made this argument based on our initial simulation before but didn’t go into the details of that. We have deleted that argument in the discussion and rewrote that part. We will carry out more simulations in the future to verify if this is true. See our changes from line 418 to line 431:

      “... A representative model relying on neuronal recurrent interactions is the activation spreading model. This model produces phase precession via the propagation of neural activity along the movement direction, which relies on asymmetric synaptic connections. A later version of this model considers short-term synaptic plasticity (short-term depression) to implicitly implement asymmetric connections between place cells, and reproduces many other interesting phenomena, such as phase precession in different environments. Different from these two models, our model considers firing rate adaptation to implement symmetry breaking and hence generates activity propagation. To prevent the activity bump from spreading away, their model considers an external theta input to reset the bump location at the end of each theta cycle, whereas our model generates an internal oscillatory state, where the activity bump travels back due to the attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our model reveals how the adaptation strength affect the direction of theta sweeps, as well as offers a more detailed understanding of theta cycling in complex environments...”

      1. A final and perhaps secondary limitation has to do with the choice of parameter, namely the time constant of neural firing which is chosen around 3ms. This seems rather short given that the fast time scale of rate models (excluding synaptic processes) is usually given by the membrane time constant, which is typically about 15ms. I suspect this latter point can easily be addressed.

      Thank you for pointing this out. The time constant we currently chose is relatively short as used in other studies. We conducted additional simulation by adjusting the time constant to 10ms, and the results reported in this paper remain consistent. Please refer to Fig S9 for the results obtained with a time constant of 10 ms.

      Reviewer #3:

      With a soft-spoken, matter-of-fact attitude and almost unwittingly, this brilliant study chisels away one of the pillars of hippocampal neuroscience: the special role(s) ascribed to theta oscillations. These oscillations are salient during specific behaviors in rodents but are often taken to be part of the intimate endowment of the hippocampus across all mammalian species, and to be a fundamental ingredient of its computations. The gradual anticipation or precession of the spikes of a cell as it traverses its place field, relative to the theta phase, is seen as enabling the prediction of the future - the short-term future position of the animal at least, possibly the future in a wider cognitive sense as well, in particular with humans. The present study shows that, under suitable conditions, place cell population activity "sweeps" to encode future positions, and sometimes past ones as well, even in the absence of theta, as a result of the interplay between firing rate adaptation and precise place coding in the afferent inputs, which tracks the real position of the animal. The core strength of the paper is the clarity afforded by the simple, elegant model. It allows the derivation (in a certain limit) of an analytical formula for the frequency of the sweeps, as a function of the various model parameters, such as the time constants for neuronal integration and for firing rate adaptation. The sweep frequency turns out to be inversely proportional to their geometric average. The authors note that, if theta oscillations are added to the model, they can entrain the sweeps, which thus may superficially appear to have been generated by the oscillations.

      1. The main weakness of the study is the other side of the simplicity coin. In its simple and neat formulation, the model envisages stereotyped single unit behavior regulated by a few parameters, like the two time constants above, or the "adaptation strength", the "width of the field" or the "input strength", which are all assumed to be constant across cells. In reality, not only assigning homogeneous values to those parameters seems implausible, but also describing e.g. adaptation with the simple equation included in the model may be an oversimplification. Therefore, it remains important to understand to what extent the mechanism envisaged in the model is robust to variability in the parameters or to eg less carefully tuned afferent inputs.

      Thank you for pointing out this important question. As the reviewer pointed out, there is an oversimplification in our model compared to the real hippocampal circuits (also see Q1 and Q3 from reviewer2). We also pointed out that in the main text line 504:

      “…Nevertheless, it is important to note that the CANN we adopt in the current study is an idealized model for the place cell population, where many biological details are missed. For instance, we have assumed that neuronal synaptic connections are translation-invariant in the space...”

      To investigate model robustness to parameter setting, we divided all the parameters into two groups. The first group of parameters determines the bump state, i.e., width of the field a, neuronal density ρ, global inhibition strength k, and connection strength J_0. The second group of parameters determines the bump sweep state (which based on the existence of the bump state), i.e., the input strength α and the adaptation strength m. For the first group of parameters, we refer the reviewer to the Method part: stability analysis of the bump state. This analysis tells us the condition when the continuous attractor state holds in the network (see Eq. 20, which guides us to perform parameter selection). For the second group of parameters, we refer the reviewer to Fig. 2g, which tells us when the bump sweep state occurs regarding to input strength and adaptation strength. When the input strength is small, the range of adaptation strength is also small (to get the bump sweep state). However, as the input strength increases, we can see from Fig. 2g that the range of adaptation strength (to get the bump sweep state) also linearly increases. Although there exists other two state in the network when the two parameters are set out of the colored area in Fig. 2g, the parameter range of getting sweep state is also large, especially when the input strength value is large, which is usually the case when the animal actively runs in the environment.

      To demonstrate how the variability affect the results, we added variability to the connection weights by sampling the connection weights from a Gaussian distribution around J_0 (this introduces heterogeneity in the connection structure). We found that the bump sweep state still holds in this condition (see Fig. S8 as well as Q1 from reviewer2). For the variability in other parameter values, the results will be similar. Although adding variability to these parameters will not bring us difficulty in numerical simulation, it will make the theoretical analysis much more difficult.

      1. The weak adaptation regime, when firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel - I discussed it, among others, in trying to understand the significance of the CA3-CA1 differentiation (2004). What is novel here, as far as I know, is the strong adaptation regime, when the adaptation strength m is at least larger than the ratio of time constants. Then population activity literally runs away, ahead of the animal, and oscillations set in, independent of any oscillatory inputs. Can this really occur in physiological conditions? A careful comparison with available experimental measures would greatly strengthen the significance of this study.

      Thank you for raising up this interesting question.

      Re: “…firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel…”, We added Treves, A (2004) as a citation when we introduce the firing rate adaptation in line 116

      To test if the case of “…the adaptation strength m is at least larger than the ratio of time constants…” could occur in physiological conditions, it requires a measure of the adaptation strength as well as the time constant of both neuron firing and adaptation effect. The most straightforward way would be in vivo patch clamp recording of hippocampal pyramidal neurons when the animal is navigating an environment. This will give us a direct measure of all these values. However, we don’t have these data to verify this hypothesis yet. Another possible way of measure these values is through a state-space model. Specifically, we can build a state space model (considering adaptation effect in spike release) by taking animal’s position as latent dynamics, and recorded spikes as observation, then infer the parameters such as adaptation strength and time constant in the slow dynamics. Previous work of state-space models (without firing rate adaptation) in analyzing theta sweeps and replay dynamics have been explored by Denovellis et al. (2021), as well as Krause and Drugowitsch (2022). We think it might be doable to infer the adaptation strength and adaptation time constant in a similar paradigm in future work. We thank the reviewer for pointing out that and hope our replies have clarified the concerns of the reviewer.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors focused on genetic variability in relation to insulin resistance. They used genetically different lines of mice and exposed them to the same diet. They found that genetic predisposition impacts the overall outcome of metabolic disturbances. This work provides a fundamental novel view on the role of genetics and insulin resistance.

      Reviewer #2 (Public Review):

      Summary:

      In the present study, van Gerwen et al. perform deep phosphoproteomics on muscle from saline or insulin-injected mice from 5 distinct strains fed a chow or HF/HS diet. The authors follow these data by defining a variety of intriguing genetic, dietary, or gene-by-diet phosphor-sites that respond to insulin accomplished through the application of correlation analyses, linear mixed models, and a module-based approach (WGCNA). These findings are supported by validation experiments by intersecting results with a previous profile of insulin-responsive sites (Humphrey et al, 2013) and importantly, mechanistic validation of Pfkfb3 where overexpression in L6 myotubes was sufficient to alter fatty acid-induced impairments in insulin-stimulated glucose uptake. To my knowledge, this resource provides the most comprehensive quantification of muscle phospho-proteins which occur as a result of diet in strains of mice where genetic and dietary effects can be quantifiably attributed in an accurate manner. Utilization of this resource is strongly supported by the analyses provided highlighting the complexity of insulin signaling in muscle, exemplified by contrasts to the "classically-used" C57BL6/J strain. As it stands, I view this exceptional resource as comprehensive with compelling strength of evidence behind the mechanism explored. Therefore, most of my comments stem from curiosity about pathways within this resource, many of which are likely well beyond the scope of incorporation in the current manuscript. These include the integration of previous studies investigating these strains for changes in transcriptional or proteomic profiles and intersections with available human phospho-protein data, many of which have been generated by this group.

      Strengths:

      Generation of a novel resource to explore genetic and dietary interactions influencing the phospho-proteome in muscle. This is accompanied by the elegant application of in silico tools to highlight the utility.

      Weaknesses:

      Some specific aspects of integration with other data among the same fixed strains could be strengthened and/or discussed.

      Reviewer #3 (Public Review):

      Summary:

      The authors aimed to investigate how genetic and environmental factors influence the muscle insulin signaling network and its impact on metabolism. They utilized mass spectrometry-based phosphoproteomics to quantify phosphosites in the skeletal muscle of genetically distinct mouse strains in different dietary environments, with and without insulin stimulation. The results showed that genetic background and diet both affected insulin signaling, with almost half of the insulin-regulated phosphoproteome being modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affecting insulin signaling in a strain-dependent manner.

      Strengths:

      The study uses state-of-the-art phosphoproteomics workflow allowing quantification of a large number of phosphosites in skeletal muscle, providing a comprehensive view of the muscle insulin signaling network. The study examined five genetically distinct mouse strains in two dietary environments, allowing for the investigation of the impact of genetic and environmental factors on insulin signaling. The identification of coregulated subnetworks within the insulin signaling pathway expanded our understanding of its organization and provided insights into potential regulatory mechanisms. The study associated diverse signaling responses with insulin-stimulated glucose uptake, uncovering regulators of muscle insulin responsiveness.

      Weaknesses:

      Different mouse strains have huge differences in body weight on normal and high-fat high-sugar diets, which makes comparison between the models challenging. The proteome of muscle across different strains is bound to be different but the changes in protein abundance on phosphosite changes were not assessed. Authors do get around this by calculating 'insulin response' because short insulin treatment should not affect protein abundance. The limitations acknowledged by the authors, such as the need for larger cohorts and the inclusion of female mice, suggest that further research is needed to validate and expand upon the findings.

      Reviewer #1 (Recommendations For The Authors):

      I would suggest further discussion of the potential differences between males and females of the various strains.

      In the revised manuscript we have included a more detailed discussion of the potential differences between male and female mice in the "Limitations of this study" section on lines 455-459. In particular, a landmark study of HFD-fed inbred mouse strains found that insulin sensitivity, as inferred from the proxy HOMA-IR, was affected by interactions between sex and strain despite generally being greater in female mice (10.1016/j.cmet.2015.01.002). Furthermore, a recent phosphoproteomics study of human induced pluripotent stem-cell derived myoblasts identified groups of insulin-regulated phosphosites affected by donor sex, and by interactions between sex and donor insulin sensitivity (10.1172/JCI151818). Based on these results, we anticipate that both soleus insulin sensitivity and phoshoproteomic insulin responses would differ between male and female mice through interactions with strain and diet, adding yet another layer of complexity to what we observed in this study. This will be an important avenue for future research to explore.

      Reviewer #2 (Recommendations For The Authors):

      The following are comments to authors - many, if not all are suggestions for extended discussion and beyond the scope of the current elegant study.

      In the discussion section (line 428) the authors make a key point in that the genetic, dietary, and interacting patterns of variation of Phospho-sites could be due to changes in total protein and/or transcript levels across strains. For example, given the increased expression of Pfkfb3 was sufficient to impact glucose uptake, suggesting that the transcript levels of the gene might also show a similar correlation with insulin responsiveness as in Fig 6b. Undoubtedly, phospho-proteomics analyses will provide unique information on top of more classical omics layers and uncover what would be an important future direction. Therefore, I would suggest adding to the discussion some guidance on performing similar applications to datasets from, at least some, of the strains used where RNA-seq and proteomics are available.

      We thank the reviewer for this suggestion. To address this, we mined recently published total proteomics data collected from soleus muscles of seven CHOW or HFD-fed inbred mouse strains, three of which were in common with our study (C57Bl6J, BXH9, BXD34; 10.1016/j.cmet.2021.12.013). In this study ex vivo soleus glucose uptake was measured and correlation analysis was performed, so we directly extracted the resulting glucose uptake-protein associations and compared them to the glucose uptake-phosphoprotein associations identified in our study. Indeed, we found that only a minority of proteins correlated at both the phosphosite and total protein levels, highlighting the utility of phosphoproteomics to provide orthogonal information to more classical omics layers. We have included this analysis in lines 303-311.

      Relevant to this, the authors might want to consider depositing scripts to analyze some aspects of the data (ex. WGCNA on P-protein data or insulin-regulated anova) in a repository such as github so that these can be applied easily to other datasets.

      We refer the reviewer to the section "Code availability" on lines 511-513, where we deposited all code used to analyse the data on github.

      In contrast to the points above, I feel that the short time-course of insulin stimulation was one important aspect of the experimental design that was not emphasized enough as a strength. It was mentioned as a limitation in that other time points could provide more info, yes. But given that the total abundance of proteins and transcripts likely doesn't shift tremendously in this time frame, this provides an important appeal to the analysis of phosphor-proteomic data. I would suggest highlighting the insulin-stimulated response analysis here as something that leverages the unique nature of phosphoproteomics.

      We are grateful for the reviewer's positivity regarding this aspect of our experimental design. We have reiterated the value of the 10min insulin stimulation - that it temporally segregates phosphoproteomic and total proteomic changes - in the "Limitations of this study" section on lines 477-481.

      While I recognize the WGCNA analysis as an instrumental way to highlight global patterns of phospo-peptide abundance co-regulation, the analysis currently seems somewhat underdeveloped. For example, Fig 5f-h shows a lot of overlap between kinase substrates and pathways among modules. Clearly, there are informative differences based on the intersection with Humphries 2013 and the correlation with Pfkbp3. To highlight the specific membership of these modules, most people rank-order module members by correlation with eigen-gene (or P-peptide) and then perform pathway enrichments on these. Alternatively, it looks like all data was used to generate modules across conditions. One consideration would be to perform WGCNA on relevant comparison data separately (ex. chow mice only and HFHS only) and then compare modules whose membership is retained or shift between the two. Or even look at module representation for genes that show large correlations with insulin-responsiveness. This might also be a good opportunity to suggest readers intersect module members with muscle eQTLs which colocalize to glucose or insulin to prioritize some potential key drivers.

      We thank the reviewer for their helpful suggestions, which we feel have substantially improved the WGCNA analysis. To probe specific functional differences between subnetworks, we performed rank-based enrichment using phosphopeptide module membership scores. Interestingly, this did reveal pathways that were enriched only in certain modules. However, we found that after p-value adjustment, virtually all enriched pathways lost statistical significance, hence we interpret these results as suggestive only. We have made this analysis available to readers in Fig S4b-d and lines 263-265: "To further probe functional differences we analysed phosphopeptide subnetwork membership scores, which revealed additional pathways enriched in individual subnetworks. However, these results were not significant after p-value adjustment and hence are suggestive only (Fig. S4b-d)". We also visualised module representation for glucose-uptake correlated phosphopeptides. This agreed with our existing analyis in Fig. 6f, where the eigenpeptides of modules V and I were correlated with glucose uptake (Fig. 6f). We have incorporated this new analysis in Fig. S6b-c and lines 324-325: "Examining the subnetwork membership scores for glucose-uptake correlated phosphopeptides also revealed a preference for clusters V and I, supporting this analysis (Fig. S6b-c)." Finally, in the discussion we have presented the integration of genetic data, such as muscle-specific eQTLs, as a future direction (lines 398-401): "Alternatively, one could overlap subnetworks with genetic information, such as genes associated with glucose homeostasis and other metabolic traits in human GWAS studies, or muscle-specific eQTLs or pQTLs genetically colocalised with similar traits, to further prioritise subnetwork-associated phenotypes and identify potential drivers within subnetworks."

      Have the authors considered using their heritability and GxE estimated for module eigenpeptides? To my knowledge, this has never been performed and might provide some informative information as the co-regulated P-protein structure occurs as a result of relevant contexts.

      In the revised manuscript we have now analysed eigenpeptides with the same statistical tests used to identify Strain and Diet effects in insulin-regulated phosphopeptides. We have displayed the statistical results in Fig. S4a, and have explicitly mentioned examples of StrainxDiet effects on lines 245-247: "For example, HFD-feeding attenuated the insulin response of subnetwork I in CAST and C57Bl6J strains (t-test adjusted p = 0.0256, 0.0365), while subnetwork II was affected by HFD-feeding only in CAST and NOD (Fig. 5e, Fig. S4a, t-test adjusted p = 0.00258, 0.0256)."

      The integration of modules with adipocyte phosphoproteomic data from the authors 2013 Cell metab paper seems like an important way to highlight the integration of this resource to define critical cellular signaling mechanisms. To assess the conservation of signaling mechanisms and relationships to additional key contexts (ex. exercise), the intersection of the insulin-stimulated P-peptides with human datasets generated by this group (ex. cell metab 2015, nature biotech 2022) seems like an obvious future direction to prioritize targets. Figure S3B shows a starting point for these types of integrations.

      To demonstrate the value of integrating our results with related phosphoproteomics data, we have incorporated the reviewer's advice of comparing insulin-regulated phosphosites to exercise-regulated phosphosites from Needham et. Nature Biotech 2022 and Hoffman et al. Cell Metabolism 2015. We identified a small subset of commonly regulated phosphosites (8 across all three studies). Given insulin and exercise both promote GLUT4 translocation, these sites may represent conserved regulatory mechanisms. This analysis is presented in Fig. S3d, Table S2, and lines 129-135: "In addition to insulin, exercise also promotes GLUT4 translocation in skeletal muscle. We identified a small subset of phosphosites regulated by insulin in this study that were also regulated by exercise in two separate human phosphoproteomics studies (Fig. S3d, Table S2, phosphosites: Eef2 T57 and T59, Mff S129 and S131, Larp1 S498, Tbc1d4 S324, Svil S300, Gys1 S645), providing a starting point for exploring conserved signalling regulators of GLUT4 translocation."

      For the Pfkfb3 overexpression system, are there specific P-peptides that are increased/decreased upon insulin stimulation? This might be an interesting future direction to mention in order to link signaling mechanisms.

      We assessed whether canonical insulin signalling was affected by Pfkfb3 overexpression by immunoblotting. Insulin-stimulated phosphorylation of Akt S473, Akt T308, Gsk3a/b S21/S9, and PRAS40 T246 differed little across conditions, with only a weak, statistically insignificant trend towards increased pT308 Akt, pS21/S9 Gsk3a/b, and pT246 PRAS40 in palmitate-treated Pfkfb3-overexpressing cells. Hence, as the reviewer has suggested, an interesting future direction will be to perform phosphoproteomics to characterise more deeply the effects of palmitate and Pfkfb3 overexpression on insulin signalling. We have modified the manuscript to reflect these findings and suggested future directions on lines 362-365: "immunoblotting of canonical insulin-responsive phosphosites on Akt and its substrates GSK3α/β and PRAS40 revealed minimal effect of palmitate treatment and Pfkfb3 overexpression (Fig. S7e-f), hence more detailed phosphoproteomics studies are needed to clarify whether Pfkfb3 overexpression restored insulin action by modulating insulin signalling."

      Reviewer #3 (Recommendations For The Authors):

      This remarkable contribution by the esteemed research group has significantly enriched the field of metabolism. The extensive dataset, intertwined with a sophisticated research design, promises to serve as an invaluable resource for the scientific community. I offer a series of suggestions aimed at potentially elevating the manuscript to an even higher standard.

      Mouse Weight Variation and Correlation Analysis: The pronounced variances in mouse body weights pose a challenge to meaningful comparisons (Fig S1). Could the disparities in the phosphoproteome between basal and insulin-stimulated conditions be attributed to differences in body weight? Consider performing a correlation analysis. Furthermore, does the phosphoproteome of these mouse strains evolve comparably over time? Do these mice age similarly? Kindly incorporate this information.

      We thank the reviewer for the suggested analysis. We found there was a significant correlation between the phosphopeptide insulin response and mouse body weight, either in CHOW-fed mice (Strain effects) or across both diets (Diet effects), for ~ 25% of phosphopeptides that exhibited a Strain or Diet effect. Hence, while there is a clear effect of body weight on insulin signalling, this influences only a small proportion of the entire insulin-responsive phosphoproteome. Notably, insulin was dosed according to mouse lean mass to ensure equivalent dosage received by the soleus muscle, hence any insulin signalling differences associated with body weight are unlikely due to differences in dosing. As the reviewer also alludes to, different strains could have different lifespans. This may result in mice having different biological ages at the time of experimentation, and this in turn could influence insulin signalling. This possibility is challenging to assess in a quantitative manner because lifespan data is not available for most strains used. However, it is worth noting that female CAST mice live 77% as long as C57Bl6J mice (median age of 671 vs 866 (10.1073/pnas.1121113109); data is not available for male mice nor the other three strains), and substantial differences in insulin signalling were observed between these two strains. Ultimately, regardless of whether body weight and/or lifespan altered insulin signalling, such differences would still have arisen solely from the distinct genetic backgrounds and diets of the mice, hence we believe they are meaningful results that should not be dismissed. We have added this analysis to the revised manuscript in the "Limitations of this study" section on lines 471-477: "We were also unable to determine the extent to which signalling changes arose from muscle-intrinsic or extrinsic factors. For instance, body weight varied substantially across mice and correlated significantly with 25% of Strain and Diet-affected phosphopeptides (Fig. S8c), suggesting obesity-related systemic factors likely impact a subset of the muscle insulin signalling network. Furthermore, genetic differences in lifespan could alter the “biological age” of different strains and their phosphoproteomes, though we could not assess this possibility since lifespan data are not available for most strains used. "

      Soleus Muscle Data and Bias Considerations: Were measurements taken for lean mass and soleus muscle weight? If so, please present the corresponding data.

      Measurements for lean mass and the mass of soleus muscle after grinding have been including in Supplementary Figure S1 (panels c-d)

      As outlined in the methods section, the variation in protein yield from the soleus muscle across each strain is substantial. Notably, the distinct peptide input for phospho enrichment introduces biases, given that muscles with lower input may exhibit reduced identification (Fig S2). This bias might also manifest in the PCA plot (S2C). Ideally, adopting a uniform protein/peptide input would have been advantageous. Address this concern and contemplate moving the PCA plot to the main figure. It's prudent to reconsider the sentence stating, "Samples from animals of the same strain and diet were highly correlated and generally clustered together, implying the data are highly reproducible (Fig. S2b-d)," particularly if the input and total IDs were not matched.

      The reviewer highlights an important point. As the reviewer comments, it would have been our preference to use the same amount of protein material for all samples. However, as there was a wide range in the mass of the soleus muscle across mouse strains (in particular much lower in CAST mice), it was not appropriate to use the same amount of material for all strains. This is indeed evident in the PCA plot (Figure S2c), whereby samples cluster in the second component (PC2) based on the amount of protein material. However, this clustering is not observed in the hierarchical clustering (Figure S2d), and nor are the number of phosphopeptides quantified in each sample substantially impacted by these differences (Figure S2a) as implied by the reviewer. Indeed, the number of phosphopeptides quantified did not noticeably vary when comparing BXH9/BXD34 to C57Bl6J/NOD despite 32.3% less material used, and there were only 12.4% fewer phosphopeptides (average #13891.56 vs 15851.29) in CAST compared to C57Bl6J/NOD strains, despite 51.8% less material used. To further emphasise the minimal effect that input material had on phosphopeptide quantification, we have additionally plotted the number of phosphopeptides quantified in each sample following the filtering steps we employed prior to statistical analysis of the dataset (i.e. ANOVA). This plot (Author response image 1) shows that there is even less variation in the number of quantified phosphopeptides between strains, with only 9.12% fewer phosphopeptides quantified and filtered on average in CAST compared to C57Bl6J/NOD (average #9026.722 vs 9932.711). From a quantitative perspective, in both the PCA (Principal Component 1) and hierarchical clustering analyses, samples are additionally clustered by individual strains, and in the latter they also cluster generally by diet, implying that biological variation between samples remains the primary variation captured in our data. We have modified the manuscript so that these observations are forefront (lines 103-106): "Furthermore, while different strains clustered by the amount of protein material used in the second component of the PCA (Figure S2c), samples from animals of the same strain and diet were highly correlated and generally clustered together, indicating that our data are highly reproducible". To ensure that readers are aware of our decision to alter protein starting material and its implications, we have moved the description of this from the methods to the results, and we have highlighted the impact on phosphopeptide quantification in CAST mice (lines 99-103): "Due to the range in soleus mass across strains (Fig. S1D) we altered the protein material used for EasyPhos (C57Bl6J and NOD: 755 µg, BXH9 and BXD34: 511 µg, CAST: 364 µg), though phosphopeptide quantification was minimally affected, with only 12.4% fewer phosphopeptides quantified on average in CAST compared to the C57lB6J/NOD (average 13891.56 vs 15851.29 Fig. S2a)."

      Author response image 1.

      Phosphopeptide quantification following filtering. a) The number of phosphopeptides quantified in each sample after filtering prior to statistical analysis.

      Phosphosite Quantification Filtering: The quantified phosphosites have been dropped from 23,000 to 10,000. Could you elucidate the criteria employed for filtering and provide a concise explanation in the main text?

      We thank the reviewer for drawing this ambiguity to our attention. Before testing for insulin regulation, we performed a filtering step requiring phosphopeptides to be quantified well enough for comparisons across strains and diets. Specifically, phosphopeptides were retained if they were quantified well enough to assess the effect of insulin in more than eight strain-diet combinations (≥ 3 insulin-stimulated values and ≥ 3 unstimulated values in each combination). We have now included this explanation of the filtering in the main text on lines 108-114.

      ANOVA Choice Clarification: In Figure 4, there's a transition from one-way ANOVA in B to two-way ANOVA in C. Could you expound on the rationale for selecting these distinct methods?

      In panel B, we first focussed on kinase regulation differences between strains in the absence of a dietary perturbation. Hence, we performed one-way ANOVAs only within the CHOW-fed mice. In panel C, we then consider the effect of perturbation with the HFD. We perform two-way ANOVAs, allowing us to identify effects of the HFD that are uniform across strains (Diet main effect) or variable across strains (Strain-by-diet interaction).

      Cell Line Selection for Functional Experiments: Could you elucidate the rationale behind opting for L6 cells of rat origin over C2C12 mouse cells for functional experiments?

      We acknowledge that C2C12 cells have the benefit of being of mouse origin, which aligns with our mouse-derived phosphoproteomics data. However, they are unsuitable for glucose uptake experiments as they lack an insulin-responsive vesicular compartment even upon GLUT4 overexpression, and undergo spontaneous contraction when differentiated resulting in confounding non-insulin dependent glucose uptake (10.1152/ajpendo.00092.2002, 10.1007/s11626-999-0030-8). In contrast, L6 cells readily express insulin-responsive GLUT4, and cannot contract (doi.org/10.1113/JP281352, 10.1007/s11626-999-0030-8). Therefore they are a superior model for studying insulin-dependent glucose transport. We have added a justification of L6 cells over C2C12 cells in the revised manuscript, on lines 352-354: "While L6 cells are of rat origin, they are preferable to the popular C2C12 mouse cell line since the latter lack an insulin-responsive vesicular compartment and undergo spontaneous contraction, resulting in confounding non-insulin dependent glucose uptake."

      It's intriguing that while a phosphosite was modulated on Pfkfb2, functional assays were conducted on a different isoform (Pfkfb3) wherein the phosphosite was not detected.

      The correlation between Pfkfb2 S469 phosphorylation and insulin-stimulated glucose uptake suggests that F2,6BP production, and subsequent glycolytic activation, positively regulate insulin responsiveness. There are several ways of testing this: 1) Knock down endogenous Pfkfb2, and re-express either wild-type protein or a S469A phosphomutant. If S469 phosphorylation positively regulates insulin responsiveness, then knockdown should decrease insulin responsiveness and re-expression of wild-type Pfkfb2, but not S469A, should restore it. 2) Induce insulin resistance (e.g. through palmitate treatment), and overexpress phosphomimetic S469D or S469E Pfkfb2 to enhance F2,6BP production. Under our hypothesis, this should reverse insulin resistance. 3) There is some evidence that dual phosphorylation of S469 and S486, another activating phosphosite on Pfkfb2, enhances F2,6BP production through 14-3-3 binding (10.1093/emboj/cdg363). Hence, we may expect that introduction of an R18 sequence into Pfkfb2, which causes constitutive 14-3-3 binding (10.1074/jbc.M603274200), would increase Pfkfb2-driven F2,6BP production, and under our hypothesis this should reverse insulin resistance. 4) The paralog Pfkfb3 lacks Akt regulatory sites and has substantially higher basal activity than Pfkfb2. Thus, overexpression of Pfkfb3 should mimic the effect of phosphorylated Pfkfb2, and hence reverse insulin resistance under our hypothesis. While approaches 1), 2), and 3) directly target Pfkfb2, they have drawbacks. For example, 1) may not work if Pfkfb2 knockdown is compensated for by other Pfkfb isoforms, 2) may not work since D/E phosphomimetics often do not recapitulate the molecular effects of S/T phosphorylation (10.1091/mbc.E12-09-0677), and 3) may not work if S469 phosphorylation does not operate through 14-3-3 binding. Hence we performed 4) as it seemed to be the most robust and cleanest experiment to test our hypothesis. We have revised the manuscript to further clarify the challenges of directly targeting Pfkfb2 and the benefits of targeting Pfkfb3 on lines 342-349: "Since Pfkfb2 requires phosphorylation by Akt to produce F2,6BP substantially, increasing F2,6BP production via Pfkfb2 would require enhanced activating site phosphorylation, which is difficult to achieve in a targeted fashion, or phosphomimetic mutation of activating sites to aspartate/glutamate, which often does not recapitulate the molecular effects of serine/threonine phosphorylation. By contrast, the paralog Pfkfb3 has high basal production rates and lacks an Akt motif at the corresponding phosphosites. We therefore rationalised that overexpressing Pfkfb3 would robustly increase F2,6BP production and enhance glycolysis regardless of insulin stimulation and Akt signalling."

      Insulin-Independent Action of Pfkfb3: The functionality of Pfkfb3 unfolds in an insulin-independent manner, yet it restores insulin action (Fig 6h). Could you shed light on the mechanism underpinning this phenomenon? Consider measuring F2,6BP concentrations or assessing kinase activity upon overexpression.

      Pfkfb3 overexpression increased the glycolytic capacity of L6 myotubes in the absence of insulin stimulation, as inferred by extracellular acidification rate (Fig. S7c). This is indeed consistent with Pfkfb3 enhancing glycolysis through increased F2,6BP concentration in an insulin-independent manner. To shed light on the mechanism connecting this to insulin action, we performed immunoblotting experiments to assess the kinase activity of Akt, a master regulator of the insulin response. Indeed, this experimental direction has precedent as we previously observed that Pfkfb3 overexpression enhanced insulin-stimulated Akt signalling in HEK293 cells, while small-molecule inhibition of Pfkfb kinase activity reduced Akt signalling in 3T3-L1 adipocytes (10.1074/jbc.M115.658815). However, insulin-stimulated phosphorylation of Akt S473, Akt T308, Gsk3a/b S21/S9, and PRAS40 T246 differed little across conditions, with only a weak, statistically insignificant trend towards increased pT308 Akt, pS21/S9 Gsk3a/b, and pT246 PRAS40 in palmitate-treated Pfkfb3-overexpressing cells. Hence, a more detailed phosphoproteomics study will be needed to assess whether Pfkfb3 restores insulin action by modulating insulin signalling. We have described these immunoblotting experiments in lines 361-365 and Fig. S7e-f. We also discussed potential mechanisms through which Pfkfb3-enhanced glycolysis could connect to insulin action in the discussion (lines 427-434).

      Figure 6h Statistical Analysis: For the 2DG uptake in Figure 6h, a conventional two-way ANOVA might be more appropriate than a repeated measures ANOVA.

      On reflection, we agree that a conventional ANOVA is more appropriate. Furthermore, for simplicity and conciseness we have decided to analyse and present only insulin-stimulated/unstimulated 2DG uptake fold change values in Figure 6h. We have presented all unstimulated and insulin-stimulated values in Figure S7d.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for overseeing the assessment of our manuscript, “Comprehensive mutagenesis maps the effect of all single codon mutations in the AAV2 rep gene on AAV production". We would also like to thank the reviewers for their feedback. We have carried out the suggested experiments that we feel are most central to our conclusions and summarized the revisions to the manuscript below.

      We appreciate the reviewers’ suggestion with regards to testing different rAAV genomes. We have measured the effect of Rep variants on the production of rAAV containing three additional genomes: a 4.4 kb single-stranded genome, a 3.9 kb single-stranded genome, and a 2.1 kb self-complementary genome (Figures 5C and 5D). The DNase-resistant particles titers - reported as a percent of wild-type Rep titers - are relatively consistent across these three constructs as well as the 5.0 kb single-stranded genome previously tested.

      We agree with the reviewers that measurement of the relative transduction efficiency of rAAV produced with different Rep variants is an important experiment to conduct. To address this, we transduced HEK293T cells with rAAVs, containing a luciferase genome, which were produced using two different Rep variants. When a constant volume of purified rAAV was used for transduction, we observed that the rAAV produced with the S110R Rep variant resulted in higher transduction than rAAV produced with wild-type Rep (as measured by luciferase signal). While we tested only a small number of variants, these results indicate that at least one of the Rep variants we identified can increase not only the viral genome titer but also the titer of transducing particles.

      To generate this transduction data, we produced additional rAAV preps using S110R and Q439T Rep variants. In the previous version of this manuscript, we used the Q439T variant to produce rAAV and noted a 10% increase in the ratio of viral genomes: capsids as determined by comparison of qPCR and capsid ELISA titers. However, a similar increase was not observed in the more recent experiment discussed above. We attribute this discrepancy to changes in the plasmid quantification methods used for transfection. Previously, we quantified plasmids using a fluorometric assay (Qubit); in our more recent experiments, we used qPCR to quantify plasmids for transfection. qPCR provides a more accurate measurement of plasmid concentration due to the specific nature of the primers and probes used, which may account for the subtle shift in quantification. While outside the scope of the current work, it will also be interesting to further investigate the proportion of full capsids using additional Rep variants and more direct methods, such as cryoEM or analytical ultracentrifugation.

      We agree with the reviewers’ observation that there are differences in the production fitness values for synonymous variants. However, the variation in production fitness values between synonymous variants is smaller than that between non-synonymous variants. We conducted the following analysis to clarify this point. We calculated two mean centered fitness values for each codon variant in the WT AAV2 library. The “positional mean centered fitness value” was determined using the production fitness values of all variants at a given amino acid position and describes how far a given fitness value diverges from the mean fitness value for that position. The “synonymous codon mean centered fitness value” was determined using the production fitness values of all synonymous variants at a given position and describes how far a given fitness value diverges from the mean fitness value for all its synonymous codon variants. We then plotted both mean centered fitness values versus amino acid position (Figure S8).

      The distribution of mean centered selection values is narrower when calculated at the synonymous codon level as opposed to the position level. This indicates that, in general, synonymous variants have more tightly distributed production fitness values than non-synonymous variants. This observation precludes us from conducting a more thorough analysis of the effects of synonymous codons on AAV production. (Although, there is at least one instance where clear differences between synonymous codons can be observed (Figure S9C and Figure S9D).) We agree with the reviewers that synonymous variants almost certainly influence aspects of AAV production, such as genome replication, transcriptional regulation, mRNA stability, and protein expression. However, our assay measures the aggregate effect of rep variants on all steps in the AAV production process and is likely unable to detect the effects of synonymous variants on specific steps in this process if those steps are not rate-limiting. We have updated the discussion section to include an explanation of the above.

      The X-axes in Figures 5B and 5D have been updated to plot s’ instead of percent WT titer. We have also added asterisks to indicate significance in Figures 5A and 5C. Thank you for these suggestions.

      We agree with Reviewer 3 that it would be interesting to sequence barcodes from the mRNA pool. The 20 bp barcodes are located upstream of the polyA site and should be present in mRNA transcripts. Something to consider is that AAV2 transcripts expressed from all three promoters (p5, p19, and p40) are polyadenylated at the same site (Stutika et al., 2016). As such, in our WT AAV2 library, barcode representation in the mRNA pool would indicate the aggregate effect of a rep variant on the levels of all AAV2 transcripts. In the pCMV-Rep78/68 library, only two AAV2 transcripts are generated - a spliced and unspliced version of the p5 product. Sequencing of barcodes present in the mRNA pool could be informative regarding the effect of rep variants on combined Rep78/68 expression levels. However, we feel that this experiment is outside the scope of the current work.

      We were also surprised at the number of novel functional Rep variants that were identified in our library. As the reviewer pointed out, optimal rAAV production likely does not equate to optimal fitness of naturally occurring AAV in the endogenous host. Naturally occurring AAV has both a latent and a lytic cycle and the Rep proteins play a role in both these processes (Pereira et al., 1997; Surosky et al., 1997). rAAV production, however, is primarily analogous to the lytic cycle of naturally occurring AAV. In their endogenous hosts, AAV must balance the effect of any mutations on fitness in both the lytic and latent contexts while we assay specifically for production fitness. We additionally attribute this finding to the relatively small number of AAV serotypes, for which rep sequences are available. We have added a discussion of the above to the manuscript.

      Finally, in response to feedback from other researchers, we determined which amino acid substitutions resulted in production fitness values that were significantly different from that of wild-type (Figure S4). These results further emphasized the importance of the origin-binding domain; most statistically significant beneficial substitutions clustered here. Additionally, we noted that the majority of substitutions in the zinc-finger domain resulted in production fitness changes that were not significant. This lines up with previous work indicating that the zinc-finger domain is dispensable for rAAV production. We have added a discussion of these results to the main text.

      We again thank the reviewers for their suggestions; we feel that incorporation of their suggestions has strengthened support for our conclusions and enhanced the utility of this work for others in the field.

      References Pereira, D. J., McCarty, D. M., & Muzyczka, N. (1997). The adeno-associated virus (AAV) Rep protein acts as both a repressor and an activator to regulate AAV transcription during a productive infection. Journal of Virology, 71(2), 1079–1088. https://doi.org/10.1128/jvi.71.2.1079-1088.1997

      Stutika, C., Gogol-Döring, A., Botschen, L., Mietzsch, M., Weger, S., Feldkamp, M., Chen, W., & Heilbronn, R. (2016). A Comprehensive RNA Sequencing Analysis of the Adeno-Associated Virus (AAV) Type 2 Transcriptome Reveals Novel AAV Transcripts, Splice Variants, and Derived Proteins. Journal of Virology, 90(3), 1278–1289. https://doi.org/10.1128/JVI.02750-15

      Surosky, R. T., Urabe, M., Godwin, S. G., McQuiston, S. A., Kurtzman, G. J., Ozawa, K., & Natsoulis, G. (1997). Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. Journal of Virology, 71(10), 7951–7959. https://doi.org/10.1128/jvi.71.10.7951-7959.1997

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors' finding that PARG hydrolase removal of polyADP-ribose (PAR) protein adducts generated in response to the presence of unligated Okazaki fragments is important for S-phase progression is potentially valuable, but the evidence is incomplete, and identification of relevant PARylated PARG substrates in S-phase is needed to understand the role of PARylation and dePARylation in S-phase progression. Their observation that human ovarian cancer cells with low levels of PARG are more sensitive to a PARG inhibitor, presumably due to the accumulation of high levels of protein PARylation, suggests that low PARG protein levels could serve as a criterion to select ovarian cancer patients for treatment with a PARG inhibitor drug.

      Thank you for the assessment and summary. Please see below for details as we have now addressed the deficiencies pointed out by the reviewers.

      We believe that PARP1 is one of the major relevant PARG substrates in S phase cells. Previous studies reported that PARP1 recognizes unligated Okazaki fragments and induces S phase PARylation, which recruits single-strand break repair proteins such as XRCC1 and LIG3 that acts as a backup pathway for Okazaki fragment maturation (Hanzlikova et al., 2018; Kumamoto et al., 2021). In this study, we revealed that accumulation of PARP1/2-dependent S phase PARylation eventually led to cell death (Fig. 2). Furthermore, we found that chromatin-bound PARP1 as well as PARylated PARP1 increased in PARG KO cells (Fig. S4A and Fig. 4A), suggesting that PARP1 is one of the key substrates of PARG in S phase cells. Of course, PARG may have additional substrates besides PARP1 which are required for its roles in S phase progression, as PARG is known to be recruited to DNA damage sites through pADPr- and PCNA-dependent mechanisms (Mortusewicz et al., 2011). Precisely how PARG regulates S phase progression warrants further investigation.

      Public Reviews:

      Reviewer #1 (Public Review):

      I have a major conceptual problem with this manuscript: How can the full deletion of a gene (PARG) sensitize a cell to further inhibition by its chemical inhibitor (PARGi) since the target protein is fully absent?

      Please see below for details about this point. Briefly, we found that PARG is an essential gene (Fig. 7). There was residual PARG activity in our PARG KO cells, although the loss of full-length PARG was confirmed by Western blotting and DNA sequencing (Fig. S9). The residual PARG activity in these cells can be further inhibited by PARG inhibitor, which eventually lead to cell death.

      The authors state in the discussion section: "The residual PARG dePARylation activity observed in PARG KO cells likely supports cell growth, which can be further inhibited by PARGi". What does this statement mean? Is the authors' conclusion that their PARG KOs are not true KOs but partial hypomorphic knockdowns? Were the authors working with KO clones or CRISPR deletion in populations of cells?

      The reviewer is correct that our PARG KOs are not true KOs. We were working with CRISPR edited KO clones. As shown in this manuscript, we validated our KO clones by Western blotting, DNA sequencing and MMS-induced PARylation. Despite these efforts and our inability to detect full-length PARG in our KO clones, we suspect that our PARG KO cells may still express one or more active fragments of PARG due to alternative splicing and/or alternative ATG usage.

      As shown in Fig. 7, we believe that PARG is essential for proliferation. Our initial KO cell lines are not complete PARG KO cells and residual PARG activity in these cells could support cell proliferation. Unfortunately, due to lack of appropriate reagents we could not draw solid conclusions regarding the isoforms or the truncated PARG expressed in these cells (Please see Western blots below).

      Are there splice variants of PARG that were not knocked down? Are there PARP paralogues that can complement the biochemical activity of PARG in the PARG KOs? The authors do not discuss these critical issues nor engage with this problem.

      There are five reviewed or potential PARG isoforms identified in the Uniprot database. The two sgRNAs (#1 and #2) used to generate initial PARG KO cells in this manuscript target all three catalytically active isoforms (isoforms 1, 2 and 3), and sgRNA#2 used in HeLa cells also targets isoforms 4 and 5, but these isoforms are considered catalytically inactive according to the Uniprot database. However, it is likely that sgRNA-mediated genome editing may lead to the creation of new alternatively spliced PARG mRNAs or the use of alternative ATG, which can produce catalytically active forms of PARG. Instead of searching for these putative spliced PARG RNAs, we used two independent antibodies that recognize the C-terminus of PARG for WB as shown below. Unfortunately, besides full-length PARG, these antibodies also recognized several other bands, some of them were reduced or absent in PARG KO cells, others were not. Thus, we could not draw a clear conclusion which functional isoform was expressed in our PARG KO cells. Nevertheless, we directly measured PARG activity in PARG KO cells (Fig. S9) and showed that we were still able to detect residual PARG activity in these PARG KO cells. These data clearly indicate that residual PARG activity are present and detected in our KO cells, but the precise nature of these truncated forms of PARG remains elusive.

      Author response image 1.

      These issues have to be dealt with upfront in the manuscript for the reader to make sense of their work.

      We thank this reviewer for his/her constructive comments and suggestions. We will include the data above and additional discussion upfront in our revised manuscript to avoid any further confusion by our readers.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Nie et al investigate the effect of PARG KO and PARG inhibition (PARGi) on pADPR, DNA damage, cell viability, and synthetic lethal interactions in HEK293A and Hela cells. Surprisingly, the authors report that PARG KO cells are sensitive to PARGi and show higher pADPR levels than PARG KO cells, which are abrogated upon deletion or inhibition of PARP1/PARP2. The authors explain the sensitivity of PARG KO to PARGi through incomplete PARG depletion and demonstrate complete loss of PARG activity when incomplete PARG KO cells are transfected with additional gRNAs in the presence of PARPi. Furthermore, the authors show that the sensitivity of PARG KO cells to PARGi is not caused by NAD depletion but by S-phase accumulation of pADPR on chromatin coming from unligated Okazaki fragments, which are recognized and bound by PARP1. Consistently, PARG KO or PARG inhibition shows synthetic lethality with Pol beta, which is required for Okazaki fragment maturation. PARG expression levels in ovarian cancer cell lines correlate negatively with their sensitivity to PARGi.

      Thank you for your nice comments. The complete loss of PARG activity was observed in PARG complete/conditional KO (cKO) cells. These cKO clones were generated using wild-type cells transfected with sgRNAs targeting the catalytic domain of PARG in the presence of PARP inhibitor.

      Strengths:

      The authors show that PARG is essential for removing ADP-ribosylation in S-phase.

      Thanks!

      Weaknesses:

      1. This begs the question as to the relevant substrates of PARG in S-phase, which could be addressed, for example, by analysing PARylated proteins associated with replication forks in PARG-depleted cells (EdU pulldown and Af1521 enrichment followed by mass spectrometry).

      We believe that PARP1 is one of the major relevant PARG substrates in S phase cells. Previous studies reported that PARP1 recognizes unligated Okazaki fragments and induces S phase PARylation, which recruits single-strand break repair proteins such as XRCC1 and LIG3 that acts as a backup pathway for Okazaki fragment maturation (Hanzlikova et al., 2018; Kumamoto et al., 2021). In this study, we revealed that accumulation of PARP1/2-dependent S phase PARylation eventually led to cell death (Fig. 2). Furthermore, we found that chromatin-bound PARP1 as well as PARylated PARP1 increased in PARG KO cells (Fig. S4A and Fig. 4A), suggesting that PARP1 is one of the key substrates of PARG in S phase cells. Of course, PARG may have additional substrates besides PARP1 which are required for its roles in S phase progression, as PARG is known to be recruited to DNA damage sites through pADPr- and PCNA-dependent mechanisms (Mortusewicz et al., 2011). Precisely how PARG regulates S phase progression warrants further investigation.

      1. The results showing the generation of a full PARG KO should be moved to the beginning of the Results section, right after the first Results chapter (PARG depletion leads to drastic sensitivity to PARGi), otherwise, the reader is left to wonder how PARG KO cells can be sensitive to PARGi when there should be presumably no PARG present.

      Thank you for your suggestion! However, we would like to keep the complete PARG KO result at the end of the Results section, since this was how this project evolved. Initially, we did not know that PARG is an essential gene. Thus, we speculated that PARGi may target not only PARG but also a second target, which only becomes essential in the absence of PARG. To test this possibility, we performed FACS-based and cell survival-based whole-genome CRISPR screens (Fig. 5). However, this putative second target was not revealed by our CRISPR screening data (Fig. 5). We then tested the possibility that these cells may have residual PARG expression or activity and only cells with very low PARG expression are sensitive to PARGi, which turned out to be the case for ovarian cancer cells. Equipped with PARP inhibitor and sgRNAs targeting the catalytic domain of PARG, we finally generated cells with complete loss of PARG activity to prove that PARG is an essential gene (Fig. 7). This series of experiments underscore the challenge of validating any KO cell lines, i.e. the identification of frame-shift mutations, absence of full-length proteins, and phenotypic changes may still not be sufficient to validate KO clones. This is an important lesson we learned and we would like to share it with the scientific community.

      To avoid further misunderstanding, we will include additional statements/comments at the end of “PARG depletion leads to drastic sensitivity to PARGi” section and at the beginning of “CRISPR screens reveal genes responsible for regulating pADPr signaling and/or cell lethality in WT and PARG KO cells”. Hope that our revised manuscript will make it clear.

      1. Please indicate in the first figure which isoforms were targeted with gRNAs, given that there are 5 PARG isoforms. You should also highlight that the PARG antibody only recognizes the largest isoform, which is clearly absent in your PARG KO, but other isoforms may still be produced, depending on where the cleavage sites were located.

      The two sgRNAs (#1 and #2) used to generate initial PARG KO cells in this manuscript target all three catalytically active isoforms (isoforms 1, 2 and 3), and sgRNA#2 used in HeLa cells also targets isoforms 4 and 5, but these isoforms are considered catalytically inactive according to the Uniprot database. As suggested, we will modify Fig. S1D and the figure legends.

      The manufacturer instruction states that the Anti-PARG antibody (66564S) can only recognize isoform 1, this antibody could recognize isoforms 2 and 3 albeit weakly based on Western blot results with lysates prepared from PARG cKO cells reconstituted with different PARG isoforms, as shown below. As suggested, we will add a statement in the revised manuscript and provide the Western blotting data below.

      Author response image 2.

      To test whether other isoforms were expressed in 293A and/or HeLa cells, we used two independent antibodies that recognize the C-terminus of PARG for WB as shown below. Unfortunately, besides full-length PARG, these antibodies also recognized several other bands, some of them were reduced or absent in PARG KO cells, others were not. Thus, we could not draw a clear conclusion which functional isoforms or truncated forms were expressed in our PARG KO cells.

      Author response image 3.

      1. FACS data need to be quantified. Scatter plots can be moved to Supplementary while quantification histograms with statistical analysis should be placed in the main figures.

      We agree with this reviewer that quantification of FACS data may provide straightforward results in some of our data. However, it is challenging to quantify positive S phase pADPr signaling in some panels, for example in Fig. 3A and Fig. 4C. In both panels, pADPr signaling was detected throughout the cell cycle and therefore it is difficult to know the percentage of S phase pADPr signaling in these samples. Thus, we decide to keep the scatter plots to demonstrate the dramatic and S phase-specific pADPr signaling in PARG KO cells treated with PARGi. We hope that these data are clear and convincing even without any quantification.

      1. All colony formation assays should be quantified and sensitivity plots should be shown next to example plates.

      As suggested, we will include the sensitivity plot next to Fig. 3D. However, other colony formation assays in this study were performed with a single concentration of inhibitor and therefore we will not provide sensitivity plots for these experiments. Nevertheless, the results of these experiments are straightforward and easy to interpret.

      1. Please indicate how many times each experiment was performed independently and include statistical analysis.

      As suggested, we will add this information in the revised manuscript.

      Reviewer #3 (Public Review):

      Here the authors carried out a CRISPR/sgRNA screen with a DDR gene-targeted mini-library in HEK293A cells looking for genes whose loss increased sensitivity to treatment with the PARG inhibitor, PDD00017273 (PARGi). Surprisingly they found that PARG itself, which encodes the cellular poly(ADP-ribose) glycohydrolase (dePARylation) enzyme, was a major hit. Targeted PARG KO in 293A and HeLa cells also caused high sensitivity to PARGi. When PARG KO cells were reconstituted with catalytically-dead PARG, MMS treatment caused an increase in PARylation, not observed when cells were reconstituted with WT PARG or when the PARG KO was combined with PARP1/2 DKO, suggesting that loss of PARG leads to a strong PARP1/2-dependent increase in protein PARylation. The decrease in intracellular NADH+, the substrate for PARP-driven PARylation, observed in PARG KO cells was reversed by treatment with NMN or NAM, and this treatment partially rescued the PARG KO cell lethality. However, since NAD+ depletion with the FK868 nicotinamide phosphoribosyltransferase (NAMPT) inhibitor did not induce a similar lethality the authors concluded that NAD+ depletion/reduction was only partially responsible for the PARGi toxicity. Interestingly, PARylation was also observed in untreated PARG KO cells, specifically in S phase, without a significant rise in γH2AX signals. Using cells synchronized at G1/S by double thymidine blockade and release, they showed that entry into S phase was necessary for PARGi to induce PARylation in PARG KO cells. They found an increased association of PARP1 with a chromatin fraction in PARG KO cells independent of PARGi treatment, and suggested that PARP1 trapping on chromatin might account in part for the increased PARGi sensitivity. They also showed that prolonged PARGi treatment of PARG KO cells caused S phase accumulation of pADPr eventually leading to DNA damage, as evidenced by increased anti-γH2AX antibody signals and alkaline comet assays. Based on the use of emetine, they deduced that this response could be caused by unligated Okazaki fragments. Next, they carried out FACS-based CRISPR screens to identify genes that might be involved in cell lethality in WT and PARG KO cells, finding that loss of base excision repair (BER) and DNA repair genes led to increased PARylation and PARGi sensitivity, whereas loss of PARP1 had the opposite effects. They also found that BER pathway disruption exhibited synthetic lethality with PARGi treatment in both PARG KO cells and WT cells, and that loss of genes involved in Okazaki fragment ligation induced S phase pADPr signaling. In a panel of human ovarian cancer cell lines, PARGi sensitivity was found to correlate with low levels of PARG mRNA, and they showed that the PARGi sensitivity of cells could be reduced by PARPi treatment. Finally, they addressed the conundrum of why PARG KO cells should be sensitive to a specific PARG inhibitor if there is no PARG to inhibit and found that the PARG KO cells had significant residual PARG activity when measured in a lysate activity assay, which could be inhibited by PARGi, although the inhabited PARG activity levels remained higher than those of PARG cKO cells (see below). This led them to generate new, more complete PARG KO cells they called complete/conditional KO (cKO), whose survival required the inclusion of the olaparib PARPi in the growth medium. These PARG cKO cells exhibited extremely low levels of PARG activity in vitro, consistent with a true PARG KO phenotype.

      We thank this reviewer for his/her constructive comments and suggestions.

      The finding that human ovarian cancer cells with low levels of PARG are more sensitive to inhibition with a small molecule PARG inhibitor, presumably due to the accumulation of high levels of protein PARylation (pADPr) that are toxic to cells is quite interesting, and this could be useful in the future as a diagnostic marker for preselection of ovarian cancer patients for treatment with a PARG inhibitor drug. The finding that loss of base excision repair (BER) and DNA repair genes led to increased PARylation and PARGi sensitivity is in keeping with the conclusion that PARG activity is essential for cell fitness, because it prevents excessive protein PARylation. The observation that increased PARylation can be detected in an unperturbed S phase in PARG KO cells is also of interest. However, the functional importance of protein PARylation at the replication fork in the normal cell cycle was not fully investigated, and none of the key PARylation targets for PARG required for S phase progression were identified. Overall, there are some interesting findings in the paper, but their impact is significantly lessened by the confusing way in which the paper has been organized and written, and this needs to be rectified.

      We believe that PARP1 is one of the major relevant PARG substrates in S phase cells. Previous studies reported that PARP1 recognizes unligated Okazaki fragments and induces S phase PARylation, which recruits single-strand break repair proteins such as XRCC1 and LIG3 that acts as a backup pathway for Okazaki fragment maturation (Hanzlikova et al., 2018; Kumamoto et al., 2021). In this study, we revealed that accumulation of PARP1/2-dependent S phase PARylation eventually led to cell death (Fig. 2). Furthermore, we found that chromatin-bound PARP1 as well as PARylated PARP1 increased in PARG KO cells (Fig. S4A and Fig. 4A), suggesting that PARP1 is one of the key substrates of PARG in S phase cells. Of course, PARG may have additional substrates besides PARP1 which are required for its roles in S phase progression, as PARG is known to be recruited to DNA damage sites through pADPr- and PCNA-dependent mechanisms (Mortusewicz et al., 2011). Precisely how PARG regulates S phase progression warrants further investigation.

      As suggested, we will revise our manuscript accordingly and provide additional explanation/statement upfront to avoid any misunderstandings.  

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 1c. Why does the viability of PARG KO cells improve at higher doses of PARGi? How do the authors explain this paradox?

      This phenomenon was observed in 293A PARG KO cells and happened in CellTiter-Glo assay, especially with the top three PARGi concentrations (100 µM, 33.33 µM and 11.11 µM). This may due to the low solubility of this PARGi in the medium, since we sometimes observed precipitation at high concentrations when PARGi stock was diluted in medium.

      1. Figure 2d. The authors show that PARGi reduced NAD+ level by 20%. This reduction in NAD+ probably does not explain the cell death phenotype observed by parthanatos cell death. What pathway is activated by PARGi to induce cell death?

      Since PARG KO cells treated with PARGi led to uncontrolled pADPr accumulation, it is possible that some of these cells may die due to parthanotos. However, we did not observe a dramatic reduction in NAD+ level. A previous study showed that Parg(-/-) mouse ES cells predominantly underwent caspase-dependent apoptosis (Shirai et al., 2013). Indeed, PARP1 cleavage was detected in PARG KO cells with prolonged PARGi treatment, indicating that at least some of these cells die due to apoptosis (Fig. 2A). Cytotoxicity of PARGi in PARG KO cells may due to several mechanisms including apoptosis, parthanatos and NAD+ reduction.

      1. The authors refer to FK866 in the text without explaining what this agent is. FK866 is a noncompetitive inhibitor of nicotinamide phosphoribosyltransferase (NAPRT), a key enzyme in the regulation of NAD+ biosynthesis from the natural precursor nicotinamide. The authors should explain experimental tools in the text as they use them for clarity to the reader.

      Thanks for the suggestion! We will include additional citations and discuss how FK866 works in our revised manuscript.

      1. In addition to these issues, there are significant formatting and textual problems, such that there are multiple gaps in the body of the text that make coherent reading of the manuscript impossible. Examples are: Page 3 line 10. Page 6 line 5 and line 15, Page 7 line 2, 3, and line 8. Page 8, line 1, and line 3 from bottom. Page 9 line 1, line 7 from bottom and line 9 from the bottom, Page 18 of the results in several places, etc. etc. etc. These formatting errors convey the impression that the submitting authors did not adequately review the manuscript for technical problems prior to submission. The authors need to correct these errors.

      Sorry, we will edit the text and remove these gaps as suggested.

      Reviewer #3 (Recommendations For The Authors):

      1. The major problem with this paper is conceptual - namely, how could PARG knockout cells be hypersensitive to a selective PARG small molecular inhibitor. The evidence in Figure 7 that there is measurable residual PARG activity in the so-called PARG KO 293A and HeLa cells provides a partial explanation for why PARG inhibitor treatment might be deleterious to the PARG KO cells, i.e., because PARGi blocks this residual PARG activity. However, although the authors characterized the PARG alleles in the 293A PARG KO cells by sequencing, the molecular origin of the significant level of residual PARG activity remains unclear (see points 7-9).

      Yes, in our study we showed that PARGi treatment inhibited the residual PARG activity in PARG KO cells, which mimics complete loss of PARG as PARG is an essential gene. These data agree with a previous study using Parg(-/-) mouse cells (Koh et al., 2004).We attempted to define the molecular origin of the residual PARG activity, unfortunately this was challenging (please see below for additional discussions). Nevertheless, we showed that residual PARG activity could be detected in PARG KO cells and more importantly cells with reduced PARG expression or activity are sensitive to PARGi. These results indicate that PARG expression and/or activity may be used as a biomarker for PARGi-based therapy.

      1. Although the most obvious explanation for the PARGi sensitivity data presented in Figures 1-4 is that the PARG KO cells have residual PARG activity, the authors wait until the discussion on page 26 to raise the possibility that the PARG KO cells might have residual PARG activity that renders them sensitive to PARGi. It would be more logical to move the PARG activity data in Figure 7 earlier in the paper as a supplementary figure, so that the reader is not left wondering how a PARG KO cell remains sensitive to a PARG inhibitor. For this reason, it is recommended that the whole paper be reorganized and rewritten to provide a more logical flow that allows the reader to understand what was done, and why it is hard to generate complete PARG KO cells because the accumulation of pADPR adducts is toxic to the cell.

      Thank you for your suggestion! However, we would like to keep the complete PARG KO result at the end of the Results section, since this was how this project evolved. Initially, we did not know that PARG is an essential gene. Thus, we speculated that PARGi may target not only PARG but also a second target, which only becomes essential in the absence of PARG. To test this possibility, we performed FACS-based and cell survival-based whole-genome CRISPR screens (Fig. 5). However, this putative second target was not revealed by our CRISPR screening data (Fig. 5). We then tested the possibility that these cells may have residual PARG expression or activity and only cells with very low PARG expression are sensitive to PARGi, which turned out to be the case for ovarian cancer cells. Equipped with PARP inhibitor and sgRNAs targeting the catalytic domain of PARG, we finally generated cells with complete loss of PARG activity to prove that PARG is an essential gene (Fig. 7). This series of experiments underscore the challenge of validating any KO cell lines, i.e. the identification of frame-shift mutations, absence of full-length proteins, and phenotypic changes may still not be sufficient to validate KO clones. This is an important lesson we learned and we would like to share it with the scientific community.

      To avoid further misunderstanding, we will include additional statements/comments at the end of “PARG depletion leads to drastic sensitivity to PARGi” section and at the beginning of “CRISPR screens reveal genes responsible for regulating pADPr signaling and/or cell lethality in WT and PARG KO cells”. Hope that our revised manuscript will make it clear.

      1. Exactly how PARG activity would be coordinated with PARP1/2 activity during normal S phase to ensure that PARylation can serve its required function, whatever that may be, and is then removed by PARG is unclear - how would this be orchestrated at the level of a replication fork?

      PARG is known to be recruited to sites of DNA damage through pADPr- and PCNA-dependent mechanisms (Mortusewicz et al., 2011). Our current hypothesis is that PARP1 is one of the major PARG substrates in S phase cells. Previous studies reported that PARP1 recognizes unligated Okazaki fragments and induces S phase PARylation, which recruits single-strand break repair proteins such as XRCC1 and LIG3 that acts as a backup pathway for Okazaki fragment maturation (Hanzlikova et al., 2018; Kumamoto et al., 2021). In this study, we revealed that accumulation of PARP1/2-dependent S phase PARylation eventually led to cell death (Fig. 2). Furthermore, we found that chromatin-bound PARP1 as well as PARylated PARP1 increased in PARG KO cells (Fig. S4A and Fig. 4A), suggesting that PARP1 is one of the key substrates of PARG in S phase cells. Of course, PARG may have additional substrates besides PARP1 which are required for its roles in S phase progression. Precisely how PARG regulates S phase progression warrants further investigation.

      1. Figure 2B: What gRNAs were used to generate the 293A and HeLa PARG knock clones, i.e., where are they located in the PARG gene? If they are not in the catalytic domain it might be possible to generate PARG proteins with N-terminal deletions that are still active (see points 8-10 below).

      The two sgRNAs (#1 and #2) used to generate initial PARG KO cells in this manuscript target all three catalytically active isoforms (isoforms 1, 2 and 3), and sgRNA#2 used in HeLa cells also targets isoforms 4 and 5, but these isoforms are considered catalytically inactive according to the Uniprot database. As suggested, we will modify Fig. S1D and the figure legends to show the localization of gRNAs.

      We agree with this reviewer that truncated but active forms of PARG exist in these KO cells. We attempted to identify these trunated forms of PARG by using two independent antibodies that recognize the C-terminus of PARG for WB as shown below. Unfortunately, besides full-length PARG, these antibodies also recognized several other bands, some of them were reduced or absent in PARG KO cells, others were not. Thus, we could not draw a clear conclusion which functional isoform/truncated form was expressed in our PARG KO cells. Nevertheless, we directly measured PARG activity in PARG KO cells (Fig. S9) and showed that we were still able to detect residual PARG activity in these PARG KO cells. Based on these results, we stated that the residual PARG activity was detected in our KO cells, but we were not able to specify the truncated variants of PARG in these cells.

      Author response image 4.

      1. Figure 3B/page 19: The authors state that "emetine, which diminishes Okazaki fragments, greatly inhibited S phase pADPr signaling in PARG KO cells", and from this deduced that Okazaki fragments on the lagging strand activate PARylation. However, emetine is not a specific lagging strand synthesis inhibitor, as implied here, but rather a protein synthesis inhibitor, which inhibits Okazaki fragment formation indirectly (see PMID: 36260751). The authors need to rewrite this section to explain how emetine works in this context.

      As suggested, we will cite this reference and discuss how emetine inhibits Okazaki fragment maturation in our revised manuscript. Additionally, we used three different POLA1 inhibitors to diminish Okazaki fragments. As shown in Fig. S3B, all three POLA1 inhibitors significantly abolished S-phase pADPr induced by PARGi in PARG KO cells. Furthermore, POLA1 inhibitors, adarotene and CD437, were able to rescue cell lethality caused by PARGi in PARG KO cells (Fig. 3E).

      1. Figure 7: It is not clear why these cells are called PARG complete/conditional KO cells (cKO). Generally, "conditional knockout" refers to a cell or animal in which a gene can be conditionally knocked out by inducible expression of Cre. Here, it appears that "conditional" refers to the fact that the PARG KO cells only grow in the presence of olaparib - is this the case?

      Yes, we used the name to separate these cells from our initial PARG KO cells. Moreover, we were only able to obtain and maintain these PARG cKO clones with complete loss of PARG activity in the presence of PARP inhibitor. Therefore, we called them PARG complete/conditional KO (cKO) cells.

      1. Figure 7B and D: The level of full-length PARG protein was much lower in the 293A and HeLa cKO cells compared to WT cells consistent with cKO cells representing a more complete PARG KO. The level of PARG protein in the 293A PARG cKO cells was apparently also lower than in the original PARG KO cells, but the KO and cKO samples should be run side by side to demonstrate this conclusively, and the bands need to be quantified. In panel B, it is not clear from the legend what cKO_3 and cKO_4 are, but presumably, they are different clones, and this should be stated.

      Full-length PARG was not detected in either PARG KO or PARG cKO cells by WB. The apparent lower level of endogenous PARG in Fig. 7D was due to the fact that reconstituted cells had high exogenous PARG expression and therefore we had to reduce exposure time for WB.

      As for cKO_3 and cKO_4 in Fig.7, they are different clones created by different sgRNAs. As suggested, we will include additional information in figure legends to clearly state which sgRNA was used to generate the respective KO and cKO clones.

      1. Figure S8: There is not enough information here or in the text to allow the reader to interpret these PARG allele sequences obtained from the PARG KO cells. From the Methods section, it appears that the PARG KO cells were clonal, with sequence data from one clone of each of the 293A and HeLa cell PARG KO cells being shown. If this is right, then in both cell types one out of four PARG alleles is wild type, and therefore one would expect the PARG protein signal to be ~25% of that in WT cells. However, based on the 293A PARG KO cells PARG immunoblot in Figure 2B the PARG protein signal is clearly much lower than 25% (these bands need to be quantified), and this discrepancy needs to be explained. What is the level of PARG protein in the PARG KO HeLa cells? If different PARG KO cell clones are analyzed by sequencing, do they all have an apparently intact PARG allele? Four different gRNA target sites in the PARG gene are shown in panel A in Figure 7, but the description in the text regarding how the four gRNAs were used is totally inadequate - were all four used simultaneously or only the two in the catalytic domain? Were pairs of gRNAs used in an attempt to generate a large intervening deletion - some Southern blots of the PARG gene region in the PARG cKO cells are needed to figure this out. The gRNAs are given numbers in Figure 7A, but it is unclear from the sequences shown in Figures S8 and S9 which gRNA sites are shown. All of this has to be clarified, so that the reader can understand the nature of the KO/cKO cells knockout alleles, and what PARG-related products, if any, they can express.

      Yes, all KO and cKO cells used in this study are single clones. As suggested, we will revise figure legends in Fig.7, S8 and S9 to include detailed information. To avoid any further misunderstanding, we will label the allele “WT” to “WT (reference)” in Fig. S8 and S9. We did not detect intact/wild-type PARG sequence in any single KO/cKO clone by DNA sequencing. Sequencing of single KO/cKO clones was performed by using TOP TA Cloning kit. Briefly, genomic DNA was extracted from each single KO/cKO clone. Approximately 300bp surrounding the sgRNA targeting sequence was amplified by PCR. The PCR product was cloned into the vector and approximately 10-15 bacteria clones were extracted and sent for sequencing. If any intact/wild-type PARG sequence was detected in these 10-15 bacteria clones, this KO/cKO clone was considered heterozygous clone and discarded.

      HEK293A and HeLa cells are not diploid cells and have complex karyotypes. PARG gene is located on chromosome 10. Karyotyping by M-FISH shows that HeLa cells have 3 copies of chromosome 10 (Landry et al., 2013). HEK293 cells predominantly have 3 copies of chromosome 10 and sometimes 4 copies can be detected by G-banding (Binz et al., 2019). Therefore, it is anticipated that 1 to 4 mutant alleles would be detected in each KO/cKO clone by sequencing.

      Only one sgRNA was transfected into cells for the selection of single clones. We did not use paired or multiple sgRNAs in any of these experiments. As shown in Fig. S1D and Fig. 7A, HEK293A derived and HeLa derived PARG KO single clones were generated with the use of different sgRNAs. In addition, the two PARG cKO single clones from HEK293A and HeLa cells were also generated by the use of two different sgRNAs, as shown in Fig. 7A-B. We will include all the information above in the revised manuscript, i.e. in Methods section as well as in figure legends.

      1. Figure S9A: The sequences of the 293A PARG alleles in the cKO cells suggest that these cells also have one intact PARG allele, which again does not fit with the very low level of intact PARG protein shown in Figure 7B. How do the authors explain this?

      Sorry, this is a misunderstanding. The allele “WT” in Fig. S8 and S9 is the reference sequence. We will change it to “Reference sequence” to avoid further confusion. As mentioned above, we did not detect any intact/wild-type PARG sequence in any of our single KO/cKO clones by sequencing.

      1. Figure S9B: These critical lysate activity data show that the PARG KO cells have ~50% of the PARG activity detected in WT cells. However, this is not consistent with the PARG protein level detected in PARG immunoblot in Figure 1B, which appears to be less than 5% of the PARG protein level in WT cells (with one intact PARG allele in these cells one would theoretically expect~ 25%, although this depends on whether all four alleles are expressed equally). One possibility is that active PARG fragments are generated from one or more of the PARG KO alleles in the PARG KO cells. Targeted sequencing of PARG mRNAs might reveal whether there are shorter RNAs that could encode a protein containing the C-terminal catalytic domain (aa 570-910). In addition, the authors need to show the entire immunoblot to determine if there are smaller proteins recognized by the anti-PARG antibodies that might represent shorter PARG gene products (for this we need to know where the epitope against which the PARG antibodies are directed are located within the PARG protein - ideally they authors need to use an antibody directed against an epitope near the C-terminus).

      As stated in the Methods section, we incubated cell lysates with substrates overnight to evaluate the maximum level of pADPr hydrolysis, i.e. PARG activity, we were able to detect in this assay. It is very likely that the PARG activity in PARG KO cells was much lower than 50%, due to saturation of signals for lysates isolated from wild-type cells. Thus, the data presented in our manuscript probably underestimate the reduction of PARG activity in PARG KO cells. Nevertheless, these data indicate that residual PARG activity was detected in PARG KO cells, however this activity was absent in PARG cKO cells.

      As aforementioned, we used two independent antibodies that recognize the C-terminus of PARG for WB. Unfortunately, we could not draw a clear conclusion which functional isoforms or truncated proteins were expressed in our PARG KO cells. The dePARylation assay used here may be the best way to test the residual PARG activity in our KO and cKO cells.

      1. Figure 7D: In this experiment, the level of re-expressed WT PARG protein was much higher than that of the endogenous PARG protein (quantification is needed) - how might this affect the interpretation of these experiments (N.B., WT and catalytically-dead PARG were also re-expressed for the experiments shown in Figure 1, but there are no PARG immunoblots to demonstrate how much the exogenous proteins were overexpressed, or activity measurements). If regulated pADPr signaling is important for a normal S phase, then one would have thought that expressing a very high level of active PARG would create problems.

      In Fig. S1E, we blotted endogenous PARG level in control cells and exogenous PARG level in reconstituted cells. The reviewer is correct that exogenous PARG expression was much higher (~10-fold) than that of endogenous PARG in WT control cells. Nevertheless, we did not observe any obvious phenotypes in PARG KO/cKO cells reconstituted with high level of exogeneous PARG, which may reflect excess PARG level/activity in wild-type control cells.

      References:

      Binz, R. L., Tian, E., Sadhukhan, R., Zhou, D., Hauer-Jensen, M., and Pathak, R. (2019). Identification of novel breakpoints for locus- and region-specific translocations in 293 cells by molecular cytogenetics before and after irradiation. Sci Rep 9, 10554.

      Hanzlikova, H., Kalasova, I., Demin, A. A., Pennicott, L. E., Cihlarova, Z., and Caldecott, K. W. (2018). The Importance of Poly(ADP-Ribose) Polymerase as a Sensor of Unligated Okazaki Fragments during DNA Replication. Mol Cell 71, 319-331 e313.

      Koh, D. W., Lawler, A. M., Poitras, M. F., Sasaki, M., Wattler, S., Nehls, M. C., Stoger, T., Poirier, G. G., Dawson, V. L., and Dawson, T. M. (2004). Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci U S A 101, 17699-17704.

      Kumamoto, S., Nishiyama, A., Chiba, Y., Miyashita, R., Konishi, C., Azuma, Y., and Nakanishi, M. (2021). HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation. Nucleic Acids Res 49, 5003-5016.

      Landry, J. J., Pyl, P. T., Rausch, T., Zichner, T., Tekkedil, M. M., Stutz, A. M., Jauch, A., Aiyar, R. S., Pau, G., Delhomme, N., et al. (2013). The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3, 1213-1224.

      Mortusewicz, O., Fouquerel, E., Ame, J. C., Leonhardt, H., and Schreiber, V. (2011). PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res 39, 5045-5056.

      Shirai, H., Fujimori, H., Gunji, A., Maeda, D., Hirai, T., Poetsch, A. R., Harada, H., Yoshida, T., Sasai, K., Okayasu, R., and Masutani, M. (2013). Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation. Biochem Biophys Res Commun 435, 100-106.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors were trying to investigate whether viral IBs are involved in antagonizing IFN-I production during EBOV trVLPs infection. They found that IRF3 is hijacked and sequestered into EBOV IBs after viral infection, thereby leading to the spatial isolation of IRF3 with TBK1 and IKKε. In such a progress, the activity of IRF3 is suppressed and downstream IFN-I induction is inhibited. The authors designed many experiments, such as the PLA that examined the colocalization, to support their conclusions. However, necessary negative controls were missed in several assays. More key index is needed to be examined in several assays.

      The paper is well organized and most data in this paper could support the conclusions, while there are several issues that need to be further solved.

      1. In Figure 2-4, authors should examine the expression of downstream IFNs as well as the phosphorylation and nuclear localization of IRF3 to further prove the suppression of IRF3 activity by infecting with trVLPs.

      Response: The inhibitory effect of trVLPs infection on the phosphorylation of IRF3 S396 and SeV-induced IRF3 nuclear localization was determined by immunoprecipitation (Figure 3D) and immunofluorescence (Figure 4A and 4B), respectively. In addition, we demonstrated that IFN-β transcription was inhibited more potently by EBOV viral inclusion bodies compared with VP35 alone (Figure 7B and 7C).

      Moreover, EBOV viral inclusion bodies were demonstrated to inhibit the transcription of IFN downstream genes (e.g., CXCL10, ISG15 and ISG56) more potently than VP35 alone (new Figure 7D-F).

      1. In Figure 5, to better prove the conclusion that EBOV NP and VP35 play an important role in sequestering IRF3 in IBS, authors should add the "NP+VP35+VP30" and "NP+VP35+VP24" groups to reperform the assay.

      Response: According to the reviewer’s suggestion, VP24 or VP30 was added to the “VP35+NP” group, and the results showed that the “NP+VP35+VP24” and “NP+VP35+VP30” groups exhibited little, if any, effect on the distribution of IRF3 compared with the “NP+VP35” group (new Figure 5 - figure supplement 2A-B).

      1. In Figure 6f, the expression of STING should be examined by immunostaining to show the knockdown efficiency in trVLPs-infected cells.

      Response: As suggested by the reviewer, immunostaining was performed to visually detect the effect of STING knockdown on the IRF3 distribution during trVLPs infection (new Figure 6F).

      Reviewer #2 (Public Review):

      The manuscript by Zhu et al explored molecular mechanisms by which Ebola virus (EBOV) evades host innate immune response. EBOV has a number of means to shut down the type I interferon induction (by viral VP35 protein) and block type I interferon action (by viral VP24 protein). This study reported a new mechanism that inclusion body (IB) used for viral replication sequesters IRF3, a key transcription factor involved in the interferon signaling, resulting in blockade of downstream type I interferon gene transcription. This finding is potentially interesting and may provide a new insight into EBOV's evasion of innate immunity. However, there are some flaws in the experimentations and analyses that need to be addressed.

      1. Most of experiments were performed by transfection of trVLP plasmids, which is very different from virus infection. The conclusions should be examined and verified in the context of virus infection.

      Response: As suggested by the reviewer, the effects of IRF3 depletion on live Ebola virus replication were examined as described in the revised manuscript. Consistent with the results obtained after trVLPs infection, IRF3 depletion exerted little, if any, effect on viral replication (new Figure 7H), which supports the notion that, upon EBOV infection and the formation of inclusion bodies, IRF3 has little, if any, transcription activation activity after sequestration by inclusion bodies.

      1. Fig 1 - VP35 displayed a classical IB staining only in Panel A, while much less so in Panel C and not in panel B. It seemed that the VP35 staining images were chosen in a way towards the authors' favor. The statistical analysis of co-localization of VP35 and IRF3, TBK1 or IKKe should be performed to draw the conclusion. Another concern is that IKKe is normally lowly expressed under a rest condition and becomes induced only when the interferon signaling is activated. It seemed to be expressed at a high level even when the interferon signaling is blocked in Panel C. The authors should comment on this discrepancy.

      Response: Ebola virus inclusion bodies show variations in both shape and size. According to the reviewer’s suggestion, the colocalization of TBK1 or IKKε and VP35 is shown in new figures (new Figure 1C and 1E), and quantitatively analyzed by the fluorescence intensity using ImageJ software (new Figure 1B, 1D and 1F).

      1. Fig 2 - Was this experiment done by transfection or infection? The description of result is not consistent with the figure legend. The labeling was also not consistent between panel A and B. I would suggest performing Western blot to analyze the expression level of IRF3.

      Response: We apologize for the incorrect description of the data. Ebola virus trVLPs were initially produced based on transfection but also involved the viral infection process. The use of “transfection” in the figure and figure legends has been changed to “infection” in the revised manuscript. As suggested by the reviewer, Western blotting was performed to analyze the IRF3 expression levels at different time points after trVLPs infection (new Figure 2D).

      1. Fig 3 and 4 - As VP35 is well known for its highly efficient blockade of type I interferon activation, how would the authors differentiate the effect of VP35 alone from the sequestration of IRF3 in IBs in these experiments?

      Response: Previous studies have found that VP35, rather than NP, inhibits the expression of interferon, and the “VP35+NP” treatment, which induces IRF3 sequestration, showed inhibited IFN-β luciferase activity much more potently than VP35 expression alone (Figure 7B).

      1. Fig 3 - PolyIC can activate both RLR and TLR signaling pathways. Can the author comment on which pathway it activates in this experiment?

      Response: In this study, the effect of poly(I:C) was consistent with the results observed with SeV, which indicated that poly(I:C) may mainly activate the RLR signaling pathway. A discussion was added to the revised manuscript.

      1. The authors demonstrated that VP35 interacts with STING and recruit the latter to IBs. How would this affect the function of STING given that STING plays essential roles in cGAS/cGAMP pathway?

      Response: This study unexpectedly showed that VP35 can recruit IRF3 into viral inclusion bodies through STING, but whether it regulates the cGAS-STING pathway remains to be further investigated. Related discussion was added to the revised manuscript.

      1. It is difficult to follow the logics of Fig 7. The expression level of each viral protein should be determined. Ideally, a mutation in VP35 that disrupts its ability to antagonize the interferon signaling but still allows for the IB formation can be used to assess the relative contribution of IB sequestering IRF3.

      Response: As suggested by the reviewer, a series of VP35 mutants were constructed, but we failed to obtain a VP35 mutant that contains a mutation that disrupts the ability of the protein to antagonize interferon signaling but still allows IB formation. Instead, coexpression of “NP+VP35+VP30+L”, which induces IBs formation, inhibited IFN-I more potently than the expression of VP35 alone (Figure 7B). IRF3 knockout inhibited poly(I:C)-induced IFN-I production but had little, if any, effect on poly(I:C)-induced IFN-I production in the “NP+VP35+VP30+L” group (Figure 7C). IRF3 knockout in the cells did not significantly affect viral replication, but overexpression of activated IRF3 (IRF3/5D), instead of wild-type IRF3, inhibited viral replication (new Figure 7G-H). These results collectively suggested that almost all IRF3 in cells was hijacked and sequestered into IBs in the Ebola virus-infected cells.

    1. Author Response

      The following is the authors’ response to the original reviews.

      RESPONSE TO REVIEWERS:

      Reviewer #1 (Recommendations For The Authors):

      I think the manuscript of this excellent work can be improved, especially in writing (including a suggestion in the title) and presentation (Figure 6); Also some additional specific experiments and analyses could be important, as I suggest below,

      1. For the title, perhaps a shorter "The acetylase activity of Cdu1 protects Chlamydia effectors from degradation" would be better to convey the major significance of this work. Of course, Cdu1 must regulate the function of InaC, IpaM and CTL0480. But perhaps it is speculative to think that egress is the major function of these effectors as their activity on other host cell processes during the cycle could eventually impact the extrusion process indirectly.

      Although we concur with the insights provided by reviewer 1, we wish to underscore that a significant breakthrough presented in our study revolves around the regulation of Chlamydia exit by Cdu1. Consequently, we believe that this noteworthy discovery should be incorporated into the title.

      1. For the writing:

      a. The description of ubiquitination and DUBs could be synthesized to the essential, so that space is gained to explain things that then come a bit out of the blue in the results (what are Incs, the specific functions of InaC, IpaM, and CTL0480 - at least place the citations in lines 110-112 next to the corresponding Incs -, Cdu2, etc - see specifics below)

      In lines 182-196 of the revised manuscript, we have incorporated additional contextual information concerning the roles of Incs, along with descriptions of the functions of InaC, IpaM, and CTL0480.

      b. In the Results, there is a lot of Chlamydia- and maybe lab-specific jargon that could be significantly simplified for the more general reader. I detail some suggestions below in the specific issues.

      We have improved the readability of our manuscript for a general audience by removing Chlamydia-specific terminology from the entire text and figures.

      1. For the figures:

      a. Figure 6, this figure could be reorganized: why two graphs in panel D? If detailed quantifications were done, perhaps in panel B just zoom on the examples of Golgi distributed/compacted? And again the labelling Rif-R L2, L2 pBOMB, M407 p2TK2, etc, simplify?

      Figure 6 has undergone restructuring. The representative images have been relocated to Supplemental Figures 5 and 6, while we have introduced sample images demonstrating F-actin assembly and Golgi repositioning. Furthermore, the quantification of Golgi dispersal has been streamlined into a single panel. Additionally, we have simplified the labeling of the strains utilized in the study.

      b. Figure 3, in the labelling, WT, inaC null, cdu1::GII wouldn't be enough? Leave the details to the legend and/or M&M.

      We have simplified the labeling of Ct strains in Figure 3.

      c. Figure 3C, these arrowheads should not be so symmetric (small arrows instead?) and it is unclear that the indicated cells do not show CTL0480.

      We have substituted arrowheads with small arrow symbols and have also revised the Figure to incorporate a new representative image that prominently illustrates the absence of CTL0480 at the inclusion membrane of some cdu1::GII inclusions within infected Hela cells at 36 hpi.

      1. Experiments:

      a. In Figure 7, at least extrusion should be analysed also with the Cdu1-deficient strain expressing Ac-deficient Cdu1 and the inaC and ipaM phenotypes should be complemented.

      We have conducted additional experiments to analyze extrusion production in Hela cells infected with a cdu1 null strain expressing the acetylase-deficient Cdu1 variant. We have incorporated the relevant data into revised Figure 7, where the impact of this strain on extrusion production and size is presented. Additionally, we updated Supplemental Figure 8 to include data illustrating the number of inclusions produced by this strain. We have also addressed these new results in the revised manuscript (lines 424-432). We are currently complementing inaC and ipaM mutant strains with various InaC and IpaM constructs that will be used in a follow up manuscript.

      b. Does overexpression of InaC, IpaM, or CTL0480 in a cdu1-null background prevent the degradation of these Incs and suppress the defects of cells infected by the cdu1 mutant (F-actin, Golgi, MYPT1)? This would show that the multiple phenotypes displayed by cells infected by the cdu1 null mutant are indeed related to the decreased levels of InaC, IpaM and CTL0480.

      We opted not to include data from the overexpression of these effectors in a cdu1-null background due to an unexpected decrease in shuttle plasmid load during overexpression. This development prompted concerns regarding the potential detrimental effects of overexpressing these effectors in the absence of Cdu1. Data supporting this observation are not included in this report.

      c. Figures 3A and 3B should be quantified (it says it is from 3 independent experiments). It would be important to have a relative perspective of how much Cdu1 protects these Incs over time (for InaC, it would also be nice to have the 36 and 48 hpi time-point). This is in contrast with the microscopy data in Figure 5, which illustrates very clear effects, and the quantification is a bit redundant.

      In Figure 3, we have incorporated a new Western Blot image showing endogenous InaC protein levels in Hela cells following infection with both WT Ct and cdu1::GII strains at 24, 36, and 48 hours post-infection (hpi). Additionally, we have quantified the Western Blot signals for both InaC and IpaM, and these results are also presented in Figure 3. The quantification of MYPT1 recruitment has been relocated to a supplementary figure. We have also included details regarding the methodology employed for the quantification of Western Blot signals in the Materials and Methods section.

      d. What is the subcellular localization of InaC, IpaM, CTL0480 and Cdu1 when analysed by transfection? Does Cdu1 bind to of InaC, IpaM, CTL0480 in infected cells? If this was attempted and unsuccessful it should be mentioned.

      In transfected HEK cells, InaC, IpaM, CTL0480, and Cdu1 all exhibit cytoplasmic localization with a diffuse pattern (data not shown). Despite our efforts, we encountered challenges in observing co-immunoprecipitation of Cdu1 with all three Incs in infected Hela cells at 24 hpi, We have duly acknowledged this limitation in our findings, as reflected in line 221-226 of the revised manuscript.

      1. Specific issues:

      2. Line 87, "propagule" is really needed to describe the EB?

      The EB is the infectious form of Chlamydia species that spreads within the host to renew its life cycle; thus, "propagule" is a suitable term to characterize the EB.

      • Exocytosis implies fusion with the plasma membrane so "inclusion is exocytosed" (line 91) is not entirely correct.

      In line 91 of the revised manuscript, we referred to extrusion as the exit of an intact inclusion from the host cell and omitted the use of "exocytosed" to describe this process.

      • Line 126, "a Ct L2 (LGV L2 434 Bu) background". Maybe "a Ct cdu1-null strain" would be enough and leave the detail for Materials and Methods.

      In line 128 of the revised manuscript, we omitted "(LGV L2 434 Bu)" to avoid using jargon that may be unfamiliar to readers not well-versed in Chlamydia terminology.

      • Line 138, in the previous Pruneda et al, Nature Microbiol 2018, the title of figure 4 is "ChlaDUB deubiquitinase activity is required for C. trachomatis Golgi fragmentation", so why raise this hypothesis? And why in the end is the acetylation activity of Cdu1 that promotes Golgi distribution? I think this related with infection vs transfection experiments but it deserved to be briefly explained/discussed.

      In lines 140-142 of the revised manuscript, we provide clarification that the DUB activity of Cdu1 is required for Golgi fragmentation in transfected cells. This observation supports our initial hypothesis suggesting that the DUB activity of Cdu1 is also required for Golgi distribution in infected cells, and our rationale for identifying targets of its DUB activity.

      • Lines 147-155, what is the relevance of this non-ubiquitinated proteins that come along? Couldn't this be synthesized?

      We have included a discussion on non-ubiquitinated proteins, as they could potentially encompass proteins that interact with those protected by Cdu1. This perspective provides supplementary insights into the roles of proteins targeted for ubiquitination in the absence of Cdu1. The results of this analysis have been succinctly summarized in a single paragraph within the initial manuscript (lines 151-159 of the revised manuscript).

      • Line 170, I think it is the first time that "Type 3 secretion"; perhaps explain in the introduction.

      Type 3 secretion systems have been extensively characterized and discussed in the literature, and we anticipate that the majority of our readers are well-acquainted with this secretory mechanism.

      • Line 184, I think it is the first time "microdomains" are mentioned; perhaps mention in the introduction.

      The definition of "microdomains" has been provided in line 191 of the revised manuscript.

      • Figure 2, as it stands the analysis with truncated Cdu1 proteins adds little to the work. Binding to the Incs seems to be affected when the TM domain is not present, but it still binds. And this is in a transfection context.

      The results depicted in Figure 2, involving truncated Cdu1 proteins, illustrates that Cdu1 is capable of interacting with InaC, IpaM, and CTL0480 even in the absence of infection. This finding serves as evidence suggesting that all three Incs could potentially serve as direct targets for Cdu1 activity. As a result, we prefer to keep these findings in the manuscript.

      • Line 219, "late stages of infection", this is shown (albeit not completely quantified) for IpaM and CTL0480, but not for InaC.

      In the revised Figure 3, we show InaC protein levels at 24, 36, and 48 hours post-infection, and we have incorporated quantitative data for both InaC and IpaM protein levels in the context of Hela cells infected with both WT L2 and cdu1::GII strains. This updated figure serves to emphasize the pivotal role of Cdu1 in safeguarding all three Incs during the late stages of infection.

      • Line 233, "pBOMB-MCI backbone" - is this needed in the Results section? And this refers to Figure 4 while pBOMB appear already in Fig. 3.

      We have removed “pBOMB-MCI backbone” in the revised manuscript.

      • Line 236, should be cdu1 endogenous promoter.

      In line 265 of the revised manuscript we have replaced Cdu1 with cdu1 (italicized).

      • Line 263, WT.

      In line 293 of the revised manuscript we replaced “wild type” with “WT”.

      • Line 277, IncA instead of "the Inc protein IncA".

      In the manuscript we wanted to emphasize that IncA is also an inclusion membrane protein, therefore we have included “the Inc protein IncA” in the revised manuscript to avoid any confusion.

      • How does the data in Figure 5 relates to the relatively few proteins ubiquitinated in cells infected with cdu1-mutant Ct? These Ub-labelling corresponds to ubiquitinated InaC, IpaM and CTL0480?

      The findings presented in Figure 5 demonstrate that the acetylase activity of Cdu1 plays a crucial role in enabling Ct to block all ubiquitination events taking place on or in proximity to the periphery of the inclusion membrane. This encompasses Cdu1 targets that might not have been identified through our proteomic analysis.

      • Lines 299-301, "M923 inclusions", there is certainly a clear way to write this.

      In lines 326-327 and 332-332 of the revised manuscript, we have clarified that “M923” is an incA null strain to provide clarification.

      • Line 309, is "peripheries" correct?

      We have changed “peripheries” with “periphery” in the revised manuscript (line 360).

      • Line 312, "Rif-R L2" and "M407" - can this be simplified?

      In the revised manuscript, "Rif-R L2" was substituted with "WT L2" in lines 363 and 382, while "M407" was exchanged with "an inaC null strain" in lines 311, 367, and 368. These same replacements were applied to the Figures and their corresponding legends for consistency.

      • Lines 308-321, and 326-335, these % are all approximate figures and this should be made clear.

      In lines 364-395 of the revised manuscript we have stated that all percentages are approximate values.

      • Fig. S1, kb and not k.b; what's the "+ control"; and is not really possible to have a PCR that works for the *? 3 kb is not that long.

      In the updated Figure S1, we have corrected "k.b" to "kb". In the legend of Figure S1, we have clarified that the + control corresponds to the cdu2 locus. Moreover, we could not cleanly amplify a 3 kb PCR product from bacteria in whole cell lysates of infected mammalian cells (Vero cells).

      • Fig. S2, kb and not k.b, bp and not b.p

      In the updated Figure S2, we have corrected “k.b” with “kb” and “b.p” with “bp”.

      Reviewer #2 (Recommendations For The Authors):

      Figure 1 describes an affinity-based purification and mass spectrometric identification of differentially ubiquitinated proteins (host and chlamydial). Through different permutations of combinations of infection (mock, wild type, and Cdu1 mutant), three effectors, IpaM, InaC, and CTL0480, were identified as putative targets of Cdu1. The authors used a high-stringency cutoff, which could explain identification of only three targets. Having said this, the localization of Cdu1 to the inclusion membrane would be expected to also narrow down the number of targets. Interestingly, Cdu2, another deubiquitinase remained active in these experiments, which could have affected identification of Cdu1 targets. The authors addressed this issue by referring to previously reported structural studies. A somewhat glaring omission is the lack of reference to NF-kB as a substrate of ChlaDub1/Cdu1. In experiments by Le Negrate et al., ChlaDub1 ectopic overexpression in cells led to the deubiquitination of IkB-alpha, thus inhibiting the nuclear translation of NF-kB. Based on the inclusion membrane localization of Cdu1 during infection, is the identification of IkB an artifact of overexpression of Cdu1, or is it still a bona fide Cdu1 target?

      We conducted experiments using our cdu1 null strain to investigate whether IκBα could be a target of Cdu1 activity. While our findings are intriguing and relevant, it is not feasible to determine, at this stage, whether our findings result from a direct or indirect consequence of Cdu1 localizing to the inclusion membrane. Consequently, these findings extend beyond the scope of the current manuscript. We plan to explore the implications of our observations more deeply in a subsequent manuscript, where we intend to provide a more comprehensive and mechanistic analysis based on these preliminary findings. Additionally, we have referenced the potential targeting of IκBα by Cdu1 in lines 100-101 and 166-171 of the revised manuscript.

      Figure 2 demonstrates the individual interaction of the identified effectors with Cdu1. Interaction at the inclusion membrane is inferred from colocalization studies, while protein-protein interaction is monitored using ectopic overexpression of tagged versions of Cdu1 and the individual effectors. This is somewhat of a weakness of the manuscript because the mechanism of action of Cdu1 towards its target hinges on protein-protein interaction.

      Despite our efforts, we encountered challenges in co-immunoprecipitating endogenous Cdu1 with all three Incs in infected Hela cells at 24 hpi. There are multiple technical reasons as to why these interactions, which are predicted to be transient, will not be captured by bulk affinity approaches such as immunoprecipitations, especially when the starting materials are present in very low abundance. We acknowledged these limitations in our findings, as reflected in lines 221-226 of the revised manuscript.

      Figure 3 provides the first evidence in this paper of the importance of the inferred interaction of Cdu1 with the three effectors. The authors show that the loss of cdu1 has stability consequences on the three effectors. This figure would benefit from quantifying InaC- or IpaM-positive inclusions in the same manner done with CTL0480. The timepoint-dependent effect of Cdu1 loss of function is intriguing. Do InaC and IpaM retention at the inclusion show the same timepoint-dependent characteristic?

      In the revised Figure 3, we have incorporated InaC protein levels at 24, 36, and 48 hours post-infection. Additionally, we have included quantitative data representing both InaC and IpaM protein levels in HeLa cells infected with both WT L2 and cdu1::GII strains. The quantification of CTL0480 localization to cdu1::GII inclusions has been moved to a supplementary figure.

      This updated figure illustrates that the absence of Cdu1 has a time-dependent impact on both InaC and IpaM. However, it is noteworthy that the kinetics of degradation for these two proteins diverge significantly.

      For Figure 7, the authors should consider monitoring timing of inclusion extrusion to gain additional insight into the functional interactions between the effectors. For example, the loss of CTL0480 leads to increased extrusion, implying a role in delaying or suppressing extrusion. In a time-course experiment, a CTL0480 mutant could exhibit an earlier occurrence of inclusion extrusion.

      One of the principal discoveries of this study is that Cdu1, InaC, IpaM, and CTL0480 collaborate to facilitate optimal extrusion of Ct from host cells. These findings represent a significant contribution to our understanding of how Chlamydia controls its exit from infected cells. We are currently in the process of expanding on these results. A forthcoming follow-up manuscript will provide more detailed and comprehensive exploration of these findings.

      Reviewer #3 (Recommendations For The Authors):

      Specific comments.

      a. I have some concerns related to the time point chosen for mass spec analysis and potential caveats and alternative interpretations. This work was done relatively early (24 hours) compared to the most convincing Cdu1 functions that occur later, thus this may limit the authors global understanding of protein changes. For example, the known substrate of Cdu1, Mcl-1 was not identified but this is altered relatively late during infection. Thus, the surprise that minimal host proteins are altered in ubiquitination may be partially driven by the timing of the assay. This should be more clearly discussed as a caveat.

      In the revised manuscript (lines 166-171), we have acknowledged that there might be additional targets of Cdu1 that remain unidentified, primarily due to the specific time point we utilized in our study.

      b. Another caveat to these studies is while the loss of Cdu1 alters different effectors stability and function and extrusion size, these changes do not modulate bacterial growth in cells. The authors speculate that regulating extrusion size may alter interactions with innate cells to drive dissemination. However, a previous study found defects in an animal model using a Cdu1 transposon mutant found decreased bacterial load in the genital tract. It is also possible that redundancy of effectors may mask importance in growth of Cdu1, but the authors strongly argue against redundancy of Cdu1 and Cdu2 so this weakens the authors argument here. These concepts and published data should be more directly discussed in the context of the authors proposed extrusion model and the role in driving Chlamydia growth and pathogenesis.

      In our revised manuscript (lines 460-466) we propose that while we do not observe any growth impairments during Ct growth in the absence of Cdu1 in HeLa cells, the reduction in bacterial loads observed in murine models of infection with an independent cdu1 mutant strain (cdu1::Tn) may potentially be linked to defects in extrusion production or alterations in Cdu1-dependent regulation of extrusion size.

      c. Recent studies have found that IFNg activation can result in dramatic changes in ubiquitination to pathogen containing vacuoles. While some of these are blocked by the newly found GarD, it seems possible that Cdu1 may also play a role (and perhaps use its deubiquinating activity) to further protect the inclusion. In light of published results showing that Cdu1 mutants have lower IFU burst size only in IFNg activated cells, this may be an important caveat in the current studies. This should be more directly addressed in the current manuscript.

      We have incorporated two experimental findings indicating that the presence of Cdu1 is not required for Ct to defend itself against IFN cellular immunity in human cells. These recent discoveries are now presented in the updated Figure 5 and detailed in lines 338-355 of the revised manuscript.

      d. On lines 433-434 the authors claim that Cdu1 is atypical since it is not encoded with the metaeffector/target pairs. However, this is an oversimplification of what is known about metaeffectors. For example, there are meta-effector/effector pairs that are not encoded together in Legionella (see table 1 DOI: https://doi.org/10.3390/pathogens10020108). Thus, the discussion should be adjusted. It seems Cdu1 is the first meta-effector found in Chlamydia, and maybe this should be highlighted more strongly rather than its uniqueness in this aspect of meta-effector/effector functions.

      In lines 488-489 of the revised manuscript, we have removed the assertion that Cdu1 functions as an atypical metaeffector and emphasized that it represents the initial discovery of a metaeffector within Ct.

    1. Author Response

      eLife assessment

      This important work describes the first high-resolution structure of HGSNAT, a lysosomal membrane protein required for the degradation of heparan sulfate (HS). Through careful structural analysis, this work proposes potential reasons why certain mutations in HGSNAT lead to lysosomal storage disorders and outlines the enzyme's catalytic mechanism. The experimental evidence presented provides incomplete support for the proposed molecular mechanism of the HS acetylation reaction and the impact of disease-causing mutations.

      We thank the editors and reviewers for taking the time to provide a critical assessment of our manuscript. We appreciate the input and suggestions to improve the analysis. Included here are only our provisional responses. We will address the concerns raised in more detail and incorporate them in the revised version of the manuscript.

      Reviewer #1 (Public Review):

      This article by Navratna et al. reports the first structure of human HGSNAT in an acetyl-CoAbound state. Through careful structural analysis, the authors propose potential reasons why certain human mutations lead to lysosomal storage disorders and outline a catalytic mechanism. The structural data are of good quality, and the manuscript is clearly written. This study represents an important step toward understanding the mechanism of HGSNAT and is valuable to the field. I have the following suggestions:

      We thank the reviewer for their encouraging and positive overall assessment of our work.

      1. The authors should characterize whether the purified protein is active. Otherwise, how does one know if the detergent used maintains the protein in a biologically relevant state? The authors should at least attempt to do so. If these prove to be challenging, at the very least, the authors should try a cell-based assay to demonstrate that the GFP tag does not interfere with the function.

      Thank you for highlighting this concern. The cryo-EM sample was prepared without the exogenous addition of ligand, as noted in the manuscript; the acetyl-CoA that we see in the structure was intrinsically bound to the protein, indicating the ability of GFP-tagged HGSNAT protein to bind the ligand. We purified the protein at a pH optimal for acetyl-CoA binding, as suggested by Bame, K. J. and Rome, L. H. (1985) and Meikle, P. J. et al., (1995). Because we see acetyl-CoA in a structure obtained using a GFP fusion, we argue that GFP does not interfere with protein stability and ability to bind to the co-substrate. As demonstrated by existing literature HGSNAT catalyzed reaction is compartmentalized spatially and conditionally. The binding of acetyl-CoA happens towards the cytosol and is optimal at pH 7-0.8.0, while the transfer of the acetyl group to heparan sulfate occurs towards the luminal side and is optimal at pH 5.0-6.0. We are working on establishing a robust assay to study this complicated and compartmentalized acetyl transfer assay.

      1. In Figure 5, the authors present a detailed schematic of the catalytic cycle, which I find to be too speculative. There is no evidence to suggest that this enzyme undergoes isomerization, like a transporter, between open-to-lumen and open-to-cytosol states. Could it not simply involve some movements of side chains to complete the acetyl transfer?

      The acetyl-CoA bound structure presented in the paper does not conclusively support a potential for isomerization and conformational dynamics. We agree with the reviewer that the reaction schematic presented in Figure 5 is speculative. We acknowledge in the discussion that our structure represents only a single step of the reaction, and defining the precise mechanism of acetyl transfer needs additional work. However, we will reword the discussion and change Figure 5 to address this concern raised by multiple reviewers.

      Reviewer #2 (Public Review):

      Summary:

      This work describes the structure of Heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), a lysosomal membrane protein that catalyzes the acetylation reaction of the terminal alpha-D-glucosamine group required for the degradation of heparan sulfate (HS). HS degradation takes place during the degradation of the extracellular matrix, a process required for restructuring tissue architecture, regulation of cellular function, and differentiation. During this process, HS is degraded into monosaccharides and free sulfate in lysosomes.

      HGSNAT catalyzes the transfer of the acetyl group from acetyl-CoA to the terminal non-reducing amino group of alpha-D-glucosamine. The molecular mechanism by which this process occurs has not been described so far. One of the main reasons to study the mechanism of HGSNAT is that multiple mutations spanning the entire sequence of the protein, such as nonsense mutations, splicesite variants, and missense mutations lead to dysfunction that causes abnormal accumulation of HS within the lysosomes. This accumulation is a cause of mucopolysaccharidosis IIIC (MPS IIIC), an autosomal recessive neurodegenerative lysosomal storage disorder, for which there are no approved drugs or treatment strategies.

      This paper provides a 3.26A structure of HGSNAT, determined by single-particle cryo-EM. The structure reveals that HGSNAT is a dimer in detergent micelles and a density assigned to acetylCoA. The authors speculate about the molecular mechanism of the acetylation reaction, map the mutations known to cause MPS IIIC on the structure and speculate about the nature of the HGSNAT disfunction caused by such mutations.

      Strengths:

      The description of the architecture of HGSNAT is the highlight of the paper since this corresponds to the first description of the structure of a member of the transmembrane acyl transferase (TmAT) superfamily. The high resolution of an HGSNAT bound to acetyl-CoA is an important leap in our understanding of the HGSNAT mechanism. The density map is of high quality, except for the luminal domain. The location of the acetyl-CoA allows speculation about the mechanistic role of multiple residues surrounding this molecule. The authors thoroughly describe the architecture of HGSNAT and map the mutations leading to MPS IIIC. The description of the dimeric interphase is a novel result, and future studies are left to confirm the importance of oligomerization for function.

      We thank the reviewer for their time and for highlighting both the quality and novelty of the structure presented in this work.

      Weaknesses:

      Apart from the cryo-EM structure, the article does not provide any other experimental evidence to support or explain a molecular mechanism. Due to the complete absence of functional assays, mutagenesis analysis, or other structures such as a ternary complex or an acetylated enzyme intermediate, the mechanistic model depicted in Figure 5 should be taken with caution.

      Thank you for pointing out this concern. The proposed mechanistic model in Figure 5 is a hypothesis based on previously reported biochemical characterization of HGSNAT by Rome & Crain (1981), Rome et al, (1983), Miekle et al., (1995) and Fan et al., (2011). However, we agree with the reviewer that this schematic is not experimentally proven and is speculative at best. Especially because our structure presents only a single step of the reaction, which does not conclusively support either ping-pong or random-order bi-substrate reactions. We will rephrase this section of our discussion and edit Figure 5 to address this concern.

      The authors discuss that H269 is an essential residue that participates in the acetylation reaction, possibly becoming acetylated during the process. However, there is no solid experimental evidence, e.g. mutagenesis analysis or structural analysis, in this or previous articles, that demonstrates this to be the case.

      H269, as a crucial catalytic residue, was suggested by monitoring the effect of chemical modifications of amino acids on acetylation of HGSNAT membranes by Bame, K. J. and Rome, L. H. (1986). We agree that mutagenesis, catalysis, and structural evidence for the same are not currently available. We are pursuing a more thorough exploration of the role of both H269 (previous studies) and N258 (from this study) on the stability and function of HGSNAT.

      In the discussion part, the authors mention previous studies in which it was postulated that the catalytic reaction can be described by a random order mechanistic model or a Ping Pong Bi Bi model. However, the authors leave open the question of which of these mechanisms best describes the acetylation reaction. The structure presented here does not provide evidence that could support one mechanism or the other.

      We agree with the reviewer’s observation that the structure doesn’t indeed support one reaction mechanism or another. We are pursuing the structural and kinetic characterization of HGSNAT in the presence of other co-substrates and multiple pHs that are required to address this concern thoroughly.

      Although the authors map the mutations leading to MPS IIIC on the structure and use FoldX software to predict the impact of these mutations on folding and fold stability, there is no experimental evidence to support FoldX's predictions.

      We are working on assessing the impact of specific mutations on the stability of HGSNAT and will add them to the revised version of the manuscript. We thank the reviewer for this suggestion.

      Reviewer #3 (Public Review):

      Summary:

      Navratna et al. have solved the first structure of a transmembrane N-acetyltransferase (TNAT), resolving the architecture of human heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT) in the acetyl-CoA bound state using single particle cryo-electron microscopy (cryoEM). They show that the protein is a dimer and define the architecture of the alpha- and beta- GSNAT fragments, as well as convincingly characterizing the binding site of acetyl-CoA.

      Strengths:

      This is the first structure of any member of the transmembrane acyl transferase superfamily, and as such it provides important insights into the architecture and acetyl-CoA binding site of this class of enzymes.

      The structural data is of a high quality, with an isotropic cryoEM density map at 3.3Å facilitating the building of a high-confidence atomic model. Importantly, the density of the acetyl-CoA ligand is particularly well-defined, as are the contacting residues within the transmembrane domain.

      The open-to-lumen structure of HSGNAT presented here will undoubtedly lay the groundwork for future structural and functional characterization of the reaction cycle of this class of enzymes.

      We thank the reviewer for their positive assessment of the data presented in this work. We really appreciate and agree with the reviewer's comment that the “structure of HSGNAT presented here will undoubtedly lay the groundwork for future structural and functional studies.”

      Weaknesses:

      While the structural data for the open-to-lumen state presented in this work is very convincing, and clearly defines the binding site of acetyl-CoA, to get a complete picture of the enzymatic mechanism of this family, additional structures of other states will be required.

      We agree with the reviewers’ assessment and are heavily invested in pursuing the structures of all the steps of acetyl transfer by HGSNAT.

      A potentially significant weakness of the study is the lack of functional validation. The enzymatic activity of the enzyme characterized was not measured, and the enzyme lacks native proteolytic processing, so it is a little unclear whether the structure represents an active enzyme.

      We thank the reviewer for this comment. While the proteolytic cleavage of the protein remains debated, we find no evidence of such an event in our purification (SDS-PAGE and SEC). Studies like Durand et al., (2010) and Fan et al., (2011) suggest that even the ER retained monomeric HGSNAT is active. Because we see acetyl-CoA (co-substrate) bound to the protein in our structure, we surmise that proteolysis is not necessary for function, at least not for substrate binding. However, we are working towards the structural and kinetic characterization of recombinant α- and β-HGSNAT construct to explore the role of proteolysis on HGSNAT stability and function.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable paper examines the Bithorax complex in several butterfly species, in which the complex is contiguous and not split, as it is in the well-studied fruit fly Drosophila. Based on genetic screens and genetic manipulations of a boundary element involved in segment-specific regulation of Ubx, the authors provide solid evidence for their conclusions, which could be further strengthened by additional data and analyses. The data presented are relevant for those interested in the evolution and function of Hox genes and of gene regulation in general.

      We are deeply grateful to the eLife editorial team and the two reviewers for their thoughtful and constructive feedback. We have used this feedback to improve our manuscript and have provided a point-by-point response below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In their article, "Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings," Tendolkar and colleagues explore Ubx regulation in butterflies. The authors investigated how Ubx expression is restricted to the hindwing in butterflies through a series of genomic analyses and genetic perturbations. The authors provide evidence that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin around Ubx, largely through an apparent boundary element. CRISPR mutations of this boundary element led to ectopic Ubx expression in forewings, resulting in homeotic transformation in the wings. The authors also explore the results of the mutation in two non-coding RNA regions as well as a possible enhancer module. Each of these induces homeotic phenotypes. Finally, the authors describe a number of homeotic phenotypes in butterflies, which they relate to their work.

      Together, this was an interesting paper with compelling initial data. That said, I have several items that I feel would warrant further discussion, presentation, or data.

      First, I would not state, "Little is known about how Hox genes are regulated outside of flies." They should add "in insects" since so much in known in vertebrates

      Corrected

      For Figure 1, it would aid the readers if the authors could show the number of RNAseq reads across the locus. This would allow the readership to evaluate the frequency of the lncRNAs, splice variants, etc.

      We have found it useful in the past to feature “Sashimi Plots”, as they provide a good overview of transcript splicing junctions and read support. Here we could not accommodate this in our Fig. 1A as this would require compiling the RNAseq reads from many tissues and stages to be meaningful, and we would lose the resolution on forewing vs hindwing tissues that is important in this article (only the Kallima inachus dataset allows this comparison, and was used in Fig 1B). More specifically, the wing transcriptomes available for J. coenia and V. cardui are not deep enough to provide a good visualization of Antp alternative promoter usage or on AS5’ transcription.

      How common are boundary elements within introns? Typically, boundary elements are outside gene bodies, so this could be explored further. This seems like an interesting bit of biology which, following from the above point, it would be interesting to, at a minimum, discuss, but also relate to how transcription occurs through a possible boundary element (are there splice variants, for example?).

      We do not see evidence of alternative splicing, and prefer to avoid speculating on transcriptional effects, but we agree that the intragenicity of the TAD boundary is interesting. We briefly highlighted this point in the revised Discussion:

      "Lastly, it is worth noting that the Antp/Ubx TAD boundary we identified is intragenic, within the last intron of Ubx. It is unclear if this feature affects Ubx transcription, but this configuration might be analogue to the Notch locus in Drosophila, which includes a functional TAD boundary in an intronic position (Arzate-Mejía et al. 2020)."

      The CRISPR experiments led to compelling phenotypes. However, as a Drosophila biologist, I found it hard to interpret the data from mosaic experiments. For example, in control experiments, how often do butterflies die? Are there offsite effects? It's striking that single-guide RNAs led to such strong effects. Is this common outside of this system? Is it possible to explore the function effects at the boundary element - are these generating large deletions (for example, like Mazo-Vargas et al., 2022)? For the mosaic experiments, how frequent are these effects in nature or captive stocks? Would it be possible to resequence these types of effects? At the moment, this data, while compelling, was hard to put into the context of the experiments above without understanding how common the effects are. Ideally, there would be resequencing of these tissues, which could be targeted, but it was not clear to me the general rates of these variants.

      We agree with this assessment completely: mosaics complicate the proper interpretation of CRISPR based perturbation assays in regulatory regions. Here, unlike in Mazo-Vargas et al. (2022), we were unable to breed homeotic effects to a G1 generation, possibly because the phenotypes are dominant and lethal at the embryonic stage (see also our reply to Reviewer 2). This means that mosaic mutants are often survivors with clones of restricted size in the wing, and they are probably rare, but we are unable to meaningfully measure a mutation spectrum frequency (e.g. how often large deletions are generated). As mentioned in the first paragraph of our Discussion, we think that many of the phenotypes we observed (besides the Ubx GOF effects from the BE targeting) were confounded by alleles that could include large SVs. We aim to address these questions in an upcoming manuscript, at a locus where regulatory perturbation does not impact survival, including using germline mutants and unbiased genotyping (whole genome resequencing).

      We elaborated on this issue in our Discussion:

      "It is crucial here to highlight the limitations of the method, in order to derive proper insights about the functionality of the regulatory regions we tested. In essence, butterfly CRISPR experiments generate random mutations by non-homologous end joining repair, that are usually deletions (Connahs et al. 2019; Mazo-Vargas et al. 2022; Van Belleghem et al. 2023). Ideally, regulatory CRISPR-induced alleles require genotyping in a second (G1) generation to be properly matched to a phenotype (Mazo-Vargas et al. 2022). Possibly because of lethal effects, we failed to pass G0 mutations to a G1 generation for genotyping, and were thus limited here to mosaic analysis. As adult wings have lost scale building cells that may underlie a given phenotype, we circumvented this issue by genotyping a pupal forewing displaying an homeotic phenotype in the more efficient Antp-Ubx_BE perturbation experiment (Fig. S4). In this case, PCR amplification of a 600 bp fragment followed by Sanger sequencing recovered signatures of indel variants, with mixed chromatograms starting at the targeted sites. But in all other experiments (CRM11, IT1, and AS5’ targets), we did not genotype mutant tissues, as they were only detected in adult stages and generally with small clone sizes. Some of these clones may have been the results of large structural variants, as data from other organisms suggests that Cas9 nuclease targeting can generate larger than expected mutations that evade common genotyping techniques (Shin et al. 2017; Adikusuma et al. 2018; Kosicki et al. 2018; Cullot et al. 2019; Owens et al. 2019). Even under the assumption that such mutations are relatively rare in butterfly embryos, the fact we injected >100 embryos in each experiment makes their occurrence likely (Fig. 9), and we are unable to assign a specific genotype to the homeotic effects we obtained in CRM11, IT1 and AS5’ perturbation assays."

      Our revision also includes a new Fig. S4 that features the mosaic genotyping of a G0 Antp-Ubx_BE mutant tissue. While this does not fully address the reviewer questions, it provides reasonable validation that the frequent GOF effects we observed upon perturbation at this target site are generated by on-target indels from DNA repair.

      Author response image 1.

      Validation of CRISPR-induced DNA Lesions in an Antp-Ubx_BE crispant pupat forewing. (A-A') Pupal forewing cuticle phenotype of an Antp-Ubx_BE J. coenia crispant, as in Fig. S3. (B-B") Aspect of the same forewing under trans-illumination following dissection out of the pupal case. Regions from mutant clones have a more transparent appearance. (C). Sanger sequencing of an amplicon targeting the Antp-Ubx_BE region in the mutant tissue shown in panel B", compared to a control wing tissue, showing mixed chromatogram around the expected CRISPR cutting site due to indel mutations from non-homologous end-joining.

      In sum, I enjoyed the extensive mosaic perturbations. However, I feel that more molecular descriptions would elevate the work and make a larger impact on the field.

      Reviewer #2 (Public Review):

      Summary:

      The existence of hox gene complexes conserved in animals with bilateral symmetry and in which the genes are arranged along the chromosome in the same order as the structures they specify along the anteroposterior axis of organisms is one of the most spectacular discoveries of recent developmental biology. In brief, homeotic mutations lead to the transformation of a given body segment of the fly into a copy of the next adjacent segment. For the sake of understanding the main observation of this work, it is important to know that in loss-of-function (LOF) alleles, a given segment develops like a copy of the segment immediately anterior to it, and in gain-of-function mutations (GOF), the affected segment develops like a copy of the immediately posterior segment. Over the last 30 years the molecular lesions associated with GOF alleles led to a model where the sequential activation of the hox genes along the chromosome result from the sequential opening of chromosomal domains. Most of these GOF alleles turned out to be deletions of boundary elements (BE) that define the extent of the segment-specific regulatory domains. The fruit fly Drosophila is a highly specialized insect with a very rapid mode of segmentation. Furthermore, the hox clusters in this lineage have split. Given these specificities it is legitimate to question whether the regulatory landscape of the BX-C we know of in D.melanogaster is the result of very high specialization in this lineage, or whether it reflects a more ancestral organization. In this article, the authors address this question by analyzing the continuous hox cluster in butterflies. They focus on the intergenic region between the Antennapedia and the Ubx gene, where the split occurred in D.melanogaster. Hi-C and ATAC-seq data suggest the existence of a boundary element between 2 Topologically-Associated-Domain (TAD) which is also characterized by the presence of CTCF binding sites. Butterflies have 2 pairs of wings originating from T2 (forewing) specified by Antp and T3 specified by Ubx (hindwing). Remarkably, CRISPR mutational perturbation of this boundary leads to the hatching of butterflies with homeotic clones of cells with hindwings identities in the forewing (a posteriorly oriented homeotic transformation). In agreement with this phenotype, the authors observe ectopic expression of Ubx in these clones of cells. In other words, CRISPR mutagenesis of this BE region identified by molecular tool give rise to homeotic transformations directed towards more posterior segment as the boundary mutations that had been 1st identified on the basis of their posterior oriented homeotic transformation in Drosophila. None of the mutant clones they observed affect the hindwing, indicating that their scheme did not affect the nearby Ubx transcription unit. This is reassuring and important first evidence that some of the regulatory paradigms that have been proposed in fruit flies are also at work in the common ancestor to Drosophilae and Lepidoptera.

      Given the large size of the Ubx transcription unit and its associated regulatory regions it is not surprising that the authors have identified ncRNA that are conserved in 4 species of Nymphalinae butterflies, some of which also present in D.melanogaster. Attempts to target the promoters by CRISPR give rise to clones of cells in both forewings and hindwings, suggesting the generation of regulatory mutations associated with both LOF and GOF transformations. The presence of clones with dual homeosis suggests the targeting of Ubx activator and repression CRMs. Unfortunately, these experiments do not allow us to make further conclusions on the role of these ncRNA or in the identification of specific regulatory elements. To the opinion of this reviewer, some recent papers addressing the role that these ncRNA may play in boundary function should be taken with caution, and evidence that ncRNA(s) regulate boundaries in the BX-C in a WT context is still lacking.

      Strengths:

      The convincing GOF phenotype resulting from the targeting of the Antp-Ubx_BE.

      Weaknesses:

      The lack of comparisons with the equivalent phenotypes obtained in D.melanogaster with for example the Fub mutation.

      We are grateful for this excellent contextualization of our findings and have incorporated some of the historical elements into our revision, as detailed below.

      Reviewer #2 (Recommendations For The Authors):

      In the whole paper, the authors bring the notion of boundaries through the angle of the existence of TADs and ignore almost entirely to explain the characteristics of boundary mutation in the BX-C. To my knowledge examples where targeted boundary deletions between TADs result in misregulation of the neighboring genes, and/or a phenotype, are extremely sparse (especially in the context of the mouse hox genes). Given the extensive litterature describing the boundary mutations and their associated GOF phenotypes, the paper would certainly gain strength if the authors justify their approach through this wealth of information. I must admit that this referee is surprised by the absence of any references to the founding work of the Karch and Bender laboratories on this topic. As a matter of fact, one of the founding members of the boundary class of regulatory elements was already brought in 1993 with the Fab-7 and Mcp elements of the BX-C. Based on gain-of-function homeotic phenotypes, additional Fab boundaries were added to the list. Finally, in 2013, Bender and Lucas (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606092/) identified the Fub boundary element that delimits the Ubx and abd-A domains in the BX-C. Fub fulfills the criterium of lying at the border of 2 neighboring TADs. Significantly, a deletion of Fub leads to a very penetrant and strong homeotic gain-of-function phenotype in which the flies hatch with a 1st abdominal segment transformed into the 2nd. In agreement with this, abd-A is expressed one parasegment too anterior in embryos. This is exactly the observation gathered from the targeted mutations in the Antp-Ubx_BE; a dominant transformation of anterior to posterior wing accompanied by an ectopic expression of Ubx in the forming primordia of the forwing where it is normally silenced. I believe the paper would gain credibility if the results were reported with the knowledge of the similarities with Fub.

      Line 53, I am not aware of the existence of TADs for each of the 9 regulatory domains. The insulators delimit the extent of the regulatory domains but certainly not of TADs.

      We thank the reviewer for these suggestions, as well as for the correction – we agree our previous text suggested that all BX-C boundaries are TAD boundaries, which was incorrect. We added a new introduction paragraph that combines classic literature on GOF mutations at boundary elements with recent evidence these are TAD insulators, including Fub (as suggested), and adding Fab-7 for breadth of scope.

      "For instance, the deletion of a small region situated between Ubx and abd-A produces the Front-ultraabdominal phenotype (Fub) where the first abdominal segment (A1) is transformed into a copy of the second abdominal segment A2, due to a gain-of-expression of abd-A in A1 where it is normally repressed (Bender and Lucas 2013). At the molecular level, the Fub boundary is enforced by insulating factors that separate Topologically Associating Domains (TADs) of open-chromatin, while also allowing interactions of Ubx and abd-A enhancers with their target promoters (Postika et al. 2018; Srinivasan and Mishra 2020). Likewise, the Fab-7 deletion, which removes a TAD boundary insulating abd-A and Abd–B (Moniot-Perron et al. 2023), transforms parasegment 11 into parasegment 12 due to an anterior gain-of-expression of Abd-B (Gyurkovics et al. 1990). By extrapolation, one may expect that if the Drosophila Hox locus was not dislocated into two complexes, Antp and Ubx 3D contact domains would be separated by a Boundary Element (BE), and that deletions similar with Fub and Fab-7 mutations would result in gain-of-function mutations of Ubx that could effectively transform T2 regions into T3 identities."

      A reference to the 1978 Nature article of Lewis should be added after line 42 of introduction.

      Added

      Line 56-57; the BX-C encoded miRNAs are known to regulate Ubx and abd-A, but not Abd-B.

      Corrected

      From lines 57 to 61, the authors mention reports aimed at demonstrating a role of ncRNA into Ubx regulation. To my eyes, these gathered evidences are rather weak. A reference to the work of Pease et al in Genetics in 2013 should be mentioned (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832271/).

      Added. Our paragraph includes qualifier language about the functionality of the Ubx-related ncRNAs (“are thought to”, “appears to”), and updated references regarding bxd (Petruk et al. 2006; Ibragimov et al. 2023).

      Line 62 authors, should write "Little is known about how Hox genes are regulated outside of Drosophila" and not flies.

      Corrected

      Lines 110-112 could lncRNA:Ubx-IT1 correspond to PS4 antisense reported by Pease et al in 2023 (see URL above)? Lines 115-117, could lncRNA:UbxAS5' correspond to bxd antisense of Pease et al in 2023 (see above)?

      As we could not detect sequence similarities, we preferred to avoid drawing homology, and we intentionally avoided reference to the fly transcripts when we named IT1 and AS5’. This said, we agree it is important to clarify that further studies are needed to clarify this relationship. We elaborated on this point in our discussion:

      "Of note, a systematic in-situ survey (Pease et al. 2013) showed that Drosophila embryos express an antisense transcripts in its 5’ region (lncRNA:bxd), as well as within its first intron (lncRNA:PS4). It is thought that Drosophila bxd regulates Ubx, possibly by transcriptional interference or by facilitation of the Fub-1 boundary effect (Petruk et al. 2006; Ibragimov et al. 2023), while the possible regulatory roles of PS4 remain debated (Hermann et al. 2022). While these dipteran non-coding transcripts lack detectable sequence similarity with the lepidopteran IT1 and AS5’ transcripts, further comparative genomics analyses of the Ubx region across the holometabolan insect phylogeny should clarify the extent to which Hox cluster lncRNAs have been conserved or independently evolved."

      Lines 154-155: "This concordance between Hi-C profiling and CTCF motif prediction thus indicates that Antp-Ubx_BE region functions as an insulator between regulatory domains of Antp and Ubx ». This is only correlative, I would write "suggests" instead of "indicates" and add a "might function".

      Corrected as suggested.

      Line 254, I assume the authors wish to write Ubx-IT1 in V. cardui instead of Ubx-T1.

      Typo corrected

      Line 255 : Fig.5 is absent from the pdf file and replaced by table 1. I did not find a legend for Table 1.

      Corrected, with our sincere apologies for the loss of this image in our first submission.

      Line 293 "Individual with hindwing clones 2.75 times more common than...." "are" is missing?

      Corrected

      Lines 303-313, it is not entirely clear how many guide RNAs were injected. Would be useful to indicate the sites targeted in Fig.S8.

      We specify in the revised text : using a single guide RNA (Ubx11b9)

      Lines 323-337: it is not entirely clear to this referee (a drosophilist) if those spontaneous mutations can be inbred or whether these individuals are occasional mosaics. In general, did anyone try to derive lines from those mosaic animals? Is it possible to hit the germline at the syncitial stages at which the guides are injected? Are the individuals with wing phenotype fertile? Given the fact that the Antp-Ubx_BE mutations should be dominant, I wonder if this characteristic would not help in identifying germline transmission. Similar remark for the discussion where the authors explain at line 360, that genotyping can only be done in the progeny of the Go. I do not have the impression that the authors have performed this genotyping and if I am right, I do not understand why.

      We improved our discussion section on this topic (new text in orange):

      "It is crucial here to highlight the limitations of the method, in order to derive proper insights about the functionality of the regulatory regions we tested. In essence, butterfly CRISPR experiments generate random mutations by non-homologous end joining repair, that are usually deletions (Connahs et al. 2019; Mazo-Vargas et al. 2022; Van Belleghem et al. 2023). Ideally, regulatory CRISPR-induced alleles require genotyping in a second (G1) generation to be properly matched to a phenotype (Mazo-Vargas et al. 2022). Possibly because of lethal effects, we failed to pass G0 mutations to a G1 generation for genotyping, and were thus limited here to mosaic analysis. As adult wings have lost scale building cells that may underlie a given phenotype, we circumvented this issue by genotyping a pupal forewing displaying an homeotic phenotype in the more efficient Antp-Ubx_BE perturbation experiment (Fig. S4). In this case, PCR amplification of a 600 bp fragment followed by Sanger sequencing recovered signatures of indel variants, with mixed chromatograms starting at the targeted sites. But in all other experiments (CRM11, IT1, and AS5’ targets), we did not genotype mutant tissues, as they were only detected in adult stages and generally with small clone sizes. Some of these clones may have been the results of large structural variants, as data from other organisms suggests that Cas9 nuclease targeting can generate larger than expected mutations that evade common genotyping techniques (Shin et al. 2017; Adikusuma et al. 2018; Kosicki et al. 2018; Cullot et al. 2019; Owens et al. 2019). Even under the assumption that such mutations are relatively rare in butterfly embryos, the fact we injected >100 embryos in each experiment makes their occurrence likely (Fig. 9), and we are unable to assign a specific genotype to the homeotic effects we obtained in CRM11, IT1 and AS5’ perturbation assays."

      We agree that the work we conducted with mosaics has important caveats. So far, our attempts at breeding homeotic G0 mutants have not been fruitful at this locus, while less deleterious loci can yield viable alleles into further generations, such as WntA (published) and cortex (in prep.). We prefer to stay vague about negative data here, as it is difficult to disentangle if they were due to real mutational effects (e.g. the alleles can be dominant and lethal in the G1 generation) to failure to germline carriers of mutations as founders, or to health issues that are often amplified by inbreeding depression (including a possible iflavirus in our V. cardui cultures).

      We concur with the prediction that Antp-Ubx_BE mutations are probably dominant, and intend to follow up with similar GOF experiments in the Plodia pantry moth, a laboratory model for lepidopteran functional genomics that is more amenable than butterflies to inbreeding and long-term studies in mutant lines. In our experience (https://www.frontiersin.org/articles/10.3389/fevo.2021.643661/full), Ubx coding knock-out can be more extensive in Plodia than in butterflies, so we think these animals will also be more resilient to the deleterious effects of the GOF phenotype.

      Line 423, 425, I am not a fan of the term "de-insulating!!!!!

      We replaced this neologism by Similar deletion alleles resulting in a TAD fusion and misexpression effect (see below).

      Line 425, why bring the work on Notch while there are so many examples in the BX-C itself....

      Our revised sentence makes it more clear we are referring here to documented examples of deletion-mediated TAD fusion (ie. featuring a conformation capture assay such as HiC/micro-C):

      This suggests a possible loss of the TAD boundary in the crispant clones, resulting in a TAD fusion or in a long-range interaction between a T2-specific enhancer and Ubx promoter. Similar deletion alleles resulting in a TAD fusion and misexpression effect have been described at the Notch locus in Drosophila (Arzate-Mejía et al. 2020), in digit-patterning mutants in mice and humans (Lupiáñez et al. 2015; Anania et al. 2022), or at murine and fly Hox loci depleted of CTCF-mediated regulatory blocking (Narendra et al. 2015; Gambetta and Furlong 2018; Kyrchanova et al. 2020).

      Our revision also includes more emphasis on the Drosophila BX-C boundary elements Fub and Fab-7 (see above).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript is very well written, the data are clearly presented and the methodology is robust. I only have suggestions to improve the manuscript, to make the study more appealing or to discuss in more detail some questions raised by the work.

      1. In the study as it stands, PFG seems to come out of the blue. The authors apparently selected this protein based on sequence conservation between species but this is unlikely to be sufficient to identify novel TFs. Explaining in more detail the reasoning that led to PFG would make the story more appealing. Perhaps PFG was identified through a large reverse genetics screening?

      Response: Thank you for your suggestion. We identified this gene solely by the strategy we described in the manuscript. We decided on this strategy based on the findings of our previous study on AP2-Family TFs, whose DNA binding domains are highly conserved among Plasmodium orthologues. Using this screening strategy, we identified a novel AP2 family TF AP2-Z. The results of the present study demonstrated that this strategy is applicable to TFs other than those belonging to the AP2 family. We are aware that this strategy is not all-encompassing. In fact, we failed to identify HDP1 as a candidate TF when it was also in the target list of AP2-G. However, at present, this is our primary strategy for identifying novel TFs in the targetome.

      1. The authors propose that PFG and AP2-FG form a complex, but this is actually not shown. Did they try to document a physical interaction between the two proteins, for example using co-IP?

      Response: Even when the two molecules were identified to be at the same position by ChIPseq, it cannot be concluded that they form a physical complex because it is possible that they competitively occupy the region. However, in this study, we performed ChIP-seq in the absence of PFG and demonstrated that the cAP2-FG peaks disappeared while those of sAP2-FG remained. This result can only be explained by the two proteins forming a complex at this region, which excludes the possibility that AP2-FG binds the region independently.

      1. It is unclear how PFG can bind to DNA in the absence of DNA-binding domain. Did the authors search for unconventional domains in the protein? This should be at least discussed in the manuscript.

      Response: We speculate that the two highly conserved regions, region 1 and region 2, function as DNA-binding domains in PFG. However, this domain is not similar to any DNA binding domains reported thus far. A straightforward way to demonstrate this would be to perform in vitro binding assays using a recombinant protein. However, thus far, we have not succeeded in obtaining soluble recombinant proteins for these regions. We have added the following sentences to the results section.

      “At present, we speculate that PFG directly interacts with genomic DNA through two highly conserved regions; region 1 and region 2. However, these regions are not similar to any DNA binding domains reported thus far. In other apicomplexan orthologues, these two domains are located adjacent to one another in the protein (Fig. 1A). Therefore, these two regions may be separated by a long interval region but constitute a DNA binding domain of PFG as a result of protein folding.”

      1. How do the authors explain that PFG is still expressed in the absence of AP2-FG? Is AP2G alone sufficient to express sufficient levels of the protein? Is PFG down-regulated in the absence of AP2-FG?

      Response: Our previous ChIP-seq data indicate that PFG is a target of AP2-G. According to the study by Kent et al. (2018), this gene is up-regulated in the early period following conditional AP2-G induction. The results of the present study showed that PFG is capable of autoactivation through a transcriptional positive feed-back loop. These results suggest that PFG can maintain its expression to a certain level once activated by AP2-G, even in the absence of AP2-FG. In our previous microarray analysis, significant decreases in PFG expression were not observed in AP2-FG-diaruptedparasites.

      1. How do AP2-FG regulated genes (based on RNAseq) compare with the predicted cAP2FG/sAP2-FG predicted genes (based on ChIPseq)? Are the two subsets included in the genes that are actually down-regulated in AP2-FG(-)?

      Response: Disruption of the AP2-FG gene impairs gametocyte development. We considered that the direct effect of this disruption would be difficult to analyze in gametocyte-enriched blood, in which gametocytes are pooled during sulfadiazine treatment to deplete asexual stages. Therefore, in our previous paper, we performed microarray analysis between WT and KO parasites to detect the direct effect of AP2-FG disruption on target gene expression, using mice which were synchronously infected with parasites. According to our results, 206 genes were down-regulated in AP2-FG-disrupted parasites. Of these genes, 40 and 117 were targets of sAP2-FG and cAP2-FG, respectively. However, it is still possible that a significant proportion of genes were indirectly down-regulated by AP2-FG disruption, which may impair gametocyte development. Moreover, based on the results of the present study, expression of a significant proportion of AP2-FG target genes could be complemented by PFG transcription. We believe that it would be difficult to compare the direct effects of these TFs on gene expression via transcriptome analysis (therefore, targetome analysis is important). In this study, we compared the expression of target genes of sAP2-FG and cAP2FG between PFG(-) and WT parasites. We expected that down-regulation of PFG (cAP2FG) targets would be complemented with transcription by sAP2-FG.

      1. Minor points

      -Page 5 Line 10, remove "as"

      Response: We have corrected this.

      -Page 7 Lines 4-13: is it possible to perform the assay in PFG(-) parasites?

      Response: Thank you for your question. Even when the marker gene expression was decreased in PFG(-) parasites, we cannot conclude the reason to be a direct effect of the mutation. To determine the function of the motif, it is necessary to perform the assay using wild-type parasites.

      -Page 7 Line 45: Fig6C instead of 5C

      Response: Thank you for pointing this out. We have corrected this.

      -Page 8 Line 27: "decreases"

      Response: Thank you for pointing this out. We have corrected this.

      -Page 8 Line 36: PFG instead of PGP

      Response: We have corrected this.

      -Page 8 Line 39: remove "the fact"

      Response: We have removed this word.

      -Page 8 Line 42: Fig6G instead of 5G

      Response: We have corrected this.

      -Page 8 Line 43: PFG instead of PGP

      Response: We have corrected this.

      -Page 9 Line 23: "electroporation"

      Response: We have corrected this.

      -Page 9 Line 32: "BamHI"

      Response: We have corrected this.

      -Fig 2E: in the crosses did the authors check oocyst formation in the mosquito?

      Response: We did not check oocyst formation because abnormalities in males may not affect oocyst formation.

      -Page 17, legend Fig3, Line 14, there is probably an inversion between left and right for PFG versus AP2-FG (either in the legend or in the figure)

      Response: Thank you for pointing this out. PFG peaks are located in the center in both heat maps. The description “AP2-FG peaks” over the arrowhead in the left map was incorrect. We have corrected this to “PFG peaks”. The peaks in the left heat map must be located in the center; thus, this figure might be redundant.

      Reviewer #2 (Recommendations for the Authors):

      • Could the authors please state in the results section that PFG stands for partner of AP2FG.

      Response: Thank you for the comment. We have added the following to the results section:

      “Through this screening, a gene encoding a 2709 amino acid protein with two regions highly conserved among Plasmodium was identified (PBANKA0902300, designated as a partner of AP2-FG (PFG; Fig. 1A).”

      • Given that the transcriptional program is so dynamic, the timing of the ChIP-seq experiments is crucial. Could the authors clarify the timings of the different ChIP-seq experiments (AP2-FG, PFG, PFG in AP2-FG-, AP2-FG in PFG-, ...)

      Response: Thank you for the comment. To deplete any parasites in the asexual stages, all ChIP-seq experiments in this study were performed using blood from mice treated with sulfadiazine, namely, gametocyte-enriched blood. As the reviewer points out, timing is important, and samples from the period when TFs are maximally expressed are optimal for ChIP-seq. However, when parasites in the asexual stages are present, the background becomes higher. Thus we usually use gametocyte-enriched blood for ChIP-seq when expression of the TF is observed in mature gametocytes. The exception was our ChIP-seq analysis of AP2-G, because is not present in mature gametocytes.

      • Fig 4c is an example of great overlap of peaks, but it would be helpful if the authors could quantify the overlaps between experiments (and describe the overlap parameters used).

      Response: According to the comment, we have created a Venn diagram of overlapping peaks (attached below). However, the peaks used for this Venn diagram were selected after peakcalling via fold-enrichment values. Thus, even if the counterpart of a peak is absent in these selected peaks (non-overlapping peaks in the Venn diagram), it does not indicate that it is absent in the original read map. We believe the overlap of peaks would be estimated more correctly in the heat maps.

      Author response image 1.

      Legged: The Venn diagram shows the number of common peaks between these ChIP seq experiments (distance of peak summits < 150

      • Additionally, how were the promoter coordinates used for each gene when they associate ChIP peaks to a gene target. Did the authors choose 1-2kb? Or use a TSS/5utr dataset such as Adjalley 2016 or Chappell 2020?

      Response: We selected a 1.2 Kbp region for target prediction based on our previous studies. As the reviewer pointed out, target prediction using TSS information may be more accurate. However, reliable TSS information is not available for P. berghei to the best of our knowledge.

      The two papers are studies on P. falciparum.

      • In the absence of evidence of physical interaction, it remains unclear if AP2-FG and PFG actually interact directly or as part of the same complex. A more detailed characterisation with IPs/co-IPs followed by mass spectrometry of the GFP-tagged version of PFG in the presence and absence of AP2-FG would be highly informative.

      Response: Thank you for the comment. Even when these two TFs occupy the same genomic region, it cannot be conclusively said that they exist at the same time in the region: they might competitively occupy the region. However, we showed that the cAP2-FG peaks disappear from the region when PFG was disrupted, while sAP2-FG peaks remain. We believe that this is evidence that the two TFs physically interact with each other.

      • It was not clear if the assessment of motif binding using cytometry was performed using all the required controls and compensation. This section should be clarified.

      Response: Thank you for the comment. Condensation was performed using parasites expressing a single fluorescent protein. The results are attached below. The histogram of mCherry using control parasites expressing GFP under the control of the HSP70 promoter is also attached.

      Author response image 2.

      However, we found that descriptions of the filters for detecting red signals were not correct. This assay was performed using parasites which expressed GFP constitutively and mCherry under the control of the p28 promoter. These two fluorescent proteins were excited by independent lasers (488 and 561, respectively), and the emission spectra were detected using independent detectors (through 530/30 and 610/20 filters, respectively). We have revised the description regarding our FACS protocols as follows:

      “Flow cytometric analysis was performed using an LSR-II flow cytometer (BD Biosciences). In experiments using 820 parasites, the tail blood from infected mice was selected via gating with forward scatter and staining with Hoechst 33342 (excitation =355 nm, emission = 450/50). The gated population was then analyzed for GFP fluorescence (excitation = 488 nm, emission = 530/30) and RFP fluorescence (excitation = 561 nm, emission = 610/20). In the promoter assay (using parasites transfected with a centromere plasmid), the tail blood from infected mice was selected via gating with forward scatter and staining with Hoechst 33342 (excitation =355 nm, emission = 450/50), followed by GFP fluorescence (excitation = 488 nm, emission = 530/30). The gated population was analyzed for mCherry fluorescence (excitation = 561 nm, emission = 610/20). Analysis was performed using the DIVER program (BD Biosciences).”

      Minor points:

      • Page 4, line 37: The authors should specify the timing of expression of AP2-FG on the text.

      Response: We have added the following description to the text.

      “The timing of the expression was approximately four hours later than that of AP2-FG, which started at 16 hpi (9).” .

      • Ref 9 and 17 are repeated

      Response: Thank you for pointing this out. We have corrected this.

      • Fig 1D and 1F do not have scale bars

      Response: We have added scale bars to Fig. 1D.

      We have not changed Fig. 1F, because we believe that the scales can be estimated from the size of the erythrocyte.

      • Page 5, line 29-30. Could the authors specify how many and which of the de-regulated genes have a PFG in their promoter.

      Response: Thank you for the comment, As described in a later section (page 7; Impact of PFG disruption on the expression of AP2-FG target genes), among the 279 genes significantly downregulated in PFG(-) parasites, 165 genes were targets for PFG (unique for PFG or common for sAP2-FG and PFG). In contrast, only four genes were targets unique to sAP2-FG. Therefore, 165 genes harbor the upstream peaks of PFG. These genes are shown in Table S1.

      • Fig 5F. in the methods associated with this figure there seems to be a mixup with the description of the lasers. In addition, given the spillover of the red and green signal between detectors this experiment needs compensation parameters. The authors should provide the gating strategy before and after compensation as this is critical for the correct calculation of the number of red parasites. Indeed, the lowest red cloud on the gate shown could be green signal spill over.

      Response: Thank you for the comment. As described above, there were some incorrect descriptions about the conditions of our FACS protocols in the methods section. We have revised them.

      -Page 7, line 19. Could the authors explicitly say in the text that the 810 genes are those with 1 (or more?) PFG peaks in their promoter (out of a total of 1029) to best guide the reader. Additionally, it is important to define the maximum distance allowed between a peak and CDS for it to be associated with said CDS.

      Response: We have revised Table S2 by adding the nearest genes. The revised table shows the relationship between a PFG peak and its nearest genes, together with their distances.

      • Page 7, line 45: fig 6c, not 5c

      Response: Thank you for the comment. We have corrected this.

      • Page 7 last paragraph: This section is very hard to follow. For instance, on line 50 do the authors mean that the sAP2-FG unique targets are LESS de-regulated? On line 51: do the authors mean unique targets of cAP2-FG or unique targets of PFG? Line 53: do the authors mean that genes expressed in the "common" category are LESS de-regulated than the PFG unique targets?

      Response: We are sorry for the lack of clarity; after reviewing the manuscript, it appears to be unclear what the fold change means in this section. Here, fold change means the ratio of PFG(-)/wild type. Thus “High log2(fold change) value” means that the genes were less downregulated. We have revised the description as follows:

      “The log2 distribution (fold change = PFG(-)/wild type) in the three groups of target genes showed that the average value was significantly higher (i.e., less down-regulated) in targets unique to sAP2-FG than in the other two groups (targets unique to cAP2-FG or common targets for both), with p-values of 1.3 × 10-10 and 1.4 × 10-5, respectively, by two-tailed Student’s t-test (Fig. 6F). In addition, the average log2 (fold change) value of the common target genes was relatively higher (i.e., less down-regulated) than that of targets unique to PFG, suggesting that transcriptional activation by sAP2-FG partly complements the impact of PFG disruption on these common targets.”

      • Page 8, line 42: Fig 6G, not 5G

      Response: Thank you for pointing this out. We have corrected this.

      Reviewer #3 (Recommendations For The Authors):

      1. The gene at the center of this study (PBANKA_0902300) was identified in an earlier genetic screen by Russell et al. as being a female specific gene with essential role in transmission and named Fd2 (for female-defective 2). Since this name entered the literature first and is equally descriptive, the Fd2 name should be used instead of PFG to maintain clarity and avoid unnecessary confusion. Surprisingly, this study is neither cited nor acknowledged despite a preprint having been available since August of 2021. This should be remedied.

      Response: Thank you for the comment. We have added the paper by Russell et al. accordingly and mentioned the name FD2 in the revised manuscript. However, we have retained the use of PFG throughout the paper. We believe that this usage of PFG shouldn’t be confusing, as FD2 has only been used in one previous paper. We have added the following:

      “Through this screening, a gene encoding a 2709 amino acid protein with two regions highly conserved among Plasmodium was identified (PBANKA0902300, designated as a partner of AP2-FG (PFG; Fig. 1A). This gene is one of the P. berghei genes that were previously identified as genes involved in female gametocyte development (named FD2), based on mass screening combined with single cell RNA-seq (ref).”

      1. While it isn't really important how the authors came to arrive at studying the function of Fd2, the rationale/approach given in the first paragraph of the result section seems far too broad to lead to Fd2, given that it lacks identifiable domains and many other ortholog sets exist across these species.

      Response: We selected this gene from the list of AP2-G targets as a candidate for a sequence-specific TF based on the hypothesis that the amino acid sequences of DNAbinding domains are highly conserved. We successfully identified two TFs (including PFG) using this method. However, there may be TFs that do not fit this hypothesis which are also targets of AP2-G. In fact, we were unable to identify HDP1 as a TF candidate, despite being a AP2-G target.

      1. Fig. 1A-C: Gene IDs for the orthologs should be provided, as well as the methodology for generating the alignments.

      Response; We have added the gene IDs and method for alignment in the legend as follows:

      (A) Schematic diagram of PFG from P. berghei and its homologs in apicomplexan parasites. Regions homologous to Regions 1 and 2, which are highly conserved among Plasmodium species, are shown as yellow and blue rectangles, respectively. Nuclear localization signals were predicted using the cNLS mapper (http://nls-10 mapper.iab.keio.ac.jp/cgibin/NLS_Mapper_form.cgi). The gene IDs of P. berghei PFG, P. falciparum PFG, and their homologs in Toxoplasma gondii, Eimeria tenella and Vitrella brassicaformis are PBANKA_0902300, PF3D7_1146800, TGGT1_239670, ETH2_1252400, and Vbra_10234, respectively.

      (C) The amino acid sequences of Regions 1 and 2 from P. berghei PFG and its homologs from other apicomplexan parasites in (A) were aligned using the ClustalW program in MEGA X. The positions at which all these sequences have identical amino acids are indicated by two asterisks, and positions with amino acid residues possessing the same properties are indicated by one asterisk.

      1. Figure 2: The Phenotype of Fd2 knockout should be characterized more comprehensively.

      It remains unclear whether ∆Fd2 parasite generate the same number of females but these are defective upon fertilization or whether there is also a decrease in the number of female gametocytes. Is the defect just post-fertilization and zygotes lyse or are there fewer fertilization events? If so is activation of female GCs effected?

      The number of male and female gametocytes should be quantified using sex-specific markers not affected by Fd2 knockout rather than providing a single image of each. The ability of ∆Fd2 GCs should also be evaluated.

      This is also important for the interpretation of Fig 2G. Is the down-regulation of the genes due to fewer female GCs or are the down-regulated genes only a subset of female-specific genes.

      Response: In PFG(-) parasites, the rate of conversion into zygotes of female gametocytes decreased, and zygotes had lost capacity for developing into ookinetes. This indicates that gametocyte development (i.e., the ability to egress the erythrocyte and to fertilize) and zygote development were both impaired. This phenotype is consistent with the observation that genes expressed in female gametocytes are broadly downregulated. PFG is a TF, and its disruption led to decreased expression of hundreds of female genes. Thus, the observed phenotype may be derived from combined decreased expression of these genes. We believe further detailed phenotypic analyses will not generate much novel information on this TF. Instead, RNA-seq data in PFG(-) parasites and the targetome have promise in helping to characterize the functions of this TF.

      1. Figure 3: what fraction of down-regulated genes have the Fd2 10mer motif?

      Response: Thank you for the question. We investigated the upstream binding motifs of these genes. Of the 279 significantly down-regulated genes (containing 165 targets), 161 genes harbor the motif (including nine-base motifs that lack one lateral base which is likely not essential for binding) in their upstream regions (within 1,200 bp from the first methionine codon). However, this result has not been described in the revised manuscript because it is more important whether these regions harbor PFG peaks (upstream motifs can exist without being involved in the binding of PFG).

      1. sAP2-FG (single) vs cAP2-FG (complex) nomenclature is confusing and possibly misleading since few TFs function in isolation and sAP2-FG likely functions in a complex that doesn't contain Fd2, possibly with another DNA binding protein that binds the TGCACA hexamer. The name for the distinct peaks should refer to the presence or absence of Fd2 in the complex, or maybe simply refer to them as complex A & B.

      Response: As shown in the DIP-seq analysis results, AP2-FG can bind the motif by itself. In contrast, AP2-FG must form a complex with PFG to bind to the ten-base motif. The complex and single forms are named according to this difference (the presence or absence of PFG) and used solely in its relation with PFG. We wrote “In the following, we refer to the form with PFG as cAP2-FG or the complex form, and the form without PFG as sAP2-FG or the single form.” We believe that the nomenclature has sufficient clarity. However, we have partially (underlined) revised certain sentences in the discussion section as follows.

      “As the expression of PFG increases via this mechanism, AP2-FG recruited by PFG (cAP2FG) increases and eventually becomes predominant in the transcriptional regulation of female gametocytes.”

      “This suggests that the promoter of the CCP2 gene, which is a target of PFG only, is still active in AP2-FG(-)820 parasites.”

      We recently reported that the TGCACA motif is a cis-activation motif in early gametocytes and important for both male and female gametocyte development. Thus we speculate that sAP2-FG is not involved in cis-activation by the TGCACA motif. The p-value of the six-base motif is indeed comparable to that of the five-base motif. However, the pvalue (calculated by Fisher’s exact test) in six-base motifs tend to be lower than that calculated in five-base motifs, because the population is much large. We speculate that there is a sequence-specific TF that may be expressed in early gametocytes and bind this motif, independently of AP2-FG.

      1. I compared the overlap of peaks in the 4 ChIP-seq data sets:

      90% of the Fd2 peaks are shared with AP2-FG (binding 24% of shared peaks is lost in ∆AP2FG)

      10% are bound by Fd2 alone (binding at 35% of Fd2 is lost in ∆AP2-FG)

      75% of Fd2 peaks are bound independently of AP2-FG

      47% of AP2-FG peaks shared with Fd2 (binding at 71% of shared peaks is lost in ∆Fd2) 53% of AP2-FG peaks are bound only by AP2-FG (but binding at 82% of AP2-FG only peaks is still lost in the ∆Fd2)

      Binding at 78% of all AP2-FG peaks is lost in ∆Fd2

      This indicates that much of AP2-FG binding in regions even in regions devoid of Fd2 still depends on Fd2. What are possible explanations for this?

      https://elife-rp.msubmit.net/eliferp_files/2023/04/03/00117573/00/117573_0_attach_10_17936_convrt.pdf

      Response: In the ChIP-seq of AP2-FG in the absence of PFG, 441 peaks are still called. This means that at least 441 binding sites for AP2-FG independent of PFG exist. This is a straightforward conclusion from our ChIP-seq data. On the other hand, simple deduction of peaks between two ChIP-seq experiments (AP2-FG peaks minus PFG peaks) is not a precise method for determining sAP2-FG. Peak-calling is independently performed in each ChIP-seq experiment. Thus, peaks remaining after the deduction between two experiments can still contain peaks that are actually common, but which are differentially picked up through the process of peak calling. Even when using data obtained by the same ChIP-seq experiment, markedly different numbers of peaks are called according to the conditions for peak calling (in contrast, common peaks between two independent experiments increase the reliability of the data). If wanting to identify sAP2-FG peaks via comparisons between AP2-FG peaks and PFG peaks, the reviewer has to increase the number of PFG peaks by reducing the peak-calling threshold until the number of overlapping peaks between AP2-FG and PFG are saturated, and then deduce the overlapping peaks from the AP2-FG peaks. However, as described above, for the purposes of estimating the number of sAP2-FG, it would be better to perform ChIP-seq of AP2-FG in the absence of PFG.

      1. Possible explanations of why recombinant Fd2 doesn't bind the TGCACA hexamer. It would also be good to note that the GCTCA AP2-FG motif found in Fig4G is now perfect match for the motif identified by protein binding microarray in Campbell et al.

      Response: It is not known what sequence recombinant PFG binds. The TGCACA motif is not enriched in PFG peaks. If the reviewer is referring to AP2-FG, our findings that the recombinant AP2 domain binds the five-base motif strongly suggests that other TFs recognize this motif. As described in our response to comment 9, we recently reported that TGCACA is a cis-activating sequence important for the normal development of both male and female gametocytes. Therefore, we currently speculate that this motif is a binding motif of other TFs and is independent of AP2-FG.

      We have mentioned the protein binding microarray data in the Results section as follows.

      “The most enriched motif matched well with the binding sequence of the AP2 domain of P. falciparum AP2-FG, which was reported by Campbell et al.”

      1. What might explain the strong enrichment for TGCACA in ChIPseq but when pulled down by AP2-FG DBD: another binding partner? requires more of AP2-DF than just DBD?

      Response: As described above in our response to comment 6, we have recently submitted a preprint studying the roles of the remodeler subunit PbARID in gametocyte development. We reported that the remodeler subunit is recruited to the six-base motif and that the motif is a novel cis-activation element for early gametocyte development. We speculate that a proportion of AP2-FG targets are also targets of a TF that recognizes this motif and recruits the remodeler subunit. These two TFs may be involved in the regulation of early gametocyte genes but function independently.

      1. Calling DNA pulldown with recombinant AP2-FG DNA-binding domain DNAImmunoprecipitation sequencing (DIP-seq) is confusing since there are no antibodies involved. Describing it directly as a pulldown of fragmented DNA will be clearer to the reader.

      Response: Thank you for the comment. We have also recognized this discrepancy. However we called the method DIP-seq because the original paper reporting this method used this name, wherein it did not use antibodies to capture the MBP-fusion recombinant protein. Our experiment was performed using essentially the same methods, and thus we retained the name.

      1. The legends and methods are very sparse and should include substantially more detail.

      Response: Thank you for the comment. We have revised the description of the FACS experimental method for clarity.

      1. BigWig files for all ChIPseq enrichment used for analysis in this study need to be provided.

      (two replicates each of : Fd2 in WT, Fd2 in ∆AP2-GF, AP2-FG in WT, AP2-FG in ∆Fd2)

      Response: We have deposited the BigWig files to GEO (GSE.226028 and GSE114096).

      1. Tables of ChIP data need to have both summits and peaks and need to list nearest gene. Also the ChIPseq peaks for Fd2 are surprisingly broad (ChIP peaks are very large, e.g. 68% of Fd2 peaks (dataset2) are greater than 1000kb) give its specificity for a long motif. Why is this?

      Response: We have revised Table S2 to include the nearest genes. We are unsure why peaks in the over 1000-bp peak region exist in such high proportions. However, this proportion was also high in our previous ChIP-seq data. Therefore, we speculate that this is a tendency of peak-calling by MACS2. We did not use these values in this paper. For example, targets were predicted using peak summits, and binding motifs were calculated using the 100-base regions around peak summits.

      1. Figure 5E: The positions of the 10mer and 5mer motifs in the promoter should be indicated as well as the length of the promoter. Moreover, mutation of just the 5bp motifs would be valuable to understand if 10mer is sufficient for expression of the reporter.

      Response: Thank you for the comment. We have revised the figure accordingly. The majority of female-specific promoters only harbor ten-base motifs. Thus the ten-base motif is sufficient for evaluating reporter activity (i.e., it would function without five-base motifs).

      1. How is AP2-FG expression affected in ∆Fd2 and vice versa?

      Response: According to our previous microarray data, PFG expression was not significantly downregulated by disruption of AP2-FG. This may be because PFG transcriptionally activates itself through a positive feedback loop after being induced by AP2-G. Similarly, according to our present study, AP2-FG expression was not downregulated by PFG disruption. This may be because AP2-FG is transcriptionally activated by AP2-G.

      1. The single cell data in Russell et al. could easily be used to indicate the order of expression.

      Response: Determining the expression order of gametocyte TFs via the single cell RNA-seq data from Russel et al. is difficult, because only a small number of parasite cells were considered to be in the early gametocyte stage in this study. This is because the parasites were cultured for 24h before the analysis. The analysis suggested by the reviewer may be possible via single cell RNA-seq, but the experiments must be performed with more focus on the early gametocyte stage.

      1. A discussion of the implication of P. falciparum transmission would be appreciated.

      Response: Thank you for the comment. We have added the following to the Discussion section:

      “P. falciparum gametocytes require 9-12 days to mature, which is much longer than that of P. berghei. Meanwhile, it has been reported that the ten-base motif is highly enriched in the upstream regions of female-specific genes also in P. falciparum. Thus, despite the difference in maturation periods, PFG is likely to play an important role in the transcriptional regulation of female P. falciparum gametocyte development."

      1. The lack of identifiable DNA binding domains in Fd2 is intriguing given the strong sequence-specificity. Do the authors think they have identified a new DNA-binding fold ?

      Alphafold of the orthologs with contiguous regions 1&2 might offer insight.

      Response: We speculate that these regions function as DNA binding domains. We performed analysis using Alfafold2 according to the comment. However, the predicted structure of the region was not similar to any other canonical DNA-binding domains. Thus, it may be a novel DNA-binding fold as the reviewer mentioned. Further studies such as binding assays using recombinant proteins would be necessary to confirm this, but thus far we have not successfully obtained the soluble proteins of these regions.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Thank you and the reviewers for further providing constructive comments and suggestions on our manuscript. On behalf of all the co-authors, I have enclosed a revised version of the above referenced paper. Below, I have merged similar public reviews and recommendations (if applicable) from each reviewer and provided point-by-point responses.

      Reviewer #1:

      People can perform a wide variety of different tasks, and a long-standing question in cognitive neuroscience is how the properties of different tasks are represented in the brain. The authors develop an interesting task that mixes two different sources of difficulty, and find that the brain appears to represent this mixture on a continuum, in the prefrontal areas involved in resolving task difficulty. While these results are interesting and in several ways compelling, they overlap with previous findings and rely on novel statistical analyses that may require further validation.

      Strengths

      1. The authors present an interesting and novel task for combining the contributions of stimulus-stimulus and stimulus-response conflict. While this mixture has been measured in the multi-source interference task (MSIT), this task provides a more graded mixture between these two sources of difficulty.

      2. The authors do a good job triangulating regions that encoding conflict similarity, looking for the conjunction across several different measures of conflict encoding. These conflict measures use several best-practice approaches towards estimating representational similarity.

      3. The authors quantify several salient alternative hypothesis and systematically distinguish their core results from these alternatives.

      4. The question that the authors tackle is important to cognitive control, and they make a solid contribution.

      The authors have addressed several of my concerns. I appreciate the authors implementing best practices in their neuroimaging stats.

      I think that the concerns that remain in my public review reflect the inherent limitations of the current work. The authors have done a good job working with the dataset they've collected.

      Response: We would like to thank the reviewer for the positive evaluation of our manuscript and the constructive comments and suggestions. In response to your suggestions and concerns, we have removed the Stroop/Simon-only and the Stroop+Simon models, revised our conclusion and modified the misleading phrases.

      We have provided detailed responses to your comments below.

      1. The evidence from this previous work for mixtures between different conflict sources makes the framing of 'infinite possible types of conflict' feel like a strawman. The authors cite classic work (e.g., Kornblum et al., 1990) that develops a typology for conflict which is far from infinite. I think few people would argue that every possible source and level of difficulty will have to be learned separately. This work provides confirmatory evidence that task difficulty is represented parametrically (e.g., consistent with the n-back, MOT, and random dot motion literature).

      notes for my public concerns.

      In their response, the authors say:

      'If each combination of the Stroop-Simon combination is regarded as a conflict condition, there would be infinite combinations, and it is our major goal to investigate how these infinite conflict conditions are represented effectively in a space with finite dimensions.'

      I do think that this is a strawman. The paper doesn't make a strong case that this position ('infinite combinations') is widely held in the field. There is previous work (e.g., n-back, multiple object tracking, MSIT, dot motion) that has already shown parametric encoding of task difficulty. This paper provides confirmatory evidence, using an interesting new task, that demand are parametric, but does not provide a major theoretical advance.

      Response: We agree that the previous expression may have seemed somewhat exaggerative. While it is not “infinite”, recent research indeed suggests that the cognitive control shows domain-specificity across various “domains”, including conflict types (Egner, 2008), sensory modalities (Yang et al., 2017), task-irrelevant stimuli (Spape et al., 2008), and task sets (Hazeltine et al., 2011), to name a few.

      These findings collectively support the notion that cognitive control is contextspecific (Bream et al., 2014). That is, cognitive control can be tuned and associated with different (and potentially large numbers of) contexts. Recently, Kikumoto and Mayr (2020) demonstrated that combinations of stimulus, rule and response in the same task formed separatable, conjunctive representations. They further showed that these conjunctive representations facilitate performance. This is in line with the idea that each stimulus-location combination in the present task may be represented separately in a domain-specific manner. Moreover, domain-general task representation can also become domain-specific with learning, which further increases the number of domain-specific conjunctive representations (Mill et al., 2023). In line with the domain-specific account of cognitive control, we referred to the “infinite combinations” in our previous response to emphasize the extreme case of domainspecificity. However, recognizing that the term “infinite” may lead to ambiguity, we have replaced it with phrases such as “a large number of”, “hugely varied”, in our revised manuscript.

      We appreciate the reviewer for highlighting the potential connection of our work to existing literature that showed the parametric encoding of task difficulty (e.g., Dagher et al., 1999; Ritz & Shenhav, 2023). For instance, in Ritz et al.’s (2023) study, they parametrically manipulated target difficulty based on consistent ratios of dot color, and found that the difficulty was encoded in the caudal part of dorsal anterior cingulate cortex. Analogically, in our study, the “difficulty” pertains to the behavioral congruency effect that we modulated within the spatial Stroop and Simon dimensions. Notably, we did identify univariate effects in the right dmPFC and IPS associated with the difficulty in the Simon dimension. This parametric effect may lend support to our cognitive space hypothesis, although we exercised caution in interpreting their significance due to the absence of a clear brain-behavioral relevance in these regions. We have added the connection of our work to prior literature in the discussion. The parametric encoding of conflict also mirrors prior research showing the parametric encoding of task demands (Dagher et al., 1999; Ritz & Shenhav, 2023).

      However, our analyses extend beyond solely testing the parametric encoding of difficulty. Instead, we focused on the multivariate representation of different conflict types, which we believe is independent from the univariate parametric encoding. Unlike the univariate encoding that relies on the strength within one dimension, the multivariate representation of conflict types incorporates both the spatial Stroop and Simon dimensions. Furthermore, we found that similar difficulty levels did not yield similar conflict representation, as indicated by the low similarity between the spatial Stroop and Simon conditions, despite both showing a similar level of congruency effect (Fig. S1). Additionally, we also observed an interaction between conflict similarity and difficulty (i.e., congruency, Fig. 4B/D), such that the conflict similarity effect was more pronounced when conflict was present. Therefore, we believe that our findings make contribution to the literature beyond the difficulty effect.

      Reference:

      Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374-380. https://doi.org/10.1016/j.tics.2008.07.001

      Yang, G., Nan, W., Zheng, Y., Wu, H., Li, Q., & Liu, X. (2017). Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 43(4), 807-818. https://doi.org/10.1037/xhp0000351

      Spapé MM, Hommel B (2008). He said, she said: episodic retrieval induces conflict adaptation in an auditory Stroop task. Psychonomic Bulletin Review,15(6):1117-21. https://doi.org/10.3758/PBR.15.6.1117

      Hazeltine E, Lightman E, Schwarb H, Schumacher EH (2011). The boundaries of sequential modulations: evidence for set-level control. Journal of Experimental Psychology: Human Perception & Performance. 2011 Dec;37(6):1898-914. https://doi.org/10.1037/a0024662

      Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology, 5, 1134. https://doi.org/10.3389/fpsyg.2014.01134

      Kikumoto A, Mayr U. (2020). Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proceedings of the National Academy of Sciences, 117(19):10603-10608. https://doi.org/10.1073/pnas.1922166117.

      Mill, R. D., & Cole, M. W. (2023). Neural representation dynamics reveal computational principles of cognitive task learning. bioRxiv. https://doi.org/10.1101/2023.06.27.546751

      Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain, 122 ( Pt 10), 1973-1987. https://doi.org/10.1093/brain/122.10.1973

      Ritz, H., & Shenhav, A. (2023). Orthogonal neural encoding of targets and distractors supports multivariate cognitive control. https://doi.org/10.1101/2022.12.01.518771

      1. (Public Reviews) The degree of Stroop vs Simon conflict is perfectly negatively correlated across conditions. This limits their interpretation of an integrated cognitive space, as they cannot separately measure Stroop and Simon effects. The author's control analyses have limited ability to overcome this task limitation. While these results are consistent with parametric encoding, they cannot adjudicate between combined vs separated representations.

      (Recommendations) I think that it is still an issue that the task's two features (stroop and simon conflict) are perfectly correlated. This fundamentally limits their ability to measure the similarity in these features. The authors provide several control analyses, but I think these are limited.

      Response: We need to acknowledge that the spatial Stroop and Simon components in the five conflict conditions were not “perfectly” correlated, with r = –0.89. This leaves some room for the preliminary model comparison to adjudicate between these models. However, it’s essential to note that conclusions based on these results must be tempered. In line with the reviewer’s observation, we agree that the high correlation between the two conflict sources posed a potential limitation on our ability to independently investigate the contribution of spatial Stroop and Simon conflicts. Therefore, in addition to the limitation we have previously acknowledged, we have now further revised our conclusion and adjusted our expressions accordingly.

      Specifically, we now regard the parametric encoding of cognitive control not as direct evidence of the cognitive space view but as preliminary evidence that led us to propose this hypothesis, which requires further testing. Notably, we have also modified the title from “Conflicts are represented in a cognitive space to reconcile domain-general and domain-specific cognitive control” to “Conflicts are parametrically encoded: initial evidence for a cognitive space view to reconcile the debate of domain-general and domain-specific cognitive control”. Also, we revised the conclusion as: In sum, we showed that the cognitive control can be parametrically encoded in the right dlPFC and guides cognitive control to adjust goal-directed behavior. This finding suggests that different cognitive control states may be encoded in an abstract cognitive space, which reconciles the long-standing debate between the domain-general and domain-specific views of cognitive control and provides a parsimonious and more broadly applicable framework for understanding how our brains efficiently and flexibly represents multiple task settings.

      From Recommendations The authors perform control analyses that test stroop-only and simon-only models. However, these analyses use a totally different similarity metric, that's based on set intersection rather than geometry. This metric had limited justification or explanation, and it's not clear whether these models fit worse because of the similarity metric. Even here, Simon-only model fit better than Stroop+Simon model. The dimensionality analyses may reflect the 1d manipulation by the authors (i.e. perfectly corrected stroop and simon effects).

      Response: The Jaccard measure is the most suitable method we can conceive of for assessing the similarity between two conflicts when establishing the Stroop-only and Simon-only models, achieved by projecting them onto the vertical or horizontal axes, respectively (Author response image 1A). This approach offers two advantages. First, the Jaccard similarity combines both similarity (as reflected by the numerator) and distance (reflected by the difference between denominator and numerator) without bias towards either. Second, the Jaccard similarity in our design is equivalent to the cosine similarity because the denominator in the cosine similarity is identical to the denominator in the Jaccard similarity (both are the radius of the circle, Author response image 1B).

      Author response image 1.

      Definition of Jaccard similarity. A) Two conflicts (1 and 2) are projected onto the spatial Stroop/Simon axis in the Stroop/Simon-only model, respectively. The Jaccard similarity for Stroop-only and Simon-only model are and respectively. Letters a-d are the projected vectors from the two conflicts to the two axes. Blue and red colors indicate the conflict conditions. Shorter vectors are the intersection and longer vectors are the union. B) According to the cosine similarity model, the similarity is defined as , where e is the projected vector from conflict 1 to conflict 2, and g is the vector of conflict 1. The Jaccard similarity for this case is defined by , where f is the projector vector from conflict 2 to itself. Because f = g in our design, the Jaccard similarity is equivalent to the cosine similarity.

      Therefore, we believe that the model comparisons between cosine similarity model and the Stroop/Simon-Only models were equitable. However, we acknowledge the reviewer’s and other reviewers’ concerns about the correlation between spatial Stroop and Simon conflicts, which reduces the space to one dimension (1d) and limits our ability to distinguish between the Stroop-only and Simon-only models, as well as between Stroop+Simon and cosine similarity models. While these distinctions are undoubtedly important for understanding the geometry of the cognitive space, we recognize that they go beyond the major objective of this study, that is, to differentiate the cosine similarity model from domain-general/specific models. Therefore, we have chosen to exclude the Stroop-only, Simon-only and Stroop+Simon models in our revised manuscript.

      Something that raised additional concerns are the RSMs in the key region of interest (Fig S5). The pure stroop task appears to be represented very differently from all of the conditions that include simon conflict.

      Together, I think these limitations reflect the structure of the task and research goals, not the statistical approach (which has been meaningfully improved).

      Response: We appreciate the reviewer for pointing this out. It is essential to clarify that our conclusions were based on the significant similarity modulation effect identified in our statistical analysis using the cosine similarity model, where we did not distinguish between the within-Stroop condition and the other four within-conflict conditions (Fig. 7A, now Fig. 8A). This means that the representation of conflict type was not biased by the seemingly disparities in the values shown here. Moreover, to specifically test the differences between the within-Stroop condition and the other within-conflict conditions, we conducted a mixed-effect model analysis only including trial pairs from the same conflict type. In this analysis, the primary predictor was the cross-condition difference (0 for within-Stroop condition and 1 for other within-conflict conditions). The results showed no significant cross-condition difference in either the incongruent (t = 1.22, p = .23) or the congruent (t = 1.06, p = .29) trials. Thus, we believe the evidence for different similarities is inconclusive in our data and decided not to interpret this numerical difference. We have added this note in the revised figure caption for Figure S5.

      Author response image 2.

      Fig. S5. The stronger conflict type similarity effect in incongruent versus congruent conditions. (A) Summary representational similarity matrices for the right 8C region in incongruent (left) and congruent (right) conditions, respectively. Each cell represents the averaged Pearson correlation of cells with the same conflict type and congruency in the 1400×1400 matrix. Note that the seemingly disparities in the values of Stroop and other within-conflict cells (i.e., the diagonal) did not reach significance for either incongruent (t = 1.22, p = .23) or congruent (t = 1.06, p = .29) trials. (2) Scatter plot showing the averaged neural similarity (Pearson correlation) as a function of conflict type similarity in both conditions. The values in both A and B are calculated from raw Pearson correlation values, in contrast to the z-scored values in Fig. 4D.

      Minor:

      • In the analysis of similarity_orientation, the df is very large (~14000). Here, and throughout, the df should be reflective of the population of subjects (ie be less than the sample size).

      Response: The large degrees of freedom (df) in our analysis stem from the fact that we utilized a mixed-effect linear model, incorporating all data points (a total of 400×35=14000). In mixed-effect models, the df is determined by subtracting the number of fixed effects (in our case, 7) from the total number of observations. Notably, we are in line with the literature that have reported the df in this manner (e.g., Iravani et al., 2021; Schmidt & Weissman, 2015; Natraj et al., 2022).

      Reference:

      Iravani B, Schaefer M, Wilson DA, Arshamian A, Lundström JN. The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proc Natl Acad Sci U S A. 2021 Oct 19;118(42):e2101209118. https://doi.org/10.1073/pnas.2101209118.

      Schmidt, J.R., Weissman, D.H. Congruency sequence effects and previous response times: conflict adaptation or temporal learning?. Psychological Research 80, 590–607 (2016). https://doi.org/10.1007/s00426-015-0681-x.

      Natraj, N., Silversmith, D. B., Chang, E. F., & Ganguly, K. (2022). Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements. Neuron, 110(1), 154-174. https://doi.org/10.1016/j.neuron.2021.10.002.

      • it would improve the readability if there was more didactic justification for why analyses are done a certain way (eg justifying the jaccard metric). This will help less technically-savvy readers.

      Response: We appreciate the reviewer’s suggestion. However, considering the Stroop/Simon-only models in our design may not be a valid approach for distinguishing the contributions of the Stroop/Simon components, we have decided not to include the Jaccard metrics in our revised manuscript.

      Besides, to improve the readability, we have moved Figure S4 to the main text (labeled as Figure 7), and added the domain-general/domain-specific schematics in Figure 8.

      Author response image 3.

      Figure 8. Schematic of key RSMs. (A) and (B) show the orthogonality between conflict similarity and orientation RSMs. The within-subject RSMs (e.g., Group1-Group1) for conflict similarity and orientation are all the same, but the cross-group correlations (e.g., Group2-Group1) are different. Therefore, we can separate the contribution of these two effects when including them as different regressors in the same linear regression model. (C) and (D) show the two alternative models. Like the cosine model (A), within-group trial pairs resemble between-group trial pairs in these two models. The domain-specific model is an identity matrix. The domain-general model is estimated from the absolute difference of behavioral congruency effect, but scaled to 0(lowest similarity)-1(highest similarity) to aid comparison. The plotted matrices here include only one subject each from Group 1 and Group 2. Numbers 1-5 indicate the conflict type conditions, for spatial Stroop, StHSmL, StMSmM, StLSmH, and Simon, respectively. The thin lines separate four different sub-conditions, i.e., target arrow (up, down) × congruency (incongruent, congruent), within each conflict type.

      Reviewer #2:

      This study examines the construct of "cognitive spaces" as they relate to neural coding schemes present in response conflict tasks. The authors use a novel experimental design in which different types of response conflict (spatial Stroop, Simon) are parametrically manipulated. These conflict types are hypothesized to be encoded jointly, within an abstract "cognitive space", in which distances between task conditions depend only on the similarity of conflict types (i.e., where conditions with similar relative proportions of spatial-Stroop versus Simon conflicts are represented with similar activity patterns). Authors contrast such a representational scheme for conflict with several other conceptually distinct schemes, including a domain-general, domain-specific, and two task-specific schemes. The authors conduct a behavioral and fMRI study to test which of these coding schemes is used by prefrontal cortex. Replicating the authors' prior work, this study demonstrates that sequential behavioral adjustments (the congruency sequence effect) are modulated as a function of the similarity between conflict types. In fMRI data, univariate analyses identified activation in left prefrontal and dorsomedial frontal cortex that was modulated by the amount of Stroop or Simon conflict present, and representational similarity analyses (RSA) that identified coding of conflict similarity, as predicted under the cognitive space model, in right lateral prefrontal cortex.

      This study tackles an important question regarding how distinct types of conflict might be encoded in the brain within a computationally efficient representational format. The ideas postulated by the authors are interesting ones and the statistical methods are generally rigorous.

      Response: We would like to express our sincere appreciation for the reviewer’s positive evaluation of our manuscript and the constructive comments and suggestions. In response to your suggestions and concerns, we excluded the StroopOnly, SimonOnly and Stroop+Simon models, and added the schematic of domain-general/specific model RSMs. We have provided detailed responses to your comments below.

      The evidence supporting the authors claims, however, is limited by confounds in the experimental design and by lack of clarity in reporting the testing of alternative hypotheses within the method and results.

      1. Model comparison

      The authors commendably performed a model comparison within their study, in which they formalized alternative hypotheses to their cognitive space hypothesis. We greatly appreciate the motivation for this idea and think that it strengthened the manuscript. Nevertheless, some details of this model comparison were difficult for us to understand, which in turn has limited our understanding of the strength of the findings.

      The text indicates the domain-general model was computed by taking the difference in congruency effects per conflict condition. Does this refer to the "absolute difference" between congruency effects? In the rest of this review, we assume that the absolute difference was indeed used, as using a signed difference would not make sense in this setting. Nevertheless, it may help readers to add this information to the text.

      Response: We apologize for any confusion. The “difference” here indeed refers to the “absolute difference” between congruency effects. We have now clarified this by adding the word “absolute” accordingly.

      "Therefore, we defined the domain-general matrix as the absolute difference in their congruency effects indexed by the group-averaged RT in Experiment 2."

      Regarding the Stroop-Only and Simon-Only models, the motivation for using the Jaccard metric was unclear. From our reading, it seems that all of the other models --- the cognitive space model, the domain-general model, and the domain-specific model --- effectively use a Euclidean distance metric. (Although the cognitive space model is parameterized with cosine similarities, these similarity values are proportional to Euclidean distances because the points all lie on a circle. And, although the domain-general model is parameterized with absolute differences, the absolute difference is equivalent to Euclidean distance in 1D.) Given these considerations, the use of Jaccard seems to differ from the other models, in terms of parameterization, and thus potentially also in terms of underlying assumptions. Could authors help us understand why this distance metric was used instead of Euclidean distance? Additionally, if Jaccard must be used because this metric seems to be non-standard in the use of RSA, it would likely be helpful for many readers to give a little more explanation about how it was calculated.

      Response: We believe that the Jaccard similarity measure is consistent with the Cosine similarity measure. The Jaccard similarity is calculated as the intersection divided by the union. To define the similarity of two conflicts in the Stroop-only and Simon-only models, we first project them onto the vertical or horizontal axes, respectively (as shown in Author response image 1A). The Jaccard similarity in our design is equivalent to the cosine similarity because the denominator in the Jaccard similarity is identical to the denominator in the cosine similarity (both are the radius of the circle, Author response image 1B).

      However, it is important to note that a cosine similarity cannot be defined when conflicts are projected onto spatial Stroop or Simon axis simultaneously. Therefore, we used the Jaccard similarity in the previous version of our manuscript.

      Author response image 4.

      Definition of Jaccard similarity. A) Two conflicts (1 and 2) are projected onto the spatial Stroop/Simon axis in the Stroop/Simon-only model, respectively. The Jaccard similarity for Stroop-only and Simon-only model are and respectively. Letters a-d are the projected vectors from the two conflicts to the two axes. Blue and red colors indicate the conflict conditions. Shorter vectors are the intersection and longer vectors are the union. B) According to the cosine similarity model, the similarity is defined as , where e is the projected vector from conflict 1 to conflict 2, and g is the vector of conflict 1. The Jaccard similarity for this case is defined by , where f is the projector vector from conflict 2 to itself. Because f = g in our design, the Jaccard similarity is equivalent to the cosine similarity.

      However, we agree with the reviewer’s and other reviewers’ concern that the correlation between spatial Stroop and Simon conflicts makes it less likely to distinguish the Stroop+Simon from cosine similarity models. While distinguishing them is essential to understand the detailed geometry of the cognitive space, it is beyond our major purpose, that is, to distinguish the cosine similarity model with the domain-general/specific models. Therefore, we have chosen to exclude the Stroop-only, Simon-only and Stroop+Simon models from our revised manuscript.

      When considering parameterizing the Stroop-Only and Simon-Only models with Euclidean distances, one concern we had is that the joint inclusion of these models might render the cognitive space model unidentifiable due to collinearity (i.e., the sum of the Stroop-Only and Simon-Only models could be collinear with the cognitive space model). Could the authors determine whether this is the case? This issue seems to be important, as the presence of such collinearity would suggest to us that the design is incapable of discriminating those hypotheses as parameterized.

      Response: We acknowledge that our design does not allow for a complete differentiation between the parallel encoding (StroopOnly+SimonOnly) model and the cognitive space model, given their high correlation (r = 0.85). However, it is important to note that the StroopOnly+SimonOnly model introduces more free parameters, making the model fitting poorer than the cognitive space model.

      Additionally, the cognitive space model also shows high correlations with the StroopOnly and SimonOnly models (both rs = 0.66). It is crucial to emphasize that our study’s primary goal does not involve testing the parallel encoding hypothesis (through the StroopOnly+SimonOnly model). As a result, we have chosen to remove the model comparison results with the StroopOnly, SimonOnly and StroopOnly+SimonOnly models. Instead, the cognitive space model shows lower correlation with the purely domain-general (r = −0.16) and domain-specific (r = 0.46) models.

      1. Issue of uniquely identifying conflict coding

      We certainly appreciate the efforts that authors have taken to address potential confounders for encoding of conflict in their original submission. We broach this question not because we wish authors to conduct additional control analyses, but because this issue seems to be central to the thesis of the manuscript and we would value reading the authors' thoughts on this issue in the discussion.

      To summarize our concerns, conflict seems to be a difficult variable to isolate within aggregate neural activity, at least relative to other variables typically studied in cognitive control, such as task-set or rule coding. This is because it seems reasonable to expect that many more nuisance factors covary with conflict -- such as univariate activation, level of cortical recruitment, performance measures, arousal --- than in comparison with, for example, a well-designed rule manipulation. Controlling for some of these factors post-hoc through regression is commendable (as authors have done here), but such a method will likely be incomplete and can provide no guarantees on the false positive rate.

      Relatedly, the neural correlates of conflict coding in fMRI and other aggregate measures of neural activity are likely of heterogeneous provenance, potentially including rate coding (Fu et al., 2022), temporal coding (Smith et al., 2019), modulation of coding of other more concrete variables (Ebitz et al., 2020, 10.1101/2020.03.14.991745; see also discussion and reviews of Tang et al., 2016, 10.7554/eLife.12352), or neuromodulatory effects (e.g., Aston-Jones & Cohen, 2005). Some of these origins would seem to be consistent with "explicit" coding of conflict (conflict as a representation), but others would seem to be more consistent with epiphenomenal coding of conflict (i.e., conflict as an emergent process). Again, these concerns could apply to many variables as measured via fMRI, but at the same time, they seem to be more pernicious in the case of conflict. So, if authors consider these issues to be germane, perhaps they could explicitly state in the discussion whether adopting their cognitive space perspective implies a particular stance on these issues, how they interpret their results with respect to these issues, and if relevant, qualify their conclusions with uncertainty on these issues.

      Response: We appreciate the reviewer’s insightful comments regarding the representation and process of conflict.

      First, we agree that the conflict is not simply a pure feature like a stimulus but often arises from the interaction (e.g., dimension overlap) between two or more aspects. For example, in the manual Stroop, conflict emerges from the inconsistent semantic information between color naming and word reading. Similarly, other higher-order cognitive processes such as task-set also underlie the relationship between concrete aspects. For instance, in a face/house categorization task, the taskset is the association between face/house and the responses. When studying these higher-order processes, it is often impossible to completely isolate them from bottomup features. Therefore, methods like the representational similarity analysis and regression models are among the limited tools available to attempt to dissociate these concrete factors from conflict representation. While not perfect, this approach has been suggested and utilized in practice (Freund et al., 2021).

      Second, we agree that conflict can be both a representation and an emerging process. These two perspectives are not necessarily contradictory. According to David Marr’s influential three-level theory (Marr, 1982), representation is the algorithm of the process to achieve a goal based on the input. Therefore, a representation can refer to not only a static stimulus (e.g., the visual representation of an image), but also a dynamic process. Building on this perspective, we posit that the representation of cognitive control consists of an array of dynamic representations embedded within the overall process. A similar idea has been proposed that the abstract task profiles can be progressively constructed as a representation in our brain (Kikumoto & Mayr, 2020).

      We have incorporated this discussion into the manuscript:

      "Recently an interesting debate has arisen concerning whether cognitive control should be considered as a process or a representation (Freund, Etzel, et al., 2021). Traditionally, cognitive control has been predominantly viewed as a process. However, the study of its representation has gained more and more attention. While it may not be as straightforward as the visual representation (e.g., creating a mental image from a real image in the visual area), cognitive control can have its own form of representation. An influential theory, Marr’s (1982) three-level model proposed that representation serves as the algorithm of the process to achieve a goal based on the input. In other words, representation can encompass a dynamic process rather than being limited to static stimuli. Building on this perspective, we posit that the representation of cognitive control consists of an array of dynamic representations embedded within the overall process. A similar idea has been proposed that the representation of task profiles can be progressively constructed with time in the brain (Kikumoto & Mayr, 2020)."

      Reference:

      Freund, M. C., Etzel, J. A., & Braver, T. S. (2021). Neural Coding of Cognitive Control: The Representational Similarity Analysis Approach. Trends in Cognitive Sciences, 25(7), 622-638. https://doi.org/10.1016/j.tics.2021.03.011

      Marr, D. C. (1982). Vision: A computational investigation into human representation and information processing. New York: W.H. Freeman.

      Kikumoto A, Mayr U. (2020). Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proceedings of the National Academy of Sciences, 117(19):10603-10608. https://doi.org/10.1073/pnas.1922166117.

      1. Interpretation of measured geometry in 8C

      We appreciate the inclusion of the measured similarity matrices of area 8C, the key area the results focus on, to the supplemental, as this allows for a relatively model-agnostic look at a portion of the data. Interestingly, the measured similarity matrix seems to mismatch the cognitive space model in a potentially substantive way. Although the model predicts that the "pure" Stroop and Simon conditions will have maximal self-similarity (i.e., the Stroop-Stroop and Simon-Simon cells on the diagonal), these correlations actually seem to be the lowest, by what appears to be a substantial margin (particularly the Stroop-Stroop similarities). What should readers make of this apparent mismatch? Perhaps authors could offer their interpretation on how this mismatch could fit with their conclusions.

      Response: We appreciate the reviewer for bringing this to our attention. It is essential to clarify that our conclusions were based on the significant similarity modulation effect observed in our statistical analysis using the cosine similarity model, where we did not distinguish between the within-Stroop condition and the other four withinconflict conditions (Fig. 7A). This means that the representation of conflict type was not biased by the seemingly disparities in the values shown here. Moreover, to specifically address the potential differences between the within-Stroop condition and the other within-conflict conditions, we conducted a mixed-effect model. In this analysis, the primary predictor was the cross-condition difference (0 for within-Stroop condition and 1 for other within-conflict conditions). The results showed no significant cross-condition difference in either the incongruent trials (t = 1.22, p = .23) or the congruent (t = 1.06, p = .29) trials. Thus, we believe the evidence for different similarities is inconclusive in our data and decided not to interpret this numerical difference.

      We have added this note in the revised figure caption for Figure S5.

      Author response image 5.

      Fig. S5. The stronger conflict type similarity effect in incongruent versus congruent conditions. (A) Summary representational similarity matrices for the right 8C region in incongruent (left) and congruent (right) conditions, respectively. Each cell represents the averaged Pearson correlation of cells with the same conflict type and congruency in the 1400×1400 matrix. Note that the seemingly disparities in the values of Stroop and other within-conflict cells (i.e., the diagonal) did not reach significance for either incongruent (t = 1.22, p = .23) or congruent (t = 1.06, p = .29) trials. (2) Scatter plot showing the averaged neural similarity (Pearson correlation) as a function of conflict type similarity in both conditions. The values in both A and B are calculated from raw Pearson correlation values, in contrast to the z-scored values in Fig. 4D.

      1. It would likely improve clarity if all of the competing models were displayed as summarized RSA matrices in a single figure, similar to (or perhaps combined with) Figure 7.

      Response: We appreciate the reviewer’s suggestion. We now have incorporated the domain-general and domain-specific models into the Figure 7 (now Figure 8).

      Author response image 6.

      Figure 8. Schematic of key RSMs. (A) and (B) show the orthogonality between conflict similarity and orientation RSMs. The within-subject RSMs (e.g., Group1-Group1) for conflict similarity and orientation are all the same, but the cross-group correlations (e.g., Group2-Group1) are different. Therefore, we can separate the contribution of these two effects when including them as different regressors in the same linear regression model. (C) and (D) show the two alternative models. Like the cosine model (A), within-group trial pairs resemble between-group trial pairs in these two models. The domain-specific model is an identity matrix. The domain-general model is estimated from the absolute difference of behavioral congruency effect, but scaled to 0(lowest similarity)-1(highest similarity) to aid comparison. The plotted matrices here include only one subject each from Group 1 and Group 2. Numbers 1-5 indicate the conflict type conditions, for spatial Stroop, StHSmL, StMSmM, StLSmH, and Simon, respectively. The thin lines separate four different sub-conditions, i.e., target arrow (up, down) × congruency (incongruent, congruent), within each conflict type.

      1. Because this model comparison is key to the main inferences in the study, it might also be helpful for most readers to move all of these RSA model matrices to the main text, instead of in the supplemental.

      Response: We thank the reviewer for this suggestion. We have moved the Fig. S4 to the main text, labeled as the new Figure 7.

      1. It may be worthwhile to check how robust the observed brain-behavior association (Fig 4C) is to the exclusion of the two datapoints with the lowest neural representation strength measure, as these points look like they have high leverage.

      Response: We calculated the Pearson correlation after excluding the two points and found it does not affect the results too much, with the r = 0.50, p = .003 (compared to the original r = 0.52, p = .001).

      Additionally, we found the two axes were mistakenly shifted in Fig 4C. Therefore, we corrected this error in the revised manuscript. The correlation results would not be influenced.

      Author response image 7.

      Fig. 4. The conflict type effect. (A) Brain regions surviving the Bonferroni correction (p < 0.0001) across the regions (criterion 1). Labeled regions are those meeting the criterion 2. (B) Different encoding of conflict type in the incongruent with congruent conditions. * Bonferroni corrected p < .05. (C) The brain-behavior correlation of the right 8C (criterion 3). The x-axis shows the beta coefficient of the conflict type effect from the RSA, and the y-axis shows the beta coefficient obtained from the behavioral linear model using the conflict similarity to predict the CSE in Experiment 2. (D) Illustration of the different encoding strength of conflict type similarity in incongruent versus congruent conditions of right 8C. The y-axis is derived from the z-scored Pearson correlation coefficient, consistent with the RSA methodology. See Fig. S4B for a plot with the raw Pearson correlation measurement. l = left; r = right.

      Reviewer #3:

      Yang and colleagues investigated whether information on two task-irrelevant features that induce response conflict is represented in a common cognitive space. To test this, the authors used a task that combines the spatial Stroop conflict and the Simon effect. This task reliably produces a beautiful graded congruency sequence effect (CSE), where the cost of congruency is reduced after incongruent trials. The authors measured fMRI to identify brain regions that represent the graded similarity of conflict types, the congruency of responses, and the visual features that induce conflicts. They applied univariate, multivariate, and connectivity analyses to fMRI data to identify brain regions that represent the graded similarity of conflict types, the congruency of responses, and the visual features that induce conflicts. They further directly assessed the dimensionality of represented conflict space.

      The authors identified the right dlPFC (right 8C), which shows 1) stronger encoding of graded similarity of conflicts in incongruent trials and 2) a positive correlation between the strength of conflict similarity type and the CSE on behavior. The dlPFC has been shown to be important for cognitive control tasks. As the dlPFC did not show a univariate parametric modulation based on the higher or lower component of one type of conflict (e.g., having more spatial Stroop conflict or less Simon conflict), it implies that dissimilarity of conflicts is represented by a linear increase or decrease of neural responses. Therefore, the similarity of conflict is represented in multivariate neural responses that combine two sources of conflict.

      The strength of the current approach lies in the clear effect of parametric modulation of conflict similarity across different conflict types. The authors employed a clever cross-subject RSA that counterbalanced and isolated the targeted effect of conflict similarity, decorrelating orientation similarity of stimulus positions that would otherwise be correlated with conflict similarity. A pattern of neural response seems to exist that maps different types of conflict, where each type is defined by the parametric gradation of the yoked spatial Stroop conflict and the Simon conflict on a similarity scale. The similarity of patterns increases in incongruent trials and is correlated with CSE modulation of behavior.

      The main significance of the paper lies in the evidence supporting the use of an organized "cognitive space" to represent conflict information as a general control strategy. The authors thoroughly test this idea using multiple approaches and provide convincing support for their findings. However, the universality of this cognitive strategy remains an open question.

      (Public Reviews) Taken together, this study presents an exciting possibility that information requiring high levels of cognitive control could be flexibly mapped into cognitive map-like representations that both benefit and bias our behavior. Further characterization of the representational geometry and generalization of the current results look promising ways to understand representations for cognitive control.

      Response: We would like to thank the reviewer for the positive evaluation of our manuscript and for providing constructive comments. In response to your suggestions, we have acknowledged the potential limitation of the design and the cross-subject RSA approach, and incorporated the open questions to the discussions. Please find our detailed responses below.

      The task presented in the study involved two sources of conflict information through a single salient visual input, which might have encouraged the utilization of a common space.

      Response: We agree that the unified visual input in our design may have facilitated the utilization of a common space. However, we believe the stimuli are not necessarily unified in the construction of the common space. To further test the potential interaction between the concrete stimulus setting and the cognitive space representation, it is necessary to use varied stimuli in future research. We have left this as an open question in the discussion:

      Can we effectively map any sources of conflict with completely different stimuli into a single space?

      The similarity space was analyzed at the level of between-individuals (i.e., crosssubject RSA) to mitigate potential confounds in the design, such as congruency and the orientation of stimulus positions. This approach makes it challenging to establish a direct link between the quality of conflict space representation and the patterns of behavioral adaptations within individuals.

      Response: By setting the variables as random effects at the subject level, we have extracted the individual effects that incorporate both the group-level fixed effects and individual-level random effects. We believe this approach yields results that are as reliable, if not more, than effects calculated from individual data only. First, the mixed effect linear (LME) model has included all the individual data, forming the basis for establishing random effects. Therefore, the individual effects derived from this approach inherently reflect the individual-specific effects. To support this notion, we have included a simulation script (accessible in the online file “simulation_LME.mlx” at https://osf.io/rcq8w) to demonstrate the strong consistency between the two approaches (see Author response image 8). In this simulation, we generated random data (Y) for 35 subjects, each containing 20 repeated measurements across 5 conditions. To streamline the simulation, we only included one predictor (X), which was treated as both fixed and random effects at the subject level. We applied two methods to calculate the individual beta coefficient. The first involved extracting individual beta coefficients from the LME model by summing the fixed effect with the subject-specific random effect. The second method was entailed conducting a regression analysis using data from each subject to obtain the slope. We tested their consistency by calculating the Pearson correlation between the derived beta coefficients. This simulation was repeated 100 times.

      Author response image 8.

      The consistent individual beta coefficients between the mixed effect model and the individual regression analysis. A) The distribution of Pearson correlation between the two methods for 100 times. B) An example from the simulation showing the highly correlated results from the two methods. Each data point indicates a subject (n=35).

      Second, the potential difference between the two methods lies in that the LME model have also taken the group-level variance into account, such as the dissociable variances of the conflict similarity and orientation across subject groups. This enabled us to extract relatively cleaner conflict similarity effects for each subject, which we believe can be better linked to the individual behavioral adaptations. Moreover, we have extracted the behavioral adaptations scores (i.e., the similarity modulation effect on CSE) using a similar LME approach. Conducting behavioral analysis solely using individual data would have been less reliable, given the limited sample size of individual data (~32 points per subject). This also motivated us to maintain consistency by extracting individual neural effects using LME models.

      Furthermore, it remains unclear at which cognitive stages during response selection such a unified space is recruited. Can we effectively map any sources of conflict into a single scale? Is this unified space adaptively adjusted within the same brain region? Additionally, does the amount of conflict solely define the dimensions of this unified space across many conflict-inducing tasks? These questions remain open for future studies to address.

      Response: We appreciate the reviewer’s constructive open questions. We respond to each of them based on our current understanding.

      1) It remains unclear at which cognitive stages during response selection such a unified space is recruited.

      We anticipate that the cognitive space is recruited to guide the transference of behavioral CSE at two critical stages. The first stage involves the evaluation of control demands, where the representational distance/similarity between previous and current trials influences the adjustment of cognitive control. The second stage pertains to is control execution, where the switch from one control state to another follows a path within the cognitive space. It is worth noting that future studies aiming to address this question may benefit from methodologies with higher temporal resolutions, such as EEG and MEG, to provide more precise insights into the temporal dynamics of the process of cognitive space recruitment.

      2) Can we effectively map any sources of conflict into a single scale?

      It is possible that various sources of conflict can be mapped onto the same space based on their similarity, even if finding such an operational defined similarity may be challenging. However, our results may offer an approach to infer the similarity between two conflicts. One way is to examine their congruency sequence effect (CSE), with a stronger CSE suggesting greater similarity. The other way is to test their representational similarity within the dorsolateral prefrontal cortex.

      3) Is this unified space adaptively adjusted within the same brain region? We do not have an answer to this question. We showed that the cognitive space does not change with time (Note. S3). What have adjusted is the control demand to resolve the quickly changing conflict conditions from trial to trial. Though, it is an interesting question whether the cognitive space may be altered, for example, when the mental state changes significantly. And if yes, we can further test whether the change of cognitive space is also within the right dlPFC.

      4) Additionally, does the amount of conflict solely define the dimensions of this unified space across many conflict-inducing tasks?

      Our understanding of this comment is that the amount of conflict refers to the number of conflict sources. Based on our current finding, the dimensions of the space are indeed defined by how many different conflict sources are included. However, this would require the different conflict sources are orthogonal. If some sources share some aspects, the cognitive space may collapse to a lower dimension. We have incorporated the first question into the discussion:

      Moreover, we anticipate that the representation of cognitive space is most prominently involved at two critical stages to guide the transference of behavioral CSE. The first stage involves the evaluation of control demands, where the representational distance/similarity between previous and current trials influences the adjustment of cognitive control. The second stage pertains to control execution, where the switch from one control state to another follows a path within the cognitive space. However, we were unable to fully distinguish between these two stages due to the low temporal resolution of fMRI signals in our study. Future research seeking to delve deeper into this question may benefit from methodologies with higher temporal resolutions, such as EEG and MEG.

      We have included the other questions into the manuscript as open questions, calling for future research.

      Several interesting questions remains to be answered. For example, is the dimension of the unified space across conflict-inducing tasks solely determined by the number of conflict sources? Can we effectively map any sources of conflict with completely different stimuli into a single space? Is the cognitive space geometry modulated by the mental state? If yes, what brain regions mediate the change of cognitive space?

      Minor comments:

      • The original comment about out-of-sample predictions to examine the continuity of the space was a suggestion for testing neural representations, not behavior (I apologize for the lack of clarity). Given the low dimensionality of the conflict space shown by the participation ratio, we expect that linear separability exists only among specific combinations of conditions. For example, the pair of conflicts 1 and 5 together is not linearly separable from conflicts 2 and 3. But combined with other results, this is already implied.

      Response: We apologize for the misunderstanding. In fact, performing a prediction analysis using the extensive RSM in our study does presents certain challenges, primarily due to its substantial size (1400x1400) and the intricate nature of the mixed-effect linear model. In our efforts to simplify the prediction process by excluding random effects, we did observe a correlation between the predicted and original values, albeit a relatively small Pearson correlation coefficient of r = 0.024, p < .001. This small correlation can be attributed to two key factors. First, the exclusion of data points impacts not only the conflict similarity regressor but also other regressors within the model, thereby diminishing the predictive power. Secondly, the large amount of data points in the model heightens the risk of overfitting, subsequently reducing the model’s capacity for generalization and increasing the likelihood of unreliable predictions. Given these potential problems, we have opted not to include this prediction in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study advances the understanding of physiological mechanisms in deep-sea Planctomycetes bacteria, revealing unique characteristics such as the only known Phycisphaerae using a budding mode of division, extensive involvement in nitrate assimilation and release phage particles without cell death. The study uses convincing evidence, based on experiments using growth assays, phylogenetics, transcriptomics, and gene expression data. The work will be of interest to bacteriologists and microbiologists in general.

      Response: Thanks for the Editor’s and Reviewers’ positive comments, which help us improve the quality of our manuscript entitled “Physiological and metabolic insights into the first cultured anaerobic representative of deep-sea Planctomycetes bacteria” (paper#eLife-RP-RA-2023-89874). The comments are all valuable, and we have studied the comments carefully and have made corresponding revisions according to the suggestions. Revised portions are marked in blue in the modified manuscript.

      Please find the detailed responses as following.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors of the manuscript cultivated a Planctomycetes strain affiliated with Phycisphaerae. The strain was one of the few Planctomycetes from deep-sea environments and demonstrated several unique characteristics, such as being the only known Phycisphaerae using a budding mode of division, extensive involvement in nitrate assimilation, and being able to release phage particles without cell death. The manuscript is generally well-written. However, a few issues need to be more clearly addressed, especially regarding the identification and characterization of the phage.

      Response: Thanks for your positive comments. Please find the detailed responses as following.

      Reviewer #1 (Recommendations For The Authors):

      • Line 75-77, add a reference for this statement.

      Response: Thanks for your suggestion. We have added a reference (Fuerst and Sagulenko, 2011) for this statement in the revised manuscript (Line 77).

      References related to this response:

      Fuerst, J.A., and Sagulenko, E. Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol. 2011;9:403-413.

      • Line 124-134, add key statistics (such as ANI) of strain ZRK32 and KS4 to this section.

      Response: Thanks for your suggestion. We added the key statistics of strain ZRK32 and KS4, and described as “Based on the 16S rRNA sequence of strain ZRK32, a sequence similarity calculation using the NCBI server indicated that the closest relatives of strain ZRK32 were Poriferisphaera corsica KS4T (98.06%), Algisphaera agarilytica 06SJR6-2T (88.04%), Phycisphaera mikurensis NBRC 102666T (85.28%), and Tepidisphaera mucosa 2842T (82.94%). Recently, the taxonomic threshold for species based on 16S rRNA gene sequence identity value was 98.65% (Kim et al., 2014). Based on these criteria, we proposed that strain ZRK32 might be a novel representative of the genus Poriferisphaera. In addition, to clarify the phylogenetic position of strain ZRK32, the genome relatedness values were calculated by the average nucleotide identity (ANI), the tetranucleotide signatures (Tetra), and in silico DNA-DNA similarity (isDDH), against the genomes of strains ZRK32 and KS4. The ANIb, ANIm, Tetra, and isDDH values were 72.89%, 85.34%, 0.97385, and 20.90%, respectively (Table S1). These results together demonstrated the strain ZRK32 genome to be obviously below established ‘cut-off’ values (ANIb: 95%, ANIm: 95%, Tetra: 0.99, isDDH: 70%) for defining bacterial species, suggesting strain ZRK32 represents a novel strain within the genus Poriferisphaera.” in the revised manuscript (Lines 124-139).

      • Fig. 2A missing description for figure key.

      Response: Thanks for your comments. We modified the Figure 2A, shown as below:

      Author response image 1.

      Figure. 2. Growth assay and transcriptomic analysis of P. heterotrophicis ZRK32 strains cultivated in basal medium and rich medium.

      • Regarding the page released, could this be a membrane vesicle-engulfed phage? I would recommend checking "Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23" and "Chronic Release of Tailless Phage Particles from Lactococcus lactis" for further references.

      Response: Thanks for your valuable comments. We carefully read these two papers and found that phage ZRK32 is most likely a membrane vesicle-engulfed phage. We added the corresponding description as “Moreover, it has recently been reported that the tailless Caudoviricetes phage particles are enclosed in lipid membrane and are released from the host cells by a nonlytic mechanism (Liu et al., 2022), and the prophage induction contributes to the production of membrane vesicles by Lacticaseibacillus casei BL23 during cell growth (da Silva Barreira et al., 2022). Considering that strain ZRK32 has a large number of membrane vesicles during cell growth (Figure S9), we speculated that Phage-ZRK32 might be a membrane vesicle-engulfed phage and its release should be related to membrane vesicles.” in the revised manuscript (Lines 381-388).

      References related to this response:

      Liu Y, Alexeeva S, Bachmann H, Guerra Martníez J.A, Yeremenko N, Abee T et al. Chronic release of tailless phage particles from Lactococcus lactis. Appl Environ Microbiol. 2022; 88: e0148321.

      Silva Barreira, D., Lapaquette, P., Novion Ducassou, J., Couté, Y., Guzzo, J., and Rieu, A. Spontaneous prophage induction contributes to the production of membrane vesicles by the gram-positive bacterium Lacticaseibacillus casei BL23. mBio. 2022;13:e0237522.

      • How were the reference sequences for Fig. S10-S13 retrieved, was it by blasting the phage gene against the entire NCBI database, or only the virus sequence within the NCBI? Please clarify this.

      Response: Thanks for your comments. The reference sequences for Fig. S10-S13 were retrieved by blasting the phage gene against the entire NCBI database. We clarified this as “The reference sequences of four AMGs encoding amidoligase, glutamine amidotransferase, gamma-glutamylcyclotransferase, and glutathione synthase were retrieved by blasting the phage gene against the entire NCBI database, respectively.” in the revised manuscript (Lines 444-447).

      Reviewer #2 (Public Review):

      Summary:

      Planctomycetes encompass a group of bacteria with unique biological traits, the compartmentalized cells make them appear to be organisms in between prokaryotes and eukaryotes. However, only a few of the Planctomycetes bacteria are cultured thus far, and this hampers insight into the biological traits of these evolutionarily important organisms. This work reports the methodology details of how to isolate the deep-sea bacteria that could be recalcitrant to laboratory cultivation, and further reveals the distinct characteristics of the new species of a deep-sea Planctomycetes bacterium, such as the chronic phage release without breaking the host and promote the host and related bacteria in nitrogen utilization. Therefore, the finding of this work is of importance in extending our knowledge of bacteria.

      Response: Thanks for your positive comments.

      Strengths:

      Through the combination of microscopic, physiological, genomics, and molecular biological approaches, this reports the isolation and comprehensive investigation of the first anaerobic representative of the deep-sea Planctomycetes bacterium, in particular in that of the budding division, and release phage without lysis of the cells. Most of the results and conclusions are supported by the experimental evidence.

      Response: Thanks for your positive comments.

      Weaknesses:

      1. While EMP glycolysis is predicted to be involved in energy conservation, no experimental evidence indicated any sugar utilization by the bacterium.

      Response: Thanks for your comments. We have previously tested the sugar utilization of strain ZRK32, and now added this description as “Consistent with the presence of EMP glycolysis pathway in strain ZRK32, we found that it could use a variety of sugars including glucose, maltose, fructose, isomaltose, galactose, D-mannose, and rhamnose (Table S2).” in the revised manuscript (Lines 281-284).

      1. "anaerobic representative" is indicated in the Title, the contrary, TCA in energy metabolism is predicted by the bacterium.

      Response: Thanks for your valuable comments. Currently, anaerobic microorganisms can use other alternative electron acceptors (such as sulfate reducers, nitrate reducers, iron reducers, etc) in place of oxygen for the TCA cycle. For example, Proteus mirabilis uses the whole oxidative TCA cycle without using oxygen as the final electron acceptor when it performs multicellular swarming (Alteri et al., 2012). In this study, all the genes involved in the TCA cycle were present in anaerobic strain ZRK32 and most of them are upregulated, thus we speculate that it might function through the complete TCA metabolic pathway to obtain energy. We added the related description as “Notably, when growing in the rich medium, the expressions of most genes involved in the TCA cycle and EMP glycolysis pathway in strain ZRK32 were upregulated (Figure 2B-D, Figure S5B and Figure S6), suggesting that strain ZRK32 might function through the complete TCA metabolic pathway and EMP glycolysis pathway to obtain energy for growth (Figure S8) (Zheng et al., 2021b). Consistent with the presence of EMP glycolysis pathway in strain ZRK32, we found that it could use a variety of sugars including glucose, maltose, fructose, isomaltose, galactose, D-mannose, and rhamnose (Table S2). As for the presence of TCA cycle in the anaerobic strain ZRK32, we propose that it might use other alternative electron acceptors (such as sulfate reducers, nitrate reducers, iron reducers, etc) in place of oxygen for the TCA cycle, as shown in other anaerobic bacteria (Alteri et al., 2012).” in the revised manuscript (Lines 277-287).

      References related to this response:

      Alteri CJ, Himpsl SD, Engstrom MD, Mobley HL. Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in Proteus mirabilis. mBio. 2012; 3(6): e00365-12.

      1. The possible mechanisms of the chronic phage release without breaking the host are not discussed.

      Response: Thanks for your valuable comments. The possible mechanism of the chronic phage release without breaking the host might be that it was enclosed in lipid membrane and released from the host cells by a nonlytic mechanism. We added the corresponding description as “Moreover, it has recently been reported that the tailless Caudoviricetes phage particles are enclosed in lipid membrane and are released from the host cells by a nonlytic mechanism (Liu et al., 2022), and the prophage induction contributes to the production of membrane vesicles by Lacticaseibacillus casei BL23 during cell growth (da Silva Barreira et al., 2022). Considering that strain ZRK32 has a large number of membrane vesicles during cell growth (Figure S9), we speculated that Phage-ZRK32 might be a membrane vesicle-engulfed phage and its release should be related to membrane vesicles.” in the revised manuscript (Lines 381-388).

      References related to this response:

      Liu Y, Alexeeva S, Bachmann H, Guerra Martníez J.A, Yeremenko N, Abee T et al. Chronic release of tailless phage particles from Lactococcus lactis. Appl Environ Microbiol. 2022; 88: e0148321. da Silva Barreira, D., Lapaquette, P., Novion Ducassou, J., Couté, Y., Guzzo, J., and Rieu, A. Spontaneous prophage induction contributes to the production of membrane vesicles by the gram-positive bacterium Lacticaseibacillus casei BL23. mBio. 2022;13:e0237522.

      Reviewer #2 (Recommendations For The Authors):

      • Have you tested whether strain ZRK32 uses any sugars? If not, why it uses EMP pathway to obtain energy?

      Response: Thanks for your comments. We have previously tested the sugar utilization of strain ZRK32, and now added this description as “Consistent with the presence of EMP glycolysis pathway in strain ZRK32, we found that it could use a variety of sugars including glucose, maltose, fructose, isomaltose, galactose, D-mannose, and rhamnose (Table S2).” in the revised manuscript (Lines 281-284).

      • Further discussion on possible mechanisms of the chronic phage release without breaking the host is expected.

      Response: Thanks for your valuable comments. The possible mechanism of the chronic phage release without breaking the host might be that it was enclosed in lipid membrane and released from the host cells by a nonlytic mechanism. We added the corresponding description as “Moreover, it has recently been reported that the tailless Caudoviricetes phage particles are enclosed in lipid membrane and are released from the host cells by a nonlytic mechanism (Liu et al., 2022), and the prophage induction contributes to the production of membrane vesicles by Lacticaseibacillus casei BL23 during cell growth (da Silva Barreira et al., 2022). Considering that strain ZRK32 has a large number of membrane vesicles during cell growth (Figure S9), we speculated that Phage-ZRK32 might be a membrane vesicle-engulfed phage and its release should be related to membrane vesicles.” in the revised manuscript (Lines 381-388).

      References related to this response:

      Liu Y, Alexeeva S, Bachmann H, Guerra Martníez J.A, Yeremenko N, Abee T et al. Chronic release of tailless phage particles from Lactococcus lactis. Appl Environ Microbiol. 2022; 88: e0148321.

      da Silva Barreira, D., Lapaquette, P., Novion Ducassou, J., Couté, Y., Guzzo, J., and Rieu, A. Spontaneous prophage induction contributes to the production of membrane vesicles by the gram-positive bacterium Lacticaseibacillus casei BL23. mBio. 2022;13:e0237522.

      • It is recommended that the writing is improved, including presentation style and grammar.

      Response: Thanks for your comments. We have invited an English native speaker (Dr. Diana Walsh from Life Science Editors, USA) to revise our manuscript, which we hope to meet your approval.

    1. Author Response

      We are delighted that eLife has assessed our study as a valuable contribution as well as appreciating the importance of working on asymptomatic reservoirs of P. falciparum in high transmission where not just children, but adolescents and adults harbor multiclonal infections. The constructive public reviews will serve to improve our manuscript.

      Detailed responses to referees’ comments and a revised manuscript are forthcoming. Here we make a provisional response to three key areas addressed by the referees:

      (1) census population size

      Referee 1 raises important questions although we respectfully disagree on the terminology we have adopted (of “census”) and on the unclear utility of the proposed quantity.

      We consider the quantity a census in that it is a total enumeration or count of the infections in a given population sample and over a given time period. In this sense, it gives us a tangible notion of the size of the parasite population, in an ecological sense, distinct from the formal effective population size used in population genetics. Given the low overlap between var repertoires of parasites (as observed in monoclonal infections), the population size we have calculated translates to a diversity of strains or repertoires. But our focus here is in a measure of population size itself. The distinction between population size in terms of infection counts and effective population size from population genetics has been made before for pathogens (see for example Bedford et al. 2011 for the seasonal influenza virus and for the measles virus) and is a clear one in the ecological literature for non-pathogen populations (Palstra et al. 2012).

      Both referees 1 and 2 point out that census population size will be sensitive to sample size. We completely agree with the dependence of our quantity on sample size. We used it for comparisons across time of samples of the same depth, to describe the large population size characteristic of high transmission, and persistent across the IRS intervention. Of course, one would like to be able to use this notion across studies that differ in sampling depth.

      Here, referee 1 makes an insightful and useful suggestion. It is true that we can use mean MOI, and indeed there is a simple map between our population size and mean MOI (as we just need to divide or multiply by sample size). We can do even more, as with mean MOI we can presumably extrapolate to the full sample size of the host population, or the population size of another sample in another location. What is needed for this purpose is a stable mean MOI relative to sample size. We can show that indeed in our study mean MOI is stable in that way, by subsampling to different depths of our original sample. We will include in the revision discussion of this point and result, which allows an extrapolation of the census population size to the whole population of hosts in the local area. We’ll also clarify the time denominator, as given the typical duration of infections, we expect our population size to be representative of a per-generation measure.

      Referee 2 suggests we adopt the term “census count” but as a census in our mind is a count we prefer to use “census”.

      Referee 3 considers the genetic data tracking parasite MOI and census changes gives the same result as prevalence which tracks infected hosts. Respectfully, we disagree and will provide an expanded response.

      (2) the importance of lineages (in response to referee 2)

      We do not think that lineages moving exclusively through a given type of host or “patch” is a requirement for enumerating the size of the total infections in such a subset. It is true that what we have is a single parasite population, but we are enumerating for the season the respective size in host classes (children and adults). This is akin to enumerating subsets of a population in ecological settings.

      We are also not clear on the concept of lineage for these highly recombinant parasites as we struggle to find highly related repertoires. In fact, we see the use of the var fingerprinting methodology as a means to capture changes in strain or var repertoires dynamics as a result of changing transmission conditions.

      (3) var methodology

      Comments and queries were made by all three referees about aspects of var methodology, including the Bayesian approach. These will be addressed in our full response.

      Here we respond to a very good point made by referee 2: “Thinking about the applicability of this approach to other studies, I would be interested in a larger treatment of how overlapping DBLa repertoires would impact MOIvar estimates. Is there a definable upper bound above which the method is unreliable? Alternatively, can repertoire overlap be incorporated into the MOI estimator?”

      There is no predefined threshold one can present a priori. Intuitively, the approach to estimate MOI would appear to breakdown as overlap moves away from extremely low, and therefore, for locations with lower transmission intensity. Interestingly, we have observed that this is not the case in our paper by Labbé et al. 2023 where we used model simulations in a gradient of three transmission intensities, from high to low. The original varcoding method performed well across the gradient. This may arise from a nonlinear and fast transition from low overlap to high overlap that is accompanied by the MOI transitioning quickly from primarily multiclonal (MOI > 1) to monoclonal (MOI = 1). This issue needs to be investigated further, including ways to extend the estimation to explicitly include the distribution of DBL repertoire overlap.

      References: Bedford T, Cobey S, Pascual, M. 2011. Strength and tempo of selection revealed in viral gene genealogies. BMC Evol Biol 11, 220. https://doi.org/10.1186/1471-2148-11-220

      Labbé F, He Q, Zhan Q, Tiedje KE, Argyropoulos DC, Tan MH, Ghansah A, Day KP, Pascual M. 2023. Neutral vs . non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol 19 :e1010816. doi:doi.org/10.1101/2022.06.27.49780

      Palstra FP, Fraser DJ. 2012. Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol. Sep;2(9):2357-65. doi:10.1002/ece3.329.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This research advance arctile describes a valuable image analysis method to identify individual cells (neurons) within a population of fluorescently labeled cells in the nematode C. elegans. The findings are solid and the method succeeds to identify cells with high precision. The method will be valuable to the C. elegans research community.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper, the authors developed an image analysis pipeline to automatically identify individual neurons within a population of fluorescently tagged neurons. This application is optimized to deal with multi-cell analysis and builds on a previous software version, developed by the same team, to resolve individual neurons from whole-brain imaging stacks. Using advanced statistical approaches and several heuristics tailored for C. elegans anatomy, the method successfully identifies individual neurons with a fairly high accuracy. Thus, while specific to C. elegans, this method can become instrumental for a variety of research directions such as in-vivo single-cell gene expression analysis and calcium-based neural activity studies.

      The analysis procedure depends on the availability of an accurate atlas that serves as a reference map for neural positions. Thus, when imaging a new reporter line without fair prior knowledge of the tagged cells, such an atlas may be very difficult to construct. Moreover, usage of available reference atlases, constructed based on other databases, is not very helpful (as shown by the authors in Fig 3), so for each new reporter line a de-novo atlas needs to be constructed.

      We thank the reviewer for pointing out a place where we can use some clarification. While in principle that every new reporter line would need fair prior knowledge, atlases are either already available or not difficult to construct. If one can make the assumption that the anatomy of a particular line is similar to existing atlases (Yemini 2021,Nejatbakhsh 2023,Toyoshima 2020), the cell ID can be immediately performed. Even in the case that one suspects the anatomy may have changes from existing atlases (e.g. in the case of examining mutants), existing atlases can serve as a starting point to provide a draft ID, which facilitates manual annotation. Once manual annotations on ~5 animals are available as we have shown in this work (which is a manageable number in practice), this new dataset can be used to build an updated atlas that can be used for future inferences. We have added this discussion in the manuscript: “If one determines that the anatomy of a particular animal strain is substantially different from existing atlases, new atlases can be easily constructed using existing atlases as starting points.” (page 18).

      I have a few comments that may help to better understand the potential of the tool to become handy.

      1. I wonder the degree by which strain mosaicism affects the analysis (Figs 1-4) as it was performed on a non-integrated reporter strain. As stated, for constructing the reference atlas, the authors used worms in which they could identify the complete set of tagged neurons. But how senstiive is the analysis when assaying worms with different levels of mosaicism? Are the results shown in the paper stem from animals with a full neural set expression? Could the authors add results for which the assayed worms show partial expression where only 80%, 70%, 50% of the cells population are observed, and how this will affect idenfication accuracy? This may be important as many non-integrated reporter lines show high mosaic patterns and may therefore not be suitable for using this analytic method. In that sense, could the authors describe the mosaic degree of their line used for validating the method.

      We appreciate the reviewer for this comment. We want to clarify that most of the worms used in the construction of the atlas are indeed affected by mosaicism and thus do not express the full set of candidate neurons. We have added such a plot as requested (Figure 3 – figure supplement 2, copied below). Our data show that there is no correlation between the fraction of cells expressed in a worm and neuron ID correspondence. We agree with the reviewer this additional insight may be helpful; we have modified the text to include this discussion: “Note that we observed no correlation between the degree of mosaicism and neuron ID correspondence (Figure 3- figure supplement 2).” (page 10).

      Author response image 1.

      No correlation between the degree of mosaicism (fraction of cells expressed in the worm) and neuron ID correspondence.

      1. For the gene expression analysis (Fig 5), where was the intensity of the GFP extracted from? As it has no nuclear tag, the protein should be cytoplasmic (as seen in Fig 5a), but in Fig 5c it is shown as if the region of interest to extract fluorescence was nuclear. If fluorescence was indeed extracted from the cytoplasm, then it will be helpful to include in the software and in the results description how this was done, as a huge hurdle in dissecting such multi-cell images is avoiding crossreads between adjacent/intersecting neurons.

      For this work, we used nuclear-localized RFP co-expressed in the animal, and the GFP intensities were extracted from the same region RFP intensities were extracted. If cytosolic reporters are used, one would imagine a membrane label would be necessary to discern the border of the cells. We clarified our reagents and approach in the text: “The segmentation was done on the nuclear-localized mCherry signals, and GFP intensities were extracted from the same region.” (page21).

      1. In the same mater: In the methods, it is specified that the strain expressing GCAMP was also used in the gene expression analysis shown in Figure 5. But the calcium indicator may show transient intensities depending on spontaneous neural activity during the imaging. This will introduce a significant variability that may affect the expression correlation analysis as depicted in Figure 5.

      We apologize for the error in text. The strain used in the gene expression analysis did not express GCaMP. We did not analyze GCaMP expression in figure 5. We have corrected the error in the methods.

      Reviewer #2 (Public Review):

      The authors succeed in generalizing the pre-alignment procedure for their cell idenfication method to allow it to work effectively on data with only small subsets of cells labeled. They convincingly show that their extension accurately identifies head angle, based on finding auto fluorescent tissue and looking for a symmetric l/r axis. They demonstrate that the method works to identify known subsets of neurons with varying accuracy depending on the nature of underlying atlas data. Their approach should be a useful one for researchers wishing to identify subsets of head neurons in C. elegans, for example in whole brain recording, and the ideas might be useful elsewhere.

      The authors also strive to give some general insights on what makes a good atlas. It is interesting and valuable to see (at least for this specific set of neurons) that 5-10 ideal examples are sufficient. However, some critical details would help in understanding how far their insights generalize. I believe the set of neurons in each atlas version are matched to the known set of cells in the sparse neuronal marker, however this critical detail isn't explicitly stated anywhere I can see.

      This is an important point. We have made text modifications to make it clear to the readers that for all atlases, the number of entities (candidate list) was kept consistent as listed in the methods. In the results section under “CRF_ID 2.0 for automatic cell annotation in multi-cell images,” we added the following sentence: “Note that a truncated candidate list can be used for subse-tspecific cell ID if the neuronal expression is known” (page 3). In the methods section, we added the following sentence: “For multi-cell neuron predictions on the glr-1 strain, a truncated atlas containing only the above 37 neurons was used to exclude neuron candidates that are irrelevant for prediction” (Page 20).

      In addition, it is stated that some neuron positions are missing in the neuropal data and replaced with the (single) position available from the open worm atlas. It should be stated how many neurons are missing and replaced in this way (providing weaker information).

      We modified the text in the result section as follows: “Eight out of 37 candidate neurons are missing in the neuroPAL atlas, which means 40% of the pairwise relationships of neurons expressing the glr-1p::NLS-mcherry transgene were not augmented with the NeuroPAL data but were assigned the default values from the OpenWorm atlas” (page 10).

      It also is not explicitly stated that the putative identities for the uncertain cells (designated with Greek letters) are used to sample the neuropal data. Large numbers of openworm single positions or if uncertain cells are misidentified forcing alignment against the positions of nearby but different cells would both handicap the neuropal atlas relative to the matched florescence atlas. This is an important question since sufficient performance from an ideal neuropal atlas (subsampled) would avoid the need for building custom atlases per strain.

      The putative identities are not used to sample the NeuroPAL data. They were used in the glr-1 multi-cell case to indicate low confidence in manual identification/annotation. For all steps of manual annotation and CRF_ID predictions, we used real neuron labels, and the Greek labels were used for reporting purposes only. It is true that the OpenWorm values (40% of the atlas) would be a handicap for the neuroPAL atlas. This is mainly due to the difficulty of obtaining NeuroPAL data as it requires 3-color fluorescence microscopy and significant time and labor to annotate the large set of neurons. This is one reason to take a complementary approach as we do in this paper.

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 3, there is a confusion in the legend relating to panels c-e (e.g. panel c is neuron ID accuracy but it is described per panel e in the legend.

      We made the necessary changes.

      1. Figure 3, were statistical tests performed for panels d-e? if so, and the outcome was not significant, then it might be good to indicate this in the legend.

      We have added results of statistical tests in the legend as the following sentence: “All distributions in panel d and e had a p-value of less than 0.0001 for one sample t-test against zero.” One sample t-tests were performed because what is plotted already represents each atlas’ differences to the glr-1 25 dataset atlas, we didn’t think the statistical analyses between the other atlases would add significant value.

      1. Figure 4, no asterisks are shown in the figure so it is possible to remove the sentence in the legend describing what the asterisk stands for.

      Thank you. We made the necessary changes.

      Reviewer #2 (Recommendations For The Authors):

      Comparison with deep learning approaches could be more nuanced and structured, the authors (prior) approach extended here combines a specific set of comparative relationship measurements with a general optimization approach for matching based on comparative expectations. Other measurements could be used whether explicit (like neighbor expectations) or learned differences in embeddings. These alternate measurements would both need to be extensively re-calibrated for different sets of cells but might provide significant performance gains. In addition deep learning approaches don't solve the optimization part of the matching problem, so the authors approach seems to bring something strong to the table even if one is committed to learned methods (necessary I suspect for human level performance in denser cell sets than the relatively small number here). A more complete discussion of these themes might better frame the impact of the work and help readers think about the advantages and disadvantages or different methods for their own data.

      We thank the reviewer for bringing up this point. We apologize perhaps not making the point clearer in the original submission. This extension of the original work (Chaudhary et al) is not changing the CRF-based framework, but only augmenting the approach with a better defined set of axes (solely because in multicell and not whole-brain datasets, the sparsity of neurons degrades the axis definition and consequently the neuron ID predictions). We are not fundamentally changing the framework, and therefore all the advantages (over registration-based approaches for example) also apply here. The other purpose of this paper is to demonstrate a couple of use-cases for gene expression analysis, which is common in studies in C. elegans (and other organisms). We hope that by showing a use-case others can see how this approach is useful for their own applications.

      We have clarified these points in the paper (page 18). “The fundamental framework has not been changed from CRF_ID 1.0, and therefore the advantages of CRF_ID outlined in the original work apply for CRF_ID 2.0 as well.”

      The atribution of anatomical differences to strain is interesting, but seems purely speculative, and somewhat unlikely. I would suspect the fundamentally more difficult nature of aligning N items to M>>N items in an atlas accounts for the differences in using the neuroPAL vs custom atlas here. If this is what is meant, it could be stated more clearly.

      It is important to note that the same neuron candidate list (listed in methods) was used for all atlases, so there is no difference among the atlases in terms of the number of cells in the query vs. candidate list. In other words, the same values for M and for N are used regardless of the reference atlas used.

      We have preliminary data indicating differences between the NeuroPAL and custom atlas. For instance, the NeuroPAL atlas scales smaller than the custom glr-1 atlas. Since direct comparisons of the different atlases are beyond the scope of this paper, we will leave the exact comparisons for future work. We suspect that the differences are from a combination of differences in anatomy and imaging conditions. While NeuroPAL atlas may not be exactly fitting for the custom dataset, it can serve as a good starting point for guesses when no custom atlases are available, as we have discussed earlier (response to Public Comments from Reviewer 1 Point 1). As explained earlier, we have added these discussions in the paper (see page 18).

      I was also left wondering if the random removal of landmarks had to be adjusted in this work given it is (potentially) helping cope with not just occasional weak cells but the systematic loss of most of the cells in the atlas. If the parameters of this part of the algorithm don't influence the success for N to M>>N alignment (here when the neuroPAL or OpenWorm atlas is used) this seems interesting in itself and worth discussing. Conversely, if these parameters were opitmized for the matched atlas and used for the others, this would seem to bias performance results.

      We may have failed to make this clear in the main text. As we have stated in our responses in the public review section, we do systematically limit the neuron labels in the candidate list to neurons that are known to be expressed by the promotor. The candidate list, which is kept consistent for all atlases, has more neurons than cells in the query, so it is always an N-to-M matching where M>N. We did not use landmarks, but such usage is possible and will only improve the matching.

      We have attempted to clarify these points in the manuscript. In the results section under “CRF_ID 2.0 for automatic cell annotation in multi-cell images,” we added the following sentence: “Note that a truncated candidate list can be used for subset-specific cell ID if the neuronal expression is known” (page 3). In the methods section, we added the following sentence: “For multi-cell neuron predictions on the glr-1 strain, a truncated atlas containing only the above 37 neurons was used to exclude neuron candidates that are irrelevant for prediction” (Page 20).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the authors examined the putative functions of hypothalamic groups identifiable through Foxb1 expression, namely the parvofox Foxb1 of the LHA and the PMd Foxb1, with emphasis on innate defensive responses. First, they reported that chemogenetic activation of Foxb1hypothalamic cell groups led to tachypnea. The authors tend to attribute this effect to the activation of hM3Dq expressed in the parvofox Foxb1 but did not rule out the participation of the PMd Foxb1 cell group which may as well have expressed hM3Dq, particularly considering the large volume (200 nl) of the viral construct injected. It is also noteworthy that the activation of the Foxb1hypothalamic cell groups in this experiment did not alter the gross locomotor activity, such as time spent immobile state. Thus, contrasts with the authors finding on the optogenetic activation of the Foxb1hypothalamic fibers projecting to the dorsolateral PAG. In the second experiment, the authors applied optogenetic ChR2-mediated excitation of the Foxb1+ cell bodies' axonal endings in the dlPAG leading to freezing and, in a few cases, bradycardia as well. The effective site to evoke freezing was the rostral PAGdl, and fibers positioned either ventral or caudal to this target had no response. Considering the pattern of Foxb1hypothalamic cell groups projection to the PAG, the fibers projecting to the rostral PAGdl are likely to arise from the PMd Foxb1 cell group, and not from the parvofox Foxb1 of the LHA. Here it is important to consider that optogenetic ChR2-mediated excitation of the axonal endings is likely to have activated the cell bodies originating these fibers, and one cannot ascertain whether the behavioral effects are related to the activation of the terminals in the PAGdl or the cell bodies originating the projection.

      Authors’ reply: We acknowledge and agree about the possibility of backpropagation in ChR2mediated terminal stimulation experiments. We have introduced a paragraph in the discussion section discussing this issue. In short, the observation of an opposing phenotype in ArchT3.0 animals indicates, that the ChR2-mediated phenotype is indeed Foxb1PAG projection specific. This is due to the fact, that the use of light-activated proton pumps for terminal stimulation can not induce backpropagation of an inhibitory effect to the soma. Potential downsides of the use of proton pumps in small compartments as e.g. in the axon are also discussed.

      Moreover, activation of PMd CCK cell group, which consists of around 90% of the PMd cells, evokes escape, and not freezing. According to the present findings, a specific population of PMd Foxb1 cells may be involved in producing freezing. In addition, only a small number of the animals with correct fiber placement presented sudden onset of bradycardia in response to the photostimulation. Considering the authors' findings, the Foxb1+ hypothalamic groups are likely to mediate behavioral responses related to innate defensive responses, where the parvofox Foxb1 of the LHA would be involved in promoting tachypnea and the PMd Foxb1group in mediating freezing and bradycardia. These findings are very interesting, and, at this point, they need to be tested in a scenario of real exposure to a natural predator.

      Authors’ reply: We fully agree with the proposed experiments. Due to the previously mentioned retirement of Prof. Celio and the concomitant expiration of licenses for animal experimentation we are prevented from conducting these experiments on our own. We have integrated a statement in the discussion, regarding these potential future experiments.

      Reviewer #2 (Public Review):

      The authors aimed to examine the role of a group of neurons expressing Foxb1 in behaviors through projections to the dlPAG. Standard chemogenetic activation or inhibition and optogentic terminal activation or inhibition at local PAG were used and results suggested that, while activation led to reduced locomotion and breathing, inhibition led to a small degree of increased locomotion.

      The observed effects on breathing are evident and dramatic. However, this study needs significant improvements in terms of data analysis and presentation and some of studies seem incomplete; and therefore the data may not yet support the conclusion.

      1. Fig.1 has no experimental data and needs to be replaced with detailed pictures from the viral injected mice showing the projections diagrammed.

      Authors’ reply: We believe that this graphic illustration is helpful to the reader to comprehend the spatial relationship between the parvafoxFoxb1 nucleus, the mammillary nuclei, and the PAG. In a previous study we have characterized the projections of the parvafoxFoxb1 nucleus in detail (using the same Foxb1-Cre mouse line as in the present study) and, in this regard, would like to refer Reviewer #2 to this publication (https://onlinelibrary.wiley.com/doi/10.1002/cne.24057).

      1. Fig. 3 needs control pictures and statistical comparison with different conditions in c-Fos. Also expression in other nearby regions needs to be presented to demonstrate the specificity of the expression.

      Authors’ reply: We have modified the original Fig. 3 with more pictures across all three conditions used in the chemogenetic experiments. Since the new figure now takes up a whole page, and because the data in this figure is for validation purpose of the DREADD experiments, we have decided to rather put it into the supplementary files. The figure is now labelled as “Supplementary File S1”. All figure and file numberings throughout the text have been adjusted accordingly.

      1. Fig. 5, a great effort has been made to illustrate the point that CCK and Foxb1 are differentially expressed. Why not just perform a double in situ experiment to directly illustrate the point?

      Authors’ reply: We have addressed this comment in the initial release of the eLife manuscript. In short, we agree that a double ISH experiment would have been an alternative approach, but would like to state that scRNAseq is a well established and valid method for this purpose.

      1. Fig. 7 data on optogenetic stimulation on immobility and breathing, since not all mice showed the same phenotype, what is the criterion for allocating these mice to hit or no hit groups? Given the dramatically reduced breathing and locomotion, what is the temperature response? More data needs to be gathered to support that this is a defense behavior.

      Authors’ reply: The criteria for allocation of animals to the experimental groups is described in section “Optogenetic modulation of Foxb1 terminals in the dlPAG induces immobility” and is based on the stereotaxic coordinates of the tips of the glass fiber implants. We did not perform any experiments, in which we recorded body temperatures or temperature preferences in optogenetic animals. Such experiments were outside the scope of the study. As mentioned in a previous comment above, we have added an additional paragraph to the discussion section regarding future investigations of these hypothalamic Foxb1 neurons during exposure to natural predators. Such experiments would certainly allow more insight into the defensive nature of the described phenotype.

      1. The authors claim to target dlPAG. However, in the picture shown in Fig. 8C, almost all PAG contains ChR2 fibers and it is likely all the fibers will be activated by light. Thus, as presented, the data does not support the claim of the specificity on dlPAG. Also c-Fos data needs to be presented on the degree of activation of downstream PAG neurons after light exposure.

      Authors’ reply: We attach the original image 8c, without arrows and indications, in which the localization of ChR2-positive fibers in the dlPAG is better visible. They are located exactly under the tip of the fiberoptic fiber. We do not know the functional characteristics of the post-synaptic PAG neurons and have not determined experimentally their downstream targets. Investigating the downstream target was outside the scope of the current publication.

      Author response image 1.

      1. Fig. 9 only showed one case. A statistical comparison needs to be presented.

      Authors’ reply: Our cardiovascular experiments are of exploratory and descriptive nature (i.e. pilot experiments). It was a conscious decision to not perform hypothesis tests on these experiments. We did not have enough mice to perform statistical tests with sufficient statistical power. Providing results from hypothesis tests on these data would lead to statistically unjustified conclusions. To clarify this issue, we have added a paragraph to the relevant results section.

      1. Optogentic terminal activation in the PAG will likely elicit back-propagation and subsequent activation of additional downstream brain sites of Foxb1 neurons. More experiments need to be done to assess this and as presented, the data does not support the role of PAG necessarily.

      Authors’ reply: Please see our answer to Reviewer #1 regarding the same issue.

      1. The authors claim negative data from PVH-Cre mice. More data need to be presented to make this case.

      Authors’ reply: We would like to refer to our answer to point 6) that was raised by Reviewer #2

      The conclusion, even as presented, adds to the known evidence of the PAG in the defense behavior.

      Reviewer #1 (Recommendations For The Authors):

      In the pharmacogenetic experiments, the authors need to clarify which Foxb1hypothalamic presented the activation of hM3Dq. It is important to know whether this activation-producing tachypnea was restricted to the parvofoxFoxb1 or also included the PMd Foxb1 group. It would be important to isolate the effect of the pharmacogenetic activation of each one of these Foxb1 hypothalamic cell groups.

      After determining which cell group would be involved in mediating this respiratory effect, it would be nice to discuss the possible pathways involved in this effect.<br /> In the optogenetic experiments, the authors should differentiate between the effects of the PAG projecting fibers from the PMd and those from the parvofox groups. As it stands, it seems that the freezing and bradycardia depend on projection from the PMd Foxb1 group to the rostral PAGdl. However, considering the large volume (200 nl) of the viral construct injected, both groups were likely to express channelrhodopsin, and it would be important if the authors could restrict the viral injections to each one of the Foxb1 hypothalamic cell groups.

      Authors’ reply: We fully agree with the suggestion, but due to the recent retirement of Prof. Celio we unfortunately not allowed to conduct any further animal experiments.

      The authors also reported that photoactivation ventral to the PAGdl, possibly in the PAGl did not yield any clear behavioral response. However, as pointed out in the discussion, a recent publication found that the parvofox Foxb1 projection to the lateral PAG drives social avoidance, and we were wondering whether there was any avoidance behavior during the photoactivation of the PAGl fibers.

      Authors’ reply: We did not conduct any social avoidance experiments ourselves. However, we did perform ultrasonic vocalization experiments (unpublished data) in which we optogenetically stimulated Foxb1+ terminals in the PAG. Due to experimental issues related to the age of the tested mice, we did not obtain conclusive results regarding the ultrasonic vocalizations. By a purely observational account, we did not observe any active avoidance during optogenetic stimulation, but rather a cessation of interaction. We are unable to judge whether this was more pronounced in the PAGl targeted mice or not.

      Another important point is that optogenetic ChR2-mediated excitation of the axonal endings is likely to activate the cell bodies originating these fibers, and one cannot ascertain whether the behavioral effects depend on the activation of the terminals in the PAGdl or the activation of the cell bodies originating these terminals. Note, in the present case, PMd cell bodies may also project elsewhere, such as the cuneiform nucleus, known to mediate freezing responses. To circumvent this problem, during photoactivation of the PAGdl terminals, the authors should inhibit the cell bodies originating these terminals.

      Authors’ reply: We would like to refer to the answer we provided above regarding the issue of backpropagation or ChR2-mediated phenotypes and projection-specificity.

      Another important issue is related to the fact that around 90% of the PMd express CCK (Wang et al., 2021), and previous work showed that activation of these cells yielded escape and not freezing (Wang et al., 2021). Although the authors claim that the single-cell RNA sequencing dataset reveals distinct Foxb1 expression in the PMd, these results derive from tissues collected in the posterior hypothalamus, not exactly restricted to the PMd. Therefore, it would be desirable if the authors could show CCK and Foxb1doulbe labeled PMd sections to evaluate the exact percentage of cells expressing either one of these peptides.

      Authors’ reply: The tissues for the scRNAseq data were obtained from hypothalamic tissues between stereotaxic coordinates of AP-2.54 to AP-3.16 (please see Fig. 1b in Mickelsen et al. 2020) and not purely from the posterior hypothalamic nucleus. These tissues hence include a large proportion of the PMd neurons. We would like to point out that the expression profile of the PMd cluster matches well with the ISH data from the Allen Brain Atlas that we have put together in "Supplementary File S6” (originally “Supplementary File S5”)

      The authors should also explain why only a small number of animals that received PAGdl photoactivation presented bradycardia. Moreover, they should also discuss the possible pathways mediating this effect. Here, it is important to point out that the cuneiform nucleus, as suggested by the authors as one possible way to mediate this effect, promotes sympathetic vasomotor activity (Verbene, 1995).

      We have added the sentence: “The projections of the cuneiform nucleus to the rostral ventrolateral medulla promote sympathetic vasomotor activity (Verberne 1995).” to the Discussion section.

      Reviewer #2 (Recommendations For The Authors):

      In this reviewer's view, this study needs substantial improvement:

      1. The writing is very sloppy and difficult to follow. There is no clear logic flow in the main text and the figures need substantial realigning for panels, additions of labelling etc.

      We have added the sentence.

      1. Fig. 6 the hot plate data is out of place and should be placed in supplementary or removed completely.

      Authors’ reply: We and others have previously shown that the parvalbumin+ population of the Parvafox nucleus is involved in nociceptive behavior. Hence, we believe it is of interest to show, that we do not see the same phenotype with the stimulation of the Foxb+ population of the parvafox nucleus. This data shows that the nociceptive component of the parvafox nucleus is confined to its parvalbumin+ population.

      1. The authors discussed social behavior data in the Discussion, but no such data is presented, which is very confusing.

      Authors’ reply: Indeed we did not perform any experiments to investigate social behavior. However, we address that the observed locomotive phenotype of optogenetic Foxb1+-terminals could have lead to a bias in the interpretation of the social behavior experiments published elsewhere by others.

      1. The authors discussed a great deal on potential differences between parvafox and PMd Foxb1 neurons, however, no clear data was presented to show a functional difference between them, which is also confusing.

      Authors’ reply: Even though investigations on the functional differences of parvafox and PMd Foxb1 neurons would be highly interesting, it was outside the scope of the current study. Due to the recent retirement of Prof. Celio, we are not allowed to perform any additional animal experiments.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study that leverages a human-chimpanzee tetraploid iPSC model to test whether cis-regulatory divergence between species tends to be cell type-specific. The evidence supporting the study's primary conclusion--that species differences in gene regulation are enriched in cell type-specific genes and regulatory elements--is compelling, although attention to biases introduced by sequence conservation is merited, and the case that is made for cell type-specific changes reflecting adaptive evolution is incomplete. This work will be of broad interest in evolutionary and functional genomics.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study aims to identify gene expression differences exclusively caused by cis-regulatory genetic changes by utilizing hybrid cell lines derived from human and chimpanzee. While previous attempts have focused on specific tissues, this study expands the comparison to six different tissues to investigate tissue specificity and derive insights into the evolution of gene expression.

      One notable strength of this work lies in the use of composite cell lines, enabling a comparison of gene expression between human and chimpanzee within the same nucleus and shared trans factors environment. However, a potential weakness of the methodology is the use of bulk RNA-seq in diverse tissues, which limits the ability to determine cell-type-specific gene expression and chromatin accessibility regions.

      We agree that profiling single cells could lead to additional exciting discoveries. Although heterogeneity in cell types within samples will indeed reduce our power to detect cell-type-specific divergence, thankfully any heterogeneity will not introduce false positives, since our use of interspecies hybrids controls for differences in cell-type abundance. As a result, we think that the molecular differences we identified in this study represent a subset of the true cell-type specific cis-regulatory differences that would be identified with deep single-cell profiling. We have included a new paragraph in the discussion on future directions, highlighting the utility of single-cell profiling as an exciting future direction (lines 482-490): “In addition to following up on our findings on GAD1 and FABP7, there are other exciting future directions for this work. First, additional bulk assays such as those that measure methylation, chromatin conformation, and translation rate could lead to a better understanding of what molecular features ultimately lead to cell type-specific changes in gene expression. Furthermore, the use of deep single cell profiling of hybrid lines derived from iPSCs from multiple individuals of each species during differentiation could enable the identification of many more highly context-specific changes in gene expression and chromatin accessibility such as the differences in GAD1 we highlighted here. Finally, integration with data from massively parallel reporter assays and deep learning models will help us link specific variants to the molecular differences we identified in this study.”

      Another concern is the use of two replicates derived from the same pair of individuals. While the authors produced cell lines from two pairs of individuals in a previous study (Agloglia et al., 2021), I wonder why only one pair was used in this study. Incorporating interindividual variation would enhance the robustness of the species differences identified here.

      We agree that additional replicates, especially from lines from other individuals, would have improved the robustness of the species differences we identified. In our experience with these hybrid cells (as well as related work from many other labs), inter-species differences typically have much larger magnitudes than intra-species differences, so we expect that the vast majority of differences we identified would be validated with data from additional individuals. Unfortunately, differentiating additional cells and generating these data for this study would be cost-prohibitive. We now mention the use of additional replicates in lines 485-488 of the discussion: “Furthermore, the use of deep single cell profiling of hybrid lines derived from iPSCs from multiple individuals of each species during differentiation could enable the identification of many more highly context-specific changes in gene expression and chromatin accessibility such as the differences in GAD1 we highlighted here.”

      Furthermore, the study offers the opportunity to relate inter-species differences to trends in molecular evolution. The authors discovered that expression variance and haploinsufficiency score do not fully account for the enrichment of divergence in cell-type-specific genes. The reviewer suggests exploring this further by incorporating external datasets that bin genes based on interindividual transcriptomics variation as a measure of extant transcriptomics constraint (e.g., GTEx reanalysis by Garcia-Perez et al., 2023 - PMID: 36777183). Additionally, stratifying sequence conservation on ASCA regions, which exhibit similar enrichment of cell-type-specific features, using the Zoonomia data mentioned also in the text (Andrews et al., 2023 -- PMID: 37104580) could provide valuable insights.

      To address this, we used PhastCons scores computed from a 470-way alignment of mammals as we could not find publicly available PhastCons data from Zoonomia. When stratifying by the median PhastCons score of all sites in a peak, we observe very similar results to those obtained when stratifying by the constraint metric from the gnomAD consortium (see below). The one potential difference is that peaks in the top two bins have slightly weaker enrichment relative to the other bins when using PhastCons, but this is not the case when using gnomAD’s metric. We have elected to include this in the public review but not the manuscript as we are reluctant to add to the complexity of what is already complex analysis.

      Author response image 1.

      Finally, we think that comparisons of the properties of gene expression variance computed from ASE (as done by Starr et al.) and total expression (as done by Garcia-Perez et al.) is a very interesting, potentially complex question that is beyond the scope of this paper but an exciting direction for future work.

      Another potential strength of this study is the identification of specific cases of paired allele-specific expression (ASE) and allele-specific chromatin accessibility (ASCA) with biological significance.

      Prioritizing specific variants remains a challenge, and the authors apply a machine-learning approach to identify potential causative variants that disrupt binding sites in two examples (FABP7 and GAD1 in motor neurons). However, additional work is needed to convincingly demonstrate the functionality of these selected variants. Strengthening this section with additional validation of ASE, ASCA, and the specific putative causal variants identified would enhance the overall robustness of the paper.

      We strongly agree with the reviewer that additional work validating our results would be of considerable interest. We hope to perform follow-up experiments in the future. For now, we have been careful to present these variants only as candidate causal variants.

      Additionally, the authors support the selected ASE-ASCA pairs by examining external datasets of adult brain comparative genomics (Ma et al., 2022) and organoids (Kanton et al., 2019). While these resources are valuable for comparing observed species biases, the analysis is not systematic, even for the two selected genes. For example, it would be beneficial to investigate if FABP7 exhibits species bias in any cell type in Kanton et al.'s organoids or if GAD1 is species-biased in adult primate brains from Ma et al. Comparing these datasets with the present study, along with the Agoglia et al. reference, would provide a more comprehensive perspective.

      We agree with the reviewer’s suggestion that investigating GAD1 and FABP7 expression in other datasets is worthwhile. Unfortunately, the difference in human vs. chimpanzee organoid maturation rates and effects of culture conditions in Kanton et al. makes it unsuitable for plotting the expression of FABP7 as its expression is highly dependent on neuronal maturation. We therefore plotted bulk RNAseq data from multiple cortical regions from Sousa et al. 2017 (see below). This corroborates our claim that FABP7 has human-biased expression in adult humans compared to chimpanzees and rhesus macaques. We also investigated expression of GAD1 in the Ma et al. data as the reviewer suggested.

      Author response image 2.

      While there are differences in GAD1 expression between adult humans and chimpanzees, they are unlikely to be linked to the HAR we highlight as it is likely a transiently active cis-regulatory element (see below). In addition, some cell types seem to have chimpanzee-derived changes in GAD1 expression (e.g. SST positive neurons) whereas others seem to have human-derived changes in GAD1 expression (e.g. LAMP5 positive neurons).

      Author response image 3.

      While these are potentially interesting observations, we think that their inclusion in the manuscript might distract from our emphasis on the cell type-specific and developmental stage-specific of the changes in FABP7 and GAD1 expression we observe so we have not included them in the manuscript.

      The use of the term "human-derived" in ASE and ASCA should be avoided since there is no outgroup in the analysis to provide a reference for the observed changes.

      We agree with the reviewer that the term human-derived should be used with care and have changed the phrasing of line 230 to “human-chimpanzee differences in expression”. With regard to FABP7 we think that our analysis of the Ma et al. data—which includes data from rhesus macaques as an outgroup—justifies our use of “human-derived” in lines 360 and 457. As chimpanzee and macaque expression of FABP7 are similar but human expression is quite different, the most parsimonious explanation for our observations is that FABP7 upregulation occurred in the human lineage.

      Finally, throughout the paper, the authors refer to "hybrid cell lines." It has been suggested to use the term "composite cell lines" instead to address potential societal concerns associated with the term "hybrid," which some may associate with reproductive relationships (Pavlovic et al., 2022 -- PMID: 35082442). It would be interesting to know the authors' perspective on these concerns and recommendations presented in Pavlovic et al., given their position as pioneers in this field.

      We appreciate this question. Whether to refer to our fused cells as “hybrids” or not was indeed a question we considered at great length, starting from the very beginning of this project in 2015. From consultations with multiple bioethicists-- both formal and informal-- we have long been aware of the possibility of misunderstanding based on the word “hybrid”. However, we felt this possibility was outweighed by the long and well-established history of other scientists referring to interspecies fused cells as hybrids. This convention-- which is based on hundreds of papers about heterokaryons, somatic cell hybrids, and radiation hybrids-- goes back over 50 years (e.g. Bolund et al, Exp Cell Res 1969). Soon after the establishment of this nomenclature, cell fusion became widespread and ever since then it has become commonplace to generate interspecies hybrid cells from animals, plants and fungi.

      It is also important to note that in over two years since we published the first two papers on humanchimpanzee fused cells, we have been unable to find any misunderstanding of our use of the term “hybrid”. We have searched blogs, media articles, and social media, all with no evidence of misunderstanding. Therefore, in the current manuscript, rather than creating confusion by renaming a well-established approach, we have opted to clearly and prominently define hybrid cells: in the abstract of our paper we introduce the hybrid cells as “the product of fusing induced pluripotent stem (iPS) cells of each species in vitro.”

      Reviewer #2 (Public Review):

      In this paper, Wang and colleagues build on previous technical and analytical achievements in establishing tetraploid human-chimpanzee hybrid iPSCs to investigate the cell type-specificity of allelespecific expression and allele-specific chromatin accessibility across six differentiated cell types (here, "allele-specific" indicates species differences with a cis-regulatory basis). The combined body of work is remarkable in its creativity and ambition and has real potential for overcoming major challenges in understanding the evolutionary genetics of between-species differences. The present paper contributes to these efforts by showing how differentiated cells can be used to test a long-standing hypothesis in evolutionary genetics: that cis-regulatory changes may be particularly important in divergence because of their potential for modularity.

      In my view, the paper succeeds in making this case: allele (species)-specific expression (ASE) and allelespecific chromatin accessibility (ASCA) are enriched in genes asymmetrically expressed in one cell type, and many cases of ASE/ASCA are cell type-specific. The authors do an excellent job showing that these results are robust across a set of possible analysis decisions. It is somewhat less clear whether these enrichments are primarily a product of relaxed constraint on cell type-specific genes or primarily result from positive selection in the human or chimp lineage. While the authors attempt to control for constraint using several variables (variance in ASE in humans and the sequence-based probability of haploinsufficiency score, pHI), these are imperfect proxies for constraint. For the pHI scores, enrichments for ASE also appear to be strongest in the least constrained genes. Overall, the relative role of relaxation of constraint versus positive selection is unresolved, although the manuscript's language leans in favor of an important role for selection.

      We agree with the reviewer and apologize for the wording that indeed focused more on positive selection than relaxed constraint. We have added language clarifying that our stance is that our analyses suggest some role for positive selection, but that we do not claim that positive selection plays a larger role than reduced constraint (lines 432-437): “Overall, this suggests that broad changes in expression in cell type-specifically expressed genes may be an important substrate for evolution but it remains unclear whether positive selection or lower constraint plays a larger role in driving the faster evolution of more cell type-specifically expressed genes. Future work will be required to more precisely quantify the relative roles of positive selection and evolutionary constraint in driving changes in gene expression.”

      The remainder of the manuscript draws on the cell type-specific ASE/ASCA data to nominate candidate genes and pathways that may have been important in differentiating humans and chimpanzees. Several approaches are used here, including comparing human-chimp ASE to the distribution of ASE observed in humans and investigating biases in the direction of ASE for genes in the same pathway. The authors also identify interesting candidate genes based on their role in development or their proximity to human accelerated regions (where many changes have arisen on the human lineage in otherwise deeply conserved sequence) and use a deep neural network to identify sequence changes that might be causally responsible for ASE/ASCA. These analyses have value and highlight potential strategies for using ASE/ASCA and hybrid cell line data as a hypothesis-generating tool. Of course, the functional follow-up that experimentally tested these hypotheses or linked sequence/expression changes in the candidate pathways to organismal phenotype would have strengthened the paper further- but this is a lot to ask in an already technically and analytically challenging piece of work.

      We thank the reviewer for the kind words and strongly agree that follow-up experiments and orthogonal analyses will be key in validating our results and establishing links to human-specific phenotypes.

      As a minor critique, the present paper is very closely integrated with other manuscripts that have used the hybrid human-chimp cell lines for biological insight or methods development. Although its contributions make it a strong stand-alone contribution, some aspects of the methods are not described in sufficient detail for readers to understand (even on a general conceptual level) without referencing that work, which may somewhat limit reader understanding.

      We agree with the points the reviewer raises regarding the clarity of our methods. We have amended several sections to provide more conceptual information while pointing the reader to other publications for the technical details. For convenience, we include the text here as well as in the new draft.

      Lines 207-214 now provide more intuition for the method used to detect lineage-specific selection: “Next, we sought to use our RNA-seq data to identify instances of lineage-specific selection. In the absence of positive selection, one would expect that an approximately equal number of genes in a pathway would have human-biased vs. chimpanzee-biased ASE. Significant deviation from this expectation (as determined by the binomial test) rejects the null hypothesis of neutral evolution, instead providing evidence of lineage-specific selection on this pathway. Using our previously published modification of this test that incorporates a tissue-specific measure of constraint on gene expression, we detected several signals of lineage-specific selection, some of which were cell type-specific (Starr et al., 2023, Additional file 2).” This is also reflected in the Methods in lines 729-731: “Positive selection on a gene set is only inferred if there is statistically significant human- or chimpanzee-biased ASE in that gene set (using an FDR-corrected p-value from the binomial test).”

      Reviewer #3 (Public Review):

      The authors utilize chimpanzee-human hybrid cell lines to assess cis-regulatory evolution. These hybrid cell lines offer a well-controlled environment, enabling clear differentiation between cis-regulatory effects and environmental or other trans effects.

      In their research, Wang et al. expand the range of chimpanzee-human hybrid cell lines to encompass six new developmental cell types derived from all three germ layers. This expansion allows them to discern cell type-specific cis-regulatory changes between species from more pleiotropic ones. Although the study investigates only two iPSC clones, the RNA- and ATAC-seq data produced for this paper is a valuable resource.

      The authors begin their analysis by examining the relationship between allele-specific expression (ASE) as a measure of species divergence and cell type specificity. They find that cell-type-specific genes exhibit more divergent expression. By integrating this data with measures of constraint within human populations, the authors conclude that the increased divergence of tissue-specific genes is, at least in part, attributable to positive selection. A similar pattern emerges when assessing allele-specific chromatin accessibility (ASCA) as a measure of divergence of cis-regulatory elements (CREs) in the same cell lines.

      By correlating these two measures, the authors identify 95 CRE-gene pairs where tissue-specific ASE aligns with tissue-specific ASCA. Among these pairs, the authors select two genes of interest for further investigation. Notably, the authors employ an intriguing machine-learning approach in which they compare the inferred chromatin state of the human sequence with that of the chimpanzee sequence to pinpoint putatively causal variants.

      Overall, this study delves into the examination of gene expression and chromatin accessibility within hybrid cell lines, showcasing how this data can be leveraged to identify potential causal sequence differences underlying between-species expression changes.

      We appreciate this assessment.

      I have three major concerns regarding this study:

      1. The only evidence that the cells are indeed differentiated in the right direction is the expression of one prominent marker gene per cell type. Especially for the comparison of conservation between the differentiated cell types, it would be beneficial to describe the cell type diversity and the differentiation success in more detail.

      We appreciate this assessment. We agree that evidence beyond a single marker gene is necessary to demonstrate that the differentiations were successful and that a discussion of the limitations of these differentiations in the manuscript is worthwhile. We included figures showing additional marker genes and a thorough discussion of the differentiations in the supplement. For convenience, we have copied the supplemental figure and text here:

      “Before continuing with the analysis, we tested whether the differentiations were successful and contained primarily our target cell types. The very low expression of NANOG, a marker for pluripotency, across all differentiations indicates that the samples contain very few iPSCs (Agoglia et al., 2021). For cardiomyocytes (CM), NKX2-5, MYBPC3, and TNNT2 definitively distinguish CM from other heart cell types and their high expression indicates successful differentiations (Burridge et al., 2014). For motor neurons, the high expression of ELAVL2, a pan-neuronal marker, indicates a high abundance of neurons in the sample (Mickelsen et al., 2019). The expression of ISL1 and OLIG2 further demonstrates that these are motor neurons and not other types of neurons (Maury et al., 2015). For retinal pigment epithelium (RPE), the combined expression of MITF, PAX6, and TYRP1 provides strong evidence that the differentiations were successful in producing RPE cells (Sharma et al., 2019). For skeletal muscle, the very high expression of MYL1, MYLPF, and MYOG indicates that these samples contain a high proportion of skeletal muscle cells (Chal et al., 2016). In general, all these populations of cells contain some proportion of progenitors as there is detectable expression of MKI67 in all samples.

      The low expression of ALB (a marker for mature hepatocytes) and the high expression of TTR and GPC3 (markers for hepatocyte progenitors) combined with the high expression of HNF1B indicate that the bulk of the cells in the HP samples are hepatocyte progenitors rather than mature hepatocytes or endoderm cells, although there are likely some endoderm cells and immature hepatocytes in the sample (Hay et al., 2008; Mallanna & Duncan, 2013). Similarly, the combined expression of PDX1 and NKX6-1 and the low expression of NEUROG3 (a marker of endocrine progenitors which differentiate from pancreatic progenitors) in the PP samples indicates that these primarily contain pancreatic progenitors but likely contain some endocrine progenitors and endoderm cells (Cogger et al., 2017; Korytnikov & Nostro, 2016).

      Notably, HP and PP are closely related cell types that are derived from the same lineage. Indeed, heterogeneous multipotent progenitors can contribute to both the adult liver and adult pancreas in mice (Willnow et al., 2021). Progenitors that express PDX1 (often used as a marker for the pancreatic lineage) can differentiate into hepatocytes (Willnow et al., 2021). As a result, some overlap in the transcriptomic signature of both cell types is expected and we cannot rule out that the HP samples contain cells that could differentiate into pancreatic cells or that the PP samples contain cells that could differentiate into hepatocytes. However, the expression of NKX6-1 and GP2, markers for pancreatic progenitors, in the PP samples but not the HP samples indicates that these two populations of cells are distinct. Overall, the similarity of PP and HP likely explains the lower number of cell type-specific genes and genes showing cell type-specific ASE for these cell types. This similarity does not alter the conclusions presented in the main text.”

      Author response image 4.

      Author response image 5.

      Marker gene expression in different cell types. In order, the panels show: a marker for pluripotency, a marker gene for dividing cells, marker genes for cardiomyocytes, marker genes for hepatocytes and hepatocyte progenitors, marker genes for motor neurons, marker genes for pancreatic progenitors and more mature pancreatic cell types, marker genes for retinal pigment epithelial cells, and marker genes for skeletal myocytes. Hepatocyte progenitors and pancreatic progenitors generally show similar gene expression profiles. TPM: transcript per million.

      1. Check for a potential confounding effect of sequence similarity on the power to detect ASE or ASCA.

      We agree that checking for confounding by power to detect ASE or ASCA would increase confidence in our results. We have added supplementary figures 29-33 to show the results as well as a discussion of these figures in the text (lines 318-326):

      “Finally, it is possible that CREs and genes that are less conserved will have more SNPs, and therefore more power to call ASCA and ASE, leading to systematically biased estimates. There is a weak positive correlation between the number of SNPs and the -log10(FDR) for ASE and a weak negative or no correlation for ASCA (Supp Fig. 29). Similarly, we observe a weak relationship between the number of SNPs in CREs or genes and absolute log fold-change estimates (Supp Fig. 30). Although the relationship between the number of SNPs and ASE/ASCA is weak, we confirmed that cell type-specific genes and peaks are still strongly enriched for ASE and ASCA when stratifying by number of SNPs (Supp Fig. 31-32). Overall, our analysis suggests that the result that more cell type-specific genes and CREs are more evolutionarily diverged is robust to a variety of possible confounders.”

      Author response image 6.

      Relationship between number of SNPs and -log10(FDR) in a) ASE and -log10(pvalue) b) ASCA. These scatter plots show the relationship between the number of SNPs in a gene or peak and the -log10(FDR) for ASE or ASCA. Genes with significant ASE (FDR < 0.05) and peaks with significant ASCA (binomial p-value < 0.05) were annotated as blue dots, and all other genes and peaks were annotated as gray dots. All genes in each cell type in RNA-seq are shown. For clarity, the few outlier peaks with more than 200 SNPs are excluded from these plots.

      Author response image 7.

      Relationship between number of SNPs and absolute log2 fold-change in a) ASE and b) ASCA. These scatter plots show the relationship between the number of SNPs in a gene or peak and the estimated absolute log2 fold-change for ASE or ASCA. Genes with significant ASE (FDR < 0.05) and peaks with significant ASCA (binomial p-value < 0.05) were annotated as blue dots, and all other genes and peaks were annotated as gray dots. All genes in each cell type in RNA-seq are shown. For clarity, the few outlier peaks with more than 200 SNPs are excluded from these plots.

      Author response image 8.

      Cell type-specifically expressed genes are enriched for genes with ASE when stratifying by the number of SNPs per gene. a) Results when SKM is included. Genes were put into five bins with an equal number of genes in each bin. Genes with the fewest SNPs are in the 0-20% bin and genes with the most SNPs are in the 80-100% bin. Significance (using the Wald test) is indicated by asterisks where *** indicates p < 0.005, ** indicates p < 0.01, and * indicates p < 0.05. b) The same as in (a) but excluding SKM.

      Author response image 9.

      Cell type-specific peaks are enriched for ASCA when stratifying by the number of SNPs per peak. a) Peaks with an absolute log2 fold-change greater than or equal to 0.5 were called as having ASCA. Peaks were put into five bins with an equal number of peaks in each bin. Peaks with the fewest SNPs are in the 0-20% bin and genes with the most SNPs are in the 80-100% bin. Significance (using the Wald test) is indicated by asterisks where *** indicates p < 0.005, ** indicates p < 0.01, and * indicates p < 0.05. b) The same as in (a) but peaks with a binomial p-value less than or equal to 0.05 were called as having ASCA.

      1. In the last part the authors showcase 2 examples for which the log2 fold changes in chromatin state scores as inferred by the machine learning model Sei are used. This is an interesting and creative approach, however, more sanity checks on this application are necessary.

      We agree with the reviewer about the importance of sanity checks and apologize for omitting these from the manuscript. Below we highlight several such checks from previous publications:

      In the original Sei paper (Chen et al. 2022), the authors included several tests of their model’s ability to predict the effects on individual genetic variants. Using eQTL data from GTEx, they found that variants predicted to increase enhancer activity were more likely to be up-regulating eQTLs, and those predicted to increase polycomb repression had the expected repressive effect. These relationships became stronger when restricting the analysis only to fine-mapped eQTLs with >95% posterior probabilities of causality. Chen et al. also found that previously known disease-causing noncoding variants from the Human Gene Mutation Database were far more likely to reduce predicted enhancer/promoter activity than matched variants not linked to any disease.

      In addition, we note that a similar approach to ours was recently used to analyze all HARs and included considerable efforts to validate the utility of the Sei predictions in identifying causal variants (Whalen et al. 2023 in Neuron). For example, Whalen et al. found that the Sei output correlated with the effects of genetic variants on expression in a massively parallel reporter assay. They also found that the effect sizes predicted by Sei were much higher for variants in HARs than polymorphic variants in the human population, which is consistent with the idea that variants in HARs lie in highly conserved bases that are more likely to disrupt cis-regulatory elements. Finally, Whalen et al. found that effects on chromatin state predicted by Sei were generally highly correlated across tissues, supporting our approach that leverages all Sei outputs regardless of which cell type or tissue they correspond to. Overall, we think that Sei is a potentially powerful way to prioritize causal variants and that improved machine learning models trained on more extensive and context-specific data will be even more powerful.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The study isolated extracellular vesicles (EV) from healthy controls (HCs) and Parkinson patients (PwP), using plasma from the venous blood of non-fasting people. Such EVs were characterized and validated by the presence of markers, their size, and their morphology. The main aim of the manuscript is to correlate the presence of synaptic proteins, namely SNAP-25, GAP-43, and SYNAPTOTAGMIN-1, normalized with HSP70, with the clinical progression of PwP. Changes in synaptic proteins have been documented in the CSF of Alzheimer's and Parkinson's patients. The demographics of participants are adequately presented.

      • One important limiting, as well as puzzling aspect, is the fact that authors did not find differences between groups at the beginning of the study nor after one year, after age and sex adjustment.

      Response: Thanks for your comments. We acknowledge your observation that the absence of a discernible difference in plasma EV synaptic protein levels between the PD and control subjects constitutes a significant limitation of our study. This outcome could be attributed to the fact that the controls were recruited from the neurology outpatient clinic, representing a group that could be considered "sub-healthy." Moreover, these individuals are not exempt from aging-related neurodegenerative processes. Considering that our PD subjects are in the early stages of the disease (with a mean disease duration of less than 3 years) and that synaptic dysfunction is a broader indicator rather than specific to PD, these factors could collectively contribute to the lack of distinction between the PD and control groups.

      However, our primary intention was also to explore the potential of plasma EV synaptic proteins as predictive markers for disease progression in PD. In this regard, we have identified their applicability within the current PD cohort. We are committed to conducting further follow-up with these study subjects over an extended duration to delve deeper into these findings.

      We revised the following statement in the discussion part to address this issue as following “Additionally, synaptic dysfunction is a frequently observed phenomenon in several neurological diseases, and it is not exclusive to PD. Consequently, the HC group in our current study may have included individuals with coexisting neurological conditions, potentially explaining the lack of a significant difference between the PD group and the HCs. However, this approach also illuminates the significance of synaptic dysfunction in the advancement of PD. This insight can be invaluable for monitoring disease progression, particularly in the context of clinical trials focused on disease modification.”

      • Tables in general are hard to follow. Specifically, Table 2 does not convey a clear message nor in the text of the Table itself, and the per 100% of change needs to be explained in the corresponding legend.

      Response: Thanks for your comment. In Table 2, our aim was to demonstrate the association between the change of plasma EV synaptic proteins with the change of clinical severity, and presented as coefficient (p value). We apologize for any prior ambiguity in the main text's description of these results and have since made revisions to enhance clarity.

      Regarding the "per 100% change," this is due to the quantification of plasma EV synaptic proteins being based on a semi-quantitative Western blot method. Each measurement was normalized by the average baseline plasma synaptic protein levels of healthy controls (HCs). The term "per 100% change" denotes the increase or decrease in plasma EV synaptic protein abundance relative to the average baseline levels observed in healthy controls. We apologize for any confusion caused and removed this term. In addition, we rephrased the statement to ensure better understanding and readability in the Table legend of revised manuscript as following “The association between the change of plasma EV synaptic proteins abundance (between baseline and follow-up) with the change of clinical severity in motor and cognitive domains (between baseline and follow-up) in people with Parkinson’s disease. A generalized linear model was employed and the data was presented as coefficient (p value).”

      • It is only when PwP were classified as a first quartile that a significantly greater deterioration was found. However, in the case of tremor, the top 25% had values going from 0.46-0.47 to 0.32-0.35, whereas the lower three quarters went from 0.33-0.34 to 0.27-0.28 depending on the protein analyzed. This needs to be clarified in the text.

      Response: Thanks for your comments. As per the unified Parkinson's disease rating score (UPDRS), a higher score indicates greater severity of symptoms. Regarding tremor, we observed a general trend of improvement in both groups. PwP with elevated baseline plasma EV proteins had a trendy of worse tremor score at baseline, and the improvement was significantly better than the rest of PwP. This improvement seems to contradict the progressive nature of PD, and one possible explanation could be the alleviation of symptoms due to medication usage. The assessment of motor symptoms took place within the hospital setting, where we refrained from requesting patients to withhold their anti-PD medications due to concerns about safety issues such as falls. Consequently, certain motor symptoms might have been effectively controlled by the anti-PD medication. Traditionally, symptoms like tremor and rigidity (as reflected by the akinetic rigidity score) respond well to medications, while postural instability and gait disturbance (PIGD) are less responsive. In our cohort, we noted an improvement in tremor scores and stability in akinetic rigidity (AR) scores. Conversely, PD patients with higher baseline plasma EV synaptic protein levels exhibited notable progression in PIGD scores. These findings have been documented in the results section and discussed comprehensively within the revised manuscript as following “On the other hand, the evaluation of motor symptoms occurred in a hospital setting where we did not ask patients to stop taking their anti- PD medications due to safety concerns like the risk of falls. As a result, specific motor symptoms, particularly tremor and AR, which are more sensitive to medication compared to PIGD, may have been effectively managed by the anti-PD medications. This could potentially explain the improvement in tremor observed between the baseline and one-year follow-up, especially among PwP with elevated baseline plasma EV synaptic proteins.”

      • Table 3 is hard to read and some of the values seem repetitive, especially for tremor, AR, and PIGD. It looks as if Figure 2 represents the same information as Table 3.

      Response: Thanks for your information. We have ensured the accuracy of the results presented in Table 2. While some of the entries may appear similar, they do indeed possess distinct differences.

      To enhance readability, we streamlined the information in Table 3 by removing the p-values from the intra-group comparisons between baseline and the 1-year follow-up within each domain. We retained the original p-values for trend related to the inter-group comparisons for changes. Detailed information has been relocated to the supplementary section of the revised manuscript. In Figure 2, we illustrated the relationship between baseline plasma extracellular vesicle (EV) synaptic protein levels and the clinical assessment parameters during follow-up in patients with Parkinson's disease (PwP). This portrayal is distinct from the information depicted in Table 3.

      If you had concerns about the resemblance between Table 3 and Figure 3, please note that the values in Table 3 represent raw scores, while the values in Figure 3, namely the estimated marginal means, are the "adjusted" scores for UPDRS-II and PIGD at baseline and follow-up. These adjustments encompass age, sex, and disease duration. We sincerely apologize for any lack of clarity in our previous description and have since revised it accordingly.

      • The text and figure legends are not helpful in guiding the reader to understand the presented information.

      Response: Thanks for your comments and we apologized for the unclear statement. We revised the figure legend and the main text for better understanding of the readers.

      Reviewer #2 (Public Review):

      Hong and collaborators investigated variations in the amount of synaptic proteins in plasma extracellular vesicles (EV) in Parkinson's Disease (PD) patients on one-year follow-up. Their findings suggest that plasma EV synaptic proteins may be used as clinical biomarkers of PD progression.

      • It is a preliminary study using semi-quantitative analysis of synaptic proteins.

      Response: Thanks for your comments. The present study represents the initial phase of our investigation into the role of plasma EV synaptic proteins within our PD cohort. Our findings have revealed the potential predictive significance of these synaptic proteins in relation to PD progression. We are committed to conducting further follow-up with these study subjects over an extended period.

      Furthermore, it's important to acknowledge that the semi-quantitative approach employed to assess protein abundance was a limitation of this study. This limitation stems from the low concentration of plasma EV synaptic proteins, which restricts the feasibility of utilizing techniques such as ELISA or other quantitative methods for protein assessment. We have duly acknowledged this limitation within the scope of the present study as following “Semiquantitative assessment of plasma EV synaptic protein (SNAP-25, GAP-43, and synaptotagmin-1) levels was performed using western blot analysis. The lack of absolute values limits further clinical application.”

      Moving forward, we intend to adopt alternative EV isolation methods that enable the extraction of a larger abundance of plasma EV proteins, facilitating more accurate quantitative assessments. In addition, a longer longitudinal follow-up is warranted to clearly assess the prognostic efficacy of plasma EV synaptic proteins in PwP, which we had mentioned in the manuscript.

      • The authors have a cohort of PD patients with clinical examination and a know-how on EV purification. Regarding this latter part, they may improve their description of EV purification. EV may be broken into smaller size EV after freezing. Does it explain the relatively small size in their EV preparation? Do the authors refer to the MISEV guidelines for EV purity?

      Response: Thanks for your comments. In the previous manuscript, we provided a relatively detailed account of the procedures related to EV isolation and validation (https://doi.org/10.1096/fj.202100787R). In the revised manuscript, we added some information about the principle of the EV isolation kit, and the validation antibody as following “Plasma EVs were isolated from 1 mL of plasma by exoEasy Maxi Kit (Qiagen, Valencia, CA, USA), a membrane-based affinity binding step to isolate exosomes and other EVs without relying on a particular epitope, in accordance with the manufacturer’s instructions and storaged in the −80。C freezer. The isolated plasma EVs were then eluted and stored. Usually, 400 μL of eluate is obtained per mL of plasma. The isolated plasma EVs were validated according to the International Society of Extracellular Vesicles guidelines, which include1.markers, including the presence of CD63 (ab59479, Abcam, Cambridge, UK), CD9(ab92726, Abcam, Cambridge, UK), tumor susceptibility gene 101 protein (GTX118736, GeneTex, CA, USA) and negative of cytochrome c (ab110325; Abcam, Cambridge, UK) 2. Physical characterization through the nanoparticle tracking analysis, which demonstrated the majority of the size of EV are mainly within 50-100nm 3. The morphology from the electron microscopy analysis. The validation had been described previously [29-31]. “

      It's important to note that our primary focus was on exosomes, the smallest subtype of EVs. Through nanoparticle tracking analysis, we observed that the majority of isolated EVs fell within the diameter range of 50-150nm, exhibiting significant surface marker (i.e. CD63 and CD9) expression. Moreover, electron microscopy confirmed their vesicular morphology. These meticulously validated EVs were promptly analysed post-isolation.

      However, we acknowledge that the plasma obtained from study participants might have undergone freezing prior to EV isolation. This freezing process has the potential to diminish the yield rate of EVs and result in some degree of fragmentation. We have duly included this issue as a limitation in our revised manuscript as following “The final technical issue in the present study was the relatively small size of the isolated EVs. Despite the primary focus on isolating exosomes, which are the smallest type of EVs, it's important to consider that the presence of small-sized EVs could potentially be attributed to EV fragmentation that occurs during the freezing and thawing processes.”

      • Regarding synaptic protein quantification, the choice of western blotting may not be the best one. ELISA and other multiplex arrays are available. How the authors do justify their choice?

      Response: Thanks for your comments. We appreciate your input regarding the semi-quantitative western blot analysis not being the most optimal approach. Owing to the limited quantity of isolated plasma EVs and the significant protein abundance of synaptic proteins within these EVs, we did explore the use of an ELISA assay. However, it's worth noting that for a specific subset of the samples, the readout obtained was lower than the lower limit of detection of the ELISA kit. In response, we have incorporated this point as limitation within the discussion section of the revised manuscript as following “Semiquantitative assessment of plasma EV synaptic protein (SNAP-25, GAP-43, and synaptotagmin-1) levels was performed using western blot analysis. The lack of absolute values, i.e. from the results of enzyme-linked immunosorbent assay, limits further clinical application.”

      • Do the authors try to sort plasma EV by membrane-associated neuronal EV markers using either vesicle sorting or immunoprecipitation?

      Response: Thanks for your comments. The current study did not specifically isolate neuron-derived extracellular vesicles (EVs), potentially introducing some bias to the results. However, it's important to note that synaptic proteins, such as SNAP-25, exhibit a high degree of neuron-specific expression, with a predominant presence in the brain (as indicated by https://www.proteinatlas.org/ENSG00000132639-SNAP25/tissue). Given this context, the limitation of not analyzing neuron-derived EVs could be mitigated to some extent. In response, we have incorporated this point as limitation within the discussion section of the revised manuscript as following “Furthermore, this study evaluated the overall plasma EVs rather than specifically focusing on neuron-derived exosomes, potentially introducing a bias towards somatic-origin EVs. Nonetheless, it is worth noting that synaptic proteins primarily originate from neurons. Even when considering neuron-derived exosomes, it's important to recognize that they are not exclusively derived from the brain, which can lead to contamination from the peripheral nervous system.”

      • Many technical aspects may be improved. Such technical questions weakened the authors' conclusions.

      Response: Thanks for your comments. We recognize that the aforementioned issues represent limitations of our current study. In response, we have incorporated these points as limitations, including the semi-quantitative assessments, the isolation of total but not neuron-derived exosomes in the plasma, and the short follow-up time within the discussion section of the revised manuscript.

      • The discussion is pretty long to justify the data. It may be shortened by adding some information in the introduction.

      Response: Thanks for your comments. We have repositioned a statement from the second paragraph of the discussion to the introduction. This adjustment serves to enrich the background understanding of the link between synaptic dysfunction and neurodegenerative diseases.

    1. Author Response

      Reviewer #1 (Public Review)

      The manuscript by Singh et al proposes a new theoretical model for the phenomenon of planar cell polarity (PCP). The new model is simulating the emergence of the subcellular polarity of the Fat-Ds pathway, based on the interactions of the protocadherins Fat and Ds at the boundary between cells and in response to external gradients. Several mathematical models for PCP have been previously developed focusing on different aspects of PCP, including non-autonomy domineering (Amonlirdviman et al.), the effect of stochasticity on polarity (Burak et al.), gradient sensing (Mani et al), formation of molecular bridges (Fisher et al.) to name a few. The current modeling approach suggests a new model, based on a relatively simple set of equations for membrane Fat and Ds and their interactions, both in 1D (line of cells) and in 2D (hexagonal array). The equations are relatively simple on one hand, allowing performing tractable computational analysis as well as analytical approximations, while on the other hand allowing tracking membrane protein levels, which is what is measured experimentally. It has been previously shown that achieving polarity requires local feedback that amplify complexes in one orientation at the expense of complexes in the opposite orientation (e.g. Mani et al.). Interestingly, the current manuscript shows that a simple assumption, that Fat-DS complexes are stabilized when bound is sufficient to induce PCP when concentrations are high enough. The authors use the model to show how it captures several experimental observations, as well as to analyze the sensitivity to noise, the response to gradients, and the response to local perturbations (mutant clones). The manuscript is clear and the analysis is mostly coherent and sensible (although some parts need to be clarified, see below). The main issue I have with the manuscript is that it mostly describes how it captures different features that were mostly explained in previous models. I do think the authors should do more with their model to explain features that were not explained by other models, and/or generate non-trivial predictions that can be tested experimentally.

      We thank the reviewer for the positive feedback and valuable comments We have comprehensively modified the manuscript by including new results and detailing the specific model prediction and their potential experimental tests to address the concerns.

      Reviewer #2 (Public Review):

      The setting of planar cell polarity in epithelial tissues involves a complex interplay of chemical interactions. While local interactions can spontaneously give rise to cell polarity, planar cell polarity also involves tissue scale gradients whose effects are not clear. To understand their role, the authors built a minimal mechanistic model in considering two atypical cadherins, Fat (Ft) and Dachsous (Ds) which can associate at cell-cell interfaces to form hetero-dimers in which monomers belong to adjacent cells. This association can be seen as a local interaction between cells and is also sensitive to overall concentration gradients. From their model which appears to capture diverse experimental observations, the authors conclude that tissue-scale gradients provide to planar cell polarity a directional cue and some robustness to cellular stochasticity. While this model comes after similar works reaching similar predictions, the quality of this model is in its simplicity, its convenience for experimental testing, and the diversity of experimental observations it recapitulates.

      A strength of this work is to recapitulate many experimental observations made on planar cell polarity. It, for example, seems to capture the response of tissues to perturbations such as local downregulation of some important proteins, and the polarity patterns observed in the presence of noise in synthesis or cell-to-cell heterogeneity. It also gives a mechanistic description of planar cell polarity, making its experimental interpretation simple. Finally, the simplicity of the model facilitates its exploration and makes it easily testable because of the reduced amount of free model parameters.

      A weakness of this work is that it comes after several models with similar hypotheses and similar predictions.

      Another weakness is that some conclusions of this work rely on visual appreciation rather than quantification. This is particularly true for what concerns 2D patterns. An argument of the authors is for example that their model reproduces a variety of known spatial patterns, but the comparison with experiments is only visual and would be more convincing in being more quantitative.

      We are grateful to the reviewer for a critical evaluation of the manuscript and for giving important suggestions. We have incorporated all the comments and revised the manuscript accordingly by including quantitative analysis of all the results presented.

      Reviewer #3 (Public Review):

      Using theory, the authors study mechanisms for establishing planar cell polarity (PCP) through local and global modules. These modules refer to the interaction between neighbouring cells and tissue-wide gradients, respectively. Whereas local interactions alone can lead to tissue-wide alignment PCP, a global gradient can set the direction of PCP and maintain the pattern in presence of noise. In contrast, the authors argue that a global gradient can only generate PCP to an extent that is proportional to the gradient magnitude.

      The authors formulate a discrete model in one and two spatial dimensions that describe the assembly dynamics of PCP proteins on membranes. The number of proteins per cell remains constant. Additive noise is introduced to account for stochasticity in the attachment/detachment kinetics of proteins. Furthermore, ’quenched’ noise is introduced to account for variations of protein numbers between cells. The authors perform simulations of the stochastic discrete model in various situations. In addition, they derive a continuum description to perform some analytical computations.

      The strength of this analysis relies clearly on showing that simple dynamics can lead to tissue-wide PCP even in absence of a gradient in protein expression. A number of phenomena observed in tissues are qualitatively reproduced. In two spatial dimensions, they find swirling patterns that resemble patterns found in tissues when a global gradient is absent. The model also captures qualitative effects due to the down-regulation of one of the PCP proteins in a certain region of the tissue.

      The main weak point is that, from a physical point of view, the findings are not particularly surprising. Furthermore, some assumptions underlying the model, need some more justification. This holds notably for the question, of why additive noise is appropriate to account for the effect of stochasticity in the attachment-detachment dynamics of the proteins. Finally, the authors consider a situation that they consider to be one of the most interesting features of PCP, namely, the formation of PCP in the presence of a region with a down-regulated PCP protein and in presence of a gradient. Unfortunately, the effect is not very clear and the data provided remains limited.

      We thank the reviewer for the valuable comments are critique of the work. We have considered all the concerns and revised the manuscript comprehensively. In particular, we have elaborated the sections on model assumptions and added new figures/figure-panels to quantitatively present the model predictions. We have also revised the details of the one-dimensional continuum theory for PCP which, we feel, presents a detailed quantitative picture of PCP and its dependence on model parameters.

    1. Author Response

      Reviewer #2 (Public Review):

      In this study, Leiba et al. aim at establishing the developing zebrafish embryo as a suitable infection model to study Salmonella persistence in vivo. Under environmental stress (ex: macrophage phagosomes) a proportion of bacteria switch to a slow/arrested growth state conferring increased resistance to antibiotic treatments. Persisters are getting increasingly linked to infection relapses. Understanding how persistent infections emerge and bacteria survive in an organism for long time without replicating before switching back to a replicative state is essential. Zebrafish represents an alternative model to mice offering the possibility to image the whole organism and capture persistency with an amazing spatio-temporal resolution.

      In this paper, the authors demonstrate that persistent infections of Salmonella can be reproduced in the developing zebrafish. The kinetics of infection have been well characterized and shows a very nice heterogeneity between animals demonstrating the complex host-pathogen interactions (Fig 1). From the perspective of persistence, the presence of Salmonella survivors to host clearing is reported until 14dpi demonstrating the possibility to induce persistent infection in this model. Through the manuscript, the authors have used a variety of state-of-the-art technics illustrating the flexibility of this model including microscopy and imaging of specific immune populations, various transgenic animals and selective depletion of macrophages or neutrophils to assess their relative contributions. Overall, the conclusions of the authors are well supported by the presented data. This said, the authors should strengthen the conclusions of the paper by providing a better characterization of the infection.

      Major comments:

      1) Figure 1: What is the general life-spam of the fish?

      The general life-span of the zebrafish is approximately 3 years on average. Persistent infection is determined by the existence of a fraction of bacteria that endure over an extended period (after 96 hpi). Further, we observed Salmonella persistence for 14 days. In figure 1, we don’t think that the information of the general life-span of the zebrafish is critical.

      2) Figure 2: It would be nice to clearly state what infection scenario we are looking at. Have the authors studied "high proliferation", "infected" or "cleared" zebrafish?

      In Figure 2 we have studied the "infected" group. Both "high proliferation" and "cleared" larvae were excluded from the analysis. This is now clearly stated in the legend of Figure 2.

      3) Figure 3 and 4: It would be very informative if the authors can tell us what proportion of Salmonella is associated with macrophages and neutrophils. From panel C and D (Figure 3) and Figure 4 C and D and Suppl Fig 1, it seems that a lot of bacteria are extracellular. Maybe an EM image of the tissue would help to understand if the bacteria is "all" intracellular or intracellular.

      We apologize for any misunderstanding regarding the presence of intra- and extracellular bacteria depicted in Figure 3 C and D, Figure 4 C and D and Figure 3 -Suppl Fig 1. These figures illustrate infection experiments conducted in single-reporter larvae, limiting our analysis to bacteria associated with a single cell type. Figure 3G and Figure 4E-G, the panels depict infection experiments carried out in dual-reporter larvae, showing bacteria associated or not with macrophages and neutrophils. The present study aimed to establish the role of neutrophils and macrophages in the control of early and persistent Salmonella infection but further studies will focus on the exact localization of Salmonella during the course of the infection and, despite being a challenging technique for zebrafish, electron microscopy could be of great interest, allowing to visualize any type of cells (to determine if all bacteria are intracellular) at high resolution.

      4) Figure 3 and 4: It would be very useful if the authors can tell us if the intracellular bacteria are mainly found individually (like in Figure 3C) or does host cells harbor many intracellular bacteria. Looking at figure 4G: it is not clear to me how many intracellular bacteria can be counted on this image.

      This is an interesting suggestion. At present, an accurate quantification of the intracellular bacteria on microscopy 3D-datasets is challenging because bacteria aggregate inside the cells. At 4 hpi, single bacteria can occasionally be observed outside leukocytes, while most of infected macrophages harbored several intracellular bacteria (bacteria aggregates). To compare the levels of intracellular bacterial between acute and persistent stages, we measured the size of E2Crimson-positive (E2Crimson+) events. At 5 hpi, the median volume of E2Crimson+ events was lower than that at 4 dpi. The size distribution analysis of E2Crimson+ events indicated a higher representation of smaller volumes (0.5-1.5 m3 and 1.5-10 m3) at 5 hpi compared to 4 dpi, a stage during which very large E2Crimson+ events were observed (between 100-1000 m3, with some exceeding 1000 m3). This observation suggests an elevated presence of intracellular bacteria within the cells during persistent stages and that intracellular bacteria are predominantly observed as multiple rather than as solitary entities. This analysis has been incorporated in new Figure 5.

      5) Figure 3 and 4: The authors should also perform an experiment with a Salmonella strain harboring a growth reporter to quantify the amount of replicating and non-replicating bacteria. This experiment is not absolutely necessary for the story, but if possible, it would provide a very nice add-up to the story and impact to the paper.

      We welcome the reviewers’ suggestion, which we have indeed considered and planning to carry on in the future, along with experimented more oriented on the bacterial side.

      6) Figure 6: The authors should provide in suppl. the flow cytometry scatter plots used to delineate the different subpopulations.

      We agree with the reviewer that the flow cytometry scatter plots used to delineate the different subpopulations were missing and are now incorporated in new Fig 7 - figure supplement 2.

      7) Figure 6: A specific characterization of macrophages harboring Salmonella persisters at 4dpi is missing. As shown by the authors in Figure 6, the tnfa- populations of macrophages at 4dpi are very similar for both infected and non-infected larvae. Persisters should indeed reside within tnfa- macrophages but they should also induce a specific signature through the actions of Salmonella effectors. Measuring this signature will allow a direct comparison with published data in mice and assess how accurately the zebrafish model recapitulates the manipulation of macrophages by Salmonella

      We agree with the reviewer that a specific characterization of macrophages harboring persistent Salmonella at 4 dpi is missing. However due to the technical limitation inherent to the model (limited recovery of infected cells following FACS sorting), we were not able to specifically sort infected macrophages at 4 dpi.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper combines a number of cutting-edge approaches to explore the role of a specific mouse retinal ganglion cell type in visual function. The approaches used include calcium imaging to measure responses of RGC populations to a collection of visual stimuli and CNNs to predict the stimuli that maximally activate a given ganglion cell type. The predictions about feature selectivity are tested and used to generate a hypothesized role in visual function for the RGC type identified as interesting. The paper is impressive; my comments are all related to how the work is presented.

      We thank the reviewer for appreciating our study and for the interesting comments.

      Is the MEI approach needed to identify these cells?

      To briefly summarize the approach, the paper fits a CNN to the measured responses to a range of stimuli, extracts the stimulus (over time, space, and color) that is predicted to produce a maximal response for each RGC type, and then uses these MEIs to investigate coding. This reveals that G28 shows strong selectivity for its own MEI over those of other RGC types. The feature of the G28 responses that differentiate it appears to be its spatially-coextensive chromatic opponency. This distinguishing feature, however, should be relatively easy to discover using more standard approaches.

      The concern here is that the paper could be read as indicating that standard approaches to characterizing feature selectivity do not work and that the MEI/CNN approach is superior. There may be reasons why the latter is true that I missed or were not spelled out clearly. I do think the MEI/CNN approach as used in the paper provides a very nice way to compare feature selectivity across RGC types - and that it seems very well suited in this context. But it is less clear that it is needed for the initial identification of the distinguished response features of the different RGC types. What would be helpful for me, and I suspect for many readers, is a more nuanced and detailed description of where the challenges arise in standard feature identification approaches and where the MEI/CNN approaches help overcome those challenges.

      Thank you for the opportunity for clarification. In fact, the MEI (or an alternative nonlinear approach) is strictly necessary to discover this selectivity: as we show above (response #1 to editorial summary), the traditional linear filter approach does not reveal the color opponency. We realize that this fact was not made sufficiently clear in the initial submission. In the revised manuscript, we now include this analysis. Moreover, throughout the manuscript, we added explanations on the differences between MEIs and standard approaches and more intuitions about how to interpret MEIs. We also added a section to the discussion dedicated to explaining the advantages and limitations of the MEI approach.

      Interpretation of MEI temporal structure

      Some aspects of the extracted MEIs look quite close to those that would be expected from more standard measurements of spatial and temporal filtering. Others - most notably some of the temporal filters - do not. In many of the cells, the temporal filters oscillate much more than linear filters estimated from the same cells. In some instances, this temporal structure appears to vary considerably across cells of the same type (Fig. S2). These issues - both the unusual temporal properties of the MEIs and the heterogeneity across RGCs of the same type - need to be discussed in more detail. Related to this point, it would be nice to understand how much of the difference in responses to MEIs in Figure 4d is from differences in space, time, or chromatic properties. Can you mix and match MEI components to get an estimate of that? This is particularly relevant since G28 responds quite well to the G24 MEI.

      One advantage of the MEI approach is that it allows to distinguish between transient and sustained cells in a way that is not possible with the linear filter approach: Because we seek to maximize activity over an extended period of time, transient cells need to be repetitively stimulated whereas sustained cells will also respond in the absence of multiple contrast changes. In the revised manuscript, we add a section explaining this, together with Figure 3-supplement 2, illustrating this point by showing that oscillations disappear when we optimize the MEI for a short time window. The benefit of a longer time window lies in the increased discriminability between transient and sustained cells, which is also shown in the new supplementary figure.

      Regarding the heterogeneity of MEIs, this is most likely due to heterogeneity within the RGC group: “The mixed non-direction-selective groups G17 and G31 probably contain more than one type, as supported by multiple distinct morphologies and genetic identities (for example, G31,32, Extended Data Fig. 5) or response properties (for example, G17, see below)” (Baden et al. Nature 2016). We added a paragraph in the Results section.

      Concerning the reviewer’s last point: We agree that it is important to know whether the defining feature - i.e., the selectivity for chromatic contrast - is robust against variations in other stimulus properties. New electrophysiological data included in the manuscript (Fig. 6e,f) offers some insights here. We probed G28/tSbC cells with full-field flashed stimuli that varied in chromatic contrast. Despite not matching the cell’s preferred spatial and temporal properties, this stimulus still recovered the cell’s preference for chromatic contrast. While we think it is an interesting direction to systematically quantify the relative importance of temporal, spatial and chromatic MEI properties for an RGC type’s responses, we think this is beyond the scope of this manuscript.

      Explanation of RDM analysis

      I really struggled with the analysis in Figure 5b-c. After reading the text several times, this is what I think is happening. Starting with a given RGC type (#20 in Figure 5b), you take the response of each cell in that group to the MEI of each RGC type, and plot those responses in a space where the axes correspond to responses of each RGC of this type. Then you measure euclidean distance between the responses to a pair of MEIs and collect those distances in the RDM matrix. Whether correct or not, this took some time to arrive at and meant filling in some missing pieces in the text. That section should be expanded considerably.

      We appreciate the reviewer’s efforts to understand this analysis and confirm that they interpreted it correctly. However, we decided to remove the analysis. The point we were trying to make with this analysis is that the transformation implemented by G28/tSbC cells “warps” stimulus space and increases the discriminability of stimuli with similar characteristics like the cell’s MEI. We now make this point in a - we think - more accessible manner by the new analysis about the nonlinearity of G28/tSbC cell’s color opponency (see above).

      Centering of MEIs

      How important is the lack of precise centering of the MEIs when you present them? It would be helpful to have some idea about that - either from direct experiments or using a model.

      In the electrophysiological experiments, the MEIs were centered precisely (now Fig. 5 in revised manuscript) and these experiments yielded almost identical results to the 2P imaging experiments, where the MEIs were presented on a grid to approach the optimal position for the recorded cells. Additionally, all model simulations work with perfectly centered MEIs. We hence conclude that our grid-approach at presenting stimuli provided sufficient precision in stimulus positioning.

      We added this information to the revised manuscript.

      Reviewer #2 (Public Review):

      This paper uses two-photon imaging of mouse ganglion cells responding to chromatic natural scenes along with convolutional neural network (CNN) models fit to the responses of a large set of ganglion cells. The authors analyze CNN models to find the most effective input (MEI) for each ganglion cell as a novel approach to identifying ethological function. From these MEIs they identify chromatic opponent ganglion cells, and then further perform experiments with natural stimuli to interpret the ethological function of those cells. They conclude that a type of chromatic opponent ganglion cell is useful for the detection of the transition from the ground to the sky across the horizon. The experimental techniques, data, and fitting of CNN models are all high quality. However, there are conceptual difficulties with both the use of MEIs to draw conclusions about neural function and the ethological interpretations of experiments and data analyses, as well as a lack of comparison with standard approaches. These bear directly both on the primary conclusions of the paper and on the utility of the new approaches.

      We thank the reviewer for the detailed comments.

      1) Claim of feature detection.

      The color opponent cells are cast as a "feature detector" and the term 'detector' is in the title. However insufficient evidence is given for this, and it seems likely a mischaracterization. An example of a ganglion cell that might qualify as a feature detector is the W3 ganglion cell (Zhang et al., 2012). These cells are mostly silent and only fire if there is differential motion on a mostly featureless background. Although this previous work does not conduct a ROC analysis, the combination of strong nonlinearity and strong selectivity are important here, giving good qualitative support for these cells as participating in the function of detecting differential motion against the sky. In the present case, the color opponent cells respond to many stimuli, not just transitions across the horizon. In addition, for the receiver operator characteristic (ROC) analysis as to whether these cells can discriminate transitions across the horizon, the area under the curve (AUC) is on average 0.68. Although there is not a particular AUC threshold for a detector or diagnostic test to have good discrimination, a value of 0.5 is chance, and values between 0.5 and 0.7 are considered poor discrimination, 'not much better than a coin toss' (Applied Logistic Regression, Hosmer et al., 2013, p. 177). The data in Fig. 6F is also more consistent with a general chromatic opponent cell that is not highly selective. These cells may contribute information to the problem of discriminating sky from ground, but also to many other ethologically relevant visual determinations. Characterizing them as feature detectors seems inappropriate and may distract from other functional roles, although they may participate in feature detection performed at a higher level in the brain.

      The reviewer apparently uses a rather narrow definition of a feature detector. We, however, argue for a broader definition, which, in our view, better captures the selectivities described for RGCs in the literature. For example, while W3 cells have been quite extensively studied, one can probably agree on that so far only a fraction of the possible stimulus space has been explored. Therefore, it cannot be excluded that W3 cells respond also to other features than small dark moving dots, but we (like the reviewer) still refer to it as a feature detector. Or, for instance, direction-selective (DS) RGCs are commonly considered feature detectors (i.e., responsive to a specific motion direction), although they also respond to flashes and spike when null-direction motion is paused (Barlow & Levick J Physiol 1965).

      The G28/tSbC cells’ selectivity for full-field changes in chromatic contrast enables them to encode ground-sky horizon transitions reliably across stimulus parameters (e.g., see new Fig. 7i panel). This cell type is thus well-suited to contribute to detecting context changes, as elicited by ground-sky transitions.

      Therefore, we think that the G28/tSbC RGC can be considered a feature detector and as such, could be used at a higher level in the brain to quickly detect changes in visual context (see also Kerschensteiner Annu Rev Vis Sci 2022). Still, their signals may also be useful for other computations (e.g., defocus, as discussed in our manuscript).

      Regarding the ROC analysis, we acknowledge that an average AUC of .68 may seem comparatively low; however, this is based on the temporally downsampled information (i.e., by way of Ca2+ imaging) gathered from the activity of a single cell. A downstream area would have access to the activity of a local population of cells. This AUC value should therefore be considered a lower bound on the discrimination performance of a downstream area. We now comment on this in the manuscript.

      2) Appropriateness of MEI analysis for interpretations of the neural code.

      There is a fundamental incompatibility between the need to characterize a system with a complex nonlinear CNN and then characterizing cells with a single MEI. MEIs represent the peak in a complex landscape of a nonlinear function, and that peak may or may not occur under natural conditions. For example, MEIs do not account for On-Off cells, On-Off direction selectivity, nonlinear subunits, object motion sensitivity, and many other nonlinear cell properties where multiple visual features are combined. MEIs may be a useful tool for clustering and distinguishing cells, but there is not a compelling reason to think that they are representative of cell function. This is an open question, and thus it should not be assumed as a foundation for the study. This paper potentially speaks to this issue, but there is more work to support the usefulness of the approach. Neural networks enable a large set of analyses to understand complex nonlinear effects in a neural code, and it is well understood that the single-feature approach is inadequate for a full understanding of sensory coding. A great concern is that the message that the MEI is the most important representative statistic directs the field away from the primary promise of the analysis of neural networks and takes us back to the days when only a single sensory feature is appreciated, now the MEI instead of the linear receptive field. It is appropriate to use MEI analyses to create hypotheses for further experimental testing, and the paper does this (and states as much) but it further takes the point of view that the MEI is generally informative as the single best summary of the neural code. The representation similarity analysis (Fig. 5) acts on the unfounded assumption that MEIs are generally representative and conveys this point of view, but it is not clear whether anything useful can be drawn from this analysis, and therefore this analysis does not support the conclusions about changes in the representational space. Overall this figure detracts from the paper and can safely be removed. In addition, in going from MEI analysis to testing ethological function, it should be made much more clear that MEIs may not generally be representative of the neural code, especially when nonlinearities are present that require the use of more complex models such as CNNs, and thus testing with other stimuli are required.

      The reviewer correctly characterizes MEIs as representing the peak in a nonlinear loss landscape that, in this case, describes the neurons’ tuning. As such, the MEI approach is indeed capable of characterizing nonlinear neuronal feature selectivities that are captured by a nonlinear model, such as the CNN we used here. We therefore disagree with the suggestion that MEIs should not be used “when nonlinearities are present that require the use of more complex models such as CNNs”. It is unclear what other “analysis of neural networks” the reviewer refers to. One approach to analyze the predictive neural network are MEIs.

      We also want to clarify that, while the reviewer is correct in stating that the MEI approach as used here only identifies a single peak, this does not mean that it cannot capture neuronal selectivities for a combination of features, as long as this combination of features can be described as a point in high-dimensional stimulus space. In fact, this is demonstrated in our manuscript for the case of G28/tSbC cell’s selectivity for large or full-field, sustained changes in chromatic contrast (a combination of spatial, temporal, and chromatic features). While approaches similar to the one used here generate several diverse exciting inputs (Ding et al. bioRxiv 2023) and could therefore also fully capture On-Off selectivities, we pointed out the limitation of MEIs when describing On-Off cells in the manuscript (both original and revised).

      Regarding the reviewer’s concern that “[...] the message that the MEI is the most important representative statistic [...] takes us back to the days when only a single sensory feature is appreciated”. It was certainly not our intention to proclaim MEIs as the ultimate representation of a cell’s response features and we have clarified this in the revised manuscript. However, we also think that (i) in applying a nonlinear method to extract chromatic, temporal, and spatial response properties from natural movie responses, we go beyond many characterizations that use linear methods to extract spatial or temporal only, achromatic response properties from static, white-noise stimuli. This said, we agree that (ii) expanding around the peak is desirable, and we do that in an additional analysis (new Fig. 6); but that reducing complexity to a manageable degree (at least, at first) is useful and even necessary when discovering novel response properties.

      Concerning the representational similarity analysis (RSA): the point we were trying to make with this analysis is that the transformation implemented by G28 “warps” stimulus space and increases the discriminability of stimuli with similar characteristics like the cell’s MEI. We now made this point in a more accessible fashion through the above-mentioned analysis, where we extended the estimate around the peak. We therefore agree to remove the RSA from the paper.

      In the revised manuscript, we (a) discuss the advantages and limitations of the MEI approach in more detail (in Results and Discussion; see also our reply #1) and (b) replaced the RSA analysis.

      3) Usefulness of MEI approach over alternatives. It is claimed that analyzing the MEI is a useful approach to discovering novel neural coding properties, but to show the usefulness of a new tool, it is important to compare results to the traditional technique. The more standard approach would be to analyze the linear receptive field, which would usually come from the STA of white noise measurement, but here this could come from the linear (or linear-nonlinear) model fit to the natural scene response, or by computing an average linear filter from the natural scene model. It is important to assess whether the same conclusion about color opponency can come from this standard approach using the linear feature (average effective input), and whether the MEIs are qualitatively different from the linear feature. The linear feature should thus be compared to MEIs for Fig. 3 and 4, and the linear feature should be compared with the effects of natural stimuli in terms of chromatic contrast (Fig. 6b). With respect to the representation analysis (Fig. 5), although I don't believe this is meaningful for MEIs, if this analysis remains it should also be compared to a representation analysis using the linear feature. In fact, a representation analysis would be more meaningful when performed using the average linear feature as it summarizes a wider range of stimuli, although the most meaningful analysis would be directly on a broader range of responses, which is what is usually done.

      We agree that the comparison with a linear model is an important validation. Therefore, we performed an additional analysis (see also reply #1, as well as Fig. 6 and corresponding section in the manuscript) which demonstrates that an LN model does not recover the chromatic feature selectivity. This finding supports our claims about the usefulness of the MEI approach over linear approaches.

      Regarding the comment on the representation analysis, as mentioned above, we consider it replaced by the analysis comparing results from an LN model and a nonlinear CNN.

      4) Definition of ethological problem. The ethological problem posed here is the detection of the horizon. The stimuli used do not appear to relate to this problem as they do not include the horizon and only include transitions across the horizon. It is not clear whether these stimuli would ever occur with reasonable frequency, as they would only occur with large vertical saccades, which are less common in mice. More common would be smooth transitions across the horizon, or smaller movements with the horizon present in the image. In this case, cells which have a spatial chromatic opponency (which the authors claim are distinct from the ones studied here) would likely be more important for use in chromatic edge detection or discrimination. Therefore the ethological relevance of any of these analyses remains in question.

      It is further not clear if detection is even the correct problem to consider. The horizon is always present, but the problem is to determine its location, a conclusion that will likely come from a population of cells. This is a distinct problem from detecting a small object, such as a small object against the background of the sky, which may be a more relevant problem to consider.

      Thank you for giving us the opportunity to clear these things up. First, we would like to clarify that we propose that G28/tSbC cells contribute to detecting context changes, such as transitions across the horizon from ground to sky, not to detecting the horizon itself. We acknowledge that we were not clear enough about this in the manuscript and corrected this. To back-up our hypothesis that G28 RGCs contribute to detecting context changes, we performed an additional simulation analysis, which is described in our reply #3 (see above).

      5) Difference in cell type from those previously described. It is claimed that the chromatic opponent cells are different from those previously described based on the MEI analysis, but we cannot conclude this because previous work did not perform an MEI analysis. An analysis should be used that is comparable to previous work, the linear spatiotemporal receptive field should be sufficient. However, there is a concern that because linear features can change with stimulus statistics (Hosoya et al., 2005), a linear feature fit to natural scenes may be different than those from previous studies even for the same cell type. The best approach would likely be presenting a white noise stimulus to the natural scenes model to compute a linear feature, which still carries the assumption that this linear feature from the model fit to a natural stimulus would be comparable to previous studies. If the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set. One technical aspect relating to this is that MEIs were space-time separable. Because the center and surround have a different time course, enforcing this separability may suppress sensitivity in the surround. Therefore, it would likely be better if this separability were not enforced in determining whether the current cells are different than previously described cells. As to whether these cells are actually different than those previously described, the authors should consider the following uncited work; (Ekesten Gouras, 2005), which identified chromatic opponent cells in mice in approximate numbers to those here (~ 2%). In addition, (Yin et al., 2009) in guinea pigs and (Michael, 1968) in ground squirrels found color-opponent ganglion cells without effects of a spatial surround as described in the current study.

      First of all, we did not intend to claim to have discovered a completely new type of color-opponent tuning in general; what we were trying to say is that tSbC cells display spatially co-extensive color opponency, a feature selectivity previously not described in this mouse RGC type, and which may be used to signal context changes as elicited by ground-sky transitions.

      Concerning the reviewer’s first argument about a lack of comparability of our results to results previously obtained with a different approach: We think that this is now addressed by the new analysis (new Fig. 6), where we show why linear methods are limited in their capability to recover the type of color opponency that we discovered with the MEI approach.

      Regarding the argument about center-surround opponency, we agree that “if the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set”. We did not focus on analyzing center-surround opponency in the present study, but from the MEIs, it is visible that many cells have a stronger antagonistic surround in the green channel compared to the UV channel (see Fig. 4a, example RGCs of G21, G23, G24; Figure 3-supplement 1 example RGCs of G21, G23, G24, G31, G32). Importantly, the MEIs shown in Fig. 4a were also shown in the verification experiment, and had G28 RGCs preferred this kind of stimulus, they would have responded preferentially to these MEIs, which was not the case (Fig. 4f).

      It should also be noted here that, while the model’s filters were space-time separable, we did not impose a restriction on the MEIs to be space-time separable during optimization. However, we analyzed only the rank 1 components of the MEIs (see Methods section Validating MEIs experimentally). since our analysis focused on aspects of retinal processing not contingent on spatiotemporal interactions in the stimulus.

      In summary, we are convinced that our finding of center-opponency in G28 is not an artifact of the methodology.

      We discuss this in the manuscript and add the references mentioned by the reviewer to the respective part of the Discussion.

      Reviewer #3 (Public Review):

      This study aims to discover ethologically relevant feature selectivity of mouse retinal ganglion cells. The authors took an innovative approach that uses large-scale calcium imaging data from retinal ganglion cells stimulated with both artificial and natural visual stimuli to train a convolutional neural network (CNN) model. The resulting CNN model is able to predict stimuli that maximally excite individual ganglion cell types.

      The authors discovered that modeling suggests that the "transient suppressed-by-contrast" ganglion cells are selectively responsive to Green-Off, UV-On contrasts, a feature that signals the transition from the ground to the sky when the animal explores the visual environment. They tested this hypothesis by measuring the responses of these suppressed-by-contrast cells to natural movies, and showed that these cells are preferentially activated by frames containing ground-to-sky transitions and exhibit the highest selectivity of this feature among all ganglion cell types. They further verified this novel feature selectivity by single-cell patch clamp recording.

      This work is of high impact because it establishes a new paradigm for studying feature selectivity in visual neurons. The data and analysis are of high quality and rigor, and the results are convincing. Overall, this is a timely study that leverages rapidly developing AI tools to tackle the complexity of both natural stimuli and neuronal responses and provides new insights into sensory processing.

      We thank the reviewer for appreciating our study.

    1. Author Response

      Reviewer #3 (Public Review):

      This manuscript uses ASO to inhibit the self-cleaving ribozyme within CPEB intron 3 and test its effect on CPEB3 expression and memory consolidation. The authors conclude that the intronic ribozyme negatively affects CPEB3 mRNA splicing and expression, and suggests its implications for experience-induced gene expression underlying learning and memory.

      The strength of the manuscript is in its exploration of a potentially novel mechanism of regulating CPEB3 expression in learning and memory, a combination of both biochemical and behavioral approaches to gain a wide perspective of this regulatory mechanism, and the application of ASO in this context. The introduction is sufficiently detailed. Statistics are thorough and appropriate. If the results could be more robust, the mechanism would provide a novel target and venue to modify learning and memory paradigm.

      The weakness of the manuscript is that the magnitude of the activity-dependent regulation of ribozyme, the effects of ASOs on CPEB3 expression (mRNA and protein) and downstream target gene expression, in vitro and in vivo, are generally weak, raising concerns about the robustness of the result. This may have caused some of the inconsistencies between the data presentation (see below). Also unclear is whether the ribozyme activity is physiologically regulated by experience without ASO interference.

      While the statistics tests support corresponding figure panels and their conclusions. The manuscript can be significantly strengthened by additional evidence, clarification of some methodologies, and reconciling some inconsistent results.

      The premise of a comparable timescale between transcription and ribozyme activity as the foundation of the whole thesis was based on in vitro measurement of self-scission half-life and a broadly generalized transcription rate (which actually varies significantly between genes). This premise is weak and needs direct experimental support.

      The physiological relevance of the proposed mechanism has yet to be demonstrated without ASO interference.

      Fig2b: how were total and uncleaved Ribozymes measured by qRT-PCR? Where are the primers' locations? If the two products were amplified using different primers, their subtraction to derive % cleavage would not be appropriate.

      We thank the reviewer for the thoughtful review. We measured the levels of the total ribozyme by measuring a 220-bp amplicon that starts 18 nts downstream from the ribozyme cleavage site. The uncleaved ribozyme levels were measured using oligos that amplify a region of the intron that starts 45 nts upstream and ends 238 nts downstream of the ribozyme cleavage site. We added this information to the Table of primers in the manuscript. For all PCR oligos we established independent standard curves and calculated RNA levels independently of other amplicons, as noted in the Methods section and now specified in the Results section as well (Page 15). The measurements were thus appropriate for the calculation of the cleaved ribozyme fractions in the various experiments. The fraction ribozyme cleaved was calculated from the uncleaved fraction as the difference between uncleaved fraction and unity (1 – fraction uncleaved), now specified on page 16 of the manuscript. Fraction uncleaved was calculated as [uncleaved ribozyme]/[total ribozyme], as was done previously (see Salehi-Ashtiani et al. Science 313:1788-1792 or Webb et al. Science 326:953).

      Line 400-403: shouldn't ribozyme-blocking ASO prevent ribozyme self-cleavage, and as a result should further increase ribozyme levels? This would contradict the result in fig3a.

      We showed that the ribozyme is inhibited in vitro (Fig. 1F and 1G) and all our data are consistent with ASO inhibition of the ribozyme in cellulo and in vivo. However, we do not have direct evidence for this ribozyme inhibition in vivo, because such an experiment would require a single-molecule FRET-type sensitivity in cells and this assay has not been developed for ribozyme cleavage in cellulo or in vivo. We measured the ribozyme levels by RT-qPCR and observed lower ribozyme levels in presence of ASO in cultured neurons (Fig. 3A) as well as in vivo (Fig. 5B), which is nominally in contrast to the observations in vitro. However, in these situations we do not measure the co-transcriptional fate of the intron or the ribozyme; rather, we measure the levels of the intron after splicing (evidenced by the increased levels of spliced exons 2–3) when the intron is likely already being degraded. We also do not know what effect the ribozyme ASO has on the intron stability once splicing occurs. Understandably, this is a weakness of the study—and we are fully open about this result— however, given the abundance of evidence that the ribozyme ASO leads to increase of CPEB3 mRNA under all conditions tested, we feel that there is strong, if indirect, evidence that our model for the ribozyme function is correct. Future studies will examine this issue closer, but a definitive experimental investigation for the mechanism and timing of ribozyme inhibition and intron degradation is out of scope of this study.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      Weakness: Although the cross-links stimulate ATP hydrolysis, further controls are needed to convince me that the TM1 conformations observed in the structures are physiologically relevant, since they have been trapped by "large" substrates covalently-tethered by crosslinks.

      Our response: Reviewer 1 raised concerns about the relatively large size of our covalently attached AAC substrate that would potentially distort TM1 in Pgp. We would like to clarify that AAC has a molecular weight of 462 Da, which, in comparison to many known Pgp substrates ranging from 250 to over 1,000 Da, is not a large compound. For instance, the few other Pgp substrates mentioned in our manuscript all have a comparable or larger size: verapamil, 455 Da; doxorubicin, 544 Da; FK506, 804 Da; valinomycin, 1,111 Da; cyclosporin A, 1,203 Da.

      Furthermore, AAC was strategically attached to a site distant from TM1 in the inwardfacing Pgp conformation. After it was exported to the outward-facing state, several TM helices accommodate the compound. The observation that only TM1 exhibited significant conformational changes suggests its potential role in the transport mechanism. This hypothesis is supported by our findings, where a conservative substitution (G72A) in TM1 resulted in a dramatic loss of transport function for various drug substrates and impaired verapamil-stimulated ATPase activity.

      Reviewer 1 (Recommendations for the Authors):

      I understand the need for an unconventional approach to understanding the translocation pathway. What would help to support this model is to cross-link a much smaller substrate, as the one used is quite large and could potentially distort TM1 in the outward-state when cross-linked.

      Our response: We thank the reviewer for this recommendation, and we have outlined plans for future experiments involving other substrates, including smaller ones, to further investigate our proposed model. However, it is important to acknowledge that conducting these studies will require a significant amount of effort and resources, which we believe extend beyond the scope of our current manuscript.

      In unbiased MD simulations starting from the IF state are there any simulations where the substrate follows the same path as proposed here?

      Our response: All our MD simulations were performed in the outward-facing state to focus on potential substrate release pathways. Starting MD simulations from the inwardfacing state would introduce complexities in capturing the necessary domain motions and nucleotide binding and hydrolysis required for substrate translocations. Therefore, we opted not to perform MD studies starting from the inward-facing state.

      Reviewer 2 (Public Review):

      Weakness: There is much to like about the experimental work here but I am less sanguine on the interpretation. The main idea is to covalently link via disulfide bonds a model tripeptide substrate under different conditions that mimic transport and then image the resulting conformations. The choice of the Pgp cysteine mutants here is critical but also poses questions regarding the interpretation. What seems to be missing, or not reported, is a series of control experiments for further cysteine mutations.

      Our response: Reviewer 2 raised concerns about the interpretation of our results and suggested the need for additional mutant designs to validate our proposed TM1 mechanism. Firstly, we believe that the observed TM1 conformational changes are valid in our cryoEM structures, despite the use of different conditions and several mutants to capture Pgp in the outward-facing state.

      Regarding the G72A mutant, we consider it conclusive that this single point mutation in the TM1 has a profound effect. Importantly, the G72A mutant was readily expressed and purifiable as a stable protein. We were able to resolve a high-resolution structure of the G72A mutant (without the substrate), confirming that the protein is not generally destabilized but properly folded.

      Above all, we appreciate the Reviewer’s suggestion to explore additional mutations and intend to do so in future studies.

      Reviewer 2 (Recommendations for the Authors):

      I am sold on the results regarding TM1 conformational changes as they are evident in the cryoEM structures. However, the set of states compared between mutants are not biochemically equivalent: for 335 and 978 they used an ATP-impaired Pgp whereas for 971 they used what appears to be WT, and the conformation was imaged presumably subsequent to ATP hydrolysis and Vanadate trapping. This is significant if the authors were unable to trap the OF in the impaired mutant background and should be highlighted. I have to believe that they tried that condition but I could be wrong.

      Our response: We acknowledge the point made by the Reviewer about the biochemical equivalence of mutant states and the potential significance of using an ATP-impaired mutant for trapping the outward-facing conformation of 971. We have not yet attempted to use the ATPase-deficient 971C mutant for crosslinking and intend to address this question in future studies.

      In our current approach, we used the ATPase-active 971C for two specific reasons:

      1) Our biochemistry data, as shown in Fig 1C, indicates that 971C only crosslinks in the presence of ATP hydrolysis conditions. Vanadate trapping was employed to stabilize the outward-facing conformation.

      2) Based on our experience, we have observed that the conformations of ATP-bound (mutant) and vanadate-trapped states of an ABC transporter are structurally equivalent at this resolution level of our study (see ref. 21: Hoffmann et al. NATURE 2019).

      The authors propose a new model for substrate translocation. It is based on three mutants and a number of structures. If the authors were not challenging the current dogma I would not have written the next comment. Considering the impact of the findings, I would have designed a couple more cysteine mutants based on their model. For instance, this pathway has a number of stabilizing interactions, can't they make a mutant that preserves conformational switching but eliminates substrate translocation? I like the G97A mutant result but I am worried that the effect could just be a general destabilization or misfolding as part of the cryoEM particles seem to suggest. The authors advance one interpretation of the disorder observed in this mutant but it could easily be my interpretation.

      Our response: We thank the reviewer for the suggestion to design additional mutants to further validate our proposed model for substrate translocation. We agree that this would be highly valuable, considering the potential impact of our findings. However, given the time-intensive nature of our approach, we believe that presenting these additional designs in a future study is a reasonable course of action.

      Regarding the G72A mutation, we believe that our current data fully supports our model and the role of TM1 in regulating the Pgp activity. Importantly, we would like to emphasize that the G72A mutant was readily expressed and purifiable as a stable protein. Additionally, our cryoEM structural determination of the G72A mutant at high resolution confirmed that the protein is not generally destabilized but properly folded.

      There are a couple of troubling methodological questions that I want the authors to address or clarify:

      1. In the methods they report that the final sample for cryoEM was prepared on a SEC devoid of detergent. It is obvious that the sample was folded but I was wondering why the detergent was removed? Was that critical for observing these structures with multiple ligands? Did they observe any lipids in their cryoEM?

      Our response: We avoid detergent in the buffer on final SEC purification. This step is to remove free detergent from the background which helps during cryoEM imaging. Of course, this cannot be done with every detergent but due to the very low CMC of LMNG it is possible. By now, we have verified this method for several other transporters with the same success. While this procedure helps us to obtain better images it is not necessary to obtain specific conformations or ligand bound states, nor does it affect these states or conformations.

      In our cryoEM structures , we did observe multiple cholesterol hemisuccinate (CHS) molecules on the outer transmembrane surface of Pgp.

      1. Can the authors comment on why labeling was carried out in the presence of ATP? Does it matter if the substrate was added prior to ATP and incubated for a few minutes?

      Our response: For every dataset, we first added the substrate to be cross-linked and afterwards added the ATP. In the cases of 335C and 978C, labeling was successful before ATP was added, as evidenced by the inward-facing structures with cross-linked substrate. However, for 971C, cross-linking only occurred after the addition of ATP. We interpret this data to suggest that the 971 site is inaccessible to the substrate in the inward-facing state, and cross-linking can only occur after the transporter transitions to outward-facing state. This is in line with our inward-facing structure which does not show a cross-linked substrate, and our biochemical data shown in Fig 1C, where 971C only crosslinked in the presence of ATP.

      1. I am not an expert on MD simulations and I understand that carrying out simulations at higher temperatures used to be a trick to accelerate the process. Is this still necessary? Why didn't the author use approaches such as WESTPA?

      Our response: Most so-called enhanced sampling methods, including WESTPA, explicitly define a reaction coordinate for the process of interest, usually based on intuition or prior studies. If this coordinate is chosen poorly, enhanced sampling usually fails, either because the sampling becomes inefficient or because the sampling biases the transition pathway (or both). Lacking reliable intuition or prior knowledge on which motions would result in substrate release, we chose temperature to speed up the process. High temperature largely avoids the introduction of an any bias through the definition of a progress coordinate. By contrast, the weighted ensemble method underlying WESTPA is a great method to simulate unbiased dynamics of a process with a known progress coordinate, but unfortunately requires to choose a progress coordinate prior to the simulation and will then mostly sample the process along this progress coordinate, because this is the only direction in which sampling is improved. High temperature MD on the other hand accelerates all processes in the system under study. Indeed, we have now confirmed that the pathway found at high temperature is also feasible at near-ambient conditions.

      In new simulations, we have now observed a similar release pathway at T=330 K. As the only difference, the substrate has not fully dissociated from the protein after 2.5 us, with weak interactions persisting at the top part of TM1 from the extracellular side. Importantly, this is a configuration observed also in higher temperature simulations but with much shorter lifetime.

      In response, we now included these new findings and a new Extended Data Fig. 15 in the revised manuscript.

      1. One way to show that the two substrates binding mode is biochemically relevant is to measure Vmax at different substrate concentrations. One would expect a cooperative transition if that interaction is mechanistically important.<br /> Our response: We have measured Vmax as a function of QZ-Ala concentration in a previous report (ref. 24), supporting positive cooperativity for binding to two sites.

      Reviewer 3 (Public Review):

      We thank Reviewer 3 for recommending the acceptance of our manuscript as is.

      Reviewer 3 (Recommendations for the Authors):

      Page 4, last line: Pgp302 should be Pgp1302. In addition, I can only encourage the authors to add an additional table to the manuscript. Here, the mutation, the obtained structure(s), IF or OF, the resolution, and the main message should be summarized.

      Our response: Following the reviewer’s suggestion, we have added Extended Data Table 2 summarizing the Pgp mutants and respective structural data in the revised manuscript.<br /> We verified that Pgp302 is the correct term on Page 4, last line.

      Pg. 5, section 'Covalent ligand design for Pgp labeling', it is mentioned that even in the presence of Mg2+ATP, Pgp302 could not react with AAC-DNPT. Maybe it would be worthwhile to add the data either in Supplementary Information or state 'data not shown'.

      Our response: We stated ‘data not shown’ in the text.

      Pg. 47, last line : A space is missing between M68, and M74.

      Our response: Space was added.

      Pg. 7, line 2: The authors mention that a single dataset of ATP-bound Pgp335 revealed three different OF conformations: ligand-free, single-ligand-bound, and double-ligandbound. However, the percentage fraction of each dataset sums up to be more than 100%. Would request the authors to recalculate the fraction size of each conformation.

      Our response: We have corrected the error in our calculation, based on the particle distribution in our dataset (OF335-nolig: 1,437,110 particles, 40.4%; OF335-1lig: 1,184,253 particles, 33.3%; and OF335-2lig: 939,924 particles, 26.4%).

      Pg 53, Figure legend of Extended Data Fig. 11: Please include the color coding for the helix TM1 and also the residues colored plum.

      Our response: We added the color coding for TM1 and other residues in the figure legend.

      Pg. 8, line 3: While referring to the structure of OF971-1lig, the authors nicely point towards the conserved residues M74 and F78 which coordinate the ligand. However, in Fig. 3b, residues M74 and F78 should also be indicated.

      Our response: We updated Fig. 3b by adding arrows pointing towards the residues M74 and F78.

      Pg. 54, Extended data Fig. 12: The authors should adopt a single writing style. In some places, Pgp is referred to as P-gp while in others as Pgp.

      Our response: We updated the protein labels in Extended Data Fig. 12.

      Pg. 54, Extended data Fig. 12: The authors should clearly mention which OF335 structure (1st panel) was used for visualizing the interactions.

      Our response: To clarify, we added the following sentences in the figure legend: “Pgp335 OF in the top panel refers to OF335-1lig. In the bottom panel describing OF335-2lig, the left and right diagrams refer to the binding positions of non-covalent and covalent ligand, respectively”.

      Pg. 18, section 'synthesis of dipeptide 8': In the text it is mentioned that for the synthesis of thiazole acid 6, compound 3 was dissolved in a mixture of THF/MeOH/H2O (3:1:1), while in the corresponding figure (Extended Data Fig. 1), the ratio is stated as 5:1:2.

      Our response: 3:1:1 ratio is correct. We made the correction in Extended Data Fig. 1.

      Pg. 19, section 'synthesis of linear tripeptide 10': Same as above for compounds 10 and 4, respectively.

      Our response: We corrected the conditions in the Extended Data Fig. 1 accordingly.

      Pg. 20, section 'Synthesis of cyclic peptide 11': There seems to be a discrepancy in the synthesis protocol between the text and the extended figure 1, especially regarding the use of THF/MeOH/H20, followed by NaOH and TFA or only NaOH and TFA.

      Our response: we further clarified the conditions of using NaOH in THF/MeOH/H2O (3:1:1) and TFA in DCM in the text for synthesis and Extend Data Fig. 1.

      Pg. 40, Extended Data Fig. 1: In the bottom last panel showing the synthesis of peptide 11, the authors have missed showing peptide 10 as the starting material for the reaction.

      Our response: Label for the peptide 10 was added following the suggestion.

      Pg. 26, third last line: 'o' is missing from the last word cry'o'

      Our response: We corrected the typo.

      Pg. 63 and 64, Extended Data Table 1: The Cryo-EM data collection, refinement, and validation statistics for OF971-1lig, IF971-1lig, OF978-1lig, and IF978-2lig are mentioned twice in the table.

      Our response: This was now corrected in the revision.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the Authors):

      The authors have addressed my recommendations in the previous review round in a satisfactory way. I only have one additional comment to the authors:

      In the manuscript abstract lines 31-32, the author state that: "Using NIH data for the period 2006-2022, we report that ~230 K99 awards were made every year, representing ~$25 million annually."-- The "~$25 million" is under-stating the actual funds spent because this sum is just money spent on the first year of some k99s while the NIH is paying years 2,3,4 etc for others for k99 awards (~90% conversion rate to R00) awarded in previous years for a given year. The NIH is actually spending ~$230-$250 million a year on the k99 award mechanism in a given year. so the authors need to amend the stated amount in the manuscript.

      Thank you for pointing this out. The reviewer is correct, that we had incorrectly only calculated the investment $ in new K99 awards made. We have corrected this in the revised manuscript. We appreciate your careful reading of our manuscript and the edits made based on your comments have improved the final version.

      Reviewer #2 (Recommendations for the Authors):

      Thank you for taking the time to revise this important work. I learned a lot reading this paper a second time, and appreciate the improvements you have made.

      My only major thought while re-reading this is that I wish you all had written two papers! I see two themes in this work: one looking at faculty hiring networks from the Wapman et al. dataset, and another at K99/R00 conversions by institution, gender, and researcher mobility and its impact on subsequent funding success. After reading, I felt like I had many follow-up questions about both analyses, but it would be impractical for me to suggest all these follow-up analyses without making your paper unreasonably long.

      Thank you for these comments. We agree that there are 2 general themes in this paper. While we feel that significantly expanding on both themes will be important in future research. Our hope is that this work continues to inspire others to critically examine funding practices and inequity in the same way that the work of Wapman, Pickett, etc. inspired the present work.

      For example, regarding the results that more R00 are activated at different institutions, and that moving institutions improves subsequent funding success, I wonder: Do proportionally more women or men move institutions? Do proportionally more K99 awardees at less-funded places move for their R00, or less? The Cox proportional hazard models illustrate the impact of various characteristics on subsequent funding success, but they do not illustrate disparate impacts of mobility on different groups (if I am understanding them correctly). (You sort of dive into these questions in the very interesting subsection, "K99/R00 awardee self-hires are more common at institutions with top NIH funding." I wanted to read more!)

      Thank you for these kind comments. These are fantastic follow-up questions. We do not feel that we can adequately address them within the present manuscript without potentially splitting it into 2 separate manuscripts. However, we may examine these in future analyses. We are particularly interested in examining additional aspects such as how the K99 MOSAIC funding mechanism may differ from the traditional K99 mechanism. Since the K99 MOSAIC mechanism is newer, there may not be enough K99 MOSAIC awards made for a thorough exploration.

      As another example, for your analysis on faculty hiring networks, the prevalence of self-hiring amongst institutions and regions was one finding. However, this finding seems somewhat at odds with the previous takeaway about how researcher mobility improves subsequent funding success. Are institutions doing themselves a disfavor by hiring their own, then? I suspect there is more to say here about this pattern... maybe there are important differences between PhD institution and postdoc institution and its impact on hiring/subsequent funding success? Or is this a story about upward mobility into the top 25 well-funded NIH institutions?

      Again, these are very insightful comments and follow-up questions. We hope to address these in potential future manuscripts. We also hope that others may become interested in finding answers to these questions by exploring our dataset as well as other publicly available datasets such as the Wapman et al. dataset.

      I can completely understand how combining the faculty hiring network analysis with the K99/R00 conversions would seem like a natural fit, but I personally feel - emphasis on this being a personal opinion - that there would have been benefits to giving more space to the details of both analyses separately. Perhaps this is a "hindsight is 20/20" issue. Or an issue with the current times in which ones' brain can only hold so many main takeaways from a single body of work. (For example, I struggled to summarize your paper in my public review because I find so many takeaways important.)

      I suppose this is all to say that I find your work important enough to warrant additional follow-up work! :)

      Thank you for these very kind remarks. This work evolved over 8-10 months as evidenced by the updates to the biorXiv preprint. With unlimited time and foresight, it would probably be best to have separated the 2 themes into separate manuscripts and expanded both. Given current constraints, we plan to make some changes/updates to the present manuscript and hopefully include more in-depth analyses on each theme in future works. Thank you again for the thoughtful reading and critique of both our original manuscript and the revised version.

      Minor comments/questions:

      "K99 to R00 conversions are increasing in time"

      • Assuming I am interpreting the figures correctly, in my opinion, the most important takeaway is that the number of R00 awards have increased, but only for awardees moving to another institution. This key result, best illustrated by panels A and C of Figure 1, is buried in the long paragraph in this section. The organization of content in this section could be improved and more focused. Consider renaming this subsection to be more declarative: "K99 tR00 conversions have increased, but only for awardees moving to another institution."

      This is a very concise interpretation of this data. We have edited the paragraph referenced by the reviewer, split it into 2 paragraphs, and changed the title to “K99 awardees increasingly move to other institutions for R00 awards from 2008 to 2022” and the final sentence to “Thus, the number of K99 to R00 conversions is consistent over time, but increasingly more R00 awardees have moved to other institutions since 2013”

      • Similarly, I personally found the current title of the subsection, "K99 to R00 conversions are increasing with time" is mildly confusing. An R00 award indicates a successful conversion, so why not simply call this an R00 award instead of saying K99-to-R00 conversion? Also, when I look at Figure 1B and exclude the conversion rates for 2007 and 2008 (because this is a 3 year rolling average), I see that conversion rates (or R00 awards) have remained stagnant. This comment is very much in-the-weeds and is mainly to do with clarity of language.

      Thank you for these comments. We had “K99 to R00 conversion” to highlight the unique nature of this award mechanism that a person can only receive an R00 if they previously had a K99 award. Nevertheless, we have edited the text to “R00 awards” and “R00 awardees” to simplify things. We also want to note that we did not compute a 3-year rolling average. The function we used was: (X/(Y -1))x100 where X is the number of R00 awards made in a year and Y is the number of K99 awards made in a year. We did note an error in our calculation in the previous version of the manuscript. Previously, we included all R00 awards and K99 awards for each year from the NIH Reporter dataset; however, this is a flawed methodology. NIH reporter includes only extramural K99 award data and extramural R00 awards, but intramural K99 awardees can receive extramural R00 awards and thus are only included in the R00 dataset. There were 141 R00 awardees in our dataset from NIH Reporter that did not have K99 data, so we assume these are intramural K99 awards since it is required to have a K99 to be eligible for the R00 award. Since we do not know the awarding year for intramural K99 awardees or have data on intramural K99 awardees that fail to activate the R00 award (or stay internal at NIH), we have excluded these 141 R00 awardees. In the previous version, this mis-calculation exaggerated rolling conversion rate (we had correctly calculated the 78% total conversion rate). We re-analyzed our rolling conversion rate and found the average is 81.8% (excluding the first 2 years of the K99 program and the last 2 years).

      This is a long explanation, but essentially, we overestimated the number of R00 awards which inadvertently increased the rolling conversion rate. We have corrected this and simplified the first 2 paragraphs of the Results section.

      • I was also mildly confused looking at Figure 1c. The caption says that the percentages represent the K99 awardees that stayed at the same institution for the R00 activation, but the percentages are next to the solid circles which the legend labels as "different institution." Perhaps another or different way to show this is a stacked bar chart, where one bar represents the percentage of R00 awards activated at the same institution and another bar represents the percentage of R00 awards activated at a different institution. The bars always add to 100% but the change in proportions illustrates that proportionally fewer awards are being made to those remaining at the same institution.

      Great idea. We have included a stacked bar chart here. Since the stacked bar chart is percentages, we felt it was important to also show the total numbers so we still included the previous chart also but removed the percentage numbers from it. We also changed the departmental analysis to stacked bar charts. This shows the stark difference between 2008-2012 and 2013 onward. These changes were made in the revised Fig. 1.

      • Minor question: I would love to see Table 3 and Table 4 as a time-series. Has the proportion of recipients at various institution types changed with time?

      This is a great suggestion and we felt it fit best in Figure 5, so we’ve added it there.

      • Table 3 is useful but only indirectly addresses my first "Recommendation to the Authors" from my previous review. I did some number crunching myself from the data provided. Assuming I did this correctly: If you're a K99 awardee at a private institute, you had a 76.3% change of getting an R00 compared to 80.4% for a K99 awardee at a public institution. If you're a K99 awardee at a top-funded institution, you had a 76.8% chance of R00 compared to 78.6% for a lower-funded institution. I would have liked to see more figures and tables to illustrate conversion rates by institution type in this way. Interestingly, to me, these data suggest that there are not enormous conversion rate differences by institution type (though looking at these now, I am confused at the 89% statistic in line 174 and where that comes form, since it is much higher than what I've calculated).

      Thank you for this suggestion and these comments. Please see above where we describe how we incorrectly overestimated the 89% statistic. This has been corrected. As the reviewer suggested, we now show yearly percent of grants to specific institution types in the revised Figure 5. We agree with the reviewer that showing the conversion rate by institution type is interesting; however, it is fairly obvious from the new panels in Figure 5 that there is not much difference in conversion rate. Thus, to avoid crowding too many panels into the figure, we opted to keep the stacked bar plot.

      Reviewer #3 (Recommendations for the Authors):

      -One minor change to Figure 1C would be to switch the color coding for the lines so that they match with 1D whereby "same institution" would be white circles, or whatever the authors decide would be best for consistency since they are similar comparisons.

      Thank you for this suggestion. We have corrected this to be consistent.

      -Minor note for lines 459-461: I would suggest changing the wording to "intersectional inequalities" as it is not that a scientist's identities impact their careers as much as how those identities are positioned within an unequal opportunity structure and differentially treated that produce varying career trajectories and experiences of marginalization and cumulative (dis)advantages.

      Thank you and we agree with you. We have made this correction.

      -To carry forward a suggestion for the authors in my previous review, future research that more fully explores the research infrastructure of institutions for how top NIH funded institutions continue to be top funded institutions year after year could help clarify some of the career mobility and same/similar institution hiring found in the data. Rather than hand coding institutions for some of the infrastructure, the National Center for Education Statistics' Integrated Postsecondary Education Data System (IPEDS) has data on colleges and universities including whether they operate a hospital, have a medical degree, and many other interesting data about student and faculty demographics, institutional expenditures (including research budgets), and degrees awarded in different fields of study (undergrad and grad) that may be helpful to the authors as they continue their research stream in this area.

      Thank you very much. We will look into this data set as we continue our investigations in this area.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      The discussion seems to imply that the ball-and-chain peptide is or is related to the common gate. (Although it isn't stated explicitly, it is implied based on the presentation of the gating model in Figure 8 immediately after the discussion of common gating, and the simultaneous opening of both pores in Figure 8). What does the asymmetric structure say about the relationship between the N-term peptide and common gating in ClC-2? It seems like this structure suggests that the CTDs can independently rotate, and independently bind N-terminal peptide, which might not be expected to impact both pores. Some additional clarification and/or discussion of these ideas could be helpful here.

      We thank the reviewer for raising these very important points. We agree we should have been more explicit and have now expanded our discussion on this topic, highlighting the independent movement of the N-term peptide and CTDs and clarifying that it is currently unknown whether CLC-2 has a common gate (lines 431484).

      Discussion of "Revised Framework for CLC-2 gating": I think this would be a little easier to follow if most of the legend from Figure 8 was in the main text at the end of that section. Also, additional labels in Figure 8 (of the glutamates, the N-terminal peptide, and what the CTD arrows represent).

      We have revised this section of the text and added labels to the (revised) Figure as suggested.

      Line 261: typo, misspelling of "hydrogen"

      Fixed. (Now line 279.)

      Figure 6 - supplement 2B: Looks like an error in numbering y-axis - should be 90/120/150, I think. Can you show the three data points for the WT initial current rectification? Can you clarify whether the 3 that you are analyzing are the ones where AK42 the AK42 "zero current" level is not more than the initial positive current?

      We apologize for this error, which arose from the Y-axis label overlapping the tick labels, so 90/120/150 showed as 90/20/50. We have fixed this error and have added a new panel (C) to show three data points for the WT initial current rectification. In the Figure legend to panel C, we clarify that the 3 experiments we analyzed are the ones where the AK-42 current level is not more than the initial current at 80 mV.

      Reviewer #2 (Recommendations For The Authors):

      1. It appears from a close inspection of Figure 2 that the TM dimer is not quite symmetric, but I couldn't tell for sure from the figures as presented. No comment is made in the methods about symmetry imposed, and the authors explicitly comment on asymmetry in the cytoplasmic domain. It would be useful to have an explicit discussion of the TM dimer symmetry.

      We have now explicitly stated that the TM dimer is symmetric, and we have clarified the wording in the Methods:

      Main text, line 81: "The TM region of CLC-2 displays a typical CLC family symmetric homodimeric structure, with each subunit containing an independent Cl– pathway (Figure 2A, B)."

      Methods (lines 557-558): "The following ab initio reconstruction and 3D refinement (for all structures presented in this paper) were performed with C1 symmetry (no symmetry imposed)."

      1. For the simulations in Figure 5 Supplement 2, the N terminus flexibility is shown, but this of course can't be compared to a control. However, given the structural results, one might expect the JK helix to show changes in flexibility/mobility in the apo vs inactivated structures. Is this observed?

      We agree that the structures strongly suggest the JK-helix is not as stable without the N-terminus bound. We did not perform comparative simulations on the JK helix in the apo vs inactivated structures. While we agree this could be of interest, we don’t think it is essential to our conclusions, and the simulations might need to be quite long to adequately capture dynamics of the JK helix. [In the simulation results shown in Figure 5 Supplement 2, our aim was to test the validity of the structure by determining whether the N-terminus remains bound to the channel in simulations. The plot shows that the N-terminus stays in the same binding pose with an average RMSD (to the initial structure) of less than 2 angstroms, which is generally considered to be relatively stable.]

      1. I find the section "revised framework for ClC-2 gating" to be wanting. The ideas are illustrated in the cartoon, but should also be laid out in the text. In what ways are you revising the framework, and in what aspects are you carrying through ideas already proposed?

      Thank you for raising this point, which was also raised by Reviewer 1. We have revised this section and the accompanying Figure (Figure 8 and Lines 431-484).

      1. The authors mention in passing the idea that the hairpin could contribute to inward rectification (lines 227/8), but also suggest a role for the gating glutamate in this process. They also mention the idea of a common gate, but don't flesh out its function very much. These possibilities are very interesting and should be substantially fleshed out in the "framework" section, even if they cannot be fully answered yet.

      We have expanded on these points in the “framework” section.

      1. Figure 6E. points representing individual experiments should be shown.

      We added points representing individual experiments for Delta N (normalized to WT) in the surface-expression experiments in Figure 6E. Individual data points for the electrophysiology experiments are in panel C; we did not replot these in panel E because some of the points would have been off scale.

      1. The density in Figure 2A is hard to see, is there a better way to display it? Also, the orientation of the rightmost panel in Figure 2C is difficult to interpret.

      We revised 2A to make the density easier to see. We revised Figure 2C so that the middle and rightmost panels have the same orientation.

      1. P6. Line 87. This sentence is a little confusing, and perhaps could be a little clearer-the density is consistent with a Cl- ion, but no experiments have been done to support this, no?

      We have clarified the wording as suggested (now line 89) and added references supporting Clˉ binding to the Sext site in CLCs (line 90).

      1. P6 lines 89-98. Two lines of evidence, the conformation of the gate and the pinch point, both point to the structure representing a closed state. The wording as presented is a little hard to follow.

      We have revised the wording in this paragraph (lines 92-111)

      1. It's hard to distinguish water protons and oxygens in the lower right panel (QQQ).

      We revised this panel (in Figure 3 – figure supplement 2) to better distinguish the water protons and oxygens.

      Reviewer #3 (Recommendations For The Authors):

      A few points to consider for improving the manuscript

      1. It is intriguing that in the AK-42 structure, there is no density for the hairpin loop even though the CTD is in a symmetrical conformation as the apo. The authors could perhaps comment on whether there is any difference in the rectification properties of currents (or run-up) upon unblocking of AK-42 which may suggest that the hairpin binding is prevented by AK-42.

      We have not yet performed the suggested experiment nor any experiments to examine state-dependence, though we agree such experiments would be informative. We have added a note on this point in the discussion, lines 334-337.

      1. Although the conformation-dependent placement of the hairpin loop is convincing based on the density, the sequence assigned to this region is not conclusive.

      To strengthen our conclusion concerning the hairpin assignment, we investigated fits of peptide segments from the disordered sections of the C-terminal cytoplasmic domain to the hairpin density. We found that these fits are not as good as that with the N-terminal peptide. This analysis is described in lines 179-181 and a new figure (Figure 5 – figure supplement 1). We appreciate the reviewer’s point that it is extremely difficult to conclusively assign residues that are not contiguous with the rest of the structure. Nevertheless, given the wide variety of evidence all pointing to the conclusion that the hairpin loop corresponds to residues 14-28, we think the assignment is on strong footing. We respectfully ask that you consider removing this criticism from the public review, as we think it will hinder the casual reader from recognizing the strength of the evidence: (1) of unresolved regions in CLC-2, residues 14-28 fit best; (2) residues 14-28 were previously identified as part of the ball blocking region (lines 158-161); (3) MD simulations support that the N-terminal residues stay stably bound (Figure 5 – figure supplement 4) (4) gain-of-function disease causing mutations map onto either the Nterminal residues or interacting residues on the TM domain (Figure 5 – figure supplement 6). Thank you for considering this request.

      1. The authors should comment on the physiological relevance of the CBS domain rearrangements during gating.

      We have added this sentence (lines 131-133): “The physiological relevance of C-terminal domain rearrangements is suggested by disease-causing mutations that alter channel gating (Estevez et al., 2004; Brenes et al., 2023).”

      1. For the figures with cryo-EM maps, indicate the contour levels.

      Contour levels are now indicated in the Figure legends.

      1. It will be useful to the electrostatic map of the N-terminal peptide and the docking site.

      This is now shown in Figure 5 – figure supplement 3 and Video 5.

      1. Include a comment on the recent CLC-2 /AK-42 structure and if there are any differences in the structural features.

      We added this text to lines 273-274: “The RMSD between our CLC2-TM-AK42 structure and that of Ma et al. is 0.655 Å, and the RMSD between the apo TM structures is 0.756 Å.”

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      The paper contains some useful analysis of existing data but there are concerns regarding the conclusion that there might be alternative mechanisms for determining the location of origins of DNA replication in human cells compared to the well known mechanism known from many eukaryotic systems, including yeast, Xenopus, C. elegans and Drosophila. The lack of overlap between binding sites for ORC1 and ORC2, which are known to form a complex in human cells, is a particular concern and points to the evidence for the accurate localization of their binding sites in the genome being incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the best genetically and biochemically understood model of eukaryotic DNA replication, the budding yeast, Saccharomyces cerevisiae, the genomic locations at which DNA replication initiates are determined by a specific sequence motif. These motifs, or ARS elements, are bound by the origin recognition complex (ORC). ORC is required for loading of the initially inactive MCM helicase during origin licensing in G1. In human cells, ORC does not have a specific sequence binding domain and origin specification is not specified by a defined motif. There have thus been great efforts over many years to try to understand the determinants of DNA replication initiation in human cells using a variety of approaches, which have gradually become more refined over time.

      In this manuscript Tian et al. combine data from multiple previous studies using a range of techniques for identifying sites of replication initiation to identify conserved features of replication origins and to examine the relationship between origins and sites of ORC binding in the human genome. The authors identify a) conserved features of replication origins e.g. association with GC-rich sequences, open chromatin, promoters and CTCF binding sites. These associations have already been described in multiple earlier studies. They also examine the relationship of their determined origins and ORC binding sites and conclude that there is no relationship between sites of ORC binding and DNA replication initiation. While the conclusions concerning genomic features of origins are not novel, if true, a clear lack of colocalization of ORC and origins would be a striking finding. However, the majority of the datasets used do not report replication origins, but rather broad zones in which replication origins fire. Rather than refining the localisation of origins, the approach of combining diverse methods that monitor different objects related to DNA replication leads to a base dataset that is highly flawed and cannot support the conclusions that are drawn, as explained in more detail below.

      Response: We are using the narrowly defined SNS-seq peaks as the gold standard origins and making sure to focus in on those that fall within the initiation zones defined by other methods. The objective is to make a list of the most reproducible origins. Unlike what the reviewer states, this actually refines the dataset to focus on the SNS origins that have also been reproduced by the other methods in multiple cell lines. We have changed the last box of Fig. 1A to make this clearer: Shared origins = reproducible SNS-seq origins that are contained in initiation zones defined by Repli-seq, OK-seq and Bubble-seq. This and the Fig. 2B (as it is) will make our strategy clearer.

      Methods to determine sites at which DNA replication is initiated can be divided into two groups based on the genomic resolution at which they operate. Techniques such as bubble-seq, ok-seq can localise zones of replication initiation in the range ~50kb. Such zones may contain many replication origins. Conversely, techniques such as SNS-seq and ini-seq can localise replication origins down to less than 1kb. Indeed, the application of these different approaches has led to a degree of controversy in the field about whether human replication does indeed initiate at discrete sites (origins), or whether it initiates randomly in large zones with no recurrent sites being used. However, more recent work has shown that elements of both models are correct i.e. there are recurrent and efficient sites of replication initiation in the human genome, but these tend to be clustered and correspond to the demonstrated initiation zones (Guilbaud et al., 2022).

      These different scales and methodologies are important when considering the approach of Tian et al. The premise that combining all available data from five techniques will increase accuracy and confidence in identifying the most important origins is flawed for two principal reasons. First, as noted above, of the different techniques combined in this manuscript, only SNS-seq can actually identify origins rather than initiation zones. It is the former that matters when comparing sites of ORC binding with replication origin sites, if a conclusion is to be drawn that the two do not co-localise.

      Response: We agree. So the reviewer should agree that our method of finding SNS-seq peaks that fall within initiation zones actually refines the origins to find the most reproducible origins. We are not losing the spatial precision of the SNS-seq peaks.

      Second, the authors give equal weight to all datasets. Certainly, in the case of SNS-seq, this is not appropriate. The technique has evolved over the years and some earlier versions have significantly different technical designs that may impact the reliability and/or resolution of the results e.g. in Foulk et al. (Foulk et al., 2015), lambda exonuclease was added to single stranded DNA from a total genomic preparation rather than purified nascent strands), which may lead to significantly different digestion patterns (ie underdigestion). Curiously, the authors do not make the best use of the largest SNS-seq dataset (Akerman et al., 2020) by ignoring these authors separation of core and stochastic origins. By blending all data together any separation of signal and noise is lost. Further, I am surprised that the authors have chosen not to use data and analysis from a recent study that provides subsets of the most highly used and efficient origins in the human genome, at high resolution (Guilbaud et al., 2022).

      Response: 1) We are using the data from Akerman et al., 2020: Dataset GSE128477 in Supplemental Table 1. We have now separately examined the core origins defined by the authors to check its overlap with ORC binding (Supplementary Fig. S8b)

      2) To take into account the refinement of the SNS-seq methods through the years, we actually included in our study only those SNS-seq studies after 2018, well after the lambda exonuclease method was introduced. Indeed, all 66 of SNS-seq datasets we used were obtained after the lambda exonuclease digestion step. To reiterate, we recognize that there may be many false positives in the individual origin mapping datasets. Our focus is on the True positives, the SNS-seq peaks that have some support from multiple SNS-seq studies AND fall within the initiation zones defined by the independent means of origin mapping (described in Fig. 1A and 2B). These True positives are most likely to be real and reproducible origins and should be expected to be near ORC binding sites.

      We have changed the last box of Fig. 1A to make this clearer: Shared origins = reproducible SNS-seq origins that are contained in initiation zones defined by Repli-seq, OK-seq or Bubble-seq.

      Ini-seq by Torsten Krude and co-workers (Guillbaud, 2022) does NOT use Lambda exonuclease digestion. So using Ini-seq defined origins is at odds with the suggestion above that we focus only on SNS-seq datasets that use Lambda exonuclease. However, Ini-seq identifies a much smaller subset of SNS-seq origins, so, as requested, we have also done the analysis with just that smaller set of origins, and it does show a better proximity to ORC binding sites, though even then the ORC proximate origins account for only 30% of the Ini-seq2 origins (Supplementary Fig. S8d). Note Ini-seq2 identifies DNA replication initiation sites seen in vitro on isolated nuclei.

      Update in response to authors' comments on the original review:

      While the authors have clarified their approach to some aspects of their analysis, I believe they and I are just going to have to disagree about the methodology and conclusions of this work. I do not find the authors responses sufficiently compelling to change my mind about the significance of the study or veracity of the conclusions. In my opinion, the method for identification of strong origins is not robust and of insufficient resolution. In addition, the resolution and the overlap of the MCM Chip-seq datasets is poor. While the conclusion of the paper would indeed be striking and surprising if true, I am not at all persuaded that it is based on the presented data.

      Reviewer #2 (Public Review):

      Tian et al. performed a meta-analysis of 113 genome-wide origin profile datasets in humans to assess the reproducibility of experimental techniques and shared genomics features of origins. Techniques to map DNA replication sites have quickly evolved over the last decade, yet little is known about how these methods fare against each other (pros and cons), nor how consistent their maps are. The authors show that high-confidence origins recapitulate several known features of origins (e.g., correspondence with open chromatin, overlap with transcriptional promoters, CTCF binding sites). However, surprisingly, they find little overlap between ORC/MCM binding sites and origin locations.

      Overall, this meta-analysis provides the field with a good assessment of the current state of experimental techniques and their reproducibility, but I am worried about: (a) whether we've learned any new biology from this analysis; (b) how binding sites and origin locations can be so mismatched, in light of numerous studies that suggest otherwise; and (c) some methodological details described below.

      • I understand better the inclusion/exclusion logic for the samples. But I'm still not sure about the fragments. As the authors wrote, there is both noise and stochasticity; the former is not important but the latter is essential to include. How can these two be differentiated, and what may be the expected overlap as a function of different stochasticity rates?

      It is difficult to separate the effect of noise from the effect of stochastic firing of origins. We therefore took the simplest approach: focus only on the most reproducible origins (shared origins) and ignore the non-reproducible origins. At least the most reproducible origins can be used to test the hypotheses regarding origin firing.

      • Many of the major genomic features analyzed have already been found to be associated with origin sites. For example, the correspondence with TSS has been reported before:

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320713/

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547456/

      • Line 250: The most surprising finding is that there is little overlap between ORC/MCM binding sites and origin locations. The authors speculate that the overlap between ORC1 and ORC2 could be low because they come from different cell types. Equally concerning is the lack of overlap with MCM. If true, these are potentially major discoveries that butts heads with numerous other studies that have suggested otherwise.

      The key missing dataset is ORC1 and ORC2 CHiP-seq from the same cell type. This shouldn't be too expensive to perform, and I hope someone performs this test soon. Without this, I remain on the fence about how much existing datasets are "junk" vs how much the prevailing hypothesis about replication needs to be revisited. Nonetheless, the authors do perform a nice analysis showing that existing techniques should be carefully used and interpreted.

      We agree that a thorough set of ChIP-seq data (with multiple antibodies or with equivalent techniques that do not use antibodies) for all six subunits of ORC in mammalian cells will be very useful for the field. Note, though, that just by simple cell lysis, it is very easy to divide human ORC into at least three different parts: ORC1, ORC2-5, and ORC6. The subunits do not form as robust a complex as seen in the yeasts and in flies.

      Reviewer #3 (Public Review):

      Summary: The authors present a thought-provoking and comprehensive re-analysis of previously published human cell genomics data that seeks to understand the relationship between the sites where the Origin Recognition Complex (ORC) binds chromatin, where the replicative helicase (Mcm2-7) is loaded, and where DNA replication actually beings (origins). The view that these should coincide is influenced by studies in yeast where ORC binds site-specifically to dedicated nucleosome-free origins where Mcm2-7 can be loaded and remains stably positioned for subsequent replication initiation. However, this is most certainly not the case in metazoans where it has already been reported that chromatin bindings sites of ORC and Mcm2-7 do not necessarily overlap, nor do they always overlap with origins. This is likely due to Mcm2-7 possessing linear mobility on DNA (i.e., it can slide) such that other chromatin-contextualized processes can displace it from the site in which it was originally loaded. Additionally, Mcm2-7 is loaded in excess and thus only a fraction of Mcm2-7 would be predicted to coincide with replication start sites. This study reaches a very similar conclusion of these previous studies: they find a high degree of discordance between ORC, Mcm2-7, and origin positions in human cells.

      Strengths: The strength of this work is its comprehensive and unbiased analysis of all relevant genomics datasets. To my knowledge, this is the first attempt to integrate these observations. It also is an important cautionary tale to not confuse replication factor binding sites with the genomic loci where replication actually begins, although this point is already widely appreciated in the field. Response: Thank you for recognizing the comprehensive and unbiased nature of our analysis. Our findings will prevent the unwise adoption of ORC or MCM binding sites as surrogate markers of origins and will stimulate the field to try and improve methods of identifying ORC or MCM binding until the binding sites are found to be proximal to the most reproducible origins. The last possibility is that there are ORC- or MCM-independent modes of defining origins, but we have no evidence of that.

      Weaknesses: The major weakness of this paper is the lack of novel biological insight and that the comprehensive approach taken failed to provide any additional mechanistic insight regarding how and why ORC, Mcm2-7, and origin sites are selected or why they may not coincide.

      Response: we agree that we cannot provide a novel biological insight from this kind of meta-analysis. The importance of this study is in highlighting that there is either significant problems with the data collected till now (preventing the co-localization of ORC or MCM binding sites with the most reproducible origins) or ORC and MCM binding sites are often far away from where the most reproducible origins fire, which should make us consider ways in which origins could be activated kilobases away from ORC and MCM binding sites.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      All suggestions and recommendations were described in a previous review.

      Reviewer #3 (Recommendations For The Authors):

      The most significant omission is a contextualization of the results in the discussion and an explanation of why these results matter for the biology of replication, disease, and/or our confidence in the genomic techniques reported on in this study. As written, the discussion simply restates the results without any interpretation towards novel insight. I suggest that the authors revise their discussion to fill this important gap.

      A second important, unresolved point is whether replication origins identified by the various methods differ due to technical reasons or because different cell types were analyzed. Given the correlation between TSS and origins (reported in this study but many others too), it is somewhat expected that origins will differ between cell types as each will have a distinct transcriptional program. This critique is partly addressed in Figure S1C. However, given the conclusion that the techniques are only rarely in agreement (only 0.27% origins reproducibly detected by the four techniques), a more in-depth analysis of cell type specific data is warranted. Specifically, I would suggest that cell type-specific data be reported wherever origins have been defined by at least two methods in the same cell type, specifically reporting the percent of shared origins amongst the datasets. This type of analysis may also inform on whether one or more techniques produces the highest (or lowest) quality list of true origins.

      We have done what has been suggested: used K562 cell type-specific data because here the origins have been defined by at least two methods in the same cell type and reported the percent of shared origins amongst the datasets (Supp. Fig. S4).

      Other MINOR comments include:

      • Line 215: the authors show that shared origins overlap with TF binding hotspots more often than union origins, which they claim suggests "that they are more likely to interact with transcription factors." As written, it sounds like the authors are proposing that ORC may have some direct physical interaction with transcription factors. Is this intended? If so, what support is there for this claim?

      The reviewer is correct. We have rephrased because we have no experimental support for this claim.

      • In the text, Figure 3G is discussed before Figure 3F. I suggest switching the order of these panels in Figure 3.

      Done.

      • It's not clear what Figure 5H to Figure 6 accomplishes. What specifically is added to the story by including these data? Is there something unique about the high confidence origins? If there is nothing noteworthy, I would suggest removing these data.

      We want to keep them to highlight the small number of origins that meet the hypothesis that ORC and MCM must bind at or near reproducible origins. These would be the origins that the field can focus in on for testing the hypothesis rigorously. They also show the danger of evaluating proximity between ORC or MCM binding sites with origins based on a few browser shots. If we only showed this figure, we could conclude that ORC and MCM binding sites are very close to reproducible origins.

      • Line 394: "Since ORC is an early factor for initiating DNA replication, we expected that shared human origins will be proximate to the reproducible ORC binding sites." This is only expected if one disbelieves the prior literature that shows that ORC and origins are not, in many cases, proximal. This statement should be revised, or the previous literature should be cited, and an explanation provided about why this prior work may have missed the mark.

      We do not know of any genome-wide study in mammalian cell lines where ORC binding sites and MCM binding have been compared to highly reproducible origins, or that show that these binding sites and highly reproducible origins are mostly not proximal to each other. Most studies cherry pick a few origins and show by ChIP-PCR that ORC and/or MCM bind near those sites. Alternatively, studies sometimes show a selected browser shot, without a quantitative measure of the overlap genome wide and without doing a permutation test to determine if the observed overlap or proximity is higher than what would be expected at random with similar numbers of sites of similar lengths. In the revised manuscript we have discussed Dellino, 2013; Kirstein, 2021; Wang, 2017; Mas, 2023. None of them have addressed what we are addressing, is the small subset of the most reproducible origins proximal to ORC or MCM binding sites?

      • Line 402-404: given the lack of agreement between ORC binding sites and origins the authors suggest as an explanation that "MCM2-7 loaded at the ORC binding sites move much further away to initiate origins far from the ORC binding sites, or that there are as yet unexplored mechanisms of origin specification in human cancer cells". The first part of this statement has been shown to be true (Mcm2-7 movement) and should be cited. But what do the authors mean by the second suggestion of "unexplored mechanisms"? Please expand.

      We have addressed this point in the revised manuscript.

      • The authors should better reference and discuss the previous literature that relates to their work, some of these include Gros et al., 2015 Mol Cell, Powell et al., 2015 EMBO J, Miotto et al., 2016 PNAS, but likely there are many others.

      We have addressed this point in the revised manuscript.

      Note for authors:

      Line 107: The introduction discusses the mechanism for yeast ORC recognizes specific origins and discusses the Orc4 contribution, but it is known that Orc2 also binds DNA on a base-specific manner (see PMID 33056978). Thus Lee et al. did not "humanize ORC" as stated.

      Done

      Lines 117-119: Two of the cited papers are on endo-reduplication and not on initiation in a normal cell cycle and this should be pointed out. Second, there is contradictory evidence that ORC is essential in human cells and this should be cited (PMID 33522487)

      Done

    1. Author Response

      The following is the authors’ response to the original reviews.

      Based on the reviewer comments (see below) and subsequent discussion between the reviewers and the Reviewing Editor, I would like to invite the authors to make major revisions, including new experiments. However, if major new experiments are not feasible, as may be the case, then at a minimum, I would urge the authors to:

      1. Tone down the language regarding a causative role for changes in GH/IGF-I signaling in mediating the effects of Tmem63 on the skeleton, and also be very open in acknowledging the lack of mechanistic insight into how Tmem regulates GH signaling.

      Response: We toned down the language as suggested and also acknowledged the lack of mechanistic insights into how Tmem263 regulates GH signaling.

      1. Revise/redo or if not possible, then delete the problematic experiment in Fig. 5E.

      Response: We have included additional Western blot data in Figure 5 from control WT and KO male mice without exogenous GH injection. In the absence of GH injection, we could not detect Jak2 and Stat5 phosphorylation in the liver of male WT and KO mice.

      1. Address the comments about liver feminization.

      Response: We have performed additional analysis as suggested by reviewer # 3. We have now included additional data to address the issue of liver feminization (new Fig. 6G-I and Figure 6-figure supplement 1). We plan to expand on this very topic in future studies as this is an interesting transcriptional phenomenon.

      1. Revise the manuscript to address as many of the recommendations for the authors as possible, many of which can be addressed by textual edits. Response: We have addressed as many of the textual changes as suggested in the revised manuscript.

      Reviewer #2 (Recommendations for The Authors):

      TMEM263 has been suggested to be associated with bone mineral density and growth in humans and mice, but the functional role of this transmembrane protein in the regulation of bone metabolism is unknown. With the knockout mouse approach, this manuscript demonstrates that Tmem263 is essential for longitudinal bone growth in the mouse as deletion of Tmem263 in knockout (KO) mice developed severe postnatal growth impairment and proportional dwarfism. It is determined that the dwarfism was caused by a substantial reduction in liver expression of growth hormone receptor (GHR), a slight increase in serum GH, and a reduction in serum IGF-I, which resulted in disruptive of GH/IGF-I regulatory axis of endochondral bone formation.

      The study was relatively well designed, and the results in general are supportive of the conclusions. While this study discloses new and intriguing functional information about a novel cytoplasmic membrane gene, there are a few minor issues that the authors may wish to address. These issues are listed in the following:

      1. One of the intriguing findings of this manuscript is that deletion of a gene encoding a small cytoplasmic membrane protein could cause a substantial reduction in the expression and protein levels of GHR. Inasmuch as a couple of potential explanations were offered in the Discussion section (first complete paragraph of page 10), there has been no attempt to test any of the suggested causes, since many of these potential mechanisms can readily be tested experimentally. Accordingly, the lack of mechanistic investigation into this intriguing effect renders the manuscript largely descriptive in nature.

      Response: The point made by the reviewer is well taken. We do plan to have follow up studies to establish which among the mechanisms we highlighted in the discussion is contributing to the reduction in GHR transcript and protein level. Our present study is the first functional characterization of this enigmatic novel membrane protein. We anticipate that multiple follow-up studies are needed to gain a deeper understanding of the biology of Tmem263. We believe that our present study represents an important first step.

      1. Because a major conclusion is that the bone phenotype of Tmem263 KO mice was caused by deficient hepatic expression and/or action of GHR, it would be helpful to (or strengthen) the conclusion if a brief comparison of the bone phenotype between GHR KO mice and Tmem263 KO mice is included in the Discussion section.

      Response: We have now included this information in the revised manuscript.

      1. In Figure 3, the cortical bone parameters (i.e., Tt.Ar, Ct.Ar, and Ct.Th), but none of the trabecular bone parameters (i.e., BV/TV, Tb.N, Tb.Th), were normalized against femur length. The authors did not provide a rationale for this differential treatment with the cortical bone parameters from the trabecular bone parameters. If the reason to normalize the cortical bone parameters against bone length was to demonstrate that the reduced cortical bone mass in mutants was related to the impaired longitudinal bone growth, then why did the authors not also assess whether the observed reduction in these trabecular bone parameters in KO mutants was proportional to reduced longitudinal bone growth?

      Response: We actually made the exact adjustments that the reviewer refers to, as stated in the methods section. Please see page 14. The regions of interest (ROIs) of both the trabecular bone analysis and the cortical analysis in the mutants was reduced proportional to the length of the bone (40% smaller). The normalization to Tt Ar to femur length in Figure 3I was only meant to show that the reduction in Tt Ar in the mutants was proportional. We have modified the text in our result section for clarity.

      1. Elements described in Fig. 5A have been well documented. Therefore, Fig. 5A is unnecessary and can be deleted.

      Response: We felt that Figure 5A should remain. It helps orient readers that are not familiar with the literature to be aware that both liver- and bone-derived IGF-1 contribute to longitudinal bone growth.

      1. Figure 6 was performed with male KO mice. Were the altered gene expression profiles in female KO mice any different from male KO mice?

      Response: We plan to perform RNA-seq in female mouse liver in our follow-up studies. We do not know, at present, whether and to what extent the liver transcriptomic profile would be different between male and female KO mice. As far as dwarfism and deficiency in skeletal acquisition, both male and female KO mice showed the same phenotypes.

      1. The number of animals (or samples) per group in some of the Figures (i.e., Fig. 2G, 2I, 2J, 3A to J, the entire Fig. 4, 5D, 5F, and Suppl Fig. 1) is needed to be provided in the legends.

      Response: We have included this information in the figure legends.

      Reviewer #3 (Recommendations for The Authors):

      1. Explain the discrepancy between the impact of KO on serum Igfbp3 (= decreased) vs. hepatic Igfbp3 (= unchanged).

      Response: We do not have a plausible mechanism, at present, that can explain the reduction in circulating serum Igfbp3 level without an apparent reduction in Igfbp3 transcript level in the liver. In human studies, typically only serum IGFBP3 levels are measured but not the hepatic IGFBP3 transcript level. Therefore, it is unclear whether the circulating levels of IGFBP3 is being regulated at the posttranscriptional level, an issue that can be explored in future studies.

      1. Line 215, 221, and elsewhere - Foxa1 does not show significant male-biased expression in mouse liver.

      Response: We have removed Foxa1 from the text.

      1. Line 225- According to the abstract of Ref. #45, Cux2 regulates a subset of sex-biased genes in the liver. The authors should compare the genes dysregulated by TMEM263-KO (Fig. 6) to those altered by Cux2 loss (Ref. #45) to ascertain whether the results of Fig. 6 are partially or entirely explained by Cux2 overexpression.

      Response: We agree that this is a great area of future study. We do feel this, however, would be better explored in a more in-depth follow-up article. We felt, given the current direction of the paper it made more sense to include differential expression comparisons of male vs female, hypophysectomized vs sham control, and Stat5b-KO vs WT mouse liver gene expression data. Our future work will explore the transcriptomes of male and female WT and Tmem263-KO liver gene expression in the context of the observed physiology.

      1. Line 262- "lower transcription of Ghr gene". A decrease in mRNA levels does NOT equate with a decrease in transcription per se. Altered mRNA splicing, poly A, export, cytoplasmic stability, etc. are all potential contributors.

      Response: We have included these possibilities highlighted by the reviewer in our revised Discussion section.

      1. Line 273, "TMEM263... most highly expressed in liver" Not correct - see Fig. 1C for TMEM263 RNA levels in mouse tissues.

      Response: We have corrected the text on page 11.

      1. Line 425 - Include GEO accession number.

      Response: We have already uploaded our RNA-seq data to the NCBI Sequence Read Archive (SRA), and the data can be accessed under accession number # PRJNA938158.

      1. Fig. 6 - Line 796 - Specify the age and sex of mice analyzed.

      Response: We have included the information in the revised figure 6 legend.

      1. Fig.2 - Suppl 1- Specify age of mice.

      Response: We have included the information in the revised Figure 2-figure supplement 2.

      1. Fig.2G -Specify the sex of the mice.

      Response: For the P1 to P21 pups’ data, we did not separate by sex, as gender determination of pups at P1 and P7 can be challenging. We now indicated this in the figure legend.

      1. Fig. 6A and 6C-6F: Which of these genes shows sex-dependent expression in wild-type liver? Use color to highlight gene names for genes that show male-biased or female-biased expression.

      Response: We agree with the reviewer that additional labels on Figure 6A and 6C-F would be helpful to show genes of sex-bias. However, this is not the primary point of the paper. This topic deserves a much more in-depth analysis in follow up studies focused on defining the exact type and degree of transcript feminization in the liver of Tmem263-KO mice, as well as, its physiologic consequences. For readers interested in this topic, we have included the subfigures G-I in Figure 6 and for greater transcript level detail, figure 6 supplement 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      Recommendation 1: The authors reasoned upon the presence of a differential basal hydraulic stress in waves' valleys vs hills at first from the observation of "domes" formation upon 48h cultivation. I suggest performing a quantification to support the statement as a good scientific practice. Furthermore, it would strengthen the concept when the formation of domes was compared between the waves' dimensions as a different grade of cell extrusion was quantified. i.e., 50, 100, and 200 µm.

      Response 1: Upon seeing the phenomenon (Author response image 1 A), we performed a count for domes on the 100 µm and saw a significant effect. We refrained from including the results as it is the subject of ongoing research in our lab. In response to the reviewer’s suggestion, we have included a graph (Author response image 1 B) showing the increasing number of domes over 48 hours from three 100 µm wave samples.

      We have updated Figure 2A and B in the manuscript to include the new graph.

      Author response image 1.

      (A) shows dome (white arrows) over a 100 µm wave substrate. (B) is the number of accumulated domes in valley and hill regions, for 3 independent samples, over 48 hours.

      Recommendation 2: Using RICM microscopy to quantify the cell basal separation with the substrate and hydraulic stress is very clever. Nevertheless, I am in doubt if the different intensity reported for the hills vs valley (Fig. 2G and H) is a result of the signal reduction at deeper Z levels. Since there is no difference in extrusion and forces between valleys and hills in the 200 µm waves but only in 50µm and 100µm, I would add this to the quantification. I would expect no intensity difference from RICM for the 200 µm sample if this is not an artefact of imaging.

      Response 2: We performed additional experiments on blank wave substrates (both 100 and 200 µm) to ascertain the extent of reflection intensity drop (Author response image 2A). And, as correctly pointed out by Reviewer #1, there was a drop in intensity even without cells. On the 100 µm waves, hill reflections are on average ~27 % dimmer than valley reflections. Whereas, on the 200 µm waves, hill reflections are on average ~39 % dimmer.

      Using this information, we performed a calibration on the RICM results obtained from both the 100 and 200 µm waves (Author response image 3B). The calibrated 100 µm data showed residual signatures of difference, whereas the calibrated 200 µm distributions appeared very similar. We noticed large cross- sample variations in the registered intensities, which will negatively impact effect size if not accounted for. To do this, we subsequently normalized both hill and valley intensities against planar region intensities for each sample. As shown by the final output (Author response image 3C), we were able to remove the skewness in the distributions. Moreover, 1-way ANOVA followed by a post hoc analysis with BH correction revealed a significant reduction in 100 µm hill/flat intensity ratio compared to 100 µm valley/flat intensity ratios (Δ~-23 %). Conversely, no significance was observed for the same comparison on the 200 µm waves.

      Author response image 2.

      (A). RICM from blank wave samples reveal a reduction in reflection intensity in hill regions compared to flat and valley regions.

      Author response image 3.

      (B) shows the RICM intensities after adjusting for the inherent reflection intensity drop shown in (A). (C) show the RICM intensities after normalization against planar region signals; this removes cross-sample variations and improve effect size of differences.

      We have updated the manuscript Figure 2I and text accordingly. The blank wave results are included in Figure 2-figure supplement 1 along with updated text and summary data table in Supplementary File 4.

      Recommendation 3: To measure 3D forces on top of the hills and valleys, the use of PAA gels is necessary. Since in Fig 3B, the authors show a difference in cell extrusion number between substrates and stiffnesses, I think it is necessary to confirm the presence of more extrusion in valleys vs hills on PAA gels. This would ensure the conclusion between normal forces and extrusion.

      Response 3: We do have time-lapse data with monolayers on the PAA waves. However, we felt results from the flat regions were sufficient in supporting the point being made in the text. Specifically, our original intention with PAA gels was to show that the extrusion reductions seen in osmotic perturbations were by virtue of removing basal stress and not some cryptic osmotic response. Hydrogels were chosen because they can effectively dilute basal solute concentration and thereby reduce the osmotically induced water transport. Moreover, as fluid could freely move within the gel, the fluid stress can quickly equilibrate across the basal surface. In contrast, poorly water/solute permeable substrates could lead to localized spikes in solute concentration and transient basal regions with high fluid stress.

      To get a sense of the potential difference in basal solute concentration between the two materials, we can do a quick hand-waving estimation. For monolayers on non-water/solute permeable PDMS of 20x20 mm and using the laser wavelength (640 nm) for RICM as an extreme estimate of basal separation, we should expect ~0.25 µl of total basal water content. On the other hand, we typically produce our PAM gel slabs using ~150 µl of precursor solutions. This means that, given similar amounts of solute, PAM gels will lead to monolayer basal osmolarity that is around 3 orders of magnitude lower than monolayers on PDMS, producing significantly lower osmotic potential. This implies from the outset that we should expect high survivability of cells on these substrates irrespective of curvature domains. Indeed, later immunoblotting experiments showed MDCKs exhibiting hyper activated FAK and Akt on PAM gels.

      In response to Reviewer #1’s suggestion then, we have added another supporting time-lapse (Video 19) showing typical response of MDCK monolayers on 100 µm PAA waves (Author response image 4). Evident from the time-lapses, like the planar regions, cell extrusions were very rare. This supports the idea that on PAM gels the effects of basal hydraulic stress and asymmetric forces are marginal against the strong survival signals. And the response is similar to hyper-osmotic perturbations; there, we did not see a significant difference between valley and hill extrusions.

      Author response image 4.

      Time-lapse snapshot showing negligible MDCK extrusions 24 hours after confluency over PAM gel wave substrates.

      Recommendation 4: Before proceeding with the FAK inhibitor experiment, the authors should better justify why the 4.1 wt % sucrose vs DMSO or NaCl is the most inert treatment. This can be done by citing relevant papers or showing time-lapses (as it is done for the higher FAKI14 dose).

      Response 4: Although some cells have recently been shown to be able to transport and utilize sucrose, mammalian cells generally cannot directly take up polysaccharides for metabolism and this is frequently mentioned in literature: see (Ref. R1) for example. Without special enzymes to break sucrose down into monosaccharides, such as sucrase found in the gut, the sugars should remain spectators in the culture medium, contributing only to osmotic effects.

      DMSO on the other hand, besides changing osmolarity, can also be integrated into cell membrane and pass through cells over time. It has been reported to chronically affect cell membrane properties and gene expressions (Ref. R2).

      Finally, it is well known that both sodium and chloride ions are readily taken up and transported by cells (Ref R3). They help to regulate the transmembrane potential, which in turn can affect membrane bound proteins and biochemical reactions within a cell.

      Hence, comparing the 3 hyper-osmotic perturbations, adding sucrose should have the least off- target effects on both the inhibitor study and the subsequent immunoblotting. And, in response to the reviewer’s recommendation, we have updated the text accordingly and included new references to support our statement.

      Ref R1. H. Meyer, O. Vitavska, H. Wieczorek; Identification of an animal sucrose transporter. Journal of Cell Science 124, 1984–1991 (2011). Doi: 10.1242/jcs.082024

      Ref R2. B. Gironi, Z. Kahveci, B. McGill, B.-D. Lechner, S. Pagliara, J. Metz, A. Morresi, F. Palombo, P. Sassi, P. G. Petrov; Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophysical Journal 119, 274-286 (2020). Doi: doi.org/10.1016/j.bpj.2020.05.037

      Ref R3. X. Zhang, H. Li; Interplay between the electrostatic membrane potential and conformational changes in membrane proteins. Protein Science 28, 502-512 (2019). Doi: 10.1002/pro.3563

      Recommendation 5: The data showing a FAK-dependent phosphorylation of AKT responsible for a higher cell survival rate in the hills is not yet completely convincing. Please show a reduced AKT phosphorylation level after FAK inhibition in high osmolarity levels. Furthermore, the levels of AKT activation seem to increase slightly upon substrate softening independently of FAK activation or osmotic pressure (i.e., Fig. 4E, Soft PDMS). The authors should comment on this in connection with the results shown for PAA gels.

      Response 5: For the additional immunoblotting experiments, work is currently underway. We could not, however, complete these experiments in time for this revision, as both Cheng-Kuang and Xianbin will shortly be taking on new jobs elsewhere. David will continue with the immunoblotting studies and should be able to include the results in an update in the coming months. As for the apparent elevated levels of AKT seen on soft silicones, we speculate that it is because we cannot immunoblot cells that have died and were inevitably washed out at the start of the procedure. Inferring from the higher extrusion rates on these soft substrates, we could be missing a significant portion of stats. Specifically, we are missing all the cells that would have lowered AKT activation but died, and had we been able to collect those statistics, perhaps both the FAK and AKT should have shown lower levels. We risk committing survival bias on the results if we read too much into the data as is.

      Alternatively, another explanation could be that, by virtue of survival of the fittest, we might have effectively selected a subpopulation of cells that were able to survive on lower FAK signals, or completely irrespectively of it.

      At any rate, to prove our foregoing hypothesis would require us to perform comprehensive immunoblotting and total transcriptome analysis over different duration conditions. Unfortunately, we do not have the time to do that for the current article, but it could be developed into a stand-alone molecular biology investigation in future. We have included similar discussion in the main text.

      Recommendation 6: In the discussion, the authors suggest the reported findings be especially relevant for epithelia that significantly separate compartments and regulate water and soluble transport. These are for example kidney epithelia (i.e., MDCK is the best experimental choice), retinal epithelium or intestinal epithelium. I would suggest that some proof-of-concept experiments could be done to support this concept. For example, I would expect keratinocytes (i.e., HaCaT) not to show a strong difference in extrusion rate between valleys and hills since the monolayer is not so sealed as kidney epithelium. In general, this kind of experiment would significantly strengthen the finding of this work.

      Response 6: As recommended, we tracked the behavior of retina pigment epithelial cells (hTERT RPE-1 from ATCC) which do not form tight monolayers like MDCKs (Ref. R4). We did not detect extrusion events occurring from monolayers of these cells (Author response image 5). This is true even for portions of monolayers over waved regions.

      Author response image 5.

      Time-lapse snapshot showing non-existent o cell extrusions from RPE monolayers confluent for over 21 hours.

      We have updated these findings in the main text discussions and included a new supporting time- lapse (Video 15) in our article.

      Ref R4 F. Liu, T. Xu, S. Peng, R. A. Adelman, L. I. Rizzolo; Claudins regulate gene and protein expression of the retinal pigment epithelium independent of their association with tight junctions. Experimental Eye Research 198, 108157 (2020). Doi: 10.1016/j.exer.2020.108157

      Recommendation 7 (minor point): Figure S1 needs to have clear notes indicating in each step what is what. i.e., where is glass, PDMS, NOA73, etc? A more detailed caption will help the figure's comprehension. Also "Cy52" should be changed to "soft silicone" to be consistent with the text (or Cy52 should be mentioned in the text).

      Response 7 (minor point): Changes were made to Figure 1-figure supplement 1 to improve comprehension accordingly. CY52 was added to the main-text, next to the first appearance of the word soft silicone, to be consistent with the figures.

      Recommendation 8 (minor point): The authors often mentioned that epithelial monolayers are denser on PAA gels. Please add a reference(s) to this statement.

      Response 8 (minor point): The statement is an inference from visually comparing monolayers on PAM gels and PDMS. The difference is quite evident (Author response image 6). The density difference is in spite of the fact that the substrates share similar starting cell numbers.

      To address the reviewer’s comment, we have combined time-lapses of monolayers on silicones and PAM gels side-by-side in Video 17 to facilitate convenient comparisons.

      Author response image 6.

      Time-lapse snapshot at 24 hours after confluence, showing conspicuously higher density of MDCK monolayers on PAM gel compared to those on silicon elastomer.

      Reviewer #2

      Recommendation 1: The sinusoidal wavy substrate that the authors use in their investigation is interesting and relevant, but it is important to realize that this is a single-curved surface (also known as a developable surface). This means that the Gaussian curvature is zero and that monolayers need to undergo (almost) no stretching to conform to the curvature. The authors should at least discuss other curved surfaces as an option for future research, and highlight how the observations might change. Convex and concave hemispherical surfaces, for example, might induce stronger differences than observed on the sinusoidal substrates, due to potentially higher vertical resultant forces that the monolayer would experience. The authors could discuss this geometry aspect more in their manuscript and potentially link it to some other papers exploring cell-curvature interactions in more complex environments (e.g. non-zero Gaussian curvature).

      Response 1: In response to reviewer #2’s recommendation we have highlighted in the discussion of our text that our waves constitute a developable surface and that cells will experience little stretching for the most part. Based on our knowledge of how curvature can modulate forces and thus osmotic effects, we included some rudimentary analysis of what one would expect on hemispherical surfaces of two types: one that is periodic and contiguous (Ref. R5), and another with delineating flat regions (Ref. R6).

      For epithelial monolayers in the first scenario, and on poorly solute/water permeable substrates, we should also expect to see a relatively higher likelihood of extrusions from concave regions compared to convex ones. Moreover, as the surfaces are now curved in both principal directions (producing larger out-of-plane forces), we should see the onset of differential extrusions seen in this study, but at larger length scales. For example, the effects seen on 100 µm hemicylindrical waves might now happen at larger feature size for hemispherical waves. Furthermore, as this kind of surface would invariably contain hyperbolic regions (saddle points), we might expect an intermediate response from these locations. If the forces in both principal directions offset each other, the extrusion response may parallel planar regions. On the other hand, if one dominates over the other, we may see extrusion responses tending to the dominating curvature (concave of convex).

      On the other hand, on curved landscapes with discrete convex or concave regions, we should expect, within the curved surface, extrusion behaviors paralleling findings in this study. What would be interesting would be to see what happens at the rims (or skirt regions) of the features. At these locations we effectively have hyperbolically curved surfaces, and like before, we should expect some sort of competing effect between the forces generated from the principal directions. So, for dome skirts, we should see fewer extrusions when the domes are small, and vice versa, when they are larger. Meanwhile, for pit rims, we should see a reversed behavior. It should also be noted that the transitioning curvature between convex/concave and planar regions would also modulate the effect.

      These effects might have interesting developmental implications. For instance, in developing pillar like tissues (e.g., villi) structures, the strong curvatures of nascent lumps would favor accumulation of cell numbers. However, once the size of the lumps reaches some critical value, epithelial cell extrusions might begin to appear at the roots of the developing structures, offsetting cell division, and eventually halting growth.

      Ref R5. L. Pieuchot, J. Marteau, A. Guignandon, T. Dos Santos, I. Brigaud, P. Chauvy, T. Cloatre, A. Ponche, T. Petithory, P. Rougerie, M. Vassaux, J. Milan, N. T. Wakhloo, A. Spangenberg, M. Bigerelle, K. Anselme, Curvotaxis directs cell migration through cell-scale curvature landscapes. Nature Communications 9, 3995 (2018). Doi: 10.1038/s41467-018-06494-6

      Ref R6. M. Werner, S. B.G. Blanquer, S. P. Haimi, G. Korus, J. W. C. Dunlop, G. N. Duda, D. W. Grijpma, A. Petersen, Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Advanced Science 4, 1–11 (2017). Doi: 10.1002/advs.201600347

      Recommendation 2: The discussion of the experiments on PAM gels is rather limited. The authors describe that cells on the PAM gels experience fewer extrusions than on the PDMS substrates, but this is not discussed in sufficient detail (e.g. why is this the case). Additionally, the description of the 3D traction force microscopy and its validation is quite limited and should be extended to provide more convincing evidence that the measured force differences are not an artefact of the undulations of the surface.

      Response 2: We first saw a significant reduction in cell extrusions when we performed hyper-osmotic perturbations, and to eliminate possible off-target effects of the compounds used to increase osmolarity, we used three different compounds to be sure. In spite of this, we felt it would further support our argument, that basal accumulation of fluid stress was responsible for the extrusions, if we had some other independent means of removing fluid stress without directly tuning osmolarity through addition of extraneous solutes. We hence thought of culturing MDCK monolayers on hydrogels.

      Hydrogels were chosen because they can effectively dilute basal solute concentration (for reference ions (Na+) are continuously pumped out basally by the monolayer) and thereby reduce the associated osmotically induced water transport. Moreover, as fluid could freely move within the gel, the fluid stress can quickly equilibrate across the basal surface. In contrast, poorly water/solute permeable substrates will lead to localized spikes in solute concentration and transient basal regions with high fluid stress.

      To get a sense of the extent of difference in basal solute concentration between the two materials, we can do a quick hand-waving estimation. For monolayers on non-water-permeable PDMS of 20x20 mm, and using the laser wavelength (640 nm) for RICM as an extreme estimate of basal separation, we should expect ~0.25 µl of total basal water content. On the other hand, we typically produce our PAM gel slabs using ~150 µl of precursor solutions. This means that, given similar amounts of solute, PAM gels will lead to monolayer basal osmolarity that is around 3 orders of magnitude lower than monolayers on PDMS, producing significantly lower osmotic potential. This implies from the outset that we should expect high survivability of cells on these substrates. Indeed, later immunoblotting experiments showed MDCKs exhibiting hyper activated FAK and Akt on PAM gels.

      As for the 3D TFM used in this study, it is actually implemented from a well-established finite element method to solve inverse problems in engineering and has been repeatedly validated in larger scale engineering contexts (Ref. R7). The novelty and contribution of our article is in its adaptation to reconstruct cellular forces at microscopic scales.

      In brief, soft materials, such as hydrogels used in our case, are doped with fluorescent particles, coated with ECM, and then seeded with cells. The cells would exert forces that deform the soft substrate, thereby displacing the fluorescent particles from their equilibrium positions. This particle displacement can be extracted by producing an image pair with microscopy; first one with the cells, and subsequent one of relaxed gel after removal of cells with acutely cytotoxic reagents, such as SDS. There are several ways in which the displacement field can be extracted from the image pair. These include particle tracking velocimetry, particle image velocimetry, digital volume correlation, and optical flow.

      We employed 3D Farneback optical flow in our study for its superior computational performance. The method was validated using synthetically generated images from Sample 14 of the Society for Experimental Mechanics DIC challenge. The accuracy of the calculated displacements using the 3D Farneback optical flow was then compared to the provided ground truth displacements. For the highest frequency displacement image pairs, an x-component root-mean-square-error (RMSE) value of 0.0113 was observed. This was lower than the 0.0141 RMSE value for the Augmented Lagrangian Digital Volume Correlation method. This suggested that the 3D Farneback optical flow is capable of accurately calculating the displacement between two bead images.

      The displacement fields are then fed into a finite element suite (ANSYS in our case) along with the model and mesh of the underlying substrate structure to obtain node specific displacements. This is required because mech nodes do not typically align with voxel positions of displacements. With these node specific displacements, we subsequently solve the inverse problem for the forces using Tikhonov regularization (Ref. R8). The outcome is a vector of node specific forces.

      In light of the above, to physically validate the method in our context would require the generation of a known ground truth force on the scale of pico- to nano-newtons and subsequently image the particle displacements from this force using confocal microscopy. The force must then be released in situ in order for the relaxed gel to be imaged again. This is not a straightforward feat at this scale, and a method that immediately springs to mind is magnetic tweezers. Unfortunately, this is a tool that we cannot develop within reasonable timeframes, as the method will have to be seamlessly integrated with our spinning-disk confocal. However, as a compromise, we have included an in-silico validation with our revised manuscript.

      Specifically, given a finite element model with a predefined curvature, a known force was applied to the surface of the model (Author response image 7A). The resulting displacements were then calculated from the finite element solution. A 10% random noise is then added to the resulting displacement. The traction force recovery (Fig. R2-1 B) was then performed using the in-silico noisy displacements. To evaluate the accuracy of the recovery, the cosine similarity along with the mean norm of the force vectors were calculated. A value closer to 1 for both evaluation metrics indicates a more accurate reconstruction of the simulated traction force. The cosine similarity of the recovered traction forces to the original applied force was 0.977±0.056 while the norm of the recovered traction forces as a proportion of the original applied force was 1.016±0.165. As both values are close to 1 (i.e., identical), this suggested that the traction forces could be satisfactorily recovered using the finite-element based method.

      In response to the reviewer’s recommendations then, additional content has been included in the main text to explain the use of PAM gels and the workings of our 3D TFM pipeline.

      Ref R7. James F. Doyle, Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems (John Wiley & Sons, Chichester, 2004).

      Ref R8. Per Christian Hansen, Discrete Inverse Problems: Insight and Algorithms (siam, Philadelphia, 2010).

      Author response image 7.

      (A) shows simulated force field to generate simulated displacements. (B) shows force field reconstructed from simulated displacements with noise.

      Recommendation 3: The authors show nuclear deformation on the hills and use this as evidence for a resultant downward-pointing force vector. This has, indeed, also been observed in other works referenced by the authors (e.g. Werner et al.), and could be interesting evidence to support the current observations, provided the authors also show a nuclear shape on the concave and flat regions. The authors could potentially also characterize this shape change better using higher-resolution data.

      Response 3: We characterized nucleus deformation using Hoechst-stained samples as per recommendation. The deformation is estimated by dividing segmented nuclei volumes by best-fit ellipsoid volumes of same objects. In this way, objects exhibiting minimal bending will lead to values close to 1.0. The obtained graph is shown in figure Author response image 8B (and manuscript Figure 3D).

      Author response image 8.

      (A) an example of deformed nuclei on 50 µm wave hill region. (B) a Violin plot of calculated nuclear deformations across dimensions and features using segmented volume normalized against best-fit ellipsoid volume.

      Our quantifications show a statistically significant difference in nuclei deformation measure medians between hill and valley cells on the 50 µm (0.973 vs 0.982) and 100 µm (0.971 vs 0.979) waves; this indicates that cells on the hills tend to have more deformed nuclei compared to cells in the valleys. Meanwhile, no significant difference was found for a similar comparison on 200 µm (0.978 vs 0.978) samples. For reference, the median found for cells pooled from planar regions was 0.975.

      In response to the reviewer’s suggestions Figure 3 of our manuscript has been updated to include the new results on nuclei deformation. The text has also been updated to account for the new information to support our claims. The statistics are included in a new summary data table in Supplementary File 6.

      Recommendation 4: The U-net for extrusion detection is a central tool used within this study, though the explanation and particularly validation of the tool are somewhat lacking. More clarity in the explanation and more examples of good (or bad) detections would help establish this tool as a more robust component of the data collection (on all geometries).

      Response 4: The architecture of the neural network used in this study is outlined in supplementary figure S5a. To validate the performance of the model, a test dataset consisting of 200 positive examples and 100 negative examples were fed into the network and the resulting prediction was obtained from model. The confusion matrix of the model is shown in supplementary figure S5c. The weighted precision and recall of the model are 0.958 and 0.953 respectively.

      Additionally, we have included examples of false positive and false negative detections in Figure 1-figure supplement 5 (Author response image 8). For false positive detections, these were typically observed to be extrusions that were labelled to have occurred the frame prior to the frame of interest (Author response image 9 bottom sequence). However, as the extrusion process is incomplete in the prior frame, there are still changes in the extruded cell body and the network falsely predicts this as a detection.

      Author response image 9.

      Examples of false negative and false positive extrusions registration.

      Recommendation 5: The authors study the involvement of FAK in the observed curvature-dependent and hydraulic stress-dependent spatial regulation of cell extrusion. In one of the experiments, the authors supplement the cell medium with FAK inhibitors, though only in a hyper-osmotic medium. They show that FAK inhibition counteracts the extrusion-suppressing effect of a hyper-osmotic medium. However, no data is shown on the effect of FAK inhibitors within the control medium. Would the extrusion rates be even higher then?

      Response 4: We proceeded, as suggested by the reviewer, to explore the effects of the FAK inhibitor on MDCK monolayers in our control medium. The results revealed that, at the 3 µM FAK concentration, where cells in sucrose media showed an elevated extrusion rate, monolayers in control medium quickly suffered massive cell death (Author response image 10) similar to what was seen when 6 µM FAK was introduced to sucrose medium.

      This finding suggests that osmolarity protects against FAK inhibitors in a dose dependent manner. Moreover, as cell extrusions require an intact monolayer, its rates cannot increase indefinitely: a point will be reached where an intact monolayer can no longer be maintained.

      We have updated the main text of our article to mention this observation, and also included a new time-lapse (Video 22) to demonstrate the effect.

      Author response image 10.

      Timelapse snapshot of MDCK monolayers over waves 4 hours after inclusion of focal adhesion kinase inhibitor.

      Recommendation 6: The supplementary videos show two fields of view next to each other, which is not immediately clear to the viewer. I strongly advise the authors to add a clear border between the two panels, so that it is clear that the cells from one panel are not migrating into the next panel.

      Response 6: A distinctive border has been added to the movies to separate panels showing different focal planes of the same stack.

      Recommendation 7: The general quality and layout of the figures could be improved. Some figures would benefit from higher-resolution or larger cell images (e.g. Figure 2A, C, D), and the organisation of subpanels could be improved (e.g. especially in Figure 2). The box plots and bar graphs are also not consistent throughout the manuscript in terms of colouring and style, which should be improved.

      Response 7: We have enlarged the figures in question accordingly, at the cost of reducing some information. However, the full scope of the sub-figures remains accessible in the supplementary movies. We have also tried to change the placement of the panels to improve readability. We have also adjusted the valley, hill, and flat coloring scheme for the extrusion boxplots in Figures 1 and 2 to make them consistent.

      Recommendation 8: The graphs in Figures 3E and F are confusing and difficult to interpret. The x-axis states "Position along curve in radians" but it is unclear how to relate this to the position on the wavy substrate. The graphs also have a second vertical axis on the right ("valley-interface-hill"), which adds to the confusion. I would recommend the authors provide more explanation and consider a different approach of plotting this.

      Response 8: We have removed the confusing plot of cross-sectional profile from the force graphs. To indicate positions on the waves, we have augmented radian values with Hill, Interface, and Valley accordingly.

      Recommendation 9: Specify which silicone was used for the low-stiffness silicone substrates in the methods and in the main text.

      Response 9: CY52 has been added to the main-text, next to the first appearance of the word soft silicone, to be consistent with the figures.

      Recommendation 10: The flow lines that are plotted over the RICM data make it difficult to see the underlying RICM images. I would advise to also show the RICM images without the flow lines.

      Response 10: The original movie S15 (now Video 16) showing the RICM overlapped with optical flow paths has now been replaced by a movie showing the same, but with the flow paths and RICM in separate panels.

      Recommendation 11: In the first paragraph of the discussion, the authors write: "And this difference was both dependent on the sense (positive or negative)...". This is superfluous since the authors already mentioned earlier in the paragraph that the convex and concave regions (i.e. different signs of curvature) show differences in extrusion rates.

      Response 11: The sentence has been changed to “And this difference was also dependent on the degree of curvature.”

      Recommendation 12: In the second paragraph of the discussion, the authors mention that "basal fluid spaces under monolayers in hill regions were found consistently smaller than those in valley regions". Is this data shown in the figures of the manuscript? If so, a reference should be made because it was unclear to me.

      Response 12: This statement is an inference from the comparison of the hill and valley RICM grey values. Specifically, RICM intensities are direct surrogates for basal separations (i.e., fluid space (as there cannot be a vacuum)) by virtue of the physics underlying the effect. To be more precise then, “inferred from RICM intensity differences (Figure 2I)” has been added to support the statement.

      Recommendation 13: On page 7 of the discussion, the authors talk about positively and negatively curved surfaces. This type of description should be avoided, as this depends on the definition of the surface normal (i.e. is positive convex or concave?). Rather use convex and concave in this context.

      Response 13: The wording has been changed accordingly.

      Recommendation 14: The label of Table 8 reads "Table 2".

      Response 14: The error has been corrected.

      Reviewer #3

      Recommendation 1: The central finding seems to be opposite to an earlier report (J Cell Sci (2019) 132, jcs222372), where MDCK cells in curved alginate tubes exhibit increased extrusion on a convex surface. I suggest that you comment on possible explanations for the different behaviors.

      Response 1: The article in question primarily reported the phenomenon of MDCK and J3B1A monolayers detaching from the concave alginate tube walls coated with Matrigel. The authors attributed this to the curvature induced out-of-plane forces towards the center of the tubes. Up to this point, the findings and interpretation are consistent with our current study where we also find a similar force trend in concave regions.

      To further lend support to the importance of curvature in inducing detachment, the authors cleverly bent the tubes to introduce asymmetry in curvature between outer and inner surfaces. Specifically, the outside bend is concave in both principal directions, whereas the inside bend is convex in one of its principal directions. As expected, the authors found that detachment rates from the outer surface were much larger compared to the inner one. Again, the observations and interpretations are consistent with our own findings; the convex direction will generate out-of-plane forces pointing into the surface, serving to stabilize the monolayer against the substrate. It should be noted however, since the inner-side tube is characterized by both convex and concave curvatures in its two principal directions, the resulting behavior of overlaying monolayers will depend on which of the two resulting forces become dominant. So, for gradual bends, one should expect the monolayers to still be able to detach from the inner tube surface. This is what was reported in their findings.

      For their extrusion observations, I am surprised. Because their whole material (hydrogels) is presumably both solute and water permeable, I would be more inclined to expect very few extrusions irrespective of curvature. This is indeed the case with our study of MDCKs on PAM hydrogels, where the hydrogel substrate effectively buffers against the quick build-up of solute concentration and basal hydraulic stress. Without the latter, concave monolayer forces alone are unlikely to be able to disrupt cell focal adhesions. Indeed, the detachments seen in their study are more likely by exfoliation of Matrigel rather than pulling cells off Matrigel matrix entirely.

      My guess is that the extrusions seen in their study are solely of the canonical crowding effect. If this was the case, then the detached monolayer on the outside bend could buffer against crowding pressure by buckling. Meanwhile, the monolayer on the inside bend, being attached to the surface, can only regulate crowding pressure by removing cells through extrusions. This phenomenon should be particular to soft matrices such as Matrigel. Using stiffer and covalently bonded ECM should be sufficient to prevent monolayers from detaching, leading to similar extrusion behaviors. In response to the reviewer’s recommendation then, we have included a short paragraph to state the points discussed in this response.

      Recommendation 2: Fig 3E, F: The quantities displayed on the panels are not forces, but have units of pressure (or stress).

      Response 2: we have changed “force” to “stress” according to the reviewer’s suggestion. The reason we kept the use of force in the original text was due to the fact that we were reconstructing forces. Due to discretization, the resulting forces will inevitably be assigned to element nodes. In between the nodes, in the faces, there will be no information. So, in order to have some form of continuity to plot, the face forces are obtained by averaging the 4 nodes around the element face. Unfortunately, element face areas are not typically of the same size, therefore the average forces obtained needs to be further normalized against the face area, leading to a quantity that has units of stress.

      Recommendation 3: Fig 2D: Asterisks are hard to see.

      Response 3: the color of the asterisks has been changed to green for better clarity against a B&W background.

      Recommendation 4: p 19, l 7: Word missing in "the of molding"

      Response 4: the typo has been amended to “the molding of”.

    1. Author response

      Reviewer #1 (Public Review):

      Loss of skeletal muscle tissue from traumatic injury is debilitating. Restoring muscle mass and function remains a challenge. Using a mouse model, the authors performed punch biopsy injuries of the tibialis anterior in which the volume of muscle loss was varied to result in either successful muscle regeneration with a smaller injury or the unsuccessful outcome of fibrosis with a larger injury. For both conditions, a novel lipidomic profiling approach was used to evaluate pro-inflammatory and anti-inflammatory lipids at key time points post-injury with respect to collagen deposition, macrophage infiltration, muscle fiber regeneration, and force produced during isometric contractions. A key finding was that while all lipids increased at 3 days post-injury (dpi) and then declined through 14 dpi, pro-inflammatory lipids remained elevated during recovery from greater muscle loss which led to fibrosis. Maresin 1 was identified as an anti-inflammatory lipid that, when injected into injured muscle, reduced fibrosis, improved muscle regeneration, and partially restored the strength of contraction.

      Strengths: The metabolipidomic profiling demonstrated here represents a novel approach to identifying pro-inflammatory and anti-inflammatory mediators of successful vs unsuccessful skeletal muscle regeneration. These findings may translate into a new therapeutic approach for promoting successful regeneration following volumetric muscle loss.

      Weaknesses: Certain aspects of the data are overinterpreted; while some measures appear to have an adequate sample size to make sound conclusions, other measures are likely to lack sufficient statistical power given their variability. Presentation of the results would be strengthened by adhering to consistent terminology and labeling of figures throughout; specific examples are identified in recommendations to the authors. Several of the images used to illustrate differences between treatments are unconvincing because differences are not readily.

      We agree with the reviewer and have scaled back some of the interpretation as well as clarified the sample sizes. We have also amended the text to maintain a consistent terminology.

      Reviewer #2 (Public Review):

      The study is novel and valuable to the field and provides new and important insights into the role of lipid mediators in VML injuries. By expanding our understanding of the mechanisms that regulate muscle regeneration following VML injuries, the study has the potential to guide the development of novel therapeutic interventions that promote tissue repair and recovery. The data presented in the manuscript is of good quality. The findings and conclusions are supported by a variety of different analyses (e.g., gene expression, histology, flow cytometry).

      Despite the strengths of the study, some limitations are identified. Specifically, the impact of maresin 1 on macrophage phenotypes (M1/M2) could have been explored in more detail using histological or protein expression analysis. Moreover, additional data are needed to substantiate the claims about increased muscle regeneration. Lastly, the study does not address myofiber innervation, myofiber-type transitions, or motor unit remodeling.

      We thank the reviewer for the suggestions and have performed a more in-depth exploration of macrophage phenotypes through additional scRNA-sequencing analysis. We have also included additional data describing how Maresin 1 impacts muscle stem cells through cyclic AMP. Respectfully, profiling myofiber innervation, motor unit remodeling and myofiber-type transitions are beyond the scope of this manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      In this work George et al. describe RatInABox, a software system for generating surrogate locomotion trajectories and neural data to simulate the effects of a rodent moving about an arena. This work is aimed at researchers that study rodent navigation and its neural machinery.

      Strengths:

      • The software contains several helpful features. It has the ability to import existing movement traces and interpolate data with lower sampling rates. It allows varying the degree to which rodents stay near the walls of the arena. It appears to be able to simulate place cells, grid cells, and some other features.

      • The architecture seems fine and the code is in a language that will be accessible to many labs.

      • There is convincing validation of velocity statistics. There are examples shown of position data, which seem to generally match between data and simulation.

      Weaknesses:

      • There is little analysis of position statistics. I am not sure this is needed, but the software might end up more powerful and the paper higher impact if some position analysis was done. Based on the traces shown, it seems possible that some additional parameters might be needed to simulate position/occupancy traces whose statistics match the data.

      Thank you for this suggestion. We have added a new panel to figure 2 showing a histogram of the time the agent spends at positions of increasing distance from the nearest wall. As you can see, RatInABox is a good fit to the real locomotion data: positions very near the wall are under-explored (in the real data this is probably because whiskers and physical body size block positions very close to the wall) and positions just away from but close to the wall are slightly over explored (an effect known as thigmotaxis, already discussed in the manuscript).

      As you correctly suspected, fitting this warranted a new parameter which controls the strength of the wall repulsion, we call this “wall_repel_strength”. The motion model hasn’t mathematically changed, all we did was take a parameter which was originally a fixed constant 1, unavailable to the user, and made it a variable which can be changed (see methods section 6.1.3 for maths). The curves fit best when wall_repel_strength ~= 2. Methods and parameters table have been updated accordingly. See Fig. 2e.

      • The overall impact of this work is somewhat limited. It is not completely clear how many labs might use this, or have a need for it. The introduction could have provided more specificity about examples of past work that would have been better done with this tool.

      At the point of publication we, like yourself, also didn’t know to what extent there would be a market for this toolkit however we were pleased to find that there was. In its initial 11 months RatInABox has accumulated a growing, global user base, over 120 stars on Github and north of 17,000 downloads through PyPI. We have accumulated a list of testimonials[5] from users of the package vouching for its utility and ease of use, four of which are abridged below. These testimonials come from a diverse group of 9 researchers spanning 6 countries across 4 continents and varying career stages from pre-doctoral researchers with little computational exposure to tenured PIs. Finally, not only does the community use RatInABox they are also building it: at the time of writing RatInABx has received logged 20 GitHub “Issues” and 28 “pull requests” from external users (i.e. those who aren’t authors on this manuscript) ranging from small discussions and bug-fixes to significant new features, demos and wrappers.

      Abridged testimonials:

      ● “As a medical graduate from Pakistan with little computational background…I found RatInABox to be a great learning and teaching tool, particularly for those who are underprivileged and new to computational neuroscience.” - Muhammad Kaleem, King Edward Medical University, Pakistan

      ● “RatInABox has been critical to the progress of my postdoctoral work. I believe it has the strong potential to become a cornerstone tool for realistic behavioural and neuronal modelling” - Dr. Colleen Gillon, Imperial College London, UK

      ● “As a student studying mathematics at the University of Ghana, I would recommend RatInABox to anyone looking to learn or teach concepts in computational neuroscience.” - Kojo Nketia, University of Ghana, Ghana

      ● “RatInABox has established a new foundation and common space for advances in cognitive mapping research.” - Dr. Quinn Lee, McGill, Canada

      The introduction continues to include the following sentence highlighting examples of past work which relied of generating artificial movement and/or neural dat and which, by implication could have been done better (or at least accelerated and standardised) using our toolbox.

      “Indeed, many past[13, 14, 15] and recent[16, 17, 18, 19, 6, 20, 21] models have relied on artificially generated movement trajectories and neural data.”

      • Presentation: Some discussion of case studies in Introduction might address the above point on impact. It would be useful to have more discussion of how general the software is, and why the current feature set was chosen. For example, how well does RatInABox deal with environments of arbitrary shape? T-mazes? It might help illustrate the tool's generality to move some of the examples in supplementary figure to main text - or just summarize them in a main text figure/panel.

      Thank you for this question. Since the initial submission of this manuscript RatInABox has been upgraded and environments have become substantially more “general”. Environments can now be of arbitrary shape (including T-mazes), boundaries can be curved, they can contain holes and can also contain objects (0-dimensional points which act as visual cues). A few examples are showcased in the updated figure 1 panel e.

      To further illustrate the tools generality beyond the structure of the environment we continue to summarise the reinforcement learning example (Fig. 3e) and neural decoding example in section 3.1. In addition to this we have added three new panels into figure 3 highlighting new features which, we hope you will agree, make RatInABox significantly more powerful and general and satisfy your suggestion of clarifying utility and generality in the manuscript directly.

      On the topic of generality, we wrote the manuscript in such a way as to demonstrate how the rich variety of ways RatInABox can be used without providing an exhaustive list of potential applications. For example, RatInABox can be used to study neural decoding and it can be used to study reinforcement learning but not because it was purpose built with these use-cases in mind. Rather because it contains a set of core tools designed to support spatial navigation and neural representations in general. For this reason we would rather keep the demonstrative examples as supplements and implement your suggestion of further raising attention to the large array of tutorials and demos provided on the GitHub repository by modifying the final paragraph of section 3.1 to read:

      “Additional tutorials, not described here but available online, demonstrate how RatInABox can be used to model splitter cells, conjunctive grid cells, biologically plausible path integration, successor features, deep actor-critic RL, whisker cells and more. Despite including these examples we stress that they are not exhaustive. RatInABox provides the framework and primitive classes/functions from which highly advanced simulations such as these can be built.”

      Reviewer #3 (Public Review):

      George et al. present a convincing new Python toolbox that allows researchers to generate synthetic behavior and neural data specifically focusing on hippocampal functional cell types (place cells, grid cells, boundary vector cells, head direction cells). This is highly useful for theory-driven research where synthetic benchmarks should be used. Beyond just navigation, it can be highly useful for novel tool development that requires jointly modeling behavior and neural data. The code is well organized and written and it was easy for us to test.

      We have a few constructive points that they might want to consider.

      • Right now the code only supports X,Y movements, but Z is also critical and opens new questions in 3D coding of space (such as grid cells in bats, etc). Many animals effectively navigate in 2D, as a whole, but they certainly make a large number of 3D head movements, and modeling this will become increasingly important and the authors should consider how to support this.

      Agents now have a dedicated head direction variable (before head direction was just assumed to be the normalised velocity vector). By default this just smoothes and normalises the velocity but, in theory, could be accessed and used to model more complex head direction dynamics. This is described in the updated methods section.

      In general, we try to tread a careful line. For example we embrace certain aspects of physical and biological realism (e.g. modelling environments as continuous, or fitting motion to real behaviour) and avoid others (such as the biophysics/biochemisty of individual neurons, or the mechanical complexities of joint/muscle modelling). It is hard to decide where to draw but we have a few guiding principles:

      1. RatInABox is most well suited for normative modelling and neuroAI-style probing questions at the level of behaviour and representations. We consciously avoid unnecessary complexities that do not directly contribute to these domains.

      2. Compute: To best accelerate research we think the package should remain fast and lightweight. Certain features are ignored if computational cost outweighs their benefit.

      3. Users: If, and as, users require complexities e.g. 3D head movements, we will consider adding them to the code base.

      For now we believe proper 3D motion is out of scope for RatInABox. Calculating motion near walls is already surprisingly complex and to do this in 3D would be challenging. Furthermore all cell classes would need to be rewritten too. This would be a large undertaking probably requiring rewriting the package from scratch, or making a new package RatInABox3D (BatInABox?) altogether, something which we don’t intend to undertake right now. One option, if users really needed 3D trajectory data they could quite straightforwardly simulate a 2D Environment (X,Y) and a 1D Environment (Z) independently. With this method (X,Y) and (Z) motion would be entirely independent which is of unrealistic but, depending on the use case, may well be sufficient.

      Alternatively, as you said that many agents effectively navigate in 2D but show complex 3D head and other body movements, RatInABox could interface with and feed data downstream to other softwares (for example Mujoco[11]) which specialise in joint/muscle modelling. This would be a very legitimate use-case for RatInABox.

      We’ve flagged all of these assumptions and limitations in a new body of text added to the discussion:

      “Our package is not the first to model neural data[37, 38, 39] or spatial behaviour[40, 41], yet it distinguishes itself by integrating these two aspects within a unified, lightweight framework. The modelling approach employed by RatInABox involves certain assumptions:

      1. It does not engage in the detailed exploration of biophysical[37, 39] or biochemical[38] aspects of neural modelling, nor does it delve into the mechanical intricacies of joint and muscle modelling[40, 41]. While these elements are crucial in specific scenarios, they demand substantial computational resources and become less pertinent in studies focused on higher-level questions about behaviour and neural representations.

      2. A focus of our package is modelling experimental paradigms commonly used to study spatially modulated neural activity and behaviour in rodents. Consequently, environments are currently restricted to being two-dimensional and planar, precluding the exploration of three-dimensional settings. However, in principle, these limitations can be relaxed in the future.

      3. RatInABox avoids the oversimplifications commonly found in discrete modelling, predominant in reinforcement learning[22, 23], which we believe impede its relevance to neuroscience.

      4. Currently, inputs from different sensory modalities, such as vision or olfaction, are not explicitly considered. Instead, sensory input is represented implicitly through efficient allocentric or egocentric representations. If necessary, one could use the RatInABox API in conjunction with a third-party computer graphics engine to circumvent this limitation.

      5. Finally, focus has been given to generating synthetic data from steady-state systems. Hence, by default, agents and neurons do not explicitly include learning, plasticity or adaptation. Nevertheless we have shown that a minimal set of features such as parameterised function-approximator neurons and policy control enable a variety of experience-driven changes in behaviour the cell responses[42, 43] to be modelled within the framework.

      • What about other environments that are not "Boxes" as in the name - can the environment only be a Box, what about a circular environment? Or Bat flight? This also has implications for the velocity of the agent, etc. What are the parameters for the motion model to simulate a bat, which likely has a higher velocity than a rat?

      Thank you for this question. Since the initial submission of this manuscript RatInABox has been upgraded and environments have become substantially more “general”. Environments can now be of arbitrary shape (including circular), boundaries can be curved, they can contain holes and can also contain objects (0-dimensional points which act as visual cues). A few examples are showcased in the updated figure 1 panel e.

      Whilst we don’t know the exact parameters for bat flight users could fairly straightforwardly figure these out themselves and set them using the motion parameters as shown in the table below. We would guess that bats have a higher average speed (speed_mean) and a longer decoherence time due to increased inertia (speed_coherence_time), so the following code might roughly simulate a bat flying around in a 10 x 10 m environment. Author response image 1 shows all Agent parameters which can be set to vary the random motion model.

      Author response image 1.

      • Semi-related, the name suggests limitations: why Rat? Why not Agent? (But its a personal choice)

      We came up with the name “RatInABox” when we developed this software to study hippocampal representations of an artificial rat moving around a closed 2D world (a box). We also fitted the random motion model to open-field exploration data from rats. You’re right that it is not limited to rodents but for better or for worse it’s probably too late for a rebrand!

      • A future extension (or now) could be the ability to interface with common trajectory estimation tools; for example, taking in the (X, Y, (Z), time) outputs of animal pose estimation tools (like DeepLabCut or such) would also allow experimentalists to generate neural synthetic data from other sources of real-behavior.

      This is actually already possible via our “Agent.import_trajectory()” method. Users can pass an array of time stamps and an array of positions into the Agent class which will be loaded and smoothly interpolated along as shown here in Fig. 3a or demonstrated in these two new papers[9,10] who used RatInABox by loading in behavioural trajectories.

      • What if a place cell is not encoding place but is influenced by reward or encodes a more abstract concept? Should a PlaceCell class inherit from an AbstractPlaceCell class, which could be used for encoding more conceptual spaces? How could their tool support this?

      In fact PlaceCells already inherit from a more abstract class (Neurons) which contains basic infrastructure for initialisation, saving data, and plotting data etc. We prefer the solution that users can write their own cell classes which inherit from Neurons (or PlaceCells if they wish). Then, users need only write a new get_state() method which can be as simple or as complicated as they like. Here are two examples we’ve already made which can be found on the GitHub:

      Author response image 2.

      Phase precession: PhasePrecessingPlaceCells(PlaceCells)[12] inherit from PlaceCells and modulate their firing rate by multiplying it by a phase dependent factor causing them to “phase precess”.

      Splitter cells: Perhaps users wish to model PlaceCells that are modulated by recent history of the Agent, for example which arm of a figure-8 maze it just came down. This is observed in hippocampal “splitter cell”. In this demo[1] SplitterCells(PlaceCells) inherit from PlaceCells and modulate their firing rate according to which arm was last travelled along.

      • This a bit odd in the Discussion: "If there is a small contribution you would like to make, please open a pull request. If there is a larger contribution you are considering, please contact the corresponding author3" This should be left to the repo contribution guide, which ideally shows people how to contribute and your expectations (code formatting guide, how to use git, etc). Also this can be very off-putting to new contributors: what is small? What is big? we suggest use more inclusive language.

      We’ve removed this line and left it to the GitHub repository to describe how contributions can be made.

      • Could you expand on the run time for BoundaryVectorCells, namely, for how long of an exploration period? We found it was on the order of 1 min to simulate 30 min of exploration (which is of course fast, but mentioning relative times would be useful).

      Absolutely. How long it takes to simulate BoundaryVectorCells will depend on the discretisation timestep and how many neurons you simulate. Assuming you used the default values (dt = 0.1, n = 10) then the motion model should dominate compute time. This is evident from our analysis in Figure 3f which shows that the update time for n = 100 BVCs is on par with the update time for the random motion model, therefore for only n = 10 BVCs, the motion model should dominate compute time.

      So how long should this take? Fig. 3f shows the motion model takes ~10-3 s per update. One hour of simulation equals this will be 3600/dt = 36,000 updates, which would therefore take about 72,000*10-3 s = 36 seconds. So your estimate of 1 minute seems to be in the right ballpark and consistent with the data we show in the paper.

      Interestingly this corroborates the results in a new inset panel where we calculated the total time for cell and motion model updates for a PlaceCell population of increasing size (from n = 10 to 1,000,000 cells). It shows that the motion model dominates compute time up to approximately n = 1000 PlaceCells (for BoundaryVectorCells it’s probably closer to n = 100) beyond which cell updates dominate and the time scales linearly.

      These are useful and non-trivial insights as they tell us that the RatInABox neuron models are quite efficient relative to the RatInABox random motion model (something we hope to optimise further down the line). We’ve added the following sentence to the results:

      “Our testing (Fig. 3f, inset) reveals that the combined time for updating the motion model and a population of PlaceCells scales sublinearly O(1) for small populations n > 1000 where updating the random motion model dominates compute time, and linearly for large populations n > 1000. PlaceCells, BoundaryVectorCells and the Agent motion model update times will be additionally affected by the number of walls/barriers in the Environment. 1D simulations are significantly quicker than 2D simulations due to the reduced computational load of the 1D geometry.”

      And this sentence to section 2:

      “RatInABox is fundamentally continuous in space and time. Position and velocity are never discretised but are instead stored as continuous values and used to determine cell activity online, as exploration occurs. This differs from other models which are either discrete (e.g. “gridworld” or Markov decision processes) or approximate continuous rate maps using a cached list of rates precalculated on a discretised grid of locations. Modelling time and space continuously more accurately reflects real-world physics, making simulations smooth and amenable to fast or dynamic neural processes which are not well accommodated by discretised motion simulators. Despite this, RatInABox is still fast; to simulate 100 PlaceCell for 10 minutes of random 2D motion (dt = 0.1 s) it takes about 2 seconds on a consumer grade CPU laptop (or 7 seconds for BoundaryVectorCells).”

      Whilst this would be very interesting it would likely represent quite a significant edit, requiring rewriting of almost all the geometry-handling code. We’re happy to consider changes like these according to (i) how simple they will be to implement, (ii) how disruptive they will be to the existing API, (iii) how many users would benefit from the change. If many users of the package request this we will consider ways to support it.

      • In general, the set of default parameters might want to be included in the main text (vs in the supplement).

      We also considered this but decided to leave them in the methods for now. The exact value of these parameters are subject to change in future versions of the software. Also, we’d prefer for the main text to provide a low-detail high-level description of the software and the methods to provide a place for keen readers to dive into the mathematical and coding specifics.

      • It still says you can only simulate 4 velocity or head directions, which might be limiting.

      Thanks for catching this. This constraint has been relaxed. Users can now simulate an arbitrary number of head direction cells with arbitrary tuning directions and tuning widths. The methods have been adjusted to reflect this (see section 6.3.4).

      • The code license should be mentioned in the Methods.

      We have added the following section to the methods:

      6.6 License RatInABox is currently distributed under an MIT License, meaning users are permitted to use, copy, modify, merge publish, distribute, sublicense and sell copies of the software.

    1. Author Response

      LD Score regression (LDSC) is a software tool widely used in the field of genome-wide association studies (GWAS) for estimating heritabilities, genetic correlations, the extent of confounding, and biological enrichment. LDSC is for the most part not regarded as an accurate estimator of \emph{absolute} heritability (although useful for relative comparisons). It is relied on primarily for its other uses (e.g., estimating genetic correlations). The authors propose a new method called \texttt{i-LDSC}, extending the original LDSC in order to estimate a component of genetic variance in addition to the narrow-sense heritability---epistatic genetic variance, although not necessarily all of it. Epistasis in quantitative genetics refers to the component of genetic variance that cannot be captured by a linear model regressing total genetic values on single-SNP genotypes. \texttt{i-LDSC} seems aimed at estimating that part of the epistatic variance residing in statistical interactions between pairs of SNPs. To simplify, the basic model of \texttt{i-LDSC} for two SNPs $X_1$ and $X_2$ is

      \begin{equation}\label{eq:twoX} Y = X_1 \beta_1 + X_2 \beta_2 + X_1 X_2 \theta + E, \end{equation}

      and estimation of the epistatic variance associated with the product term proceeds through a variant of the original LD Score that measures the extent to which a SNP tags products of genotypes (rather than genotypes themselves). The authors conducted simulations to test their method and then applied it to a number of traits in the UK Biobank and Biobank Japan. They found that for all traits the additive genetic variance was larger than the epistatic, but for height the absolute size of the epistatic component was estimated to be non-negligible. An interpretation of the authors' results that perhaps cannot be ruled out, however, is that pairwise epistasis overall does not make a detectable contribution to the variance of quantitative traits.

      We thank the reviewer for carefully reading of our manuscript and we appreciate the constructive comments. Our responses and edits to the specific major comments and minor issues are given below.

      Major Comments

      This paper has a lot of strong points, and I commend the authors for the effort and ingenuity expended in tackling the difficult problem of estimating epistatic (non-additive) genetic variance from GWAS summary statistics. The mere possibility of the estimated univariate regression coefficient containing a contribution from epistasis, as represented in the manuscript's Equation~3 and elsewhere, is intriguing in and of itself.

      Is \texttt{i-LDSC} Estimating Epistasis?

      Perhaps the issue that has given me the most pause is uncertainty over whether the paper's method is really estimating the non-additive genetic variance, as this has been traditionally defined in quantitative genetics with great consequences for the correlations between relatives and evolutionary theory (Fisher, 1930, 1941; Lynch & Walsh, 1998; Burger, 2000; Ewens, 2004).

      Let us call the expected phenotypic value of a given multiple-SNP genotype the \emph{total genetic value}. If we apply least-squares regression to obtain the coefficients of the SNPs in a simple linear model predicting the total genetic values, then the partial regression coefficients are the \emph{average effects of gene substitution} and the variance in the predicted values resulting from the model is called the \emph{additive genetic variance}. (This is all theoretical and definitional, not empirical. We do not actually perform this regression.) The variance in the residuals---the differences between the total genetic values and the additive predicted values---is the \emph{non-additive genetic variance}. Notice that this is an orthogonal decomposition of the variance in total genetic values. Thus, in order for the variance in $\mathbf{W}\bm{\theta}$ to qualify as the non-additive genetic variance, it must be orthogonal to $\mathbf{X} \bm{\beta}$.

      At first, I very much doubted whether this is generally true. And I was not reassured by the authors' reply to Reviewer~1 on this point, which did not seem to show any grasp of the issue at all. But to my surprise I discovered in elementary simulations of Equation~\ref{eq:twoX} above that for mean-centered $X_1$ and $X_2$, $(X_1 \beta_1 + X_2 \beta_2)$ is uncorrelated with $X_1 X_2 \theta$ for seemingly arbitrary correlation between $X_1$ and $X_2$. A partition of the outcome's variance between these two components is thus an orthogonal decomposition after all. Furthermore, the result seems general for any number of independent variables and their pairwise products. I am also encouraged by the report that standard and interaction LD Scores are ``lowly correlated' (line~179), meaning that the standard LDSC slope is scarcely affected by the inclusion of interaction LD Scores in the regression; this behavior is what we should expect from an orthogonal decomposition.

      I have therefore come to the view that the additional variance component estimated by \texttt{i-LDSC} has a close correspondence with the epistatic (non-additive) genetic variance after all.

      In order to make this point transparent to all readers, however, I think that the authors should put much more effort into placing their work into the traditional framework of the field. It was certainly not intuitive to multiple reviewers that $\mathbf{X}\bm{\beta}$ is orthogonal to $\mathbf{W}\bm{\theta}$. There are even contrary suggestions. For if $(\mathbf{X}\bm{\beta})^\intercal \mathbf{W} \bm{\theta} = \bm{\beta}^\intercal \mathbf{X}^\intercal \mathbf{W} \bm{\theta} $ is to equal zero, we know that we can't get there by $\mathbf{X}^\intercal \mathbf{W}$ equaling zero because then the method has nothing to go on (e.g., line~139). We thus have a quadratic form---each term being the weighted product of an average (additive) effect and an interaction coefficient---needing to cancel out to equal zero. I wonder if the authors can put forth a rigorous argument or compelling intuition for why this should be the case.

      In the case of two polymorphic sites, quantitative genetics has traditionally partitioned the total genetic variance into the following orthogonal components:

      \begin{itemize}

      \item additive genetic variance, $\sigma^2_A$, the numerator of the narrow-sense heritability;

      \item dominance genetic variance, $\sigma^2_D$;

      \item additive-by-additive genetic variance, $\sigma^2_{AA}$;

      \item additive-by-dominance genetic variance, $\sigma^2_{AD}$; and

      \item dominance-by-dominance genetic variance, $\sigma^2_{DD}$.

      \end{itemize}

      See Lynch and Walsh (1998, pp. 88-92) for a thorough numerical example. This decomposition is not arbitrary or trivial, since each component has a distinct coefficient in the correlations between relatives. Is it possible for the authors to relate the variance associated with their $\mathbf{W}\bm{\theta}$ to this traditional decomposition? Besides justifying the work in this paper, the establishment of a relationship can have the possible practical benefit of allowing \texttt{i-LDSC} estimates of non-additive genetic variance to be checked against empirical correlations between relatives. For example, if we know from other methods that $\sigma^2_D$ is negligible but that \texttt{i-LDSC} returns a sizable $\sigma^2_{AA}$, we might predict that the parent-offspring correlation should be equal to the sibling correlation; a sizable $\sigma^2_D$ would make the sibling correlation higher. Admittedly, however, such an exercise can get rather complicated for the variance contributed by pairs of SNPs that are close together (Lynch & Walsh, 1998, pp. 146-152).

      I would also like the authors to clarify whether LDSC consistently overestimates the narrow-sense heritability in the case that pairwise epistasis is present. The figures seem to show this. I have conflicting intuitions here. On the one hand, if GWAS summary statistics can be inflated by the tagging of epistasis, then it seems that LDSC should overestimate heritability (or at least this should be an upwardly biasing factor; other factors may lead the net bias to be different). On the other hand, if standard and interaction LD Scores are lowly correlated, then I feel that the inclusion of interaction LD Score in the regression should not strongly affect the coefficient of the standard LD Score. Relatedly, I find it rather curious that \texttt{i-LDSC} seems increasingly biased as the proportion of genetic variance that is non-additive goes up---but perhaps this is not too important, since such a high ratio of narrow-sense to broad-sense heritability is not realistic.

      We thank the reviewer for taking the time to thoughtfully offer more context on how we might situate the i-LDSC framework within the greater context of traditional quantitative genetics. We now formalize the interaction component used in the i-LDSC model as an estimate of the phenotypic variance explained by additive-by-additive interactions between genetic variants (which we denote by 𝜎" to follow the conventional notation). In the newly revised Material and Methods, we also show how the i-LDSC model can be formulated to include dominance effects in a more general framework. Our updated derivations provide two key takeaways.

      First, we assume that the additive and interaction effect sizes in the general model (𝜷,𝜽) are each normally distributed with variances proportional to their individual contributions to trait heritability: 𝛽& ∼ 𝒩(0, 𝜎"), 𝜃' ∼ 𝒩(0, 𝜎" ). This independence assumption implies that the additive and non- $ $$ additive components 𝑿𝜷 and 𝑾𝜽 are orthogonal where 𝔼[𝜷⊺𝑿⊺𝑾𝜽] = 𝔼[𝜷⊺]𝑿⊺𝑾𝔼[𝜽] = 𝟎. This is important because, as the reviewer points out, it means that there is a unique partitioning of genetic variance when studying a trait of interest. In the revised version of the manuscript, we show this derivation in the main text (see lines 129-143). We also extend this derivation in the Materials and Methods where we show the same result even after we include the presence of dominance effects in the generative model (see lines 415-417 and 438-457).

      Second, we show that the genotype matrix 𝑿 and the matrix of genetic interactions 𝑾 are not linearly dependent because the additive-by-additive effects between two SNPs are encoded as the Hadamard product of two genotypic vectors in the form 𝒘! = 𝒙" ∘ 𝒙# (which is a nonlinear function of the genotypes). Linear dependence would have implied that one could find a transformation between a SNP and an interaction term in the form 𝒘! = 𝑐 × 𝒙" for some constant 𝑐. However, despite their linear independence, 𝑿 and 𝑾 are themselves not orthogonal and still have a nonzero correlation. This implies that the inner product between genotypes and their interactions is nonzero 𝑿⊺𝑾 ≠ 𝟎. To see this, we focus on a focal SNP 𝒙& and consider three different types of interactions:

      • Scenario I: Interaction between a focal SNP with itself (𝒙" ∘ 𝒙").
      • Scenario II: Interaction between a focal SNP with a different SNP (𝒙" ∘ 𝒙#).
      • Scenario III: Interaction between a focal SNP with a pair of different SNPs (𝒙# ∘ 𝒙$).

      In the Materials and Methods of the revised manuscript, we now provide derivations showing when would expect nonzero correlation between 𝑿 and 𝑾 which rely on the fact that: (1) we assume that genotypes have been mean-centered and scaled to have unit variance, and (2) under Hardy-Weinberg equilibrium, SNPs marginally follow a binomial distribution 𝒙& ∼ 𝐵𝑖𝑛(2, 𝑝) where 𝑝 represents the minor allele frequency (MAF) (Wray et al. 2007, Genome Res; Lippert et al. 2013, Sci Rep). These new additions are given in new lines 460-485).

      Lastly, we agree with the reviewer that our results indicate that LDSC inflates estimates of SNP- based narrow-sense heritability. Our intuition for why this happens is largely consistent with the reviewer’s first point: since GWAS summary statistics can be inflated by the tagging of non- additive genetic variance, then it makes sense that LDSC should overestimate heritability. LDSC uses a univariate regression without the inclusion of cis-interaction scores. A simple consequence from “omitted variable bias” is likely happening where, since LDSC does not explicitly account for contributions from the tagged non-additive components which also contribute to the variance in the GWAS summary statistics, the estimate for the coefficient 𝜎" becomes slightly inflated.

      How Much Epistasis Is \texttt{i-LDSC} Detecting?

      I think the proper conclusion to be drawn from the authors' analyses is that statistically significant epistatic (non-additive) genetic variance was not detected. Specifically, I think that the analysis presented in Supplementary Table~S6 should be treated as a main analysis rather than a supplementary one, and the results here show no statistically significant epistasis. Let me explain.

      Most serious researchers, I think, treat LDSC as an unreliable estimator of narrow-sense heritability; it typically returns estimates that are too low. Not even the original LDSC paper pressed strongly to use the method for estimating $h^2$ (Bulik-Sullivan et al., 2015). As a practical matter, when researchers are focused on estimating absolute heritability with high accuracy, they usually turn to GCTA/GREML (Evans et al., 2018; Wainschtein et al., 2022).

      One reason for low estimates with LDSC is that if SNPs with higher LD Scores are less likely to be causal or to have large effect sizes, then the slope of univariate LDSC will not rise as much as it ``should' with increasing LD Score. This was a scenario actually simulated by the authors and displayed in their Supplementary Figure~S15. [Incidentally, the authors might have acknowledged earlier work in this vein. A simulation inducing a negative correlation between LD Scores and $\chi^2$ statistics was presented by Bulik-Sullivan et al. (2015, Supplementary Figure 7), and the potentially biasing effect of a correlation over SNPs between LD Scores and contributed genetic variance was a major theme of Lee et al. (2018).] A negative correlation between LD Score and contributed variance does seem to hold for a number of reasons, including the fact that regions of the genome with higher recombination rates tend to be more functional. In short, the authors did very well to carry out this simulation and to show in their Supplementary Figure~S15 that this flaw of LDSC in estimating narrow-sense heritability is also a flaw of \texttt{i-LDSC} in estimating broad-sense heritability. But they should have carried the investigation at least one step further, as I will explain below.

      Another reason for LDSC being a downwardly biased estimator of heritability is that it is often applied to meta-analyses of different cohorts, where heterogeneity (and possibly major but undetected errors by individual cohorts) lead to attenuation of the overall heritability (de Vlaming et al., 2017).

      The optimal case for using LDSC to estimate heritability, then, is incorporating the LD-related annotation introduced by Gazal et al. (2017) into a stratified-LDSC (s-LDSC) analysis of a single large cohort. This is analogous to the calculation of multiple GRMs defined by MAF and LD in the GCTA/GREML papers cited above. When this was done by Gazal et al. (2017, Supplementary Table 8b), the joint impact of the improvements was to increase the estimated narrow-sense heritability of height from 0.216 to 0.534.

      All of this has at least a few ramifications for \texttt{i-LDSC}. First, the authors do not consider whether a relationship between their interaction LD Scores and interaction effect sizes might bias their estimates. (This would be on top of any biasing relationship between standard LD Scores and linear effect sizes, as displayed in Supplementary Figure~S15.) I find some kind of statistical relationship over the whole genome, induced perhaps by evolutionary forces, between \emph{cis}-acting epistasis and interaction LD Scores to be plausible, albeit without intuition regarding the sign of any resulting bias. The authors should investigate this issue or at least mention it as a matter for future study. Second, it might be that the authors are comparing the estimates of broad-sense heritability in Table~1 to the wrong estimates of narrow-sense heritability. Although the estimates did come from single large cohorts, they seem to have been obtained with simple univariate LDSC rather than s-LDSC. When the estimate of $h^2$ obtained with LDSC is too low, some will suspect that the additional variance detected by \texttt{i-LDSC} is simply additive genetic variance missed by the downward bias of LDSC. Consider that the authors' own Supplementary Table~S6 gives s-LDSC heritability estimates that are consistently higher than the LDSC estimates in Table~1. E.g., the estimated $h^2$ of height goes from 0.37 to 0.43. The latter figure cuts quite a bit into the estimated broad-sense heritability of 0.48 obtained with \texttt{i-LDSC}.

      Here we come to a critical point. Lines 282--286 are not entirely clear, but I interpret them to mean that the manuscript's Equation~5 was expanded by stratifying $\ell$ into the components of s-LDSC and this was how the estimates in Supplementary Table~S6 were obtained. If that interpretation is correct, then the scenario of \texttt{i-LDSC} picking up missed additive genetic variance seems rather plausible. At the very least, the increases in broad-sense heritability reported in Supplementary Table~S6 are smaller in magnitude and \emph{not statistically significant}. Perhaps what this means is that the headline should be a \emph{negligible} contribution of pairwise epistasis revealed by this novel and ingenious method, analogous to what has been discovered with respect to dominance (Hivert et al., 2021; Pazokitoroudi et al., 2021; Okbay et al., 2022; Palmer et al., 2023).

      This is an excellent question raised by the reviewer and, again, we really appreciate such a thoughtful and thorough response. First, we completely agree with the reviewer that the s-LDSC estimates previously included in the Supplementary Material should instead be discussed in the main text of the manuscript. In the revision, we have now moved the old Supplemental Table S6 to be the new Table 2. Second, we also agree that the conclusions about the magnitude of additive-by-additive effects should be based upon variance explained when using the cis- interaction score in addition to scores specific to different biological annotations when available, per s-LDSC.

      However, we want to respectfully disagree that the results indicate a negligible contribution of additive-by-additive genetic variance to all the traits we analyzed (see Figure 4D). Although the additive-by-additive genetic variance component is not significant in any trait in the UK Biobank, there is little reason to expect that they would be given the inclusion of 97 other biological annotations from the s-LDSC model. Indeed, in the s-LDSC paper itself the authors look only for enrichment of heritability for a given annotation not a statistically significant test statistic. It also worth noting that jackknife approaches tend to be conservative and yield slightly larger standard errors for hypothesis testing. Taking all the great points that the reviewer mentioned into account, we believe that a moderate stance to the interpretation of our results is one that: (i) emphasizes the importance of using s-LDSC with the cis-interaction score to better assess the variance explained by additive-by-additive interaction effects and (ii) allows for the significance of the additive-by-additive component to not be the only factor when determining the importance of the role of non-additive effects in shaping trait architecture.

      In the revision, we now write the following in lines 331-343:

      Lastly, we performed an additional analysis in the UK Biobank where the cis-interaction scores are included as an annotation alongside 97 other functional categories in the stratified-LD score regression framework and its software s-LDSC (Materials and Methods). Here, s-LDSC heritability estimates still showed an increase with the interaction scores versus when the publicly available functional categories were analyzed alone, but albeit at a much smaller magnitude (Table 2). The contributions from the additive-by-additive component to the overall estimate of genetic variance ranged from 0.005 for MCHC (P = 0.373) to 0.055 for HDL (P = 0.575) (Figures 4C and 4D). Furthermore, in this analysis, the estimates of the additive-by-additive components were no longer statistically significant for any of the traits in the UK Biobank (Table 2). Despite this, these results highlight the ability of the i-LDSC framework to identify sources of “missing” phenotypic variance explained in heritability estimation. Importantly, moving forward, we suggest using the cis- interaction scores with additional annotations whenever they are available as it provides more conservative estimates of the role of additive-by-additive effects on trait architecture.

      Lastly, in the Discussion, we now mention an area of future work would be to explore how the relationship between cis-interaction LD scores and interaction effect sizes might bias heritability estimates from i-LDSC (e.g., similar to the relationship explored standard LD scores and linear effect sizes in Figure 3 – figure supplement 8). See new lines 364-367.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We agree with Reviewer #1 that it is not typical to include primary data in a review, but this seems to be a very unusual situation and it is not unprecedented. We seriously believe that it will significantly dilute the impact of the message if we were to separate this into two papers. We intended initially to do a comprehensive review of the αC-β4 motif as we think it is an extremely important element of secondary structure that has been rather overlooked in the protein kinase field. It is the site where the nucleotide and peptide/protein binding sites converge in the C:PKI complex and also in the RIα holoenzyme, which is also a pseudo-substrate inhibitor. This stable element is highly conserved in all protein kinases, and we think it is an extremely important allosteric site where the kinases differ. Thus, it is highly relevant for this set of Elife papers on kinase allostery. In parallel, we have developed the Local Spatial Pattern (LSP) alignment method for identifying Protein Residue Networks (PRNs) into a robust tool. When the Veglia team, our long-time collaborators, did their NMR analysis of the F100A mutant, which is in the αC-β4 loop, we thus decided to do the LSP analysis. The LSP results were so interesting and striking that we decided immediately to explore the motif further and to specifically compare the various crystal structures that we had solved in the past to see if indeed we had missed some changes. In addition to looking at the backbone, we decided to also look at the side chains and to compare the structures with the simulations. The results proved to be extremely informative and defined a multi-pronged approach that could be used to screen any disease mutation or alternatively as an Ala scan for any residue in any protein. I consider this to be one of the most important papers that I have published in many years. It describes a process for exploring the potential dynamic impact of any disease mutation or any point mutation. We emphasize repeatedly that the hypotheses generated from the computational screen will need to be validated experimentally, but our LSP analysis is a rapid and relatively inexpensive way to screen a set of mutations and predict which will have the greatest impact on dynamics. It is an especially powerful and robust way to identify allosteric sites as the LSP approach maps global changes of a single mutation across the entire protein. These mutants would then be prioritized for experimental follow-up. We are indeed now implementing this more comprehensive strategy in two ways. We are specifically exploring three disease mutations in the αC-β4 loop and, in parallel, are also doing a computational Ala scan of the entire loop (L95-L106); however, this is part of a separate and more comprehensive study that will take much longer. It will be the "Proof-of-Principle” of the hypotheses that we propose in our Elife paper. In addition to the LSP method, the MD simulations provide new and complementary insights into side chain dynamics in contrast to the static crystal structures. We will also begin to compare the αC-β4 loop in other kinases, specifically PKCβ2 and LRRK2, but once again this is part of a separate study and is clearly beyond the scope of this Elife paper. This focus on the αC-β4 loop is an excellent strategy that can be applied to any protein kinase. The LSP approach, however, can obviously also be applied to any protein or any motif, so it is potentially very powerful tool. We think that the impact and potential importance of this paper will be lost if it is split into two papers.

      I went back to look at a recent review that we did for the Biochemical Journal on the PKA Cβ isoform, and there we also included some new primary data in the review. It was never questioned. We believe that our manuscript is so perfectly appropriate for this Elife series that is focus on allostery in kinases, and having our paper back-to-back with the Veglia NMR paper is especially important and relevant. We thus ask you will seriously consider keeping this as a single paper as part of this series on allostery.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work Wu, J., et al., highlight the importance of a previously overlooked region on kinases: the αC-β4 loop. Using PKA as a model system, the authors extensively describe the conserved regulatory elements within a kinase and how the αC-β4 loop region integrates with these important regulatory elements. Previous biochemical work on a mutation within the αC-β4 loop region, F100A showed that this region is important for the synergistic high affinity binding of ATP and the pseudo substrate inhibitor PKI. In the current manuscript, the authors assess the importance of the αC-β4 loop region using computational methods such as Local Spatial Pattern Alignment (LSP) and MD simulations. LSP analysis of the F100A mutant showed decreased values for degree centrality and betweenness centrality for several key regulatory elements within the kinase which suggests a loss in stability/connectivity in the mutant protein as compared to the WT. Additionally, based on MD simulation data, the side chain of K105, another residue within the αC-β4 loop region had altered dynamics in the F100A mutant as compared to the WT protein. While these changes in the αC-β4 loop region seem to be consistent with the previous biochemical data, the results are preliminary and the manuscript can be strengthened (as the authors themselves acknowledge) with additional experiments. Specific comments/concerns are listed below.

      1. MD simulations were carried out using a binary complex of the catalytic subunit of PKA and ATP/Mg and not the ternary complex of PKA, ATP/Mg and PKI. MD simulations carried out using the ternary complex instead of the binary complex would be more informative, especially on the role of the αC-β3 loop region in the synergistic binding of ATP/Mg and PKI.

      Response 1. Thank you for your suggestion. We have included the data for the MD simulations of the ternary complex in the revised manuscript. This includes a new figure and was indeed informative (Figure 11). Text describing this simulation is also added on pages 15-17. All the changes in the revised manuscript are highlighted in red.

      1. The LSP analysis shows a decrease in degree centrality for the αC-β4 loop region in the F100A mutant compared to the WT protein which suggests a gain in stability in this region for the F100A mutant (Fig. 8A). These results seem to be contradictory to the MD simulation data which shows the side chain dynamics of K105 destabilizes the αC-β4 loop region in the F100A mutant (Fig. 10B). It would be helpful if the authors could clarify this apparent discrepancy.

      Response 2. In Figure 8A, the negative values of degree centrality for the αC-β4 loop region show that the value of DC is less in the WT compared to the mutant, suggesting that those regions are more stable in the mutant. This says that the mutation in the αC-β4 loop region both rigidifies the motif and alters the communication signaling networks between the two lobes.

      The betweenness centrality plots (Figure 8B) also show how the connectivity between the two lobes is altered upon mutation. In the mutant the major connectors become V104 and I150 in the C-lobe, whereas connectivity was primarily governed by K72 (N-lobe) and D184 (C-lobe) in the wt C-subunit. Overall, the mutation causes rigidification of the αC-β4 loop and this leads to loss of allosteric communication between the two lobes.

      The MD simulation results as shown in Figure 10B are not contradictory. This figure shows the overall dynamic profile of the protein, based on principal component analysis (PCA) using the parameter of the residual flexibility. It does not reflect a particular motif's stability or flexibility. Instead it shows that overall the protein upon mutation becomes more dynamic and can sample different conformational states, while, in contrast, the WT protein preferred a single global state of conformation. However, the LSP results showed that, compared to the other parts, the αC-β4 loop, especially V104 at the tip, becomes more stable following mutation, and this has an impact on the allosteric communication between the two lobes. We have added this information into the revised manuscript on page 14, also highlighted in red.

      1. The foundation for the experiments carried out in this paper are based on previous NMR and computational data for the F100A mutant. However, the specific results and conclusions from these previous experiments are not clearly described.

      Response 3. The NMR paper has been already accepted by eLIFE and here we are attaching the bioRxiv paper link, “https://www.biorxiv.org/content/10.1101/2023.09.12.557419v1.”

      Reviewer #1 (Recommendations For The Authors):

      In this work Wu, J., et al., draw attention to the αC-β4 loop, a previously neglected region within kinases. A comprehensive review on the important regulatory elements within the kinase along with how the αC-β4 loop (and the αE helix) integrates with these different regulatory elements is presented well. As the authors themselves acknowledge, the data presented here while promising is preliminary. Additional biochemical, NMR and computational experiments need to be carried out to assess the importance of F100, K105 and other residues in this region.

      1. The authors indicate that previous computational studies predict a flip in the αC-β4 loop in the apo state. It would be helpful to have a figure showing the predicted flip as well as an explanation for the significance of this predicted flip.

      Response 1. The NMR paper has been already accepted by eLIFE and here we are attaching the bioRxiv paper link, “https://www.biorxiv.org/content/10.1101/2023.09.12.557419v1.” The Figures 3 and 6 in that paper described the predicted flip in the αC-β4 loop in the apo state. We did not see a flip in any of our crystal structures, and the LSP analysis which is based on 200 ns simulations is not sufficient to see this major conformational change.

      1. The authors cite previous NMR and biochemical experiments (reference 62), work that has just been submitted to eLife. Access to this work was difficult as this manuscript could not be found on the eLife website.

      Response 2. The NMR paper has been already accepted by eLIFE and here we are attaching the bioRxiv paper link, “https://www.biorxiv.org/content/10.1101/2023.09.12.557419v1.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      Despite the importance of T follicular helper cells (Tfh cells) in vaccine-induced humoral responses, it is still unclear which type of Tfh cells (Tfh1, Tfh2, and Tfh17) is critical for generating protective humoral immunity. By using the rhesus macaques model (most similar to human), the authors have addressed this potentially important question and obtained suggestive data that Tfh1 is critical. Although being suggestive, the evidence for the importance of Tfh1 is incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Developing vaccination capable of inducing persistent antibody responses capable of broadly neutralizing HIV strains is of high importance. However, our ability to design vaccines to achieve this is limited by our relative lack of understanding of the role of T-follicular helper (Tfh) subtypes in the responses. In this report Verma et al investigate the effects of different prime and boost vaccination strategies to induce skewed Tfh responses and its relationship to antibody levels. They initially find that live-attenuated measles vaccine, known to be effective at inducing prolonged antibody responses has a significant minority of germinal center Tfh (GC-Tfh) with a Th1 phenotype (GC-Tfh1) and then explore whether a prime and boost vaccination strategy designed to induce GC-Tfh1 is effective in the context of anti-HIV vaccination. They conclude that a vaccine formulation referred to as MPLA before concluding that this is the case.

      Clarification: MPLA serves as the adjuvant, and the vaccine formulation is characterized as a Th1 formulation based on the properties of the adjuvant.

      Strengths:

      While there is a lot of literature on Tfh subtypes in blood, how this relates to the germinal centers is not always clear. The strength of this paper is that they use a relevant model to allow some longitudinal insight into the detailed events of the germinal center Tfh (GC-Tfh) compartment across time and how this related to antibody production.

      Weaknesses:

      The authors focus strongly on the numbers of GC-Tfh1 as a proportion of memory cells and their comparison to GC-Tfh17. There seems to be little consideration of the large proportion of GC-Tfh which express neither CCR6 and CXCR3 and currently no clear reasoning for excluding the majority of GC-Tfh from most analysis. There seems to be an assumption that since the MPLA vaccine has a higher number of GC-Tfh1 that this explains the higher levels of antibodies. There is not sufficient information to make it clear if the primary difference in vaccine efficacy is due to a greater proportion of GC-Tfh1 or an overall increase in GC-Tfh of which the percentage of GC-Tfh1 is relatively fixed.

      Response: We appreciate the reviewer's comment. Indeed, while there is substantial literature on Tfh subtypes in blood; the strength of our study lies in utilizing a relevant model to provide longitudinal insights into the dynamics of the germinal center Tfh (GC-Tfh) compartment over time and its relationship to antibody production. Regarding the concern about the comprehensive analysis of GC Tfh subsets, including GC-Tfh1, GC-Tfh17, and others not expressing CCR6 and/or CXCR3, we fully acknowledge its importance. To address this, we will conduct a detailed analysis of GC Tfh and GC Tfh1 frequencies, encompassing subsets without CCR6 and CXCR3 expression, to provide a more comprehensive view of the GC-Tfh population in our analysis.

      Reviewer #2 (Public Review):

      Summary:

      Anil Verma et al. have performed prime-boost HIV vaccination to enhance HIV-1 Env antibodies in the rhesus macaque model. The authors used two different adjuvants, a cationic liposome-based adjuvant (CAF01) and a monophosphoryl lipid A (MPLA)+QS-21 adjuvant. They demonstrated that these two adjuvants promote different transcriptomes in the GC-TFH subsets. The MPLA+QS-21 adjuvant induces abundant GC TFH1 cells expressing CXCR3 at first priming, while the CAF01 adjuvant predominantly induced GC TFH1/17 cells co-expressing CXCR3 and CCR6. Both adjuvants initiate comparable Env antibody responses. However, MPLA+QS-21 shows more significant IgG1 antibodies binding to gp140 even after 30 weeks.

      The enhancement of memory responses by MPLA+QS-21 consistently associates with the emergence of GC TFH1 cells that preferentially produce IFN-γ.

      Strengths:

      The strength of this manuscript is that all experiments have been done in the rhesus macaque model with great care. This manuscript beautifully indicated that MPLA+QS-21 would be a promising adjuvant to induce the memory B cell response in the HIV vaccine.

      Weaknesses:

      The authors did not provide clear evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses.

      Response. We appreciate the recognition of our meticulous work in the rhesus macaque model and the potential of MPLA+QS-21 as an adjuvant for HIV vaccine-induced humoral immunity. We acknowledge the need to provide clearer evidence of the functional relevance of GC Tfh1 in IgG1 class-switching and B cell memory responses. We will attempt to address this concern in our revisions.

      Recommendations for Authors:

      Reviewer #1:

      1. Is the proportion of GC-Tfh1 within GC-Tfh significantly increased in MPLA vs CAF01? The balance between Tfh1 and Tfh17 data is shown in 4C but appears quite a modest difference. Additionally, it excludes the majority of GC-Tfh since it only considers CCR6 and CXCR3 expressing cells.

      Response. We have now included a comparison of the relative proportions of GC Tfh cells expressing CCR6 and CXCR3, as well as those lacking these markers. Our data now demonstrate an increased presence of Tfh1 within the GC-Tfh population when MPLA is employed at P1w2, as depicted in Figure 4D.

      1. Is there any relationship between GC-Tfh17, 1/17 and non Th1/17 GC-Tfh and antibody levels? In Figure 5C only GC Tfh1 is examined making it impossible to judge if this is specific to GC-Tfh1 or a general relationship between higher total GC-Tfh and antibodies.

      Response. In our revised description of the results, we have mentioned that GC Tfh frequencies correlated with antibody levels (r = 0.6, p < 0.05). However, it is important to note that this correlation was specific to the GC Tfh1 subset and was not observed with other subsets.

      Other points:

      1. The authors make a number of statements that rather exaggerate differences such as stating in the abstract that CAF01 induces Tfh1/17 while MPLA predominantly induces Tfh1. As shown in Figure 4C the majority of CCR6-CXCR3- GC-Tfh induced by CAF01 are GC-Tfh1 i.e. both formulations predominantly induce GC-Tfh1. Also, it is difficult to judge since the data is never provided but the predominant group of GC-Tfh appears to be CCR6-CXCR3- in both cases.

      Response. We acknowledge the need for greater precision in our descriptions. In response, we have addressed this concern by providing the frequencies of CCR6-CXCR3- GC Tfh cells in Figure 4D. We have also included a comparison of the relative frequencies across the adjuvant groups in the Results section (Lines 331-338).

      1. The authors use the term peripheral Tfh (pTfh), it may be better to use the more common term circulating Tfh (cTfh) to avoid confusion with T peripheral helper cells (Tph).

      Response. We appreciate the reviewer's suggestion to use the more commonly accepted term "circulating Tfh (cTfh)" instead of "peripheral Tfh (pTfh)." We have incorporated this change into our manuscript to ensure clarity and avoid potential confusion with "peripheral helper cells (Tph).

      1. Some further labelling of the pie chart in Figure 1G to at least specify larger groups such as Tfh2, Tfh17, Tfh1/17 would be helpful.

      Response. We have incorporated the suggestion and identified cTfh2, cTfh17, and cTfh2/17 cells. We additionally now state in the legend that overlapping pie arcs correspond to specific polarized Tfh subsets denoted by arc color.

      1. A gating example of the CXCR3, CCR6, CCR4 patterns in the GC Tfh would be helpful. "up to 25% of GC Tfh cells expressed CCR6" I think it is better to state the average here since 25% appears an outlier.

      Response. We have now included a gating example of chemokine receptor expression, patterns in the GC Tfh. Additionally, we have revised the statement to mention the median (7%) of GC Tfh cells expressing CCR6 instead of specifying the upper limit.

      1. Figure 1I, does this graph exclude triple negative cells? It's not clear from the figure legend but the numbers do not seem to add up with the graphical proportions shown in figure 1H.

      Response. We have made the necessary clarification in both the results section, figure, and the figure legend to state that the Boolean analysis is based on cells expressing either CXCR3 or CCR6, thus explaining the exclusion of triple negative cells.

      1. Figure 3C. Some label should be added to make clear which violins are from the CD95- and CD95+ groups. There may be too much data in this panel for p values to be legible. Either less graphs or more space may be needed.

      Response. We have updated the Y axis labels in the figure to state that the violin plots show the differences in gene expression between CD95+ CD4 T cells and CD95- CD4 T cells (naive).

      1. Figure 4B. Numbers attached to the gates (1, 17 etc) should be more clearly labeled Tfh1, Tfh17 etc since normally they might be expected to be gate percentages in this format. Gate percentages should also be added.

      Response. We have clearly labeled the subsets as "Tfh1" and "Tfh17," making it easier for readers to interpret the figure. Additionally, we have included gate percentages in the flow plot. Furthermore, the percentages of GC Tfh subsets are now depicted in Figure 4D.

      1. Overlarge and indistinct datapoint symbols are often a problem e.g. Figure 4G most of the CAF01 datapoints are merged into a single blob with no indication of where one point ends or begins. Supplementary figure 5E. Datapoint sizes are large to the extent that the lines are difficult to see. Lines indicating central tendency are often lost.

      Response. We have reworked the graphs (including 4G, now 4I) to ensure clarity,

      1. Generally greater care is needed with graph layout e.g. the B indicating figure 6B is on the graph of figure 6A.

      Response. We have made the necessary adjustment to ensure that the letter "B" correctly corresponds to the graph in Figure 6B.

      1. Figure 6J, the text seems to indicate "higher avidity with MPLA against autologous Env including V1V2 loops." However, the graph seems to indicate lower avidity for V1V2 loops? Response. We appreciate the careful observation. We have rectified this by updating the description in the results section to accurately reflect the graph, which shows higher avidity for V1V2 loops with CAF01.

      2. Figure 6A. The authors state that significantly higher IgG1 was induced but Figure 6A seems to be the only graph lacking an indication of statistical significance.

      Response. We have made the necessary adjustment to ensure that significance symbol is depicted in Figure 6A.

      1. Brackets indicating significance are often unclear. e.g. in Figure 4B MPLA graph there are three groups and a single multipoint bracket with a single result making it unclear which groups are being compared.

      Response. We have added clarification to the legend. It now states that the temporal comparisons in GC Tfh subsets for each vaccine group are made in relation to frequencies at baseline. This revision provides a clear reference point for the significance comparisons and ensures that readers can easily understand which groups are being compared.

      Reviewer #2:

      Overall, the manuscript is well-written and addresses an important issue. However, further investigation is warranted to understand how the MPLA+QS-21 induced GC TFH1 influenced on memory B cell response. This manuscript only showed the correlation between GC TFH1 and antibody responses. If the authors explain adjuvant preference in memory B cell responses, this manuscript could be more considerable for publication.

      1. This reviewer recommends that the author provide more evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses. Some evidence supports that IFN-γ controls the antigen-specific IgG1 responses in humans, but it is still controversial. The author also suggests the involvement of IL-21, but this is also an open question even in the human system. This is also the case in the memory responses. There is no direct link between IFN-γ and memory B cell responses in the human system. The authors need more evidence of how GC TFH1 cell development has more advantages in IgG1 and memory responses than GC TFH1 /17 cells. I believe an antibody blockade of cytokines would be a possible strategy to prove these questions.

      Response. We appreciate the reviewer's valuable suggestion to provide more evidence regarding the functional relevance of GC Tfh1 cells in IgG1 class-switch and B cell memory responses. It is indeed important to establish a direct link between GC Tfh1 cells and these responses, particularly in the context of cytokine skewing. The suggestion of antibody blockade studies to mechanistically link the modulation of the inflammatory milieu to Tfh differentiation and subsequent antibody functions is important. However, we must acknowledge that these studies are currently beyond the scope of our work. We have included this as a limitation in our study, recognizing the need for further studies to address these important questions.

      1. In Fig.5, the authors use different scales to indicate the IgG antibody titer. A shows the log scale, while B shows the linear scale. Moreover, the differences are minimal, even though the authors indicated a significant difference. I am not sure this difference is meaningful.

      Response. To clarify, we used a log scale in Figure 5A to demonstrate temporal changes over the course of vaccination. In Figure 5B, where we are comparing differences across vaccine regimens at week 30, a linear scale was deemed more appropriate, as it allows for a clear representation of the approximately two-fold difference observed. We fully acknowledge that to establish the biological significance of the observed difference, challenge studies will be essential.

    1. Author Response

      Reviewer #1 (Public Review):

      This article proposes a new statistical approach to identify which of several experimenter-defined strategies best describes a biological agent's decisions when such strategies are not fully observable by choices made in a given trial. The statistical approach is described as Bayesian but can be understood instead as computing a smoothed running average (with decay) of the strategies' success at matching choices, with a winner-take-all inference across the rules. The article tests the validity of this statistical approach by applying it to both simulated agents and real data sets in mice and humans. It focuses on dynamically changing environments, where the strategy best describing a biological agent may change rapidly.

      The paper asks an important question, and the analysis is well conducted; the paper is well-written and easy to follow. However, there are several concerns that limit the strength of the contribution. Major concerns include the framing of the method, considerations around the strategy space, limitations in how useful the technique may be, and missing details in analyses.

      Reviewer #2 (Public Review):

      In this study, the goal is to leverage the power of Bayesian inference to estimate online the probability that any given arbitrarily chosen strategy is being used by the decision-maker. By computing the trial-by-trial MAP and variance of the posterior distribution for each candidate strategy, the authors can not only see which strategy is primarily being used at every given time during the task and when strategy changes occur but also detect when the target rule of a learning task becomes the front-running strategy, i.e., when successful learning occurs.

      Strengths:

      1) The proposed approach adds to recent methods for capturing the dynamics of decision-making at finer temporal resolution (trials) (Roy et al., 2021; Ashwood et al., 2022) but it is novel and differs from these in that it is suited especially well for analyzing when learning occurs, or when a rule switches and learning must recommence, and it does not necessitate large numbers of trials.

      2) The manuscript starts with a validation of the approach using synthetic data and then is applied to datasets of trial-based two-alternative forced choice tasks ranging from rodent to non-human primate to human, providing solid evidence of its utility.

      3) Compared to classic procedures for identifying when an animal has learned a contingency which typically needs to be conservative in favor of better accuracy, this method retrieves signs of learning happening earlier (~30 trials earlier on average). This is achieved by identifying the moment (trial) when the posterior probability of the correct "target" rule surpasses the probability of all other strategies. Having greater temporal precision in detecting when learning happens may have a very significant impact on studies of the neural mechanisms of learning.

      4) This approach seems amenable to testing many different strategies depending on the purpose of the analysis. In the manuscript, the authors test target versus non-target strategies (correct versus incorrect) and also in another version of the analysis, they test what they call "exploratory" strategies.

      5) One of the main appeals of this method is its apparent computational simplicity. It necessitates only updating on every trial the parameters of a beta distribution (prior distribution for a given strategy) with the evidence that the behavior on trial was either consistent or inconsistent with the strategy. Two scalars, the mode of the posterior (MAP) and the inverse of the variance, are all that are required for identifying the decision criterion (highest MAP and if tied lowest variance) and the learning criterion (first trial where MAP for target strategy is higher than chance).

      Weaknesses:

      1) It seems like a limitation of this approach is that the candidate strategies to arbitrate between must be known ex-ante. It is not clear how this approach could be applied to uncover latent strategies that are not mixtures of the strategies selected.

      2) Different strategies may be indistinguishable from each other and thus it may not be possible to distinguish between them. Similarly, the fact that two strategies seem to be competing for the highest MAP doesn't necessarily mean that those are correct strategies and perhaps interchangeable as the manuscript seems to suggest.

      3) The decay parameter is a necessary component to make the strategy selection non-stationary and accommodate data sets where the rules are changing throughout the task. However, the choice of the decay parameter value bounds does not seem very principled. Having this parameter as a free-parameter adds a flexibility that seems to have significant effects on when the strategy switch is detected and how stable the detected switch is.

      4) This method is a useful approach for arbitrating between strategies and describing the behavior with a temporal precision that may prove important for studies attempting to tie these precise events to changes in neural activity. However, it seems limited in its explanatory power. In its current form, this method does not provide a prediction of the probability to transition from one strategy to another. And, because the MAP of different strategies may be close at any given moment, it is hard to imagine using this approach to tease out the different "mental states" that represent each strategy being at play.

      The reviewers’ detailed comments, not shared here, helped us considerably to improve the paper, and we thank the reviewers for their time here. We are unsure of the merits of sharing public reviews of a paper that has now changed considerably from the version that these reviews address. Nonetheless we shall address some key points of potential misunderstanding here.

      “The statistical approach is described as Bayesian but can be understood instead as computing a smoothed running average (with decay) of the strategies' success at matching choices, with a winner-take-all inference across the rules.“

      This is inaccurate. The algorithm performs sequential Bayesian updates on the evidence for and against the use of each strategy considered; for a given strategy i, its output at each trial is a fully parameterised posterior distribution over the probability of that strategy being used by the subject.

      We are careful in the paper to separate the algorithm’s output from our further use of that output. To plot and analyse the output we often make use of the maximum a posteriori (MAP) estimate from each posterior. Other choices are of course possible, and we discuss them in the text.<br /> In one set of simulations we quantify the results using a decision rule that chooses the strategy with the highest MAP - this is presumably the “winner-takes-all inference” in the quoted text. We do not use this anywhere else in the paper, including the analyses of the 4 datasets, and so do not consider it as part of our method, but one possible use of the output of the algorithm.

      “Major concerns include the framing of the method, considerations around the strategy space, limitations in how useful the technique may be, and missing details in analyses”

      Our goal for this paper was to develop a computationally lightweight, trial-resolution, Bayesian approach to tracking the probability of user-specified strategies, so that we can capture the observer’s evidence for learning or for the features driving exploratory choice (e.g. whether subjects are responding to losses or wins; are they responding to cues or choice etc). The above quote reflects their detailed review comments, where we felt this reviewer wanted a solution to a different problem, that of a parameterised latent model of strategy use: while a perfectly valid research goal, this was not what we addressed here.

      “1) It seems like a limitation of this approach is that the candidate strategies to arbitrate between must be known ex-ante. It is not clear how this approach could be applied to uncover latent strategies that are not mixtures of the strategies selected.”

      The problem of knowing which strategies to analyse in advance only applies when running our algorithm in real-time. The fact that it could be run in real-time on modest computing hardware is to us one of its strengths, so we consider this a good problem to have.

      As noted above, rather than determine latent strategies, our goal was to build an observer model that allows users to specify whatever strategy they wanted in order to answer their scientific question(s) of their data. For example, to define when a particular rule has been learnt; or to look for changes in response to particular features of the environment, such as a cue, or to a drug treatment or other intervention.

      2) Different strategies may be indistinguishable from each other and thus it may not be possible to distinguish between them. Similarly, the fact that two strategies seem to be competing for the highest MAP doesn't necessarily mean that those are correct strategies and perhaps interchangeable as the manuscript seems to suggest.

      As noted above, this is an observer model, and it is thus necessarily true that there are strategies for which the observer does not have sufficient evidence to distinguish. For example, a subject who continually chooses the rewarded left-hand lever will be doing both a strategy of “go left” and of “win-stay” in response to their choice. The inability to distinguish strategies is a property of the data, not of the algorithm. Also as noted above, we do not here consider the competition between strategies.

      3) The decay parameter is a necessary component to make the strategy selection non-stationary and accommodate data sets where the rules are changing throughout the task. However, the choice of the decay parameter value bounds does not seem very principled. Having this parameter as a free-parameter adds a flexibility that seems to have significant effects on when the strategy switch is detected and how stable the detected switch is.

      The revised manuscript draws together the existing simulations and analysis of the method to directly address this point, showing that there is a principled range of the decay parameter in which the algorithm should operate. The Discussion also points out that this is no different to a free parameter than any frequentist approach to strategy analysis, which must choose some time windows over which to compute the frequentist probability.

      4) This method is a useful approach for arbitrating between strategies and describing the behavior with a temporal precision that may prove important for studies attempting to tie these precise events to changes in neural activity. However, it seems limited in its explanatory power. In its current form, this method does not provide a prediction of the probability to transition from one strategy to another. And, because the MAP of different strategies may be close at any given moment, it is hard to imagine using this approach to tease out the different "mental states" that represent each strategy being at play.

      As noted above, this is an observer model and does not intend to infer mental states. The goal is to make accurate statements about observable behaviour. We agree that an interesting extension to this approach would be to model the transitions between strategies, and had already outlined this in the Discussion.

    1. Author Response

      The following is the authors’ response to the original reviews.

      REVIEWER 1:

      Reviewer 1 stated: “The authors have provided strong evidence that high levels of auxin exposure perturb feeding behavior, survival rates, lipid metabolism, and gene expression patterns, providing a cautionary note for the field in using this technology. They also concluded that “overall, the experiments were suitably designed with appropriate sample size and data analysis methods.”

      Reviewer 1 provided the following recommendations for improvement, which are addressed below:

      Point 1: “Although authors showed that auxin causes gene expression changes including the possible alteration of Gal4 expression levels, no cell-type-specific data is provided. It would be informative to the Drosophila field if the authors could examine major Gal4 drivers in their expression levels, such as the ones used in studying metabolism and oogenesis.”

      We agree with the reviewer that cell-type specific Gal4 expression should be thoroughly analyzed by scientists in the community wishing to use the current auxin-inducible gene expression system (AGES) in their studies; however, those analyses are beyond the scope of our manuscript. There are many tissues and cell types that are used to study metabolism and oogenesis (e.g., muscle, adipocytes, oenocytes, multiple cell types in the gut, multiple cell types in the ovary), and Gal4 expression patterns could be different depending on age, sex, and diet. It is therefore impossible for us to pinpoint one or two key tissues important for regulating lipid levels and would be a significant investment of time. We believe that each researcher should thoroughly check the Gal4 expression pattern for their specific tissue of interest under their normal standard or altered food conditions. As this reviewer pointed out, our current study provides a cautionary note for the field in using this technology. Nevertheless, we have provided a reference to a recent micropub (Hawley et al; PMID: 37396791) which describes neuronal Gal4 expression patterns comparing the AGES and temporal and regional gene expression targeting (TARGET) systems and updated the text in lines 539-544 of the revised manuscript.

      Point 2: “Although the authors briefly mentioned aging research, feeding behavior, and lipid metabolism, RNA-seq data are provided only for short-term treatment (2 days). The ovary phenotype was examined with long-term treatment (15 days). It would be informative if the authors could also show other long-term treatment data.”

      We respectfully point out to the reviewer that a 5-day auxin feeding assay was provided in Figure S4H, which reproduces the data provided for the 2-day auxin treatment. In addition, the original AGES paper (McClure et al, PMID: 35363137) provided adult survival data that extended to 80 days. In our updated manuscript, we have provided data for a 10-day auxin treatment that also addresses Point #4 below regarding whether the decrease in lipid levels upon auxin feeding is reversible.

      Point 3: “The auxin used in this work is a more water-soluble version and at a high concentration (10 mM). In the C. elegans system, researchers are using a much lower concentration of auxin typically at 1 mM. Therefore, the discussion of their results in terms of potential impacts on other experimental systems should be done carefully. It would be helpful to know what impacts might be observed at a lower concentration of auxin. The recommendation would be that the authors add the 1 mM auxin data point to key elements of their analysis.”

      The concentration of 10 mM auxin used in our study is the recommended dose to use in Drosophila (see McClure et al) and has been used in at least one additional study (Hawley et al). We also would like to point out that other systems (e.g., C. elegans and mice) have many differences in physiology and therefore the concentration of auxin used to elicit a response are likely to be different (e.g., 71.4 mM final concentration is the recommended concentration used in mice; Macdonald et al; PMID: 35736539). We have merely suggested that researchers using auxin for protein degradation should carefully check whether lipid levels (or other physiological processes of interest) are altered upon auxin feeding (or soaking) alone compared to a 0 mM auxin control. The text in lines 467-470 has been altered to reflect this. In addition, the specific recommended dose for Drosophila is highlighted and referenced in multiple places (i.e., methods and results and discussion) throughout the updated text.

      Point 4: “Another related question is whether these detected changes are reversible or not after exposure to auxin at different concentrations. This would be informative for researchers to better design their temporally controlled experiments.”

      We thank the reviewer for this suggestion and have provided the data in Figure S4I. Briefly, we found that after a 5-day treatment of auxin, removal of auxin for an additional 5 days does not recover lipid levels to those of control animals never exposed to auxin.

      Point 5: “It would also be helpful to know whether spermatogenesis is affected or not.”

      Although this would be an interesting developmental process to determine if affected by auxin exposure, we believe that these analyses are beyond the scope of the current manuscript.

      Point 6: “A few other points include changing the nomenclature and validating some of the key genes shown in Figure 3 using quantitative RT-PCR experiments with the tissues where the affected genes are known to be expressed and functional.”

      We thank the reviewer for this suggestion. We have provided qRT-PCR analysis using whole body samples and this data is now provided in the new Figure S8. We used whole-body samples for the qRT-PCR analysis because it would be impossible to pinpoint the specific tissue the differentially regulated genes are required for eliciting the response to auxin exposure. For example, according to Flybase (flybase.org) GstE3 transcripts are moderately to highly expressed in 15 of the 23 cell types annotated by the Fly Cell Atlas project (Li et al; PMID: 35239393).

      REVIEWER 2:

      Reviewer 2 stated: “The authors provide evidence of several Auxin effects. Experiments are suitably designed with appropriate sample size and data analysis methods.”

      This reviewer expressed the following concerns, which are addressed below:

      Point 1: “The provided information is limited and not very helpful for many applications. For example, although authors briefly mentioned aging research, feeding behavior, and lipid data, RNA seq data are provided only for short-term (48 hours) treatment. Especially, since ovary phenotype was examined with long-term treatment (15 days), authors should also show other data for long-term treatment as well.”

      Please see our response to Point #2 of Reviewer 1 regarding long-term treatment experiments. Furthermore, although the ending timepoint for the ovarian analyses is 15 days, we also provide analysis at shorter time points (e.g., daily analysis for egg counts, 5 and 10 day timepoints for fixed sample analyses).

      Point 2: “Although the authors show that Auxin causes a change in gene expression patterns and suggests the possible alteration of Gal4 expression levels, no cell-type-specific data is provided. It would be informative if the authors could examine the expression level of major Gal4 drivers. Authors should discuss how severe these changes are by comparing them with other treatments or conditions, such as starvation or mutant data (ideally, comparing with reported data or their own data if any?).”

      Please see our response to Point #1 from Reviewer 1.

      REVIEWER 3:

      Reviewer 3 stated that they “found the study to be carefully done” and “this study will be of interest to researchers using the Drosophila system, especially those focusing on fatty acid metabolism or physiology.”

      Reviewer 3 also had the following minor points, which are addressed below:

      Point 1: “Auxin, actually 1-naphthaleneaceid acid here, which is a more water-soluble version of auxin (indole-3-acetic acid) is used at what I consider to be a high concentration-10 mM. The problem I have is that the authors are discussing their results in terms of potential impacts on other experimental systems. At least for C. elegans, I think this is not a reasonable extension of the current dataset. In the C. elegans system, researchers are using 1 mM auxin. The authors note that their RNA-seq results suggest a xenobiotic response. Could this apparent xenobiotic response be due to a metabolic byproduct following auxin administration at high concentrations? Figure S1A shows that there is quite a robust transcriptional response at 1 mM auxin. It would be helpful to know what impacts might be observed at this lower concentration in which the transcriptional induction could be used in the context of biologically meaningful experiments. The recommendation would be that the authors add the 1 mM auxin data point to key elements of their analysis.”

      Regarding the comparisons to other model organisms, we refer to our response to Point #3 from Reviewer 1. We also point out that although there is a robust response to 1 mM auxin using the 3.1Lsp2-Gal4 driver, 1 mM is not sufficient for a robust response using additional driver lines in Drosophila (see Hawley et al). It is possible that the xenobiotic response is due to using the recommended dose of auxin (McClure et al).

      However, given the fact that researchers are currently using the 10 mM dose for experiments in Drosophila, we believe that the 10 mM transcription dataset is the most relevant. Nevertheless, we do agree that researchers who choose to use lower concentrations of auxin in the future should carefully look at whether any transcriptional induction alters physiological processes of interest.

      Point 2: “This reviewer was confused by the genetic nomenclature the authors use. The authors have chosen to use the designation 3.1Lsp2-Gal4 (3.1Lsp2-Gal4AID). I think this is potentially confusing because a reader might think that it is the Gal4 transcription factor that is the direct target of auxin- and TIR1-mediated protein degradation, as I initially did. Rather, it is the Gal80 repressor protein that is the direct target. The authors might consider a nomenclature that is more reflective of how this system works. It would also be helpful if the full genotypes of strains were included in each figure legend.”

      We apologize for the nomenclature confusion in our original submission. We have changed our “AID” nomenclature throughout the manuscript to “AGES,” which is the nomenclature used in McClure et al. We respectfully note that the traditional nomenclature for using the temperature-sensitive Gal80 system is Gal80ts or adding the “ts” superscript to the Gal4 line used (e.g., 3.1Lsp2ts).

      Point 3: “The RNA-seq dataset does not appear to be validated by RT-PCR experiments. The authors should consider validating some of the key genes shown in Figure 3 using quantitative RT-PCR experiments, potentially adding a 1 mM auxin data point.”

      Please see our response to Point #6 to Reviewer 1.

      REVIEWER 4:

      Reviewer 4 stated: “Overall, the experiments were well-designed and carefully executed. The results were quantified with appropriate statistical analyses. The paper was also well-written and the results were presented logically.”

      RECOMMENDATIONS FOR THE AUTHORS:

      We have further addressed reviewer recommendations below. Thank you again, for your critique of our manuscript.

      REVIEWER 2:

      As I mentioned in my public review, long-term treatment data would be especially helpful. Examining changes in the expression level of major Gal4 lines is also informative.

      Please see our responses to Points #1 and #2 to Reviewer 1 in the “Public Reviews” section. Although examination of Gal4 expression patterns is extremely important, we believe that these analyses should be carefully performed on a case-by-case basis in the future for labs who wish to continue to use this methodology.

      REVIEWER 4:

      I feel addressing #2 would be a great addition to the current version, while #1 and #3 could be addressed in future studies or by researchers who are interested in these processes.

      Recommendation 1: “Both the metabolomics and transcriptome analyses were done using the whole animals, would it be more informative if these were done using specific tissue/organs such as the adult adipose tissue?”

      Please see our response to Points #1 and #6 to Reviewer 1 in the “Public Reviews” section.

      Recommendation 2: “Another related question is whether these detected changes are reversible or not after exposure to auxin? This would be informative for researchers to better design their temporally controlled experiments.”

      We thank the reviewer for this suggestion and the analysis for this experiment is now provided in Figure S4I.

      Recommendation 3: “Is spermatogenesis affected at all?”

      We respectfully point out that many processes in spermatogenesis (as well as other biological processes) are affected by feeding (e.g., starvation) and would be extremely time consuming to carefully perform the analyses with the rigor required. We agree with Reviewer 4 and believe that this would be best to be performed on a case-by-case examination in the future.

    1. Author Response

      Our responses to the reviewers to go into the published pre-print. We thank the reviewers for their encouraging and thoughtful comments. These are good points that we would like to comment on as follows:

      Reviewer 1:

      Some important and interesting data are missing. For example, whether the gene therapy can extend the life span of these mutants? The overall in vivo voiding function is missing. AAV9/HSPE2 expression in the bladder wall is not shown.

      A. Our study was not designed to determine whether gene therapy can improve life span of the Hpse2 mutant mice. We know that the mutant mice usually become ill after the first month of life and can die. However, we wanted to study the mice when they were generally well so that there would be no confounding effects on the bladder physiology caused by general ill health. Indeed, a recent study of Hpse2 inducible deletion in adult mice has shown evidence of exocrine pancreatic insufficiency (Kayal et al., PMID 37491420). We are currently exploring the status of the pancreas in our non-conditional juvenile Hpse2 mice, and whether gene transfer into the pancreas is possible.

      B. We strongly agree that in vivo voiding studies will be important it the future, and suggest in vivo cystometry is the gold standard for this but is currently beyond the remit of this study.

      C. It is correct that in this paper we have focussed on gene transduction into the pelvic ganglia, because the evidence is mounting that this is a neurogenic disease. Our ex vivo physiological studies show predominantly neurogenic defects that are corrected by the gene therapy. A detailed study of the bladder body is an interesting idea, in terms of possible transgene expression and detailed histology, and is something we will pursue in future studies.

      Review 2:

      Weaknesses include a lack of discussion of the basis for differences in carbachol sensitivity in Hpse2 mutant mice, limited discussion of bladder tissue morphology in Hpse2 mutant mice, some questions over the variability of the functional data, and a need for clarification on the presentation of statistical significance of functional data.

      A. Yes, it is interesting that untreated male mutant mice have an increased bladder body contraction to carbachol compared with WT males. In a previous paper (Manak et al., 2020) we performed quantitative western blots for the M2 and M3 receptors and found levels were similar in mutants to the WTs, thus the increased sensitivity probably lies post-receptor.

      B. A detailed study of the bladder body is an interesting idea, in terms of possible transgene expression and detailed histology, and is something we will pursue in future studies.

      C. We have reported in our physiology graphs what we find. We do find some variability, particularly at lower frequencies, but our conclusions depend on analyses of the whole curve, which depend on multiple frequencies and show the expected overall pattern of frequency-dependent relaxation.

      D. Thank you, the stats for Figure 8 will be corrected in the final version.

      Reviewer 3:

      Single-cell analysis of mutants versus control bladder, urethra including sphincter. This would be great also for the community.

      A. Yes, in future we are very interested in using a single cell sequencing approach to look at the mutant, WT and rescued pelvic ganglia. In relation to this, there is a recent proof-of-principle paper pre-print in WT mouse pelvic ganglia, which suggests this may be feasible (Sivori et al., 2023).

      Detailed tables showing data from each mouse examined.

      B. In theory, it would be very interesting to correlate the strength of human gene transduction into the pelvic ganglia, with, for example, the effect on a physiological parameter. However, in general we used different sets of mice for these techniques so at the present we don’t have this information.

      Use of measurements that are done in vivo (spot assay for example). This sounds relatively simple.

      C. We strongly agree that in vivo voiding studies will be important it the future, and suggest in vivo cystometry is the gold standard for this but is currently beyond the remit of this study.

      Assessment of viral integration in tissues besides the liver (could be done by QPCR).

      D. This is an important point, and suggest the pancreas is a particularly interesting target for future studies. a recent study of Hpse2 inducible deletion in adult mice has shown evidence of exocrine pancreatic insufficiency (Kayal et al., PMID 37491420). We are currently exploring the status of the pancreas in our non-conditional juvenile Hpse2 mice, and whether gene transfer into the pancreas is possible.

      Discuss subtypes of neurons that are present and targeted in the context of mutants and controls.

      E. The make-up of the pelvic ganglia in Hpse2 mutant mice is a fascinating question. Future analysis using scRNA-Seq may be the most effective way to answer this question and is a molecular approach we are looking to pursue in the future.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper reports the development of SCA-seq, a new method derived from PORE-C for simultaneously measuring chromatin accessibility, genome 3D and CpG DNA methylation. Most of the conclusions are supported by convincing data. SCA-seq has the potential to become a useful tool to the scientific communities to interrogate genome structure-function relationships.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work, Xie et al. developed SCA-seq, which is a multiOME mapping method that can obtain chromatin accessibility, methylation, and 3D genome information at the same time. SCA-seq first uses M.CviPI DNA methyltransferase to treat chromatin, then perform proximity ligation followed by long-read sequencing. This method is highly relevant to a few previously reported long read sequencing technologies. Specifically, NanoNome, SMAC-seq, and Fiber-seq have been reported to use m6A or GpC methyltransferase accessibility to map open chromatin, or open chromatin together with CpG methylation; Pore-C and MC-3C have been reported to use long read sequencing to map multiplex chromatin interactions, or together with CpG methylation. Therefore, as a combination of NanoNome/SMAC-seq/Fiber-seq and Pore-C/MC-3C, SCA-seq is one step forward. The authors tested SCA-seq in 293T cells and performed benchmark analyses testing the performance of SCA-seq in generating each data module (open chromatin and 3D genome). The QC metrics appear to be good and I am convinced that this is a valuable addition to the toolsets of multi-OMIC long-read sequencing mapping.

      The revised manuscript addressed most of my questions except my concern about Fig. S9. This figure is about a theory that a chromatin region can become open due to interaction with other regions, and the author propose a mathematic model to compute such effects. I was concerned about the errors in the model of Fig. S9a, and I was also concerned about the lack of evidence or validation. In their responses, the authors admitted that they cannot provide biological evidence or validations but still chose to keep the figure and the text.

      The revised Fig. S9a now uses a symmetric genome interaction matrix as I suggested. But Figure S9a still have a lot of problems. Firstly, the diagonal of the matrix in Fig. S9a still has many 0's, which I asked in my previous comments without an answer. The legend mentioned that the contacts were defined as 2, 0 or -2 but the revised Fig. S9a only shows 1,0, or -1 values. Furthermore, Fig. S9b,9c,9d all added a panel of CTCF+/- but there is no explanation in text or figure legend about these newly added panels. Given many unaddressed problems, I would still suggest deleting this figure.

      In my opinion, this paper does not need Fig. S9 to support its major story. The model in this figure is independent of SCA-seq. I think it should be spinoff as an independent paper if the authors can provide more convincing analysis or experiments. I understand eLife lets authors to decide what to include in their paper. If the authors insist to include Fig. S9, I strongly suggest they should at least provide adequate explanation about all the figure panels. At this point, the Fig. S9 is not solid and clearly have many errors. The readers should ignore this part.

      We appreciate the reviewer for raising these concerns regarding Fig. S9. After careful consideration, we have decided to address your concerns by deleting Fig. S9 and the corresponding text from the manuscript. We understand your point that the model presented in Fig. S9 is independent of SCA-seq and may require additional evidence and validation to be presented in a separate paper.

      We agree that it is important to maintain the integrity and accuracy of the manuscript, and we appreciate your feedback in helping us make this decision.

      Reviewer #2 (Public Review):

      In this manuscript, Xie et al presented a new method derived from PORE-C, SCA-seq, for simultaneously measuring chromatin accessibility, genome 3D and CpG DNA methylation. SCA-seq provides a useful tool to the scientific communities to interrogate the genome structure-function relationship.

      The revised manuscript has clarified almost of the concerns raised in the previous round of review, though I still have two minor concerns,

      1. In fig 2a, there is no number presented in the Venn diagram (although the left panel indeed showed the numbers of the different categories, including the numbers in the right panel would be more straightforward).

      We appreciate the reviewer for pointing out the need for clarification in the Venn diagram in Fig 2a. We have added the numbers to Venn diagram.

      1. The authors clarified the discrepancy between sfig 7a and sfig 7g. However, the remaining question is, why is there a big difference in the percentage of the cardinality count of concatemers of the different groups between the chr7 and the whole genome?

      We apologize for the confusion regarding the difference in the percentage of the cardinality count of concatemers between chr7 and the whole genome in figures S7a and S7g. The difference arises because the chr7 cardinality count only considers the intra-chromosome segments that are adjacent to each other on a SCA-seq concatemer, while the whole genome cardinality count includes both intra-chromosome and inter-chromosome segments.

      In the case of a SCA-seq concatemer that contains both intra-chromosome junctions and inter-chromosome junctions, the whole genome cardinality count will be greater than the intra-chromosome cardinality count. This explains the difference in the percentages between chr7 and the whole genome in figures S7a and S7g.

      To better clarify the definition of intra-chromosome cardinality, we have added an illustrative graph in figure S7a. In the updated figure S7a, the given exemplary SCA-seq concatemer has a whole genome cardinality of 4 and a chr7 intra-chromosome cardinality of 3.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study reports investigation of the dynamics of PKA at the single-cell level in in vitro and in epithelia in vivo. Using different fluorescent biosensors and optogenetic actuators, the authors dissect the signaling pathway responsible for PKA waves, finding that PKA activation is a consequence of PGE2 release, which in turn is triggered by calcium pulses, requiring high ERK activity. The evidence supporting the claims is solid. At this stage the work is still partly descriptive in nature, and additional measurements would increase the strength of mechanistic insights and physiological relevance.

      We deeply appreciate Dr. Alejandro San Martín and Dr. Jonathan Cooper and the reviewers. Each comment is valuable and reasonable. We will revise our paper as much as possible.

      We have described what we will do for the reviewer’s comments one by one in the below section.

      Reviewer #1 (Recommendations For The Authors):

      1. Even though the phenomenon of PGE2 signal propagation is elegantly demonstrated and well described, the whole paper is mostly of descriptive nature - the PGE2 signal is propagated via intercellular communication and requires Ca transients as well as MAPK activity, however function of these RSPAs in dense epithelium is not taken into consideration. What is the function of these RSPAs in cellular crowding? - Does it promote cell survival or initiate apoptosis? Does it feed into epithelial reorganization during cellular crowding? Still something else? The authors discuss possible roles of this phenomenon in cell competition context, but show no experimental or statistical efforts to answer this question. I believe some additional analysis or simple experiment would help to shed some light on the functional aspect of RSPAs and increase the importance of all the elegant demonstrations and precise experimental setups that the manuscript is rich of. Monolayer experiments using some perturbations that challenge the steady state of epithelial homeostasis - drug treatments/ serum deprivation/ osmotic stress/ combined with live cell imaging and statistical methods that take into account local cell density might provide important answers to these questions. The authors could consider following some of these ideas to improve the overall value of the manuscript.

      We would like to thank the reviewer’s comment. Although we have intensively tried to identify the physiological relevance of RSPA, we could not detect the function at present.

      In the case of MDCK, the treatment of NSAIDs, which cancels RSPA, did not affect its cell growth, ERK wave propagation during collective migration, migration velocity, cell survival, or apoptosis. In mouse epidermis, the frequency of RSPA was NOT affected by inflammation and collective cell migration, evoked by TPA treatment and wound, respectively.

      Notably, RSPA also occurs in the normal epidermis, implying its relevance in homeostasis. However, at the current stage, we believe that the PGE2 dynamics and its regulation mechanism in the normal epidermis would be worth reporting to researchers in the field.

      1. In the line 82-84 the authors claim: "We found that the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating that a Gs protein-coupled receptor (GsPCR) mediates RSPA". In our opinion, this conclusion is not well-supported by the results. The authors should at least show that some measurements of the two patterns show correlation. Are the patterns of cAMP of the same size as the pattern of PKA? Do they have the same size depending on cell density? Do they occur at the same frequency as the PKA patterns, depending on the cell density? Do they have an all or nothing activation as PKA or their activation is shading with the distance from the source?

      We have modified the text (line85)

      “Although the increment of the FRET ratio was not so remarkable as that of Booster-PKA, Wwe found that the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating that a Gs protein-coupled receptor (GsPCR) mediates RSPA. This discrepancy may be partially explained by the difference in the dynamic ranges for cAMP signaling in each FRET biosensor (Watabe2020). “

      1. In general, the absolute radius of the waves is not a good measurement for single-cell biology studies, especially when comparing different densities or in vivo vs in vitro experiments. We suggest the authors add the measurement of the number of the cells involved in the waves (or the radius expressed in number of cells).

      We appreciate the reviewer’s comment. We have analyzed our results to demonstrate the number of cells as in Fig2E, which would be easy for readers to understand.

      1. In 6D, the authors should also show the single-cell trajectories to understand better the correlation between PKA and ERK peaks. Is the huger variability in ERK activity ratio dues to different peak time or different ERK activity levels in different cells? The authors should show both the variability in the time and intensity.

      We have added a few representative results as Fig. S4.

      1. In lines 130-132, the authors write, "This observation indicates that the amount of PGE2 secretion is predetermined and that there is a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion". How could the author exclude that the amount of PGE2 is not regulated in its intensity as well? For sure, there is a threshold effect regarding calcium, but this doesn't mean that PGE2 secretion can be further regulated, e.g. by further increasing calcium concentration or by other mechanisms.

      We agree with the reviewer’s comment. We have modified the text.

      1. The manuscript shows that not all calcium transients are followed by RSPAs. Does the local cell density/crowding increase the probability of overlap between calcium transients and RSPAs?

      We appreciate the reviewer’s comment. We have also hypothesized the model. However, we did not see the correlation that the reviewer pointed out. Currently, the increment of the RSPA frequency at high density is partially caused by the increment of calcium transients.

      Reviewer #2 (Recommendations For The Authors):

      1. The work is hardly conclusive as to the actual biological significance of the phenomenon. It would be interesting to know more under which physiological and pathological conditions PGE2 triggers such radial PKA activity changes. It is not well explained in which tissues and organs and under what conditions this type of cell-to-cell communication could be particularly important.

      The greatest weakness of the study seems to be that the biological significance of the phenomenon is not clearly clarified. Although it can be deduced that PKA activation has many implications for cell signaling and metabolism, the work lacks the actual link to physiological or pathological significance.

      We deeply appreciate the reviewer’s comment. Similar to the reseponse of reviewer#1, although we have intensively tried to identify the physiological relevance of RSPA, we could not detect the function.

      On the other hand, we believe that the PGE2 dynamics and its regulation mechanism in the normal epidermis would be worth reporting to researchers in the field.

      1. The authors do not explain further why in certain cells of the cell clusters Ca2+ signals occur spontaneously and thus trigger the phenomenon. What triggers these Ca2+ changes? And why could this be linked to certain cell functions and functional changes?

      At this moment, we do not have a clear answer or model for the comment although the calcium transients have been reported in the epidermis (https://doi.org/10.1038/s41598-018-24899-7). Further studies are needed and we will pursue this issue as a next project.

      1. What explains the radius and the time span of the radial signal continuation? To what extent are these factors also related to the degradation of PGE2? The work could be stronger if such questions and their answers would be experimentally integrated and discussed.

      We agree with the reviewer’s comment. Although we have intensively studied that point, we have omitted the results because of its complications. In HeLa cells, but not MDCK cells, we demonstrate the meaning of the radius of RSPA (https://pubmed.ncbi.nlm.nih.gov/37813623/)

      1. The authors could consider whether they could investigate the subcellular translocation of cPLA2 in correlation with cytosolic Ca2+ signals using GFP technology and high-resolution fluorescence microscopy with their cell model.

      Actually, we tried to monitor the cPLA2 translocation using GFP-tagged cPLA2. However, the translocation of GFP-cPLA2 was detected, only when the cells were stimulated by calcium ionophore. At this point, we have concluded that the quantitative analysis of cPLA2 translocation would be difficult.  

      Reviewer #3 (Recommendations For The Authors):

      1. "The cell density in the basal layer is approximately 2x106 cells cm-2, which is markedly higher than that in MDCK cells (Fig. 2D). It is not clear whether this may be related to the lower frequency (~300 cm-2 h-1) and smaller radius of RSPA in the basal layer cells compared to MDCK cells (Fig. 2E)." Wasn't the relationship with cell density the opposite, higher density higher frequency? Isn't then this result contradicting the "cell density rule" that the authors argue is there in the in vitro system? The authors need to revise their interpretation of the data obtained.

      We agree with the reviewer’s comment. Currently, we do not find the "cell density rule" in mouse epidermis. It would be difficult to identify common rules between mouse epidermis and MDCK cells. However, although it is descriptive, we believe it is worth comparing the MDCK results at this moment.

      1. Similarly, the authors over conclude on the explanation of lack of change in the size of RSPA size when the change in fluorescence for the calcium reporter surpasses a threshold by saying that "This observation indicates that the amount of PGE2 secretion is predetermined and that there is a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion." First, the study does not really measure directly PGE2 secretion. Hence, there is no way that they can argue that the level of PGE2 secreted is "predetermined". Instead, there could be an inhibitory mechanism that is triggered to limit further activation of PGE2 signaling/PKA in neighboring cells.

      We agree with the reviewer’s comment. We have omitted the context.

      1. To rule out a transcription-dependent mechanism in the apparent cell density-regulated sensitivity to PGE2, the authors need to inhibit transcription. We agree that our RNA-seq analysis would not 100% rule out the transcription-dependent mechanism. However, we believe that shutting down all transcription will show a severe off-target effect that indirectly affects the calcium transients and the PGE2-synthetase pathway. Therefore, our conclusion is limited.

      4) EGF is reported to increase the frequency of RSPA but the change shown in Fig. 6F is not statistically significant, hence, EGF does not increase RSPA frequency in their experiments.

      We have toned down the claim that EGF treatment increases the frequency (line172).

      "Accordingly, the addition of EGF faintly increased the frequency of RSPA in our experiments, while the MEK and EGFR inhibitors almost completely abrogated RSPA (Fig. 6F), representing that ERK activation or basal ERK activity is essential for RSPA.“

      1. The Discussion section is at times redundant with the results section. References to figures should be kept in the Results section.

      We would like to argue in opposition to this comment. For readers, we believe that the reference to figures would be helpful and kind. However, if eLife recommends removing the reference from the Discussion section, we will follow the publication policy.

      1. "Notably, the propagation of PKA activation, ~100 μm/min (Fig. 1H), is markedly faster than that of ERK activation, 2-4 μm/min (Hiratsuka et al., 2015)." The 2 kinase reporters are based on different molecular designs. Thus, it does not seem appropriate to compare the kinetics of both reporters as a proxy of the comparison of the kinetics of propagation of both kinases.

      We think that we should discuss the comparison of the activity propagation between ERK and PKA. First, among many protein kinases, only ERK and PKA activities have been shown to spread in the epithelial cells. Second, both pathways are considered to be intercellular communication. Finally, crosstalk between these two pathways has been reported in several cells and organs.

      1. In Figure 1E it is unclear what is significantly different from what. Statistical analysis should be added and reporting of the results should reflect the results from that analysis.

      2. In Figure 3F and G the color coding is confusing. In F pink is radius and black is GCaMP6 and in G is RSPA+ and - cells. The authors should change the color to avoid ambiguity in the code.

      We have amended the panels.

      1. In Fig. 5C, how do they normalize per cell density if they are measuring radius of the response?

      In Fig5C, we just measure the increment of FRET ratio in the view fields.

      1. In Fig. 5D, what is the point of having a label for PTGER3 if data were not determined (ND)?

      We have added what N.D. means.

      “N.D. represents Not Detected.”

      1. It is important to assess whether ERK activation depends of PGE2 signaling to better place ERK in the proposed signaling pathway. In fact, the authors argue that "ERK had a direct effect on the production of PGE2." But it could be that ERK is downstream PGE2 signaling instead.

      It could be possible in other experimental conditions via EP1 and/or EP3 pathways. However, we never detected an effect of RSPA on ERK activity by analyzing our imaging system. In addition, treatment with NSAIDs or COX-2 depletion, which completely abolishes RSPA, did not affect ERK wave propagation. Thus, in our context, we concluded that ERK is not downstream of PGE2. This notion is also supported by the NGS results in Fig. 5D.

      We have refrained from discussing the pathway of PGE2-dependent ERK activation because it would be redundant.

      1. The authors need to explain better what they mean by "AND gate" if they want to reach a broad readership like that of eLife

      We have modified the legend to explain the “AND gate” as much as possible (line639).

      “Figure 7: Models for PGE2 secretion.

      The frequency of calcium transients is cell density-dependent manner. While the ERK activation wave is there in both conditions. Because both calcium transient and ERK activation are required for RSPA, the probability for PGE2 secretion is regulated as “AND gate”. ”

      1. In Fig. 5D, "The average intensity of the whole view field of mKate2 or mKOκ, at 20 to 30 min after the addition of PGE2, was applied to calculate the mKate2/mKOκ ratio." But this means that overlapping/densely plated cells in high density will show stronger changes in fluorescence. This should be done per cell not per field of view. It is obvious that the higher density will have more dense/brighter signal in a given field of view.

      We are sorry for the confusion. The cell density does not affect the FRET ratio, although the brightness could be changed. A typical example is Fig1D. Thus, we are sure that our procedures represent the PKA activity in plated cells.

      1. In Fig. 6B the authors need to explain how were the "randomly set positions" determined.

      We have modified the legend section as below (line618).

      “The ERK activities within 10 µm from the center of RSPA and within 10 µm from randomly set positions with a random number table generated by Python are plotted in the left panel. Each colored dot represents an average value of an independent experiment.”

      1. Sentences 314-318 are repeated in 318-322.

      We deeply appreciate the reviewer’s comment and have amended

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Here, Boor et al focus on the regulation of daf-7 transcription in the ASJ chemosensory neurons, which has previously been shown to be sensitive to a variety of external and internal signals. Interestingly, they find that soluble (but not volatile) signals released by food activate daf-7 expression in ASJ, but that this is counteracted by signals from the ASIC channels del-3 and del-7, previously shown to detect the ingestion of food in the pharynx. Importantly, the authors find that ASJ-derived daf-7 can promote exploration, suggesting a feedback loop that influences locomotor states to promote feeding behavior. They also implicate signals known to regulate exploratory behavior (the neuropeptide receptor PDFR-1 and the neuromodulator serotonin) in the regulation of daf-7 expression in ASJ. Additionally, they identify a novel role for a pathway previously implicated in C. elegans sensory behavior, HEN1/SCD-2, in the regulation of daf-7 in ASJ, suggesting that the SCD-2 homolog ALK may have a conserved role in feeding and metabolism.

      Strengths:

      The studies reported here, particularly the quantitation of gene expression and the careful behavioral analysis, are rigorously done and interpreted appropriately. The results suggest that, with respect to food, DAF-7 expression encodes a state of "unmet need" - the availability of nearby food to animals that are not currently eating. This is an interesting finding that reinforces and extends our understanding of the neurobiological significance of this important signaling pathway. The identification of a role for ASJ-derived daf-7 in motor behavior is a valuable advance, as is the finding that SCD-2 acts in the AIA interneurons to influence daf-7 expression in ASJ.

      We appreciate the Reviewer 1’s thoughtful assessment of our work and inference that the expression of daf-7 encodes internal state corresponding to “unmet need.” Based on comments of Reviewer 1 and other reviewers, we have revised the title, abstract, and parts of the discussion to highlight not only the functional contribution of daf-7 expression in the ASJ neurons to behavioral state, but also the remarkable correlation between gene expression and internal state driving foraging behavior.

      Weaknesses:

      A limitation of the work is that some mechanistic relationships between the identified signaling pathways are not carefully examined, but this provides interesting opportunities for future work.

      To enable the reader to begin to infer the relative contributions of the identified signaling pathways to the circuitry coupling distinct bacterial cues to foraging behavior, we have added data for the analysis of DAF-7 expression in the ASJ neurons in the tph-1 and pdfr-1 mutants in the complete absence of food. Our current leaning is that multiple pathways, including those we have begun to characterize here, may function in parallel to influence DAF-7 expression and internal state driving foraging behavior. Future work to explore this further is certainly of interest.

      A minor weakness concerns the experiment in which daf-7 is conditionally deleted from ASJ. This is an ideal approach for probing the function of daf-7, but these experiments seem to be carried out in the well-fed, on-food condition in which control animals should express little or no daf-7 in ASJ. Thus, the experimental design does not allow an assessment of the role of daf-7 under conditions in which its expression is activated (e.g., in animals exposed to un-ingestible food).

      The interpretation of genetic analysis in the complete absence of food is complicated by what we think are multiple parallel pathways that function to strongly promote roaming, as indicated in the prior work of Ben Arous et al. Our observation that the conditional deletion of daf-7 from the ASJ pair of neurons confers altered roaming behavior on a lawn of bacterial food supports physiological ongoing role for dynamic daf-7 expression from the ASJ neurons even in the presence of bacterial food that may contribute to the control of transitions between foraging states and the persistence of roaming and dwelling states.

      To demonstrate the functional contribution of DAF-7 expression from the ASJ neuron pair during constitutive expression favoring roaming, we examined the roaming behavior of scd2(syb2455) animals that carry a gain-of-function mutation in scd-2 that promotes roaming and how the selective deletion of daf-7 from the ASJ neurons in the scd-2(syb2455) genetic background influences roaming behavior. This new experiment supports a model in which DAF-7 expression from the ASJ neurons contributes to the increased roaming behavior exhibited by scd-2(syb2455) animals. The new experiment is added as Figure 4I.

      An additional minor issue concerns the interpretation of the scd-2 experiments. The authors' findings do support a role for scd-2 signaling in the activation of daf-7 expression by un-ingestible food, but the data also suggest that scd-2 signaling is not essential for this effect, as there is still an effect in scd-2 mutants (Figure 4B).

      Considering that most of previous Figure 4B is redundant with previous Figure 4D, we removed previous Figure 4B. Our current Figure 4 has redesignated previous Figure 4D as 4B. We have also added qualification to the text to indicate that other pathways may modulate the daf-7 expression response to ingested food in parallel to SCD-2 signaling.

      Reviewer #2 (Public Review):

      Summary:

      In this work, Boor and colleagues explored the role of microbial food cues in the regulation of neuroendocrine-controlled foraging behavior. Consistent with previous reports, the authors find that C. elegans foraging behavior is regulated by the neuroendocrine TGFβ ligand encoded by daf-7. In addition to its known role in the neuroendocrine/sensory ASI neurons, Boot and colleagues show that daf-7 expression is dynamically regulated in the ASJ sensory neurons by microbial food cues - and that this regulation is important for exploration/exploitation balance during foraging. They identify at least two independent pathways by which microbial cues regulate daf-7 expression in ASJ: a likely gustatory pathway that promotes daf-7 expression and an opposing interoceptive pathway, also likely chemosensory in nature but which requires microbial ingestion to inhibit daf-7 expression. Two neuroendocrine pathways known to regulate foraging (serotonin and PDF-1) appear to act at least in part via daf-7 induction. They further identify a novel role for the C. elegans ALK orthologue encoded by scd-2, which acts in interneurons to regulate daf-7 expression and foraging behavior. These results together imply that distinct cues from microbial food are used to regulate the balance between exploration and exploitation via conserved signaling pathways.

      Strengths:

      The findings that gustatory and interoceptive inputs into foraging behavior are separable and opposing are novel and interesting, which they have shown clearly in Figure 1. It is also clear from their results that removal of the interoceptive cue (via transfer to non-digestible food) results in rapid induction of daf-7::gfp in ASJ, and that ASJ plays an important role in the regulation of foraging behavior.

      We thank Reviewer 2 for underscoring the modulation of neuroendocrine gene expression in the ASJ neuron pair by distinct gustatory and interoceptive inputs derived from bacterial food that we show in Figure 1.

      The role of the hen-1/scd-2 pathway in mediating the effects of ingested food is also compelling and well-interpreted. The use of precise gain-of-function alleles further supports their conclusions. This implies that important elements of this food-sensing pathway may be conserved in mammals.

      We thank Reviewer 2 for emphasizing the implications of our study on SCD-2/ALK as well as the generation and use of gain-of-function scd-2 alleles based on oncogenic mutations in ALK.

      Weaknesses:

      What is less clear to me from the work at this stage is how the gustatory input fits into this picture and to what extent can it be strongly concluded that the daf-7regulating pathways that they have identified (del-3/7, 5-HT, PDFR-1, scd-2) act via the interoceptive pathway as opposed to the gustatory pathway.

      It follows from the work of the Flavell lab that del-3/7 likely acts via the interoceptive pathway in this context as well but this isn't shown directly - e.g. comparing the effects of aztreonam-treated bacteria and complete food removal to controls. The roles of 5-HT and PDFR-1 are even a bit less clear. Are the authors proposing that these are entirely parallel pathways? This could be explained in better detail.

      We have added additional data regarding daf-7 expression from the ASJ neurons in the complete absence of food in the different mutant backgrounds noted by Reviewer 2. Data regarding daf-7 expression in the ASJ neurons under three distinct conditions—ingestible bacterial food, non-ingestible bacterial food, and the complete absence of food—enable the pairwise comparison of mutant data that allows for inference regarding the relative contributions of the genes to the interoceptive vs. gustatory pathways. In particular, effects on the interoceptive pathway can be inferred from the comparison of daf-7 expression on ingestible vs. non-ingestible food, whereas effects on the gustatory pathway can be inferred from the comparison of daf-7 expression on non-ingestible food vs. the absence of food (newly added).

      These additional data are most informative for del-3; del-7 (Figure 1H), where the added data corroborate a role for these genes in the interoceptive pathway, consistent with the findings of the Flavell lab. Specifically, the observation that daf-7 expression levels are equivalent between wild-type and del-3;del-7 animals when there is no ingestible food (either no food or non-ingestible food conditions) suggest that DEL-3 and DEL-7 are functioning specifically to sense ingested food.

      For pdfr-1, the analysis of the gain-of-function allele suggest that this pathway may have a greater relative effect on the gustatory pathway compared with the interoceptive pathway (Figure 3D). The robust upregulation seen in the pdfr-1(syb3826) animals between animals on ingestible and non-ingestible food, suggests that the interoceptive regulation is functional in these mutants, while the lack of upregulation between no-food and noningestible-food conditions suggests that the gustatory pathway is affected.

      The observations with the 5-HT biosynthesis mutant are most consistent with serotonin signaling affecting daf-7 expression in the ASJ neurons through a mechanism that is parallel to the gustatory and interoceptive inputs into daf-7 expression in the ASJ neurons, as tph1(n4622) animals appear to have an elevated baseline expression of daf-7 in the ASJ neurons while retaining sensitivity to both gustatory and interoceptive food cues (Figure 3B).

      The data with scd-2 are consistent with a role in the epistatic interoceptive pathway, considering the roughly equivalent levels of daf-7 expression in the ASJ neurons under all food conditions in scd-2(syb2455) animals (Figure 4B). However it is difficult to exclude the possibility that SCD-2 functions in both pathways or parallel to the gustatory and interoceptive inputs.

      While we agree that our genetic analysis alone cannot distinguish between genes acting in parallel or directly in serial with the gustatory or interoceptive inputs, our data do establish that signaling through SCD-2, 5-HT or PDFR-1-dependent pathways can act on the same gene expression and signaling node (i.e. daf-7 expression in the ASJ neurons) to modulate the effects of bacterial food inputs on foraging behavior, with the effects on daf-7 expression in the ASJ neurons in scd-2, tph-1 and pdfr-1 mutants correlating with their effects on roaming and dwelling behaviors.

      It would also be helpful to elaborate more on why the identified transcriptional positive feedback loop is predicted to extend roaming state duration - as opposed to some other mechanism of increasing roaming such as increased probability of roaming state initiation. This doesn't seem self-evident to me.

      Given that animals can exist in only two states, the increased probability of roaming state initiation would present as shorter dwelling states, which we do not see for daf-7 mutants. As described in Flavell, et al., 2013, a decreased fraction of time roaming can be attributed to longer dwelling states, shorter roaming states, or both. Our positive feedback loop is predicted to extend roaming states because of the predicted effect of DAF-7 on stabilizing the roaming state.

      Related to this point is the somewhat confusing conclusion that the effects of tph-1 and pdfr-1 mutations on daf-7 expression are due to changes in ingestion during roaming/dwelling. From my understanding (e.g. Cermak et al., 2020), pharyngeal pumping rate does not reliably decrease during roaming - so is it clear that there are in fact lower rates of ingestion during roaming in their experiments?

      This is an interesting point. Despite consistent pumping rates, we still believe that roaming animals ingest less food than dwelling animals. For instance, dwelling animals are localized to areas with bacterial food, while roaming animals might traverse patches with no food where pumping does not result in food ingestion.

      If so, why does increased roaming (via tph-1 mutation) result in further increases in daf-7 expression in animals fed aztreonam-treated food (Fig 3B)?

      This is possibly because although roaming animals are eating less, when animals are on non-ingestible food, they’re not eating at all, resulting in further daf-7 upregulation.

      Alternatively, there could be a direct signaling connection between the 5-HT/PDFR-1 pathways and daf-7 expression which could be acknowledged or explained.

      Yes, this is certainly possible. We do not propose that all of the difference in daf-7 expression is due to changes in foraging behavior, but rather we are highlighting further instances of the correlation between daf-7 expression in the ASJ neurons and roaming. For instance, in the case of our tph-1 mutants, we see a relatively modest effect on daf-7 expression in the ASJ neurons but a large difference in the fraction of time roaming. This suggests that the magnitude of change in one (daf-7 expression in ASJ or roaming) does not predict the magnitude of the change in the other, but rather that they trend in the same direc<on.

      Reviewer #3 (Public Review):

      Summary:

      In this interesting study, the authors examine the function of a C. elegans neuroendocrine TGF-beta ligand DAF-7 in regulating foraging movement in response to signals of food and ingestion. Building on their previous findings that demonstrate the critical role of daf-7 in a sensory neuron ASJ in behavioral response to pathogenic P. aeruginosa PA14 bacteria and different foraging behavior between hermaphrodite and male worms, the authors show, here, that ingestion of E. coli OP50, a common food for the worms, suppresses ASJ expression of daf-7 and secreted water-soluble cues of OP50 increases it. They further showed that the level of daf-7 expression in ASJ is positively associated with a higher level of roaming/exploration movement. Furthermore, the authors identify that a C. elegans ortholog of Anaplastic Lymphoma Kinase, scd-2, functions in an interneuron AIA to regulate ASJ expression of daf-7 in response to food ingestion and related cues. These findings place the DAF-7 TGF-beta ligand in the intersection of environmental food conditions, food intake, and foodsearching behavior to provide insights into how orchestrated neural functions and behaviors are generated under various internal and external conditions.

      Strengths:

      The study addresses an important question that appeals to a wide readership. The findings are demonstrated by generally strong results from carefully designed experiments.

      We thank Reviewer 3 for the comments and interest in the work.

      Weaknesses:

      However, a few questions remain to provide a complete picture of the regulatory pathways and some analyses need to be strengthened. Specifically,

      1. The authors show that diffusible cues of bacteria OP50 increase daf-7 expression in ASJ which is suppressed by ingestible food. Their results on del-3 and del-7 suggest that NSM neuron suppresses daf-7 ASJ expression. What sensory neurons respond to bacterial diffusible cues to increase daf-7 expression of ASJ? Since ASJ is able to respond to some bacterial metabolites, does it directly regulate daf-7 expression in response to diffusible cues of OP50 or does it depend on neurotransmission for the regulation? Some level of exploration in this question would provide more insights into the regulatory network of daf-7.

      The focus of our study has been on the modulation of daf-7 expression in the ASJ neurons by distinct bacterial food cues and the downstream neuroendocrine circuitry that is influenced. The question of whether bacterial cues are directly sensed by the ASJ neurons remains unresolved by our study. However, we have previously demonstrated that the daf-7 expression in the ASJ neurons induced by P. aeruginosa metabolites is likely the result of direct detection by the ASJ neurons. We would also note (and have added to the manuscript) the observation of Zaslaver et al. (2015), in which increased calcium transients were observed in the ASJ neurons in response to the withdrawal of E. coli OP50 supernatant, which is consistent with our observations of the effect of a soluble bacterial food signal on daf-7 expression in the ASJ neurons.

      1. The results including those in Figure 2 strongly support that daf-7 in ASJ is required for roaming. Meanwhile, authors also observe increased daf-7 expression in ASJ under several conditions, such as non-ingestible food. Does non-ingestible food induce more roaming?

      Yes, this has been published by Ben Arous, et al., 2009. Figure 3C shows increased roaming on aztreonam-treated food. We have added specific mention of this in the text.

      It would complete the regulatory loop by testing whether a higher (than wild type) level of daf-7 in ASJ could further increase roaming. The results in pdf-1 and scd-2 gain-of-function alleles support more ASJ leads to more roaming, but the effect of these gain-of-function alleles may not be ASJ-specific and it would be interesting to know whether ASJ-specific increase of daf-7 leads to a higher level of roaming. In my opinion, either outcome would be informative and strengthen our understanding of the critical function of daf-7 in ASJ demonstrated here.

      We looked at roaming in animals with a ptrx-1::daf-7 cDNA transgene in a wild-type background and did not see changes in the fraction of time animals roam. However, multiple experimental factors could contribute to our inability to detect an effect, including relative promoter strength and context of other variables that alter daf-7 expression. Nevertheless, our data confirmed that ASJ neuron-specific expression of daf-7 cDNA can increase roaming in a daf-7 mutant background (Figure 2B).

      We have also included an experiment (Figure 4I) looking at roaming in the scd-2(syb2455) gain-of-function animals in animals with daf-7 deleted from the ASJ neurons. These results suggest that part of the increased roaming seen in these scd-2(syb2455) animals is specifically due to increased daf-7 expression in the ASJ neurons.

      1. The analyses in Figure 4 cannot fully support "We further observed that the magnitude of upregulation of daf-7 expression in the ASJ neurons when animals were moved from ingestible food to non-ingestible food was reduced in scd-2(syb2455) to levels only about one-fourth of those seen in wild-type animals (Figure 4D)...", because the authors tested and found the difference in daf-7 expression between ingestible and non-ingestible food conditions in both wild type and the mutant worms. The authors did not analyze whether the induction was different between wild type and mutant. Under the ingestible food condition, ASJ expression of daf-7 already looks different in scd-2(syb2455).

      We appreciate the reviewer pointing out our lack of clarity in discussing our analysis of the data. The 4x difference represents the difference in fold change from ingested to noningested food in wild type and scd-2(syb2455) backgrounds. For wild-type animals, daf-7 expression in the ASJ neurons on non-ingestible food is 8.1-times higher on non-ingestible food than on ingestible food. In scd-2(syb2455) animals, this difference is 1.7 times. We have clarified this in the text.

      1. The authors used unpaired two-tailed t-tests for all the statistical analyses, including when there are multiple groups of data and more than one treatment. In their previous study Meisel et al 2014, the authors used one-way ANOVA, followed by Dunnett's or Tukey's multiple comparison test when they analyzed daf-7 expression or lawn leaving in different mutants or under different bacterial conditions. It is not clear why a two-tailed t-test was used in similar analyses in this study

      We have performed one-way ANOVAs for all comparisons included, and the results were largely consistent with what we found for t-tests. Ultimately, for our analysis we were most interested in pairwise comparisons and decided that t-tests would be most appropriate.

      *Reviewer #1 (Recommendations For The Authors):

      Line 170: For clarity, I suggest editing this to: "When animals are removed from edible food but are still exposed to soluble food signals, upregulation of daf-7..."

      We have edited this in the text and appreciate the suggestion.

      The authors report that pdfr-1(syb3826) was retrieved from "a screen done in parallel to this work." syb3826 is a Suny Biotech allele, suggesting that this screen may not have been done in the authors' lab but rather outsourced. Some additional details might be useful.

      This S325F allele was originally recovered as qd385 in an EMS screen performed in our lab. syb3826 is an independently generated Suny Biotech allele we ordered to confirm that the S325F substitution in PDFR-1 was responsible for our phenotypes. This has been clarified in the text.

      Line 210: Please provide a citation for the screen that identified hen-1(qd259).

      This is the first time the allele is being published. The screen is included in two theses from our lab, Meisel 2016 and Park 2019.

      Line 214: It would be useful here to also mention the previously identified role of scd2 in sensory integration.

      Yes, we have added this to the text. Additionally, we have included a couple of sentences in the discussion about how previous studies that have found a role for SCD-2 in sensory integration may instead be detecting the role for SCD-2 in food sensing, as many of the assays used for sensory integration are also sensitive to nutritional status of the animals.

      Line 271: Please provide a citation for the sex differences in food-leaving behavior (Lipton 2004 PMID 15329389 is the first careful characterization of this).<br /> We have added this to the text.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Recommendations For The Authors):

      The evidence provided in this study reflects important discoveries on language lateralisation and most of the conclusions of this paper are supported by evidence. However, there are several areas regarding the characteristics of participants tested, hypotheses/predictions and the type of analysis, that need to be clarified and/or corrected.

      1. There is a substantial disconnection between the introduction and the methods/results section.

      One reason is because of lack of consistency. One example refers to the fact that, in the introduction, only IFC is mentioned. However, the analyses carried out to examine neural activity in different groups focused on IFC as well as other brain regions related to inhibitory control. However, these areas were not mentioned at all in the introduction. Second and related to the above, the rationale for conducting certain types of analyses is not specified. Some brain analyses focus on IFC only. Instead, other analyses focus on several areas.

      Another weakness is that there is not sufficient detail regarding the hypotheses/predictions and the specific types of analyses chosen to test these hypotheses/predictions. For example, there is no mention of resting state fMRI data in the introduction, but later we discover that this type of data was collected and analyzed. Even a brief mention of the inclusion of resting state data in the introduction would be beneficial. Along the same lines, by reading the methods section we find out that VBM analyses were conducted. But it is unclear why. What was the purpose of this data analysis? This should be clarified briefly in the introduction and then in the methods section. It remains unclear why resting state results would be particularly informative for addressing the research question of this study. Task-related brain connectivity seems a more appropriate choice. Additionally, it is not explained what comparisons and outcomes would be informative/expected to distinguish between the two mentioned competing hypotheses. This should be made clear.

      Another aspect that lacks clarity is the authors' predictions when investigating the relationship "between the lateralization of both functions and inter-hemispheric structural-functional connectivity, as well as with behavioural markers of certain clinical conditions that have been related with atypical lateralization". The hypotheses are completely omitted in this section.

      Thank you for bringing this to our attention. We concur with Reviewer #2 that our introduction was somewhat lacking in detail and assumed too much prior knowledge on the part of the reader. This, together with a lack of a clear presentation of our tested hypotheses, made the introduction have a poor connection with both the results and discussion sections, which hindered the understanding of the paper.

      As a result, we have made some additions to enhance the exposition of the following areas: (1) the causal and statistical hypotheses of lateralization (Lines 55-65); and (2) the hypotheses regarding subclinical markers of neurological disorders and the corpus callosum (Lines 90-104).

      Furthermore, we have extensively revised the final paragraph of the introduction (Lines 105-121) to provide a clearer and more coherent linkage between the drivers presented during the introduction, our hypotheses, and the subsequent analyses.

      1. It is important to provide more information on the language background of the participants. Were the participants in this study Catalan-Spanish bilinguals? If so, it is crucial for the authors to mention this.

      Language background of the participants has been added to the corresponding section (Lines 138-145).

      In fact, previous studies, including several publications from the authors themselves (Garbin et al., 2010; Rodríguez-Pujadas et al., 2013; Anderson et al., 2018), have shown that there are qualitative differences between bilinguals and monolinguals in the neural circuitry underlying executive control. Across all these studies, it was consistently reported that bilingual individuals, when engaged in non-linguistic inhibitory control tasks, recruited a broader network of left-brain regions associated with language control, including the left IFC, in comparison to monolingual individuals. If the participants in this study were indeed bilinguals, it raises concern if the aim of the study is to generalize the conclusions on lateralization effects beyond the bilingual population.

      Rodríguez-Pujadas, A., Sanjuán, A., Ventura-Campos, N., Román, P., Martin, C., Barceló, F., … & Ávila, C. (2013). Bilinguals use language-control brain areas more than monolinguals to perform non-linguistic switching tasks. PLoS One, 8(9), e73028.

      Garbin, G., Sanjuan, A., Forn, C., Bustamante, J. C., Rodríguez-Pujadas, A., Belloch, V., ... & Ávila, C. (2010). Bridging language and attention: Brain basis of the impact of bilingualism on cognitive control. NeuroImage, 53(4), 1272-1278.

      Anderson, J. A., Chung-Fat-Yim, A., Bellana, B., Luk, G., & Bialystok, E. (2018). Language and cognitive control networks in bilinguals and monolinguals. Neuropsychologia, 117, 352-363.

      Indeed, we have thoroughly reported that, when compared to monolinguals, bilinguals exhibit a significant implication of left brain regions during switching and inhibition tasks. So, this is a legitimate concern. Unfortunately, the society from which our participants were drawn is primarily bilingual, encompassing both active and passive bilinguals. The monolingual sample in those previous studies consisted of university students originating from predominantly monolingual regions of Spain. Given this context, it is unsurprising that the current study has a rather limited number of monolinguals (n=8), with only 2 displaying atypical language lateralization. Thus, we cannot provide a reliable answer to the role of bilingualism status in our data. Consequently, we have included a comment on this limitation on the discussion (Lines 504-512).

      1. Regarding the methods section, I have the following specific queries. The first is about the control condition in the verb generation task. I find it puzzling that the 'task' and 'control' conditions differ in terms of the number of words uttered. Could the authors please provide further clarification on this?

      Thank you for raising this question. Regarding the control condition, it is important to note that the design of this task drew inspiration from previously published verb generation tasks for fMRI (Benson et al., 1999; Fitzgerald et al., 1997) and PET (Petersen et al., 1988). In the fMRI tasks, a fixation cross served as the control condition, while the PET study used word repetition as the control. We acknowledged that a mere fixation cross might not adequately control for the movement and visual-related activations inherent in the verb generation task. Conversely, word repetition could potentially engage the default mode network due to the repetition of the same simple task, which might not be suitable for a control condition, and it could be overly linguistic because it involves a word. Consequently, we aimed to strike a balance by employing a control condition that consisted of reading letters. This approach allowed us to control for movement and vision factors without invoking semantics. Thus, after careful consideration, we ultimately opted on the reading of two letters to equate the response to the vocalization length of generating a verb.

      Although we understand the concern of single vs. two vocalizations, it is worth emphasizing that this version of the verb generation task had undergone prior testing to assess its suitability for determining language lateralization in both healthy and clinical populations (Sanjuan et al., 2010). In fact, this task has been an integral component of our lab’s standard presurgical assessment protocol, which has been used for nearly two decades in individually evaluating language function in over 500 patients with central nervous system lesions.

      Benson, R. R., Fitzgerald, D. B., Lesueur, L. L., Kennedy, D. N., Kwong, K. K., Buchbinder, B. R., Davis, T. L., Weisskoff, R. M., Talavage, T. M., Logan, W. J., Cosgrove, G. R., Belliveau, J. W., & Rosen, B. R. (1999). Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology, 4(52), 798–809.

      Fitzgerald, D. B., Cosgrove, G. R., Ronner, S., Jiang, H., Buchbinder, B. R., Belliveau, J. W., Rosen, B. R., & Benson, R. R. (1997). Location of Language in the Cortex: A Comparison between Functional MR Imaging and Electrocortical Stimulation. AJNR Am J Neuroradiol, 18, 1529–1539.

      Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(18), 585–589.

      Sanjuán, A., Bustamante, J. C., Forn, C., Ventura-Campos, N., Barrós-Loscertales, A., Martínez, J. C., Villanueva, V., & Ávila, C. (2010). Comparison of two fMRI tasks for the evaluation of the expressive language function. Neuroradiology, 52(5), 407–415. https://doi.org/10.1007/s00234-010-0667-8

      Second, it is mentioned that some participants were excluded from different tasks due to technical issues or time constraints. It is important to ensure that all the results can be attributed to the exact same sample of participants across all tasks.

      We absolutely agree that excluding participants can be problematic when presenting the results of multiple sets of analyses. Therefore, we repeated all analyses while excluding the 7 participants that lacked resting-state data. All results remained virtually identical, with a few minor exceptions:

      1) Region-wise analysis of the stop-signal task: Hemisphere × Group effect in the preSMA region is significant (uncorrected P = 0.019), but it does not survive Bonferroni correction (corrected P = 0.076)

      2) Voxel-wise analysis of the stop-signal task: The Thalamus + STN and Caudate clusters are significant at the voxel level, but do not survive the cluster-based FWE correction. They do survive FDR correction, though.

      3) Correlation between SPQ score and LI of the stop-signal task: This correlation weakens just behind statistical significance, with a P value of 0.053.

      4) Correlation between reading variables and LIs of both tasks: Severe drops in P values are evident between both LIs and reading length accuracy (P = .111 and .133), as well as between verb generation LI and reading familiarity accuracy (P = .111). However, the association between the stop-signal LI and the reading length time is now significant (r = −.229, P = .042).

      According to this, we have included this statement in the methods section: (Lines 218-220).“It is important to highlight that the exclusion of these seven participants across all analyses does not notably impact the overall results.“

      It is unclear how the authors have estimated the RTs results from the practice trials. This requires more explanation. Also, why was the median used for the Go Reaction Time instead of the mean, when calculating the individual SSRT?

      We adapted the procedure used by Xue et al. (2008), implementing their approach to calculate SSRT. This has been elaborated further (Lines 227-230), together with the use of practice trials (Lines 233-236).

      Xue, G., Aron, A.R., and Poldrack, R.A. (2008). Common Neural Substrates for Inhibition of Spoken and Manual Responses. Cerebral Cortex 18, 1923–1932. 10.1093/CERCOR/BHM220.

      On a final note, information about the different types of pre-processing and data analysis is all reported in the same paragraph. I think using subsections would increase the intelligibility of the section.

      Thank you for this suggestion. We have added subsections in both the ‘image processing’ and ‘statistical analyses’ sections.

      1. Data analysis and Interpretation of the results. It is unclear how the mean BOLD signal was extracted to conduct ROI analysis (Marsbar?).

      Thank you for ponting this out. Indeed, we were not very accurate in the description of this procedure. We extracted the first eigenvariate via the VOI function within SPM12. This has been included in Lines 291-293.

      I feel uneasy about the way results are corrected for multiple comparisons. For instance, it is mentioned that in the ROI analysis, all p-values were FDR-corrected for four comparisons, but it is unclear why. The correct procedure for supporting conclusions about the effect of specific brain would be to have 'brain region' (n=4) as another within-subject factor. Furthermore, the one-tailed correlation is appropriate but only when testing for the possibility of a relationship in one direction and completely disregarding the possibility of a relationship in the other direction. However, this does not seem to be the case here (see Introduction), so a two-tailed correlation would be more appropriate.

      We agree with Reviewer #2 that presenting this analysis as a single MANOVA that includes a ‘Region’ factor is a more accurate approach. Consequently, we have made the aforementioned correction in the methods section (Lines 357-364) and the results section (Lines 395-406). The LI-LI one-tailed correlation was also changed to a two-tailed correlation in the methods section (Line 383), the results section (Line 417), and Figure 2 (Line 886).

      I am quite confused about using the term interhemispheric connectivity to refer to the volume of the genu, body and splenium of the corpus callosum. In fact, the volumes of genu, body and splenium of the corpus callosum do not reflect a measure of how strongly RH and LH IFC are connected to each other.

      We agree that using the term ‘interhemispheric connectivity’ when referring to callosal volume may be somewhat misleading. We have replaced every instance of this terminology throughout the paper.

      Furthermore, it is unclear why in a set of analyses (ROI and whole brain analyses) the authors focus on brain responses in different ROIs but instead, in connectivity measures the focus is only on IFC.

      Our initial rationale was to focus on regions that are prominently involved in language, particularly the IFC, for examining inter-hemispheric connectivity at rest.

      However, upon more careful consideration, it is true that the preSMA is also implicated in the language network (Labache et al., 2018), and certain studies have reported an impact of STN stimulation on specific language skills (for a review, see Vos et al., 2021). Consequently, we have incorporated these two regions into the resting-state analysis, along with subsequent correlations with LIs (Table 1 and Lines 118, 321-322 & 449-452).

      Labache, L., Joliot, M., Saracco, J., Jobard, G., Hesling, I., Zago, L., Mellet, E., Petit, L., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2018). A SENtence Supramodal Areas AtlaS (SENSAAS) based on multiple task-induced activation mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers. Brain Structure and Function 2018 224:2, 224(2), 859–882. https://doi.org/10.1007/S00429-018-1810-2

      Vos, S. H., Kessels, R. P. C., Vinke, R. S., Esselink, R. A. J., & Piai, V. (2021). The Effect of Deep Brain Stimulation of the Subthalamic Nucleus on Language Function in Parkinson’s Disease: A Systematic Review. Journal of Speech, Language, and Hearing Research, 64(7), 2794–2810. https://doi.org/10.1044/2021_JSLHR-20-00515

      Minor corrections/comments:

      It is unclear why in figure caption 1, the conjunction maps are mentioned even if formal conjunction analysis was not conducted.

      This poor choosing of words has been replaced to ‘overlapping maps’.

      Line 382. VHMC should be VMHC.

      Fixed. Thank you.

      Line 334. This sentence and especially its relationship with the results is not clear at all. What do you mean by 'This finding is consistent with previous reports showing that cognitive deficits appear only in specific cognitive domains'?

      This has been clarified (Lines 521-525).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Throughout the study, there is insufficient information about how experiments were performed and how often (imaging, pull-downs etc), how data was acquired, modified and analysed (especially imaging data, see below), how statistical analyses were done and what is presented in the figures (single planes or maximum intensity projections etc). This makes it difficult to evaluate the data and results.

      We have incorporated additional experimental details to the Materials and Methods section: "Recent advancements in optical and camera technologies permit the acquisition of Z-stacks without perturbing Q cell division or overall animal development. Z-stack images were acquired over a range of -1.6 to +1.6 μm from the focal plane, at intervals of 0.8 μm. The field-of-view spanned 160 μm × 160 μm, and the laser power, as measured at the optical fiber, was approximately 1 mW. ImageJ software (http://rsbweb.nih.gov/ij/) was used to perform image analysis and measurement. Image stacks were z-projected using the average projection for quantification and using the maximum projection for visual display. "

      The majority of our experimental procedures adhere to methodologies delineated in our prior publications and other scientific literature. We were pioneers in the development of fluorescence time-lapse live microscopy techniques for capturing Q cell migration and asymmetric division (Ou and Vale, Journal of Cell Biology, 2009; Ou et al., Science, 2010; Chai et al., Nature Protocols, 2012). Our innovative imaging protocol uncovered a novel mode of polarized, non-muscle myosin-II-dependent asymmetric cell division (Ou et al., Science, 2010). Subsequently, we unveiled another previously uncharacterized mechanism of asymmetric cell division dependent on polarized actin polymerization (Chai et al., Cell Discovery, 2022). In the present study, we have significantly refined our imaging and quantification protocols. Different from the single-focal-plane imaging employed in our earlier study by Ou et al. 2009, advancements in optical technologies and camera resolution now enable us to undertake time-lapse imaging across multiple focal planes and track signal differences between the anterior and posterior segments of dividing cells.

      There is insufficient information about tools and reporters used. This is misleading and impacts the conclusions that can be made from the results presented. To give an example, in Figure 1D-F, the authors present data that HDA-1::GFP and LIN-53::mNeonGreen (both components of the nucleosome remodeling and deacetylation complex) but not the histone acetyltransferase MYS-1::GFP are 'asymmetrically segregated' during QR.a division. However, the authors do not mention that HDA-1::GFP and LIN-53::mNeonGreen are expressed at endogenous levels (they are CRISPR alleles) whereas MYS-1::GFP is overexpressed (integration of a multi-copy extrachromosomal array). The difference in 'segregation' could therefore be a consequence of different levels of expression rather than different modes of segregation ('asymmetric' versus 'symmetric').

      Figure S2 shows overexpressed HDA-1, LIN-53 and CHD-3 are also asymmetrically segregated during ACD of QR.a, which indicates that different levels of expression do not affect the modes of segregation, at least for the NuRD subunits. In the main text, however, we presented the asymmetric segregation of HDA-1::GFP and LIN-53::mNeonGreen using their CRISPR KI alleles.

      There is insufficient information about the phenotypes of the animals used (RNAi knock-downs of hda-1, lin-53 RNAi, pig-1 etc). Again this is misleading and impacts the conclusions that can be made. To give some examples,

      1. In Figure 3A-G, control RNAi embryos are compared to hda-1 RNAi and lin-53 RNAi embryos. What the authors do not mention is that hda-1 RNAi and lin-53 RNAi embryos have severe developmental defects and essentially cannot be compared to control RNAi embryos. The differences between the embryos can be seen in Figure S7B where bright-field images of control RNAi, hda-1 RNAi and lin-53 RNAi embryos are shown. At the 350 min time point, a normal embryo is visible for the control, a 'ball of cells' embryo for hda-1 RNAi and an embryo that seems to have arrested at an earlier developmental stage (and therefore have much larger cells) for lin-53 RNAi. Because of these pleiotropic phenotypes, it is unclear whether differences seen for example in sAnxV::GFP positive cells (Figure 3A) are the result of a direct effect of hda-1(RNAi) on cell death or whether they are the result of global changes in development and cell fate induced by hda-1(RNAi). hda-1(RNAi) and lin-53(RNAi) embryos are also used for the data shown in Figures S6 and S7, raising the same concerns;

      In the submitted manuscript, we mentioned that hda-1 RNAi and lin-53 RNAi caused embryonic lethality and that we could track some of the apoptotic events in hda-1 RNAi embryos arrested between the late gastrulation stage and bean stage. We agree with the reviewers that because of the pleiotropic phenotypes, we cannot distinguish whether sAnxV::GFP positive cells (Figure 3A) are the result of a direct effect of hda-1 (RNAi) on cell death or whether they are the result of global changes in development and cell fate induced by hda-1 (RNAi). We added the sentence to page 9 line 26: “Considering the pleiotropic phenotypes caused by loss of HDA-1, we cannot exclude the possibility that ectopic cell death might result from global changes in development, even though HDA-1 may directly contribute to the life-versus-death fate determination.”

      1. The authors do not mention what the impact of Baf A1 treatment is on animals; however, the images provided in Figure 5E indicate that Baf A1 treatment causes pleiotropic effects in L1 larvae.

      We have carefully checked the BafA1 treated animals, but have not been able to detect any visible defect in Baf A1 treated animals under a 25× dissection microscope at the given dosage and duration of treatment. We also searched for the published images or literature and did not find pleiotropic effects on the animal level at this dosage and duration; however, we agree with the reviewers that perturbation of pH homeostasis in lysosomes by BafA1 will certainly generate pleiotropic cellular defects. We discussed the issue below:

      "Although BafA1-mediated disruption of lysosomal pH homeostasis is recognized to elicit a wide array of intracellular abnormalities, we found no evidence of such pleiotropic effects at the organismal level with the dosage and duration of treatment employed in this study."

      There is a lack of adequate controls. Because of this, some of the data presented must be considered as preliminary. To give some examples:

      1. Controls are lacking for the data shown in Figure 3D-G (i.e. genes other than egl-1). Since hda-1 RNAi has a pleiotropic effect and most likely affects H3K27 acetylation genome-wide, this is critical. Based on what is shown, it is unclear whether the results presented are specific to egl-1 or not;

      In figure 3F, we added F23B12.1 and sru-43 as the controls of egl-1. We added “while the H3K27ac level of genes adjacent to egl-1 showed no significant changes” to Page 10 line 22 in the revised text.

      1. The co-IP and mass spec data shown in Figure 4A, C and Figure S8 also lack a critical control, which is GFP only. Because of this, it is unclear whether subunits of the V-ATPase bind to HDA-1 or GFP. The co-IP and mass spec data forms the basis of Figures 5 and 6 as well as Figure S9. Data presented in these figures therefore has to be considered preliminary as well.

      In the co-IP and mass spec shown in Figure 4A, we used ACT-4::GFP as the negative control, which can preclude V-ATPase subunits that bind to GFP. In Figure 4C, we used anti-V1A (V-ATPase V1 domain A subunit) antibody to confirm the interaction between V1A and HDA-1. In Figure S8B, we also used ACT-4::GFP as a control, showing other NuRD subunits bind to HDA-1 rather than GFP.

      Inappropriate methods are used. For this reason, some of the data again must be considered preliminary. To give some examples:

      1. In Figure 5A, B, the authors used super-ecliptic pHluorin to look at changes in pH in the daughter cells. However, the authors used quenching of super-ecliptic pHluorin fluorescence rather than a ratio-metric method to 'measure' changes in pH. Because of this, it is unclear whether the changes in fluorescence observed are due to changes in pH or changes in the amount of pHluorin protein. Figure 5A, B forms the basis for the experiments presented in the remaining parts of Figure 5 as well as in Figure 6 and Figure S9;

      Bafilomycin A1 inhibits the activity of V-ATPase, presumably preventing the pumping of protons into the apoptotic daughter cell. It is more likely that the apoptotic daughter cell becomes less acidic and more neutral after the treatment of Baf1A, although we cannot exclude the possibility that the changes in fluorescence could be due to changes in the amount of pHluorin protein. A ratio-metric method to measure changes in pH will be further used to distinguish the two possibilities.

      We added “although we cannot exclude the possibility that the changes in fluorescence could be due to changes in the amount of pHluorin protein.” to Page 12 line 12 in the revised text.

      1. The authors' description of how some images were modified before quantitative analysis raises concerns. The figures of concern are particularly Figure 1 and Figure S4, where background subtraction with denoising and deconvolution was used. Background subtraction, with denoising and deconvolution is an image manipulation that enhances the contrast between background and what looks like foreground. Therefore, background subtraction should be applied primarily in experiments involving image segmentation not fluorescence intensity measurement. Not being provided any information by the authors about the kind of subtraction that was made, this processing could lead to an uneven subtraction across the image, which can easily lead to artefacts. Since the fluorescence intensity in the smaller daughter cell is lower, and thus closer to background, the algorithm the authors used may have misinterpreted the grey value information in the smaller daughter cell pixels. This could have led to an asymmetric subtraction of background in the two daughter cells, leading to a stronger subtraction in the smaller daughter cell. Ultimately, their processing could have artificially increased the intensity asymmetry between the two daughter cells in all their results.

      As mentioned earlier, the imaging and quantification methods of this manuscript have been routinely used in our previous publications or studies from many other labs (Gräbnitz F, et al., Cell Rep. 2023; Herrero E, et al., Genetics. 2020; Roubinet C, et al., Curr Biol. 2021). Background subtraction is a standard procedure to quantify cellular fluorescence intensities. The fluorescence intensity of the slide background was measured from a region without worm bodies, of the same size as the region of interest. We have added how we measured the background to page 19 Line 24: “The fluorescence intensity of the slide background was measured from a region without worm bodies, of the same size as the region of interest.”

      The imaging data is of low quality (for example Figures 1, 2, 5, 6; Figures S2, S3, S5, S6, S9). Since much of the study and the findings are based on imaging, this is a major concern. Critical parameters are not mentioned (number of sections in z-stack, size of the field-of-view, laser power used etc), which makes it difficult to understand what was done and what one is looking at.

      Fluorescence images of neuroblast asymmetric cell division in developing C. elegans larvae has historically presented considerable challenges. Our recent methodological advancements have facilitated live imaging in this intricate system with improved resolution. In the revised manuscript, we have elucidated the specific z-stack parameters, field-of-view dimensions, and laser power settings employed: "Z-stack images were acquired over a range of -1.6 to +1.6 μm from the focal plane, at intervals of 0.8 μm. The field-of-view spaned 160 μm × 160 μm, and the laser power, as measured at the optical fiber, was approximately 1 mW."

      To give some specific examples,

      1. The images shown in Figure 2B are of very low quality with severe background from neighbouring cells. In addition, the outline of the cells (plasma membrane) or the nuclei of the daughter cells is unknown. Based on this it is not clear how the authors could have measured 'Fluorescence intensity ratio between sister nuclei' in an accurate and unbiased way (what is clear from these images is that there is an increase in HDA-1::GFP signal in ALL surviving daughters (asymmetric and symmetric divisions) post cytokinesis but not in the daughter cell that is about to die (asymmetric and unequal division));

      We employed live-cell imaging in conjunction with automated cell lineage tracing algorithms (Du et al., Cell, 2014) to scrutinize NuRD asymmetry in embryos from the two- or four-cell stage up to the 350-cell stage. This sophisticated approach was initially pioneered by Dr. Zhirong Bao at Sloan Kettering and subsequently refined by Dr. Zhuo Du during Dr. Du's postdoctoral training in Dr. Bao's laboratory. This advanced imaging pipeline enables the scientific community to quantify cellular fluorescence intensity in an automated fashion, thereby substantially mitigating manual intervention and bias.

      1. The images in Figure 6A and Figure S9A on VHA-17 segregation and its colocalization to ER and lysosome segregation during QR.a division are of very low quality and it is unclear to the reviewer how such images were used to obtain the quantitative data shown.

      In some cases, there is a discrepancy between what is shown in figures and what the authors state in the text. To give some examples:

      1. On page 7, the authors state "..., we found that nuclear HDA-1 or LIN-53 asymmetry gradually increased from 1.1-fold at the onset of anaphase to 1.5 or 1.8-fold at cytokinesis, respectively (Figure 1D-E)." Looking at the images for HDA-1 and LIN-53 in Figure 1D, the increase in the ratio mainly occurs between 4 min and 6 min, which is post cytokinesis and NOT prior to cytokinesis;

      Thank the reviewer for pointing out this. The nuclear HDA-1 or LIN-53 asymmetry increased to 1.5 or 1.8-fold 6 min after the onset of anaphase, when QR.a just completes cytokinesis. Therefore, We change the sentence “we found that nuclear HDA-1 or LIN-53 asymmetry gradually increased from 1.1-fold at the onset of anaphase to 1.5 or 1.8-fold at cytokinesis, respectively (Figure 1D-E).” to “we found that nuclear HDA-1 or LIN-53 asymmetry gradually increased from 1.1-fold at the onset of anaphase to 1.5 or 1.8-fold upon the completion of cytokinesis, respectively (Figure 1D-E).”

      However, nuclear HDA-1 or LIN-53 asymmetry initiates prior to cytokinesis. We started to see the nuclear HDA-1 or LIN-53 asymmetry (1.4 fold for HDA-1 and 1.2 fold for LIN-53 ) 2 min after the onset of anaphase (Figure 1D).

      1. These images (Figure 1D) also show that there is an increase in the HDA-1 and LIN-53 signals in the larger daughter cells (QR.ap), which suggests that the increase in ratios (Figure 1E) is the result of increased HDA-1 and LIN-53 synthesis post cytokinesis. However, on top of page 8, the authors state "The total fluorescence of HDA-1, LIN-53 and MYS-1 remained constant during ACDs, suggesting that protein redistribution may establish NuRD asymmetry (Figure S4C)." In Figure S4C, the authors present straight lines for 'relative total fluorescence' for imaging (probably z-stacks) that was done every min over the course of 7 min. If there was no increase in material as the authors claim, they should have seen significant photobleaching over the course of the 7 min and therefore reduced level of 'relative total fluorescence' over time. How the data presented in Figure S4C was generated is therefore unclear. (Despite the fact that the authors claim that the asymmetry seen is not due to new synthesis in the larger daughter cell post cytokinesis, it would be more consistent with the first experiment presented in this study (Figure S1) that shows that there is more hda-1 mRNA in egl-1(-) cells compared to egl-1(+) cells);

      Regarding the concern of photo-bleaching, we have meticulously calibrated our imaging system over the past several years. Rigorous controls, qualification, and analyses were scrupulously undertaken during the development of our fluorescence time-lapse imaging system for the investigation of Q cell dynamics, initially established by Dr. Guangshuo Ou in Ron Vale's laboratory—a renowned hub for avant-garde imaging techniques (Ou & Vale, Journal of Cell Biology, 2009; Ou et al., Science, 2010). Remarkably, no discernible photobleaching was observed even during two to three-hour imaging.

      We agree that protein turnover, involving both degradation and synthesis, may occur. However, NuRD asymmetric distribution occurred within several minutes after metaphase and QR.a completes cytokinesis ~6min after the onset of anaphase, while GFP protein translation and maturation require ~ 30 min in Q neuroblast (Ou & Vale, Journal of Cell Biology, 2009). Even if hda-1::gfp mRNA is translated during cell division, the nascent GFP-tagged protein will mature long after the completion of cytokinesis. Consequently, we postulate that the influence of newly synthesized GFP-tagged protein during Q cell division is negligible for quantification purposes. It is plausible that the asymmetry in HAD-1 protein distribution is independent of hda-1 mRNA asymmetry.

      1. On page 12, the authors state "..., in Baf A1-treated animals, QRaa inherited similar levels of HDA-1::GFP as its sister cell,...". However, looking at the image provided in Figure 5E (0 min), there seems to be a similar ratio of HDA-1::GFP between the daughter cells in DMSO and Baf A1-treated animals.

      We have adjusted the images in Figure 5E to show the asymmetry in DMSO-treated control animals. We acknowledge variations among animals. Our quantifications from more than 10 animals show the HDA-1 asymmetry in DMSO-treated animals in Figure 5B.

      Recommendations for the authors:

      Conclusion 1

      "Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans" (Abstract)

      Results described on pages 6-9 ("NuRD asymmetric segregation during neuroblast ACDs" and "NuRD asymmetric segregation in embryonic cell lineages") and data shown in Figure S1, Figure 1, Figures S2, S3, S4, S5, Figure 2.

      Conclusion 1 is not supported by the results as numerous concerns exist about the data in many of these figures (see above, major weaknesses). A more likely explanation for the authors' observations is that there is synthesis of NuRD post cytokinesis and that asymmetries in the amounts of NuRD observed in the two daughter cells is a consequence of their different cell sizes (QR.ap is 3x as large as QR.aa). This is supported by the finding that the loss of pig-1, which causes 'equal' division resulting in two daughter cells of similar sizes, abolishes the differences in NuRD seen between the daughter cells.

      As discussed earlier, GFP protein translation and maturation require ~ 30 min in Q neuroblast (Ou & Vale, Journal of Cell Biology, 2009). Even if there is the synthesis of NuRD post cytokinesis, the nascent GFP-tagged protein will not mature within our imaging timeframe, Therefore, NuRD asymmetry is unlikely to be a result of the synthesis of NuRD post cytokinesis. In addition, We found that MYS-1::GFP was symmetrically segregated into the small apoptotic daughter cells and big surviving daughter cells, suggesting NuRD asymmetry may be irrelevant to cell size asymmetry.

      Interestingly, despite the fact that the loss of pig-1 causes 100% of the divisions to be equal by size and symmetric with respect to NuRD amounts, it only causes about 30% of QR.aa cells to inappropriately survive. This demonstrates that there is a correlation between NuRD asymmetry and daughter cell size asymmetry but NOT between NuRD asymmetry and cell death. This also demonstrates that loss of 'NuRD asymmetry' and presence of NuRD in the daughter that should die is NOT sufficient to block its death.

      Cordes et al. 2006 (DOI: 10.1242/dev.02447) reported that in pig-1 loss-of-function mutants, <40% of Q.p lineages produce extra neurons because Q.pp cells inappropriately survive. Noticeably, only 30% and 5% Q.p lineages produce extra neurons in ced-3 and egl-1 loss of function single mutant, respectively. pig-1 ced-3 double mutant or pig-1 egl-1 double mutants show a dramatically stronger phenotype than either single mutant, resulting in about 80% of Q.p lineages producing extra neurons. These results suggest that pig-1 functions in parallel to the EGL-1-CED-9-CED-4-CED-3 cell death pathway to promote Q cell apoptosis.

      We agree with the reviewer that “loss of 'NuRD asymmetry' and presence of NuRD in the daughter that should die is NOT sufficient to block its death” in pig-1 loss-of-function mutants. However, these results do not rule out the correlation between NuRD asymmetry and cell death. In the pig-1 mutant, the concentration of NuRD in Q.pp might not be high enough to completely block the death pathway. Alternatively, NuRD may be one but not the only factor blocking the cell death pathway.

      Lastly, it is imperative to underscore that cellular aberrations observed during early developmental stages frequently undergo compensatory correction during subsequent developmental stages or even initial aging stages. For example, in certain cell migration mutants exhibiting early migration defects, the initial penetrance exceeds 80%; however, the penetrance is mitigated to a mere 30% in adults. Such observations have been corroborated in our prior publications focusing on cell migration dynamics (Wang et al., PNAS, 2013; Zhu et al., Dev Cell, 2016). This appears to be a pervasive phenomenon, echoed by several laboratories specializing in neural development. Sengupta and Blacque’s labs has reported that early aging can ameliorate ciliary phenotypes in C. elegans mutants with compromised intraflagellar transport mechanisms. Accordingly, late developmental stages may act as a compensatory buffer for antecedent developmental abnormalities.

      Conclusion 2

      "The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic cells to survive." (Abstract) Results described on pages 8-10 ("Loss of the deacetylation activity of NuRD causes ectopic apoptosis" and "NuRD RNAi upregulates the egl-1 expression by increasing its H3K27 aceylation") and data shown in Figure S6, Figure 3, Figure S7 and data shown in Figure 5.

      Because of the various concerns raised above (major weaknesses) about the data presented in Figure S6, Figure 3, Figure S7 (pleiotropic phenotypes of hda-1 and lin-53 RNAi animals, lack of controls etc), there is no evidence that NuRD has a specific and/or direct effect on egl-1 expression in cells programmed to die or that loss of NuRD causes ectopic egl-1-dependent cell death. The claim that "ectopic gain of NuRD enables apoptotic cells to survive." is based on Figure 5E, where the authors show that Baf A1 treatment causes symmetric NuRD segregation in 11/12 animals and that QR.aa survives in 11/12 animals. However, those data are unconvincing. As mentioned above (major weaknesses), from the low-quality images provided, it is not clear whether there is 'symmetric NuRD segregation' in Baf A1 treated animals, and the conditions of the animals are a concern because of pleiotropic effects of blocking V-ATPase. (I am not convinced I am actually looking at the same region of an L1 larvae in the three animals because the HDA-1::GFP signal seems inconsistent across them.) One process that is affected by a block of V-ATPase is engulfment. The fact that the authors observe that 130 min post-cytokinesis, QR.aa still persists in Baf A1 treated animals could therefore be the result of a delay in engulfment rather than a block in cell death. In addition, the claim that ectopic gain of NuRD enables apoptotic cells to survive contradicts their findings on loss of pig-1 described about ('Conclusion 1').

      We acknowledge the limitations of our imaging system; however, as we pointed out earlier that we developed imaging methods and kept improving them. We have tried our best to obtain images from developing C. elegans larvae. On the other hand, we showed that hda-1 RNAi and lin-53 RNAi increase the expression of a subset of genes, including egl-1, either directly or indirectly (Fig. 3C). Figure 3B shows the ectopic cell death caused by loss of NuRD is dependent on EGL-1-CED-9-CED-4-CED-3 pathway. While we cannot exclude several other possibilities while addressing such a complex problem in such a challenging model system, these results provide some evidence supporting that our claim can be one of the possibilities.

      Conclusion(s) 3

      "We identified the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry" (Abstract)

      Results described on pages 10-13 ("V-ATPase regulates asymmetric segregation of NuRD during somatic ACDs") and data shown in Figures 4, 5, 6, Figures S8, S9.

      As outlined above (major weaknesses), the evidence that HDA-1 interacts with the V-ATPase complex is preliminary (no GFP control), and I consider the imaging data showing that V-ATPase asymmetrically segregates very low quality and unconvincing (Figure 6). The data on pH changes are also preliminary as the experiment was not done the way it should have (quenching rather than ratiometric). Finally, there are concerns about the results that apparently demonstrate that inhibiting V-ATPase activity disrupts pH asymmetry and NuRD asymmetry (impact of Baf A1 treatment).

      As discussed earlier, Bafilomycin A1 inhibits the activity of V-ATPase, presumably preventing the pumping of protons into apoptotic daughter cells. It is more likely that the apoptotic daughter cell becomes less acidic and more neutral after the treatment of Baf1A, although we cannot exclude the possibility that the changes in fluorescence could be due to changes in the amount of pHluorin protein. A ratio-metric method to measure changes in pH will be further used to distinguish the two possibilities.

      We added “although we cannot exclude the possibility that the changes in fluorescence could be due to changes in the amount of pHluorin protein.” to Page 12 line 12 in the revised text.

      Conclusion 4

      "We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates." (Abstract) Discussion and model Figure 6C.

      I consider the model premature and not based on any convincing data. In addition, the role of V-ATPase and acidification does not make sense. V-ATPase is involved in the acidification of the lysosomal system (lumen), and it is thought that cytosolic acidification in apoptotic cells is caused by lysosomal leakage. This is not consistent with the authors' model.

      This manuscript lacks a section describing details of statistical analyses and the rationale for the chosen test, sample sizes, exclusion criteria, and replication details. Although the sample size is relatively smaller (less than 30), the authors used "unpaired t-test" for most of the tests. They should describe which type of t-test they used (parametric or non-parametric test). They also should provide replication details for non-statistical data set, for example Fig 3F and Fig 4C.

      We used the Unpaired two-tailed parametric t-test. We have now added the information for statistic tests in the revised methods and figure legends.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for the thoughtful consideration of our work, including both reviewers’ constructive comments. Our apologies for taking some extra time for this revision, but we wanted to adress comments thoroughly with new analyses, not to mention a PhD defense, parental leave and my teaching ultimately being the bottleneck for the team’s work!

      Reviewer #1 (Public Review):

      The authors use a combination of structural and MD simulation approaches to characterize phospholipid interactions with the pentameric ligand-gated ion channel, GLIC. By analyzing the MD simulation data using clusters of closed and open states derived previously, the authors also seek to compare lipid interactions between putative functional states. The ultimate goal of this work is to understand how lipids shape the structure and function of this channel.

      The strengths of this article include the following:

      1) The MD simulation data provide extensive sampling of lipid interactions in GLIC, and these interactions were characterized in putative closed and open states of the channel. The extensive sampling permits confident delineation of 5-6 phospholipid interaction sites per subunit. The agreement in phospholipid binding poses between structures and the all-atom MD simulations supports the utility of MD simulations to examine lipid interactions.

      2) The study presents phospholipid binding sites/poses that agree with functionally-important lipid binding sites in other pLGICs, supporting the notion that these sites are conserved. For example, the authors identify interactions of POPC at an outer leaflet intersubunit site that is specific for the open state. This result is quite interesting as phospholipids or drugs that positively modulate other pLGICs are known to occupy this site. Also, the effect of mutating W217 in the inner leaflet intersubunit site suggests that this residue, which is highly conserved in pLGICs, is an important determinant of the strength of phospholipid interactions at this site. This residue has been shown to interact with phospholipids in other pLGICs and forms the binding site of potentiating neurosteroids in the GABA(A) receptor.

      Weaknesses of this article include the following:

      1) The authors describe in detail state-dependent lipid interactions from the MD simulations; however, the functional significance of these findings is unclear. GLIC function appears to be insensitive to lipids, although this understanding is based on experiments where GLIC proteoliposomes were fused to oocyte membranes, which may not be optimal to control the lipid environment. Without functional studies of GLIC in model membranes, the lipid dependence of GLIC function is not definitively known. Therefore, it is difficult to interpret the meaning of these state-dependent lipid interactions in GLIC.

      2) It is unlikely that the bound phospholipids in the GLIC structures, which are co-purified from e. coli membranes, are POPC. Rather, these are most like PE or PG lipids. While it is difficult to accommodate mixed phospholipid membranes in all-atom MD simulations, the choice of POPC for this model, while practically convenient, seems suboptimal, especially since it is not known if PE or PG lipids modulate GLIC function. Nevertheless, it is striking that the overall binding poses of POPC from the simulations agree with those identified in the structures. It is possible that the identity of the phospholipid headgroup will have more of an impact on the strength of interactions with GLIC rather than the interaction poses (see next point).

      3) The all-atom MD simulations provide limited insight into the strength of the POPC interactions at each site, which is important to interpret the significance of these interactions. It is unlikely that the system has equilibrated within the 1.7 microseconds of simulation for each replicate preventing a meaningful assessment of the lipid interaction times. Although the authors report exchange of up to 4 POPC interacting at certain residues in M4, this may not represent binding/unbinding events (depending on how binding/interaction is defined), since the 4 Å cutoff distance for lipid interactions is relatively small. This may instead be a result of small movements of POPC in and out of this cutoff. The ability to assess interaction times may have been strengthened if the authors performed a single extended replicate up to, for example, 10-20 microseconds instead of extending multiple replicates to 1.7 microseconds.

      Reviewer #2 (Public Review):

      The authors convincingly show multiple inner and outer leaflet non-protein (lipid) densities in a cryo-EM closed state structure of GLIC, a prokaryotic homologue of canonical pentameric ligand-gated ion channels, and observe lipids in similar sites during extensive simulations at both resting and activating pH. The simulations not only corroborate structural observations, but also suggest the existence of a state-dependent lipid intersubunit site only occupied in the open state. These important findings will be of considerable interest to the ion channel community and provide new hypotheses about lipid interactions in conjunction with channel gating.

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      In particular, a discussion of whether the timescale of the simulations permit measurements of residence or interaction times of the lipids should be addressed.

      Reviewer #1 (Recommendations for the authors):

      Comment 1.1: The authors may consider expanding the discussion about the significance of state-dependent lipid interactions. On the one hand, they emphasize state-dependent interactions of POPC with closed and open states in the outer leaflet in the results. On the other hand, they state that GLIC is insensitive to its lipid environment. What is the significance of the state-dependent interactions of POPC in GLIC, if any? It is possible that GLIC agonist responses are sensitive to phospholipids (such as PE or PG found in e. coli)? The state-dependent differences in lipid interaction identified in this study support this possibility and suggest the need to better understand the effects of phospholipids on GLIC function.

      Response 1.1: We agree with the reviewer that this is an interesting question and we have therefore extended the discussion with additional references on the functional effects on GLIC of various lipid membranes:

      p. 11 (Discussion)

      “Sampling was further simplified by performing simulations in a uniform POPC membrane. Prior experiments have been conducted to assess the sensitivity of GLIC in varying lipid environments (Labriola et al., 2013; Carswell et al., 2015; Menny et al., 2017), indicating that GLIC remains fully functional in pure POPC bilayers. In our cryo-EM experiments, the protein was recombinantly expressed from E. coli, which means that the experimental density would likely represent phosphatidylglycerol or phosphatidylethanolamine lipids. However, as the molecular identities of bound lipids could not be precisely determined, POPC lipids were built for straightforward comparison with simulation poses. While it appears that GLIC is capable of gating in a pure POPC bilayer, it remains plausible that its function could be influenced by different lipid species, especially due to the presence of multiple charged residues around the TMD/ECD interface which might interact differently with different lipid head groups. Further experiments would be needed to confirm whether the state dependence observed in simulations is also lipid-dependent. It is possible that certain types of lipids bind in one but not the other state, or that certain states are stabilized by a particular lipid type.”

      Comment 1.2: It would be helpful to state in the discussion that the co-purified lipids from GLIC structures are likely PE or PG from e. coli membranes. Nevertheless, it is interesting that the phospholipid poses from the structures generally agree with those identified from the MD simulations using PC.

      Response 1.2: Good point. We have clarified in the discussion that the native lipids in the cryo-EM structure are likely PG or PE lipids, as quoted in the preceding Response.

      Comment 1.3: The authors describe a more deeply penetrating interaction of POPC in the outer intrasubunit cleft in the open state, but this is difficult to appreciate from the images in Fig. 4B, 4E or S3B. The same is true of the deep POPC interaction at the outer intersubunit site. It may be helpful to show these densities from a different perspective to appreciate the depth of these binding poses.

      Response 1.3: We have added Figure 4 – figure supplement 1 to better show the depth of lipid binding poses, especially the ones in the outer leaflet intrasubunit cleft and at the inner intersubunit site, and cited the figure on p. 7 (Results).

      Comment 1.4: The representation of the lipid densities in Fig. 4B is not easy to interpret. First, the meaning of resting versus activating conditions and closed versus open states can be easily missed for readers who are not familiar with the author's previous study. It may be helpful to describe this (i.e. how open and closed state clusters were generated from structures determined in resting and activating conditions) in greater detail in either the figure legend, results or methods. Second, the authors state that there are differences in lipid poses between the closed and open states but not resting and activating conditions. With the exception of the intersubunit density, this is difficult to appreciate from Fig. 4B. As stated in point #3, the difference, for example, in the complementary intrasubunit site may be better appreciated with an image from a different perspective.

      Response 1.4: Acknowledged - the distinction between resting and activating conditions v.s. open and closed states can be confusing. We have tried to clarify these differences at the beginning of the results section, the methods section, and in the caption of Figure 4. Regarding differences in lipid poses between open and closed states, we agree it is difficult to appreciate from Figure 4, but here we refer the reader to Figure 4 – figure supplement 2 for an overlay between open and closed densities. Additionally, we now added Figure 1 – figure supplement 1 which provides lipid densities for all five subunits and overlays with the build cryo-EM lipids, possibly making differences easier to appreciate. Regarding images from different perspectives, we trust the new figure supplement described in Response 1.3 provides a better perspective.

      p. 3 (Results)

      “For computational quantification of lipid interactions and binding sites, we used molecular simulations of GLIC conducted under either resting or activating conditions (Bergh et al., 2021a). As described in Methods, resting conditions corresponded to neutral pH with most acidic residues deprotonated; activating conditions corresponded to acidic pH with several acidic residues protonated. Both open and closed conformations were present in both conditions, albeit with different probabilities.”

      p. 8 (Figure 4)

      “Overlaid densities for each state represent simulations conducted under resting (dark shades) or activating (light shades) conditions, which were largely superimposable within each state.”

      p. 24 (Methods)

      “We analyzed previously published MSMs of GLIC gating under both resting and activating conditions (Bergh et al., 2021a). Resting conditions corresponded to pH 7, at which GLIC is nonconductive in functional experiments, with all acidic residues modeled as deprotonated. Activating conditions corresponded to pH 4.6, at which GLIC is conductive and has been crystallized in an open state (Bocquet et al., 2009). These conditions were modeled by protonating a group of acidic residues (E26, E35, E67, E75, E82, D86, D88, E177, E243; H277 doubly protonated) as previously described (Nury et al., 2011).”

      Comment 1.5: The new closed GLIC structure was obtained by merging multiple datasets. What were the conditions of the datasets used? Was it taken from samples in resting or also activating conditions?

      Response 1.5: We have updated the Results, Discussion, and Methods to clarify this important point, in particular by merging datasets and rerunning the classification:

      p. 3 (Results)

      “In our cryo-EM work, a new GLIC reconstruction was generated by merging previously reported datasets collected at pH 7, 5, and 3 (Rovšnik et al., 2021). The predominant class from the merged data corresponded to an apparently closed channel at an overall resolution of 2.9 Å, the highest resolution yet reported for GLIC in this state (Figure 1 – figure supplement 2, Table 1).”

      p. 11 (Discussion)

      “Interestingly, the occupational densities varied remarkably little between resting and activating conditions (Figure 1 – figure supplement 1), indicating state- rather than pH- dependence in lipid interactions, also further justifying the approach of merging closed- state GLIC cryo-EM datasets collected at different pH conditions to resolve lipids.”

      p. 14 (Methods)

      “After overnight thrombin digestion, GLIC was isolated from its fusion partner by size exclusion in buffer B at pH 7, or in buffer B with citrate at pH 5 or 3 substituted for Tris. The purified protein was concentrated to 3–5 mg/mL by centrifugation. [...] Data from three different grids, at pH 7, 5, and 3, were merged and processed together.”

      Comment 1.6: In Fig. 3D, do the spheres represent the double bond? If so, please state in the legend

      Response 1.6: We have clarified in the legend of Figure 3D that the yellow spheres on the lipid tails represent a double bond.

      Comment 1.7: In Fig. 3E, what is the scale of the color representation?

      Response 1.7: We have clarified in the legend of Figure 3E that colors span 0 (white) to 137015 contacts (dark red).

      Reviewer #2 (Recommendations For The Authors):

      Comment 2.1: I'm not sure I fully understand how the final lipids were modeled (built). Fig. 1 caption suggests they may have been manually built? I understand that the idea was to place them in the overlap of simulation densities and structure densities, but can the authors please clarify if there were any quantifiable conditions that were employed during this process or if this was entirely manual placement in a pose that looked good? Regardless, it would be helpful to see an overlay of the built lipids with both the cryo and simulation densities (e.g., overly of Fig. 1F/H and G/H) to better visualize how the final built lipids compare.

      Response 2.1: We thank the reviewer for pointing out unclarities regarding our methods. We have extended the methods section to clarify how the lipids were manually built in the cryo-EM structure. We have also added Figure 1 – figure supplement 1 showing overlays of the computational densities and built cryo-EM lipids.

      p. 15 (Methods)

      “Lipids were manually built in COOT by importing a canonical SMILES format of POPC (Kim et al., 2021) and adjusting it individually into the cryo-EM density in each of the sites associated with a single subunit, based in part on visual inspection of lipid densities from simulations, as described above. After building, 5-fold symmetry was applied to generate lipids at the same sites in the remaining four subunits.”

      Comment 2.2: Regarding the state-dependent lipid entry to the outer leaflet intersubunit site associated with channel opening, if the authors could include a movie depicting this process that would be great. The current short explanation does not do this justice. Also, what were the dynamics of this process? Beyond the correlation between site occupancy and the pore being open, how did the timing of lipid entry/exit and pore opening/closing correlate?

      Response 2.2: The point regarding the timing of state-dependent lipid binding at the subunit interface and pore opening is indeed an interesting one. We have added Figure 4 – figure supplement 3D showing that the state-dependent P250 lipid interaction precedes pore opening, as quantified by pore hydration levels, indicating a potential role in gating. The interaction between lipid binding and conformational change of the protein is also depicted in the newly added Figure 4 - video supplement 1, which we hope will be able to better communicate the conclusions regarding state-dependent interactions. We have also expanded the results and discussion to better explain these results:

      p. 9 (Results)

      “The lipid head made particularly close contacts with residue P250 on the M2-M3 loop, which undergoes substantial conformational change away from the pore upon channel opening, along with outer-leaflet regions of M1–M3 (Figure 4E, Figure 4—figure Supplement 3A,B,C, Figure 4—video 1). These conformational changes were accompanied by a flip of M1 residue F195, which blocked the site in the closed state but rotated inward to allow closer lipid interactions in the open state (Figure 4—figure Supplement 3C, Figure 4—video 1). Indeed, P250 was predominantly located within 3 Å of the nearest lipid atom in open- but not closed-state frames (Figure 4F). Despite being restricted to the open state, interactions with P250 were among the longest duration in all simulations (Figure 2C) and as these binding events preceded pore opening, it is plausible to infer a role for this state-dependent lipid interaction in the gating process (Figure 4 – figure supplement 3D).”

      p. 12 (Discussion)

      “The state-dependent binding event at this site preceded pore opening in MSMs, where lipid binding coincided with crossing a smaller energy barrier between closed and intermediate states, followed by pore opening at the main energy barrier between intermediate and open states (Figure 4 – figure supplement 3D). Further, since the P250- lipid interaction was characterized by relatively long residence times (Figure 2), it is possible this lipid interaction has a role to play in GLIC gating.”

      Comment 2.3: Although the interaction times are helpful, I didn't get a great sense of how mobile the lipids are during the simulations. Can the authors discuss this a bit more. For example, are interaction times dominated by lipids that jiggle a bit away from a residue and then back again, vs how often are lipids exchanging with other lipids initially further away from the protein?

      Response 2.3: We have now added various measures of lipid diffusion, both for initially interacting lipids and for bulk lipids, which are summarized in the new Figure 2 – figure supplement 1. We have further addressed the question of simulation timescales in Results, Discussion, and Methods. These numbers highlight that it is possible for lipids several nanometers away from the protein surface to exchange with lipids of the first lipid shell.

      p. 3,6 (Results)

      “Lateral lipid diffusion coefficients were estimated to 1.47 nm2/µs for bulk lipids and 0.68 nm2/µs for lipids of the first lipid shell (Figure 2 – figure supplement 1A), which is relatively slow compared to the timescales of each trajectory (1.7 µs). However, multiple residues throughout the M1, M3, and M4 helices exchanged contacts with 2-4 different lipid molecules in individual simulations (Figure 2C). Furthermore, 1.7-µs root mean square displacement of lipids originally in the first lipid shell was 2.15 nm, and 3.16 nm in the bulk bilayer, indicating such exchanges are not limited to nearby lipids (Figure 2 – figure supplement 1B). Thus, exchange events and diffusion estimates indicate that the duration of lipid contacts observed in this work can be at least partly attributed to interaction stabilities and not solely to sampling limitations.”

      p. 11 (Discussion)

      “Indeed, the unrestrained atomistic MD simulations studied here were not expected to capture the maximal duration of stable contacts, as indicated by some interaction times approaching the full 1.7-µs trajectory (Figure 2}). Nevertheless, simulations were of sufficient length to sample exchange of up to four lipids, particularly around the M4 helix. Calculation of lipid lateral diffusion coefficients resulted in average displacements at the end of simulations of 2.15 nm for lipids initially interacting with the protein surface, roughly corresponding to lipids diffusing out to the 4th lipid shell. Diffusion of bulk lipids was faster, allowing lipids originally 3.16 nm away from the protein surface to ingress the first lipid shell. This observation underscores the potential for lipid exchange events even among lipids initially distant from the protein surface. Of course, duration of exceptionally stable interactions, such as those involving T274 (Figure 2C), inevitably remain bounded by the length of our simulations. Still, diffusion metrics, supported by robust statistical analysis encompassing diverse starting conditions (500 trajectories), enable confident estimation of relative interaction times.“

      p. 13 (Methods)

      “Time-based measures of protein-lipid interactions, such as mean duration times and exchange of interactions, were calculated for the 100 x 1.7 µs-long simulations using prolintpy (Sejdiu and Tieleman, 2021) with a 4 Å interaction cutoff. Analysis of lateral lipid diffusion in individual simulations was carried out for two disjoint sets of lipids: the first lipid shell defined as lipids with any part within 4 Å of the protein surface (~90 lipids), and bulk lipids consisting of all other lipids (~280 lipids). Mean square displacements of each lipid set were calculated using GROMACS 2021.5 (Abraham et al., 2015b) with contributions from the protein center of mass removed. Diffusion coefficients for each set, DA, were calculated using the Einstein relation (Equation 1) by estimating the slope of the linear curve fit to the data.

      where ri(t) is the coordinate of the center of mass of lipid i of set A at time t and DA is the self-diffusion coefficient.”

      Comment 2.4: How symmetric or asymmetric are the cryo and simulation densities across subunits and was there subunit asymmetry in the final build lipids? I could not tell from any of the figures beyond the casual observation that they maybe look somewhat similar in Fig. 1?

      Response 2.4: We thank the reviewer for this useful remark. We have clarified in the methods that the cryo-EM lipids were built in C5-symmetry, and thus the positions are symmetric. The computational densities were calculated independently for each subunit and are thus not necessarily symmetric. We have added Figure 1 – figure supplement 1 showing densities for all five subunits, also serving as an indication of convergence of the results.

      p. 3 (Results) “Although the stochastic nature of simulations resulted in nonidentical lipid densities associated with the five GLIC subunits, patterns of lipid association were notably symmetric (Figure 1 – figure supplement 1).”

      p. 14-15 (Methods)

      “A smaller subset of particles was used to generate an initial model. All subsequent processing steps were done using 5-fold symmetry. […] A monomer of that model was fit to the reconstructed density and 5-fold symmetry was applied with PHENIX 1.19.2-4158 through NCS restraints detected from the reconstructed cryo-EM map, to generate a complete channel. […] After building, 5-fold symmetry was applied to generate lipids at the same sites in the remaining four subunits.”

      Minor comments:

      Comment 2.5: Fig. 1 is probably not easy to follow for the general reader and the caption is very brief. I suggest adding an additional explanation to the caption and/or additional annotations to the figure to help a general reader step through this.

      Response 2.5: We have expanded the caption of Figure 1 and clarified the meanings of colors, labels, and annotations.

      Comment 2.6: Fig. 1B - Caption is confusing. I would not call the state separation lines outlines as they are not closed loops. Also, I see red/orange and two shades of blue whereas the caption mentions orange and blue only. The caption should also explicitly say what the black lines are (other cluster separations).

      Response 2.6: We have edited the caption to better describe colors, annotations, and the meaning of the data:

      p. 4 (Figure 1)

      “(B) Markov state models were used to cluster simulations conducted under resting (R) or activating (A) conditions into five states, including closed (left of the light or dark orange lines) and open (right of the light or dark blue lines). Black lines mark edges of other state clusters derived from MSM eigenvectors. Experimental structures are highlighted as white circles.”

      Comment 2.7: Fig. 3F caption appears to conflict with data where interaction with W217A appears longer than W217. I think the authors want to suggest here that W217A reduces contact time with T274 as stated in the main text.

      Response 2.7: We have clarified in this legend that “Mutation of residue W217, lining this pocket, reveals shortened interactions at the T274 binding site” (p. 6, Figure 3).

      Comment 2.8: Ref 25 and 26 are the same.

      Response 2.8: Apologies; this mistake has been corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, single neurons were recorded, using tetrodes, from the parahippocampal cortex of 5 rats navigating a double-Y maze (in which each arm of a Y-maze forks again). The goal was located at any one of the 4 branch terminations, and rats were given partial information in the form of a light cue that indicated whether the reward was on the right or left side of the maze. The second decision point was uncued and the rat had no way of knowing which of the two branches was correct, so this phase of the task was more akin to foraging. Following the outbound journey, with or without reward, the rat had to return (inbound journey) to the maze and start to begin again.

      Neuronal activity was assessed for correlations with multiple navigation-relevant variables including location, head direction, speed, reward side, and goal location. The main finding is that a high proportion of neurons showed an increase in firing rate when the animal made a wrong turn at the first branch point (the one in which the correct decision was signalled). This increase, which the authors call rate remapping, persisted throughout the inbound journey as well. It was also found that head direction neurons (assessed by recording in an open field arena) in the same location in the room were more likely to show the rate change. The overall conclusion is that "during goal-directed navigation, parahippocampal neurons encode error information reflective of an animal's behavioral performance" or are "nodes in the transmission of behaviorally relevant variables during goal-directed navigation."

      Overall I think this is a well-conducted study investigating an important class of neural representation: namely, the substrate for spatial orientation and navigation. The analyses are very sophisticated - possibly a little too much so, as the basic findings are relatively straightforward and the analyses take quite a bit of work to understand. A difficulty with the study is that it was exploratory (observational) rather than hypothesis-driven. Thus, the findings reveal correlations in the data but do not allow us to infer causal relationships.

      We would like to clarify that this report consists of hypothesis-driven experiments, with post-hoc exploratory analyses. We have now made hypotheses more explicit in the text, and pointed out that follow-up analyses were to understand how these effects came to be. We thank the reviewer for pointing out that our hypotheses were not explicit in the introduction. We believe our results open the door for investigating the causal role of these regions in the propagation or generation of error signals during navigational behavior. Those types of experiments are however, outside the scope of the current work.

      That said, the observation of increased firing in a subset of neurons following an erroneous choice is potentially interesting. However, the effect seems small. What were the actual firing rate values in Hz, and what was the effect size?

      We thank the reviewer for the opportunity to clarify the effect size question. As there are multiple neurons in the analyses, differences in firing rate need necessarily to be normalized by a neuron's mean activity. For example, a difference of 1 spk/s is less meaningful when a neuron's base rate is 50 spk/s than when it is 10spks/s. Furthermore, our reports are for population level analyses, at which point comparing raw firing rate values and differences becomes more challenging. Nonetheless, we are including these raw metrics in two new supplemental figures (Figure 2 - figure supplement 4,5), where differences in individual neurons change can be up to 15 spks/s. Additionally, the patterns and statistical results observed in the main text are preserved, with outbound Right Cue minus Left Cue showing a left>stem>right (indicating error coding), and RW minus NRW showing negative values across all segments, indicating NRW>RW or higher activity following on inbound unrewarded trials. Statistics follow the corresponding main text results (Cue: segment LRT = 71.70; RW: segment LRT=45.80).

      I also feel we are lacking information about the underlying behavior that accompanies these firing rate effects. The authors say "one possibility is that the head-direction signal in the parahippocampal region reflects a behavioral state related to the navigational choice or the lack of commitment to a particular navigational route" which is a good thought and raises the possibility that on error trials, rats are more uncertain and turn their heads more (vicarious trial and error) and thus sample the preferred firing direction more thoroughly. Another possibility is that they run more slowly, which is associated with a higher firing rate in these cells. I think we, therefore, need a better understanding of how behavior differed between error trials in terms of running speed, directional sampling, etc.

      In terms of running speed, there was a small effect of mean running speed between correct and incorrect trials (across subjects LMEM: Cue correct>incorrect Z=2.3, p=0.02; RW Z=2.15, p=0.03). In most neurons, increases in speed will be accompanied by increases in firing rate. Thus, the differences in running speed cannot explain the observed results, as higher speed during correct trials would predict higher activity, which is the opposite of what we found.

      A few good, convincing raw-data plots showing a remapping neuron on an error trial and a correct trial on the same arm would also be helpful (the spike plots were too tiny to get a good sense of this: fewer, larger ones would be more helpful).

      Additional plots for individual units have been added, Figure 2 - figure supplement 3.

      It would be useful to know at what point the elevated response returned to baseline, how - was it when the next trial began, and was the drop gradual (suggesting perhaps a more neurohumoral response) or sudden.

      Due to the experimental design, this question cannot be addressed fully. Concretely, error trials incur a time-penalty in which the rats need to wait an additional 10 seconds before the next trial, while a new trial would start immediately when the animal nose-poked the home well after a correct trial. Nonetheless, the data on Reward provides insight into this question. The magnitude of the responses on left and right segments of the maze were larger than on the stem for Unrewarded (NRW) vs Rewarded (RW) trials on inbound trajectories, Fig. 4c. This suggests that while activity is still elevated post-incorrect throughout the maze, across units, this effect is smaller on the stem segment. Additionally, the analyses indicate that in the transition between outbound vs inbound trajectories (Figure 4 - figure supplement 3), activity patterns are sustained (incorrect>correct). Together, these results indicate that elevated "error-like" signal are slow in returning to baseline.  

      Reviewer #2 (Public Review):

      This work recorded neurons in the parahippocampal regions of the medial entorhinal cortex (MEC) and pre- and para-subiculum (PrS, PaS) during a visually guided navigation task on a 'tree maze'. They found that many of the neurons reflected in their firing the visual cue (or the associated correct behavioral choice of the animal) and also the absence of reward in inbound passes (with increased firing rate). Rate remapping explained best these firing rate changes in both conditions for those cells that exhibited place-related firing. This work used a novel task, and the increased firing rate at error trials in these regions is also novel. The limitation is that cells in these regions were analyzed together.

      We acknowledge this limitation on our study, and we believe there might be interesting differences between these regions. Unfortunately, the post-mortem extraction of the recording implant micro-drive used for these experiments generated too much tissue damage for exact localization of the tetrodes. Nonetheless, given that the patterns were observed in all subjects, we are confident that at least the major findings of "error-like" signaling is present across the parahippocampal regions. At the same time, the distributions of functional cell types as defined in the open field are different across the PaS, PrS and MEC, leaving the possibility of a more nuanced error coding scheme by region.

      Reviewer #3 (Public Review):

      The authors set out to explore how neurons in the rodent parahippocampal area code for environmental and behavioral variables in a complex goal-directed task. The task required animals to learn the association between a cue and a spatial response and to use this information to guide behavior flexibly on a trial-by-trial basis. The authors then used a series of sophisticated analytical techniques to examine how neurons in this area encode spatial location, task-relevant cues, and correct vs. incorrect responding. While these questions have been addressed in studies of hippocampal place cells, these questions have not been addressed in these upstream parahippocampal areas.

      Strengths:

      1) The study presents data from ensembles of simultaneously recorded neurons in the parahippocampal region. The authors use a sophisticated method for ensuring they are not recording from the same neurons in multiple sessions and yet still report impressive sample sizes.

      2) The use of the complex behavioral task guards against stereotyped behavior as rats need to continually pay attention to the relevant cue to guide behavior. The task is also quite difficult ensuring rats do not reach a ceiling level of performance which allows the authors to examine correct and incorrect trials and how spatial representations differ between them.

      3) The authors take the unusual approach of not pre-processing the data to group neurons into categories based on the type of spatial information that they represent. This guards against preconceived assumptions as to how certain populations of neurons encode information.

      4) The sophisticated analytical tools used throughout the manuscript allow the authors to examine spatial representations relative to a series of models of information processing.

      5) The most interesting finding is that neurons in this region respond to situations where rewards are not received by increasing their firing rates. This error or mismatch signal is most commonly associated with regions of the basal ganglia and so this finding will be of particular interest to the field.

      Weaknesses:

      1) The histological verification of electrode position is poor and while this is acknowledged by the authors it does limit the ability to interpret these data. Recent advances have enabled researchers to look at very specific classes of neurons within traditionally defined anatomical regions and examine their interactions with well-defined targets in other parts of the brain. The lack of specificity here means that the authors have had to group MEC, PaS, and PrS into a functional group; the parahippocampus. Their primary aim is then to examine these neurons as a functional group. Given that we know that neurons in these areas differ in significant ways, there is not a strong argument for doing this.

      See response to Reviewer 2.

      2) The analytical/statistical tools used are very impressive but beyond the understanding of many readers. This limits the reader's ability to understand these data in reference to the rest of the literature. There are lots of places where this applies but I will describe one specific example. As noted above the authors use a complex method to examine whether neurons are recorded on multiple consecutive occasions. This is commendable as many studies in the field do not address this issue at all and it can have a major impact as analyses of multiple samples of the same neurons are often treated as if they were independent. However, there is no illustration of the outputs of this method. It would be good to see some examples of recordings that this method classifies as clearly different across days and those which are not. Some reference to previously used methods would also help the reader understand how this new method relates to those used previously.

      We have added an additional Supplemental Figure (Figure 7 - figure supplement 1, that showcases the matching waveform approach. In the original manuscript, Fig. 7a provided an example output of the method.

      3) The effects reported are often subtle, especially at the level of the single neuron. Examples in the figures do not support the interpretations from the population-level analysis very convincingly.

      Additional plots for individual units have been added, Figure 2 - figure supplement 3. However, the effects, though small by unit, are consistent across neurons and subjects.

      The authors largely achieve their aims with an interesting behavioral task that rats perform well but not too well. This allows them to examine memory on a trial-by-trial basis and have sufficient numbers of error trials to examine how spatial representations support memory-guided behavior. They report ensemble recordings from the parahippocampus which allows them to make conclusions about information processing within this region. This aim is relatively weak though given that this collection of areas would not usually be grouped together and treated as a single unitary area. They largely achieve their aim of examining the mechanisms underlying how these neurons code task-relevant factors such as spatial location, cue, and presence of reward. The mismatch or error-induced rate remapping will be a particularly interesting target for future research. It is also likely that the analytical tools used in this study could be used in future studies.

      Reviewer #1 (Recommendations For The Authors):

      1) Typo: "attempted to addresses these challenges"

      We thank the reviewer for pointing out, this has been fixed.

      2) "classified using tuning curve based metrics" - what does "tuning curve" mean in this context?

      We have clarified this sentence in the main text.

      3) "MEC neurons encode time-elapsed" should be "MEC neurons encode time elapsed" (no hyphen)

      We thank the reviewer for pointing out, this has been fixed.

      4) "a phenomenon referred to as 'global remapping'." - I dislike this term because it has two meanings in the literature. On the one hand, it is used to contrast with rate remapping: that is, it refers to a change in the location of place fields. On the other hand, it refers to the remapping of the whole population of cells at once, as contrasted with partial remapping. I suggest calling them location remapping (vs. rate) and complete remapping (vs. partial)

      We agree that this is an overloaded term in the field. We have added 'location remapping' in the intro as a more specific term for global remapping.

      5) " tasks with no trial-to-trial predictability or experimenter-controlled cues and goals in the same environment." - ambiguously worded as it isn't clear whether the "no" refers to one or both of what follows. Also needs a hyphen after experimenter.

      We thank the reviewer for pointing out, this sentence has been reworded for clarity.

      6) " neurons changed their firing activity as a function of cue identity" - this is confounded by behavior and reward contingency, both linked to cue identity, so the statement is slightly misleading.

      We thank the reviewer for pointing this out, however, we disagree that this wording is misleading. Neurons changed their activity as a function cue identity and reward contingencies. Why neurons change their activity in such a manner is a different, more nuanced question, that we addressed through our analyses by converging on the "error" like signal that these signals seem to carry.

      7) "remapping" - I am not fully comfortable with the use of this term in this context. It derives from the original reports of change in the firing location of place cells, and the proposal that these cells form a "map" with the change in activity reflecting recruitment of a new map. With observations of rate changes in some place cells, the new term "rate remapping" was introduced, and now the authors are using "rate remapping" to mean firing rate changes in non-spatial cells. The meaning is thus losing its value. "Re-coding" might be slightly better, although we can argue about whether "code" is much better than "map"

      While we agree with the reviewer that "remapping" has been coerced into a grab-all term, these are the accepted semantics in the field. Thus, we are disinclined to change the language.

      8) Figure 1 - it would be useful to indicate somehow that one of the decision points was cued and once free choice with the random outcome - it took me a while to work this out. Also, the choice of colors for the cues needs explaining - my understanding is that rats are very insensitive to these wavelengths. And what does Pse mean? I didn't understand those scatterplots at all.

      The section "Tree-Maze behavior and electrophysiological recordings" under Results go into the details of the task. A reference and additional context for the selection of cues is now included in the "Behavioral Training" methods section. Rats possess dichromatic vision systems. Caption of Figure 1, 2 includes what Pse means, the performance of a subject for a given session. The scatter plots relate remapping to performance.

      9) Also on Figure 1 - in the examples shown, it looks like the animals always checked the two end arms in the same order. Was this position habit typical?

      We have added additional context in "Behavioral Training" methods section. Well trained rats do exhibit stereotyped behaviors (eg. going to one well then the other).

      10) "...we hypothesized that the cue remapping score would be related to a subject's performance in the task." I am struggling to see why this doesn't follow trivially from the observation that remapping occurred on error trials.

      We thank the reviewer for pointing out that this could use further clarity. We have added that the magnitude of remapping is what should relate to performance. To further clarify, remapping does not occur on error trials, remapping as operationally defined in this work, is the difference of spatial maps as a function of Cue identity or Reward contingency. Thus, as a difference metric, remapping occurs because there is a difference in activity between correct and incorrect trials. The magnitude of that difference need not relate to how the subject performed on the task.

      11) "With this approach, found that incorrect coding units were more likely to overlap between cue and RW coding units than correct." Missing "we". I didn't understand this sentence - what does "overlap" mean?

      We have added a sentence to further clarify this point.

      12) "We found that incorrect>correct activity levels on outbound trajectories predicted incorrect>correct activity levels on inbound trajectories" - I don't understand how this can be the case given that many of these units were head direction tuned and therefore shouldn't even have been active in both directions.

      As seen in Figure 7b, we were able to match 217 units across tasks. Of those, "Cluster 0" with 98 units showed strong head-direction coding. While "Cluster 0" units showed strong remapping effects, there were a lot of other units that could have contributed to the "incorrect>correct" across (out/in)-bound segments. Further, head-direction coding is defined in the Open-field environment, and there's no constraint on what these neurons could do on the Tree Maze task.

      13). " Error or mismatch signals conform a fundamental computation" - should be "perform"

      Wording slightly changed, but "conform" as in "act in accordance to" is what we intend here.

      14) " provides it with the required stiffness and chemical resistivity"- what does "chemical resistivity" mean? To what chemicals?

      This is mostly in reference to rat waste and cleaning products (alcohol). We changed the wording to durability for simplicity.

      15) Supp Fig 1 shows that behavioral performance was very distinctly different for one of the animals. Was its neural data any different? What happens to the overall effect if this animal is removed from the analysis?

      Unless otherwise stated, all analyses are performed through linear mixed effects with "subject" as a random effect. Thus, the effects of individual subjects are accounted for.

      16) Histology - it would be useful to have a line drawing from the atlas alongside the micrographs to enable easier anatomical understanding.

      There was variability in the medial lateral location of the tetrodes across animals and in the histological images provided and thus, we felt this would not be useful information as a single line drawing will not encompass/apply to all histology photos.

      17) Supp. Fig. 5/6 I didn't understand what Left, Stem, and Right mean at the top. Also, the color keys are too tiny to be noticed

      An additional sentence has been added to the caption to clarify that left, stem, right refer to what segment was selected via the ranking of scores.

      Reviewer #2 (Recommendations For The Authors):

      Was there a particular reason why cells in these regions were analyzed together? Can some of the results be tested for cells of a particular region, especially the MEC? One major limitation of these results is that it is unclear which regions it applies to, e.g., one cannot be certain that data shows here that MEC cells have these firing properties.

      Damage due to the extraction of the recording tetrode bundle was extensive and we were not able to parcelate out individual regions. We have added additional details on this in the "Histology" section of the methods.

      It is unclear how many cells in each region are included in each analysis. There is supplementary fig 3 but not sure how many of these met the criteria to be included in a certain analysis and it does not differentiate regions. Also, was any of the MUA included in the analyses?

      Isolated single units were included in all analyses, but we did not differentiate from what region each unit came from. Analyses that include MUA are separate from the main findings, and are included in supplemental figures as reference.

      Was the error trial defined as a trial when the animal did not make the right light-guided choice or did it also include cases in which the light-related arm choice was correct, but the animal first went to the unrewarded end arm? Nomenclature in the results is not explained well - what is an unrewarded trial or unrewarded trajectory or an error trial?

      We have added a new paragraph in the methods under Behavioral Training that address trial nomenclature. This methods section is now referenced twice in the initial paragraphs of the results section.

      Were any grid cells included in the data, especially could any cross-matched across the open field and the maze runs?

      This was indeed a question of interest to us, however, the number of grid-cells recorded was not adequate for meaningful statistical inference. We further sought to avoid tuning curve based functional classifications of units.

      In general, the results section is difficult to read, and its accessibility could be improved.

      We thank the reviewer for this accessibility point. We hope that the small tweaks as a product of this revision will improve the readability of the manuscript. We tried to have major takeaways for each result, but the nature of the analyses necessarily make the text somewhat dense.

      Minor:

      One of the Figure 3f references should be Figure 3g and later, Figure 44 should be corrected.

      We thank the reviewer for noting this, it has been fixed.

      Reviewer #3 (Recommendations For The Authors):

      There are a number of issues that I think could be addressed to improve the manuscript:

      1) The figure could make it clearer where the LED panel is. Are the authors confident the rats see the cue on each trial?

      We have added a new supplemental figure to address this question (Figure 1 - figure supplement 1). The new figures show the 3D geometry of the maze and the location of the Cue panel. The rats were able to see the cue, otherwise task performance would have remained at chance levels.

      2) The same maze has been used in a series of studies of hippocampal place cells by Paul Dudchenko's group. They also went on to examine how these representations are affected in a very similar cued spatial response task. These studies should be acknowledged.

      We thank the reviewer for pointing out this oversight. We have added the Ainge et al. citation ( https://doi.org/10.1523/JNEUROSCI.2011-07.2007) when first introducing the maze and in the methods.

      3) In a number of supplementary figures, the authors present neurons that are selective for different properties such as segment, cue, reward, and direction. However, the number of spatially and cue-selective cells and the criteria by which cells are designated as selective are not reported. The analyses of spatial remapping and response to cues are done at the population level so I'm not sure how these cells are classified or selected for the figures.

      The procedure for selection is included in the figure captions. Each unit is ranked based on the Uz score by segment as originally shown in Figures 2 and 4.

      4) Related to this, the example cells on the figures do not clearly represent the effects presented. For example, given the title of Figure 2, I assume that the cells in 2B significantly remap. However, they don't look like they remap - the cells in the top row show rate remapping in one segment of the maze while the cells in the bottom do not show clear rate remapping responses. I suspect that traditional rate map-based analyses using maps based on consistently sized pixels rather than large segments would show only very modest changes in correlations or rates across these different types of trials. It is important to report the findings in this way as the authors interpret their data relative to the rate-remapping studies which have used these analyses. Readers who do not have the time or expertise to examine the methods in detail will conclude that the effects reported here are the same as previous rate remapping studies which the examples suggest is not the case.

      Additional plots for individual units have been added to the supplement, Figure 2 - figure supplement 3. However, the effects, though small by unit, are consistent across neurons and subjects (Figure 2 - figure supplement 5).

      5) Why is there a bias on the stem in 2C? This is of similar size to the effect on the right size and so deserves discussion.

      The analysis in question is the across unit level bias in cue-coding by maze segment. The left segment shows elevated Right Cue coding, while the right segment shows elevated Left Cue coding. There was one reported statistical result, the main effect of segment in the Linear Mixed Effects model. We expand this result in the following two ways:

      1. Individual statistical results by segment

      a. Left Segment (Uz Coef. Estimate = 0.5, CI95%=[0.26, 0.75; p<1e-4])

      b. Stem Segment (Uz Coef. Estimate = 0.22, CI95%=[-0.01, 0.47]; p=0.06)

      c. Right Segment (Uz Coef. Estimate = -0.27, CI95%=[-0.51, -0.03], p=0.03)

      1. Reporting the joint hypothesis test of left > stem > right by unit.

      a. X2=90.45, p=2.28e-20

      b. The comparison of left>stem by unit:

      i. coefficient estimate = 0.28, CI95%=[0.11, 0.44], p=0.0008

      Although the reviewer is correct in pointing out the effect size similarity, the appropriate statistical comparisons within and across units support the stated conclusions. In terms of systematic coding bias, there is a small bias across units (60% of units) and animals (4 out 5) for the Right Cue. Although interesting, this effect is orthogonal to the comparisons of interests (within unit differences). In order to highlight this point we have added the statistics of the joint hypothesis test of left>stem>right to the main manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to Reviewer 1 Comments (Public Review):

      Point 1: While the authors provided a large amount of data regarding the genes involved in the TOR pathway, it is highly descriptive and mostly confirmative data, as numerous papers have already shown that the TOR pathway plays essential roles in a myriad of biological processes in multiple fungi.

      Response 1: Thank you for your comment. The target of rapamycin (TOR) signal pathway plays critical roles in various eukaryotic organisms. However, its specific role in controlling the development and virulence of opportunistic pathogenic fungi like A. flavus has remained unclear. Additionally, the underlying mechanism of the TOR pathway remains elusive in the A. flavus. As such, our study provides a useful contribution, as it is the first to comprehensively investigate the majority of genes in the conserved TOR signaling pathway in A. flavus.

      Point 2: The authors seemed to perform a series of parallel studies in several genes involved in the TOR pathway in other fungi. However, their data are not properly interconnected to understand the TOR signaling pathway in this fungal pathogen. The authors frequently drew premature conclusions from basic phenotypic observations. For instance, based on their finding that sch9 mutant showed high calcium stress sensitivity, they concluded that Sch9 is the element of the calcineurin-CrzA pathway. Furthermore, based on their finding that the sch9 mutant show weak rapamycin sensitivity and increased Hog1 phosphorylation, they concluded that Sch9 is involved in TOR and HOG pathways. To make such conclusions, the authors should provide more detailed mechanistic data.

      Response 2: Yes, we agree with the reviewer's comment. We have carefully reviewed the manuscript and made necessary revisions to eliminate arbitrary conclusions. For example, we have removed the statement that "Sch9 is the element of the calcineurin-CrzA pathway". Furthermore, we have rephrased our conclusions to better reflect our findings. "these results reflected that Sch9 regulates osmotic stress response via the HOG pathway in A. flavus"(Lines 279-280, page 13). We appreciate the reviewer's input, which has contributed to the clarity and accuracy of our work.

      Point 3: In the section "Tor kinase plays important roles in A. flavus", some parts of their data are confusing. The authors said they identified a single Tor kinase ortholog, which is orthologous to S. cerevisiae Tor2. And then, they said failed to obtain a null mutant, but constructed a single copy deletion strain delta Tor1+/Tor2-. What does this mean? Does this mean A. flavus diploid strain? So is this heterozygous TOR/tor mutant? Otherwise, does the haploid A. flavus strain they used contain multiple copies of the TOR gene within its genome? What is the real name of A. flavus Tor kinase (Tor1 or Tor2?). "tor1+/tor2-" is the wrong genetic nomenclature. What is the identity of detalTor1+/Tor2-? Please provide detailed information on how all these mutants were generated. A similar issue was found in the analysis of TapA, which is speculated to be essential (what is the deltaTapA1+/TapA2-?). I couldn't find any detailed information even in Materials and Methods. The authors should provide southern blot data to validate all their mutants.

      Response 3: Thank you for your comments. We acknowledge the confusion in our presentation and will ensure that accurate genetic nomenclature is used consistently throughout the paper.

      In response to your queries, we have included a section in the Materials and Methods, titled "Detection of tor and tapA genes copy number in strains" (Lines 615-621, page 29), to provide details on how we determined the copy numbers of the tor and tapA genes in the strains. Our findings revealed that both the tor and tapA genes are present in double copies in our strains, which guided our decision to construct single-copy deletion strains using homologous recombination. We have verified these copy numbers using absolute quantification PCR (Table S1).

      The use of the abbreviation '+/-' for the single copy knockout strains, such as tor+/- and tapA+/-, is consistent with common fungal literature practice. We apologize for any confusion caused by this nomenclature.

      Although we did not employ southern blot data for validation, we conducted PCR and gene sequencing to confirm the mutants. We appreciate your comments to improve the clarity and accuracy of our manuscript.

      Point 4: How were the FRB domain deletion mutants constructed? If the FKBP12-rapamycin binding (FRB) domain is specifically deleted in the Tor kinase allele, should it be insensitive and resistant to rapamycin? However, the authors showed that the FRB domain deleted TOR allele was indeed non-functional.

      Response 4: We appreciate the reviewer's attention to the construction of the Fkbp12-rapamycin binding (FRB) domain deletion mutants and the discrepancy between the expected and observed results.

      For the knockout of the FRB domain, we used the homologous recombination method, but because tor genes are double-copy genes, there are also double copies in the FRB domain. Despite our efforts, we encountered challenges in precisely determining the location of the other copy of the tor gene.

      We speculate the common expectation that the deletion of the FRB domain should result in insensitivity and resistance to rapamycin, as it disrupts the binding site for Fkbp-rapamycin. However, we observed that the FRB domain-deleted mutant was more sensitive to rapamycin. This intriguing result suggests that there are additional factors or complexities involved in TOR signaling pathway regulation in A. flavus. We hypothesize that this result is related to the double copy of the tor gene. The reviewer's keen observation and comment have contributed to our efforts to better understand and explain this intriguing result.

      Point 5: In Figure 4C, the authors should monitor Hog1 phosphorylation patterns under stressed conditions, such as NaCl treatment, and provide quantitative measurements. Similar issues were found in the western blot analysis of Slt2 (Fig. 8D).

      Response 5: We agree with the reviewer that we should monitor Hog1 phosphorylation patterns under stressed conditions. In response to this valuable suggestion, we conducted additional experiments to examine Hog1 phosphorylation patterns under NaCl treatment for 30 minutes. The quantitative measurements of Hog1 phosphorylation levels under stress have been added to Figure 4E in the revised manuscript. Similarly, we have addressed the issue raised regarding Slt2 in Figure 8D.

      Point 6: For all the deletion mutants generated in this study, the authors should generate complemented strains to validate their data.

      Response 6: We appreciate the reviewer's suggestion to generate complemented strains for all the deletion mutants in our study to validate our data. However, due to the extensive number of genes involved in this research, it is hard to create complemented strains for each individual deletion mutant. As suggested by the reviewer, we have constructed complemented strains for several key deletion mutants, such as ΔsitA-C and Δppg1-C.

      Response to Reviewer 1 Comments (Recommendations For The Authors):

      Point 1: Overall, this manuscript was very poorly organized and not presented logically. It requires extensive English language editing.

      Response 1: We appreciate the reviewer's feedback regarding the organization and language quality of our manuscript. To address these concerns, we have restructured the manuscript to improve its logical flow and coherence. We thank the reviewer for their constructive criticism, which has been instrumental in the manuscript's refinement.

      Point 2: The authors did not present their figures in the order of description. For example, the authors suddenly described Figure 9A data in lines 128-130 in the middle of describing Figure 1. Furthermore, Figures 1D and 1F were described earlier than Figures 1B and 1C. In addition, Figure S2 was shown earlier than Figure S1. Please check this throughout the manuscript.

      Response 2: We thank the reviewer for their insightful observation. We acknowledge the importance of a logical and coherent figure sequence for reader comprehension. After careful review, we have rearranged the text and images throughout the entire document to enhance the reading experience. The revised manuscript now presents figures in a consistent and logical order, following the sequence of descriptions. We believe this improvement will enhance the overall readability and comprehension of our research.

      Point 3: The authors should follow the standard genetic nomenclature rules.

      Response 3: Thank you for your suggestion. We have revised our manuscript to ensure that we are following the standard genetic nomenclature rules throughout. This includes the correct naming of genes, proteins, and mutations, as well as the use of appropriate italicization and formatting. We follow the rules: gene symbols are typically composed of three lowercase italicized letters, while protein symbols are not italicized, with an initial capital letter followed by lowercase letters.

      Point 4: These are just a few examples. Besides the ones that I mentioned, I found numerous grammatically wrong or awkward sentences throughout the manuscript. So this manuscript requires extensive English proofreading.

      Response 4: We apologize for the problem of our manuscript. We have asked an English native speaker to enhance the overall language quality and readability of the text. We believe that these improvements will significantly enhance the manuscript's overall quality and make it more accessible to a broader audience.

      Response to Reviewer 2 Comments (Public Review):

      Point 1: However, findings have not been deeply explored and conclusions mostly are based on parallel phenotypic observations. In addition, there are some concerns that exist surrounding the conclusions.

      Response 1: We are grateful for the suggestion. We conduct additional experiments and analyses to delve more deeply into our findings and ensure a more robust basis for our conclusions.

      Response to Reviewer 2 Comments (Recommendations For The Authors):

      Point 1: Verification for mutants: a single copy deletion strain ΔTor1+/Tor2(containing one copy of the Tor gene), however, in the table of strain list, it seems like null mutants. There are no further verifications for relative genes' expression and no complementary strains.

      A. Flavus ΔTor: Δku70; ΔniaD; ΔTor::pyrG

      A. Flavus ΔTapA Δku70; ΔniaD; ΔTapA::pyrG

      As described in pp208, "While we failed to obtained a null mutant, we constructed a single copy deletion strain ΔTor1+/Tor2- (containing one copy of the Tor gene) constructed by homologous recombination)"? But the authors think there was only one Tor kinase ortholog (AFLA_044350). It is hard to understand for this mutant What is the evidence to verify phenotypes of the ΔTor1+/Tor2- strain resulted from deletion of Tor2, no detail for how to make ΔTor1+/Tor2- strain.

      Response 1: Thank you for your important comments and suggestion. We apologize for the confusion caused by genetic nomenclature. We make the necessary corrections in the table of strain lists to accurately reflect the genotypes of the strains (Table S3).

      Multicopy variation of genes has not been explored in detail in fungi, especially in A. flavus, but is a commonly known phenomenon in mammalian genomes[1-2]. In yeast, the presence of two tor genes, tor1 and tor2, whereas in higher eukaryotes such as plants, animals, and filamentous fungi, there is only one tor gene[3-4]. The homology comparison results show that the genome of A. flavus contains only one tor gene. However, the tor gene in A. flavus exhibited varying copy numbers, as was confirmed by absolute quantification PCR at the genome level (Table S1).

      In this study, we constructed a single copy deletion strain, tor+/-, through homologous recombination. This strain contains one copy of the tor gene. We provide a more detailed and explicit description of the methods used to detect of the genes copy number in strains (Lines 615-621, page 29). We thank the reviewer for pointing out these important issues.

      Point 2: For a point mutant strain TORS1904L, they found that the sensitivity to rapamycin is consistent with the WT strain, it could not tell anything. It should be moved to Suppl.

      Response 2: Thanks for your important comments. We acknowledge that these results may not provide significant insights. In response to this suggestion, we delete the data related to the TORS1904L point mutant strain and its sensitivity to rapamycin to ensure that the main manuscript focuses on the most pertinent and informative findings. Corresponding modifications have been made in the revised manuscript.

      Point 3: For subtitle "Sch9 is correlate with the HOG and TOR pathways "What is the meaning for "correlate" similarly?

      Response 3: Thank you for this comment. We apologize for the unclear wording. To enhance clarity, we revise the subtitle to more explicitly convey this conclusion, for example, "The Sch9 kinase is involved in aflatoxin biosynthesis and the HOG pathway". (Lines 242, page 12).

      Point 4:for the ΔTapA 1+/TapA 2- strain (containing one copy of the TapA gene). It should have the complementary strain to verify the specific role of TapA. In FigS1B, ΔTOR and ΔTapA it could not tell TOR gene has been edited. Did you test mRNA of TOR gene?

      Response 4: Thanks for your important comments. Due to the large number of genes involved, we did not perform a complementation experiment. However, we used PCR and sequencing to verify the editing of our gene. Additionally, we conducted copy number and mRNA analyses to verify its function. The transcriptional level of the tor gene in the tor+/- mutant was downregulated compared to the level in the wild-type strain (Fig. S6).

      Response to Reviewer 3 Comments (Public Review):

      Point 1: As for many results, I miss the re-complementation of the created mutants throughout the manuscript. This is standard praxis.

      Response 1: Thanks for your suggestions. We acknowledge that re-complementation is a standard practice for validating the effects of gene deletions. However, due to the large number of genes involved in our study, we have performed supplementary experiments on a selection of them, such as ΔsitA-C and Δppg1-C. We are grateful to the reviewer for your understanding of this practical consideration.

      Point 2: Fig. 1: cultures were grown for 48 h before measuring the transcript level. The authors show that brlA, abaA, and some sexual regulators are less expressed. In my opinion, this does not allow the conclusion that there is a direct control through rapamycin. Since the colonies grow very slowly in the presence of rapamycin, the authors should add rapamycin and follow gene expression after 15, 30, 60, 90 min. The figure legend needs to be more detailed. Which type of cultures were used, liquid, solid medium? Etc.

      Response 2: We deeply appreciate the reviewer’s suggestion. Since we found that there were no significant differences in gene expression changes following shorter treatment times, we extended the treatment duration. We conduct additional experiments to examine the gene expression levels at longer time intervals (3, 6, and 9 h) after the addition of rapamycin (Figure 1H-1J). These time points allow us to capture the dynamic changes in gene expression in response to rapamycin more effectively. Additionally, we enhance the figure legend to provide a more comprehensive description that specifies the type of cultures used in the experiments.

      Point 3: Why in chapter one Fig. 9 is already cited? Those data should then be included in Fig. 1 for the general phenotype.

      Response 3: Thank you for the suggestion. We have reordered the figures in the updated version of the manuscript to ensure that the data for consistent and clarity.

      Point 4: The authors wrote that radial growth and conidiation were gradually reduced with increasing rapamycin concentrations. This is not true. There is no gradient! However, it should be tested if there is a gradient if lower concentrations are used. The current data imply that there is a threshold concentration, so either there is 100 % growth or a reduction to 25 %. This looks strange.

      Response 4: Thank you for underlining this deficiency. We agree that a threshold concentration versus a gradient is an important distinction that needs to be clarified. Our results show that the addition of excessive quantities of rapamycin does not increase the inhibition of A. flavus growth. As the concentration of the FK506 drug increases, there is a gradual decrease in the growth and cell production of A. flavus. This phenomenon could potentially be attributed to varying mechanisms of action exhibited by the drugs. Therefore, we have revised these confused sentences. ( Lines 120-121, Page 5)

      Point 1: There are many wrong spellings:

      Fig. 1. Before washed, before washing; RelaTEtive gene expERSion should read relative gene expression. Sclerotial should be sclerotia. See also Fig. 5 F, H, Fig. 6 E. 6D colon diameter should be colony diameter.

      Fig. 4E. The expressED level... should read Expression level..... (also without article) Also in A, F, H.

      Fig. 6C. TLC detection of WT.... The authors mean AF detection in extracts of WT..... AF was extracted and analyzed by TLC.....

      Labelling of axes in one figure should be uniform.

      Response 1: Thank you for your reminder. We apologize for the oversights, and we carefully address and correct all the mentioned spelling issues to ensure the accuracy and clarity of the manuscript.

      Point 2: If the authors refer to the genes, I think they should be in small letters and italics, if it is the protein, the first letter should be capitalised tap1 (italics) and Tap1.

      Response 2: We appreciate this suggestion. We have carefully checked the entire manuscript and revised follow the standard genetic nomenclature rules. We follow the naming conventions for microbial genes and proteins, where gene symbols are typically composed of three lowercase italicized letters, and protein symbols are not italicized, with an initial capital letter followed by lowercase letters.

      Point 3: Very often articles are used where I would not use them.

      Response 3: Thanks for your careful checks. We are sorry for our carelessness. Based on your comments, we have made the corrections to make the articles harmonized within the whole manuscript. We value the reviewer's feedback, which will contribute to the overall quality of our writing.

      References:

      [1] Handsaker R, Van Doren, V, Berman, J. et al. Large multiallelic copy number variations in humans. Nat Genet 47, 296–303 (2015).

      [2] Wang Y, Wang S, Nie X. et al. Molecular and structural basis of nucleoside diphosphate kinase-mediated regulation of spore and sclerotia development in the fungus Aspergillus flavus. J Biol Chem. 2019 Aug 16;294(33):12415-12431.

      [3] Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002; 110(2): 163-75.

      [4] Fu L, Liu Y, Qin G, et al. The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth. Nature. 2021; 591(7849): 288-292.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for submitting your article "New genetic tools for mushroom body output neurons in Drosophila" for consideration by eLife. Your article has been reviewed by 2 peer reviewers, and the assessment has been overseen by a Reviewing Editor and Albert Cardona as the Senior Editor.

      eLife assessment:

      This work advances on two Aso et al 2014 eLife papers to describe further resources valuable for the field. This paper adds more MBON split-Gal4s convincingly describing their anatomy, connectivity and function.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript Rubin and Aso provide important new tools for the study of learning and memory in Drosophila. In flies, olfactory learning and memory occurs at the Mushroom Body (MB) and is communicated to the rest of the brain through Mushroom Body Output Neurons (MBONs). Previously, typical MBONs were thoroughly studied. Here, atypical MBONs that have dendritic input both within the MB lobes and in adjacent brain regions are studied. The authors describe new cell-type-specific GAL4 drivers for the majority of atypical MBONs (and other MBONs) and using an optogenetic activation screen they examined their ability to drive behaviors and learning.

      The experiments in this manuscript were carefully performed and the results are clear. The tools provided in this manuscript are of great importance to the field.

      Reviewer #2 (Public Review):

      In this study, Aso and Rubin generated new split-GAL4 lines to label Drosophila mushroom body output neurons (MBONs) that previously lacked specific GAL4 drivers. The MBONs represent the output channels for the mushroom body (MB), a computational center in the fly brain. Prior research identified 21 types of typical MBONs whose dendrites exclusively innervate the MB and 14 types of atypical MBONs whose dendrites also innervate brain regions outside the MB. These MBONs transmit information from the MB to other brain areas and form recurrent connections to dopaminergic neurons whose axonal terminals innervate the MB. Investigating the functions of the MBONs is crucial to understanding how the MB processes information and regulates behavior. The authors previously established a collection of split-GAL4 lines for most of the typical MBONs and one atypical MBON. That split-GAL4 collection has been an invaluable tool for researchers studying the MB. This work extends their previous effort by generating additional driver lines labeling the MBON types not covered by the previous split-GAL4 collection. Using these new driver lines, the authors also activated the labeled MBONs using optogenetics and assessed their role in learning, locomotion, and valence coding. The expression patterns of the new split-GAL4 lines and the behavioral analysis presented in this manuscript are generally convincing. I believe that these new lines will be a valuable resource for the fly community.

      Recommendations for the authors:

      Minor additional suggestions:

      1. Please ensure that the FlyLight links are provided for the new splitGal4s in the methods as well as results.

      We added the requested link to the methods.

      1. Correct a typo in 'ethyl lactate in the learning assays section of methods

      corrected

      Reviewer #1 (Recommendations For The Authors):

      In the behavior assay, the authors use the same flies that were used for optogenetic olfactory conditioning and memory tests, to also examine the effects of activation in the absence of odors but with airflow. I think this may affect the interpretation of the results. If possible, it would be nice to show in the MBON types where a conditioning effect was found (i.e. MBON21, 29, 33) that performing the activation in the absence of odors but with airflow without previous conditioning yields the same results.

      We share the reviewers concern that behavioral phenotypes during the later 10s LED sessions may be compromised by early optogenetic olfactory conditioning. Therefore, prior to running the experiment shown in Figure 2, we confirmed that the activation phenotypes of three positive control lines (MB011B and SS40755) could be observed after olfactory conditioning sessions. We added this data as Figure 2-figure supplement 2. For SS75200 and SS77383, a split-GAL4 driver for MBON33, we observed a loss of activation phenotype in the second trial of LED ON/OFF binary choice assay (Figure 3H). Therefore, we reran the 10s LED activation experiments without a previous optogenetic olfactory conditioning assay; these data are now also included in Figure 2-figure supplement 2.

      Reviewer #2 (Recommendations For The Authors):

      Below, I list some comments and suggestions which I hope could help the authors further improve their manuscript.

      1. The authors identified 2 candidate lines for MBON28. It would be helpful if they could clarify how they determined whether a split-GAL4 correctly labels an MBON or is just a candidate line.

      We have added in the methods section an explanation of the criteria used.

      “The correspondence between the morphologies of EM skeletons and light microscopic images of GAL4 driver line expression patterns was used to assign GAL4 lines to particular cell types. This can be done with confidence when there are not multiple cell types with very similar morphology. However, in the case MBON28 we were not able to make a definitive assignment because of the similarity in the morphologies of MBON16, MBON17 and MBON28.”

      1. The authors have previously shown that the expression pattern of a GAL4 driver is strongly influenced by the reporter used. The expression patterns of the split-GAL4 lines in this study are based on 20XUAS-Chrimson-mVenus trafficked (attp18), the expression strength of which may differ from other reporters or effectors. I suggest that the authors discuss this potential caveat in their manuscript. This will allow readers to be more cautious and check the expression patterns with their own reporters/effectors when using these new split-GAL4 lines.

      We added the sentences below to address this concern.

      “The expression patterns shown in this paper were obtained using an antibody against GFP which visualizes expression from 20xUAS-CsChrimson-mVenus in attP18. Directly visualizing the optogenetic effector is important since expression intensity, the number of labeled MBONs and off-targeted expression can differ when other UAS-reporter/effectors are used (for an example, see Figure 2—figure supplement 1 of Aso et al., 2014a).”

      1. For the kinematic parameters in Fig. 2C, it is important to also show the baseline value of the parameters (i.e., the value before the light stimulation). For example, if a group of flies moves slower during the baseline period, their slower speed during the light-on period may not be due to MBON activation.

      Figure 2 has been revised to include the z-scores for the 2s period just before turning on LED. The source data includes the parameter values used to calculate z-scores.

      1. For Methods and Materials, the authors mostly refer to previous papers or websites for details. However, it would be helpful if they could include in this manuscript key information essential for repeating their experiments, such as the reporter/effector transgenes, empty-split controls, and antibodies and their working concentrations. It would also be helpful if they could provide the manufacturers and catalog numbers for the reagents used in this study.

      We have added Appendix 1- Key Resource Table to list all the key reagents.

      1. The original studies that identified the reward or punishment dopaminergic neurons mentioned in this manuscript should be cited.

      We have added the following citations:

      “Total number of synaptic connections from each MBON type to DANs and OANs. Based on the valence of memory when activation of DANs is used as unconditioned stimulus in olfactory conditioning (Aso et al., 2012, 2010; Aso and Rubin, 2016; Claridge-Chang et al., 2009; Huetteroth et al., 2015; Ichinose et al., 2015; Lin et al., 2014; Liu et al., 2012; Yamada et al., 2023; Yamagata et al., 2016, 2015)”

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The proposed study provides an innovative framework for the identification of muscle synergies taking into account their task relevance. State-of-the-art techniques for extracting muscle interactions use unsupervised machine-learning algorithms applied to the envelopes of the electromyographic signals without taking into account the information related to the task being performed. In this work, the authors suggest including the task parameters in extracting muscle synergies using a network information framework previously proposed. This allows the identification of muscle interactions that are relevant, irrelevant, or redundant to the parameters of the task executed.

      The proposed framework is a powerful tool to understand and identify muscle interactions for specific task parameters and it may be used to improve man-machine interfaces for the control of prostheses and robotic exoskeletons.

      With respect to the network information framework recently published, this work added an important part to estimate the relevance of specific muscle interactions to the parameters of the task executed. However, the authors should better explain what is the added value of this contribution with respect to the previous one, also in terms of computational methods.

      It is not clear how the well-known phenomenon of cross-talk during the recording of electromyographic muscle activity may affect the performance of the proposed technique and how it may bias the overall outcomes of the framework.

      We thank reviewer 1 for their useful commentary on this manuscript.

      Reviewer #2 (Public Review):

      This paper is an attempt to extend or augment muscle synergy and motor primitive ideas with task measures. The authors idea is to use information metrics (mutual information, co-information) in 'synergy' constraint creation that includes task information directly. By using task related information and muscle information sources and then sparsification, the methods construct task relevant network communities among muscles, together with task redundant communities, and task irrelevant communities. This process of creating network communities may then constrain and help to guide subsequent synergy identification using the authors published sNM3F algorithm to detect spatial and temporal synergies.

      The revised paper is much clearer and examples are helpful in various ways. However, figure 2 as presented does not convincingly show why task muscle mutual information helps in separating synergies, though it is helpful in defining the various network communities used in the toy example.

      The impact of the information theoretic constraints developed as network communities on subsequent synergy separation are posited to be benign and to improve over other methods (e.g., NNMF). However, not fully addressed are the possible impacts of the methods on compositionality links with physiological bases, and the possibility remains of the methods sometimes instead leading to modules that represent more descriptive ML frameworks that may not support physiological work easily. Accordingly, there is a caveat. This is recognized and acknowledged by the authors in their rebuttal of the prior review. It will remain for other work to explore this issue, likely through testing on detailed high degree of freedom artificial neuromechanical models and tasks. This possible issue with the strategy here likely needs to be fully acknowledged in the paper.

      The approach of the methods seeks to identify task relevant coordinative couplings. This is a meta problem for more classical synergy analyses. Classical analyses seek compositional elements stable across tasks. These elements may then be explored in causal experiments and generative simulations of coupling and control strategies. However, task-based understanding of synergy roles and functional uses is significant and is clearly likely to be aided by methods in this study.

      Information based separation has been used in muscle synergy analyses using infomax ICA, which is information based at core. Though linear mixing of sources is assumed in ICA, minimized mutual information among source (synergy) drives is the basis of the separation and detects low variance synergy contributions (e.g., see Yang, Logan, Giszter, 2019). In the work in this paper, instead, mutual information approaches are used to cluster muscles and task features into network communities preceding the SNM3F algorithm use for separation, rather than using minimized information in separation. This contrast of an accretive or agglomerative mutual information strategy here used to cluster into networks, versus a minimizing mutual information source separation used in infomax ICA epitomizes a key difference in approach here.

      Physiological causal testing of synergy ideas is neglected in the literature reviews in the paper. Although these are only in animal work (Hart and Giszter, 2010; Takei and Seki, 2017), the clear connection of muscle synergy analysis choices to physiology is important, and eventually these issues need to be better managed and understood in relation to the new methods proposed here, even if not in this paper.

      Analyses of synergies using the methods the paper has proposed will likely be very much dependent on the number and quality of task variables included and how these are managed, and the impacts of these on the ensuing sparsification and network communities used prior to SNM3F. The authors acknowledge this in their response. This caveat should likely be made very explicit in the paper.

      It would be useful in the future to explore the approach described with a range of simulated data to better understand the caveats, and optimizations for best practices in this approach.

      A key component of the reviewers’ arguments here is their reductionist view of muscle synergies vs the emergentist view presented in our work here. In the reductionist lens, muscle groupings are the units (‘building blocks’) of coordinated movement and thus the space of intermuscular interactions is of particular interest for understanding movement construction. On the other hand, the emergentist view suggests that muscle groupings emerge from interactions between constituent parts (as quantified here using information theory, synergistic information is the information found when both activities are observed together). This is in line with recent work in the field showing modular control at the intramuscular level, exemplifying a scale-free phenomena. Nonetheless, we consider these approaches to muscle synergy research as complementary and beneficial for the field overall going forward.

      Reviewer #3 (Public Review):

      In this study, the authors developed and tested a novel framework for extracting muscle synergies. The approach aims at removing some limitations and constraints typical of previous approaches used in the field. In particular, the authors propose a mathematical formulation that removes constraints of linearity and couples the synergies to their motor outcome, supporting the concept of functional synergies and distinguishing the task-related performance related to each synergy. While some concepts behind this work were already introduced in recent work in the field, the methodology provided here encapsulates all these features in an original formulation providing a step forward with respect to the currently available algorithms. The authors also successfully demonstrated the applicability of their method to previously available datasets of multi-joint movements.

      Preliminary results positively support the scientific soundness of the presented approach and its potential. The added values of the method should be documented more in future work to understand how the presented formulation relates to previous approaches and what novel insights can be achieved in practical scenarios and confirm/exploit the potential of the theoretical findings.

      In their revision, the authors have implemented major revisions and improved their paper. The work was already of good quality and now it has improved further. The authors were able to successfully:

      • improve the clarity of the writing (e.g.: better explaining the rationale and the aims of the paper);

      • extend the clarification of some of the key novel concepts introduced in their work, like the redundant synergies;

      • show a scenario in which their approach might be useful for increasing the understanding of motor control in patients with respect to traditional algorithms such as NMF. In particular, their example illustrates why considering the task space is a fundamental step forward when extracting muscle synergies, improving the practical and physiological interpretation of the results.

      We thank reviewer 3 for their constructive commentary on this manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figure 3 should report the distances between reaching points in panel A and the actual length distances of the walking paths in panel C.

      The caption of fig.3 concerning the experimental setup of the datasets analysed has been updated with the following for dataset 1: “(A) Dataset 1 consisted of participants executing table-top point-to-point reaching movements (40cm distance from starting point P0) across four targets in forward (P1-P4) and backwards (P5-P8) directions at both fast and slow speeds (40 repetitions per task) [25]. The muscles recorded included the finger extensors (FE), brachioradialis (BR), biceps brachii (BI), medial-triceps (TM), lateral-triceps (TL), anterior deltoid (AD), posterior deltoid (PD), pectoralis major (PE), latissimus dorsi (LD) of the right, reaching arm.”. For dataset 3, to the best of the authors knowledge, this information was not given in the original paper.

      Figure 4, what is the unit of the data shown?

      The unit of bits is now mentioned in the toy example figure caption and in the caption of fig.5

      Figure 4, the characteristics of the interactions are not fully clear, and the graphical representation should be improved.

      We have made steps to improve the clarity of the figures presented.

      For dataset 3, τ was the movement kinematics, but it is not specified how the task parameters were formulated. Did the authors use the data from all 32 kinematic markers, 4 IMUs, and force plates? If yes, it should be specified why all these signals were used. For sure, there will be signals included that are not relevant to the specific task. Did the authors select specific signals based on their relevance to the task (e.g., ankle kinematics)?

      We have now clarified this in the text as follows: “For datasets 1 and 2, we determine the MI between vectors with respect to several discrete task parameters representing specific task attributes (e.g. reaching direction, speed etc.), while for dataset 3 we determined the task-relevant and -irrelevant muscles couplings in an unassuming way by quantifying them with respect to all available kinematic, dynamic and inertial motion unit (IMU) features.”

      How did the authors endure that crosstalk did not affect their analysis, particularly between, e.g., finger extensors and brachioradialis and posterior deltoid and anterior deltoid (dataset 1)?

      We have addressed this point in the previous round of reviews and made an explicit statement regarding cross-talk in the discussion section: “Although distinguishing task-irrelevant muscle couplings may capture artifacts such as EMG crosstalk, our results convey several physiological objectives of muscles including gross motor functions [66], the maintenance of internal joint mechanics and reciprocal inhibition of contralateral limbs [19,51].”

      It would be informative to add some examples of not trivial/obvious task-related synergistic muscle combinations that have been extracted in the three datasets. Most of the examples reported in the manuscript are well-known biomechanically and quite intuitive, so they do not improve our understanding of synergistic muscle control in humans.

      Our framework improves our understanding of synergistic motor control by enabling the formal quantification of synergistic muscle interactions, a capability not present among current approaches. Regarding the implications of this advance in terms of concrete examples, we have further clarified our examples presented in the results section, for example:

      “Across datasets, many the muscle networks could be characterised by the transmission of complementary task information between functionally specialised muscle groups, many of which identified among the task-redundant representations (Fig.9-10 and Supp. Fig.2). The most obvious example of this is the S3 synergist muscle network of dataset 2 (Fig.11), which captures the complementary interaction between task-redundant submodules identified previously (S3 (Fig.9)).”

      The description shows how our framework can extract the cross-module interactions that align with the higher-level objectives of the system, here the synergistic connectivity between the upper and lower body modules. Current approaches can only capture redundant and task-irrelevant interactions. Thus our framework provides additional insight into movement control.

      The number of participations in dataset 2 is very limited and should be increased. We appreciate the reviewer's comment and would like to point out that for dataset 2 our aim was to increase the number of muscles (30), tasks (72) and trials for each task (30) which produced a very large dataset for each participant. This came at the expense of low number of participants, however all our statistical analyses here can be performed at the single-participant level. Furthermore, dataset 3 includes 25 participants and it enables us to demonstrate the reliability of the findings across participants.

      Reviewer #2 (Recommendations For The Authors):

      I believe it is important in the future to explore the approach proposed with a range of simulation data and neuromechanical models, to explore the issues I have raised and that you have acknowledged, though I agree it is likely out of scope for the paper here.

      We agree with the reviewer that this would be valuable future work and indeed plan to do this in our future research.

      The Github code for this paper should likely include the various data sets used in the paper and figures, appropriately anonymized, in order to allow the data to be explored and analyses replicated and package demonstrated to be exercised fully by a new user.

      We thank the reviewer for this suggestion. Dataset3 is already available online at https://doi.org/10.1016/j.jbiomech.2021.110320. We will also make the other 2 datasets publicly available on our lab website very soon. Until then, as stated in the manuscript, we will make them available to anyone upon reasonable request.

      Reviewer #3 (Recommendations For The Authors):

      I have the following open points to suggest to the authors:

      First, I recommend improving the quality of the figures: in the pdf version I downloaded, some writings are impossible to read.

      We fully agree with the reviewer and note that in the pdf version of the paper, the figures are a lot worse than in the submitted word document submitted. Nevertheless, we will make further improvements on the figures as requested.

      Even though the manuscript has improved, I still feel that some points were not addressed or were only partially addressed. In particular:

      • The proposed comparison with NMF helps understanding why incorporating the task space is useful (and I fully agree with the authors about this point as the main reason to propose their contribution). However, the comparison does not help the reader to understand whether the synergies incorporating the task space are biased by the introduction of the task variables.

      This question can be also reformulated as: are muscle synergies modified when task space variables are incorporated? Is the "weight" on task coefficients affecting the composition of muscle synergies? If so, the added interpretational power is achieved at the cost of losing the information regarding the neural substrate of synergies? I understand this point is not immediate to show, but it would increase the quality of the work.

      • Reference to previous approaches that aimed at including task variables into synergy extraction are still missing in the paper. Even though it is not required to provide quantitative comparisons with other available approaches, there are at most 2-3 available algorithms in the literature (kinematics-EMG; force-EMG), that should not be neglected in this work. What did previous approaches achieve? What was improved with this approach? What was not improved?

      Previous attempts of extracting synergies with non-linear approaches could also be described more.

      In the latest version of the manuscript, we have referenced both the mixed NMF and autoencoders based algorithms. In both the introduction and discussion section of the manuscript, we also specify that our framework quantifies and decomposes muscle interactions in a novel way that cannot be done by other current approaches. In the results section we use examples from 3 different datasets to make this point clear, providing intuition on the use cases of our framework.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to comments of editor/s:

      • With regard to the comments on nonavailability of representative images/videos for Figures 1 A and B, in the revised manuscript we have added a representative video of GFP (-) and GFP (+) tracks in Supplemental video 1.

      Response to comments of reviewer 2:

      • With respect to the concern on figure 1, we have changed ‘% CD4+ T cell Migration’ to ‘% Proportion CD4+ T cell migration’ in Figures 1D & 1E in the revised manuscript. We also labelled the upper and lower panels of Figure 1I as ‘Untreated’ and ‘SDF1α’ respectively.

      Response to comments of reviewer 1:

      • With regard to the concern that ‘The transfection alone with siRNA may cause the lack of polarity’, we have added comparison of 2D migration MSD between control EGFP siRNA and Piezo1 siRNA-transfected CD4+ T cells as Supplementary Figure 1E.

      • We have added new references as ref 42 and 43, with respect to PIEZO1 association with focal adhesions.

      • With regard to the concerns around co-localization of Piezo1 and focal adhesions, we have added a representative image of Piezo1 and pFAK co-localization upon treatment of chemokine in revised Supplementary Fig. 3C. We have also used an additional focal adhesion marker, paxillin, to show that focal adhesion formation is not affected by Piezo1 KD (Revised Fig. 3E-3H). Upon comparing the mean pFAK and paxillin intensities, we observed no difference in Control and Piezo1 KD CD4+ T cells (Supplementary Figs. 3A, B).

      • All the minor concerns and suggestions have been taken care of in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript is very-well written. Although the study is well-conducted the authors should be more convincing on how bacteria residing in tissues do not induce death. The association with IL-10 cytokine production appears weak and more experiments are needed to make it more robust

      Reviewer #2 (Public Review):

      Iske et al. provide experimental data that NAD+ lessens disease severity in bacterial sepsis without impacting on the host pathogen load. They show that in macrophages, NAD+ prevents Il1b secretion potentially mediated by Caspase11.

      While the in vivo and in vitro data is interesting and hints towards a crucial role of NAD+ to promote metabolic adaptation in sepsis, the manuscript has shortcomings and would profit from several changes and additional experiments that support the claims.

      Conceptually, the definition of sepsis is outdated. Sepsis is not SIRS, as in sepsis-2. Sepsis-3 defines sepsis as infection-associated organ dysfunction. This concept needs to be taken into account for the introduction and when describing the potential effects of NAD+ in sepsis. Also, LPS application cannot be considered a sepsis model, since it only recapitulates the consequence of TLR-4 activation. It is a model of endotoxemia. Also, the LPS data does not allow to draw conclusions about bacterial clearance (L135).

      The authors state that protective effects by NAD were independent of the host pathogen load. This clearly indicates that NAD confers protection via enhancing a disease tolerance mechanism, potentially via reducing immunopathology. This aspect is not considered by the authors. The authors should incorporate the concept of disease tolerance in their work, cite the relevant literature on the topic and discuss it their findings in light of the published evidence for metabolic alteration sand adaptations in sepsis.

      For the in vitro data, the manuscript would benefit from additional experiments using in vitro infection models.

      In the merge manuscript, the authors provide two different versions of the figures. In one, bar plots are shown without individual data and in the other with scatter blots. All bar plots need to be provided as scatter plots showing individual values.

      The authors should show further serology data for kidney and liver failure etc. as well as further cytokine data such as IL-6 and TNF to better characterize their models.

      Careful revision of the entire manuscript, the figure legends and figures is required. The figure legend should not repeat the methods and materials section. The nomenclature for mouse protein and genes needs to be thoroughly revised.

      L350. The authors write that they dissect the capacity of NAD+ to dampen auto- and alloimmunity. In this work, no data that supports this statement is shown and experiments with autoantigens or alloantigens are not performed.

      L163 The authors describe pyroptosis but in the figure legend call it apoptosis. Specific markers for each cell death should be measured and determined which cell death mechanisms is involved.

      Animal data comes from an infection model and LPS application. The RNAseq data is obtained from cells primed with Pam3CSK4 and subsequently subjected to LPS. It is unclear how the cell culture model reflects the animal model. As such the link between IFN signaling and the bacterial infection/LPS model are not convincing and need to be further elaborated.

      Figure 5: It is unclear how many independent survival experiments were done, how many mice per group were used and whether the difference between groups was statistical significant. This information should be added.

      Further experiments with primary cells from Il10 k.o. and Caspase11 k.o. animals should be provided that support the findings in macrophages.

      Author Response:

      Reviewer #1 (Public Review):

      “The manuscript is very-well written. Although the study is well-conducted the authors should be more convincing on how bacteria residing in tissues do not induce death. The association with IL-10 cytokine production appears weak and more experiments are needed to make it more robust.”

      Thank you very much for your thoughtful and constructive feedback on our manuscript. We appreciate your positive assessment of the writing quality and the acknowledgment of the wel-lconducted nature of the study.

      In regard to the reviewer's comment that "The association with IL-10 cytokine production appears weak," we would like to provide a comprehensive response based on the findings and insights presented in our study (Fig 5). We would like to emphasize several key points to further elucidate this association:

      The established knowledge underscores IL-10's capacity to hinder the activation and proliferation of macrophages, thereby safeguarding against an overly aggressive immune-inflammatory reaction (as referenced). In our earlier investigations, we demonstrated that NAD+ orchestrates a systemic generation of IL-10, which assumes a pivotal function in curtailing proinflammatory responses across various conditions, such as autoimmune diseases (as referenced), alloimmunity (as referenced), and bacterial infections (as referenced). In our latest research, we divulge that the introduction of NAD+ leads to an elevated occurrence of IL-10-producing CD4+ T cells, CD8+ T cells, and macrophages, although not dendritic cells (depicted in Figure 5B and C). Furthermore, our comprehensive analyses have substantiated that NAD+ administration thwarts pyroptosis by specifically targeting the non-canonical inflammasome pathway. Intriguingly, our in vitro outcomes suggest that the neutralization of the autocrine IL-10 signaling pathway through a neutralizing antibody and an IL-10 receptor antagonist partially reverses the NAD+-mediated blockage of pyroptosis. These in vitro results imply that NAD+ induces the production of IL-10 cytokines by macrophages, contributing to the suppression of pyroptosis. To corroborate our in vitro conclusions, we employed IL-10 knockout mice and wild-type mice, both treated with either NAD+ or a placebo solution. The wild-type mice treated with NAD+ displayed a survival rate exceeding 80%, whereas the IL-10 knockout mice exhibited a survival rate of "only" 40%. These in vivo findings align with our in vitro discoveries, underscoring the crucial role of NAD+mediated IL-10 cytokine production in impeding pyroptosis through NAD+ and shielding against septic shock. Drawing from our prior and current investigations, we respectfully disagree with the reviewer's characterization of our work as "weak."

      Recommendations for the authors

      ‘’I suggest that animals subject to E. coli infection need to be followed-up for longer and sacrificed at a later time points. It is too difficult to believe that mice are surviving with full resting bacteria in tissues. Do results suggest a full shut-down of the mechanism? What was the level of infiltration of the tissues by neutrophils?’’

      ‘’I have difficulty to agree with the survival results of the IL-10(-/-) mice of Figure 5E. Can the authors provide the p-values and follow-up for longer? Why the WT and the IL-10(-/-) mice survive the same?’’

      Thank you for your thoughtful and constructive comments on our manuscript. We appreciate your valuable insights, and we have carefully considered your suggestions.

      We thank the reviewers for this comment. We have indeed followed-up for a longer period of time mice subjected to E. Coli infection and LPS (54mg/kg). Mice infected and treated with NAD+ survived for several months and recovered fully after 10 days. Mice survived for at least a year following infection. We have now included a sentence regarding the long-term survival in the results section of Figure 1 entitled “NAD+ protects mice against septic shock not via bacterial clearance but via inflammasome blockade”. Figure illustrating the level of infiltration of the tissues by neutrophils was added in supplementary data as supplementary figure 4.

      In contrast, WT and IL-10-/- mice failed to withstand E. Coli or LPS (54mg/kg) administration when treated with a placebo solution. To our knowledge, our investigation represents the pioneering instance of successfully conferring protection against the lethal doses of E. Coli and LPS administered to animals. Considering the potent immunosuppressive nature of IL-10, our anticipation was that IL-10-/- mice would manifest an exacerbated inflammatory response subsequent to LPS administration, in contrast to WT mice. Our in vivo findings indeed corroborate this assumption, revealing that IL-10-/- mice succumbed more swiftly to LPS administration, displaying statistically significant disparities in survival rates compared to WT mice (p value of 0.0154). The pertinent p-value has been thoughtfully included in Figure 5E of our study.

      Reviewer #2 (Public Review):

      “Iske et al. provide experimental data that NAD+ lessens disease severity in bacterial sepsis without impacting on the host pathogen load. They show that in macrophages, NAD+ prevents Il1b secretion potentially mediated by Caspase11.

      While the in vivo and in vitro data is interesting and hints towards a crucial role of NAD+ to promote metabolic adaptation in sepsis, the manuscript has shortcomings and would profit from several changes and additional experiments that support the claims.

      Conceptually, the definition of sepsis is outdated. Sepsis is not SIRS, as in sepsis-2. Sepsis-3 defines sepsis as infection-associated organ dysfunction. This concept needs to be taken into account for the introduction and when describing the potential effects of NAD+ in sepsis. Also, LPS application cannot be considered a sepsis model, since it only recapitulates the consequence of TLR-4 activation. It is a model of endotoxemia. Also, the LPS data does not allow to draw conclusions about bacterial clearance (L135).

      The authors state that protective effects by NAD were independent of the host pathogen load. This clearly indicates that NAD confers protection via enhancing a disease tolerance mechanism, potentially via reducing immunopathology. This aspect is not considered by the authors. The authors should incorporate the concept of disease tolerance in their work, cite the relevant literature on the topic and discuss it their findings in light of the published evidence for metabolic alteration sand adaptations in sepsis.

      For the in vitro data, the manuscript would benefit from additional experiments using in vitro infection models.

      In the merge manuscript, the authors provide two different versions of the figures. In one, bar plots are shown without individual data and in the other with scatter blots. All bar plots need to be provided as scatter plots showing individual values.

      The authors should show further serology data for kidney and liver failure etc. as well as further cytokine data such as IL-6 and TNF to better characterize their models.

      Careful revision of the entire manuscript, the figure legends and figures is required. The figure legend should not repeat the methods and materials section. The nomenclature for mouse protein and genes needs to be thoroughly revised.

      L350. The authors write that they dissect the capacity of NAD+ to dampen auto- and alloimmunity. In this work, no data that supports this statement is shown and experiments with autoantigens or alloantigens are not performed.

      L163 The authors describe pyroptosis but in the figure legend call it apoptosis. Specific markers for each cell death should be measured and determined which cell death mechanisms is involved.

      Animal data comes from an infection model and LPS application. The RNAseq data is obtained from cells primed with Pam3CSK4 and subsequently subjected to LPS. It is unclear how the cell culture model reflects the animal model. As such the link between IFN signaling and the bacterial infection/LPS model are not convincing and need to be further elaborated.

      Figure 5: It is unclear how many independent survival experiments were done, how many mice per group were used and whether the difference between groups was statistical significant. This information should be added.

      Further experiments with primary cells from Il10 k.o. and Caspase11 k.o. animals should be provided that support the findings in macrophages.”

      Thank you for taking the time to review our manuscript. We appreciate your insightful comments and valuable feedback regarding our study on the role protective role and underlying mechanisms of NAD+ in septic shock.

      “While the in vivo and in vitro data is interesting and hints towards a crucial role of NAD+ to promote metabolic adaptation in sepsis, the manuscript has shortcomings and would profit from several changes and additional experiments that support the claims.”

      We would like to point out that our current study does not underscore a metabolic adaptation in sepsis but more an immune regulation and a specific blockade of the non-canonical inflammasome signaling machinery.

      “Conceptually, the definition of sepsis is outdated. Sepsis is not SIRS, as in sepsis-2. Sepsis-3 defines sepsis as infection-associated organ dysfunction. This concept needs to be taken into account for the introduction and when describing the potential effects of NAD+ in sepsis. Also, LPS application cannot be considered a sepsis model, since it only recapitulates the consequence of TLR-4 activation. It is a model of endotoxemia. Also, the LPS data does not allow to draw conclusions about bacterial clearance (L135).”

      Our study uses highly lethal doses of E. Coli or LPS. These doses have been shown to result in multiple organ failure (1, 2). For many decades until now an un-numerable number of studies have used LPS as a model of sepsis (3, 4, 5). We have used LPS animal model based on a study published in 2013 by Kayagaki et al. (1), where the authors reported a novel TLR4-independent mechanism but mediated via activate caspase-11. We used the same animal model to demonstrate the specific role of NAD+ in targeting this TLR4-independent mechanism but mediated via activate caspase-11 and underscore NAD+’s mode of protection.

      Moreover, we have not only used LPS but bacterial infection as well using E. Coli. We have also previously published an additional research article demonstrating the protective effect against Listeria Monocytogenes (6). The only model we currently did not use in our current study, is a cecal ligation puncture (CLP) model which is also another common animal model for sepsis.

      Our conclusions regarding bacterial clearance are based not only on LPS results but also based on the bacterial load measurement and survival (Figure 1B&C) following E. Coli administration in different tissues (kidney and liver) and not LPS.

      “The authors state that protective effects by NAD were independent of the host pathogen load. This clearly indicates that NAD confers protection via enhancing a disease tolerance mechanism, potentially via reducing immunopathology. This aspect is not considered by the authors. The authors should incorporate the concept of disease tolerance in their work, cite the relevant literature on the topic and discuss it their findings in light of the published evidence for metabolic alteration sand adaptations in sepsis.”

      We respectfully disagree with the reviewer’s comment and do not believe that NAD+ enhances disease tolerance. We have supporting data indicating that NAD+ mediates protection via a specific blockade of the non-canonical inflammasome pathway, which prevents an over-zealous immune response that results in organ damage and multiple organ failure (MOF). Moreover, we demonstrate that not only NAD+ mediates protection via a specific blockade of the non-canonical inflammasome pathway but prevents septic shock induced death by an additional immunosuppression mediated by the systemic production of IL-10.

      Both Caspase-11 and IL-10 pathways are crucial in NAD+ mediated protection against lethal doses of E. Coli and LPS administration. Figure 5A indicates that caspase-11-/- mice treated with PBS have a modest survival rate (~40% survival) when compared to the group of mice treated with NAD+ (>80% survival). These data indicate that NAD+ promotes survival via a caspase-11independent mechanism. Similarly, wild type mice subjected to NAD+ administration exhibited >80% survival, while NAD+ administration to IL-10-/- mice resulted only in a 40% survival rate. Based on these findings, we believe that NAD+ mediated protection against septic shock via a blockade of caspase-11 blockade and by IL-10 cytokine production that dampened the overzealous immune response rather than a disease tolerance.

      “For the in vitro data, the manuscript would benefit from additional experiments using in vitro infection models.”

      In the current study we have used two in vivo models using LPS and E. Coli a gram-negative bacterium. We have also previously reported the protective role of NAD+ in the context of Listeria Monocytogenes (6) a gram-positive bacterium. In the current study, our aim was to demonstrate the inhibitory role of NAD+ on the non-canonical pathway specifically. We believe that additional in vitro experiments for this study are out of scope.

      “In the merge manuscript, the authors provide two different versions of the figures. In one, bar plots are shown without individual data and in the other with scatter blots. All bar plots need to be provided as scatter plots showing individual values.”

      As requested by reviewer #2 all bar plots are now provided as scatter plots showing individual values.

      “The authors should show further serology data for kidney and liver failure etc. as well as further cytokine data such as IL-6 and TNF to better characterize their models.”

      We did not perform further serology analysis, but we did measure IL-6 and TNFα in mice treated with NAD+ or PBS. Mice treated with NAD+ had a reduced systemic level of both cytokines IL-6 and TNFα. We have now added the figures (Figure 1F). In addition, we performed a long-term survival, and all mice treated with NAD+ recovered fully after 10 days and survived over a year after infection. In addition, the mice that survived following NAD+ treatment died of old age.

      “Careful revision of the entire manuscript, the figure legends and figures is required. The figure legend should not repeat the methods and materials section. The nomenclature for mouse protein and genes needs to be thoroughly revised.”

      A Careful revision of the entire manuscript has been performed.

      “L350. The authors write that they dissect the capacity of NAD+ to dampen auto- and alloimmunity. In this work, no data that supports this statement is shown and experiments with autoantigens or alloantigens are not performed.”

      We thank the reviewer for this comment. We have now re-phrased our last sentence in the discussion and included references for our previous work. We have now stated:” We have previously reported that NAD+ administration can block auto- (7) and allo-immunity (8) via IL10 cytokine production. Here, we unveiled the capacity of NAD+ to protect against sepsisinduced death via a specific blockade of the non-canonical inflammasome pathway and a robust immunosuppression mediated by IL-10 cytokine production.

      L163 The authors describe pyroptosis but in the figure legend call it apoptosis. Specific markers for each cell death should be measured and determined which cell death mechanisms is involved.

      We thank the reviewer for this comment. We have focuses on pyoptosis-mediated cell death and not apoptosis. We have now replaced the term “apoptosis” by “pyroptosis-mediated to cell death”.

      “Animal data comes from an infection model and LPS application. The RNAseq data is obtained from cells primed with Pam3CSK4 and subsequently subjected to LPS. It is unclear how the cell culture model reflects the animal model. As such the link between IFN signaling and the bacterial infection/LPS model are not convincing and need to be further elaborated.”

      Our findings, depicted in Figure 3, pertain exclusively to in vitro investigations rather than in vivo examinations. Our research has demonstrated the selective inhibition of the non-canonical inflammasome pathway by NAD+, with a primary focus on unraveling the specific signaling pathway influenced by NAD+. Our in vitro outcomes indicate that the introduction of recombinant IFN-β counteracted the inhibitory effect of NAD+ on the non-canonical pathway. However, it's important to note that we have not evaluated the IFN-β pathway within our E. Coli and LPS in vivo models. Our primary intention was to exclusively decipher the roles of IFN-β and NAD+ in the context of inhibiting the non-canonical inflammasome, without extending our investigation to the broader in vivo scenarios.

      “Figure 5: It is unclear how many independent survival experiments were done, how many mice per group were used and whether the difference between groups was statistical significant. This information should be added.”

      We have now included the number of experiments, p values and number of animals used in Figure 5.

      “Further experiments with primary cells from Il10 k.o. and Caspase11 k.o. animals should be provided that support the findings in macrophages.”

      We concur with the reviewer's suggestion regarding the need for further experiments involving primary cells from IL-10-/- and Caspase-11-/- mice. However, we are uncertain about the potential contribution of these experiments in generating novel or supplementary findings to the existing study.

      Recommendations For The Authors:

      Besides the comments made in the public section, there are further issues that need to be considered by the authors.

      “It is unclear what signifies „impressive, L106" or „dramatic, L257"”

      “impressive” meant that we were surprised by the results since to the best of our knowledge prior this study there exists no report/study claiming such survival (>80%) following such high dose of E. Coli. In this aspect protective effects of NAD+ are unique. “dramatic” We (8) and others (9, 10) have previously used this term to describe a robust increase of cytokine production.

      “L116. The authors describe „symptoms". It should be clarified what symptoms they observed and the data should be shown. If only temperature is available, then this should be said. It would be interesting to see effects of NAD+ on the glucose levels of the animals during sepsis.”

      We thank the reviewer’s comment. We have measured only temperature. We believe that glucose level is beyond the scope of this study.

      “L29. Sepsis is not restricted to bacterial and viral pathogens. Also fungi and protozoa can cause sepsis.”

      We have now included fungi and protozoa.

      “Suppl.Fig.1. A scale should be added.”

      Scale has been added

      “L822. Lethal dose of LPS would mean that this was lethal for all mice. However, the data suggests that NAD+ treated animals would not have died. This should be clarified.”

      Here we meant lethal dose in absence of NAD+ treatment. Our study focuses on the protective role of NAD+ in a lethal context (bacterial and LPS).

      “L823/824. The part of the sentence: ... IHC was performed staining for H&E.. is incomplete.”

      We thank the reviewer’s comment. We have re-phrased our sentence.

      “L804. IL-10 is not a pathway. This should be revised.”

      We have replaced “pathway” by” mechanism”.

      “The graphical abstract should be the last figure summarizing all findings.”

      Figure 4 isn't the final illustration, as it doesn't encompass an overarching graphical summary of our discoveries. Instead, it exclusively highlights the findings related to NAD+'s impact on noncanonical inflammasome inhibition. Notably, this figure omits NAD+-mediated IL-10 cytokine generation and its crucial role in mitigating septic shock.

      “The authors report that they used a dosage of 54mg/kg LPS (l.502). This is a rather unusual concentration. How was this determined?”

      This was initially based on the first study reporting the role of casapase-11 in septic shock induced death published in 2013 by Kayagaki et al. (1). Many other have used this dosage for septic shock induced death animal model (11, 12, 13).

      References:

      1. Kayagaki N, et al. Noncanonical inflammasome activation by intracellular LPS independ ent of TLR4. Science 341, 1246‐1249 (2013).

      2. Qin, X., Jiang, X., Jiang, X. et al. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge. Sci Rep 6, 23240 (2016).

      3. Li Z, Qu W, Zhang D, Sun Y, Shang D. The antimicrobial peptide chensinin-1b alleviates the inflammatory response by targeting the TLR4/NF-κB signaling pathway and inhibits Pseudomonas aeruginosa infection and LPS-mediated sepsis. Biomed Pharmacother. 2023 Aug 1; 165:115227.

      4. Ramani V, Madhusoodhanan R, Kosanke S, Awasthi S. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation. Innate Immun. 2013 Dec;19(6):596610.

      5. Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J, Jiao S, Gao Y, Liu C, Duan Z, Li D, He Y, Wei B, Wang H. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity. 2014 Apr 17;40(4):501-14.

      6. Rodriguez Cetina Biefer H, Heinbokel T, Uehara H, Camacho V, Minami K, Nian Y, Koduru S, El Fatimy R, Ghiran I, Trachtenberg AJ, de la Fuente MA, Azuma H, Akbari O, Tullius SG, Vasudevan A, Elkhal A. Mast cells regulate CD4+ T-cell differentiation in the absence of antigen presentation. J Allergy Clin Immunol. 2018 Dec;142(6):18941908.e7.

      7. Tullius SG, Biefer HR, Li S, Trachtenberg AJ, Edtinger K, Quante M, Krenzien F, Uehara H, Yang X, Kissick HT, Kuo WP, Ghiran I, de la Fuente MA, Arredouani MS, Camacho V, Tigges JC, Toxavidis V, El Fatimy R, Smith BD, Vasudevan A, ElKhal A. NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat Commun. 2014 Oct 7;5:5101.

      8. Elkhal A, et al. NAD(+) regulates Treg cell fate and promotes allograft survival via a systemic IL‐10 production that is CD4(+) CD25(+) Foxp3(+) T cells independent. Sci Rep 6, 22325 (2016).

      9. Natalia Garcia-Becerra, Marco Ulises Aguila-Estrada, Luis Arturo Palafox-Mariscal, Georgina Hernandez-Flores, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suarez, FOXP3 Isoforms Expression in Cervical Cancer: Evidence about the Cancer-Related Properties of FOXP3Δ2Δ7 in Keratinocytes, Cancers, 15, 2, (347), (2023).

      10. Estelle Bettelli, Maryam Dastrange, Mohamed Oukka. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proceedings of the National Academy of Sciences. 2005.102; 14; 5138-5143.

      11. Han Gyung Kim, Chaeyoung Lee, Ji Hye Yoon, Ji Hye Kim, Jae Youl Cho,BN82002 alleviated tissue damage of septic mice by reducing inflammatory response through inhibiting AKT2/NF-κB signaling pathway,Biomedicine & Pharmacotherapy,Volume 148,2022,112740.

      12. Tao Q, Zhang Z-D, Qin Z, Liu X-W, Li S-H, Bai L-X, Ge W-B, Li J-Y and Yang Y-J (2022) Aspirin eugenol ester alleviates lipopolysaccharide-induced acute lung injury in rats while stabilizing serum metabolites levels. Front. Immunol. 13:939106.

      13. Chen, N, Ou, Z, Zhang, W, Zhu, X, Li, P, Gong, J. Cathepsin B regulate non-canonical NLRP3 inflammasome pathway by modulating activation of caspase-11 in Kupffer cells. Cell Prolif. 2018; 51:e12487.

    1. Author Response:

      Reviewer #1:

      1. This is a complex paper and would benefit from a schematic depicting the key findings.

      This comment is appreciated. Unfortunately, due to time restraints, the authors were not able to graphically depict our findings.

      1. The paper would benefit from additional supporting evidence. Would it be possible to measure fatty acid oxidation by metabolic tracing here, in IRG-deficient cells or in response to 4-OI? Although changes in protein level for Cpt1A are seen, this is correlated with fatty acid oxidation rather than direct demonstration. This may be challenging but would strengthen the manuscript.

      This is a great comment. While we did not directly measure fatty acid flux in our manuscript, Weiss et al. Nature Metabolism 2023 did these studies in primary hepatocytes. They showed an increased palmitate incorporation into citrate.

      1. The aspect concerning body temperature regulation is confusing. Would Itaconate not promote fatty acid oxidation to increase or maintain body temperature? Itaconate must therefore not be involved in the hypothermic response? Bringing UCP1 into the finding is confusing and needs to be better explained. Again a diagram would help, but enhanced BAT fatty acid oxidation and UCP1 expression appear linked here, with both being affected by Itaconate. This needs clarifying.

      We appreciate this comment. The rationale is that if itaconate is stabilizing fatty acid oxidation, it would be necessary to fuel thermogenesis, a process dependent on fatty acid utilization. Our data support a role for itaconate in stabilizing body temperature following inflammation, potentially through enhanced fatty acid oxidation. This is evidenced by the hypothermic response to LPS in Acod1 KO mice. Furthermore, Mills et al. Nature 2018 show 4-OI injection boosts body temperature following LPS stimulation.

      Reviewer #2:

      Some conclusions involving the Irg1 knockout mice require important controls and clarifications to be fully convincing and some controls are missing.

      We appreciate the needs for appropriate controls. Negative controls were omitted when baseline phenotypes were not observed. Due to time and resource limitations we were unable to repeat the experiments.

  2. Dec 2023
    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors explored correlations between taste features of botanical drugs used in ancient times and therapeutic uses, finding some potentially interesting associations between intensity and complexity of flavors and therapeutic potential, plus some more specific associations described in the discussion sections. I believe the results could be of potential benefit to the drug discovery community, especially for those scientists working in the field of natural products.

      Strengths:

      Owing to its eclectic and somehow heterodox nature, I believe the article might be of interest to a general audience. In fact, I have enjoyed reading it and my curiosity was raised by the extensive discussion.

      The idea of revisiting a classical vademecum with new scientific perspectives is quite stimulating.

      The authors have undertaken a significant amount of work, collecting 700 botanical drugs and exploring their taste and association with known uses via eleven trained panelists.

      Weaknesses:

      I have some methodological concerns. Was subjective bias within the panel of participants explored or minimized in any manner?

      Yes, in all models we included ‘panellist’ as a random effect and therefore any biased perception by a single panellist across drugs or differences among panellists for an individual drug was accounted for. We now make this clearer in our methods.

      Were the panelists exposed to the drugs blindly and on several occasions to assess the robustness of their perceptions?

      The study was double blind, but blinding was not possible with the more well-known drugs (e.g., almonds, walnuts, thyme, mint). A random number generator was used to assign the drugs to the panellists, and according to the random distribution, some drugs were presented to the same panellist more than once. Robustness of panellists’ perception was not assessed specifically. We have added some text to the methods to clarify.

      Judging from the total number of taste assessments recorded and from Supplementary Material, it seems that not every panelist tasted every drug. Why?

      Because there were many drugs and panellists had time constraints. Overall, 3973 individual sensory trials were conducted, with an average of 361±153 trials per panellist and 5.7±1.3 trials per botanical drug.

      It may be a good idea to explore the similarity in the assessments of the same botanical drug by different volunteers. If a given descriptor was reported by a single volunteer, was it used anyway for the statistical analysis or filtered out?

      All responses were used as reported by the panellists, including potential ‘outliers’. As described above, the inclusion of ‘panellist’ as a random effect means that if one individual gave an unusual description of a particular drug in comparison to other individuals, this would be less impactful on any parameter estimates.

      The idea of "versatility" is repeatedly used in the manuscript, but the authors do not clearly define what they call "versatile".

      In line with suggestions made by reviewers, we have slightly adjusted the definition of therapeutic versatility and have now clearly defined the term on first use. Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      The introduction should be expanded. There are plenty of studies and articles out there exploring the evolution of bitter taste receptors, and associating it with a hypothetical evolutionary advantage since bitter plants are more likely to be poisonous.

      We agree. Bitter is arguably the most frequent chemosensory attribute of plants and botanical drugs perceived by humans. Our data shows that ‘poisons’ are not associated with bitterness but positively with ‘aromatic’, ‘sweet’ and ‘soapy’ – and negatively with ‘salty’ qualities.

      We have added this paragraph to the introduction:

      "The perception of taste and flavour (a combination of taste, smell and chemesthesis) here also referred to as chemosensation, has evolved to meet nutritional requirements and are particularly important in omnivores for seeking out nutrients and avoiding toxins (Rozin and Todd, 2016; Breslin, 2013; Glendinning, 2022). The rejection of bitter stimuli has generally been associated with the avoidance of toxins (Glendinning, 1994; Lindemann, 2001; Breslin, 2013) but to date no clear relationship between bitter compounds and toxicity at a nutritionally relevant dose could be established (Glendinning, 1994; Nissim et al., 2017). While bitter tasting metabolites occurring in fruits and vegetables have been linked with a lower risk for contracting cancer and cardiovascular diseases (Drewnoswski and Gomez-Carneros, 2000) the avoidance of pharmacologically active compounds is probably the reason why many medicines, including botanical drugs, taste bitter (Johns, 1990; Mennella et al., 2013)."

      And expanded in the discussion:

      "Though many bitter compounds are toxic, not all bitter plant metabolites are (Glendinning, 1994; Drewnoswski and Gomez-Carneros, 2000; e.g., iridoids, flavonoids, glucosinolates, bitter sugars). In part, this may be the outcome of an arms race between plant defence and herbivorous mammals’ bitter taste receptor sensitivities, resulting in the synthesis of metabolites capable of repelling herbivores and confounding the perception of potential nutrients by mimicking tastes of toxins. Here, poisons showed no association with bitter but positive associations with aromatic (px = 0.041), sweet (px = 0.022) and soapy (px = 0.025) as well as a negative association with salty (px = 0.046) qualities."

      Since plant secondary metabolites are one of the most important sources of therapeutic drugs and one of their main functions is to protect plants from environmental dangers (e.g., animals), this evolutionary interplay should be at least briefly discussed in the introductory section.

      This is now referred to in the introduction as well as in the discussion.

      Since the authors visit some classical authors, Parecelsus' famous quote "All things are poison and nothing is without poison. Solely the dose determines that a thing is not a poison" may be relevant here. Also note that some authors have explored the relationship between taste receptors and pharmacological targets (e.g., Bioorg Med Chem Lett. 2012 Jun 15;22(12):4072-4).

      We agree that pharmacologic action is determined by the dose. We now refer to the dose in the introduction: “…to date no clear relationship between bitter compounds and toxicity at a nutritionally relevant dose could be established (Glendinning, 1994; Nissim et al., 2017)”.

      We are aware of the fact that several authors have explored the relationship between taste receptors as targets and their similarity with other targets. We use many examples from the literature to explain our data. Our analysis did, however, not highlight any association between sweet tastes and epilepsy (as reported in Bioorg Med Chem Lett. 2012 Jun 15;22(12):4072-4)). We are not able to explain all associations, and we acknowledge that there may be more associations between chemosensory receptors and therapeutic effects than those found and discussed here.

      Reviewer #2 (Public Review):

      Summary:

      This is an unusual, but interesting approach to link the "taste" of plants and plant extracts to their therapeutic use in ancient Graeco-Roman culture. The authors used a panel of 11 trained tasters to test ~700 different medicinal plants and describe them in terms of 22 "taste" descriptors. They correlated these descriptors with the plant's medical use as reported in the De Materia Medica (DMM 1st Century, CE). Correcting for some of the plants' evolutionary phylogenetic relationships, the authors found that taste descriptors along with intensity measures were correlated with the "versatility" and/or specific therapeutic use of the medicine. For example, simple but intense tastes were correlated with the versatility of a medicine. Specific intense tastes were linked to versatility while others were not; intense bitter, starchy, musky, sweet, cooling, and soapy were associated with versatility, but sour and woody were negatively associated. Also, some specific tastes could be associated with specific uses - both positive and negative associations. Some of these findings make sense immediately, but others are somewhat surprising, and the authors propose some links between taste and medicinal use (both historical and modern use) in the discussion. The authors state that this study allows for a re-evaluation of pre-scientific knowledge, pointing toward a central role of taste in medicine.

      Strengths:

      The real strength of this study is the novelty of this approach - using modern-day tasters to evaluate ancient medicinal plants to understand the potential relationships between taste and therapeutic use, lending some support to the idea that the "taste" of a medicine is linked to its effectiveness as a treatment.

      Weaknesses:

      While I find this study very interesting and potentially insightful into the development and classification of certain botanical drugs for specific medicinal use, I would encourage the authors to revise the manuscript and the accompanying figures significantly to improve the reader's understanding of the methods, analyses, and findings. A more thorough discussion of the limitations of this particular study and this general type of approach would also be very important to include.

      Figures were revised, one deleted (former Fig. 3), and another one put to the supplementary (former Fig. 4, now Figure supplement 1). We now acknowledge limitations in the final paragraph.

      The metric of versatility seems somewhat arbitrary. It is not well explained why versatility is important and/or its relationship with taste complexity or intensity.

      We have modified the definition of versatility in line with reviewers’ comments. We have provided a detailed explanation of this in our response to reviewer #1 but for ease of reference, we paste this again here:

      Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      The importance of versatility was not the focus but the impact of taste intensity and complexity on versatility. We hypothesize that associations between perceived complexity and intensity of chemosensory qualities with versatility of botanical drug use provides insights into the development of empirical pharmacological knowledge and therapeutic behaviour (now included in the introduction).

      Similarly, the rationale for examining the relationships between individual therapeutic uses and taste intensity/complexity is not well explained, and given that a similar high intensity/low complexity relationship is common for most of the therapeutic uses, it restates the same concepts that were covered by the initial versatility comparison.

      The examination of the relationships between individual therapeutic uses and taste intensity/complexity fine-tunes the overall analysis and shows that this concept is applicable in general. However, in general, the reviewer is correct, and this is not our main focus. We therefore shifted the analysis including the figure to the supplementary material and state in the discussion: “We also detected nuances in significance, and complete absence of significance across the relationships between individual therapeutic uses and complexity/intensity magnitudes for which we lack, however, more specific explanations (Figure supplement 1).

      There are multiple issues with the figures - the use of icons is in many cases counterproductive and other representations are not clear or cause confusion (especially Figure 3).

      We have excluded former Fig. 3. Otherwise, the use of iconography is to facilitate graphical representation and cross-referencing between figures without over-cluttering. We provide all text and numeric values in the supporting information if individual detail is required.

      The phylogenetic information about the botanicals is missing. Also missing is any reference/discussion about how that analysis was able to disambiguate the confounding effects of shared uses and tastes of drugs from closely related species.

      This is explained in the methods (sections: ‘Phylogenetic tree’ and ‘statistical procedure’). We highlight that all models showed high heritability which means that shared ancestry has a statistical influence on the model. The trees themselves are now represented in our modified Figure 2.

      Reviewer #1 (Recommendations For The Authors):

      Besides the points already covered in my public review, I believe it would be interesting to assess and discuss the differences between the category "food" (how many drugs were allocated there?) and the drugs used for therapeutic purposes. In this manner, the food category could serve as a retrospective negative control to test the authors' hypotheses. Does the food category include drugs of weak flavor? Does it include drugs of complex flavor?

      All drugs in this database are associated with therapeutic uses. Only 96 are specifically mentioned to be also used as food while in total at least 152 are also used as food (many of the most obvious food drugs are not labelled as such in DMM). It is difficult to use the food category as a negative control (for testing whether food drugs have weaker tastes), because spices are included in the food category. If at all, only staples should be used for such an analysis. But this would be another study.

      In the context of the present analyses, we do agree that there is interest and so we have therefore added a small section to our manuscript: The 96 botanical drugs specifically mentioned also for food (though there are more than 150 edible drugs in our dataset; Supplementary file 1) show positive associations with starchy (px = 0.005), nutty (px = 0.002) and salty (px = 0.001) and negative associations with bitter (px = 0.007), woody (px = 0.001) and stinging (px = 0.033) tastes and flavours.

      Please replace "plant defence" with "plant defense".

      Currently the whole MS is formatted BE. We are happy to revise on the basis of editorial policy.

      Reviewer #2 (Recommendations For The Authors):

      1. I would encourage replacing "taste" with "flavor" throughout the manuscript and in the title because this paper addresses "taste here defined as a combination of taste, odour and chemesthesis" which essentially is the definition of flavor, and should not be simplified to taste. Flavor is the more precise word, and there is no need to confuse readers by defining "taste" in this way when taste means just the gustatory aspect of flavor.

      We now define flavour as a combination of taste, smell and chemesthesis and use ‘taste’ when referring to a specific taste quality. We use the term ‘chemosensory’ (perception, quality) and chemosensation for addressing the perception of both, taste and flavour qualities together. The abstract now reads: “The perception of taste and flavour (a combination of taste, smell and chemesthesis) here referred to as chemosensation, enables animals to find high-value foods and avoid toxins.”

      We prefer to leave the title as it is in accordance with standard books (e.g., “Pharmacology of Taste” by Palmer and Servant) which address all kinds of chemosensory interactions and the fact that we’ve conducted a ‘tasting panel’ (and not a ‘flavour panel’), and because flavour as a concept is only used in English (and also there not consistently, with ‘taste’ being the preferred term used by English native speakers for describing perception where in a strict sense, ‘flavour’ would be the correct term, see Rozin P. "Taste-smell confusions" and the duality of the olfactory sense. Percept Psychophys. 1982 Apr;31(4):397-401)) and maybe also in French.

      1. Methods - A much more detailed description of how the samples were prepared for the taste tests is needed. Were they sampled as a dry powder? No, they were sampled as dried pieces. We have added more information to our methods section to clarify.

      Why is there such a big range in the amount provided (.1 to 2 g)? Because certain drugs are highly toxic (aconitum, opium) we could only provide a relatively small amount (that still permitted the perception of taste qualities). For practical reasons, half a walnut was dispensed. We have added more information to our methods section to clarify.

      Also "Panelists were instructed to spit, rinse their mouth with drinking water and to take a break before tasting the next sample" This seems more likely that the samples were dissolved in a liquid if they were spitting and rinsing, but this is not clear. Also - take a break for how long between samples?

      Panellists were instructed to chew the amount of sample necessary for taste perception, to annotate their perception, and to spit out residues of samples and finally rinse their mouth with drinking water. The breaks between tasting different samples depended on chemosensory persistence. We have added more information to our methods section to clarify.

      How many samples were tested per day?

      The number of tasted samples was different from panelist to panelist and depending on available time frames. On average each panellist tasted 17,2 drugs per hour using 10.5 sessions (18 sessions in total) lasting approximately two hours each. We have added more information to our methods section to clarify.

      Did individual panelists get repeated samples?

      Random distribution permitted that individual panellists were challenged also with repeated samples. We have added more information to our methods section to clarify.

      1. Methods - Phylogenetic tree - Where is the output of this tree? It should be included in the figures and referred to in the results/discussion where the authors claim that they have been able to disambiguate phylogenetic closeness with taste and medicinal use.

      We did not ‘build’ a phylogenetic tree, rather we modified an existing one. Therefore, the wording of that section in the methods has been adjusted for clarity. We refer to the tree in the results pertaining to phylogenetic relatedness by explicitly quantifying the extent of phylogenetic signal using the widely used heritability (h2) statistic. This means that shared ancestry has a statistical influence on the model. We have also added to our Figure 2 representations of the phylogenetic tree we used in our analysis, limited to the species for which we have data, also displaying the data (in this case, intensity and complexity) at the tips.

      1. Taste intensity ratings should be better explained. Since the panelists are evaluating different amounts of samples (.1 to 2g) wouldn't the intensity of taste also depend on the amount of the substance?

      The panelists were not told to introduce all the sample into their mouth but just enough to perceive the taste qualities clearly (explanation given in methods). E.g.: one black pepper corn is normally enough to perceive the taste and flavour of pepper while the same amount of hazelnut would be insufficient.

      Or is this measure a relative value - "woodiness" vs "sourness" for example within the sample is strong/weak?

      Chemosensation and sensory perception in general is always relative. (For instance, currently I can hear the birds singing outside. Was there music playing in my room I wouldn’t be able to hear them).

      Because of this - are samples with strong tastes less likely to seem complex because the intensity of one stimulus masks the other?

      Yes, we argue that drugs with strong tastes/flavours are less likely be perceived as being complex (fewer individual qualities perceived), arguably because strong stimuli overshadow weaker ones. We currently address this in the discussion and have made some modifications in line with the below comment.

      This issue was presented briefly in the discussion when addressing the finding that samples with intense, but fewer tastes were more versatile, but this was highly confusing.

      The authors presented both sides of the problem without referring to any of their own experiments to resolve the issue, or to highlight this as a potential limitation of the study at hand.

      Yes, stronger tastes mask weaker tastes which addresses both sides of the problem.

      We have modified the first paragraph of the discussion to make this clearer.

      It now reads: "Unexpectedly, botanical drugs eliciting fewer but intense chemosensations were more versatile (Fig. 2). People often associate complexity with intensity, and taste complexity is popularly interpreted with a higher complexity of ingredients (Spence, and Wang, 2018). However, simple tastes can be associated with complex chemistry when intense tastes mask weaker tastes, or when tastants are blended (Breslin and Beauchamp, 1997; Green et al., 2010). For example, starchy flavours or sweet tastes can be sensed when bitter and astringent antifeedant compounds are present below a certain threshold while salts enhance overall flavour by suppressing the perception of bitter tastants (Breslin and Beauchamp, 1997; Johns, 1990). On the other hand, combinations of different tastants or olfactory stimuli do not necessarily result in increased perceived complexity (Spence and Wang, 2018; Weiss et al., 2012)."

      It would be useful to understand the parameters a bit more - a data visualization of the relationships of intensity and complexity across all samples would be a welcome addition to Figure 2.

      Shared ancestry has a statistical influence on the model. We have now also added to our Figure 2 representations of the phylogenetic tree we used in our analysis, limited to the species for which we have data, also displaying the data (in this case, intensity and complexity) at the tips.

      1. "Therapeutic Versatility" is a measure of how many different therapeutic uses a given botanic is listed in the DMM. This is one of the primary comparisons of this study, but the authors do not provide much of a rationale for using this metric. Also, there are 46 therapeutic uses, but many are interrelated such as gastric, gynecology, muscle, neurological, respiratory, skin, and kidney. It is not clear in my reading of the methods if this was also treated in some type of "phylogeny" as well or not. I would assume a real therapeutic versatility metric should be higher for something used for cough, ulcers, gout, and menses rather than something that was used for 4 different, but skin-related complaints.

      The reviewer is correct, and we appreciate this comment. We have modified the definition of versatility in line with the suggestions laid out here. We have provided a detailed explanation of this in our public responses but for ease of reference, we paste this again here:

      Here, we define therapeutic versatility as the number of therapeutic ‘categories’ a drug is used for (the 25 broad categories are represented by shared iconography in Figure 1). Our revised results include analyses using this definition – which are qualitatively identical to our previous results which defined versatility using the 46 individual therapeutic uses.

      We repeated our original ‘versatility’ analyses using the 25 broader categories rather than the 46 individual uses. The results remained largely the same.

      1. Use of icons/pictorial representations in figures. Overall, the use of icons is not necessary - words could be used, and then readers would not need to keep going back and forth to the key in Figure 1 to identify the taste/use. I am very confused by Figure 3. How is the strength of taste shown in this figure? The use of the balance is a confusing representation since I don't associate strength/intensity with weight. Also there are specific tastes that are used more, and others that are used less (but the numbers of those are also more/less). I do not think this figure accomplishes the goal of relaying these findings.

      Whilst we agree that iconography is not strictly necessary, we think it is a good way of graphically representing the results without over-crowding the figures or introducing text sizes too small to read in print. All values are provided in the supporting information if any individual detail is required.

      We have decided on the basis of these comments to exclude former Fig. 3 and (Figure supplement 1). We hope that the removal of this figure and clearer signposting towards the text and numerical tables in the supplementary information alleviates the reviewer’s concerns.

      1. Similarly, figure 4 is unclear. This could be better represented in a table with words and p values listed. But a larger issue is that this shows essentially the same overarching relationship across the therapeutic use cases - high intensity, low complexity. Only the pink kidney (other?) case differs from this pattern. In the discussion, several therapeutic uses are discussed that could need intense tasting medicine - but these are not related directly back to the relationships shown in Figure 4.

      Yes, we agree with the reviewer and have now moved Fig. 4 to the supplementary (Figure supplement 1)

    1. Author Response

      The following is the authors’ response to the original reviews.

      Note to all Reviewers

      We appreciate the reviewers’ comments and suggestions for improving the manuscript. Below is a summary of new data added and a brief description of the major new results. A detailed pointby-point response follows.

      New data:

      • Figure 1f

      • Figure 2b, f, g

      • Figure 4b

      • Figure S7 • Figure S8

      • Figure S9

      Summary of major new results/edits:

      • At the request of Reviewer #1 we have updated the name of the degradation tag to be more specific and we now call it the “LOVdeg” tag.

      • We have added new controls demonstrating that light stimulation does not cause photobleaching or toxicity issues (Fig. S7).

      • We now show that LOVdeg can function at various points in the growth cycle, demonstrating robust degradation (Fig. 1f, Fig. S8).

      • We have included relevant controls for the AcrB-LOVdeg efflux pump results (Fig. 2f-g).

      • We have included important benchmarking controls, such as an EL222-only control and SsrA tag control to provide a clearer view of how LOVdeg performance compares to other systems (Fig. S9, Fig. 4b).

      Additional note:

      • While repeating experiments during the revision process we found that the results for the combined action of EL222 and the LOVdeg tag were not as dramatic as in our original measurements, though the overall findings are consistent with our original results. Specifically, we still find that the combination of EL222 and the LOVdeg tag produces a lower signal than either on their own. We have updated these data in the revised manuscript (Fig. 4b).

      Reviewer #1:

      Public Review:

      Specifically controlling the level of proteins in bacteria is an important tool for many aspects of microbiology, from basic research to protein production. While there are several established methods for regulating transcription or translation of proteins with light, optogenetic protein degradation has so far not been established in bacteria. In this paper, the authors present a degradation sequence, which they name "LOVtag", based on iLID, a modified version of the blue-light-responsive LOV2 domain of Avena sativa phototropin I (AsLOV2). The authors reasoned that by removing the three C-terminal amino acids of iLID, the modified protein ends in "-E-A-A", similar to the "-L-A-A" C-terminus of the widely used SsrA degradation tag. The authors further speculated that, given the light-induced unfolding of the C-terminal domain of iLID and similar proteins, the "-E-A-A" C-terminus would become more accessible and, in turn, the protein would be more efficiently degraded in blue light than in the dark.

      Indeed, several tested proteins tagged with the "LOVtag" show clearly lower cellular levels in blue light than in the dark. While the system works efficiently with mCherry (10-20x lower levels upon illumination), the effect is rather modest (2-3x lower levels) in most other cases. Accordingly, the authors propose to use their system in combination with other light-controlled expression systems and provide data validating this approach. Unfortunately, despite the claim that the "LOVtag" should work faster than optogenetic systems controlling transcription or translation of protein, the degradation kinetics are not consistently shown; in the one case where this is done, the response time and overall efficiency are similar or slightly worse than for EL222, an optogenetic expression system.

      The manuscript and the figures are generally very well-composed and follow a clear structure. The schematics nicely explain the underlying principles. However, limitations of the method in its main proposed area of use, protein production, should be highlighted more clearly, e.g., (i) the need to attach a C-terminal tag of considerable size to the protein of interest, (ii) the limited efficiency (slightly less efficient and slower than EL222, a light-dependent transcriptional control mechanism), and (iii) the incompletely understood prerequisites for its application. In addition, several important controls and measurements of the characteristics of the systems, such as the degradation kinetics, would need to be shown to allow a comparison of the system with established approaches. The current version also contains several minor mistakes in the figures.

      We thank reviewer #1 for the feedback and suggestions to strengthen the manuscript. We have addressed these comments in the points that follow and now include important controls and benchmarks for our molecular tool.

      Major points

      1. The quite generic name "LOVtag" may be misleading, as there are many LOV-based tags for different purposes.

      We appreciate that it would be beneficial to have a more specific name. We have updated the name to “LOVdeg” tag, which captures both the inclusion of LOV and the degradation function of the tag.

      Updated throughout the manuscript and figures

      1. Throughout the manuscript, the authors use "expression levels". As protein degradation is a post-expression mechanism, "protein levels" should be used instead.

      We have transitioned to using “protein levels” at many points in the manuscript.

      Updated throughout the manuscript

      1. Degradation dynamics (time course experiments) should be shown. The only time this is done in the current version (in Fig. 4), degradation appears to be in the same range (even a bit slower) than for EL222, which does not support the claim that the "LOVtag" acts faster than other optogenetic systems controlling protein levels.

      In the revised manuscript, time course data are now shown at multiple points. These include new data in Fig. 1f and Fig. S8 that demonstrate degradation at various stages of growth. Fig. S4 also shows the dynamics of degradation when comparing to the addition of exogenously expressed ClpA. We have added text in the results section to point the reader to these data. In addition, we have made minor modifications to the text in the Introduction to avoid making claims about speed comparisons. Fig. 1f, Fig. S8, Fig. S4

      Results: Design and characterization of the AsLOV2-based degradation tag, Introduction

      1. "Frequency" is used incorrectly for Fig. 3. A series of 5 seconds on, 5 seconds off corresponds to a frequency of 0.1 Hz (1 illumination round / 10 s), not of 0.5 Hz. What the authors indicate as "frequency" is the fraction of illumination time. However, the (correct) frequency should be given, as this is likely the more important factor.

      We have changed how we calculate frequency to use the proposed definition of one pulse per time period. We updated the values in the text and in the figure. Fig. 3c

      Results: Tuning frequency response of the LOVdeg tag

      1. To properly evaluate the system, several additional controls are needed:

      a. To test for photobleaching of mCherry by blue light illumination, untagged controls should be shown for the mCherry-based experiments. Fluorescence always seems to be lower upon illumination, except for the AsLOV2*(546) data, where it cannot be excluded that fluorescence readings are saturated. Relatedly, the raw data for OD and fluorescence should be included. Showing a Western blot against mCherry in at least one case would allow to separate the effects of photobleaching and degradation.

      We appreciate the suggestion and have conducted these important controls. We now include new data demonstrating that light induction does not change fluorescence levels using an untagged mCherry control, nor does it significantly affect endpoint OD levels. Based on these results, we did not perform a Western blot because there were no effects to separate. Fig. S7

      b. In Fig. 2b, light + IPTG should be shown to estimate the activity of the system at higher expression levels.

      We have added these to the figure. Light + IPTG modestly increases expression compared to IPTG only, likely due to the saturating level of IPTG added, which achieves near full induction. Fig. 2b

      c. In Fig. 4, EL222 alone should be shown to allow a comparison with the LOVtag. From the data presented, it looks like EL222 is both slightly faster and more efficient than the LOVtag.

      We have added the EL222-only case for comparison with LOVdeg only and EL222 + LOVdeg. We note that Reviewer #3 raised a similar concern. Fig. 4b

      d. The effect of the used light on bacterial viability under exponential and stationary conditions should be shown.

      In this revision, we have added new data on light exposure at various points during exponential and stationary phase (Fig. 1f, Fig. S8). These OD data show that growth curves are similar for all cultures, regardless of the time light is applied during the growth phase. Additionally, we also now include ODs for the photobleaching experiments. These data also show that growth is not significantly altered under continuous light exposure. Figure 1f, Fig. S7b

      1. The claim that "Post-translational control of protein function typically requires extensive protein engineering for each use case" is not correct. The authors should discuss alternative options, e.g. based on dimerization, more extensively and in a less biased manner.

      We have toned down the language in this location and at other points in the manuscript. However, we maintain that other types of post-translational control, such as dimerization or LOV2 domain insertion, require more protein engineering than inserting a degradation tag. For example, we and others have directly demonstrated this in previous work (e.g. DOI: 10.1021/acssynbio.9b00395, 10.1101/2023.05.26.542511, 10.1038/s41467-023-38993-6), where numerous split site or insertion variants need to be screened and fine-tuned for successful light control. In contrast, a degradation mechanism has the potential to require less fine tuning to achieve a light response. We have included the above sources to clarify this point. Introduction, Results: Modularity of the LOVdeg tag

      Minor points

      1. In Suppl. Fig. 1, amino acid numbers seem to be off. Also, the alterations in iLID (compared to AsLOV2) that are not used in "LOVtag" appear to be missing and the iLID sequence incorrect, as a consequence.

      Thank you for catching this. The number indices in Fig. S1 have been corrected. We also realized we were reporting the iLID(C530M) variant in our amino acid sequence and have reverted the 530M back to C. Fig. S1

      1. Why is AsLOV2(543) more efficiently degraded than AsLOV2(543) (blue column in Fig. 1d) when the dark state should be stabilized in AsLOV2(543)?

      We are not sure of the exact reason for the increased degradation response in the AsLOV2*(543) variant. It may be that the dark-state stabilizing mutations introduced also have more favorable interactions with degradation machinery, although this is highly speculative.

      1. Why does the addition of EL222 reduce protein levels so strongly in the dark for CpFatB1* (Fig. 5)?

      We believe this effect stems from the EL222 responsive promoter (PEL222). With LOVdeg only, CpFatB1* is expressed from an IPTG inducible promoter (PlacUV5) whereas EL222 responsive constructs necessitate a promoter switch containing an EL222 binding site. We have clarified this point and expanded our discussion of these results.

      Results: Optogenetic control of octanoic acid production

      1. Fig. 2f / S10 are difficult to interpret. Why does illumination only lead to a significant effect at 2.5 and 5 µg/ml and not at lower concentrations, where the degradation system would be expected to be most efficient?

      We have expanded our discussion on these results to explain that this likely stems from basal protein levels of AcrB-LOVdeg in the light that can provide resistance at low antibiotic concentrations. We have also added new controls to this figure to show the chloramphenicol sensitivity of a ΔacrB strain and a ΔacrB strain with an IPTG-inducible version of acrB with no induction, demonstrating the lowest achievable chloramphenicol resistance from a standard inducible system.

      Results: Modularity of the LOVdeg tag, Fig. 2f-g

      1. Fig. 2f / S10 do not measure the MIC (which is a clearly defined value), but the sensitivity to Chloramphenicol.

      We have changed the text to use the term chloramphenicol sensitivity instead of MIC. Results: Modularity of the LOVdeg tag

      1. "***" in Fig. S1 should be explained.

      We have removed the ‘***’ to avoid confusion. Fig. S1

      1. The fold-change differences between light and dark, indicated in some selected cases, should be listed for all figures.

      We have added fold-change values where appropriate. Fig 1d, Fig. 2b

      Reviewer #2:

      Public Review:

      In this manuscript the authors present and characterize LOVtag, a modified version of the bluelight sensitive AsLOV2 protein, which functions as a light-inducible degron in Escherichia coli. Light has been shown to be a powerful inducer in biological systems as it is often orthogonal and can be controlled in both space and time. Many optogenetic systems target regulation of transcription, however in this manuscript the authors target protein degradation to control protein levels in bacteria. This is an important advance in bacteria, as inducible protein degradation systems in bacteria have lagged behind eukaryotic systems due to protein targeting in bacteria being primarily dependent on primary amino acid sequence and thus more difficult to engineer. In this manuscript, the authors exploit the fact that the J-alpha helix of AsLOV2, which unwinds into a disordered domain in response to blue light, contains an E-A-A amino acid sequence which is very similar to the C-terminal L-A-A sequence in the SsrA tag which is targeted by the unfoldases ClpA and ClpX. They truncate AsLOV2 to create AsLOV2(543) and combine this truncation with a mutation that stabilizes the dark state to generate AsLOV2*(543) which, when fused to the C-terminus of mCherry, confers light-induced degradation. The authors do not verify the mechanism of degradation due to LOVtag, but evidence from deletion mutants contained in the supplemental material hints that there is a ClpA dominated mechanism. They demonstrate modularity of this LOVtag by using it to degrade the LacI repressor, CRISPRa activation through degradation of MCP-SoxS, and the AcrB protein which is part of the AcrAB-TolC multidrug efflux pump. In all cases, measurement of the effect of the LOVtag is indirect as the authors measure reduction in LacI repression, reduction in CRISPRa activation, and drug resistance rather than directly measuring protein levels. Nevertheless the evidence is convincing, although seemingly less effective than in the case of mCherry degradation, although it is hard to compare due to the different endpoints being measured. The authors further modify LOVtag to contain a known photocycle mutation that slows its reversion time in the dark, so that LOVtag is more sensitive to short pulses of light which could be useful in low light conditions or for very light sensitive organisms. They also demonstrate that combining LOVtag with a blue-light transcriptional repression system (EL222) can decrease protein levels an additional 269-fold (relative to 15-fold with LOVtag alone). Finally, the authors apply LOVtag to a metabolic engineering task, namely reducing expression of octanoic acid by regulating the enzyme CpFatB1, an acyl-ACP thioesterase. The authors show that tagging CpFatB1 with LOVtag allows light induced reduction in octanoic acid titer over a 24 hour fermentation. In particular, by comparing control of CpFatB1 with EL222 transcriptional repression alone, LOVtag, or both the authors show that light-induced protein degradation is more effective than light-induced transcriptional repression. The authors suggest that this is because transcriptional repression is not effective when cells are at stationary phase (and thus there is no protein dilution due to cell division), however it is not clear from the available data that the cells were in stationary phase during light exposure. Overall, the authors have generated a modular, light-activated degron tag for use in Escherichia coli that is likely to be a useful tool in the synthetic biology and metabolic engineering toolkit.

      We thank Reviewer #2 for the constructive feedback. In the updated manuscript, we now include data demonstrating degradation at different growth stages and address other points brought up in the review to improve understanding of the degradation tag.

      Overall, the authors present a well written manuscript that characterizes an interesting and likely very useful tool for bacterial synthetic biology and metabolic engineering. I have a few suggestions that could improve the presentation of the material.

      Major Comments:

      • Could the authors clarify, perhaps through OD measurements, that the cultures in the octanoic acid experiment are actually in stationary phase during the relevant light induction. It isn't clear from the methods.

      We have updated the Methods to clarify that the cells are entering stationary phase (OD600 = 0.6) when light is either kept on or turned off for production experiments. Production is continued for the following 24 hours. Note that we now show OD measurements in a separate set of experiments (Fig. 1f, Fig. S8).

      Methods: Octanoic acid production experiment. Fig. 1f, Fig. S8

      • Can the authors clarify why there is an overall decrease in protein in the clpX deletion? And is it this initial reduction that is the source of the change in fold in 1C? Similarly, for hslU is it because overall protein levels are higher with the tag? In general, I feel that the interpretation of Supplemental Figures S6-S10 could be moved in more detail to the main text, or at least the main takeaway points. But this is a personal preference, and not necessary to the major flow of the story which is about the utility of the LOVtag tool.

      As shown in Fig. S5, expression of mCherry without any degradation tag is decreased in a clpX knockout strain compared to wild type. This difference may be the result of reduced cell health, and we now note this in the text. The strains shown in Fig. 1c are in wild type cells with normal expression, so this is not the source of the fold change. As for hslU, we agree it is interesting that expression seems to increase. However, the increase is modest and could stem from gene network regulation differences in that strain compared to wild type and may not be related to LOVdeg tag degradation. Each endogenous protease is involved in a wide range of functions within the cell, and it is unknown how global gene expression is impacted. We acknowledge the suggestion of moving the protease results to the main text, but we have ultimately elected to keep these data in the Supplementary Information to maintain the flow in the manuscript. However, we have added additional text pointing the reader to the Supplemental Text and include a brief summary of the findings in the main text.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • What is the source of the poor repression in Figure 2D?

      Presumably, this stems from low levels of the CRISPRa MCP-SoxS activator, even in the presence of light. We have added this point to the text.

      Results: Modularity of the LOVdeg tag

      • In general, it would be nice to have light-only controls for many of the experiments to validate that light is not affecting the indicated proteins or their function.

      We thank the reviewer for this suggestion and note that Reviewer #1 raised a similar concern. We have now included light-only data for a strain containing IPTG-inducible mCherry without the LOVdeg tag (Fig. S7). These data show that light itself, at the levels used in this study, does not affect mCherry expression or cell growth. This strain serves as a direct control for data presented in Fig. 1 and Fig. 2b, as the systems are identical except for the addition of the LOVdeg tag onto either mCherry or the LacI repressor. Additionally, the control translates to other experiments since mCherry is used as a reporter for other systems in this study. Fig. S7

      • It would be nice to directly measure the function of the tool at different phases of E. coli growth to show directly that protein degradation works at stationary phase, rather than the more indirect measurements used in the octanoic acid experiment.

      We thank the reviewer for this suggestion, which significantly strengthens our results. We have added an experiment that tests the LOVdeg tag at different phases of growth (Fig. 1f, Fig. S8). In this experiment, cultures are growth from early exponential to stationary phase, and light is introduced at various points. Exposure windows of 4 hours, ranging from early exponential to stationary phase, all show functional light inducible degradation. Fig. 1f, Fig. S8.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Minor Comments:

      • It would be nice to make clear that the data in S6d and S7 is repeated, but with the HslUV data in S7.

      We clarified this point in the caption of Fig. S4 (the former Fig. S7 in the original manuscript). Fig. S4 caption

      • Why was 5s picked for the frequency response in Figure 3

      We picked 5s because 1) it is a substantially shorter timescale than overall degradation dynamics seen for the LOVdeg tag, and 2) we found that shorter pulses could not be reliably achieved with the light stimulation hardware and software we used (Light Plate Apparatus with Iris software). To ensure high fidelity pulses, we opted for 5 second pulses that we empirically determined to be stable throughout long experiments. We have added text clarifying this. Results: Tuning frequency response of the LOVdeg tag

      Reviewer #3:

      Public Review:

      The authors present the mechanism, validation, and modular application of LOVtag, a light-responsive protein degradation tag that is processed by the native degradosome of Escherichia coli. Upon exposure to blue light, the c-terminal alpha helix unfolds, essentially marking the protein for degradation. The authors demonstrate the engineered tag is modular across multiple complex regulatory systems, which shows its potential widespread use throughout the synthetic biology field. The step-by-step rational design of identifying the protein that was most dark stabilized as well as most light-responsive for degradation, was useful in terms of understanding the key components of this system. The most compelling data shows that the engineered LOVTag can be fused to multiple proteins and achieve light-based degradation, without affecting the original function of the fused protein; however, results are not benchmarked against similar degradation tagging and optogenetic control constructs. Creating fusion proteins that do not alter either of the original functions, is often difficult to achieve, and the novelty of this should be expanded upon to drive further impact.

      We appreciate the feedback from Reviewer #3 to improve the manuscript. We have included important controls and benchmarking experiments to address the reviewer’s concerns, which are detailed in the points below.

      Benchmarking:

      The similarity between the L-A-A sequence of SsrA and the E-A-A sequence of LOVtag is one of the pieces of evidence that led the authors to their current protein design. The differences in degradation efficiency between the SsrA degradation tag and LOVtag are not shown, and benchmarking against SsrA would be a valuable way to demonstrate the utility of this construct relative to an established protein tagging tool.

      We thank the reviewer for suggesting an experiment to benchmark performance. We have added new experimental data where a full length SsrA tag is added to a fusion protein of nearly identical size (mCherry-iLID), allowing us to directly compare performance to mCherryLOVdeg (Fig. S9). These results show that light inducible control with LOVdeg tag decreases protein expression levels to near those achieved with the native SsrA tag. Fig. S9.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Additionally, there is a lack of an EL222-only control presented in Figure 4b and in the results section beginning with "Integrating the LOVtag with EL222...". Without benchmarking against this control the claim that "EL222 and the LOVtag work coherently to decrease expression" is unsubstantiated. No assumptions of synergy can be made.

      We appreciate this comment and note that Reviewer #1 raised a similar concern. We have added data to Fig. 4b with an EL222-only control for comparison. Fig. 4b

      The dramatic change in dark octanoic acid titer between the EL222, LOVtag and combined conditions are surprising, especially in comparison to the lack of change in the dark mCherry expression shown in Figure 4b. This data is the only to suggest that LOVtag may perform better than EL222. However, the inconsistencies in dark state regulation presented in the two experiments, and between conditions in this experiment bring the latter claim to question. A recommendation is that the authors either repeat this experiment, or comment on the observed discrepancy in dark state octanoic acid titers in their discussion.

      First, a key difference between the data presented in Fig. 4 and Fig. 5 is that the production experiment is conducted over a long time period (24 hours) and the EL222/LOVdeg reporter experiment is conducted over 5 hours. Likely, performance differences between EL222 and the LOVdeg tag become more pronounced as protein accumulation occurs. Second, the LOVdeg only construct is expressed from a non-EL222 promoter which is able to achieve higher expression (see response to Reviewer #1, Minor point #3). Lastly, a convoluting factor is that the relationship between expression of CpFatB1 and octanoic acid production is not completely linear, and there are likely thresholds or expressions windows that result in similar endpoint titers. We agree a more detailed examination of how CpFatB1 changes over the course of the production period would be very interesting. However, this is beyond the scope of the present study, whose goal is to introduce and showcase the utility of the LOVdeg tag as a tool. We have added new discussion on this in the Results section to clarify some of these points. We have also repeated all experiments in Fig. 4 and consistently see the LOVdeg tag performing as well as or better than EL222. As noted in the remarks to all reviewers, these data have been updated in the revised manuscript.

      Results: Optogenetic control of octanoic acid production. Fig. 4d

      Based on the methodology presented, no change in the duration in light exposure was tested, even though this may be an important part of the system response. The on/off, for example in Figure 4b, is either all light or all dark, but they claim that their system is beneficial especially at stationary phase. The authors should consider showing the effects of shifting from dark to light at set intervals. (i.e. 1 hr dark then light, 2hr dark until light, etc.) This data would also aid in supporting the utility of this tag for controlling expression during different growth phases, where light may be used after the cells have reached a certain phase.

      We have added new data showing the effect of light stimulation at different times in the growth cycle (see response to Reviewer #2, bullet point #5). These data demonstrate that the LOVdeg tag performs well at various points in the growth cycle. Fig. 1f, Fig. S8.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Minor Revisions Figures:

      • Figure 1:

      • More clarity is needed in the naming conventions for this figure and in the body of the text. For example, a different convention than 546 and 543 should be used to refer to the full and truncated lengths of the tag. It would greatly aid understanding for this to be made more clear. The authors could simply continue to use "full" and "truncated" to refer to them. In addition, the term "stabilizing mutations" in 1c could be changed to read "dark state stabilizing mutations" to aid in clarity.

      When describing the design of the LOVdeg tag, we opted towards a more technically accurate description over clarity in order to make our engineering process easily comparable to other LOV2 systems. As such, we kept the number-based nomenclature (543 or 546) to represent the domain within the phototropin 1 protein from Avena sativa (AsLOV2). The domain used in this study, and many other studies, are only amino acids 404-546, i.e. not the full sequence, thus saying simply ‘full’ or ‘truncated’ is not technically accurate. We believe the detailed nomenclature, which is limited to one section, is important to provide clarity on exactly what we used for protein engineering. In the revised version we introduce the nickname “LOVdeg” tag earlier and use it throughout the rest of the manuscript.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • 1b It is not clear that this is the dark state stabilized structure in the figure, but is referred to as such only in the body of the text.

      We have added text in the manuscript to clarify this is AsLOV2, not iLID, and have labeled it in the figure caption as well.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • 1d. Fold change is reported in Figure 2d, and may be relevant to include those values in 1d as well.

      Done. Fig. 1d

      • 1e. It is not clear which tag is being used in this bar plot. Please specify that this is the dark state stabilized, truncated tag.

      We have added a title to the plot and language to the caption, both of which clarify this point. Fig. 1e

      • In addition, the microscopy images provided in supplemental material should be included in the first figure as it adds a compelling observation of LOVtag activity.

      We are pleased to hear that the microscopy results are beneficial, however we elected to leave them in Supplementary to preserve the flow of the manuscript in the text surrounding Fig. 1.

      • Figure 2:

      • 2d. It is unclear what the 2.5x fold change is relative to (the baseline or the dark)

      We have added a line in the figure to clarify the comparison being made. Fig. 2d

      • 2f. More discussion can be added to describe what concentration of chloramphenicol is biologically/bioreactor relevant.

      Our previous studies on the relationship between AcrAB expression and mutation rate (cited in the text) were carried out at a concentration within the range in which the LOVdeg tag is effective (5 μg/ml), suggesting this range to be relevant to tolerance and resistance.

      • Figure 3:

      • We recommend that this data and discussion are better suited for supplementary figures. The results shown here essentially recapitulate the same findings of Zoltowski et al., 2009. In addition, the paper describing this mutation should be cited in this figure caption in addition to the body of the text

      Although these results are in line with previous findings, we believe this dataset is important for several reasons. First, the agreement with known mutations validates the unfolding-based mechanism for degradation control. Second, degradation that is contingent on unfolding of LOV2 offers a direct actuating mechanism of photocycle properties. Other systems, like that in Zoltowski et al., examine properties of purified proteins but lack the mechanism to translate its effect in live cells. This figure demonstrates how degradation can do so and lays the groundwork for degradation-based frequency processing circuits. Last, there are discrepancies between photocycle kinetics in situ, as reported by Li et al. (DOI: 10.1038/s41467-020-18816-8), and in cell-free studies such as in Zoltowski et al. The studies use different methods of measuring photocycle kinetics (in situ vs cell-free). This dataset substantiates relaxation times from Li et al. and suggests cell-free relaxation time constants are over estimated relative to our live cell results.

      • Figure 4:

      • There is a lack of an EL222-only control presented in Figure 4b. Without this data present, the claim that "EL222 and the LOVtag work coherently to decrease expression" is unsubstantiated. No assumptions of synergy can be made.

      We have added EL222-only data to the figure; we note that Reviewer #1 made a similar request. Figure 4b

      Manuscript

      Results

      • Design and characterization...

      • Due to the extensive discussion of ClpX at the beginning of this section, more of the results on evaluating the binding partners and mechanism of LOVtag degradation should be presented in the main body of the manuscript and not in supplementary materials.

      To maintain flow of the manuscript and focus on how the LOVdeg tag works as a synthetic biology tool, we have opted to keep this section in the Supplement Information, but have several lines in the text related to Fig. 1 that point the reader to this material. Results: Design and characterization of the AsLOV2-based degradation tag

      • In the second paragraph of this section, the authors theorize that the C-terminal truncated E-AA sequence will "remain caged as part of the folded helix". How did the authors determine this? Was there any evidence to suggest that the truncated state would be any more responsive than the full length sequence? More data or rationale may need to be introduced to support the overall hypothesis presented in this paragraph.

      We determined this by examining the crystal structure which shows that the E-A-A sequence is part of the folded helix. As seen in Fig. 1b, addition of amino acids after the EAAKEL sequence would not be part of the folded helix which ends prior to the terminal leucine. We added text to clarify our logic.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • The similarity between the L-A-A sequence of SsrA and the E-A-A sequence of LOVtag is one of the pieces of evidence that brought the authors to their current protein design. The differences in degradation efficiency between the SsrA degradation tag and LOVtag are not clear, and benchmarking against SsrA would be a valuable way to demonstrate the utility of this construct relative to an established protein tagging tool.

      We added an SsrA comparison to benchmark the system. Fig. S9

      Results: Design and characterization of the AsLOV2-based degradation tag

      • Tuning frequency and response...

      • Overall the results presented in this section essentially recapitulate the effects that mutation presented in Zoltowski et. al., 2009 have on AsLOV2 dark state recovery and although this is a useful observation of LOVtag performance, a recommendation is to move this into a supplementary section.

      See above response to Fig. 3 comment.

      • Integrating the LOVtag with EL222...

      • The claim is made in this section that LOVtag and EL222 work synergistically, however the experiments presented do not test repression due to EL222 activity alone. Without benchmarking against this control, the claim of synergy is not supported and we recommend that the authors perform this experiment again with the EL222-only control.

      We have added this important control. Fig. 4b

      Discussion

      • The statement "the LOVtag can easily be integrated with existing optogenetic systems to enhance their function" is not substantiated without benchmarking LOVtag against an EL222- only control. As mentioned above this condition should be included in the experiments discussed in Figure 4 and in the section "Integrating the LOVtag with EL222.."

      We added EL222-only regulation to benchmark the LOVdeg tag and LOVdeg + EL222 experiments. Fig. 4b

      Experiments

      Applications:

      The application of this tag to the metabolic control of octanoic acid production could be more impactful. For instance, using the LOVtag with two different enzymes to change the composition of long/short chain fatty acids with light induction., Or possibly integrating the tag into a switch to activate production. However, the authors address that "decreasing titers is not the overall goal in metabolic engineering" in their discussion, and therefore the pursuit of this additional experiment is up to the authors' discretion.

      We appreciate the suggestions for further applications of the LOVdeg tag. We envision that follow up studies will focus on the application of the LOVdeg tag in metabolic engineering. However, this will require significant development of production systems. We believe this to be out of the scope of this work, where the goal is to present the design and function of the LOVdeg tag as a tool.

    1. Author Response

      We are very thankful to the reviewers for a thorough review of our manuscript, and we are confident that we can address all identified weaknesses in the revised version. At the current point, we believe that it is important to mention the following:

      1. The review by reviewer 1 contains factual errors. For example, the reviewer writes "There is much important information missing. For instance: how many animals were used per group and how was the breeding done?" Both animal numbers and the breeding scheme are described in detail in the manuscript.

      2. Reviewer 3 criticizes our choice of animal ages used for the analysis of sperm DNA methylation aging. The reviewer suggests that the sperm of our younger group may contain spermatozoa from the 1st wave of spermatogenesis, while our older group cannot be considered chronologically old mice. We have experimental data that demonstrate that DNA regions that undergo methylation change with age have a linear association between methylation levels and age across the mouse lifespan (including ages used in our study). Thus, age-dependent changes in DNA methylation may be analyzed using any two ages as soon as they are different enough to detect the changes. We will include this experimental data in our resubmitted manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      Question 1: The experiment that utilizes lactose or glucose supplementation to infer the importance of carbohydrate recognition by galectin-9 cannot be interpreted unequivocally owing to the growth-enhancing effect of lactose supplementation on Mtb during liquid culture in vitro.

      Response: Thanks for this very constructive comment. We will repeat this experiment and lower the concentration of lactose in order to attenuate its effect on Mtb growth, thereby highlighting the reversed mycobacterial growth inhibition by galectin-9.

      Question 2: Similar to the comment above, the apparent dose-independent effect of galectin-9 on Mtb growth in vitro is difficult to reconcile with the interpretation that galectin is functioning as claimed.

      Response: We thank the reviewer for the correction. Indeed, as the reviewer pointed out, galectin-9 inhibits Mtb growth in dose-independent manner. We will correct the claim in the revised manuscript.

      Question 3: The claimed differences in galectin-9 concentration in sera from tuberculin skin test (TST)-negative or TST-positive non-TB cases versus active TB patients are not immediately apparent from the data presented.

      Response: We appreciate the reviewer’s concern. We will perform the detection of galectin-9 in sera in another independent cohort of active TB patients and healthy donors in China.

      Question 4: Neither fluorescence microscopy nor electron microscopy analyses are supported by high-quality, interpretable images which, in the absence of supporting quantitative data, renders any claims of anti-AG mAb specificity (fluorescence microscopy) or putative mAb-mediated cell wall swelling (electron microscopy) highly speculative.

      Response: We appreciate the reviewer’s concern. We will improve the procedure of the immunofluorescence assay to obtain high-quality and interpretable images with quantitative data. As for electron microscopy analyses, we will add a more precise label indicating cell wall in revised manuscript.

      Question 5: Finally, the absence of any discussion of how anti-AG antibodies (similarly, galectin-9) gain access to the AG layer in the outer membrane of intact Mtb bacilli (which may additionally possess an extracellular capsule/coat) is a critical omission - situating these results in the context of current knowledge about Mtb cellular structure (especially the mycobacterial outer membrane) is essential for plausibility of the inferred galectin-9 and anti-AG mAb activities.

      Response: Exactly, AG is hidden by mycolic acids in the outer layer of Mtb cell wall. As we have discussed in the Discussion part of previous manuscript (line286), we speculate that during Mtb replication, cell wall synthesis is active and AG becomes exposed, thereby facilitating its binding to galectin-9 or AG antibody and leading to Mtb growth arrest. It’s highly possible that galectin-9 or AG antibody targets replicating Mtb. We will describe this point more comprehensibly.

      Reviewer #2 (Public Review):

      Question 1: In light of other observations that cleaved galectin-9 levels in the plasma is a biomarker for severe infection (Padilla A et al Biomolecules 2021 and Iwasaki-Hozumi H et al. Biomoleucles 2021) it is difficult to reconcile the author's interpretation that the elevated gal-9 in Active TB patients (Figure 1E) contributes to the maintenance of latent infection in humans. The authors should consider incorporating these observations in the interpretation of their own results.

      Response: Thank you for these very insightful comments. We observed elevated levels of galectin-9 in the serum of active TB patients, consistent with reports indicating that cleaved galectin-9 levels in the serum serve as a biomarker for severe infection (Iwasaki-Hozumi et al., 2021; Padilla et al., 2020). We interpret this to mean that elevated levels of galectin-9 in serum of active TB are an indicator of the host immune response to Mtb infection. However, the magnitude of elevated galectin-9 is insufficient to control Mtb infection thereby maintaining latent infection. This is comparable to other protective immune factors such as interferon gamma, which is considered protective and elevated in active TB, as well (El-Masry et al., 2007; Hasan et al., 2009).

      Question 2: The anti-AG titers were measured only in individuals with active TB (Figure 3C), generally thought to be a less protective immunological state. The speculation that individuals with anti-AG titers have some protection is not founded. Further only 2 mAbs were tested to demonstrate restriction of Mtb in culture. It is possible that clones of different affinities for AG present within a patient's polyclonal AG-antibody responses may or may not display a direct growth restriction pressure on Mtb in culture. The authors should soften the claims about the presence of AG-titers in TB patients being indicative of protection.

      Response: We appreciate the reviewer’s concern. As per the reviewer’s suggestion, we will soften the claim that anti-AG antibodies in the sera of TB patients indicate protection.

      References El-Masry, S., Lotfy, M., Nasif, W.A., El-Kady, I.M., and Al-Badrawy, M. (2007). Elevated serum level of interleukin (IL)-18, interferon (IFN)-gamma and soluble Fas in patients with pulmonary complications in tuberculosis. Acta microbiologica et immunologica Hungarica 54, 65-77.

      Hasan, Z., Jamil, B., Khan, J., Ali, R., Khan, M.A., Nasir, N., Yusuf, M.S., Jamil, S., Irfan, M., and Hussain, R. (2009). Relationship between circulating levels of IFN-gamma, IL-10, CXCL9 and CCL2 in pulmonary and extrapulmonary tuberculosis is dependent on disease severity. Scandinavian journal of immunology 69, 259-267.

      Iwasaki-Hozumi, H., Chagan-Yasutan, H., Ashino, Y., and Hattori, T. (2021). Blood Levels of Galectin-9, an Immuno-Regulating Molecule, Reflect the Severity for the Acute and Chronic Infectious Diseases. Biomolecules 11.

      Padilla, S.T., Niki, T., Furushima, D., Bai, G., Chagan-Yasutan, H., Telan, E.F., Tactacan-Abrenica, R.J., Maeda, Y., Solante, R., and Hattori, T. (2020). Plasma Levels of a Cleaved Form of Galectin-9 Are the Most Sensitive Biomarkers of Acquired Immune Deficiency Syndrome and Tuberculosis Coinfection. Biomolecules 10.

    1. Author Response

      We thank the reviewers for spending the time to read and provide reviews for our manuscript. The reviewers bring good points regarding the sample size, and the low exposure in the South Asian cohort owing to their unique cultural and social practices. We recognize these as limitations of the paper and will discuss these more extensively in the revised version. With respect to sample size, we are not attempting discovery but rather application of mDNA scores derived from external, large discovery samples. As such, though our sample sizes (n = 300–500) seem low for a typical EWAS, they are in a similar range as replication samples in other studies.

      We would also like to take this opportunity to emphasize there is no possible overfitting as the score was tested in studies (FAMILY and START) independent of the discovery set (Joubert et al., 2016; n > 5,000) and the LASSO validation (CHILD; n = 352). In other words, the same participants used for LASSO validation were not used in testing. This is precisely to leverage the larger sample size from external studies to select more plausible CpGs as candidates to include in the model. In fact, the discovery sample size in Reese et al., (2017) was only n = 1,057 in comparison.

      The validated score was then used for further testing in new datasets (FAMILY and START), where FAMILY achieved a more significant association than in the original validation sample (CHILD). At the same time, the mean squared error for the continuous smoking severity outcome (0 for no smoking, 1 for quit before pregnancy, 2 for quit during pregnancy, and 3 for current smoker) was 0.68 in CHILD and 1.43 in FAMILY, which indicate good fit; while the AUC for predicting current vs. non-smoker was 0.86 in CHILD and 0.9 in FAMILY. Taken together, these suggest the MRS constructed was not in violation of overfitting, or “failing to fit to additional data or predict future observations reliably”.

      In terms of value, our derived score contained 11 CpGs that only overlapped 2 out of the 28 CpGs in the score that was derived in the reference provided (Reese, EHP, 2017, PMID 27323799), but they shared four genes that contributed the most weight to the score (MYO1G, CYP1A1, AHRR, and GFI1). In fact, using the 7 CpGs of the score derived in Reese that were present in all cohorts, we obtained slightly worse performance in CHILD (validation cohort; ANOVA p = 4.1E-5, AUC 0.74), and it was not associated with smoking history in FAMILY (testing cohort; p = 0.13). However, we do agree with the reviewer that including more CpGs will improve the performance, using 24/28 CpGs available in CHILD (HM450K), we obtained slightly better results (ANOVA p = 3.8E-7, AUC 0.94), but these were mostly due to the 14/24 CpGs that showed evidence of association with maternal smoking according to EWAS catalog. In conclusion, we believe our score captures the core genes with robust evidence of association and is more parsimonious for applying to external data, but it can also benefit from a larger sample size to capture CpGs that are moderately associated with maternal smoking.

    1. Author Response

      Reviewer #1 (Public Review):

      Overall, the magnitude of the effect size due to FNDC5 deficiency in both male and female mice is rather modest. Looking at the data from a qualitative perspective, it is clear that knockout females still lose bone during lactation and on the low calcium diet (LCD). It is difficult to assess the physiologic consequence of the modest quantitative 'protection' seen in FNDC5 mutants since the mutants still show clear and robust effects of lactation and LCD on all parameters measured. Similarly, the magnitude of the 'increased' cortical bone loss in FNDC5 mutant males is also modest and perhaps could be related to the fact that these mice are starting with slightly more cortical bone. Since the authors do not provide a convincing molecular explanation for why FNDC5 deficiency causes these somewhat subtle changes, I would like to offer a suggestion for the authors to consider (below, point #2) which might de-emphasize the focus of the manuscript on FNDC5. If the authors chose not to follow this suggestion, the manuscript could be strengthened by addressing the consequences of the modest changes observed in WT versus FNDC5 KO mice.

      We agree that the magnitude of the effect size due to FNDC5 deficiency is modest with regards to the quantitative cortical bone parameters. However, if one examines the changes in osteocyte lacunar size and the mechanical properties of these bones, the differences are greater. As shown in Figure 3 E, the lacunar area of the WT females on a low calcium diet increases by over 30% and the KO by less than 20%, while in the males it is approximately 38% in WT compared to 46% in KO mice. According to Sims and Buenzli (PMID: 25708054) a potential total loss of ~16,000 mm3 (16 mL) of bone occurs through lactation in the human skeleton. This was based on our measurements in lactation-induced murine osteocytic osteolysis (Qing et al PMID: 22308018). They used our 2D section of tibiae from lactating mice showing an increase in lacunar size from 38 to 46 um2. In that paper we also showed that canalicular width is increased with lactation. Therefore, this would suggest a dramatic decrease in intracortical porosity due to the osteocyte lacunocanalicular system in female KO on a low calcium diet compared to WT females and a dramatic increase in KO males compared to WT males. Also, PTH was higher in the serum of female WT compared to female KO mice on a low calcium diet, the opposite for males in order to maintain normal calcium levels (See Table 1). Based on this data, using the FNDC5 null animals, we would speculate that the product of FNDC5, irisin, is having a highly significant effect on the ultrastructure of bone in both males and females challenged with a low calcium diet.

      2) The bone RNA-seq findings reported in Figures 4-6 are quite interesting. Although Youlten et al previously reported that the osteocyte transcriptome is sex-dependent, the work here certainly advances that notion to a considerable degree and likely will be of high interest to investigators studying skeletal biology and sexual dimorphism in general. To this end, one direction for the authors to consider might be to refocus their manuscript toward sexually-dimorphic gene expression patterns in osteocytes and the different effects of LCD on male versus female mice. This would allow the authors to better emphasize these major findings, and to then use FNDC5 deficiency as an illustrative example of how sexually-dimorphic osteocytic gene expression patterns might be affected by deletion of an osteocyte-acting endocrine factor. Ideally, the authors would confirm RNA-seq data comparing male versus female mice in osteocytes using in situ hybridization or immunostaining.

      Thank you for this suggestion. We have compared the different effects of LCD on male versus female mice in our revised version and have added a figure containing this information.

      3) Along the lines of point #2 (above), the presentation of the RNA-seq studies in Figures 4-6 is somewhat confusing in that the volcano plot titles seem to be reversed. For example, Figure 4A is titled "WT M: WT F", but the genes in the upper right quadrant appear to be up-regulated in female cortical bone RNA samples. Should this plot instead be titled "WT F: WT M"? If so, then all other volcano plots should be re-titled as well.

      We have now insured that the plots are appropriately labeled.

      4) Have the authors compared male versus female transcriptomes of LCD mice?

      We have now compared the male vs female transcriptomes of LCD mice and added an additional figure.

      5) It would be appreciated if the authors could provide additional serum parameters (if possible) to clarify incomplete data in both lactation and low-calcium diet models: RANKL/OPG ratio, Ctx, PTHrP, and 1,25-dihydroxyvitamin D levels.

      It is not possible to quantitate each of these as the serum has been exhausted. We have checked the RANKL/OPG ratio in the RNA seq and qPCR data using osteocyte enriched bone chips and found no difference.

      6) Lastly, the data that overexpressing irisin improved bone properties in Fig 2G was somewhat confusing. Based on Kim et al.'s (2018) work, irisin injection increased sclerostin gene expression and serum levels, thus reducing bone formation. Were sclerostin levels affected by irisin overexpression in this study? Was irisin's role in modulating sclerostin levels attenuated with additional calcium deficiency?

      We have not observed any differences in the osteocyte Sost mRNA expression between WT and KO normal and low-calcium-diet male and female mice in our RNAseq and qPCR data. As such, we did not check the Sost levels for the 2G experiment.

      Reviewer #2 (Public Review):

      Summary:

      The goal of this study was to examine the role of FNDC5 in the response of the murine skeleton to either lactation or a calcium-deficient diet. The authors find that female FNDC5 KO mice are somewhat protected from bone loss and osteocyte lacunar enlargement caused by either lactation or a calcium-deficient diet. In contrast, male FNDC5 KO mice lose more bone and have a greater enlargement of osteocyte lacunae than their wild-type controls. Based on these results, the authors conclude that in males irisin protects bone from calcium deficiency but that in females it promotes calcium removal from bone for lactation.

      While some of the conclusions of this study are supported by the results, it is not clear that the modest effects of FNDC5 deletion have an impact on calcium homeostasis or milk production.

      Specific comments:

      1) The authors sometimes refer to FNDC5 and other times to irisin when describing causes for a particular outcome. Because irisin was not measured in any of the experiments, the authors should not conclude that lack of irisin is responsible. Along these lines, is there any evidence that either lactation or a calcium-deficient diet increases the production of irisin in mice?

      The global FNDC5 KO mice used for our experiments do not produce or secrete irisin, therefore we have extrapolated that the observed effects are due to a lack of circulating irisin. However, this does not rule out that Fndc5 itself could have a function, but this would have to be most likely in muscle and not in the osteocyte as we do not detect significant levels of irisin in either primary osteoblasts nor primary osteocytes compared to muscle and C2C12 cells. As such, we concluded that the phenotypical differences we saw in our experiments are due to a lack of irisin. We now address the reviewer’s point in the discussion. The measurement of irisin in the circulation with lactation or with low calcium diet of normal mice has not been performed.

      2) The results of the irisin-rescue experiment shown in figure 2G cannot be appropriately interpreted without normal diet controls. In addition, some evidence that the AAV8-irisin virus actually increased irisin levels in the mice would strengthen the conclusion.

      We do not have the normal diet controls at this time. We have now added the quantitative data for tagged irisin in these mice showing highly significant expression

      3) There is insufficient evidence to support the idea that the effect of FNDC5 on bone resorption and osteocytic osteolysis is important for the transfer of calcium from bone to milk. Previous studies by others have shown that bone resorption is not required to maintain milk or serum calcium when dietary calcium is sufficient but is critical if dietary calcium is low (Endo. 156:2762-73, 2015). To support the conclusions of the current study, it would be necessary to determine whether FNDC5 is required to maintain calcium levels when lactating mice lack sufficient dietary calcium.

      We agree that it would be important to measure calcium levels in the milk to test the hypothesis that FNDC5 is important to maintain calcium levels in milk. However, as the calcium levels are normal in the serum, we are assuming they are normal in milk. This would require future experiments.

      4) The amount of cortical bone loss due to lactation is very similar in both WT and FNDC5 KO mice. The results of the statistical analysis of the data presented in figure 1B are surprising given the very similar effect size of lactation. The key result from the 2-way ANOVA is whether there is an effect of genotype on the effect size of lactation (genotype-lactation interaction). The interaction terms were not provided. Similar concerns are noted for the results shown in figure 1G and H.

      We agree, thanks. We will now add the interaction terms in the figure legends.

      5) It is not clear what justifies the term 'primed' or 'activated' for resorption. Is there evidence that a certain level of TRAP expression lowers the threshold for osteocytic osteolysis in response to a stimulus?

      The number of TRAP positive osteocytes in female KO mice are lower than in female WT. The number of TRAP positive osteocytes are lower in WT males compared to WT females. We propose that irisin plays a role in the number of TRAP positive osteocytes in normal, WT females by readying or preparing these cells to rapidly respond to low calcium. We will use the term ‘primed’ and will not use the term ‘activated’. We are open to any terminology or description as to why this is observed and what irisin could be doing to the osteocyte.

      Reviewer #3 (Public Review):

      Summary: Irisin has previously been demonstrated to be a muscle-secreted factor that affects skeletal homeostasis. Through the use of different experimental approaches, such as genetic knockout models, recombinant Irisin treatment, or different cell lines, the role of Irisin on skeletal homeostasis has been revealed to be more complex than previously thought and this warrants further examination of its role. Therefore, the current study sought to rigorously examine the effects of global Irisin knockout (KO) in male and female mouse bone. Authors demonstrated that in calcium-demanding settings, such as lactation or low-calcium diet, female Irisin KO mice lose less bone compared to wild-type (WT) female mice. Interestingly male Irisin KO mice exhibited worse skeletal deterioration compared to WT male mice when fed a low-calcium diet. When examined for transcriptomic profiles of osteocyte-enriched cortical bone, authors found that Irisin KO altered the expression of osteocytic osteolysis genes as well as steroid and fatty acid metabolism genes in males but not in females. These data support the authors' conclusion that Irisin regulates skeletal homeostasis in sex-dependent manner.

      Strengths: The major strength of the study is the rigorous examination of the effects of Irisin deletion in the settings of skeletal maturity and increased calcium demands in female and male mice. Since many of the common musculoskeletal disorders are dependent on sex, examining both sexes in the preclinical setting is crucial. Had the investigators only examined females or males in this study, the conclusions from each sex would have contradicted each other regarding the role of Irisin on bone. Also, the approaches are thorough and comprehensive that assess the functional (mechanical testing), morphological (microCT, BSEM, and histology), and cellular (RNA-seq) properties of bone.

      Weaknesses: One of the weaknesses of this study is a lack of detailed mechanistic analysis of why Irisin has a sex-dependent role on skeletal homeostasis. This absence is particularly notable in the osteocyte transcriptomic results where such data could have been used to further probe potential candidate pathways between LC females vs. LC males.

      Our future studies will focus on understanding the molecular mechanism behind the sex-dependent effects of irisin. Our RNA seq data shows a significant difference in the lipid, steroid, and fat metabolism pathways between male and female mice, as well as between WT and KO mice. Future studies will focus on these pathways.

      Another weakness is authors did not present data that convincingly demonstrate that Irisin secretion is altered in the skeletal muscle between female vs. male WT mice in response to calcium restriction. The supplement skeletal muscle data only present functional and electrophysiolgical outcomes. Since Itgav or Itgb5 were not different in any of the experimental groups, it is assumed that the changes in the level of Irisin is responsible for the phenotypes observed in WT mice. Assessing Irisin expression will further strengthen the conclusion based on observing skeletal changes that occur in Irisin KO male and female mice.

      The problem is that the commercial assays for irisin are not dependable, and results can differ widely across and beyond the physiologic range of 1-10 ng/ml. In part this is due to the nature of the polyclonal antibodies used and the resultant cross reactivity with other proteins. It was shown in Islam et al, 2021 (Nature Metabolism) that the commercial ELISAs were completely unreliable in mice and the only reliable method of measuring circulating irisin is mass spectrometry.

    1. Author Response

      Reviewer #1 (Public Review):

      Strengths:

      1. In my assessment, the data sufficiently demonstrates that a modified version of Pertuzamab can bind both the wild-type and S310 mutant forms of ERBB2.

      2. The engineering strategy employed is rational and effectively combines computational and experimental techniques.

      3. Given the clinical activity of HER2-targeting ADCs, antibodies unaffected by ERBB2 mutations would be desired.

      Weaknesses:

      1. There is no data showing that the engineered antibody is equally specific as Pertuzamab i.e. that it does not bind to other (non-ERBB2) proteins.

      Showing the specificity of the engineered antibodies is indeed important. We did not address it in the current ms, but it can be tested in the future.

      1. There is no data showing that the engineered antibody has the desired pharmacokinetics/pharmacodynamics properties or efficacy in vivo.

      In this ms we did not conduct in-vivo experiments. When moving forward, pharmacokinetics/pharmacodynamics properties and efficacy will be tested as well.

      1. Computational approaches are only used to design a phage-screen library, but not used to prioritize mutations that are likely to improve binding (e.g. based on predicted impact on the stability of the interaction). A demonstration of how computational pre-screening or lead optimization can improve the time-intensive process would be a welcome advance.

      Thank you for this important comment. In the present ms we indeed used a computational approach for prioritizing residues to be mutated, but we did not prioritize the mutations that are likely to improve binding. In the initial library design, we did prioritize the mutations. However, due to experimental approach limitations with codon’s selection for the library, we had decided to allow all possible residues in each position, knowing that the selection will remove non-binding variants.

      Context:

      The conflict of interest statement is inadequate. Most authors of the study (but not the first author) are employees of Biolojic, a company developing multi-specific antibodies, but the statements do not clarify whether the presented antibodies represent Biolojic IP, whether the company sponsored the research, and whether the company is further developing the specific antibodies presented.

      The Conflict-of-Interest statement will be revised as such: The Biolojic Design authors are employees of Biolojic Design and have stock options in Biolojic Design. The company did not sponsor the research, does not hold IP for the presented antibodies, and is not further developing the presented antibodies.

      Reviewer #2 (Public Review):

      Strengths:

      1. Deep computational analyses of large datasets of clinical data provide useful information about HER2 mutations and their potential relevance to antibody therapy resistance.

      2. There is valuable information analyzing the residues within or near the interface between the antigen HER2 and the Pertuzumab antibody (heavy chain). The experimental antibody library screening obtained 90+ clones from 3.86×1011 sequences for further functional validation.

      Weaknesses:

      1. There is a lack of assessment for antibody variant functions in cancer cell phenotypes in vitro (proliferation, cell death, motility) or in vivo (tumor growth and animal survival). The only assay was the western blotting of phosphopho-HER3 in Figure 4. However, HER2 levels and phosphor-HER2 were not analyzed.

      We indeed did not assess the engineered antibodies function in cancer cells. Regarding signaling assessment, previous works [1-3] also measured the signaling activation following HER2-HER3 dimerization by measuring pHER3, and we relied on them in this ms.

      1. There is a misleading impression from the title of computational engineering of a therapeutic antibody and the statement in the abstract "we designed a multi-specific version of Pertuzumab that retains original function while also bindings these HER2 variants" for a few reasons:

      a. The primary method used for variant antibody identification for HER2 mutant binding is rather traditional experimental screening based on yeast display instead of the computational design of a multi-specific version of Pertuzumab.

      b. There is insufficient or lack of computational power in the antibody design or prioritization in choosing variant residues for the library construction of 3.86×1011 sequences. It seems random combinations from 6 residues out of 4 groups with 20 amino acid options.

      c. The final version of the tri-binding variant is a combination of screened antibody clones instead of computation design from scratch.

      d. There is incomplete experimental evidence about the therapeutic values of newly obtained antibody clones.

      Thank you for this relevant comment. When addressing relevant residues to be mutated, the number of potential variants is enormous. The computational approach was aimed at identifying the most preferable residues, in which variation can improve binding and is not likely to harm important interactions. Although an initial smaller number of residues could be chosen, we decided to broaden our view and create a larger library, in the aim of combining the computational selection with an experimental selection. This indeed is not a computational design from scratch, but rather an intercourse between the computer and the lab, that yielded the presented results.

      1. Figures can be improved with better labeling and organization. Some essential pieces of data such as Supplementary Figure 1B on HER2 mutations in S310 that abrogated its binding to Pertuzumab should be placed in the main figures.

      Thank you for this comment, the relevant figures will be moved to the main text, and the labels will be revised.

      1. It is recommended to provide a clear rationale or flowchart overview into the main Figure 1. Figure 2A can be combined with Figure 1 to the list of targeted residues.

      Figures 1 and 2 will be divided differently, and the rationale will be detailed in the revised text.

      1. The quality of Figures such as Figure 2B-C flow data needs to be improved.

      This will be corrected in the revised text.

      1. Diwanji, D., et al., Structures of the HER2-HER3-NRG1β complex reveal a dynamic dimer interface. Nature, 2021. 600(7888): p. 339-343.

      2. Yamashita-Kashima, Y., et al., Mode of action of pertuzumab in combination with trastuzumab plus docetaxel therapy in a HER2-positive breast cancer xenograft model. Oncol Lett, 2017. 14(4): p. 4197-4205.

      3. Kang, J.C., et al., Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells. MAbs, 2014. 6(2): p. 340-53.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      This reviewer found the paper of very high interest, well supported, and well written. I have only a few suggestions to the authors for further improvement:

      1. TRAIL mutants carrying individual mutations of basic residues R119, R122 and K125 were tested, but a TRAIL mutant lacking all three residues was not. This combined mutant protein would have allowed to test whether all heparin binding is abolished (e.g. that no other residues contribute to HS binding) and could have also been used as an independent control replacing heparin and heparinase treatment in binding/apoptosis studies. Given that the DR4/5 and heparin binding sites of TRAIL do not overlap, this form would be useful in determining the extent to which HS contributes to, or serves as a prerequisite for TRAIL binding to its receptor and cell death. Moreover, if bound to the receptor, this mutant TRAIL is expected to completely prevent HS-mediated receptor internalization. The added value of this experiment therefore is that it may provide an answer to the controversial debate on whether DR receptor internalization promotes or inhibits apoptosis.

      In Fig. 5C, we provided data showing that the binding of R115A mutant of hTRAIL (equivalent to murine R199A mutant) to MB-453 cells was very similar to the binding of WT hTRAIL to heparin lyase treated cells. This finding suggests that nearly all HS-dependent binding to cell surface HS was abolished by mutating R115. Since a single mutant is sufficient, we felt there is little point in combining multiple mutations. We also used R115A mutant as an independent control replacing heparin and heparinase treatment in apoptosis assay in Fig. 7E. With regard to using the mutant in the internalization assay, we thank the reviewer for this excellent suggestion and will incorporate it into our future study as we intend to perform more in-depth investigation on the exact mechanism of internalization.

      1. The domain data is interesting, but its physiological significance remains obscure and it also somewhat distracts from the main theme of the study. It may be removed from a revised manuscript.

      We partially agree with the reviewer’s assessment, but we felt that this discovery is of sufficient novelty and should be made known to the whole community.

      1. TUNEL data is shown as a picture in Figure 6, but quantification is lacking.

      We have included the statistics of the TUNEL data in the final version as Fig. 6D.

      1. Is the HS20 antibody a well-suited pan-anti-HS antibody? Why was this antibody used instead of heparinase digestion followed by the use of HS "stub" antibodies that were previously used as a reliable readout for overall sulfation?

      The HS20 mAb has been very well characterized by Dr. Mitchell Ho group (Gao et al., 2016). We have also done side-by-side comparison of HS20 and the most commonly used anti-HS mAb 10E4 by immunostaining and FACS. In nearly all tissues and cells tested, HS20 gave better sensitivity and lower background (after heparin lyase treatment) compared to 10E4. The staining pattern of the two mAbs are usually identical, but the signal/noise ratio of HS20 is much better than 10E4. The HS ”stub” antibody can be useful in certain applications, but it is used mainly as an indicator of the distribution/abundance of HSPGs, rather than a readout of overall sulfation.

      1. The discussion should be stripped from expressions such as interestingly, curiously, unexpectedly, certainly, undoubtedly and the like to improve readability. The manuscript should be checked for typos (for example surface plasma resonance line 473, was served line 481).

      We thank the reviewer for the suggestions and many of these expressions were removed in the final version.

      1. Last but not least: to test the physiological relevance of these findings, it would be of the highest interest to use a mouse model harboring a tumor cell line of choice and derived lines with impaired or increased HS expression, as outlined in my public comments, and to test tumor responsiveness to TRAIL treatment. If already planned, I wish you Good Luck with the experiments!

      We thank the reviewer for this excellent suggestion and we have indeed planned to do exactly that!

      Reviewer #2 (Recommendations For The Authors):

      1. The authors showed in Fig.2 that 12mer HS forms complex with TRAIL homotrimer. Please clarify if 12mer HS binding leads to the formation of the TRAIL homotrimer or TRAIL can form homotrimer in the absence of HS binding. Do the TRAIL mutations that affect HS binding, such as R115A, also impact the homotrimer formation?

      TRAIL automatically forms a homotrimer independent of HS. It is known that formation of the homotrimer critically depends on a zinc ion, which is located on the threefold axis of the trimer and is bound by cysteine 240. We have also verified that all TRAIL mutants remain homotrimeric by size exclusion chromatography.

      1. Does 12mer HS also suppress TRAIL-mediated apoptosis in MDA-MB-453 cells?

      We thank the reviewer for this question but felt performing this experiment will not add any more insight to the main conclusion. Most likely, the result will be similar to what we saw in Fig. 7D, where we found 12mer significantly inhibits TRAIL-induced apoptosis, but inhibits less efficiently compared to heparin.

      1. The authors nicely showed the correlation between surface HS level and sensitivity to TRAIL-induced apoptosis in MM cell lines and implicated that such correlation could be related with the difference in the expression level of SDC1. This is an interesting point worth further validation. Does ectopic SDC1 expression in IM-9 cells lead to increase cell surface HS and sensitivity to TRAIL treatment? On the other hand, will depletion of SDC1 expression in U266 or RPMI8226 cells decrease their sensitivity to TRAIL treatment?

      We agree that this would be an excellent experiment to try and have actually attempted to overexpress SDC1 in IM-9 cells. But we found IM-9 cells are very difficult to transfect and we only managed to convert a small percentage of SDC1 negative cells to positive cells. Also, the level of SDC1 expression on the SDC1-positive cells was not changed after overexpression. We have not tried depleting SDC1 expression in U266 and RPMI8226 cells because such an experiment might change the property of these cells in unexpected ways, which would make result interpretation impossible. A previous report has shown that knocking down SDC1 could enhance clustering of TRAIL receptors in H929 cells (Wu et al., J Immunol 2012;), which actually led to slightly increased apoptosis.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study extends insights on NAFLD and NASH regarding the role of plasma lactate levels using mice haplo-insufficient for the gene encoding lactate transporter MCT-1. While the evidence is largely convincing and the work significantly advances our understanding of the roles of distinct hepatic cell types in steatosis, a number of issues require attention and would best be solved by further experimentation.

      RESPONSE: We agree with this assessment by eLife, and appreciate the reviewers’ view that the study is important and extends insights into liver disease.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors put forth the hypothesis that hepatocyte and/or non-parenchymal liver MCT1 may be responsible for physiologic effects (lower body weight gain and less hepatic steatosis) in MCT1 global heterozygote mice. They generate multiple tools to test this hypothesis, which they combine with mouse diets that induce fatty liver, steatohepatitis and fibrosis. Novel findings include that deletion of hepatocyte MCT1 does not change liver lipid content, but increases liver fibrosis. Deletion of hepatic stellate cell (HSC) MCT1 does not substantially affect any liver parameter, but concomitant HSC MCT1 deletion does reverse fibrosis seen with hepatocyte MCT1 knockout or knockdown. In both models, plasma lactate levels do not change, suggesting that liver MCT1 does not substantially affect systemic lactate. In general, the data match the conclusions of the manuscript, and the studies are well-conducted and well-described. Further work would be necessary to dissect mechanism of fibrosis with hepatocyte MCT1, and whether this is due to changes in local lactate (as speculated by the authors) or another MCT1 substrate. This would be important to understand this novel potential cross-talk between hepatocytes and HSCs.

      A parallel and perhaps more important advance is the generation of new methodology to target HSC in mice, using modified siRNA and by transduction of AAV9-Lrat-Cre. Both methods would reduce the need to cross floxed mice with the Lrat-Cre allele, saving time and resources. These tools were validated to an extent by the authors, but not sufficiently to ensure that there is no cross-reactivity with other liver cell types. For example, AAV9-LratCre-transduced MCT1 floxed mice show compelling HSC but not hepatocyte Mct1 knockdown, but other liver cell types should be assessed to ensure specificity. This is particularly important as overall liver Mct1 decreased by ~30% in AAV9-Lrat-Cre-transduced mice, which may exceed HSC content of these mice, especially when considering a 60-70% knockdown efficiency. This same issue also affects Chol-MCT1-siRNA, which the authors demonstrate to affect hepatocytes and HSC, but likely affects other cell types not tested. As this is a new and potentially valuable tool, it would be important to assess Mct1 expression across more non-parenchymal cells (i.e. endothelial, cholangiocytes, immune cells) to determine penetration and efficacy.

      RESPONSE: We appreciate the reviewer’s view that the new methods we describe represent an important advance. To ensure the specificity of our novel AAV-Lrat-Cre construct, it would be fair to test its distribution among all possible hepatic cell types, including endothelial cells, cholangiocytes, and other immune cells, as suggested. Our efforts in this study were primarily focused on the major cell types thought to contribute to NASH, namely hepatocytes, Kupffer cells, and in particular hepatic stellate cells. The reasons for this focus were:

      1) Our primary goal was to investigate the role of MCT1 in hepatic fibrogenesis. According to Manderacke et al. (2013, Nature Comm), hepatic stellate cells account for the dominant proportion (82-96%) of myofibroblast progenitors, which produce collagen fibers. While there may be interesting roles of MCT1 in those other cell types, to elucidate MCT1's role in fibrogenesis, focusing on the dominant fibrogenic cell type, hepatic stellate cells, was the most appropriate approach for this goal.

      2) Considering the proportion of each hepatic cell type in the liver, hepatocytes constitute the majority (60-70%), followed by endothelial cells (15%), immune cells (10%), and stellate cells (5%), among others.

      3) The AAV-Cre system is highly specific to its promoter, in this case, Lrat, which has been well established in multiple previous studies to exhibit high specificity for hepatic stellate cells in the liver. We will certainly conduct more comprehensive biodistribution studies in the future, as we believe that our AAV-Lrat-Cre system could be a valuable tool in this field.

      Reviewer #2 (Public Review):

      In this study, the authors seek to answer two main questions: 1) Whether interfering with lactate availability in hepatocytes through depletion of hepatocyte specific MCT-1 depletion would reduce steatosis, and 2) Whether MCT-1 in stellate cells promote fibrogenesis. While the first question is based on the observation that haploinsufficiency of MCT-1 makes mice resistant to steatosis, the rationale behind how MCT-1 could impact fibrogenesis in stellate cells is not clear. A more detailed discussion regarding how lactate availability would regulate two different processes in two different cell types would be helpful. The authors employ several mouse models and in vitro systems to show that MCT1 inhibition in hepatic stellate cells reduces the expression of COL-1. The significance of the findings is moderately impacted due to the following considerations:

      RESPONSE: We have included additional in vitro data in order to provide a more comprehensive discussion of MCT1's potential role in regulating collagen production. Please refer to the new Figure 8, Supplementary Figure 6, and the results section (Potential Mechanism). Also note that our original hypothesis was that depleting MCT1 specifically in hepatocytes would protect mice with MCT1 haploinsufficiency from liver lactate overload and NAFLD. Furthermore, we postulated that this protection might prevent NASH progression since lipotoxicity-driven hepatocyte damage is a central factor in NASH pathogenesis. However, our findings did not support this hypothesis. We found only one brief article (2015, Z Gastroenterol et al., "Functional effects of monocarboxylate transporter 1 expression in activated hepatic stellate cells") that discussed the potential role of MCT1 depletion in hepatic stellate cells in regulating collagen production or fibrosis, as mentioned in their abstract. Unfortunately, the DOI for this article is not functional, and the data cannot be located. Moreover, when we attempted to replicate their results, we were unable to do so, leading us to report our own findings in the current paper.

      a. Fibrosis in human NAFLD is a significant problem as a predictor of liver related mortality and is associated with type 1 and type 3 collagen. However, the reduction in COL1 in stellate cells did not amount to a reduction in liver fibrosis even in cell specific KO (in Fig 7E, there is no indication of whether Sirius red staining was different between HSC KO and control mice- the authors mention a downward trend in the text). The authors postulate that type 1 COL may not be the more predominant form of fibrosis in the model. This does not seem likely, since the same ob/ob mouse model was used to determine that fibrosis was enhanced with hepatocyte specific MCT-1 KO and decreased with Chol MCT-1KO. Measurements of different types of collagens in their model and the effect of MCT-1 on different types could be more informative. In particular, although collagens are the structural building blocks for hepatic fibrosis, fibrosis can also be controlled by matrix remodeling factors such as Timp1, Serpine 1, PAI-1 and Lox.

      RESPONSE: We monitored the expression levels of matrix remodeling factors, such as Timp1 (Figure 5C, 5F). There was no change in expression upon Chol-MCT1-siRNA treatment, while a significant increase was observed upon GN-MCT1-siRNA treatment. This trend was similar to collagen expression in both cases. Regarding the different types of collagen, instead of measuring each individual type of collagen, we conducted Sirius red and trichrome staining, which enabled us to detect multiple types of collagen simultaneously (Figure 5G, Figure 7D).

      b. The authors use multiple animal models including cell specific KO to conclude that stellate cell MCT-1 inhibition decreases COL-1. However, the mechanisms behind this reduced expression of COL-1 are not discussed or explored, making it descriptive.

      RESPONSE: We agree that the mechanisms involved are not fully defined but have added new data (Figure 8, Supplement Figure 6) and text to discuss possibilities.

      c. Different types of diets are used in this study which could impact lactate availability. Choline deficiency diets are reported to cause weight loss, and importantly have none of the metabolic features of human NASH. Therefore, their utility is doubtful, especially for this study which proposes to investigate if metabolic dysregulation and substrate availability could be a tool for therapy.

      RESPONSE: Unfortunately, none of the rodent models used to study NASH completely replicate the condition in human patients, each having its own set of advantages and drawbacks. In line with the concern raised by reviewer #2, there has been a shift away from the use of severely detrimental methionine and choline-deficient diets in contemporary NASH research. Instead, diets that combine methionine and other amino acids with cholinedeficient diets, in conjunction with high-fat diets, have become more popular. The diet we employed in our study consists of high-fat diet combined with choline-deficient diets. We believe that our findings, which are consistent and established across two distinct NASH pathogenesis models and genetic backgrounds, lend additional robustness to our results.

      d. Hepatocyte specific MCT-1 KO mice seem to have increased COL-1 production, despite no noticeable difference in hepatocyte steatosis. The reasons for this are not discussed. Fibrosis in NASH is thought to be from stellate cell activation secondary to signals from hepatocellular damage. There is no evidence that there was a difference in either of these parameters in the mouse models used.

      RESPONSE: While lipotoxicity-driven liver damage remains a central aspect of NASH pathogenesis, the traditional two-hit theory has become less tractable, giving way to the multi-hit theory in the NASH field. The current debate revolves around whether steatosis is a decisive factor and requirement for NASH fibrogenesis. Our previous publication (Yenilmez et al., 2022, Mol Ther) demonstrated that nearly complete resolution of steatosis did not prevent other NASH features like inflammation and fibrosis, indicating the existence of multiple factors beyond steatosis in NASH pathogenesis. We believe that steatosis and fibrosis influence each other but can also develop independently.

      e. The authors report that serum lactate levels did not rise after MCT-1 silencing, but the reasons behind this are unclear. There is insufficient data about lactate production and utilization in this model, which would be useful to interpret data regarding steatosis and fibrosis development. For example, does the MCT-1 KO prevent hepatocyte and stellate cell net import or export of lactate? What is the downstream metabolic consequence in terms of pyruvate, acetylCoA and the NAD/NADH levels. Does the KO have downstream effects on mitochondrial TCA cycling?

      RESPONSE: Due to both biological and technical challenges (which are described in the new draft), conducting a comprehensive metabolomics study comparing hepatocyte MCT1 KO to hepatic stellate cell MCT1 KO was not feasible. It is important to note that MCT1 can also transport other substrates that are often overlooked, including pyruvate, short-chain fatty acids, and ketone bodies. Also, in addition to MCT1, there are at least two other functional isoforms of MCT: MCT2 and MCT4. Regrettably, due to these biological and technical complications, conducting a comprehensive metabolomic analysis is extremely complicated and difficult to interpret. Nevertheless, some insights are gained from a study involving MCT1 chaperone protein Basigin/CD147 knockout (KO) mice in a high-fat diet- induced hepatic steatosis model. Basigin acts as an auxiliary protein for MCT1, and its absence leads to improper localization and stabilization of MCT1, effectively simulating a state of MCT1 deficiency. In this context, hepatic lactate levels were reduced by half, and other metabolites such as pyruvate, citrate, α-ketoglutarate, fumarate, and malate were significantly decreased. While we must exercise caution when extrapolating these findings to our MCT1 study, they suggest that multiple metabolites, particularly pyruvate, may play a crucial role in the context of MCT1 deficiency.

      f. MCT-1 protein expression is measured only in the in vitro assay. Similar quantitation through western blot is not shown in the animal models.

      RESPONSE: We monitored MCT1 protein expression with either Western blot (Fig 2D, 2E (in vitro)) or immune-histology (Fig 4B, 4C (in vivo, ob/ob + GAN diet NASH model), Sup Fig 5F, 5G (in vivo, MCT1 f/f + CDHFD model)).

      Reviewer #3 (Public Review):

      A major finding of this work is that loss of monocarboxylate transporter 1 (MCT1), specifically in stellate cells, can decrease fibrosis in the liver. However, the underlying mechanism whereby MCT1 influences stellate cells is not addressed. It is unclear if upstream/downstream metabolic flux within different cell types leads to fibrotic outcomes. Ultimately, the paper opens more questions than it answers: why does decreasing MCT1 expression in hepatocytes exacerbate disease, while silencing MCT1 in fibroblasts seems to alleviate collagen deposition? Mechanistic studies in isolated hepatocytes and stellate cells could enhance the work further to show the disparate pathways that mediate these opposing effects. The work highlights the complexity of cellular behavior and metabolism within a disease environment but does little to mechanistically explain it.

      RESPONSE: Described above to Reviewer #2

      The observations presented are compelling and rigorous, but their impact is limited by the nearly complete lack of mechanistic insight presented in the manuscript. As also mentioned elsewhere, it is important to know whether lactate import or export (or the transport of another molecule-like ketone bodies, for example) is the decisive role of MCT1 for this phenotype. Beyond that, it would be interesting, albeit more difficult, to determine how that metabolic change leads to these fibrotic effects.

      RESPONSE: Described above to Reviewer #2

      Kuppfer cells are initially analyzed and targeted. These cells may play a major role in fibrotic response. It will be interesting to determine the effects of lactate metabolism in other cells within the microenvironment, like Kuppfer cells, to gain a complete understanding of how metabolism is altered during fibrotic change.

      RESPONSE: To address the potential involvement of inflammatory cells, we added new data to the manuscript (Supplement Figure 4). Given the distinct hepatic cellular distribution of Chol-MCT1-siRNA and GN-MCT1-siRNA, the opposite fibrogenic phenotype observed may be attributed to MCT1’s role in non-hepatocyte cell types such as the inflammatory Kupffer cells and the fibrogenic hepatic stellate cells. To determine which hepatic cell type drives the opposite fibrotic phenotypes, we first hypothesized that GN-MCT1-siRNA activates M2 pro-fibrogenic macrophages more than Chol-MCT1-siRNA does. The representative M1/ M2 macrophage polarization gene markers were monitored in Kupffer cells. However, GN-MCT1-siRNA treatment caused comparable M1/M2 macrophage activation levels to Chol-MCT1-siRNA treatment (Supplement Figure 4A, 4B). These data suggest that the opposite fibrotic phenotypes caused by the different siRNA constructs are not due to M1/M2 macrophage polarization.

      The timing of MCT1 depletion raises concern, as this is a largely prophylactic experiment, and it remains unclear if altering MCT1 would aid in the regression of established fibrosis. Given the proposal for translation to clinical practice, this will be an important question to answer.

      RESPONSE: Agree these are important experiments for future evaluation.

      Reviewer #1 (Recommendations For The Authors):

      As above, in general, the conclusions match the data presented. The one exception is the authors discussion point that these data show the importance of lactate flux in fibrosis. As MCT1 has other substrates, it does not seem this is definitively due to lactate flux. It would be helpful to have additional experiments to clarify mechanism by which loss of hepatocyte MCT1 leads to increased fibrosis, while loss of HSC MCT1 reverses this finding. This may aid in concluding that altered fibrosis is in fact due to lactate flux in these cell types.

      RESPONSE: Described above to Reviewer #2

      In addition, it is unclear why the authors switched NASH models for the two tools generated (GAN diet for siRNA, CDHFD for AAV). Similarly, methodology to assess fibrosis switched between these two experiments - i.e. Sirius Red staining for siRNA-treated GAN diet-fed mice vs. Trichrome staining for AAV-transduced CDHFD-fed mice. These changes make it difficult to perform cross-comparisons of the data, to explain (for example), why GN-siRNA to Mct1 reduced body weight but AAV8-TBG-Cre did not. Similarly, GN-siRNA increased liver Col1a1 protein but AAV8-TBG-Cre did not. These differences could be explained by model system, or tool efficacy/off-target effects.

      RESPONSE: We agree that different model systems can explain difference in results, but there is also an advantage of using different models and various methodologies as preclinical tests of consistency of data on NASH under different conditions. There are no perfect mouse models for human NASH.

      • Phenotyping is also incomplete for the latter experiment, in particular amount of liver lipid content –

      RESPONSE: We estimated lipid content by H&E (Fig 6E, F). In some experiments, we focused mostly on COL1 protein expression, as this rather than mRNA is the functional aspect of fibrosis.

      Reviewer #2 (Recommendations For The Authors):

      This study could benefit from standardization of the types of diet used across all animal models and a more comprehensive focus on the metabolic/substrate availability and utilization aspects of NAFLD and NASH affected in the mouse models with MCT-1 dependent lactate transport deficiency. Since hepatic fibrogenesis in NASH is impacted by signals following hepatocyte damage, the extent of cell death in these models could also be better characterized.

      RESPONSE: Our ALT data provides indirect insight into hepatocyte damage. Our histology images did not reveal significant changes in cell morphology or integrity and there were no notable changes in caspase protein levels.

      Other comments:

      In Fig 4G, there is an increase in the number of lipid droplets with Chol- MCT-1 siRNA compared to GN-MCT1-sirRNA, suggesting that the stellate cell component might be responsible for this finding. The possible reasons for this are not discussed.

      RESPONSE: The effects in Fig 4G were exceedingly small and there is no difference in total TG in these experiments, so it is hard to interpret these data and provide logical explanations.

      In Fig 5A. A western Blot for aSMA and COL 1 is shown but the sample labeling is unclear i.e, do the lanes belong to different mice of the same condition? HFD mice vs Ctr mice?

      RESPONSE: Both groups of ob/ob mice were fed a GAN diet. The graph in Fig 5 is a direct comparison between NTC-siRNA and MCT1-siRNA. To enhance clarity, this is indicated in the figure legends, and the data in Fig 5 is a continuation of the data presented in Fig 4

      In Fig 5E, COL1 densitometry data should also be provided for non-silenced mice on HFD and Chow diet for appropriate comparison

      RES\PONSE: Both groups of ob/ob mice were fed a GAN diet. The graph in Fig 5 represents a comparison between NTC-siRNA and MCT1-siRNA. It's important to note that, typically, ob/ob mice fed either a chow diet or a high-fat diet do not exhibit fibrogenic phenotypes within this time frame (3 weeks of dietary intervention).

      There are many mis-statements throughout the text.Page 6 - "MCT1 silencing significantly inhibited Tgf1β-stimulated ACTA2 mRNA expression as well as collagen 1 protein production" but it is not stated that CO1A1 mRNA is unchanged in Fig 1C.

      RESPONSE: We observed no change in CO1A1 mRNA levels (Fig 1C), so we focused on collagen 1 protein production (Fig 1B) on page 6. Given the consistent trend observed in Chol-MCT1-siRNA (Fig 5C), we proposed the possibility of MCT1's influence on collagen translation or protein turnover on page 11.

      Page 7- ".......our Chol-MCT1-siRNA does not require transfection reagents as it is fully chemically modified". What does fully chemically modified mean and why does this mean in terms of transfection efficiency.

      RESPONSE: One of the primary challenges in utilizing RNAi as a therapeutic approach has been the effective in vivo delivery strategy, particularly concerning stability and longevity against systemic nucleases. Recent developments in siRNA duplex chemical modification strategies, such as 2-Fluoro and 2-O-Methyl ribose substitutions, as well as phosphorothioate backbone replacements, have addressed these challenges (Please see Figure 3. In our current study, we employed 'chemically fully modified' siRNA, featuring several key modifications: (1) every single ribose is chemically modified to 2-F or 2-OMeribose, (2) phosphorothioate backbone replacement, (3) 5'-end of the antisense strand modification to (E)-Vinyl-phosphonate, and (4) 3'-end of the sense strand linkers such as Cholesterol or Tri-N-Acetyl-galactosamine. These chemical enhancements significantly improve transfection efficiency, longevity, and selectivity, setting it apart from traditional siRNA lacking such chemical modifications. A prior study from the Khvorova lab has demonstrated substantial efficiency differences between partially and fully modified siRNA in vivo.

      Page 7- the results present for Fig 2 ignores Fig, 2C, if this is important it needs to be described if not, please delete.

      RESPONSE: The dose-response potency results, crucial for identifying the most potent Chol-MCT1-siRNA compound, are depicted in Figure 2C. The wording "(Figure 2C)" has been inserted in the sentence as follows. “The silencing effect on Mct1 mRNA was monitored after 72 hours (Figure 2B). Several compounds elicited a silencing effect greater than 80% compared to the NTC-siRNA. The two most potent Chol-MCT1-siRNA, Chol- MCT1-2060 (IC50: 59.6nM, KD%: 87.2), and Chol-MCT1-3160 (IC50: 32.4nM, KD%: 87.7) (Figure 2C) were evaluated for their inhibitory effect on MCT1 protein levels (Figure 2D, 2E). Based on its IC50 value and silencing potency, Chol-MCT1-3160 construct was chosen for further studies in vivo (Table 2).”

      Supplement Fig 1A-F should be analyzed by multiple comparisons not by paired t-tests.

      RESPONSE: We performed t-tests for every comparison between two groups. However, for Sup Fig 1A-F, which involved a comparison among three different groups, we applied oneway ANOVA.

      The x-axis in supplement Fig 2A and B are not labeled, and I assume are in weeks. The Fig 2B x-axis numbers also mis-labeled and should also be 0-3 and not 10-13.

      RESPONSE: The x-axis is now appropriately labeled.

      Page 10 - the description of supplement Fig 4A is not accurate. Srebf1 mRNA is unchanged by the GN-MCT1-siRNA treatment and Mlxipl mRNA is unchanged by Chol-MCT1-siRNA treatment. Is this total Mlxipl mRNA or can you distinguish between the alpha and beta variants.

      RESPONSE: We adhered to NCBI nomenclature, where 'SREBP1' and 'ChREBP' represent proteins, not mRNA. The Mlxipl mRNA we tested pertains to total Mlxipl mRNA. Original draft shown below.

      “To investigate the underlying mechanism by which lipid droplet morphological dynamics change, we monitored the effect of hepatic MCT1 depletion on DNL-related gene expression. Both GN-MCT1-siRNA and Chol-MCT1-siRNA strongly decreased the mRNA and protein levels related to representative DNL genes (Supplement Figure 4A-4D). Intriguingly, both modes of hepatic MCT1 depletion also inhibited expression of the upstream regulatory transcription factors SREBP1 and ChREBP.”

      There are no molecular weight markers in supplement Fig 4C and D. Is the Srebp1c blot for the nuclear or precursor form?

      RESPONSE: The Srebp1c blot presented represents the precursor form. I have edited the figure legend accordingly. It's worth noting that the cleaved form of Srebp1c either exhibited significantly lower expression compared to its precursor form or displayed comparable expression between the control group and the MCT1 depletion group.

      Changes in mRNA and protein do not always reflect changes in activity (allosteric regulation). If you want to draw any conclusions about de novo lipogenesis you need to directly measure fatty acid synthesis rates from a carbohydrate precursor.

      RESPONSE: We completely agree. Therefore, in the current study, we emphasized two key points: (1) hepatic MCT1 depletion affects the expression levels of representative DNL genes, and (2) however, this regulation was insufficient to resolve the steatosis phenotypes in our NASH model. We have added the text “while recognizing that the decreased expression of DNL genes does not necessarily indicate inhibited fatty acid synthesis rate” on page 15.

      Reviewer #3 (Recommendations For The Authors):

      Figure 1 - Are there changes to fibroblast phenotype with TGF-beta stimulation and are these changes reversed with MCT1 siRNA-mediated silencing, or is this purely an expression phenomenon?

      RESPONSE: This study was designed to assess the preventative effect of MCT1 silencing on Tgf1β-induced fibrosis, rather than a reversal study. As detailed in the methods section, LX2 cells were initially cultured in DMEM/high glucose media with 2% FBS. The following day, we transfected the cells with either NTC-siRNA or MCT1-siRNA (IDT, cat 308915476) using Lipofectamine RNAi Max (ThermoFisher, cat 13778075) for 6 hours in serum-reduced Opti-MEM media (ThermoFisher, cat 31985062). Subsequently, the cells were maintained in serum-starved media, with or without 10ng/ml of recombinant human Tgf1β (R&D Systems, cat 240-B/CF), for 48 hours before harvesting.

      Is lactate import/export itself responsible for this phenotype? It is presumed that MCT1 depletion alters import/export of lactate and subsequently modulates this phenotype, but this is never shown experimentally. Does lactate accumulate in these cells or in the medium in culture? The foundation of the paper rests on this hypothesis, so we believe that this is critical to establish. This is particularly relevant as MCT1 has been proposed to function primarily as a lactate importer, so the availability of medium lactate could be easily modulated to determine whether that mimics MCT1 loss.

      RESPONSE: To address the underlying mechanism of MCT1/Lactate in stellate cells, we added a new figure to the manuscript (Figure 8). We had previously conducted an experiment to determine whether MCT1 depletion in LX2 cells in vitro influences extracellular lactate concentrations in DMEM/high glucose (25mM glucose) media supplemented with 1mM sodium pyruvate but without sodium lactate. Interestingly, we found no significant difference in extracellular glucose and lactate concentrations, which remained at 25mM and 5mM, respectively. These concentrations were comparable between groups, regardless of MCT1 loss. Additionally, we investigated the effects of MCT1 silencing in the presence of potent fibrogenic inducer TGF-β1. Intriguingly, MCT1 depletion effectively prevented TGF-β1-induced collagen production, irrespective of lactate (+/- pyruvate) supply in the media. LX2 cells with MCT1 depletion exhibited reduced collagen 1 production when lactate was solely generated by endogenous glycolysis (Figure 8F) and when exogenous lactate was supplied (Figure 8G).

      Figure 2 - It is compelling that the Chol-MCT1-siRNA compounds are effective at targeting MCT1. However, is it clear how specific the siRNA target is? Are other MCT genes affected as well (if the siRNAs target areas of homology, for example)? Given that this siRNA strategy is used going forward and proposed as a therapeutic, it would be important to discuss and perhaps characterize off-target effects. A simple BLAST search for homology for the chosen siRNAs could help answer this question.

      RESPONSE:

      1) We designed the siRNA to specifically avoid any potential off-target effects on MCT1's 14 isoforms, and this approach aligns with the results obtained from the NCBI-BLAST analysis.

      2) While there are 14 isoforms of MCTs, only the first four are functional. To assess the off-target effect of Chol-MCT1-siRNA on MCT2 and MCT4 (MCT3 was excluded due to its limited expression in retinal pigment epithelium), we conducted in vivo experiments in ob/ob mice, which demonstrated a highly selective MCT1 silencing effect. We have also included MCT1, MCT2, and MCT4 rt-qPCR data in the manuscript (Supplement Figure 2A, 2B).

      3) We plan to further optimize and validate the human MCT1-targeting siRNA sequence for use in humanized mouse studies. It's important to note that the MCT1-siRNA used in this study was designed for mice.

      Supplemental Figure 1 - brain would be one other highly metabolic tissue wherein it would be important to show lack of activity/accumulation.

      RESPONSE: Undoubtedly, the brain is one of the most metabolically active tissues, playing a pivotal role in regulating signaling pathways and metabolism in other tissues. However, it poses a significant challenge in terms of targeting due to the presence of the blood-brain barrier (BBB). Overcoming BBB penetration remains one of the foremost challenges in the field of therapeutic siRNA delivery. For many therapeutic oligonucleotides, including Cholesterol-conjugated siRNAs, systemic administration alone is normally insufficient to achieve BBB penetration. Direct local injection or transient disruption of the BBB is normally required.

      Figure 4 - The image shown for chol-MCT1-siRNA seems to show variation in lipid droplet size. Is this just this single image? The authors quantify smaller lipid droplets in this group, so the image may not be representative as there are many large droplets. Ultimately, additional mechanisms as to how alterations in lactate metabolism could mediate this phenotype are missing. This hypothesis also rests upon the assumption that MCT1 is modulating lactate, which is not shown experimentally, as discussed above.

      RESPONSE: We changed the representative images (Fig 4B). We agree this aspect of the study is not resolved, and we have related text in the manuscript on this point: “neither GNMCT1-siRNA nor Chol-MCT1-siRNA decreased total hepatic TG levels (Figure 4H), although quantitative analysis of H&E images showed a small decrease in mean lipid droplet size and increased number of lipid droplets upon MCT1 silencing (Figure 4F, 4G). These data suggest the possibility that hepatic MCT1 depletion either 1) inhibits formation or fusion of lipid droplets, or 2) enhances lipolysis to diminish lipid droplet size.”

      Figure 5 provides evidence that Chol-MCT1-siRNA expression decreases fibrosis but this is attributed to the effects on stellate cells. While GN-MCT1-siRNA and subsequent MCT1 silencing in hepatocytes has an opposite effect. The cell population that is not discussed, however, is the Kupffer cell. Could MCT1 silencing in this cell population be mediating part of the phenotype observed? How does MCT1 silencing affect Kupffer cell phenotype and activity?

      This extends into Figure 6 where Kupffer cells are not given consideration in targeted experiments.

      RESPONSE: Described above to Reviewer #3

      Figure 6 and 7 use a different model to show that stellate cell depletion of MCT1, specifically, decreases collagen 1 protein levels in NASH, which reinforces the authors claims. Given the cell specificity of this experiment, it is more compelling data. It would be nice to show that Kupffer cell depletion of MCT1 does not have any affect (or perhaps show that it does.

      RESPONSE: We agree, but Kupffer selective depletion is not possible to do with this siRNA technology. Please see the response above as our most recent attempt to address this question.

      Figure 7 shows that even with decreased collagen deposition, there is no effect on liver stiffness or chronic liver injury as measure by ALT. This may suggest that the decreased level of fibrosis is either not significant to overall clinical outcome or that there are other fibroinflammatory mechanisms compensating for lack of COL1 deposition. Is there increased reticulin fibrosis when MCT1 is knocked down? This could be assessed with IHC or monitoring type 3 collogen (COL3A1).

      RESPONSE: Reticulin fibrosis results from the excessive deposition of reticular fibers, primarily composed of type 3 collagen. However, based on our observation of trichrome staining in whole liver histology data (Fig 7D-E), which exhibited nearly identical trends to collagen type 1 expression (Fig 7A-C), it seems unlikely that type 3 collagen compensated for the decrease in type 1 collagen protein expression upon hepatic stellate cell MCT1 KO. We plan to perform detailed analysis of a more comprehensive list of ECM proteins including type 3 collagen in our humanized mouse model with engrafted human liver cells in future experiments.

      Additional considerations:

      It may be useful to know if inhibition of fibrosis affects survival/progression in these NASH models over a longer timeframe, although this may understandably be beyond the scope of the current work. The timing of MCT1 depletion is prophylactic and given the proposal to translate this research, it would be important to determine whether MCT1 inhibition reversed fibrosis, and if so, by what metabolic mechanism?

      RESPONSE: We have observed that extending the duration of the NASH model increases the likelihood of hepatocarcinoma development. Exploring the aim to include survival and disease progression as well as reversal of fibrosis would be important in future experiments.

      Summary of new Figures and Figures modified:

      • Fig 1B: added "and" (significance) between the first and the third group, and the second and the last group.

      • Fig 4B: replaced images with more representative ones as the mean lipid size was questioned by the reviewer.

      • Fig 7D: made the images bigger (original images cropped and enlarged → 5X)

      • Fig 8: newly created to explain the underlying pathway of lactate, and MCT1 regulating collagen production. Please find the results sections.

      • Sup fig 2A, B: newly added to show our compounds’ selective silencing effect. - Sup Fig 2C-D: Added missing x-axis (moved from previous Figure 2A, 2B) - Sup Fig 2E-F: moved from sup Fig 3 not to have too many sup figures.

      • Sup Fig 3C-D: showed both precursor and cleaved form of SREBP1 bands as requested (moved from previous sup Figure 4)

      • Sup Fig 4: newly created, as questioned many times for the effect on Kupffer cells or other inflammatory cells.

      • Sup Fig 6: newly created to explain the potential underlying mechanism of MCT1 depletion on collagen production.

      • Sup Fig 7: moved from previous sup Fig 6.

      • Sup Fig 8: moved from previous sup Fig 7.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors have previously employed micrococcal nuclease tethered to various Mcm subunits to the cut DNA to which the Mcm2-7 double hexamers (DH) bind. Using this assay, they found that Mcm2-7 DH are located on many more sites in the S. cerevisiae genome than previously shown. They then demonstrated that these sites have characteristics consistent with origins of DNA replication, including the presence of ARS consensus sequences, the location of very inefficient sites of initiation of DNA replication in vivo, and for the most part are free of nucleosomes. They contain a G-C skew and they locate to intergenic regions of the genome. The authors suggest, consistent with published single molecule results, that there are many more potential origins in the S. cerevisiae genome than previously annotated, but also conclude that many of the newly discovered Mcm2-7 DH are very infrequently used as active origins of DNA replication.

      The results are convincing and are consistent with prior observations. The analysis of the origin associated features is informative.

      Specific Comments:

      1. Page 8. The addition of an estimate of the most active origins using Southern blotting is fine for highly active origins, but how was Southern blotting used to calculate that 1-2% of cells in the eight cohort have an Mcm complex loaded.

      We used a combination of Southern blotting and qPCR to measure licensing at the most active origins and then used our abundance curve to extrapolate these values to the less abundant cohorts. We expand on this point below, and we have changed the text to clarify this issue.

      Reviewer #3 (Public Review):

      By mapping the sites of the Mcm2-7 replicative helicase loading across the budding yeast genome using highresolution chromatin endogenous cleavage or ChEC, Bedalov and colleagues find that these markers for origins of DNA replication are much more broadly distributed than previously appreciated. Interestingly, this is consistent with early reconstituted biochemical studies that showed that the ACS was not essential for helicase loading in vitro (e.g. Remus et al., 2009, PMID: 19896182). To accomplish this, they combined the results of 12 independent assays to gain exceptionally deep coverage of Mcm2-7 binding sites. By comparing these sites to previous studies mapping ssDNA generated during replication initiation, they provide evidence that at least a fraction of the 1600 most robustly Mcm2-7-bound sequences act as origins. A weakness of the paper is that the group-based (as opposed to analyzing individual Mcm2-7 binding sites) nature of the analysis prevents the authors from concluding that all of the 1,600 sites mentioned in the title act as origins. The authors also show that the location of Mcm2-7 location after loading are highly similar in the top 500 binding sites, although the mobile nature of loaded Mcm2-7 double hexamers prevents any conclusions about the location of initial loading. Interestingly, by comparing subsets of the Mcm2-7 binding sites, they find that there is a propensity of at least a subset of these sites to be nucleosome depleted, to overlap with at least a partial match to the ACS sequence (found at all of the most well-characterized budding yeast origins), and a GC-skew centered around the site of Mcm loading. Each of these characteristics is related to previously characterized S. cerevisiae origins of replication.

      Overall, this manuscript greatly broadens the number of sites that are capable of loading Mcm2-7 in budding yeast cells and shows that a subset of these additional sites act as replication origins. Although these studies show that the sequence specificity of S. cerevisiae replication origins still sets it apart from metazoan origins, the ability to license and initiate replication from sites with increasing sequence divergence suggests a previously unappreciated versatility.

      Specific points:

      1. The authors need to come up with a consistent name for loaded Mcms at an origin. In the manuscript they variously use 'MCM'(page 3), 'Mcm complexes' (page 4), 'MCM double hexamer' (page 6), and 'double-helicase' (page 8) to describe the Mcm2-7 complexes detected in their ChEC experiments. They should pick one name (Mcm2-7 double hexamer or MCM double hexamer would be the most accurate and clear) and stick with it throughout the manuscript.

      We appreciate the criticism and agree that consistency is important for clarity, thus we tried using the term "Mcm2-7 double hexamer" in every instance in which we refer to Mcm loaded at an origin. However, upon reading the resulting manuscript, we felt that these changes hurt readability more than they helped with clarity, so we left the manuscript in its original form.

      1. The authors state that "It is notable that, when Mcm is present, it is present predominantly as a single doublehexamer (right panel of Figure 3A), and that this remains true across the entire range of abundance shown in Figure 3A." This statement would be improved by prefacing it with "Based on the size of the protected regions" or some other clarifying statement that lets the reader know what they should be looking for in the data in 3A.


      We thank the reviewer for the helpful suggestion. We have added the underlined words to the text to clarify this point.

      It is notable that, when Mcm is present, it is present predominantly as a single doublehexamer (based on the size of the protected region in the right panel of Figure 3A), and that this remains true across the enAre range of abundance shown in Figure 3A.

      1. The revised statements that "We have previously used Southern blotting to demonstrate that approximately 90% of the DNA at one of the most active known origins (ARS1103) is cut by Mcm-MNase (Foss et al., 2021), and to thereby infer that 90% of cells have a double- helicase loaded at this origin. Using this as a benchmark, we estimate that ~1-2% cells have an Mcm complex loaded at the Mcm binding sites in the eighth cohort (ranks 1401- 1600)." partially clarifies how the authors came to the 1-2% number, however, the calculation is still unclear. Based on Figure 1A, there are at least three logs (1,00 fold) difference in the number of CBMSs between the best origins (which is what they state the 90% comes from) to anywhere close to the 1400-1600 rank. Seems like the number should be at best 0.1% and probably less. Either way, the authors need to explain this calculation either in the text or in the text. This sort of number tends to get thrown around later and without a clear explanation readers cannot evaluate its credibility. 
<br /> We apologize for insufficiently clarifying how we arrived at our estimate of licensing. We believe that we have now remedied this, both by incorporating more measurements of licensing to improve our accuracy and by expanding the text to make our calculation unambiguous. We have added a supplemental figure showing the linear regression, based on 7 qPCR-based measurements of licensing, that we used to determine the median level of licensing of the first cohort of 200, and the altered text in the main text reads as follows:

      We have previously used Southern blotting to demonstrate that approximately 90% of the DNA at one of the most active known origins (ARS1103) is cut by Mcm-MNase (Foss et al. 2021), and to thereby infer that 90% of cells have a double-helicase loaded at this origin. Combining this measurement with 6 additional measurements of licensing in cohort 1, we used linear regression (r2=0.7) to infer a median value of 69% for cohort 1. Because the median abundance in the 8th cohort is 1.5% of that in the first cohort, we estimate that CMBSs in the 8th cohort are typically licensed in 1% of cells in the population (69% x 0.015 = 1.0%).

      1. The authors make the point in the introduction and discussion that recent single-molecule studies of replication origins indicate that as many as 20% of the origins identified are outside of known origins. This is very interesting but there seems to be a missed opportunity of comparing the location of these origins with the CBMSs. It would improve the manuscript to include some sort of comparison rather than using only the much older and less accurate ssDNA analysis.

      Unfortunately, coverage and resolution with nanopore-based single-molecule precludes such an analysis.

      1. The authors state at the end of the first paragraph on page 6 that the ChEC data is "very reproducible" which does seem to be the case but it is a little confusing for the knowledgeable reader since one would expect quite different results for an HU arrested strain versus a asynchronous or G1 arrested strain. This is hidden in the analysis in Figure S1 since 13 experiments are compared against one in each plot, however, if one x one comparisons were done there would certainly be substantial differences (or if there are not, there is a problem with the data - e.g. HU arrested cells should lack licensing at early firing origins).

      It may appear counterintuiAve that one could obtain high r2 values when comparing G1 and HU-arrested samples. However, HU arrest was performed by transferring log phase cultures to 200 mM HU and harvesting cells after just 50 minutes. In this situation, most cells will be in G1 or very early S phase. Presumably, increasing times of incubation in HU would cause r2 values to decline.

      1. On page 8 the authors state, "First, clear peaks of ssDNA extend down to the eighth cohort..." This seems to be stretching the data. There are clear peaks for the first five cohorts and then there is a notable change with any peak being much broader, extending over at least 10,000 bp. The authors should reconsider their statement here as it is not well supported by the data.

      We have softened our language to the following: First, peaks of ssDNA signal, as judged by higher signal at the midpoints than the edges, extend down to the eighth cohort (brown line), which corresponds to CMBSs ranked 1401-1600.

      1. There is one last missing reference. Wherever Eaton et al, 2010 is referenced Berbenetz, et al, 2010 (full ref below) should also be referenced as they come to very similar conclusions.

      Berbenetz, N. M., Nislow, C. & Brown, G. W. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6, (2010).

      We have added this reference at all 4 instances in which we reference Eaton et al., 2010.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      There are missing references in several places:

      All references are included, and the references in point 3 have been split according to the reviewer's suggestion.

      1. "For example, 15 of the 56 genes that contained a high abundance site have been implicated in meiosis and sporulation and are not expressed during vegetative growth (~5 out of 56 expected from random sampling), consistent with previous observations (Mori and Shirahige, 2007)." Should include Blitzblau et al., 2012 (PMC3355065) which showed that Mcm2-7 loading was impacted by differences in meiotic and mitotic transcription.

      2. "In contrast to the low abundance sites, the most abundant 500 sites showed a preference for convergent over divergent transcription (left of vertical dotted line in Figure 4B), in agreement with a previous report (Li et al., 2014)." This preference was first pointed out in MacAlpine and Bell, 2005 (PMID: 15868424).

      3. "This sequence is recognized by the Origin Recognition Complex (Orc), a 6-protein complex that loads MCM (Broach et al., 1983; Deshpande and Newlon, 1992; Eaton et al., 2010; Kearsey, 1984; Newlon and Theis, 1993; Singh and Krishnamachari, 2016; Srienc et al., 1985)." This list should include a reference to Bell and Stillman, 1992 (PMID: 1579162), which first described ORC and showed that it recognized the ACS. It would also be more helpful to the reviewer to distinguish the references that identified that ACS from those concerning ORC binding to it.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      On behalf of all the authors, I'd like to thank you for your insightful comments and valuable suggestions, which fully reflect your high level of scientific thinking and point the direction of our research and help us and other future researchers in the field to more comprehensively study and interpret the toxic effects of imidacloprid on honey bee larvae and its potential mechanisms, as well as the mechanisms of larval resistance and adaptations to imidacloprid. We have addressed each of the questions and revised the manuscript point-by-point in response to your comments. Below are detailed point-by-point responses to each question.

      Public Review:

      This study provides evidence of the ability of sublethal imidacloprid doses to affect growth and development of honeybee larva. While checking the effect of doses that do not impact survival or food intake, the authors found changes in the expression of genes related to energy metabolism, antioxidant response, and metabolism of xenobiotics. The authors also identified cell death in the alimentary canal, and disturbances in levels of ROS markers, molting hormones, weight and growth ratio. The study strengths come from exploring different aspects and impacts of imidacloprid exposure on honeybee juvenile stages and for that it demonstrates potential for assessing the risks posed by pesticides. The study weaknesses come from the lack of in depth investigation and an incomplete methodological design. For instance, many of the study conclusions are based on RT-qPCR, which show only a partial snapshot of gene expression, which was performed at a single time point and using whole larvae. There is no understanding of how different organs/tissues might respond to exposure and how they change over time. That creates a problem to understand the mechanisms of damage caused by the pesticide in the situation studied here. There is no investigation of what happens after pupation. The authors show that the doses tested have no impact on survival, food consumption and time to pupation, and the growth index drops from ~0.96 to ~0.92 in exposed larvae, raising the question of its biological significance. The origin of ROS are not investigated, nor do the authors investigate if the larvae recover from the damage observed in the gut after pupation. That is important as it could affect the adult workers' health. One of the study's central claims is that the reduced growth index is due to the extra energy used to overexpress P450s and antioxidant enzymes, but that is based on RT-qPCR only. Other options are not well explored and whether the gut damage could be causing nutrient absorption problems, or the oxidative stress could be impairing mitochondrial energy production is not investigated. These alternatives may also affect the growth index. The authors also state that the honeybee larvae has 7 instars, which is an incorrect as Apis mellifera have 5 larval instars. It is not clear from methods which precise stage of larval development was used for gut preparations. That information is important because prior to pupation larvae defecate and undergo shedding of gut lining. That could profoundly affect some of the results in case gut preparations for microscopy were made close to this stage. A more in-depth investigation and more complete methodological design that investigates the mechanisms of damage and whether the exposures tested could affect adult bees may demonstrate the damage of low insecticide doses to a vital pollinator insect species.

      Recommendations for the authors:

      This study presents a useful investigation on changes in gene expression by real time PCR and some of the physiological consequences of sublethal exposures to the neonicotinoid insecticide imidacloprid in honeybee larvae. It offers preliminary evidence of imidacloprid impacts on the development of bee larvae by interfering with molting and metabolism. Whereas the study provides evidence that small doses of imidacloprid affect larval growth rate, there is no investigation on whether that could affect the overall colony health, and some of the results open the possibility that the larvae may overcome some of the impacts of the exposure. As the authors state, the doses tested show no impact on larvae survival, food consumption or time to pupation. The investigation and methodological design lack in depth to explain the findings and provide incomplete evidence to support the authors conclusions. The study would benefit from a more thorough mechanistic characterization to better sustain the findings and demonstrate their biological relevance.

      Response: I would like to express, on behalf of all the authors, our sincere appreciation for your insightful and insightful comments and suggestions, which significantly enhanced the quality of the manuscript. Your incisive insights point the way for future research in the field of bee biology on the mechanisms underlying imidacloprid-induced delays in larval development.

      In this study, we investigated the effects of imidacloprid on honey bee larval development, including macro and micro changes and possible causes. This is the first of its kind in the field of honeybee biology research. However, we found that the underlying mechanism is extremely complex. The effects of toxic substances on animals and their interactions with larval development are complex and far-reaching. They include oxidative stress and damage; disruption of nutrient metabolic homeostasis; inhibition of detoxification and immunity; adverse effects on the nervous, circulatory, and digestive systems; inflammation, disease, and even organ failure; and subsequent effects on physiological activities such as development, reproduction, and behavior, and even death. These toxic effects interact in complex ways with the development of young animals, with some effects directly or indirectly affecting development while others do not.

      Addressing this complex mechanistic issue based solely on the results of this study is a formidable challenge, which leads to some limitations of our study as pointed out by the reviewers. Although our study is not comprehensive enough in terms of mechanistic analysis and does not fully elucidate the mechanism, we believe it is an important and valuable first step in this area.

      In the future, we will follow the reviewers' suggestions and deliberately redesign the experiments to focus on further research on the issues they raised. These include examining the effects of larval developmental delay on adult and colony health, investigating the post-pupal situation, identifying the source of ROS, and determining whether the larval gut damage observed after pupalization recovers.

      In accordance with the reviewers' comments and suggestions, we have revised the manuscript to improve its rigor and scientific quality. We sincerely ask the reviewers to understand and accept this modification from us!

      Next is our response to each of the questions and valuable suggestions provided by reviewers:

      Recommendations For The Authors:

      1. The authors found a reduction in growth index and body mass, but document no impact on survival, food consumption or time to pupariation. How much exactly is the reduction in growth index? It seems to be from ~0.96 to ~0.93. Is this biologically relevant? Would that be enough to impact the colony health?

      Response: Thank you for your comments. In this study, we observed a gradual decrease in larval growth index from day 4, which stabilized by day 6. At the 4th, 5th and 6th instars, the growth index of the imidacloprid-treated groups were significantly lower than those of the control group by an average of 1.35%, 4.49% and 2.76%, respectively (Figure 1, source data 8). Statistical analysis confirmed the significance of the difference in these results. We have incorporated the above description into the red text on lines 148-152 of the Results section. Regarding the reviewer's inquiry on colony health, including imidacloprid-induced delayed larval development and some reduction in growth index and body weight with no effect on survival, food consumption, or time develop to pupation, because we do not currently have the technical capabilities to culture larvae to adulthood in laboratory incubators, this has resulted in a failure to further investigate the effects of imidacloprid-induced delayed larval development on adult colony health. However, this is a very important scientific question for future colony health. We will design experiments to address this issue in a follow-up study.

      1. The authors find that P450s can help in detoxifying mechanisms to mitigate imidacloprid impacts. That however is a well-known fact. What is new about this claim?

      Response: The point at which the ability to detoxify toxic substances is acquired during early development varies widely among animals. Although many studies have reported that the detoxification function of P450s helps mitigate the effects of imidacloprid in adult honey bees, there is no conclusive evidence as to whether or not honey bee larvae have acquired this ability at early stages of development. This ability is critical to the defense and health of honey bee larvae. Therefore, it is incumbent upon this study to clarify this issue, which is important in explaining the effects of imidacloprid on honey bee larvae.

      1. Some references are cited incorrectly. The first and last name are swapped, for instance Charles et al.

      Response: Thank you very much for pointing out this error, which we have corrected. Please see lines 92 and 889 in our revised version.

      1. I still encounter important methodological flaws. The authors acknowledge my previous suggestions but only address a small fraction of them. The most relevant points regarding the understanding of the mechanisms behind the delayed growth rate remain unexplored. The expression levels of other nAChRs target of imidacloprid in honeybees were not investigated. The expression analyses are still based on a single time point and using whole larvae, which only superficially explore the problem and may lead to misinterpretations. I do not understand the authors claim that a technological breakthrough is required to address these issues, when performing more PCRs and doing dissections should cover the matter.

      Response: Thank you very much for your important comment. You point out several unexplored issues related to understanding the mechanisms behind delayed growth rates. For example, The most relevant points regarding the understanding of the mechanisms behind the delayed growth rate remain unexplored. The expression levels of other nAChRs target of imidacloprid in honeybees were not investigated. The expression analyses are still based on a single time point and using whole larvae. Please allow me to explain. Honeybees (Apis mellifera) have nine different α-subunits, Amelα1-9, and two β-subunits, Amelβ1-2. Amelα5, Amelα7, and Amelα8 are expressed in MB Kenyon cells and AL neurons, and the Amelβ2 subunit is present in Kenyon cells. Amelα2, Amelα3, and Amelα7-2 are expressed in the optic lobes. The aim of this study was to investigate whether imidacloprid induces larval neurotoxicity. Based on the above information, we selected the two most representative nAChRs (Alph1 and Alph2) for analysis. The results showed that exposure to imidacloprid increased the expression of the Alph2 gene and inhibited AChE activity, indicating that imidacloprid is neurotoxic to larvae. This result answered our question of whether imidacloprid induces neurotoxicity in larvae. Therefore, we did not further analyze the expression levels of other nAChRs. We believe that this does not affect the understanding of the mechanism behind the delayed growth rate and that it is not necessarily necessary to analyze all 11 nAChRs to find an answer. We sincerely hope that the reviewers will understand and agree with this.

      Furthermore, regarding the expression analysis based on a single time point and whole larvae. In this study, 72 h after imidacloprid exposure Fig. 1J, 5 days of age) was chosen for sampling because this is when imidacloprid has the greatest and most representative effect on larval development. Therefore, analyzing samples at this time point did not interfere with our exploration of the mechanisms by which imidacloprid causes larval developmental retardation. We used whole larvae rather than individual tissues for sample selection, which is a shortcoming for us. This was mainly due to technical challenges where we were unable to obtain pure single tissues through dissection. Nevertheless, we will make technical breakthroughs in the future so that we can sample and compare different tissues and developmental stages to obtain more comprehensive and accurate data. Thank you again for raising this important issue and for your valuable suggestions.

      1. The authors could in many different ways explore what are the origin of ROS is. That is important to further develop their hypothesis on reduced energy levels.

      Response: Thank you very much for your insightful comment and suggestion, it gives us great insight. Mitochondria are the main producers of ATP for cellular metabolism, accounting for approximately 90% of the total. However, mitochondria are also involved in the generation of reactive oxygen species (ROS). Excessive accumulation of ROS in mitochondria leads to oxidative stress, which in turn damages mitochondria and further increases ROS levels, creating a vicious cycle (Boovarahan and Kurian, 2018). In the present study, it was found that imidacloprid exposure led to increased ROS and MDA levels in larvae (Figure 5A and Figure 5-source data 14), indicating that imidacloprid induced severe oxidative stress and lipid damage, which may damage mitochondria and in turn affect mitochondrial ATP production, resulting in insufficient energy supply for larval development. This factor may also be an important explanation for the larval developmental delay caused by imidacloprid. We have included the above text in our revised manuscript. Please see the lines 432-442 in the revised manuscript.

      1. If there is gut damage, is it restored in the adults? It is not clear from the methods which precise stage of larval development was used for gut preparations. That information is important because prior to pupation larvae defecate for the first time and undergo shedding of the gut lining. That could profoundly affect some of the results in case gut preparations for microscopy were made close to this stage. If no food residues are found in the gut of control larvae, does it mean that they are close to pupation? Could the apoptosis found in gut of exposed larvae be the natural shedding of gut lining prior to pupation? All these possibilities have to be discussed and authors should clarify the precise larval stage used in every assay.

      Response: Thank you for your important comments. In this study, all samples used for the assay were larvae that had developed to 5-day-old after oral administration imidacloprid at 2-day-old. This is described in detail in the Materials and Methods. See lines 507, 517-521 in the revised manuscript. In general, 6-day-old bee larvae cease feeding and begin their first defecation at approximately 7-day-old. However, in our study, intestinal sections were prepared from 5-day-old larvae that had not fasted or defecated, when the intestinal mucosa was normal and not undergoing shedding. In this case, we found that imidacloprid caused damage to intestinal structures, apoptosis of intestinal cells, incomplete formation of the peritrophic membrane, and undigested food residues in the intestine. We believe that these results are objective and reliable.

      1. Honeybee have 5 larval instars, not 7 (Figure 1). That creates confusion about which larval stage the authors used.

      Response: Thank you very much for pointing out this editorial error, which we have corrected, please see Figure 1.

      1. The Results section does not state the numbers by which parameters measures have changed, neither the values of significance. How much is the impact in growth index, body mass, gene fold change, etc?

      Response: Thank you very much for pointing out this important problem. We have revised the Results section according to your suggestions. Please see the revised manuscript.

      1. Mention figures in order (5c comes before 5b in the text)

      Response: Thank you very much for the comment. We have revised according to your suggestions. Please see the lines 208-212 in the revised manuscript.

      1. Paraquat is a herbicide not a pesticide

      Response: Thank you for pointing out the loose wording. We have revised according to your suggestions. Please see the lines 316-319 in the revised manuscript.

      1. What is the evidence that imidacloprid reduces growth index by inhibiting 20E? The authors provide real time data and discuss the data in terms of correlation. But correlation does not mean causation. Reduction in growth index could come from multitude of factors such as ROS affecting mitochondrial energy metabolism.

      Response: We deeply appreciate your insightful comments and valuable suggestions. In this study, although we conducted an in-depth analysis of ecdysone regulation, which is crucial for insect larval development, and found some clues, as you pointed out, this is not the sole reason for larval developmental delay. In fact, animal growth and development are collectively regulated by numerous physiological, biochemical, and genetic factors. The the decline in the growth index may be due to other factors as you mentioned, such as oxidative stress impairing mitochondria, dysregulated neuro-endocrine axis caused by imidacloprid targeting neurons, poor nutrient absorption, impaired movement, etc, as animal growth and development are collectively regulated by numerous physiological, biochemical, and genetic factors. We have incorporated this understanding into the revised manuscript. Please see the lines 389-394 in the revised manuscript.

      1. The authors state that "digestion and breakdown of nutrients is impaired by imidacloprid", the evidence discussed in the paragraph however supports only that imidacloprid impairs some of the genes involved in these processes.

      Response: Thank you for your comments and valuable insights. In this paragraph, a lack of clarity and completeness in our writing may have led to the misconception that the evidence discussed only demonstrates the effects of imidacloprid on specific genes in these processes. In fact, our intent in this paragraph was to analyze and discuss the effects of imidacloprid on nutrient digestion and breakdown in larvae and to explore the causes of larval developmental delay. We demonstrated this using tissue sections, qRT-PCR and correlation analysis, which showed that the intestinal structure was disrupted and the expression of genes involved in nutrient digestion and catabolism was suppressed, resulting in defects in the catabolic utilization of food and consequently the presence of many food residues. In addition, there was a positive correlation between these genes and larval developmental delay. All this may be another important factor contributing to imidacloprid-induced larval developmental delay. We have revised and incorporate the above logic into the revised manuscript. Please see the lines 407-431 in the revised manuscript.

      1. There is no evidence for the claim that overexpressing P450s and antioxidant enzymes cause a reduction in growth index. No transcriptome analysis was performed so it is unknown under the circumstances presented here how all the other P450s, antioxidant genes and overall gene profiles are responding. Surely, some genes will be repressed. Reduction in growth index could stem from, oxidative stress impairing mitochondria, dysregulated neuro-endocrine axis caused by imidacloprid targeting neurons, poor nutrient absorption, impaired movement, etc.

      Response: Thank you for your comments and valuable insights. Indeed, as you have pointed out, drawing the conclusion that antioxidants and detoxification are significant contributors to larval developmental retardation solely based on correlation analysis is inherently flawed and lacks critical support, especially in the absence of P450 and antioxidant enzyme overexpression and comprehensive transcriptome analysis of other P450s, antioxidant genes, and the entire gene map. We have revised and included in the revised manuscript. Please see lines 461-467 in the red text in the revised manuscript. We have revised and incorporate the above logic into the revised manuscript. Please see the lines 407-431 in the revised manuscript.

      1. How come the decreased ATP and glycogen levels have no effect on time to pupation? Extra time points for gene expression, measurements of gut damage, ATP levels, ROS, etc, are vital to answer how the exposed larvae eventually catch up with the unexposed group. Also, it is vital to understand whether these larval impacts translate to impacts on adults.

      Response: We sincerely thank you for your insightful comments and suggestions! These important scientific issues you've raised are a good example of your high-level scientific thinking, and they will help us and other future researchers in the field to more comprehensively study and interpret the toxic effects of imidacloprid on honey bee larvae and their potential mechanisms, as well as the mechanisms of larval resistance and adaptation to imidacloprid. According to your comments, we will adapt our experiments and conduct more thorough research in the future to address the above issues.

      1. I am confused about the author's definition of developmental rate; rate gives the notion of speed to achieve something. But the authors use developmental rate as a measure of viability (number of larvae that successfully pupated). There seems to be a significant decrease in their developmental rate plot (Fig 1i), but at the same time the authors show in Figure 1c (and mention throughout the manuscript) that there is no difference in probability of survival. This is quite confusing and the method section regarding these data is too concise and does little to help explain what the authors were trying to measure. The whole section on developmental traits would benefit of more details on how experiments were conducted and equipment used.

      Response: Thank you so much for your valuable comments. Yes, as you can see, there appears to be a significant decrease in developmental rate but no difference in survival probability, which is an intriguing finding of this study. This finding suggests that the 377 ppb imidacloprid dose is not as harmful to the larvae as previously thought. Imidacloprid appeared to limit the larval ability to molt and develop only to a certain extent, but had no effect on the developmental process, let alone survival. It's worth investigating the underlying mechanism. As a result, we have included this question in the design of future studies. In addition, following your suggestion, we have revised the description of the material and methods in this section, including the experimental method in more detail. For more information, please see the revised manuscript, lines 530-541.

      1. The authors should try to make it clear what percentage of exposed larvae become adults? I am confused because the plot called developmental rate might be trying to convey this message, but developmental rate and viability are very distinct traits. What is the difference, if any, in the time it takes for exposed larvae to become adults in comparison to non-exposed ones? Is there a difference in adult body weight? The answers to these last two questions are important to start understanding if the impacts of imidacloprid on larvae alimentation would still impact these same individuals once they become adults, i.e., would there be impacts for the colony and workers activity?

      Response: Thank you very much for your insightful comments. Unfortunately, this is where the research falls short. Culturing larvae to adulthood in 24-well cell culture plates is a significant technical challenge that we have yet to overcome. As a result, the important questions you raise, such as what percentage of exposed larvae become adults? How does the time to adulthood differ (if at all) for exposed larvae versus non-exposed larvae? Is there a difference in adult weight? Do the effects of imidacloprid on larval feeding persist after these individuals reach adulthood? Does imidacloprid damage to larvae affect colony and adult activity? We do not have answers at this time. We are aware that answers to the above questions will help people better understand how serious the effects of imidacloprid environmental residues on honey bee larvae and adults, as well as bee colonies as a whole, are, and will draw sufficient attention to them. We intend to break through this technological bottleneck of culture larvae to adulthood in future studies and incorporate the above scientific questions into our next research design. Thank you again for your insightful comments! This gives us new research ideas.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important paper builds on a method, previously conceptualized and validated, of genetic control for insect populations. The method, called pgSIT, uses integrated CRISPR-Cas9 based constructs to generate, in certain combinations of genotypes, mutations that cause both male sterility and female inviability. Release of such genotypes in sufficiently large numbers can lead to an inundation of a local insect population with sterile males and this can lead to localised population suppression, which represents an important method of control for problematic insect populations. The data are convincing and will be valuable to anyone working on vector control strategies.

      Public Reviews:

      Reviewer #1 (Public Review):

      Precision guided sterile insect technology (pgSIT) is a means of mosquito vector control that aims to simultaneously kill females while generating sterile males for field release. These sterile males are expected to mate with 'wild' females resulting in very few eggs being laid or low hatching rates. Repeated releases are expected to result in the suppression of the mosquito population. This method avoids cumbersome sex-sorting while generating the sterile males. Importantly, until release, the two genetic elements that bring about female lethality and male sterility - the Cas9 and the gRNA carrying mosquitoes - are maintained as separate lines. They are crossed only prior to release, and therefore, this approach is considered to be more safe than gene drives.

      The authors had made a version of this pgSIT in their 2021 paper where they targeted β-Tubulin 85D, which is only expressed in the male testes and its loss-of-function results in male sterility. In that pgSIT, they did not have female lethality, but generated flightless females by simultaneously targeted myosin heavy chain, which is expressed only in the female wings. Here the authors argue, that the survival of females is not ideal, and so modify their 2021 approach to achieve female lethality/sterility.

      To do this, they target two genes - the female specific isoform of Dsx and intersex. They use multiple gRNAs against these genes and validate their ability to cause female lethality/sterility. Having verified that these do indeed affect female fertility, they combine gRNAs against Dsx and ix to generate female lethality/sterility and use β-Tubulin 85D to generate male sterility (previously validated). When these gRNA mosquitoes are crossed to Cas9 and the progeny crossed to WT (the set-up for pgSIT), they find that very few eggs are laid, larval death is high, and what emerges are males or intersex progeny that are sterile.

      As this is the requirement for pgSIT, the authors then test if it is able to induce population suppression. To do this, they conduct cage trials and find that only when they use 20:1 or 40:1 ratio of pgSIT:WT cages, does the population crash in 4-5 generations. They model this pgSIT's ability to suppress a population in the wild. Unfortunately, I was not able to assess what parameters from their pgSIT were used in the model and therefore the predicted efficacy of their pgSIT, (though the range of 0-.1 is not great, given that the assessment is between 0-0.15).

      We express our sincere appreciation for the valuable comments received. A wide range of ♀ viability and ♂ fertility values were explored in the model. The results determined that: “Achieving a ≥90% probability of elimination places slightly tighter restrictions on ♀ viability and ♂ fertility - a safe ballpark being ♀ viability and ♂ fertility both in the range 0-0.10, given a release scheme of ~26 releases of 250 pgSIT eggs per wild adult (Fig. 4B). These results suggest a target product profile for pgSIT to be ♀ viability and ♂ fertility both in the range 0-0.10.” A subsequent sentence has been added pointing out how the described pgSIT strain falls within this range: “The pgSIT strain described here falls well within these bounds, with ♀ viability of 0 and ♂ fertility of ~0.01.” The parameters of the described pgSIT strain are also listed throughout the paper and quoted here: “Cas9 in combination with gRNAdsx,ix,βTub induces either the lethality or transformation of pgSIT ♀’s into sterile unfit ⚥’s.” And: “Firstly, we determined that pgSIT males were not 100% sterile, with an estimated ~1% still producing some progeny.”

      Finally, they also develop a SENSR with a rapid fluorescence read-out for detecting the transgene in the field. They show that this sensor is specific and sensitive, detecting low copy numbers of the transgene. This would be important for monitoring any release.

      Overall, the data are clear and well presented. The manuscript is well written (albeit likely dense for the uninitiated!). I had concerns about the efficacy of generating the pgSIT animals - the overall number of eggs hatched from the gRNA (X) Cas9 cross appears to be low, therefore, very large numbers of parental animals would have to be reared and crossed to obtain enough sterile males for the SIT. In addition to this, I was concerned about the intersex progeny that can blood-feed. These could potentially contribute to the population and it would be useful to see the data that suggest that these numbers are low and the animals will not be competent in the field.

      Reviewer #2 (Public Review):

      This is a thorough and convincing body of work that represents an incremental but significant improvement on iterations of this method of CRISPR-based Sterile Insect Technique ('pgSIT'). In this version, compared to previous, the authors target more genes than previously, in order to induce both female inviability (targeting the genes intersex and doublesex, compared to fem-myo previously) and male sterility (targeting a beta-tubulin, as previously in the release generation. The characterization of the lines is extensive and this data will be useful to the field. However, what is lacking is some context as to how this formulation compares to the previous iteration. Mention is made of the possible advantage of removing most females, compared to just making them flightless (as previously) but there is no direct comparison, either experimental, or theoretical i.e. imputing the life history traits into a model. For me this is a weakness, yet easily addressed. In a similar vein, much is made in alluding to the 'safety concerns of gene drive' and how this is a more palatable half-way house, just because it has CRISPR component within it; it is not. It would be much more sensible, and more informative, to compare this pgSIT technology to RIDL (release of insects carrying a dominant lethal), which is essentially a transgene-based version of the Sterile Insect Technique, as is the work presented here.

      We express our sincere appreciation for the valuable comments received. A wide range of ♀ viability and ♂ fertility values were explored in the model. Given the intricate nature of this study and taking into account the recommendations provided by multiple reviewers and the editor, we have eliminated superfluous comparisons among various methodologies.

      The authors achieve impressive results and show that these strains, under a scenario of high levels of release ratios compared to WT, could achieve significant local suppression of mosquito populations. The sensitivity analysis that examines the effect of changing different biological or release parameters is well performed and very informative.

      The authors are honest in acknowledging that there are still challenges in bringing this to field release, namely in developing sexing strains and optimizing release strategies - a question I have here is how to actually release eggs, and could variability in the efficiency of this aspect be modelled in the sensitivity analysis? It seems to me like this could be a challenge and inherently very variable.

      We really appreciate comments. Several approaches are available to release eggs - either in pre-existing breeding sites in the field, or in artificial breeding sites (e.g., cups). We have added a sentence in the Discussion section to highlight that this is an area requiring further research: “Secondly, studies are required to determine the survival and mating competitiveness of released pgSIT males under field conditions, and to optimize their release protocol.” Regarding the efficiency of egg releases, the following sentence in the modeling results section has been added: “We assume released eggs have the same survival probability as wild-laid eggs; however if released eggs do have higher mortality, this would be equivalent to considering a smaller release.” As stated in the modeling results (and depicted in Figure 4 and Supplementary Figure 5): “Suppression outcomes were found to be most sensitive to release schedule parameters (number, size and interval of releases), ♂ fertility and ♀ viability.” It follows that suppression outcomes are equivalently sensitive to the efficiency of an egg release.

      Reviewer #3 (Public Review):

      Summary and Strengths:

      The manuscript by Li et al. presents an elegant application of sterile insect technology (pgSIT) utilizing a CRISPR-Cas9 system to suppress mosquito vector populations. The pgSIT technique outlined in this paper employs a binary system where Cas9 and gRNA are conjoined in experimental crosses to yield sterile male mosquitoes. Employing a multiplexed strategy, the authors combine multiple gRNA to concurrently target various genes within a single locus. This approach successfully showcases the disruption of three distinct genes at different genomic positions, resulting in the creation of highly effective sterile mosquitoes for population control. The pioneering work of the Akbari lab has been instrumental in developing this technology, previously demonstrating its efficacy in Drosophila and Aedes aegypti. By targeting the female-specific splice isoform (exon-5) of doublesex in conjunction with intersex and β-tubulin, the researchers induce female lethality, leading to a predominance of sterile male mosquitoes. This innovation is particularly noteworthy as the deployment of sterile mosquitoes on a large scale typically requires substantial investment in sex sorting. However, this study circumvents this challenge through genetic manipulation.

      Weaknesses:

      One notable concern arising from this manuscript pertains to the absence of data regarding the potential off-target effects of the gRNA. Given the utilization of multiple gRNA, the risk of unintended mutations in non-target areas of the genome increases. With around 1% of males still capable of producing fertile offspring, understanding the frequency of unintended genome targeting becomes crucial. Such mutations could potentially become fixed within the natural population.

      We express our sincere appreciation for the valuable comments received and fully agree with the reviewer regarding the importance of understanding the frequency of unintended genome targeting. However, the likelihood of off-target effects becoming fixed within the population is exceedingly low. To mitigate potential negative impacts, we employed CHOPCHOP V3.0.0 (https://chopchop.cbu.uib.no) for the selection of gRNAs, which will specifically tminimize the occurrence of genomic off-target cleavage events. Furthermore, our releasing process will be carried out in multiple rounds. In the event that an undesired mutant is introduced into the local population, the mutated gene will either be quickly eradicated through subsequent rounds of releases or be naturally eliminated through the process of natural selection over time.

      The experiments are well-conceived, featuring suitable controls and repeated trials to yield statistically significant data. However, a primary issue with the manuscript lies in its data presentation. The authors' graphical representations are intricate and demand considerable attention to discern the nuances, especially due to the striking similarity between the symbols representing different genotypes. As it stands, the manuscript primarily caters to experts within the field, thereby warranting improvements in data visualization for broader comprehension.

      We appreciate the comment. However, as this work is indeed complex and intricate and as there is limitations imposed by the publisher on data visualizations (i.e. number of figures in the main text, etc.) we have tried our best for presenting our data in full.

      All three reviewers were appreciative of the work presented in this manuscript. There were some common concerns that we shared, that the authors could consider revising. They are listed below.

      Essential revisions:

      1. Formal comparison with the previous/other methods: The authors make many statements that compare this pgSIT with their previous method, gene drives, or with RIDL. We suggest that they focus their comparisons within the scope of data and avoid comparisons between RIDL, gene drive, and pgSIT that are based on perceptions of these methods. It would be useful if, for example, they could impute life history traits and demonstrate this pgSIT's efficacy over their previous versions.

      We express our sincere appreciation for the valuable comments received. We have removed the unnecessary comparisons between different methods, please review the revised version.

      1. Writing and presentation of figures: The authors should please take advantage of the eLife format and unpack each sentence/figure so that it's accessible to readers outside this field.

      We appreciate your comment, and we have implemented some necessary changes based on your suggestions.

      1. Data to support claims made in passing: There are many instances, such as detailed in the reviews (and the entire second paragraph in the discussion) that are not supported by data. The authors should either provide that data or not make these claims.

      Thank you for the comment. We have removed these claims.

      1. Off target effects: There is the formal possibility that off target effects that might get fixed in the population. Could the authors please address this in the discussion.

      We appreciate the comment and fully agree with the reviewer regarding the importance of understanding the frequency of unintended genome targeting. However, the likelihood of off-target effects becoming fixed within the population is exceedingly low. We have address this in the discussion.

      “Even though mutations could potentially become fixed within the natural population, the likelihood of off-target effects becoming fixed within the population is exceedingly low. To mitigate potential negative impacts, we employed CHOPCHOP V3.0.0 (https://chopchop.cbu.uib.no) for the selection of gRNAs, specifically to minimize the occurrence of genomic off-target cleavage events. Furthermore, our releasing process will be carried out in multiple rounds. Even in the event that an undesired mutant is introduced into the local population, it will either be completely eradicated through subsequent rounds of releases or be naturally eliminated through the process of natural selection over time.”

      Aside from this, we ask that the authors please pay attention to the detailed reviews.

      Reviewer #1 (Recommendations For The Authors):

      The writing: Each sentence is packed with information and while this is fine for those immersed in the field, it might be dense for those who are not. There are a lot of nuances in such an approach and clearly laying it out for the reader is important. The authors should unpack some of these sentences to make their work more accessible.

      Thank you for the comment. We have unpacked some of sentences, please review the revised version.

      It will help to have a schematic linked to the introduction about how these mosquitoes are designed to be used. Which strains would be scaled up in the lab, which ones (and what stage) could be released, and in which animal/generation they expect sterility or lethality. This would be useful while interpreting the schematics of the genetic crosses in the rest of the figures (1B, 2B). Li et al 2021 has something to this effect. I say this particularly because in the text, 'pgSIT' is used to refer to both the lab stocks and the F1s.

      We really appreciate the suggestion to incorporate a schematic into the introduction to clarify the intended use of these mosquitoes. Taking into account all the suggestions, we would like to keep textual descriptions and context provided within the manuscript, which, together with Figures 1B and 2B, illustrate our intentions. Nevertheless, we value your input and have taken other feedback into account to improve the overall quality of the content.

      Because Figure 1A depicts all the gRNAs I thought that's what they were testing in the first results section. But the legends seems to suggest that the individual gRNAs have been tested. Such issues will be sorted with attention to the writing. It would also be nice to have Figure 2A here.

      We apologize for any misunderstanding. Figure 1A displays two gRNA constructs: one for dsx (comprising 4 gRNAs) and another for ix (with 2 gRNAs). All of these gRNAs were tested in the initial results section. Subsequently, we engineered the final gRNA construct, denoted as gRNAdsx,ix,βTub, which combines the effective gRNAs described earlier (3 targeting dsx and 1 targeting ix, as illustrated in Supplementary Figure 2).

      It wasn't clear to me how egg laying percentages were calculated or what it means.

      We appreciate your comment. Female fecundity depends on the egg output (egg laying percentage) and the egg hatching rate, since insect female can lay unfertalized eggs that does not hatch. Egg laying percentages were calculated by dividing the numbers of laid eggs by a test female group by that of the control female group that laid the highest egg number. This procedure is called normalization and enable relative comparison of laid egg number.

      How is hatching at times more than laying?

      When a female group laid a small egg number but the high percentage of those eggs hatched.

      Calling something 'intersex': The authors are assessing intersex by malformed genitalia, maxillary palps and ovaries. But the genitalia defects in Fig1D were not clear to me. Can the authors show better images? While the MP snd ovary phenotypes were clear, it would be nice to see these quantified - what proportion of the females have each/some/all of these phenotypes? It would be nice to see this quantified. (They have some of this in the supplementary table).

      We express our gratitude for the comment received and acknowledge the issue regarding the clarity of the images. It is important to note that these photographs represent the highest level of clarity achieved thus far. We value your interest in the quantification of the observed phenotypes. However, due to certain constraints, we were unable to quantify the proportions for all the females, and we did not retain all the samples needed for this specific quantification.

      It's interesting that 50% of the intersex don't blood-feed - is this because they do not have appropriately formed stylets? It would be important to quantify the number of hatch-able eggs. This is particularly important in the context of field application and should ideally be included in the mathematical modelling. In the discussion, the authors mention that they are not able to host-seek and a variety of other behaviours - these data should be presented as it would be important for assessing the efficacy of the pgSIT.

      Thank you for the comment. We did not find the mutant stylets from these intersex mosquitoes. We agree with the reviewer that the number of hatchable eggs is particularly important in the context of field application. Indeed, the number of hatchable eggs is what was considered in the mathematical modeling. We did a blood feed assay (small cage and big cage) for host seeking behavior. Data were presented in Supplementary Table 5.

      At the end of the first results section, the authors state, "Taken together, these findings reveal that ♀-specific lethality and/or ⚥..." But I don't see data that show female-specific lethality until Figure 2C.

      Thank you for pointing out this. In order to describe our results clearly, we have deleted “♀-specific lethality and/or”

      In the combined gRNA mosquito (the pgSIT), they find that the cross between the gRNA and Cas9 results in very few eggs being laid, high larval death, and what emerges are males. This suggests that it would be a poor pgSIT, right? You'd have to set up huge crosses to get enough males emerging in the wild to mate with WT females to bring about population suppression. Could the authors comment on this?

      We appreciate the comment. Even in the presence of imperfections, such as reduced egg production resulting from the gRNA and Cas9 cross and the necessity of extensive mating to obtain an adequate number of males, population suppression is very promising with the pgSIT, both in terms of the potential to eliminate a mosquito population, or to suppress it to an extent that would largely interrupt disease transmission. It's worth noting that our current efforts serve as a validation of the system before its potential large-scale application, because we have demonstrated that removing females by disrupting sex determinate genes is possible with pgSIT, which can inform the development of such systems in other species in the future.

      If I'm reading Figure 2C right, the authors have combined the results from two types of crosses in the last two plots: 1) the Cas9 (X) gRNA mosquitoes and 2) the progeny from these crossed to WTs. This is not ideal. I would suggest the authors unpack the text around this data and plot it separately.

      We really appreciate the comment here, the panel 2C depicts the phenotypic data of the F1 progeny generated by the cross of the parents indicated below the X axis: egg-to-adult survival, larval death, sex ratios, and fertility. The fertility of F1 progeny is the major phenotypic feature for the project. To assess the fertility of the surviving F1 progeny, we had to cross the F1 females and males to WT males and females, respectively and assess the hatching rate of produced eggs before sacrificing emerged larvae and unhatched eggs. It's important to note that mosquito females can lay unfertilized eggs that fail to hatch.

      The text around 2F needs to be more explanatory. There are lots of labels in the figure that are not referred to, making it difficult to follow the data.

      We have gone through and expanded many of the figure legends and modified some figures to help make them more understandable.

      The supplementary figure numbering is off.

      We really appreciate the comment. The supplementary figure numbering have been fixed.

      I cannot comment on Figure 4 as this is outside my expertise. However, I do feel that some attention to the writing might help make the approach more accessible to the invested advanced lay-person.

      We appreciate the comment, and we re-wrote some of the sentences describing Figure 4.

      Reviewer #2 (Recommendations For The Authors):

      Line 49 'resistances' is a strange plural.

      Corrected. Thank you so much!

      the genitive, used with the sex symbols throughout, looks very weird e.eg line 60, 66 etc. Also the intersex symbol, on my copy at least, just prints as a square

      These have been fixed in the revised version. Thank you so much!

      Line 74 syntax (...: the spread of...") seems off

      Corrected. Thank you for pointing out this.

      Line 80-81 " to address some of the challenges with gene drives, pgSIT also leverages....." this is a straw man/red herring argument, and simply does not follow. It is this element that I raised above in the public review. See also line 84 'gene drive safety concerns'.

      Thank you, we have re-wrote the paragraph.

      Line 128 "the induced phenotypes were especially strong in intersex individuals" - this is a curious statement since, if intersex, they are by definition already showing a strongly induced phenotype

      We apologize for the lack of clarity and have updated the text, we have deleted “the induced phenotypes were especially strong in intersex individuals”, to be more explicit, now stating “These gRNAdsx/+; Cas9/+ ⚥ exhibited multiple malformed morphological features, such as mutant maxillary palps, abnormal genitalia, and malformed ovaries”

      The extent and completeness of the supplementary data is appreciated but there needs to be some statistical tests applied to back up statements like 'showed normal fertility' (line 138) or wind lengths 'were a bit larger'. None seem to have been applied.

      We appreciate the comment. We've removed these sentences in the new version.

      Supp Fig 4 - on left of panel C there is a small blue square at dsx locus that is unexplained. What is this?

      Thank you for pointing this. It was a mistake, we have removed the small blue square from Sup Fig4.

      Line 182 the reduction in flight activity in release genotype of pgSIT males - is it only those coming with the maternal source of Cas9 that are plotted (only pink dots)?

      We appreciate the comment. pgSIT males, regardless of whether they originate from a maternal or paternal source of Cas9, exhibit a similar reduction in flight activity compared to wild-type (WT) males.

      Figure 3A legend - I think there is a typo that says males were fed

      Corrected. Thank you for pointing this out.

      “♂’s” to “♀’s”

      On the window of protection (WOP) plots (e.g. supp fig 12) what is the unit on Y-axis for WOP? It goes from 0-1, as if it were probability, but I was expecting some duration.

      Thanks for the comment. The y-axis for WOP in Supp Fig 12 had been normalized unnecessarily. It has now been corrected to span from 0 to 5 years.

      Fig 4B blue (line) on blue(shading) is impossible to decipher on my copy

      Thank you for pointing this out. We have changed the colors of the traces (population dynamics), made the window of protection line thicker, and have made the shading less opaque to make the population dynamics in this figure clearer.

      Line 250 and 252: supp Fig 13 (not 12)

      Corrected. Thank you for pointing this out.

      Line 279 "potentially a more widespread effect of sex determination genes than previously expected" - I simply don't see how this is so, or why there is the need to make such a claim. Dsx is known to underpin almost of somatic determination of sex-specific morphologies, in a range of insects.

      We appreciate the comment. We have delete the sentence:

      “Taken together, these observations indicate a potentially more widespread effect of sex determination genes than previously expected, though regardless.”

      Line 320 "We would expect pgSIT to be regulated similarly to Oxitec's RIDL" because they are similar, which goes to my main point above about more appropriate context, and this warrants some direct attention to a comparison of the efficacy.

      We appreciate the comment. We have delete these sentences:

      “We would expect pgSIT to be regulated similarly to Oxitec's RIDL technology (Spinner et al., 2022), which has already been successfully deployed in numerous locations, including the United States.”

      Was there a minimal performance advantage with strain #1 with the triple locus g-RNA suite, over the other two strains? Am just curious as to why one was chosen over the other

      We appreciate the comment. There was no performance advantage with the strain #1 over the other two strains.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      In this manuscript, Hagihara et al. characterized the relationship between the changes in lactate and pH and the behavioral phenotypes in different animal models of neuropsychiatric disorders at a large-scale level. The authors have previously reported that increased lactate levels and decreased pH are commonly observed in the brains of five genetic mouse models of schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD). In this study, they expanded the detection range to 109 strains or conditions of animal models, covering neuropsychiatric disorders and neurodegenerative disorders. Through statistical analysis of the first 65 strains/conditions of animal models which were set as exploratory cohort, the authors found that most strains showed decreased pH and increased lactate levels in the brains. There was a significant negative correlation between pH and lactate levels both at the strain/condition level and the individual animal level. Besides, only working memory was negatively correlated with brain lactate levels. These results were successfully duplicated by studying the confirmative cohort, including 44 strains/conditions of animal models. In all strains/conditions, the lactate levels were not correlated with age, sex, or storage duration of brain samples.

      Strengths

      1. The manuscript is well-written and structured. In particular, the discussion is really nice, covering many potential mechanisms for the altered lactate levels in these disease models.

      2. Tremendous efforts were made to recruit a huge number of various animal models, giving the conclusions sufficient power.

      We are grateful to Reviewer #1 for the positive evaluation of our manuscript. As indicated in the responses that follow, we have taken all the comments and suggestions made by the reviewer into account in the revised version of our paper.

      Weaknesses

      1. The biggest concern of this study is the limited novelty. The point of "altered pH and/or lactate levels in the brains from human and rodent animals of neuropsychiatric disorders" has been reported by the same lab and other groups in many previous papers.

      The previous study mentioned by the reviewer evaluated a small number of animal models of psychiatric disorders. The novelty of this study is underscored by two key findings: 1) the generality of changes in brain pH and lactate levels across a diverse range of disease models, and 2) the association of these phenomenon with specific behaviors. First, this large-scale animal model study revealed that alterations in brain pH/lactate levels can be found in approximately 30% of the animal models examined. This generality suggests a common basis in the neuropathophysiology of not only schizophrenia, bipolar disorder, and ASD, but also of Alzheimer’s disease (APP-J20 Tg mice), Down’s syndrome (Ts1Cje mice), Mowat–Wilson syndrome (Zeb2 KO mice), Dravet syndrome (Scn1a-A1783V KI mice), tuberous sclerosis complex (Tsc2 KO mice), Ehlers-Danlos syndrome (Tnxb KO mice), and comorbid depression in diabetes (streptozotocin-treated mice) and colitis (dextran sulfate sodium-treated mice). Secondly, this study demonstrated that these phenomenon in the brain are primarily associated with working memory impairment over depression- and anxiety-related behaviors. Importantly, developing these hypotheses in an exploratory cohort of animals and confirming them in an independent cohort within this study enhances the robustness and reliability of our hypotheses, which we believe are equally crucial as their novelty. Accordingly, we have revised the discussion section as follows (page 31, line 7):

      Original text

      "We performed a large-scale analysis of brain pH and lactate levels in 109 animal models of neuropsychiatric disorders, which revealed the diversity of brain energy metabolism among these animal models. Some strains of mice that were considered models of different diseases showed similar patterns of changes in pH and lactate levels. Specifically, the SZ/ID models (Ppp3r1 KO, Nrgn KO mice, and Hivep2 KO mice), BD/ID model (Camk2a KO mice), ASD model (Chd8 KO mice), depression models (mice exposed to social defeat stress, corticosterone-treated mice, and Sert KO mice), AD model (APP-J20 Tg mice), and DM model (Il18 KO and STZ-treated mice) commonly exhibited decreased brain pH and increased lactate levels."

      Revised text

      "We performed a large-scale analysis of brain pH and lactate levels in 109 animal models of neuropsychiatric disorders, which revealed the diversity of brain energy metabolism among these animal models. The key findings of this study are as follows: 1) the generality of changes in brain pH and lactate levels across a diverse range of disease models, and 2) the association of these phenomenon with specific behaviors. First, this large-scale animal model study revealed that alterations in brain pH/lactate levels can be found in approximately 30% of the animal models examined. This generality suggests a common basis in the neuropathophysiology of not only schizophrenia, bipolar disorder, and ASD, but also of Alzheimer’s disease (APP-J20 Tg mice), Down’s syndrome (Ts1Cje mice), Mowat–Wilson syndrome (Zeb2 KO mice), Dravet syndrome (Scn1a-A1783V KI mice), tuberous sclerosis complex (Tsc2 KO mice), Ehlers-Danlos syndrome (Tnxb KO mice), and comorbid depression in diabetes (streptozotocin-treated mice) and colitis (dextran sulfate sodium-treated mice). Secondly, this study demonstrated that these phenomenon in the brain are primarily associated with working memory impairment over depression- and anxiety-related behaviors. Importantly, developing these hypotheses in an exploratory cohort of animals and confirming them in an independent cohort within this study enhances the robustness and reliability of our hypotheses."

      1. This study is mostly descriptive, lacking functional investigations. Although a larger cohort of animal models were studied which makes the conclusion more solid, limited conceptual advance is contributed to the relevant field, as we are still not clear about what the altered levels of pH and lactate mean for the pathogenesis of neuropsychiatric disorders.

      We agree with the reviewer’s comment. To address this issue, it is necessary to comprehensively identify brain regions and cell types responsible for pH and lactate changes in each strain/condition of animals, as these may differ among them. Subsequently, based on such findings, we can then proceed with functional investigations that specifically target the identified brain regions/cell types. However, conducting such investigations would require a significant amount of time to complete, approximately 2–3 years, and is beyond the scope of this study. Therefore, we would like to conduct such studies in the future. We have mentioned this limitation by revising the discussion section of this study as follows (page 43, line 5):

      Original text

      "Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Further studies are needed to address this issue by measuring microdissected brain samples and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

      Revised text:

      "The major limitations of this study include the absence of analyses specific to brain regions or cell types and the lack of functional investigations. Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. It is known that certain molecular expression profiles and signaling pathways display brain region-specific alterations, and in some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al., 2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has been reported that the basal intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Given the assumption that the brain regions and cell types responsible for pH and lactate changes vary across different strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each animal model individually. This can be achieved through techniques such as evaluating microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently, based on such findings, it is also necessary to conduct functional analyses for each model animal by manipulating pH or lactate levels in specific brain regions/cell types and evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

      1. The experiment procedure is also a concern. The brains from animal models were acutely collected without cardiac perfusion in this study, which suggests that resident blood may contaminate the brain samples. The lactate is enriched in the blood, making it a potential confounded factor to affect the lactate levels as well as pH in the brain samples.

      We thank the reviewer for pointing this out. We have discussed this issue as follows (page 45, line 4):

      We also note that there are several potential confounding factors in this study. The brain samples analyzed in this study contained cerebral blood. The cerebral blood volume is estimated to be approximately 20–50 μl/g in human and feline brains (Leenders et al., 1990; van Zijl et al., 1998). When we extrapolate these values to murine brains, it would imply that the proportion of blood contamination in the brain homogenates analyzed is 0.2–0.6%. Additionally, lactate concentrations in the blood are two to three times higher than those in the brains of mice (Béland-Millar et al., 2017). Therefore, even if there were differences in the amount of resident blood in the brains between control and experimental animals, the impact of such differences on the lactate measurements would likely be minimal.

      1. The lactate and pH levels may also be affected by other confounded factors, such as circadian period, and locomotor activity before the mice were sacrificed. This should also be discussed in the paper.

      Following the reviewer’s suggestion, we have discussed the matter as follows (page 45, line 12): Other confounding factors include circadian variation and locomotor activity before the brain sampling. Lactate levels are known to exhibit circadian rhythm in the rodent cortex, transitioning gradually from lower levels during the light period to higher levels during the dark period (Dash et al., 2012; Shram et al., 2002; Wallace et al., 2022). The variation in the times of sample collection during the day was basically kept minimized within each strain/condition of animals. However, the sample collection times were not explicitly matched across the different laboratories, which may contribute to variations in the baseline control levels of pH and lactate among different strains/conditions of animals (Table S3). In addition, motor activity and wake/sleep status immediately before brain sampling can also influence brain lactate levels (Neylor et al., 2012; Shram et al., 2002). These factors have the potential to act as confounding variables in the measurement of brain lactate and pH in animals.

      1. Another concern is the animal models. Although previous studies have demonstrated that dysfunctions of these genes could cause related phenotypes for certain disorders, many of them are not acknowledged by the field as reliable disease models. Besides, gene deficiency could also cause many known or unknown unrelated phenotypes, which may contribute to the altered levels of lactate and pH, too. In this circumstance, the conclusion "pH and lactate levels are transdiagnostic endophenotype of neuropsychiatric disorders" is somewhat overstated.

      We thank the reviewer for pointing this out. We should have taken this issue into consideration. Accordingly, we have discussed this issue as the limitation of this study in the discussion section as follows (page 34, line 14):

      "While we analyzed 109 strains/conditions of animals, we included both those that are widely recognized as animal models for specific neuropsychiatric disorders and those that are not. For example, while interleukin 18 (Il18) KO mice and mitofusin 2 (hMfn2-D210V) Tg mice exhibited changes in pH and lactate levels, the evidence that these genes are associated with specific neuropsychiatric disorders is limited. However, these strains of mice exhibited behavioral abnormalities related to neuropsychiatric disorders, such as depressive-like behaviors and impaired working memory (Ishikawa et al., 2019, 2021; Yamanishi et al., 2019). Furthermore, these mice showed maturation abnormality in the hippocampal dentate gyrus and neuronal degeneration due to mitochondrial dysfunction, respectively, suggesting conceptual validity for utilization as animal models for neuropsychiatric and neurodegenerative disorders (Cunnane, et al., 2021; Burté et al., 2015; Hagihara et al., 2013, 2019). In contrast, mice with heterozygous KO of the synaptic Ras GTPase-activating protein 1 (syngap1), whose mutations have been identified in human patients with ID and ASD, showed an array of behavioral abnormalities relevant to the disorders (Komiyama et al., 2002; Nakajima et al., 2019), but did not show changes in brain pH or lactate levels. Therefore, while changes in brain pH and lactate levels could be transdiagnostic endophenotypes of neuropsychiatric disorders, they might occur depending on the subpopulation due to the distinct genetic and environmental causes or specific disease states in certain disorders."

      Regarding the latter point suggested by the reviewer, we consider that alterations in brain pH and lactate levels occur, whether they are a direct and known consequence or indirect and unknown ones of genetic modifications. We have proposed that genetic modifications, along with environmental stimulations, may induce various changes, which subsequently converge toward specific endophenotypes in the brain, such as neuronal hyperexcitation, inflammation, and maturational abnormalities (Hagihara et al., 2013; Yamasaki et al., 2008). The findings of this study, demonstrating the commonality of alteration of brain pH and lactate levels, align with this concept, suggesting that these alterations could serve as brain endophenotypes in multiple neuropsychiatric disorders. We have revised the discussion section as follows (page 42, line 8):

      Original text

      "These findings suggest that the observed increase in lactate production and subsequent decrease in pH in whole-brain samples may be attributed to the hyperactivity of specific neural circuits in a subset of the examined animal models."

      Revised text

      "These findings suggest that neuronal hyperexcitation may be one of the common factors leading to increased lactate production and decreased pH in the brain. We consider that alterations in brain pH and lactate levels occur, whether they are a direct and known consequence or indirect and unknown ones of genetic modifications. We have proposed that genetic modifications, along with environmental stimulations, may induce various changes, which subsequently converge toward specific endophenotypes in the brain, such as neuronal hyperexcitation, inflammation, and maturational abnormalities (Hagihara et al., 2013; Yamasaki et al., 2008). The findings of this study, demonstrating the commonality of alterations in brain pH and lactate levels, align with this concept and suggest that these alterations could serve as brain endophenotypes in multiple neuropsychiatric disorders."

      1. The negative correlationship between pH and lactate is rather convincing. However, how much the contribution of lactate to pH is not tested. In addition, regarding pH and lactate, which factor contributes most to the pathogenesis of neuropsychiatric disorders is also unclear. These questions may need to be addressed in the future study.

      To estimate the degree of contribution of lactate to pH, we determined the contribution ratio using the regression coefficient within a linear regression model applied to a combined cohort. The results showed that 33.2% of changes in pH may be explained by changes in lactate level. We have added the following text in the Results section (page 28, line 7).

      The contribution ratio of lactate to pH, calculated based on the regression coefficient in a linear regression model, was 33.2% at the individual level, suggesting a moderate level of contribution.

      Regarding the latter suggestion, we would like to address the issue in the future study. Accordingly, we have added the following sentence in the discussion section (page 40, line 11):

      Original text

      "Further studies are needed to address these hypotheses by chronically inducing deficits in mitochondrial function to manipulate endogenous lactate levels in a brain region-specific manner and to analyze their effects on working memory."

      Revised text

      "Further studies are needed to address these hypotheses by chronically inducing deficits in mitochondrial function to manipulate endogenous lactate levels in a brain region-specific manner and to analyze their effects on working memory. It is also important to consider whether pH or lactate contributes more significantly to the observed behavioral abnormalities."

      1. The authorship is open to question. Most authors listed in this paper may only provide mice strains or brain samples. Maybe it is better just to acknowledge them in the acknowledgments section.

      In the light of the current circumstances, wherein there is no universally agreed definition of authorship (the Committee on Publication Ethics1), we acknowledge the reviewer’s concern. Collecting a comprehensive range of mouse strains and brain samples is a fundamental principle of this study. Maintaining mouse lines, breeding mice, genotyping, drug administration, and preparation of brain samples each require specialized expertise. Therefore, the scientific and technical contributions of individuals who only provided mouse strains or brain samples was also crucial for obtaining the data essential to this study. In accordance with the authorship guidelines outlined by the journal, which stipulate that “We recommend that all researchers who made substantial or important contributions to the design of a work, or the acquisition, analysis or interpretation of the data used in the paper, be included as authors.”, we would like to retain their authorship status. Furthermore, we ensured that all authors had read and approved the manuscript before submission, using Google Forms.

      1. GUIDELINES ON GOOD PUBLICATION PRACTICE, Committee on Publication Ethics (COPE), https://publicationethics.org/files/u7141/1999pdf13.pdf
      1. The last concern is about the significance of this study. Although the majority of strains showed increased lactate, some still showed decreased lactate levels in the brains. These results suggested that lactate or pH is an endophenotype for neuropsychiatric disorders, but it is hard to serve as a good diagnostic index as the change is not unidirectional in different disorders. In other words, the relationship between lactate level and neuropsychiatric disorders is not exclusive.

      As pointed out by the reviewer, whether brain pH and lactate levels increase or decrease could vary among animal models. Such variation may represent subpopulations of patients or specific disease states. Considering both increases and decreases in changes in pH and lactate levels could be important to achieve that goal. Accordingly, we have revised the text as follows:

      Added text (page 33, line 12)

      "Detecting changes in brain pH and lactate levels, whether resulting in an increase or decrease due to their potential bidirectional alterations, using techniques such as MRS may help the diagnosis, subcategorization, and identification of specific disease states of these biologically heterogeneous and spectrum disorders, as has been shown for mitochondrial diseases (Lin et al., 2003)."

      Added text (page 35, line 14)

      "Therefore, while changes in brain pH and lactate levels could be transdiagnostic endophenotypes of neuropsychiatric disorders, they might occur depending on the subpopulation due to the distinct genetic and environmental causes or specific disease states in certain disorders."

      Reviewer #2 (Public Review):

      Hagihara et al. conducted a study investigating the correlation between decreased brain pH, increased brain lactate, and poor working memory. They found altered brain pH and lactate levels in animal models of neuropsychiatric and neurodegenerative disorders. Their study suggests that poor working memory performance may predict higher brain lactate levels.

      However, the study has some significant limitations. One major concern is that the authors examined whole-brain pH and lactate levels, which might not fully represent the complexity of disease states. Different brain regions and cell types may have distinct protein and metabolite profiles, leading to diverse disease outcomes. For instance, certain brain regions like the hippocampus and nucleus accumbens exhibit opposite protein/signaling pathways in neuropsychiatric disease models.

      We want to thank the reviewer for the valuable suggestions. To address this issue, it is necessary to comprehensively identify brain regions and cell types responsible for pH and lactate changes in each strain/condition of animals, as these may differ among them. Subsequently, based on such findings, we can then proceed with functional investigations that specifically target the identified brain regions/cell types. However, conducting such investigations would require a significant amount of time to complete, approximately 2–3 years, and is beyond the scope of this study. Therefore, we would like to conduct such studies in the future. We have mentioned this limitation by revising the discussion section of this study as follows (page 43, line 5):

      Original text

      "Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Further studies are needed to address this issue by measuring microdissected brain samples and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

      Revised text

      "The major limitations of this study include the absence of analyses specific to brain regions or cell types and the lack of functional investigations. Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. It is known that certain molecular expression profiles and signaling pathways display brain region-specific alterations, and in some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al., 2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has been reported that the basal intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Given the assumption that the brain regions and cell types responsible for pH and lactate changes vary across different strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each animal model individually. This can be achieved through techniques such as evaluating microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently, based on such findings, it is also necessary to conduct functional analyses for each model animal by manipulating pH or lactate levels in specific brain regions/cell types and evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

      Moreover, the memory tests used in the study are specific to certain brain regions, but the authors did not measure lactate levels in those regions. Without making lactate measurements in brain-regions and cell types involved in these diseases, any conclusions regarding the role of lactate in CNS diseases is premature.

      Regarding the point about “lactate measurements in brain-regions and cell types involved in these diseases,” please refer our responses provided above.

      Additionally, evidence suggests that exogenous treatment with lactate has positive effects, such as antidepressant effects in multiple disease models (Carrard et al., 2018, Carrard et al., 2021, Karnib et al., 2019, Shaif et al., 2018). It also promotes learning, memory formation, neurogenesis, and synaptic plasticity (Suzuki et al., 2011, Yang et al., 2014, Weitian et al., 2015, Dong et al., 2017, El Hayek et al. 2019, Wang et al., 2019, Lu et al., 2019, Lev-Vachnish et a.l, 2019, Descalzi G et al., 2019, Herrera-López et al., 2020, Ikeda et al., 2021, Zhou et al., 2021,Roumes et al., 2021, Frame et al., 2023, Akter et al., 2023).

      We thank the reviewer for pointing out many references regarding the effects of lactate that were not cited in our paper. We have since included these studies and discussed in more detail the effect of lactate at molecular, cellular, and behavioral levels (page 39, line 11).

      Original text

      "Moreover, increased lactate may have a positive or beneficial effect on memory function to compensate for its impairment, as lactate administration with an associated increase in brain lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts antidepressant effects in a mouse model of depression (Carrard et al., 2016)."

      Revised text

      "Moreover, increased lactate may have a positive or beneficial effect on memory function to compensate for its impairment, as lactate administration with an associated increase in brain lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts antidepressant effects in a mouse model of depression (Carrard et al., 2021, 2016; Karnib et al., 2019; Shaif et al., 2018). Lactate has also shown to promote learning and memory (Descalzi G et al., 2019; Dong et al., 2017; Hayek et al. 2019; Lu et al., 2019; Roumes et al., 2021; Suzuki et al., 2011), synaptic plasticity (Herrera-López et al., 2020; Yang et al., 2014; Zhou et al., 2021), adult hippocampal neurogenesis (Lev-Vachnish et al., 2019), and mitochondrial biogenesis and antioxidant defense (Akter et al., 2023), while its effects on adult hippocampal neurogenesis and learning and memory are controversial (Ikeda et al., 2021; Lev-Vachnish et al., 2019; Wang et al., 2019)."

      In conclusion, the relevance of total brain pH and lactate levels as indicators of the observed correlations is controversial, and evidence points towards lactate having more positive rather than negative effects. It is important that the authors perform studies looking at brain-region-specific concentrations of lactate and that they modulate lactate levels (decrease) in animal models of disease to validate their conclusions. it is also important to consider the above-mentioned studies before concluding that "altered brain pH and lactate levels are rather involved in the underlying pathophysiology of some patients with neuropsychiatric disorders" and that "lactate can serve as a potential therapeutic target for neuropsychiatric disorders".

      Regarding the points about positive effects of lactate, measurement of brain-region-specific lactate concentrations, and modulation of lactate levels, please refer to our responses provided earlier. The points raised by the reviewer are important and should be addressed in future studies.

      Reviewer #2 (Recommendations For The Authors):

      • Measure lactate in specific brain regions. The whole brain measurements are not relevant to the disease states.

      We thank the reviewer for pointing this out. We totally agree with the reviewer’s comment and recognize that the lack of investigations in specific brain regions is one of the major limitations of this study. To address this issue, it is necessary to comprehensively identify brain regions and cell types responsible for pH and lactate changes in each strain/condition of animals, as these may differ among them. Subsequently, based on such findings, we can then proceed with functional investigations that specifically target the identified brain regions/cell types. However, conducting such investigations would require a significant amount of time to complete, approximately 2–3 years, and is beyond the scope of this study. Therefore, we would like to conduct such studies in the future. We have mentioned this limitation by revising the discussion section of this study as follows (page 43, line 5):

      Original text

      "Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Further studies are needed to address this issue by measuring microdissected brain samples and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

      Revised text:

      "The major limitations of this study include the absence of analyses specific to brain regions or cell types and the lack of functional investigations. Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. It is known that certain molecular expression profiles and signaling pathways display brain region-specific alterations, and in some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al., 2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has been reported that the basal intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Given the assumption that the brain regions and cell types responsible for pH and lactate changes vary across different strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each animal model individually. This can be achieved through techniques such as evaluating microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently, based on such findings, it is also necessary to conduct functional analyses for each model animal by manipulating pH or lactate levels in specific brain regions/cell types and evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

      • Discuss in detail the studies that show the neuroprotective effects of lactate and reconcile these with the authors' conclusions.

      As suggested by the reviewer, we have discussed in more detail the positive effect of lactate at molecular, cellular, and behavioral levels as below (page 39, line 11):

      Original text

      "Moreover, increased lactate may have a positive or beneficial effect on memory function to compensate for its impairment, as lactate administration with an associated increase in brain lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts antidepressant effects in a mouse model of depression (Carrard et al., 2016)."

      Revised text

      "Moreover, increased lactate may have a positive or beneficial effect on memory function to compensate for its impairment, as lactate administration with an associated increase in brain lactate levels attenuates cognitive deficits in human patients (Bisri et al., 2016) and rodent models (Rice et al., 2002) of traumatic brain injury. In addition, lactate administration exerts antidepressant effects in a mouse model of depression (Carrard et al., 2021, 2016; Karnib et al., 2019; Shaif et al., 2018). Lactate has also shown to promote learning and memory (Descalzi G et al., 2019; Dong et al., 2017; Hayek et al. 2019; Lu et al., 2019; Roumes et al., 2021; Suzuki et al., 2011), synaptic plasticity (Herrera-López et al., 2020; Yang et al., 2014; Zhou et al., 2021), adult hippocampal neurogenesis (Lev-Vachnish et al., 2019), and mitochondrial biogenesis and antioxidant defense (Akter et al., 2023), while its effects on adult hippocampal neurogenesis and learning and memory are controversial (Ikeda et al., 2021; Lev-Vachnish et al., 2019; Wang et al., 2019)."

      • Conduct experiments whereby you decrease/deplete/modulate lactate levels in animal models and show that there is amelioration of the symptoms.

      Regarding this point, kindly refer to the responses we provided in the first comment from the reviewer. We have mentioned this limitation by revising the discussion section of this study as follows (page 43, line 5):

      Original text

      "Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). The brain region-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Further studies are needed to address this issue by measuring microdissected brain samples and performing in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011) and MRS (Davidovic et al., 2011)."

      Revised text:

      "The major limitations of this study include the absence of analyses specific to brain regions or cell types and the lack of functional investigations. Because we used whole brain samples to measure pH and lactate levels, we could not determine whether the observed changes in pH and/or lactate levels occurred ubiquitously throughout the brain or selectively in specific brain region(s) in each strain/condition of the models. It is known that certain molecular expression profiles and signaling pathways display brain region-specific alterations, and in some cases, even exhibit opposing changes in neuropsychiatric disease models (Hosp et al., 2017; Floriou-Servou et al. 2018; Reim et al., 2017). Indeed, brain region-specific increases in lactate levels were observed in human patients with ASD in an MRS study (Goh et al., 2014). Furthermore, while increased lactate levels were observed in whole-brain measurements in mice with chronic social defeat stress (Figure S7) (Hagihara et al., 2021a), decreased lactate levels were found in the dorsomedial prefrontal cortex (Yao et al., 2023). Additionally, it has been reported that the basal intracellular pH differs between neurons and astrocytes (lower in astrocytes than in neurons), and their responsiveness to conditions simulating neural hyperexcitation and the metabolic acidosis in terms of intracellular pH also varies (Raimondo et al., 2016; Salameh et al., 2017). It would also be possible that the brain region/cell type-specific changes may occur even in animal models in which undetectable changes were observed in the present study. This could be due to the masking of such changes in the analysis when using whole-brain samples. Given the assumption that the brain regions and cell types responsible for pH and lactate changes vary across different strains/conditions, comprehensive studies are needed to thoroughly examine this issue for each animal model individually. This can be achieved through techniques such as evaluating microdissected brain samples, conducting in vivo analyses using pH- or lactate-sensitive biosensor electrodes (Marunaka et al., 2014; Newman et al., 2011), and MRS (Davidovic et al., 2011). Subsequently, based on such findings, it is also necessary to conduct functional analyses for each model animal by manipulating pH or lactate levels in specific brain regions/cell types and evaluating behavioral phenotypes relevant to neuropsychiatric disorders."

      Other corrections

      Title page and Acknowledgements:

      We have revised the affiliation information for the following co-authors: Drs. Anja Urbach8, Mohamed Darwish19, 20, Keizo Takao20, 22, Bong-Kiun Kaang53, 54, Michihiro Igarashi74, 75, Rie Ohashi87-89, and Nobuyuki Shiina87-89.

      Page 56, line 12:

      The term ‘The International Brain pH Consortium’ has been corrected to ‘The International Brain pH Project Consortium’.

      Supplementary Table 1: Supplementary References:

      1. Oota-Ishigaki A, Takao K, Yamada D, Sekiguchi M, Itoh M, Koshidata Y, et al. (2022): Prolonged contextual fear memory in AMPA receptor palmitoylation-deficient mice. Neuropsychopharmacology 47: 2150–2159.

      We have updated the name of the mouse strain from “patDp” to “15q dup” throughout the manuscript.

      We have made the following revisions to enhance readability.

      Page 24, line 9: According to a simple correlation analysis, working memory measures (correct responses in the maze test) were significantly negatively correlated with brain lactate levels (r = -0.76, P = 1.93 × 10-5; Figure 1F).

      Page 27, line 1:

      Revised text

      "We found that working memory measures (correct responses in the maze test) were the most frequently selected behavioral measures for constructing a successful prediction model (Figure 2E), which is consistent with the results of the exploratory study (Figure 1E)."

      Figure 1 legend:

      Revised text

      "(F–H) Scatter plot showing correlations between actual brain lactate levels and measures of working memory (correct responses in the maze test) (F), the number of transitions in the light/dark transition test (G), and the percentage of immobility in the forced swim test (H)."

      Figure 2 legend:

      Revised text

      "(F–H) Scatter plots showing correlations between actual brain lactate levels and working memory measures (correct responses in the maze test) (F), the acoustic startle response at 120 dB (G), and the time spent in dark room in the light/dark transition test (H)."

      Page 30, line 2:

      Original text

      "The high to moderate-high pH/low to moderate-low lactate group included mouse models of ASD or developmental delay, such as Shank2 KO, Fmr1 KO, BTBR, Stxbp1 KO, Dyrk1 KO, Auts2 KO, and patDp mice (Table S1, Figure S7)."

      Revised text

      "The high pH/low lactate group and moderate-high pH/moderate-low lactate group included mouse models of ASD or developmental delay, such as Shank2 KO, Fmr1 KO, BTBR, Stxbp1 KO, Dyrk1 KO, Auts2 KO, and 15q dup mice (Table S1, Figure S7)."

      Page 40, line 7:

      Original text

      "Moreover, increased lactate levels may also be involved in behavioral changes other than memory deficits such as anxiety."

      Revised text

      "Moreover, increased lactate levels may also be involved in behavioral changes other than memory deficits, such as anxiety."

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The experimental design presented cannot clearly show that the effect of passive exposure was due to the specific exposure to task-relevant stimuli since there is no control group exposed to irrelevant stimuli.

      We acknowledge the possibility that exposure to task-irrelevant stimuli could result in improvements in learning. Testing this possibility would be a worthwhile goal of future experiments, but it is outside the scope of our current study. We have been careful in our paper to only draw conclusions about the effects of exposure to task-relevant stimuli compared to no exposure. We have added a discussion of this point and relevant references to the literature in the Discussion section of our manuscript.

      The conclusion that "passive exposure influences responses to sounds not used during training" (line 147) does not seem fully supported by the authors' analysis. The authors show that there is an increase in accuracy for intermediate sweep speeds despite the fact that this is the first time the animals encounter them in the active session. However, it seems impossible to exclude that this effect is not simply due to the increased accuracy of the extreme sounds that the animals had been trained on.

      We have modified this sentence to emphasize that it refers to “intermediate” sounds. Regarding the reviewer’s concern, the conclusion is drawn from Figure 3, in which we show that mice exhibit an improvement on non-extreme stimuli after training on extreme stimuli. Panel 3D illustrates that the observed improvements are not just changes in psychometric performance driven by the extreme sounds. In the context of this result, the conclusion relates to generalization in performance on task-relevant stimuli that are closely related to the training stimuli. In our view, it was not entirely obvious a priori that this result would have to occur, since it is possible that performance could improve at the extremes without improving at the intermediate stimuli.

      In the modelling section, the authors adjusted the hyper-parameters to maximize the difference between pure active and passive/active learning. This makes a comparison of learning rates between models somewhat confusing.

      We apologize for the confusion. None of our conclusions are based on comparisons of learning speed between models, but perhaps this was not pointed out sufficiently clearly. The relevant comparisons between conditions for each specific model are made using the same hyperparameters. We have clarified this point in the modeling section of our manuscript.

      The description of the sound does not state whether when reducing the slope of the sweeps the center or the onset frequency of the sounds is preserved.

      Frequency modulated sounds of different FM slopes were generated such that the center frequency was always the same. This is now clarified in the updated version of the manuscript.

      Reviewer #1 (Recommendations for the authors):

      As mentioned, the specificity of the stimuli presented during the passive period is not explicitly addressed in either modelling or behaviour. For modelling, this could be quite straightforward to assess by manipulating the input stimuli during passive episodes. For the behaviour, this would require repeating the experiment with passive sessions during which unrelated sounds are presented (for example varying in frequency or intensity instead of frequency slope). I mainly include this suggestion to clarify my previous comment because this would require a huge amount of work.

      We agree that varying the extent to which the presented passive stimuli are task-related to the task is an interesting point to study for future experiments. However, doing so for the experiments is outside the scope of the current study, and we believe exploring this only in the modeling part would add little value to the current study, because the outcome will highly depend on the details of the implementation.

      Reviewer #2 (Public Review):

      One limitation here is that the presented analysis is somewhat simplistic, does not include any detailed psychometric analysis (bias, lapse rates etc), and primarily focuses on learning speed.

      In our preliminary analyses of trials that included extreme and intermediate stimuli after animals had learned the task (Figure 3), we investigated some metrics of the type that the reviewer suggests here. However, since such additional psychometric analyses were somewhat tangential to our main results (which are about learning speed and responses to sounds not included during training), we did not include these in our manuscript. In agreement with the reviewer’s concern, a main limitation of our study is that the available data does not allow for an analysis of psychometrics during the initial learning stages, since only the extreme stimuli were presented during the task.

      Reviewer #2 (Recommendations for the authors):

      The International Brain Lab has shown quite nicely that psychometric curves continue to improve (increased slope, decreased bias) across learning. This was not really discussed or presented in your data - is this observed during the S4 training portion?

      We indeed saw improvements in the psychometric performance during stage S4, in particular for the active-only learners, as can be seen in Figure 3. We quantified these changes (now presented in the Results section), and added a discussion to the main text.

      Why use a linear fit to extract the various quantities of interest? All of these quantities could be extracted from the raw behavioral data itself.

      Because of the large variations in performance from day-to-day, a linear fit allowed us to extract a more reliable estimate of quantities like “Time to achieve 70%” and “Performance at 21 days” for each animal.

      The analysis presented was focussed primarily on the fast learners. What about the slow learners? Are the ANN models able to recapitulate different aspects of their behavior?

      We agree with the reviewer that the observation that the learners clustered into two groups calls for further investigation. In this study, we focused on the mice that learned more efficiently, because those allowed us to address our main research question about the influence of passive exposure. We believe, the slow learners could be modeled with ANNs that start with a less-easily discriminable input representation, which limits the performance that the trained network is ultimately able to achieve. This additional analysis is outside the scope of the current manuscript, but we hope to address these questions in the future.

      Although I appreciate the thoroughness of the modeling, I was not entirely convinced by the narrative underlying models 1-5, since none of these models were able to successfully recapitulate your core findings. Would it not make more sense to focus primarily on the final model?

      By starting with the simplest possible model that incorporates supervised and unsupervised learning, we were able to determine which ingredients were necessary to capture the behavioral data. We believe this could not have been clearly established by considering the final model alone.

      Reviewer #3 (Public Review):

      The first [major weakness] is that even Model 5 differs from their data. For example, the A+P (passive interleaved condition) learning curve in Figure 7 seems to be non-monotonic, and has some sort of complex eigenvalue in its decay to the steady state performance as trials increase. This wasn't present in their experimental data (Figure 2D), and implies a subtle but important difference. There also appear to be differences in how quickly the initial learning (during early trials) occurs for the A+P and A:P conditions. While both A+P and A:P conditions learn faster than A only in M5, A+P and A:P seem to learn in different ways, which isn't supported in their data.

      The reviewer is correct that there are subtle differences between the two learning curves produced by Model 5. Due to expected variability in the experimental data, however, it is difficult to conclude whether such subtle distinctions also appear in the learning curves of the mice. Further, the slight overshoot of the learning curve that the reviewer mentions is not constrained by the experimental data due to different mice reaching asymptotic performance at different times, and many of them not having even reached asymptotic performance by the end of the training period.

      However, even if there are minor discrepancies between the learning curves produced by the final version of the model and by the mice, we do not see this as being especially surprising or problematic. As in any model, there are a large number of potentially important features that are not included in any of our models–for example, realistic spectrotemporal neural responses, nonlinearity in neural activations, heterogeneity across mice, and many others. The aim of our modeling was to choose a space of possible models (which is inevitably restricted) and show which model version within that space best captures our experimental observations. Expanding the space of possible models that we considered to capture further nuances in the data will be a task for future work.

      The second major weakness is that the authors also don't generate any predictions with M5. Can they test this model of learning somehow in follow-up behavioural experiments in mice? ... Without follow-up experiments to test their mechanism of why passive exposure helps in a schedule-independent way, the impact of this paper will be limited.

      Although testing predictions from our models was beyond the scope of the current study, we do generate specific predictions with model M5 (in particular, about neural representations). Our model produces predictions about neural representations and the ways in which they evolve through learning, and we hope to test these predictions in future work.

      I believe the authors need to place this work in the context of a large amount of existing literature on passive (unsupervised) and active (supervised) learning interactions. This field is broad both experimentally and computationally. For example, there is an entire sub-field of machine learning, called semi-supervised learning that is not mentioned at all in this work.

      We thank the reviewer for pointing this out. The Discussion section of the updated manuscript now includes a discussion on how our results fit in with this literature.

      Reviewer #3 (Recommendations for the authors):

      All points made by the reviewer in their Recommendations For The Authors are associated with those presented in the Public Review and they are addressed in our response above.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This is a valuable study of Eph-Ephrin signaling mechanisms generating pathological changes in amyotropic lateral sclerosis. There are exciting findings bearing on the role of glial cells in this pathology. The study emerges with solid evidence for a novel astrocyte-mediated mechanism for disease propagation. It may help identify potential therapeutic targets.

      Response to Editor’s decision letter: Drs. Huang and Zaidi: Thank you for considering this re-revision of our manuscript for potential publication in eLife. We have addressed the remaining comments of reviewer #2. We have included detailed response-to-reviewer comments below to address each of these remaining specific points from reviewer #2, and we have highlighted all the changes in the manuscript text (using a red font color) made in response to these comments. Based on the reviewers’ critiques, we feel our re-working of the manuscript has made for a greatly improved study.

      Reviewer #1 (Recommendations For The Authors):

      Reviewer comment: All questions/concerns have been addressed.

      Response: We thank Reviewer #1 for the previous helpful comments that we used to improve our manuscript. As Reviewer #1 has no new comments, we have provided no additional responses to address this reviewer’s input. Instead, we only focus (in this new “Response to Reviewer Comments” document) on the remaining points from Reviewer #2 below.

      Reviewer #2 (Recommendations For The Authors):

      Overall, the authors have addressed most concerns raised in the prior review. A couple of very minor points remain, which would improve the clarity of the report.

      Reviewer comment 1: The abstract has not been edited and still emphasizes that astrocyte-mediated upregulation in ephrinB2 signaling underlies pathogenicity in mutant SOD1-associated ALS. There is certainly sufficient evidence to suggest a large role for astrocytes, however, without a thorough investigation of other key cell types in the spinal cord, this cannot be concluded specifically. Especially given that a non-specific promoter (U6) was employed in the viral constructs.

      Response: We apoplogize for this mistake. In response to the reviewer’s previous comment in the first round of review, we made changes throughout the manuscript to address this issue; however, we failed to do this in the Abstract. In this re-revised manucript, we now also make the necessary changes to the Abstract.

      Reviewer comment 2: It is interesting to note that a non-specific promoter, U6, exhibited such large specificity to astrocytes in the cord as compared to neurons (Fig 2M). This is worth discussing briefly in the discussion and how this result compares to those in the literature.

      Response: We have now added a brief discussion of this issue to the Discussion section, including describing our previous studies that used the Gfa2 promotor to achieve astrocyte-specific transduction when employing viral vectors in the rodent spinal cord.

      Reviewer comment 3: I appreciate the authors including a supplemental figure on the expression of ephrinA4 receptors in the cervical ventral horn. Unfortunately, the quality of this image is very poor in conveying the receptor expression. The detailed discussion point on the expression of EphB receptors in the cervical ventral horn should be sufficient for readers to take into consideration.

      Response: We have now removed this supplemental figure and keep only the text from the rerevised manuscript.

      Reviewer comment 4: A few instances of motor neuron diameter being attributed to a 200μm2 size remain (e.g. pg 14).

      Response: We have corrected this issue throughout the re-revised manuscript. The correct information is: somal diameter greater than 20 μm.

      Reviewer comment 5: It is still a little unclear in the result text as to when assessment of lentiviral transduction was conducted following intraspinal injections.

      Response: We have now added this detail about the time point of assessing transduction to both the Results section and the Materials/Methods section.

      Reviewer comment 6: Some figures are missing markers of significance (e.g. Fig 2M).

      Response: Below are our comments about significance markers for each graph in all figures.

      Figure 1:

      Panel E: We have now added asterisks for any statistically-significant comparisons. In addition, we provide the details of this statistical analysis in the text of the re-revised manuscript.

      Figure 2:

      Panel M: We have now added asterisks for statistical comparisons, as well as details in the text.

      Panel N: The asterisk was already shown in the previous version of the figure.

      Figure 3:

      Panels B and G: The asterisks were already shown in the previous version of the figure.

      Figure 4:

      All panels: There are no significant differences; therefore, no asterisks are needed.

      Figure 5:

      Panel F and G: The asterisks were already shown in the previous version of the figure.

      Panel H: The difference is not statistically-signficant.

      Figure 6: No graphs are shown in this figure.

      Reviewer comment 7: Since a wild type mouse control has not been included in the quantification of diaphragm NMJ innervation with and without ephrin knock-down, it would be useful to include a description or discussion on the phenotype of NMJ denervation exhibited in the SOD1G93A mouse model of ALS.

      Response: We have now added description of diaphragm NMJ denervation that occurs in SOD1G93A mice, in particular at the age/time point of our NMJ analysis.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable manuscript investigates the roles of DKK3 in AD synapse integrity. Although previous work has identified the involvement of Wnt and DKK1 in synaptic physiology, this study provides compelling evidence that suppression of DKK3 rescues the changes in excitatory synapse numbers, as well as memory deficits in an established AD model mice. The authors provide both gain and loss of function data that support the main conclusion and advance our understanding of the mechanisms by which Wnt pathway mediates early synaptic dysfunction in AD models.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, Nuria Martin-Flores, Marina Podpolny and colleagues investigate the role of Dickkopf-3 (DKK3), a Wnt antagonist in synaptic dysfunction in Alzheimer's disease. Loss of synapses is a feature of Alzheimer's and other forms of dementia such as frontotemporal dementia and linked amyotrophic lateral sclerosis (FTD). The authors utilise a broad range of experimental approaches. They show that DKK3 levels are increased in Alzheimer's disease and that this occurs early in disease. This is an important finding since early disease changes are believed to be the most important. They also show increases in DKK3 in transgenic mouse models of Alzheimer's disease and that DKK3 knockdown restores synapse number and memory in one such model. Finally, they link these DKK3 increases to loss of excitatory synapses via the blockade of the Wnt pathway and subsequent activation of GSK3B; GSK3B is strongly linked to both Alzheimer's disease and FTD. The quality of the data is good and the conclusions well supported by these data. There are no major weaknesses. The findings support studies that target the Wnt pathway as a potential therapeutic for Alzheimer's disease.

      Reviewer #2 (Public Review):

      This manuscript by Martin-Flores et al., has examined the role of DKK3 in Alzheimer's disease, focusing on the regulation of synaptic numbers. By using human AD brain databases and tissue samples, the authors showed that DKK3 protein and mRNA levels are increased in the brains of AD patients. DKK3 is expressed in the excitatory neurons in WT mouse brains and accumulates at atrophic neurites around amyloid plaques in AD mouse brains. Interestingly, secretion of DKK3 appears to be regulated by NMDAR antagonist as well as chemical LTD. Through gain and loss of function studies, the authors showed that DKK3 regulates the number of excitatory as well as inhibitory synapses with distinct downstream pathways. Finally, the authors investigated the contribution of DKK3 to synaptic changes in AD and found that DKK3 loss of function rescues both the excitatory and inhibitory synaptic defects, resulting in the improvement of memory function in J20 mice.

      Overall, the data is clearly presented and deals with novel roles of DKK3 in controlling excitatory and inhibitory synapses. The finding that shRNA expression of DKK3 in AD model mice rescues synaptic phenotypes and memory impairment is potentially interesting and may provide a new strategy for AD treatment.

      We would like to thank the Editors and the Reviewers for their very insightful suggestions. We are delighted to receive very positive reviews of our manuscript. In response to the comments made by the reviewers, we have carried out an extensive revision of our manuscript. In the revised manuscript, we have addressed all the comments made by the reviewers.

      Recommendations for the authors:

      Reviewer #1:

      My only comment regards the role of GSK3B activation in synaptic dysfunction and its targets. GSK3B is a Tau kinase but is also involved in IP3 receptor delivery of Ca2+ to mitochondria. This delivery is major regulator of mitochondrial ATP production and synaptic function is heavily dependent on ATP. Both Alzheimer's disease and FTD insults have been linked to GSK3B activation -see for e.g. Szabo EMBO R 2023, Gomez-Suaga Aging Cell 2022. It might be valuable to readers for the authors to speculate briefly on potential GSK3B synaptic targets in the Discussion.

      We appreciate the reviewer for this suggestion. In the Discussion, we now included how GSK3β may contribute to synaptic dysfunction and loss in the context of increased DKK3 levels and in Alzheimer’s disease.

      Reviewer #2:

      1. In Fig 1B, the authors showed that soluble DKK3 levels were increased in Braak 1-3 patients, while no changes were observed in Braak 4-5. If the secretion of DKK3 is dependent on NMDAR activity, does this data imply that Braak 4-5 patients have reduced NMDAR activity in general, resulting in the reduced DKK3 release even with the increased mRNA levels? It would be interesting to test this hypothesis in a mouse AD model.

      In Figure 1B, we analyzed the levels of soluble and insoluble DKK3 in the hippocampus of AD patients at different disease stages based on their Braak stages. As the reviewer indicated, soluble levels of DKK3 were increased in patients with Braak I-III but not at later stages. Importantly, DKK3 levels were also elevated in Braak IV-VI patients, but only in the insoluble fraction (Figure 1C), suggesting that DKK3 could accumulate within Aβ aggregates. Based on these findings, we cannot conclude that DKK3 release is reduced at later stages of the disease in patients.

      To explore the underlying mechanisms regulating DKK3 levels, we used cultured hippocampal neurons and AD mouse brain slices. In mouse models, we have demonstrated that extracellular DKK3 levels (secreted DKK3 fraction) depends on NMDAR activation early in the disease progression (Figure 2E, F). Moreover, we also provide new data showing that antagonizing NMDAR partially blocks the increase of DKK3 extracellular levels induced by oligomeric Aβ (see response to question 4 of this reviewer and Figure S2G, H). It is well established that oligomeric Aβ promotes hyperexcitability through, in part, the aberrant activation of NMDAR (Li S et al., 2011, PMID: 21543591; Mucke L and Selkoe DJ et al., 2012, PMID: 22762015). In line with this, NMDAR blockers prevent Aβ-induced synapse loss and improve cognition in AD models (Hu NW et al., 2009, PMID: 19918059; Ye C et al., 2004, PMID: 15288443). In addition, an NMDAR antagonist is currently approved as a drug treatment for AD patients (Cumming J 2021, PMID: 33441154). Together, our findings in dissociated neurons, AD mouse brain and human samples indicate that soluble Aβ oligomers promote the release of DKK3 through NMDAR activation and suggest that this mechanism might also be occurring in the brain of AD patients.

      1. Recent work (Yuan et al., 2022, Nature) has shown that dystrophic neurites/axonal spheroids found around Aβ deposits are filled with neuronal endolysosomes. Are DKK3 in ThioS positive amyloid plaques located in endolysosomes of these axonal spheroids? If so, does this data mean that DKK3 in Fig 2B-D represents the entrapped DKK3 protein population that fails to be secreted from dystrophic neurites?

      The reviewer points an interesting question. Our results show that secretion of DKK3 is increased in two AD models before substantial plaque load. Later in the disease, DKK3 accumulates in dystrophic neurites (visualized as axonal spheroids) surrounding amyloid plaques. To address if DKK3 protein is located in vesicles of the endolysosomal pathway within axonal spheroids, we performed co-localization analyses of DKK3 and the endolysosomal marker LAMP1. We found that DKK3 colocalized with LAMP1 (Figure 2D) indicating the presence of DKK3 in axonal spheroids. These results indeed suggest that DKK3 is present in abnormally enlarged vesicles in dystrophic neurites around Aβ plaques. This could affect the axonal transport of DKK3. Given that proteins present in dystrophic neurites have been correlated with defects in bidirectional transport in the axon (Stokin GB et al., 2005, PMID: 15731448; Sadleir KR et al., 2016, PMID: 26993139), both DKK3 turnover and secretion could be affected.

      1. Why does only LTD induce DKK3 release? Why not general activation of neuronal activity? It would be important to test the relationship between DKK3 secretion and neuronal activity with optogenetics and chemogenetics.

      We tested whether neuronal activity triggered increased extracellular DKK3 levels by subjecting neurons to chemical long-term potentiation (cLTP) or long-term depression (cLTD). However, only cLTD increased extracellular DKK3, which we then confirmed in brain slices (Figure S3). This finding is not unexpected as it is well described that different patterns of activity can lead to different molecular outcomes. For example, high-frequency stimulation (HFS; an activity pattern that resembles LTP) and low-frequency stimulation (LFS; a different activity pattern resembling LTD) leads to opposing effects on surface levels of the Wnt receptor Frizzled-5 (Fz5) (Sahores M et al., 2010, PMID: 20530549). Furthermore, cLTP increases Fz5 s-acylation, an important post-translational modification that regulates the surface levels of Fz5, whereas cLTD decreases it (Teo S et al., 2023, PMID: 37557176). Another example is the BDNF receptor TrkB. Surface TrkB is increased by tetanic stimulation, which also induces LTP as HFS or cLTP, but not by LFS (Du J et al., 2000, PMID: 10995446). Our findings suggest that DKK3 might contribute to synaptic changes underlying cLTD. Future experiments using chemogenetics or optogenetics might elucidate the role of DKK3 in activity-induced synaptic changes.

      1. Are Abeta oligomer treatment-dependent increases in DKK3 protein levels in the cellular lysate and the extracellular fraction also suppressed by APV?

      Our results in AD mice indicate that increased DKK3 release is dependent on NMDAR activation. To investigate if amyloid-β oligomers (Aβo) increase DKK3 levels in the cell lysate and extracellular fractions through NMDAR, we blocked these receptors in hippocampal neurons using AP-V (Figure S2G, H). In these experiments, we use a lower concentration of Aβo (200nM of Aβ1-42) to avoid any potential cytotoxic effect. In line with our previous results using a higher concentration of Aβo, we observed that Aβo markedly increased DKK3 levels both in the cell lysate and in the extracellular fraction compared to the reverse Aβ42-1 control peptide. Kruskal-Wallis with Dunn’s test showed a trend to a reduced levels of DKK3 in the extracellular fraction when we compared neurons treated with Aβo and APV with those neurons treated with Aβ and vehicle (p = 0.0726). However, this reduced levels of DKK3 in the extracellular fraction reached statistical significance using a t-test (p = 0.0384). No differences were observed between the reverse control peptide and Aβo and APV conditions. These results suggest that blockade of the NMDAR partially occludes the ability of Aβo to increase DKK3 levels in the extracellular fraction.

      1. Why does DKK3 shRNA only downregulate inhibitory synapses but not excitatory synapses in the WT brain slice? Does this mean that in the WT brain, other DKK proteins (without changes in their expression as shown in Fig S6) are sufficiently expressed and compensate for the roles of DKK3 in excitatory synapse integrity?

      The reviewer points out an interesting result. In J20 mice, DKK3 knockdown affects both excitatory and inhibitory synapse density (Figure 6B, C). In Figure 3B, D, we show that in vivo downregulation of DKK3 leads to an increased number of inhibitory synapses without affecting excitatory ones in the brain of WT animals. These results indicate that in a healthy brain (WT), DKK3 is required for the maintenance of inhibitory synapses but not for excitatory synapses under our experimental conditions. Furthermore, DKK3 partially shares the mechanism of action with DKK1 as both DKK proteins promote excitatory synapse loss through the Wnt/GSK3β pathway (Figure 4A-C) (Marzo A et al., 2016, PMID: 27593374). Therefore, it is possible that endogenous DKK1 levels in the hippocampus could compensate for the reduced expression of DKK3 resulting in the lack of changes in excitatory synapse number when DKK3 is knockdown in WT animals.

      1. Manipulating DKK3 in WT brains only affects Gephyrin but not VGAT, but in J20, both Gephyrin and VGAT seem to be affected by DKK3 shRNA (Fig 6). The authors need to provide the pre vs post synapse number in Fig 6 and discuss the potential differences.

      We have now included the quantification of excitatory and inhibitory pre- and postsynaptic puncta for 4-months old (Figure S6B, C) and 9-months old (Figure S6D, E) WT and J20 mice. At 4-months old, the density of Homer1 puncta for excitatory synapses and both vGAT and Gephyrin for inhibitory synapses was increased and decreased respectively by knocking down DKK3 in the J20 mice. At 9-months, strong trends were observed in all the synaptic markers when downregulating DKK3, but significance was only reached for Homer1 puncta.

      1. Where are the Wnt receptors expressed? Are they exclusively expressed in neurons? Can the authors exclude the potential involvement of glial cells in this process?

      In neurons, Wnt receptors can be expressed in the synaptic terminals. For example, Wnt receptor Frizzled-5 is located at the presynaptic terminal and the dendritic shaft but not at spines (Sahores M et al., 2010, PMID: 20530549; McLeod F et al., 2018, PMID: 29694885), whereas Frizzled-7 is located at the dendritic shaft and spines (McLeod F et al., 2018, PMID: 29694885). In addition, the Wnt co-receptor LRP6 is present at both pre- and postsynaptic sites in excitatory synapses (Jones ME et al., 2023, PMID: 36638182). Kremen1, another receptor for Dkk proteins, is also highly expressed in the brain and our unpublished superresolution results show that this receptor is present in both pre- and postsynaptic sites of 53% of excitatory and 30% of inhibitory synapses. However, these receptors are not exclusively expressed in neurons and many of them are also highly expressed in astrocytes (Zhang Y et al., 2016, PMID: 25186741). Based on the literature and our findings, we cannot rule out the possibility that DKK3 may signal to other cell types such as astrocytes, which could also contribute to changes in synapse density. However, recombinant DKK3 induces structural and functional changes in excitatory and inhibitory synapses within 3-4h (Figure 3), suggesting that DKK3 acts on neurons leading to synaptic changes.

      1. Does the shRNA treatment of DKK3 affect the size and number of amyloid plaques in the AD mice?

      We thank the reviewer for raising this very important question. We have now evaluated the impact of DKK3 knockdown in Aβ pathology in the J20 mice. We did not observe differences in the Aβ coverage nor the averaged number and size of Aβ plaques when DKK3 was silenced in the CA3 (Figure S6F). Therefore, the changes we observe in excitatory and inhibitory synapse density around plaques after knocking down DKK3 are unlikely to be due to changes in Aβ plaques.

    1. Author Response

      eLife assessment

      This study presents a valuable finding on the distinct subpopulation of adipocytes during brown-to-white conversion in perirenal adipose tissue (PRAT) at different ages. The evidence supporting the claims of the authors is convincing, although specific lineage tracing of this subpopulation of cells and mechanistic studies would expand the work. The work will be of interest to scientists working on adipose and kidney biology.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors performed single nucleus RNA-seq for perirenal adipose tissue (PRAT) at different ages. They concluded a distinct subpopulation of adipocytes arises through brown-to-white conversion and can convert to a thermogenic phenotype upon cold exposure.

      Strengths:

      PRAT adipose tissue has been reported as an adipose tissue that undergoes browning. This study confirms that brown-to-white and white-to-beige conversions also exist in PRAT, as previously reported in the subcutaneous adipose tissue.

      We did not observe any white-to-beige conversion in PRAT under regular condition. The adipocyte population that arises from brown-to-white conversion (mPRAT-ad2) can respond to cold and restore their UCP1 expression. However, brown adipocytes that arise from the mPRAT-ad2 subpopulation after cold exposure have a distinct transcriptome to that of cold-induced beige adipocyte in iWAT (Figure S6K) and are more related to iBAT brown adipocytes (Figure 6E).

      Weaknesses:

      1. There is overall a disconnection between single nucleus RNA-seq data and the lineage chasing data. No specific markers of this population have been validated by staining.

      We are not sure what “this population” refers to. We suspect it is the Ucp1-&Cidea+ mPRAT-ad2 adipocyte subpopulation. If so, we did not identify specific markers for these adipocytes as shown in Figure 1H and statement in the Discussion. mPRAT-ad2 is negative for Ucp1 and Cyp2e1, which are markers for mPRAT-ad1 and mPRAT-ad3&4, respectively. Therefore, we plan to stain the mPRAT with Ucp1, Cyp2e1 and Perilipin (a pan adipocyte marker) antibodies. Cells that are Perilipin+&Ucp1-&Cyp2e1- will represent the mPRAT-ad2 subpopulation.

      1. It would be nice to provide more evidence to support the conclusion shown in lines 243 to 245 "These results indicated that new BAs induced by cold exposure were mainly derived from UCP1- adipocytes rather than de novo ASPC differentiation in puPRAT". Pdgfra-negative progenitor cells may also contribute to these new beige adipocytes.

      Our sequencing data and many previous studies (Angueira et al., 2021; Burl et al., 2022; Dong et al., 2022) have shown that Pdgfra is a marker for all ASPCs. We will also check adipocyte labelling pattern of mPRAT in the PdgfraCre;Ai14 mice. If all adipocytes are Tomato+, it suggests that adipocytes in mPRAT are all derived from Pdgfra-expressing cells. Also, the cold-induced adipocytes in mPRAT resemble more to the brown adipocytes of iBAT than the beige adipocytes of iWAT (Figure 6E and S6K).

      Angueira, A.R., Sakers, A.P., Holman, C.D., Cheng, L., Arbocco, M.N., Shamsi, F., Lynes, M.D., Shrestha, R., Okada, C., Batmanov, K., et al. (2021). Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab 3, 469-484. 10.1038/s42255-021-00380-0.

      Burl, R.B., Rondini, E.A., Wei, H., Pique-Regi, R., and Granneman, J.G. (2022). Deconstructing cold-induced brown adipocyte neogenesis in mice. Elife 11. 10.7554/eLife.80167.

      Dong, H., Sun, W., Shen, Y., Balaz, M., Balazova, L., Ding, L., Loffler, M., Hamilton, B., Kloting, N., Bluher, M., et al. (2022). Identification of a regulatory pathway inhibiting adipogenesis via RSPO2. Nat Metab 4, 90-105. 10.1038/s42255-021-00509-1.

      1. The UCP1Cre-ERT2; Ai14 system should be validated by showing Tomato and UCP1 co-staining right after the Tamoxifen treatment.

      We will inject Ucp1CreERT2;Ai14 mice at 1- and 6-month-old of age with tamoxifen and collect one day after the last injection to check the overlap between the Tomato signal and UCP1 immunofluorescent staining.

      Reviewer #2 (Public Review):

      Summary:

      In the present manuscript, Zhang et al utilize single-nuclei RNA-Seq to investigate the heterogeneity of perirenal adipose tissue. The perirenal depot is interesting because it contains both brown and white adipocytes, a subset of which undergo functional "whitening" during early development. While adipocyte thermogenic transdifferentiation has been previously reported, there remain many unanswered questions regarding this phenomenon and the mechanisms by which it is regulated.

      Strengths:

      The combination of UCP1-lineage tracing with the single nuclei analysis allowed the authors to identify four populations of adipocytes with differing thermogenic potential, including a "whitened" adipocyte (mPRAT-ad2) that retains the capacity to rapidly revert to a brown phenotype upon cold exposure. They also identify two populations of white adipocytes that do not undergo browning with acute cold exposure.

      Anatomically distinct adipose depots display interesting functional differences, and this work contributes to our understanding of one of the few brown depots present in humans.

      Weaknesses:

      The most interesting aspect of this work is the identification of a highly plastic mature adipocyte population with the capacity to switch between a white and brown phenotype. The authors attempt to identify the transcriptional signature of this ad2 subpopulation, however, the limited sequencing depth of single nuclei somewhat lessens the impact of these findings. Furthermore, the lack of any form of mechanistic investigation into the regulation of mPRAT whitening limits the utility of this manuscript. However, the combination of well-executed lineage tracing with comprehensive cross-depot single-nuclei presented in this manuscript could still serve as a useful reference for the field.

      The sequencing depth of our data is comparable, if not better than previously published snRNA-seq studies on adipose tissue (Burl et al., 2022; Sarvari et al., 2021; Sun et al., 2020). Therefore, the depth of our data has reached the limit of the 3’ sequencing methods. Unfortunately, due to size limitation of the adipocytes, it is also not feasible to sort them for Smart-seq.

      Burl, R.B., Rondini, E.A., Wei, H., Pique-Regi, R., and Granneman, J.G. (2022). Deconstructing cold-induced brown adipocyte neogenesis in mice. Elife 11. 10.7554/eLife.80167.

      Sarvari, A.K., Van Hauwaert, E.L., Markussen, L.K., Gammelmark, E., Marcher, A.B., Ebbesen, M.F., Nielsen, R., Brewer, J.R., Madsen, J.G.S., and Mandrup, S. (2021). Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metab 33, 437-453 e435. 10.1016/j.cmet.2020.12.004.

      Sun, W., Dong, H., Balaz, M., Slyper, M., Drokhlyansky, E., Colleluori, G., Giordano, A., Kovanicova, Z., Stefanicka, P., Balazova, L., et al. (2020). snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98-102. 10.1038/s41586-020-2856-x.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      The study could also valuably explore what kinds of genes experienced what forms of expression evolution. A brief description of GO terms frequently represented in genes which showed strong patterns of expression evolution might be suggestive of which selective pressures led to the changes in expression in the C. bursa-pastoris lineage, and to what extent they related to adaptation to polyploidization (e.g. cell-cycle regulators), compensating for the initial pollen and seed inviability or adapting to selfing (endosperm- or pollen-specific genes), or adaptation to abiotic conditions. ”

      We did not include a gene ontology (GO) analysis in the first place as we did not have a clear expectation on the GO terms that would be enriched in the genes that are differentially expressed between resynthesized and natural allotetraploids. Even if we only consider adaptive changes, the modifications could occur in various aspects, such as stabilizing meiosis, adapting to the new cell size, reducing hybrid incompatibility and adapting to self-fertilization. And each of these modifications involves numerous biological processes and molecular functions. As we could make post-hoc stories for too many GO terms, extrapolating at this stage have limited implications and could be misleading.

      Nonetheless, we are not the only study that compared newly resynthesized and established allopolyploids. GO terms that were repeatedly revealed by this type of exploratory analysis may give a hint for future studies. For this reason, now we have reported the results of a simple GO analysis.

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      The majority of concerns from reviewers and the reviewing editor are in regards to the presentation of the manuscript; that the framing of the manuscript does not help the general reader understand how this work advances our knowledge of allopolyploid evolution in the broad sense. The manuscript may be challenging to read for those who aren't familiar with the study system or the genetic basis of polyploidy/gene expression regulation. Further, it is difficult to understand from the introduction how this work is novel compared to the recently published work from Duan et al and compared to other systems. Because eLife is a journal that caters to a broad readership, re-writing the introduction to bring home the novelty for the reader will be key.

      Additionally, the writing is quite technical and contains many short-hands and acronyms that can be difficult to keep straight. Revising the full text for clarity (and additionally not using acronyms) would help highlight the findings for a larger audience.

      Reviewer #1 (Recommendations For The Authors):

      Most of my suggestions on this interesting and well-written study are minor changes to clarify the writing and the statistical approaches.

      The use of abbreviations throughout for both transcriptional phenomena and lines is logical because of word limits, but for me as a reader, it really added to the cognitive burden. Even though writing out "homoeolog expression bias" or "hybridization-first" every time would add length, I would find it easier to follow and suspect others would too.

      Thank you for this suggestion. Indeed, using less uncommon acronyms or short-hands should increase the readability of the text for broader audience. Now in most places, we refer to “Sd/Sh” and “Cbp” as “resynthesized allotetraploids” and “natural allotetraploids”, respectively. We have also replaced the most occurrences of the acronyms for transcriptional phenomena (ELD, HEB and TRE) with full phrases, unless there are extra attributes before them (such as “Cg-/Co-ELD” and “relic/Cbp-specific ELD”).

      It would be helpful to include complete sample sizes to either a slightly modified Figure 1 or the beginning of the methods, just to reduce mental arithmetic ("Each of the five groups was represented by six "lines", and each line had six individuals" so there were 180 total plants, of which 167 were phenotyped - presumably the other 13 died? - and 30 were sequenced).

      The number 167 only applied to floral morphorlogical traits (“Floral morphological traits were measured for all five groups on 167 plants…”), but the exact total sample size for other traits differed. Now the total sample sizes of other traits have also been added to beginning of the second paragraph of the methods.

      For this study 180 seedings have been transplanted from Petri dishes to soil, but 8 seedlings died right after transplanting, seemingly caused by mechanical damage and insufficient moistening. Later phenotyping (2020.02-2020.05) was also disrupted by the COVID-19 pandemic, and some individuals were not measured as we missed the right life stages. Specifically, 5 individuals were missing for floral morphological traits (sepal width, sepal length, petal width, petal length, pistil width, pistil length, and stamen length), 30 for pollen traits, 1 for stem length, and 2 for flowering time. As for seed traits, we only measured individuals with more than ten fruits, so apart from the reasons mentioned above, individuals that were self-incompatible and had insufficient hand-pollination were also excluded. We spotted another mistake during the revision: two individuals with floral morphological measurements had no positional information (tray ID). These measurements were likely mis-sampled or mislabeled, and were therefore excluded from analysis. We assumed most of these missing values resulted from random technical mistakes and were not directly related to the measured traits.

      In general, the methods did a thorough job of describing the genomics approaches but could have used more detail for the plant growth (were plants randomized in the growth chamber, can you rule out block/position effects) and basic statistics (what statistical software was used to perform which tests comparing groups in each section, after the categories were identified).

      When describing the methods, mention whether the plants; this should be straightforward as a linear model with position as a covariate.

      Data used in the present study and a previously published work (Duan et al., 2023) were different subsets of a single experiment. For this reason, we spent fewer words in describing shared methods in this manuscript but tried to summarize some methods that were essential for understanding the current paper. But as you have pointed out, we did miss many important details that should have been kept. Now we have added some description and a table (Supplementary file 1) in the “Plant material” section for explaining randomization, and added more information of the software used for performing statistic tests in the “Phenotyping” section.

      Although we did not mention in the present manuscript, we used a randomized block design for the experiment (Author response image 1).

      Author response image 1.

      Plant positions inside the growth chamber.

      Plants used in the present study and Duan et al. (2023) were different subsets of a single experiment. The entire experiment had eight plant groups, including the five plant groups used in the present study (diploid C. orientalis (Co2), diploid C. grandiflora (Cg2), “whole-genome-duplication-first” (Sd) and “hybridization-first”(Sh) resynthesized allotetraploids, and natural allotetraploids, C. bursa pastoris (Cbp), as well as three plant groups that were only used in Duan et al. (2023; tetraploid C. orientalis (Co4), tetraploid C. grandiflora (Cg4) and diploid hybrids (F)). Each of the eight plant groups had six lines and each line represented by six plants, resulting in 288 plants (8 groups x 6 lines x 6 individuals = 288 plants). The 288 plants were grown in 36 trays placed on six shelves inside the same growth chamber. Each tray had exactly one plant from each of the eight groups, and the position of the eight plants within each tray (A-H) were randomized with random.shuffle() method in Python (Supplementary file 1). The position of the 36 trays inside the growth room (1-36) was also random and the positions of all trays were shuffled once again 28 days after germination (randomized with RAND() and sorting in Microsoft Excel Spreadsheet). (a) Plant distribution; (b) An example of one tray; (c) A view inside the growth chamber, showing the six benches.

      With the randomized block design and one round of shuffling, positional effect is very unlikely to bias the comparison among the five plant groups. The main risk of not adding positions to the statistical model is increasing error variance and decreasing the statistical power for detecting group effect. As we had already observed significant among-group variation in all phenotypic traits (p-value <2.2e-16 for group effect in most tests), further increasing statistical power is not our primary concern. In addition, during the experiment we did not notice obvious difference in plant growth related to positions. Although we could have added more variables to account for potential positional effects (tray ID, shelf ID, positions in a tray etc.), adding variables with little effect may reduce statistical power due to the loss of degree of freedom.

      Due to one round of random shuffling, positions cannot be easily added as a single continuous variable. Now we have redone all the statistical tests on phenotypic traits and included tray ID as a categorical factor (Figure 2-Source Data 1). In general, the results were similar to the models without tray ID. The F-values of group effect was only slightly changed, and p-values were almost unchanged in most cases (still < 2.2e-16). The tray effect (df=35) was not significant in most tests and was only significant in petal length (p-value=0.0111), sepal length (p-value=0.0242) and the number of seeds in ten fruits (p-value=0.0367). As expected, positions (tray ID) had limited effect on phenotypic traits.

      Figure 2 - I assume the numbers at the top indicate sample sizes but perhaps add this to the figure caption.

      Statistical power depends on both the total sample size and the sample size of each group, especially the group with the fewest observations. We lost different number of measurements in each phenotypic trait, and for pollen traits we did have a notable loss, so we chose to show sample sizes above each group to increase transparency. Since we had five different sets of sample sizes (for floral morphological traits, stem length, days to flowering, pollen traits and seed traits, respectively), it would be cumbersome to introduce all 25 numbers in figure caption and could be hard for readers to match the sample sizes with results. For this reason, we would like to keep the sample sizes in the figure, and now we have modified the legend to clarify that the numbers above groups are sample sizes.

      ’The trend has been observed in a wide range of organisms, including ...’ - perhaps group Brassica and Raphanobrassica into one clause in the sentence, since separating them out undermines the diversity somewhat.

      Indeed, it is very strange to put “cotton” between two representatives from Brassicaceae. Now the sentence is changed to “… including Brassica (Wu et al., 2018; Li et al., 2020; Wei et al., 2021) and Raphanobrassica (Ye et al., 2016), cotton (Yoo et al., 2013)…”

      The diagrams under the graph in Figure 4B are particularly helpful for understanding the expression patterns under consideration! I appreciated them a lot!

      Thank you for the comment. We also feel the direction of expression level dominance is convoluted and hard to remember, so we adopted the convention of showing the directions with diagrams.

      Reviewer #2 (Recommendations For The Authors):

      The science is very interesting and thorough, so my comments are mostly meant to improve the clarity of the manuscript text:

      • I found it challenging to remember the acronyms for the different gene expression phenomena and had to consistently cross-reference different parts of the manuscript to remind myself. I think using the full phrase once or twice at the start of a paragraph to remind readers what the acronym stands for could improve readability.

      Thank you for this reasonable suggestion. Now we have replaced the most occurrence of acronyms with the full phrases.

      • There are some technical terms, such as "homoeologous synapsis" and "disomic inheritance", which I think are under-defined in the current text.

      Indeed these terms were not well-defined before using in the manuscript. Now we have added a brief explanation for each term.

      • Under the joint action of these forces, allopolyploid subgenomes are further coordinated and degenerated, and subgenomes are often biasedly fractionated" This sentence has some unclear terminology. Does "coordinated" mean co-adapted, co-inherited, or something else? Is "biasedly fractionated" referring to biased inheritance or evolution of one of the parental subgenomes?

      We apologize for not using accurate terms. With “coordinated” we emphasized the evolution of both homoeologs depends on the selection on total expression of both homoeologs, and on both relative and absolute dosages, which may have shifted away from optima after allopolyploidization. “Co-evolved” or “co-adapted” might be a better word.

      But the term "biasedly fractionation" has been commonly used for referring to the phenomenon that genes from one subgenome of polyploids are preferentially retained during diploidization (Woodhouse et al., 2014; Wendel, 2015). Instead of inventing a new term, we prefer to keep the same term for consistency, so readers could link our findings with numerous studies in this field. Now the sentence is changed to “Under the joint action of these forces, allopolyploid subgenomes are further co-adapted and degenerated, and subgenomes are often biasedly retained, termed biased fractionation”.

      • There are a series of paragraphs in the results, starting with "Resynthesized allotetraploids and the natural Cbp had distinct floral morphologies", which consistently reference Figure 1 where they should be referencing Figure 2.

      Thank you for spotting this mistake! Now the numbers have been corrected.

      • ‘The number of pollen grains per flower decreased in natural Cbp’ this wording implies it's the effect of some experimental treatment on Cbp, rather than just measured natural variation.

      Yes, it is not scientifically precise to say this in the Results section, especially when describing details of results. We meant that assuming resynthesized allopolyploids are good approximation of the initial state of natural allotetraploid C. bursa-pastoris, our results indicate that the number of pollen grains had decreased in natural C. bursa-pastoris. But this is an implication, rather than an observation, so the sentence is better rewritten as “Natural allotetraploids had less pollen grains per flower.”

      • ‘The percentage of genes showing complete ELD was altogether limited but doubled between resynthesized allotetraploid groups and natural allotetraploids’ for clarity, I would suggest revising this to something like "doubled in natural allotetraploids relative to resynthesized allotetraploids

      Thank you for the suggestion. The sentence has been revised as suggested.

      • I'm not sure I understand what the difference is between expression-level dominance and homeolog expression bias. It seems to me like the former falls under the umbrella of the latter.

      Expression-level dominance and homeolog expression bias are easily confused, but they are conceptually independent. One gene could have expression-level dominance without any homeolog expression bias, or strong homeolog expression bias without any expression-level dominance. The concepts were well explained in Grover et al., (2012) with nice figures.

      Expression level dominance compares the total expression level of both homoeologs in allopolyploids with the expression of the same gene in parental species, and judges whether the total expression level in allopolyploids is only similar to one of the parental species. The contributions from different homoeologs are not distinguished.

      While homoeolog expression bias compares the relative expression level of each homoeologs in allopolyploids, with no implication on the total expression of both homoeologs.

      Let the expression level of one gene in parental species X and Y be e(X) and e(Y), respectively. And let the expression level of x homoeolog (from species X) and y homoeolog (from species Y) in allopolyploids be e(x) and e(y), respectively.

      Then a (complete) expression level dominance toward species X means: e(x)+e(y)=e(X) and e(x)+e(y)≠e(Y);

      While a homoeolog expression bias toward species X means: e(x) > e(y), or e(x)/e(y) > e(X)/e(Y), depending on the definition of studies.

      Both expression-level dominance and homeolog expression bias have been widely studied in allopolyploids (Combes et al., 2013; Li et al., 2014; Yoo et al., 2014; Hu & Wendel, 2019). As the two phenomena could be in opposite directions, and may be caused by different mechanisms, we think adopting the definitions in Grover et al., (2012) and distinguishing the two concepts would facilitate communication.

      • Is it possible to split up the results in Figure 7 to show which of the two homeologs was lost (i.e. orientalis vs. grandiflora)? Or at least clarify in the legend that these scenarios are pooled together in the figure?

      Maybe using acronyms without explanation made the figure titles hard to understand, but in the original Figure 7 the loss of two homoeologs were shown separately. Figure 7a,c showed the loss of C. orientalis-homoeolog (“co-expession loss”), and Figure 7b,d showed the loss of C. grandiflora-homoeolog (“cg-expession loss”). Now the legends have been modified to explain the Figure.

      • The paragraph starting with "The extant diploid species" is too long, should probably be split into two paragraphs and edited for clarity.

      The whole paragraph was used to explain why the resynthesized allotetraploids could be a realistic approximation of the early stage of C. bursa-pastoris with two arguments:

      1) The further divergence between C. grandiflora and C. orientalis after the formation of C. bursa-pastoris should be small compared to the total divergence between the two parental species; 2) The mating systems of real parental populations were most likely the same as today. Now the two arguments were separated as two paragraphs, and the second paragraph has been shortened.

      • On the other hand, the number of seeds per fruit" implies this is evidence for an alternative hypothesis, when I think it's really just more support for the same idea.

      “On the other hand” was used to contrast the reduced number of pollen grains and the increased number of seeds in natural allotetraploids. As both changes are typical selfing syndrome, indeed the two support the same idea. We replaced the “On the other hand” with “Moreover”.

      • ‘has become self-compatible before the formation" "has become" should be "became".

      The tense of the word has been changed.

      • If natural C. bursa-pastoris indeed originated from the hybridization between C. grandiflora-like outcrossing plants and C. orientalis-like self-fertilizing plants, the selfing syndrome in C. bursa-pastoris does not reflect the instant dominance effect of the C. orientalis alleles, but evolved afterward.’ This sentence should be closer to the end of the paragraph, after the main morphological results are summarized.

      Thank you for the suggestion. The paragraph is indeed more coherent after moving the conclusion sentence.

      References

      Combes, M.C., Dereeper, A., Severac, D., Bertrand, B. & Lashermes, P. (2013) Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. New Phytologist, 200, 251–260.

      Grover, C.E., Gallagher, J.P., Szadkowski, E.P., Yoo, M.J., Flagel, L.E. & Wendel, J.F. (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytologist, 196, 966–971.

      Hu, G. & Wendel, J.F. (2019) Cis – trans controls and regulatory novelty accompanying allopolyploidization. New Phytologist, 221, 1691–1700.

      Li, A., Liu, D., Wu, J., Zhao, X., Hao, M., Geng, S., et al. (2014) mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in

      Nascent Hexaploid Wheat. The Plant Cell, 26, 1878–1900. Wendel, J.F. (2015) The wondrous cycles of polyploidy in plants. American Journal of Botany, 102, 1753–1756.

      Woodhouse, M.R., Cheng, F., Pires, J.C., Lisch, D., Freeling, M. & Wang, X. (2014) Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proceedings of the National Academy of Sciences of the United States of America, 111, 5283–5288.

      Yoo, M.J., Liu, X., Pires, J.C., Soltis, P.S. & Soltis, D.E. (2014) Nonadditive Gene Expression in Polyploids. https://doi.org/10.1146/annurev-genet-120213-092159, 48, 485–517.

    1. Author Response

      Public Reviews:

      Roget et al. build on their previous work developing a simple theoretical model to examine whether ageing can be under natural selection, challenging the mainstream view that ageing is merely a byproduct of other biological and evolutionary processes. The authors propose an agent-based model to evaluate the adaptive dynamics of a haploid asexual population with two independent traits: fertility timespan and mortality onset. Through computational simulations, their model demonstrates that ageing can give populations an evolutionary advantage. Notably, this observation arises from the model without invoking any explicit energy tradeoffs, commonly used to explain this relationship.

      The model’s results are based on both numerical simulations and formal mathematical analysis.

      Additionally, the theoretical model developed here indicates that mortality onset is generally selected to start before the loss of fertility, irrespective of the initial values in the population. The selected relationship between the fertility timespan and mortality onset depends on the strength of fertility and mortality effects, with larger effects resulting in the loss of fertility and mortality onset being closer together. By allowing for a trans-generational effect on ageing in the model, the authors show that this can be advantageous as well, lowering the risk of collapse in the population despite an apparent fitness disadvantage in individuals. Upon closer examination, the authors reveal that this unexpected outcome is a consequence of the trans-generational effect on ageing increasing the evolvability of the population (i.e., allowing a more effective exploration of the parameter landscape), reaching the optimum state faster.

      The simplicity of the proposed theoretical model represents both the major strength and weakness of this work. On one hand, with an original and rigorous methodology, the logic of their conclusions can be easily grasped and generalised, yielding surprising results. Using just a handful of parameters and relying on direct competition simulations, the model qualitatively recapitulates the negative correlation between lifespan and fertility without requiring energy tradeoffs. This alone makes this work an important milestone for the rapidly growing field of adaptive dynamics, opening many new avenues of research, both theoretically and empirically.

      We thank the reviewers and editor for highlighting the importance of the work presented here.

      On the other hand, the simplicity of the model also makes its relationship with living organisms difficult to gauge, leaving open questions about how much the model represents the reality of actual evolution in a natural context.

      We presented both in results and discussion how the mathematical trade-offs between fertility and survival time give rise to (xb, xd) configuration representative of existing aging modes.

      In particular, a more explicit discussion of how the specifics of the model can impact the results and their interpretation is needed. For example, the lack of mechanistic details on the trans-generational effect on ageing makes the results difficult to interpret.

      We discussed the role of the transgenerational Lansing effect played to its function, there is no need for a particular mechanism beyond that function of transgenerational negative effect. We reinforce this in the discussion by adding the following sentence “Regarding the nature of the transgenerational effect, our model is agnostic and the mere transmission of any negative effect would be sufficient to exert the function. “

      Even if analytical results are obtained, most of the observations appear derived from simulations as they are currently presented. Also, the choice of parameters for the simulations shown in the paper and how they relate to our biological knowledge are not fully addressed by the authors.

      The long time limit of the system with and without the Lansing effect is based on analytical results later confirmed using numerical simulations. The choice of parameters is explained in the introduction as being the minimum ones for defining a living organism. As for the parameters’ values, our numerical analysis gives a solution for any ib, id, xb and xd on R+, making the choice of initial value a mere random decision.

      Finally, the conclusions of evolvability are insufficiently supported, as the authors do not show if the wider genotypic variability in populations with the ageing trans-generational effect is, in fact, selected.

      We do not show nor claim that evolvability per se is selected for but that the apparent advantage given by this transgenerational effect seems to be mediated by an increased genotypic/phenotypic variability conferred to the lineage that we interpreted as evolvability.

    1. Author Response

      Reviewer #1 (Public Review):

      De Seze et al. investigated the role of guanine exchange factors (GEFs) in controlling cell protrusion and retraction. In order to causally link protein activities to the switch between the opposing cell phenotypes, they employed optogenetic versions of GEFs which can be recruited to the plasma membrane upon light exposure and activate their downstream effectors. Particularly the RhoGEF PRG could elicit both protruding and retracting phenotypes. Interestingly, the phenotype depended on the basal expression level of the optoPRG. By assessing the activity of RhoA and Cdc42, the downstream effectors of PRG, the mechanism of this switch was elucidated: at low PRG levels, RhoA is predominantly activated and leads to cell retraction, whereas at high PRG levels, both RhoA and Cdc42 are activated but PRG also sequesters the active RhoA, therefore Cdc42 dominates and triggers cell protrusion. Finally, they create a minimal model that captures the key dynamics of this protein interaction network and the switch in cell behavior.

      We thank reviewer #1 for this assessment of our work.

      The conclusions of this study are strongly supported by data. Perhaps the manuscript could include some further discussion to for example address the low number of cells (3 out of 90) that can be switched between protrusion and retraction by varying the frequency of the light pulses to activate opto-PRG.

      The low number of cells being able to switch can be explained by two different reasons:

      1) first, we were looking for clear inversions of the phenotype, where we could see clear ruffles in the case of the protrusion, and clear retractions in the other case. Thus, we discarded cells that would show in-between phenotypes, because we had no quantitative parameter to compare how protrusive or retractile they were. This reduced the number of switching cells

      2) second, we had a limitation due to the dynamic of the optogenetic dimer used here. Indeed, the control of the frequency was limited by the dynamic of unbinding of the optogenetic dimer. This dynamic of recruitment (~20s) is comparable to the dynamics of the deactivation of RhoA and Cdc42. Thus, the differences in frequency are smoothed and we could not vary enough the frequency to increase the number of switches. Thanks to the model, we can predict that decreasing the unbinding rate of the optogenetic tool should allow us to increase the number of switching cells.

      We will add further discussion of this aspect to the manuscript.

      Also, the authors could further describe their "Cell finder" software solution that allows the identification of positive cells at low cell density, as this approach will be of interest for a wide range of applications.

      There is a detailed explanation of the ‘Cell finder’ in the method sections. It is also available on github at https://github.com/jdeseze/cellfinder and currently in development to be more user-friendly and properly commented.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript builds from the interesting observation that local recruitment of the DHPH domain of the RhoGEF PRG can induce local retraction, protrusion, or neither. The authors convincingly show that these differential responses are tied to the level of expression of the PRG transgene. This response depends on the Rho-binding activity of the recruited PH domain and is associated with and requires (co?)-activation of Cdc42. This begs the question of why this switch in response occurs. They use a computational model to predict that the timing of protein recruitment can dictate the output of the response in cells expressing intermediate levels and found that, "While the majority of cells showed mixed phenotypes irrespectively of the activation pattern, in few cells (3 out of 90) we were able to alternate the phenotype between retraction and protrusion several times at different places of the cell by changing the frequency while keeping the same total integrated intensity (Figure 6F and Supp Movie)."

      Strengths:

      The experiments are well-performed and nicely documented. However, the molecular mechanism underlying the shift in response is not clear (or at least clearly described). In addition, it is not clear that a prediction that is observed in ~3% of cells should be interpreted as confirming a model, though the fit to the data in 6B is impressive.

      Overall, the main general biological significance of this work is that RhoGEF can have "off target effects". This finding is significant in that an orthologous GEF is widely used in optogenetic experiments in drosophila. It's possible that these findings may likewise involve phenotypes that reflect the (co-)activation of other Rho family GTPases.

      We thank reviewer #2 for having assessed our work. Indeed, the main finding of this work is the change in the GEF function upon its change in concentration, which could be explained with a simple model supported by quantitative data. We think that the mechanism of the switch is quite clear, supported by the data showing the double effect of the PH domain and the activation of Cdc42. The few cells that are able to switch phenotype have to be seen as an honest data confirming that 1) concentration is indeed the main determinant of the protein’s function, and the switch is hard to obtain (which is also predicted by the model) 2) the two underlying networks are being activated at different timescales, which leaves some space for differential activation in the same cell. We are here limited by the dynamic of the optogenetic tool, as explained in the response to reviewer #1, and the intrinsic cell-to-cell variability.

      Regarding the interpretation of our results as RhoGEF “off target effects”, we think that it might be too reductive. As said in the discussion, we proposed that the dual role of the RhoGEF could have physiological implications on the induction of front protrusions and rear retractions. While we do not demonstrate it here, it opens the door for further investigation.

      Weaknesses:

      The manuscript makes a number of untested assumptions and the underlying mechanism for this phenotypic shift is not clearly defined.

      We may not have been clear in our manuscript, but we think that the underlying mechanism for this phenotypic shift is clearly explained and backed up by the data and the literature. It relies on 1) the ability of PRG to activate both RhoA and Cdc42 and 2) the ability of the PH domain to directly bind to active RhoA (which is, as shown in the manuscript, necessary but not sufficient for protrusions to happen). The model succeeds in reproducing the data of RhoA with only one free parameter and two independently fitted ones. The fact that activation of RhoA and Cdc42 lead to retraction and protrusion respectively is known since a long time. Thus, we think that the switch is clearly and quantitatively explained.

      This manuscript is missing a direct phenotypic comparison of control cells to complement that of cells expressing RhoGEF2-DHPH at "low levels" (the cells that would respond to optogenetic stimulation by retracting); and cells expressing RhoGEF2-DHPH at "high levels" (the cells that would respond to optogenetic stimulation by protruding). In other words, the authors should examine cell area, the distribution of actin and myosin, etc in all three groups of cells (akin to the time zero data from figures 3 and 5, with a negative control). For example, does the basal expression meaningfully affect the PRG low-expressing cells before activation e.g. ectopic stress fibers? This need not be an optogenetic experiment, the authors could express RhoGEF2DHPH without SspB (as in Fig 4G).

      We thank reviewer #2 for this suggestion. PRG-DHPH is known to affect the phenotype of the cell as shown in Valon et al., 2017. Thus, we really focused on the change implied by the change in optoPRG expression, to understand the phenotype difference. However, we agree that this could be an interesting data to add and will do the experiments for the revised version of the manuscript.

      Relatedly, the authors seem to assume ("recruitment of the same DH-PH domain of PRG at the membrane, in the same cell line, which means in the same biochemical environment." supplement) that the only difference between the high and low expressors are the level of expression. Given the chronic overexpression and the fact that the capacity for this phenotypic shift is not recruitment-dependent, this is not necessarily a safe assumption. The expression of this GEF could well induce e.g. gene expression changes.

      We agree with reviewer #2 that there could be changes in gene expression. In the next point of this supplementary note, we had specified it, by saying « that overexpression has an influence on cell state, defined as protein basal activity or concentration before activation. » We are sorry if it was not clear and will change this sentence for the new version.

      One of the interests of the model is that it does not require any change in absolute concentrations, beside the GEF. The model is thought to be minimal and fits well and explains the data with very few parameters. We don’t show that there is no change in concentration but we show that it is not required to invoke it.

      We will add in the revised version of the manuscript a paragraph discussing this question.

      The third paragraph of the introduction, which begins with the sentence, "Yet, a large body of works on the regulation of GTPases has revealed a much more complex picture with numerous crosstalks and feedbacks allowing the fine spatiotemporal patterning of GTPase activities" is potentially confusing to readers. This paragraph suggests that an individual GTPase may have different functions whereas the evidence in this manuscript demonstrates, instead, that a particular GEF can have multiple activities because it can differentially activate two different GTPases depending on expression levels. It does not show that a particular GTPase has two distinct activities. The notion that a particular GEF can impact multiple GTPases is not particularly novel, though it is novel (to my knowledge) that the different activities depend on expression levels.

      We thank the reviewer for this remark and didn’t intended to confuse the readers. Indeed, we think that this manuscript confirms the canonical view on the GTPases (as most optogenetic experiments did in the past years). We show here that it is more complicated at the level of the GEF. We agree that this is not particularly novel. However, to our knowledge, there is no example of such clear phenotypic control, explained solely by the change in concentration.

      We think that the last paragraph of the introduction is quite clear in the fact that it is the GEF itself that switches its function, and not the Rho-GTPases, but we will reconsider the phrasing of this paragraph for the revised version.

      Concerning the overall model summarizing the authors' observations, they "hypothesized that the activity of RhoA was in competition with the activity of Cdc42"; "At low concentration of the GEF, both RhoA and Cdc42 are activated by optogenetic recruitment of optoPRG, but RhoA takes over. At high GEF concentration, recruitment of optoPRG lead to both activation of Cdc42 and inhibition of already present activated RhoA, which pushes the balance towards Cdc42."

      These descriptions are not precise. What is the nature of the competition between RhoA and Cdc42? Is this competition for activation by the GEFs? Is it a competition between the phenotypic output resulting from the effectors of the GEFs? Is it competition from the optogenetic probe and Rho effectors and the Rho biosensors? In all likelihood, all of these effects are involved, but the authors should more precisely explain the underlying nature of this phenotypic switch. Some of these points are clarified in the supplement, but should also be explicit in the main text.

      We are going to precise these descriptions for the revised version of the manuscript. The competition between RhoA and Cdc42 was thought as a competition between retraction due to the protein network triggered by RhoA (through ROCK-Myosin and mDia-bundled actin) and the protrusion triggered by Cdc42 (through PAK-Rac-ARP2/3-branched Actin). We will make it explicit in the main text.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The findings of this study are valuable as they provide new insights into the role of acetylcholine in modulating sensory processing in the auditory cortex. This paper reports a systematic measurement of cell activity in the auditory cortex before and after applying ACh during an oddball and cascade sequence of auditory stimuli in anesthetized rats. The results presented are solid given the rigorous experimental design and statistical analysis. The conclusions are provocative and will interest researchers in auditory neuroscience and neuromodulation, as well as clinicians and individuals with auditory processing disorders. However, the findings support multiple interpretations, beyond that offered by the authors.

      Our reply: First and foremost, we would like to thank the editors and reviewers for their constructive criticisms, as well as their thoughtful and thorough evaluations of our manuscript. We greatly appreciate their assessment about the novelty and general significance in our study and have revised the manuscript according to their recommendations. In the following we include detailed responses and revisions based on the reviewer’s recommendations.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study examined the impact of exogenous microapplication of acetylcholine (Ach) on metrics of novelty detection in the anesthetized rat auditory cortex. The authors found that the majority of units showed some degree of modulation of novelty detection, with roughly similar numbers showing enhanced novelty detection, suppressed novelty detection, or no change. Enhanced novelty responses were driven by increases in repetition suppression. Suppressed novelty responses were driven by deviance suppression. There were no compelling differences seen between auditory cortical subfields or layers, though there was heterogeneity in the Ach effects within subfields. Overall, these findings are important because they suggest that fluctuations in cortical Ach, which are known to occur during changes in arousal or attentional states, will likely influence the capacity of individual auditory cortical neurons to respond to novel stimuli.

      Strengths:

      The work addresses an important problem in auditory neuroscience. The main strengths of the study are that the work was systematically done with appropriate controls (cascaded stimuli) and utilizes a classical approach that ensures that drug application is isolated to the micro-environment of the recorded neuron. In addition, the authors do not isolate their study to only the primary auditory cortex, but examine the impact of Ach across all known auditory cortical subfields.

      Our reply: Thank you very much for these supportive comments and the appreciation of our work.

      Weaknesses:

      1. As acknowledged by the authors, this study explicitly examines a phenomenon of high relevance to active listening but is done in anesthetized animals, limiting its applicability to the waking state.

      Our reply: We agree; and indeed, this weakness was already recognized in the original manuscript but is now emphasized in the discussion.

      1. The authors do not make any attempt to determine, by spike shape/duration, if their units are excitatory or inhibitory, which may explain some of the variance of the data.

      Our reply: This is a very interesting question, and in fact, we have previously estimated whether neurons are excitatory or inhibitory based on the spike shape (Pérez-Gonzalez et al., 2021). Originally, we sought to implement a similar analysis here and tried to estimate if the recorded units were excitatory or inhibitory based on the spike shapes. But when we tried to perform this analysis, we found that in many cases the recordings had captured occasional spikes from other neurons. This caveat had introduced alterations in the average spike shape, and thus precluded an accurate categorization. Therefore, we decided to discard this analysis for the sake of correctness. This weakness is further commented on in the discussion.

      1. The application of exogenous Ach, potentially in supra-physiological amounts, makes this study hard to extrapolate to a behaving animal. A more compelling design would be to block Ach, particularly at particular receptor types, to determine the effect of endogenous Ach.

      Our reply: We agree again with the reviewer; this weakness was already acknowledged, but this is now further highlighted in discussion where we comment that future studies should analyze the effect of muscarinic- and nicotinic- receptors and blockade them to potentially observe more physiologically-comparable effects. Moreover, this issue is also related to a comment raised by reviewer#2 on a possible ‘dose-response relationship’ issue.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors investigate the effect of ACh on neuronal responses in the auditory cortex of anesthetized rats during an auditory oddball task. The paradigm consisted of two pure tones (selected from the frequency responses at each recording site) presented in a pseudo-random sequence. One tone was presented frequently (the "standard" tone) and the other infrequently (the "deviant" tone). The authors found that ACh enhances the detection of unexpected stimuli in the auditory environment by increasing or decreasing the neuronal responses to deviant and standard tones.

      Strengths:

      The study includes the use of appropriate and validated methodology in line with the current state-of-the-art, rigorous statistical analysis, and the demonstration of the effects of acetylcholine on auditory processing.

      Our reply: Thank you very much for these supportive comments and the appreciation of our work.

      Weaknesses:

      The study was conducted in anesthetized rats, and further research is needed to determine the behavioral relevance of these findings.

      Our reply: We agree; and indeed, this weakness was already recognized but is now emphasized in discussion.

      Reviewer #1 (Recommendations For The Authors):

      As outlined above, breaking out the units into those that are putative excitatory or inhibitory cells would be helpful, if possible. Other critiques are minor:

      1. "Acetylcholine", "ACh" and "Ach" are used throughout the manuscript. Please define the chosen abbreviation at first use, and be consistent.

      2. Line 116, remove comma after "ACh".

      3. Line 123, I would add "in the rat at the end of the first sentence since the species was not mentioned up to this point.

      4. Fig 2 - it would be useful in the Figure (not just in the text) to label red as being the deviant tone and blue as being the standard.

      5. In many Figures (e.g., Fig 5), the term "effect" is found in the legend rather than "ACh". It would seem more intuitive to label these as "ACh".

      6. The AUC and MI interpretations are not clear. Both are metrics that quantify similarity but the authors state that when these values decrease the neurons are less able to discriminate between them (i.e., they are more similar). Some clarifying text would be useful.

      7. L276 - should "SI increase" be "SI decrease"?

      8. L285 - would replace "solely" with "primarily".

      9. Fig 7 - the authors may consider indicating with a label what the difference is between A and C compared to B and D.

      10. L634 - why were only females used?

      11. L646 - "bran" should be "brain".

      12. L649 - "homoeothermic" should be "homeothermic".

      13. L661 - "allowed to generate" should be "allowed the generation of".

      14. L670 - no need for both "about" and "approximately".

      15. L681 - please state what the search stimuli were.

      16. L688 - should be "closed-field".

      17. L754 - add a hyphen to "time-consuming".

      Our reply: Thanks so much for the detailed proofreading of the manuscript and suggestions. All them have been clarified or implemented and corrected in the text.

      Reviewer #2 (Recommendations For The Authors):

      The authors could investigate the effects of different doses of ACh on auditory processing to determine if there is a dose-response relationship.

      Our reply: We agree that this is an interesting question also relate to a matter raised by Reviewer#1 that could be linked to the issue of ‘exogenous Ach’.

      The study only investigated the effects of ACh on neuronal responses during an auditory oddball task. It would be interesting to investigate the effects of ACh on other aspects of auditory processing, such as sound localization or the discrimination of tones.

      Our reply: We agree that, while these aspects of auditory processing are very fascinating, they were outside the scope of the study, and not directly related to predictive coding and precision, so each one of these characteristics would be a full, future project in itself.

      The authors could provide more context on the significance of their findings for individuals with auditory processing disorders.

      Our reply: Thanks for the suggestion. It remains unclear how abnormal brainstem and cortical processing associated with auditory processing disorders arises (Moore, 2006, 2012). While we are not aware of any known direct connection between auditory processing disorders and acetylcholine, individuals with auditory processing disorders do have difficulties with auditory selective attention, so perhaps one could speculate that ACh, by modulating SSA/prediction error, could have some impact on encoding salient events, and if disrupted could lead to problems with selective attention. Moore (2012) speculated that auditory processing disorders may arise from unbalanced processing in bottom-up and top-down contributions.

      Since ACh has been implicated in some neurogenerative diseases and neurodevelopmental disorders, we have also added in the Discussion dialogue about a possible relationship between the modulatory effect of ACh on predictive coding (which involves bottom-up and top-down contributions) and auditory processing disorders. We also cite the recent work by Felix and colleagues (2019) which is the only study we have found on the effects of ACh on auditory processing disorders where they analyzed altered temporal processing at the level of the brainstem in α7-subunit of the nicotinic acetylcholine receptor (α7-nAChR)-deficient mice. After studying α7-nAChR knockout mice of both sexes and wild-type colony controls, they concluded that the malfunction of the CHRNA7 gene that encodes the α7-nAChR may contribute to degraded spike timing in the midbrain, which may underlie the observed timing delay in the ABR signals. These authors propose that their findings are consistent with a role for the α7-nAChR in types of neurodevelopmental and auditory processing disorders. There is also evidence on cholinergic system disfunction being related to the pathophysiology of Alzheimer’s disease (Pérez-González et al., 2022). For instance, disfunction of the synapses of cholinergic neurons in the hippocampus and nucleus basalis of Meynert, as well as decreased choline acetyltransferase activity, is associated to memory disorders in Alzheimer’s disease (Hampel et al., 2018). Also, A Alzheimer’s disease D patients show reduced amounts of the vesicular ACh transporter in some brain areas (Aghourian et al., 2017). Finally, cholinesterase inhibitors seem to have some favorable effect in the treatment of Alzheimer’s disease patients (Sharma, 2019).

      Aghourian M, Legault-Denis C, Soucy J-P, Rosa-Neto P, Gauthier S, Kostikov A, et al. 2017. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol. Psychiatry 22:1531–1538. doi: 10.1038/mp.2017.183

      Felix RA 2nd, Chavez VA, Novicio DM, Morley BJ, Portfors CV. 2019. Nicotinic acetylcholine receptor subunit α7-knockout mice exhibit degraded auditory temporal processing. J Neurophysiol. 122(2):451-465. doi: 10.1152/jn.00170.2019.

      Hampel H, Mesulam M-M, Cuello AC, Khachaturian AS, Vergallo A, Farlow MR, et al. 2018. Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: emerging Evidence from Translational and Clinical Research. J. Prev. Alzheimers Dis. 6:1–14. doi:10.14283/jpad.2018.43

      Moore DR. 2006. Auditory processing disorder (APD)-potential contribution of mouse research. Brain Res. 1091:200–206.

      Moore DR. 2012. Listening difficulties in children: bottom-up and top-down contributions. J Commun Disord. ;45:411–418.

      Pérez-González D, Parras GG, Morado-Díaz CJ, Aedo-Sánchez C, Carbajal GV, Malmierca MS. 2021. Deviance detection in physiologically identified cell types in the rat auditory cortex. Hear Res. 2021 Jan;399:107997. doi: 10.1016/j.heares.2020.107997.

      Pérez-González D, Schreiner TG, Llano DA and Malmierca MS. 2022. Alzheimer’s Disease, Hearing Loss, and Deviance Detection. Front. Neurosci. 16:879480. doi: 10.3389/fnins.2022.879480

      Sharma K. 2019. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol. Med. Rep. 20:1479–1487. doi:10.3892/mmr.2019.1 0374

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Heyndrickx et al describes protein crystal formation and function that bears similarity to Charcot-Leyden crystals made of galectin 10, found in humans under similar conditions. Therefore, the authors set out to investigate CLP crystal formation and their immunological effects in the lung. The authors reveal the crystal structure of both Ym1 and Ym2 and show that Ym1 crystals trigger innate immunity, activated dendritic cells in the lymph node, enhancing antigen uptake and migration to the lung, ultimately leading to induction of type 2 immunity.

      Strengths:

      We know a lot about expression levels of CLPs in various settings in the mouse but still know very little about the functions of these proteins, especially in light of their ability to form crystal structures. As such data presented in this paper is a major advance to the field.

      Resolving the crystal structure of Ym2 and the comparison between native and recombinant CLP crystals is a strength of this manuscript that will be a very powerful tool for further evaluation and understanding of receptor, binding partner studies including the ability to aid mutant protein generation.

      The ability to recombinantly generate CLP crystals and study their function in vivo and ex vivo has provided a robust dataset whereby CLPs can activate innate immune responses, aid activation and trafficking of antigen presenting cells from the lymph node to the lung and further enhances type 2 immunity. By demonstrating these effects the authors directly address the aims for the study. A key point of this study is the generation of a model in which crystal formation/function an important feature of human eosinophilic diseases, can be studied utilising mouse models. Excitingly, using crystal structures combined with understanding the biochemistry of these proteins will provide a potential avenue whereby inhibitors could be used to dissolve or prevent crystal formation in vivo.

      The data presented flows logically and formulates a well constructed overall picture of exactly what CLP crystals could be doing in an inflammatory setting in vivo. This leaves open a clear and exciting future avenue (currently beyond the scope of this work) for determining whether targeting crystal formation in vivo could limit pathology.

      Weaknesses:

      Although resolving the crystal structure of Ym2 in particular is a strength of the authors work, the weaknesses are that further work or even discussion of Ym2 versus Ym1 has not been directly demonstrated. The authors suggest Ym2 crystals will likely function the same as Ym1, but there is insufficient discussion (or data) beyond sequence similarity as to why this is the case. If Ym1 and Ym2 crystals function the same way, from an evolutionary point, why do mice express two very similar proteins that are expressed under similar conditions that can both crystalise and as the authors suggest act in a similar way. Some discussion around these points would add further value.

      We agree with reviewer. We have further elaborated the discussion section including these points, stating clearly that more research needs to be done using Ym2 crystals before we can draw parallels in vivo.

      Additionally, the crystal structure for Ym1 has been previously resolved (Tsai et al 2004, PMID 15522777) and it is unclear whether the data from the authors represents an advance in the 3D structure from what is previously known.

      The crystal structure of Ym1 has indeed been previously solved, and we refer to that paper. In addition, we also provide the crystal structure of in vitro grown Ym1, ashowing biosimilarity. This, for the field of crystallography is a major finding, since it validates the concept that crystal structures generated in vitro can reflect in vivo grown structures. Moreover, the in vivo crystallization of Ym2 was unknown prior to this work, and is now clear as revealed by the ex vivo X-ray crystallography. The strength of our story is that we can now compare Ym1 and Ym2 crystals structures in detail.

      Whilst also generating a model to understand Charcot-Leyden crystals (CLCs), the authors fail to discuss whether crystal shape may be an important feature of crystal function. CLCs are typically needle like, and previous publications have shown using histology and TEM that Ym1 crystals are also needle like. However, the crystals presented in this paper show only formation of plate like structures. It is unclear whether these differences represent different methodologies (ie histology is 2D slides), or differences in CLP crystals that are intracellular versus extracellular. These findings highlight a key question over whether crystal shape could be important for function and has not been addressed by the authors.

      In contrast to the bipyramidal, needle-like CLC crystals formed by human galectin-10 protein (hexagonal space group P6522), the in vivo grown Ym1 and Ym2 crystals we were able to isolate for X-ray diffraction experiments had a plate-like morphology with identical crystallographic parameters as recombinant Ym1/Ym2 crystals (space group P21). We note that depending on the viewing orientation of the thin plate-like Ym1 crystals, they may appear needle-like in histology and TEM images. In addition, we can fully not exclude that both Ym1 or Ym2 may crystallize in vivo in different space groups (which could result in different crystal morphologies for Ym1/Ym2) but we have no data to support this. It is finally also a possibility that plate like structures can break up in vivo along a long axis as a result of mechanical forces, and end up as rod-or needle like shapes.

      Ym1/Ym2 crystals are often observed in conditions where strong eosinophilic inflammation is present. However, soluble Ym1 delivery in naïve mice shows crystal formation in the absence of a strong immune response. There is no clear discussion as to the conditions in which crystal formation occurs in vivo and how results presented in the paper in terms of priming or exacerbating an immune response align with what is known about situations where Ym1 and Ym2 crystals have been observed.

      Although Ym1 and Ym2 crystals are often observed in mice at sites of eosinophilic inflammation, they are not made by eosinophils, but mainly by macrophages and epithelial cells, respectively. In vitro, protein crystallization typically starts from supersaturated solutions that support crystal nucleation. Several factors such as temperature and pH can affect the solubility of Ym1 and Ym2 in vivo and thus affect the nucleation and crystallization process. For Ym1 and Ym2 we noticed in vitro that a small drop in pH facilitates the crystallization process. Although the physiological pH is 7.4, during inflammation, there is a drop in pH. This drop in pH is the result of the infiltration and activation of inflammatory cells in the tissue, which leads to an increased energy and oxygen demand, accelerated glucose consumption via glycolysis and thus increased lactic acid secretion. In addition, we cannot exclude that in vivo, the nucleation process for Ym1/Ym2 is facilitated by interaction with ligands in the extracellular space (e.g. polysaccharide ligands or other – yet to be identified – specific ligands to Ym1/Ym2).

      Reviewer #2 (Public Review):

      Summary:

      This interesting study addresses the ability of Ym1 protein crystals to promote pulmonary type 2 inflammation in vivo, in mice.

      Strengths:

      The data are extremely high quality, clearly presented, significantly extending previous work from this group on the type 2 immunogenicity of protein crystals.

      Weaknesses:

      There are no major weaknesses in this study. It would be interesting to see if Ym2 crystals behave similarly to Ym1 crystals in vivo. Some additional text in the Introduction and Discussion would enrich those sections.

      We agree that this would be interesting to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved experiments and to strengthen findings:

      I think additional data on the ability of Ym2 crystals to induce an immune response would be advantageous. I'm not by any means suggesting the authors repeat all the experiments with Ym2 crystals, but even just the ability to show that Ym2 could promote type 2 immunity in the acute OVA model, would help to strengthen the argument that these crystals in general function in a similar way. Alternatively, a discussion on whether these protein crystals may function in different scenarios/tissues or conditions could help in light of additional data

      We agree that this is an interesting point to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Measuring IL-33 in lung tissue is difficult to interpret as cells will express intracellular IL-33 that is not active and may explain why the results in Fig 2D are not overly convincing. It could just be that Ym1 crystals are changing the number of cells expressing IL-33 (e.g macrophages, or type 2 pneumocytes) Did the authors also measure active IL-33 release in the BAL fluid which may give a better indication of Ym1's ability to activate DAMPs?

      We also measured active IL-33 release in the BAL fluid, but due to the limited sample availability we could only measure this in one of the two repeat experiments, resulting in non-significant results for the BAL fluid. However, certainly for the 6h timepoint we saw a similar trend in the BAL fluid as in the lung tissue, meaning higher levels of IL-33 in the Ym1 crystal group compared to the PBS and soluble Ym1 group.

      Crystals in Fig 2F staining with Ym1 appear to be brighter in the soluble Ym1 group. Is this related to increased packing of Ym1 in the crystals formed in vivo as opposed to those formed in vitro? Aside from reduced amount of crystals that form when you give soluble Ym1, could the type of crystal also be influencing the ability of soluble Ym1 crystals to generate an immune response?

      Our X-ray diffraction experiments show that the packing of Ym1 is identical for in vivo and in vitro grown crystals. Possibly the apparent difference in brightness is caused by stochastic staining by the antibody. In this regard we note that the crystals formed from soluble Ym1 after 24h also can appear as less bright in a similar fashion as recombinant Ym1 crystals.

      Overall, the data and writing of the manuscript is presented to a very high standard

      A few minor points:

      • Fig 2F - a little unsure what the number in the left top corner of the images represented.

      These numbers represent the picture numbers generated by the software, but as they don’t have any added value for the story, we removed these numbers from the images.

      • Not clear why two different expression vectors were used - one for Ym1 and one for Ym2?

      Because we observed that recombinant Ym2 is more poorly secreted in the mammalian cell culture supernatant as compared to recombinant Ym1, we produced Ym2 with an N-terminal hexahistidine-tag followed by a Tobacco Etch Virus (TEV)-protease cleavage site to facilitate its purification.

      Reviewer #2 (Recommendations For The Authors):

      The authors briefly outline in their Introduction potential Sources of Ym1/2 in vivo, highlighting monocytes, M2 macrophages, alveolar macrophages, neutrophils and epithelial cells. Do DCs also make detectable/meaningful amounts of Ym1/2 in vivo, particularly in type 2 settings?

      In the introduction we only highlighted the main cellular sources of Ym1 and Ym2, but there is literature available stating/showing that Ym1/2 is not only expressed by macrophages, neutrophils, monocytes and epithelial cells, but can also be induced in DCs and mast cells. We added the word ‘mainly’ to this sentence in the introduction, to make clear that macrophages, neutrophils and monocytes are not the only sources of Ym1.

      Given the nicely demonstrated similarity of recombinant Ym1 and Ym2 crystals, I think it is important for the authors to include at least initial data on the outcome of recombinant Ym2 crystal admin to mice, in comparison to their Ym1 data.

      We agree that this is an interesting point to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Given the generation of crystals following in vivo administration of soluble Ym1, albeit at a lower level than when crystals were administered, it would be interesting to see if increased concentrations of soluble material show a dose dependent increase in lung inflammation readouts.

      We agree that this would be an interesting point to investigate. Alongside this we could also titrate down the crystal dose, to see if there is a dose dependent decrease in lung inflammation readouts. However, at this time, we choose to not investigate this further.

      I couldn't easily follow the authors' Discussion about potential ability of anti Ym-1/2 Abs to dissolve Ym1/2 crystals (similar to what they have demonstrated for Abs vs Gal10 crystals). Have they addressed this possibility experimentally? If so, addition of such data to the manuscript would be extremely interesting, given the obvious potential Ym1/2 crystal dissolving Abs for investigation of the role of these in a range of different murine models of type 2 inflammation.

      We agree that the phrasing of this part of the discussion can be unclear/confusing. We rephrased this part to make it clearer. However, we did not address the possibility of Ym1/2 crystal dissolving antibodies experimentally.

      In the Results section, the authors briefly comment on the pro-type 2 nature of Ym1 crystals in relation to their previous work with uric acid and Gal10 crystals, proposing that the pulmonary type 2 response may be a 'generic response to crystals of different chemical composition'. The Discussion would be enriched by deeper exploration of this comment.

      We have further elaborated the discussion section including this point.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thorough reading of the manuscript and insightful comments. We have responded to both the “public review” and the “recommendations” and feel that the manuscript is now significantly strengthened.

      Public Review comments

      Reviewer #1:

      Weaknesses:

      1. The abstract does not discuss the reduction of E-gel consumption that occurs after multiple days of exposure to the THC formulation, but rather implies that a new model for chronic oral self-administration has been developed. Given that only two days of consumption was assessed, it is not clear if the model will be useful to determine THC effects beyond the acute measures presented here. The abstract should clarify that there was evidence of reduced consumption/aversive effects with repeated exposures.

      Thank you for your observation. We have added language to address this in the manuscript and the abstract. The model developed in the manuscript is an acute exposure model, with the intention of further chronic exposure adaptations to be developed separately (page 2, line 29).

      1. In the results section, the authors sometimes describe effects in terms of the concentration of gel as opposed to the dose consumed in mg/kg, which can make interpretation difficult. For example, the text describing Figure 1i states that significant effects on body temperature were achieved at 4 mg CTR-gel and 5 mg THC-gel, but were essentially equivalent doses consumed? It would be helpful to describe what average dose of THC produced effects given that consumption varied within each group of mice assigned to a particular concentration.

      We thank the reviewer for this comment and have edited our text to clarify our results. For example, this point is further emphasized by the correlation of the data in Figure1l-n showing the relationship between individual consumption and behavioral readouts (page 11, line 225-226).

      1. The description of the PK data in Figure 3 did not specify if sex differences were examined. Prior studies have found that males and females can exhibit stark differences in brain and plasma levels of THC and metabolites, even when behavioral effects are similar. However, this does depend on species, route, timing of tissue collection. It would be helpful to describe the PK profile of males and females separately.

      We did compare sex dependent effects and found no significant effects after THC E-gel consumption. We’ve added additional language to address this point in the discussion (Supplementary tables T1 and T2).

      1. In Figure 5, it is unclear how the predicted i.p. THC dose could be 30 mg/kg when 30 mg/kg was not tested by the i.p. route according to the figure, and if it had been it would have likely been almost zero acoustic startle, not the increased startle that was observed in the 2 hr gel group. It seems more likely that it would be equivalent to 3 mg/kg i.p. Could there be an error in the modeling, or was it based on the model used for the triad effects? This should be clarified.

      We apologize for the confusion created by that data, and it has now been updated for clarity. The original ~30mg/kg was not a predicted dose consumed, but rather an expected dose consumed based on individual male v. female consumption data in Supplemental Figure S1b. For clarity on the figure, we’ve instead placed dashed lines that draw attention only to the predicted startle response expected from our THC-E-gel model. We have also updated the text which hopefully makes this clearer.

      Reviewer #2:

      Weaknesses:

      Certainly, more THC mediated behavioral outcomes could have been tested, but the work presents a proof-of-concept study to investigate acute THC treatment.

      It would have been interesting if this application form is also possible for chronic treatment regimen

      We agree that a chronic treatment regimen and additional behavioral outcomes is the next, most exciting step for expanding this oral THC-E-gel consumption model, and something we are actively pursuing.

      Reviewer #3:

      Weaknesses:

      The main weaknesses of the manuscript revolve around clarification of the Methods section. All of these weaknesses are described in the "Recommendations to authors" section. Revising the manuscript would account for many of these weaknesses.

      Thank you for carefully reading through our methodology. We have made edits according to everything brought up in the recommendation section of reviewer comments.

      Recommendations for Authors

      Reviewer #1:

      Minor edits to the text:

      Abstract: "intraperitoneal contingent" should be "intraperitoneal noncontingent".

      Line 221, this sentence needs editing for clarity.

      Lines 249-250, incomplete sentence.

      Line 284, the word "activity" is missing from "locomotor between mice".

      Lines 299-301, incomplete sentence.

      Thank you for finding these mistakes. All these recommendations have been incorporated into the final publication.

      Reviewer #2:

      1. The typical THC tetrad includes catalepsy. Why was this behavioral outcome not monitored?

      We felt that locomotion, analgesia, and body temperature were robust behavioral readouts for monitoring cannabimimetic responses and that acoustic startle served as an additional, novel means of understanding THC-E-gel effects.

      1. Please specify the exact substrain of C57BL/6 (i.e., J or N or some other)

      C57BL/6J mice were used for the publication. This clarification has been made in the methods section.

      1. Figure S3 is not mentioned in the result part, but only in the discussion.

      Figure S3 is now referenced in the main body of the Results section.

      1. It might be interesting to follow up the issue that the individual THC consumption is considerable, as depicted in Fig. 1e (at high dose). This will presumably also lead to different behavioral responses. Or is there individual metabolism, also difference male vs. female?

      Thank you for the suggestion. We agree that the distribution of THC doses consumed (calculation based on weight) would be worth further investigating and have now included language about this (page 20, line 436). Please note that we did not find a sex difference (Supplemental Figure S1b), but it would be exciting to discover some biologically relevant cause such as individual absorption or metabolism

      Reviewer #3:

      Major

      1. Methods: Were the observers of experiments blinded to animal treatment? Why or why not?

      Multiple investigators performed the behavioral measurements and were not blinded to mouse treatments, but the dose consumed by each mouse remained blind. Thus, because animals consumed THC gelatin of their own volition while having ad libitum access, we performed the correlational analysis presented in Figure 1 l-n.

      1. Methods: The authors could consider relating their study design to the ARRIVE guidelines and providing a statement as to whether their study adheres to these guidelines. Related to this, were mice provided with any environmental enrichment during the study?

      We followed the ARRIVE guidelines with exception to investigator blinding (described above). Please note that mice were not provided with additional environmental enrichment during the study, a point that we specified in our methods (page 5, line 91).

      1. Methods / Results: In the Methods it is stated that the triad of cannabimimetic behaviors was measured 1 h post-injection or immediately after gelatin exposure. Why were these timepoints chosen? Perhaps this wording should be revised because measurements of cannabimimetic effects were taken several times after drug exposure. Peak i.p. drug may occur earlier than 1 h whereas peak oral drug effect is likely to occur over a longer time period (i.e., not immediately after) due to delays of absorption and first pass metabolism. Is it possible that the authors have underestimated oral drug effects by selecting these timepoints? Please discuss.

      We observed a reduction in locomotion activity starting 1 h following the beginning of exposure to the gelatin (Figure 2), suggesting initial cannabimimetic changes. Based on this observable response we chose to measure all cannabimimetic behaviors immediately following gelatin exposure. The exposure timeline for i.p. injection (1 h post-injection) was selected based on a standard published protocol (Metna-Laurent et al, 2017).

      a. Pharmacodynamics: Related to this and because the aim of this paper is to establish a rodent oral dose model, could the authors discuss the need for better characterization of the time course of drug effects? For example, how might anti-nociception or locomotor activity vary following THC E-gel consumption? This is somewhat addressed in the locomotion time course in Figure 2G but could be elaborated on or discussed in more detail.

      We agree that future studies should include additional time points measuring behavioral changes. This important point is now emphasized in the discussion (page 21, line 455).

      b. Pharmacokinetics: Related to this point above, have the authors considered collecting blood or tissue samples from their i.p.-injected animals to assess drug pharmacokinetics as they relate to drug effect and as compared to oral THC consumption? I am not suggesting the authors conduct a completely new study for this manuscript; however, this could be raised as a future study and/or as a weakness of the current study.

      We did not measure blood and tissue concentrations after i.p. administration due to the number of studies reporting these values by our co-author, Dr. Daniele Piomelli, that established these pharmacokinetic measures. Thus, we chose to reference these studies. Please note that repeating such measurements would be labor intensive, unnecessary use federal NIH resources and animals, while being very redundant to the existing literature.

      c. Minor, but related to these points: In the results, page 14 line 299: the first sentence of this paragraph is confusing as written. The Reviewer recognizes that the authors are relating the pharmacokinetic work to previously published findings, but still thinks that measuring and comparing THC levels from their cohort of i.p.-injected animals would have benefitted the present study.

      Thank you, this edit has been made in the manuscript.

      1. Methods, Histology: The methods as described do not contain sufficient detail regarding THC and THC metabolite quantification. In addition, it is not clear from this section what Histology was performed and how (no histology results appear in the manuscript). Please add more detail to this section of the Methods.

      We apologize for this typo and have corrected it in the methods section of the manuscript.

      1. Methods / Results: The statistics section requires additional detail regarding the rationale for tests being performed on different datasets. In addition, a description of the curve fitting used for data in figures 1H-J, 4B-D, and S4 would be helpful to the reader.

      Thank you, we have updated and provided more information regarding the curve fitting that was used in the methods and results section for the respective figure panels (page 9, line 183-184).

      Minor

      1. Throughout: The use of the phrase "high" dose is somewhat arbitrary and not defined relative to other doses of the THC formulation throughout the manuscript. The Reviewer suggests simply stating that THC was used, specifying the dose, or justifying in the Abstract and/or Introduction the classification of "high" based on relevant literature.

      Thank you for the observation. We have removed this ambiguity by specifically mentioning the dose that was consumed (e.g., abstract page 2, line 20).

      1. Abstract: define "CB1" in the abstract. Although this is a common abbreviation within the field, its use should be defined.

      We have added this definition in the abstract for clarification.

      1. Figure 2: why are the consumption panels B, C, and D given separate labels but the locomotor data are all labeled together as panel G?

      Thank you for the observation, we have adjusted the labeling, so it is equal for both sets of panels.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you very much for forwarding these two important reviews on our paper. Please find hereby our point-by-point responses addressing the ideas, arguments and points of concern raised by the reviewers. We provide explanation of how these points have been incorporated in the paper.

      We feel the review process has been a useful exercise and that the paper has greatly benefited in terms of clarity and accessibility. It is our hope that our findings may ignite renewed interest on unexplored and “unexpected” aspects of great ape vocal communication, inspire novel research, and invite bold new advances on the long-standing puzzle of language origins and evolution. In several relevant sections, we have also sought to explicitly address the point of doubt raised in eLife’s editorial assessment, published alongside the reviewed preprint of our paper. The editorial assessment stated that “…However the evidence provided to support the major claims of the paper is currently incomplete. Specifically, it is not yet clear how the rhythmic structuring found in these long calls is more similar to human language recursion per se rather than isochrony as a broader, more common phenomenon.” To directly clarify this point, we provide now various examples of how recursion is distinct from repetition, using everyday objects for an intuitive understanding (e.g., lines 43-51). We have also expanded the discussion to better contextualise and clarify the implications of our findings on language evolution theory. We hope this will help addressing the implicit request for clarification in the previous editorial assessment.

      Thank you very much for your kind and dedicated attention in the processing of our study.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study investigates the structuring of long calls in orangutans. The authors demonstrate long calls are structured around full pulses, repeated following a regular tempo (isochronic rhythm). These full pulses are themselves structured around different sub-pulses, themselves repeated following an isochronic rhythm. The authors argue this patterning is evidence for self-embedded, recursive structuring in orangutang long calls.

      The analyses conducted are robust and compelling and they support the rhythmicity the authors argue is present in the long calls. Furthermore, the authors went above and beyond and confirmed acoustically the sub-categories identified were accurate.

      We thank the reviewer for this important support regarding our methods and findings.

      However, I believe the manuscript would benefit from a formal analysis of the specific recursive patterning occurring in the long call. Indeed, as of now, it is difficult for the reader to identify what the authors argue to be recursion and distinguish it from simple repetitions of motifs, which is essential.

      We agree with the reviewer that the distinction between repetition and recursion is very important for the adequate interpretation of our findings. Following the reviewer’s point (and the Editorial Assessement), we have now rephrased several passages in the initial paragraph of the paper for added clarity, where recursion is introduced and explained. We now also provide various new examples of recursion in everyday life and popular culture to better illustrate in an easy and accessible way the fundamental nature of recursion. We then use two of these common examples (computer folders and Russian dolls) to specifically distinguish repetition from recursion.

      Although the authors already discuss briefly why linear patterning is unlikely, the reader would benefit from expanding on this discussion section and clarifying the argument here (a lay terminology might help).

      Corrected accordingly.

      I believe an illustration here might help. In the same logic, I believe a tree similar to the trees used in linguistics to illustrate hierarchical structuring would help the reader understand the recursive patterning in place here. This would also help get the "big picture", as Fig 1A is depicting a frustratingly small portion of the long call.

      We completely understand the reviewer’s concern here. As proposed by the reviewer, and in addition to changes in the Introduction (see above) and Discussion (see below), we have now added a new figure in the Discussion to help the reader get the “big picture” of our findings.

      We have also made revisions throughout the Introduction and Discussion to simplify the text, clarify our exposition and facilitate the reader better and intuitively understand the nature and relevance of our results.

      Notwithstanding these comments, this paper would provide crucial evidence for recursion in the vocal production of a non-human ape species. The implication it would have would represent a key shift in the field of language evolution. The study is very elegant and well-constructed. The paper is extremely well written, and the point of view adopted is original, well-argued and compelling.

      We are humbled by the reviewer’s words, and we thank the reviewer for attributing these qualities to our paper. This feedback reassures us of the disruptive potential that these and similar future findings may have on our understanding of language evolution.

      Reviewer #2 (Public Review):

      I am not qualified to judge the narrow claim that certain units of the long calls are isochronous at various levels of the pulse hierarchy. I will assume that the modelling was done properly. I can however say that the broad claims that (i) this constitutes evidence for recursion in non-human primates, (ii) this sheds light on the evolution of recursion and/or language in humans are, when not made trivially true by a semantic shift, unsupported by the narrow claims. In addition, this paper contains errors in the interpretation of previous literature.

      We report the first confirmed case of “vocal sequences within vocal sequences” in a wild nonhuman primate, namely a great ape. The currently prevailing models of language evolution often rest on the (purely theorical) premise that such structures do not exist in any animal bar humans. We find the discovery of such structures in a wild great ape exciting, remarkable, and promising. We regret that the reviewer does not share this sentiment with us. We feel that the statement that these findings are trivial and narrow is unfounded.

      In order to clarify and better communicate the significance of our findings, we now explain in more detail in the Introduction and Discussion how the discovery of nested isochrony in wild orangutans promises to stimulate new series of studies in nature and captivity. Our findings dovetail nicely with previous captive studies that have shown that animals can learn how to recognise recursive patterns and invite new research efforts for the investigation of recursive abilities in the wild and in the absence of human priming and in nonhuman primates.

      The main difficulty when making claims about recursion is to understand precisely what is meant by "recursion" (arguably a broader problem with the literature that the authors engage with). The authors offer some characterization of the concept which is vague enough that it can include anything from "celestial and planetary movement to the splitting of tree branches and river deltas, and the morphology of bacteria colonies". With this appropriately broad understanding, the authors are able to show "recursion" in orangutans' long calls. But they are, in fact, able to find it everywhere.

      The reviewer is correct in highlighting that recursion is ubiquitous in nature and this is something that we explicitly state in the paper. This only makes it the more surprising that, when it comes to vocal combinatorics, recursion has only been described in human language and music, but in no other animals. If studies providing such evidence are known to reviewer, we kindly request their corresponding references.

      In the new revised version, we have paid attention to this aspect raised by the reviewer, and we have sought to disambiguate that our observations pertain to temporal recursion. This clarification will hopefully allow a better understanding of our results.

      The sound of a plucked guitar string, which is a sum of self-similar periodic patterns, count as recursive under their definition as well.

      The example pointed out here by reviewer is factually correct; sound harmonics represent a recursive pattern of a fundamental frequency. (In fact, we explain this phenomenon in the Discussion.) The reviewer’s comment seems to offer an analogy to oscillatory phenomena in the physiology of the vocal folds, and so, it is misplaced with regards to our present study, which focused vocal sequences. Admittedly, this misinterpretation may have been implicitly caused by our wording and we apologise for this. We now refer to “vocal combinatorics” instead of “vocal production” throughout the paper to avoid the reader considering that our findings pertain to the physiology of the vocal folds.

      One can only pick one's definition of recursion, within the context of the question of interest: evolution of language in humans. One must try to name a property which is somewhat specific to human language, and not a ubiquitous feature of the universe we live in, like self-similarity. Only after having carved out a sufficiently distinctive feature of human language, can we start the work of trying to find it in a related species and tracing its evolutionary history. When linguists speak of recursion, they speak of in principle unbounded nested structure (as in e.g., "the doctor's mother's mother's mother's mother ..."). The author seems to acknowledge this in the first line of the introduction: "the capacity to iterate a signal within a self-similar signal" (emphasis added). In formal language theory, which provides a formal and precise definition of one notion of recursivity appropriate for human language, unbounded iteration makes a critical difference: bounded "nested structures" are regular (can be parsed and generated using finite-state machines), unbounded ones are (often) context-free (require more sophisticated automaton). The hierarchy of pulses and sub-pulses only has a fixed amount of layers, moreover the same in all productions; it does not "iterate".

      The reviewer explains here how recursion, in its fully fledged form in modern language(s), is defined by linguistics. We fully agree and do not contest such descriptions and definitions in any way. These descriptions and definitions aim to describe how recursion operates today, not how it evolved. Nor do these descriptions and definitions generate data-driven, testable predictions about precursors or proto-states of recursion as used by modern language-able humans. This is scientifically problematic and heuristically unsatisfying regarding the open question of language evolution.

      Following human-specific definitions for recursion, as proposed by the reviewer, cannot per se be used to undertake a comparative approach to evolution because they leave nothing to compare recursion with in other (wild) species. Using human-specific definitions unavoidably leads to black-and-white notions that language is always absolutely present in humans and always absolutely absent in other animals, regardless of their degree of relatedness to humans. It is unpreventable that these descriptions flout foundational principles of evolution, such as descent with modification and shared ancestry.

      This conceptual problem is not new. Less than a century ago, it was believed that humans were the only tool-user (thousands of examples are known today in nonhuman animals, including fish and invertebrates), and later, that humans were the only cultural animal (today it is known that migrating caribou and fruit flies can establish traditions based on social learning). We must follow in the footsteps of those who have helped redefine human nature in the past. As famously stated by Louis Leakey when presented with evidence for chimpanzee tool-use collected by Jane Goodall, “Now we must redefine tool, redefine man, or accept chimpanzees as human”. Therefore, as a matter of course, we must redefine recursion, embracing empirically (other than purely theoretically) definitions that allow recursion to take on forms and functions different from that of modern language-able humans.

      Another point is that the authors don't show that the constraints that govern the shape of orangutans long calls are due to cognitive processes.

      The reviewer is indeed correct. This does not, however, refute our findings. We do not directly show that cognitive processes govern recursion in orangutan long calls. Instead, we show that the observed patterns cannot be explained by simple bodily or motoric processes, excluding therefore low-level explanations. With more than 50 years of accumulated field experience in primatology, this was the only possible way that our team found to go about conducting research and analyses on natural behaviour, in the wild, with a critically endangered primate. We would be very interested in learning from the reviewer what ethical and non-invasive methods, specific locations in the wild, and type of behavioural or socio-ecological data could be otherwise viably used to demonstrate what the reviewer requests. If other scientists believe that the patterns observed in wild orangutan long calls – three independent, but simultaneously-occurring recursive motifs – can be generated based on low-level physiological mechanisms alone, the burden of proof resides with them.

      Any oscillating system will, by definition, exhibit isochrony.

      We disagree with this statement. The example provided above by the reviewer him/her-self disproves the statement: a guitar string when struck is an oscillating system but it is not isochronic nor is it combinatorial. Isochrony cannot be established with single events, only with event sequences (in practice, ideally >3).

      For instance, human trills produce isochronouns or near isochronous pulses. No cognitive process is needed to explain this; this is merely the physics of the articulators. Do we know that the rhythm of the pulses and sub-pulses in orangutans is dictated by cognition as opposed to the physics of the articulators?

      The reviewer seems to misinterpret our results here. Our focus is on vocal combinatorics, not vocal fold oscillation (see previous response). We have now reworded all instances where the text could be unclear.

      Even granting the authors' unjustified conclusion that wild orangutans have "recursive" structures and that these are the result of cognition, the conclusions drawn by the authors are too often fantastic leaps of induction. Here is a cherry-picked list of some of the far-fetched conclusions: - "our findings indicate that ancient vocal patterns organized across nested structural strata were likely present in ancestral hominids". Does finding "vocal patterns organized across nested structural strata" in wild orangutans suggest that the same were present in ancestral hominids?

      Following the reviewer’s comment, we have now rephrased and toned down this passage, stating that such structures “may have been present” in ancestral hominids. We are grateful to the reviewer for this comment.

      • "given that isochrony universally governs music and that recursion is a feature of music, findings (sic.) suggest a possible evolutionary link between great ape loud calls and vocal music". Isochrony is also a feature of the noise produced by cicadas. Does this suggest an evolutionary link between vocal music and the noise of cicadas?

      We apologise, but it is unclear what the reviewer is exactly suggesting or proposing here. It seems as though it is believed that cicadas are as phylogenetically related to humans as great apes are. Our last common ancestor with great apes diverged about 10mya, but with cicadas 600mya. The last common ancestor with great apes was a great ape (or hominid). The human-cicada last common ancestor would have looked like a worm (it is probable it would already have a nervous bulge at the head, or “brain”). In order to avoid similar misinterpretations, we have now clarified in several instances that our study and interpretation of results are based on shared ancestry within the Hominid family.

      It seems that the reviewer may be also misinterpreting our findings. We do not simply report isochrony in a wild great ape (multiple references for isochronous calls in primate are provided in the Discussion). We report isochrony within isochrony in three non-exclusive rhythmic arrangements. In case the reviewer knows of a study on cicadas, or any non-human species, showing recursive sound combinatorics of this nature, we kindly request the citation. We can only hope that such new cases may be gradually unveiled in wild animals to help propel our general understanding of possible ways of how insipient recursive vocal combinatorics in ancient hominids could have given rise to recursion as used today by language-able modern humans.

      Finally, some passages also reveal quite glaring misunderstandings of the cited literature. For instance:

      • "Therefore, the search for recursion can be made in the absence of meaning-base operations, such as Merge, and more generally, semantics and syntax". It is precisely Chomsky's (disputable) opinion that the main operation that govern syntax, Merge, has nothing to do with semantics. The latter is dealt within a putative conceptual-intentional performance system (in Chomsky's terminology), which is governed by different operations.

      Following the reviewer’s comment, we have now removed “meaning-base operations, such as Merge, and more generally” from the target sentence in order to avoid confusion. Thank you.

      • "Namely, experimental stimuli have consisted of artificial recursive signal sequences organized along a single temporal scale (though not structurally linear), similarly with how Merge and syntax operate". The minimalist view advocated by Chomsky assumes that mapping a hierarchichal structure to a linear order (a process called linearizarion) is part of the articulatory-perceptual system. This system is likewise not governed by Merge and is not part of "syntax" as conceived by the Chomskyan minimalists.

      Following the reviewer’s comment, we have not omitted the target sentence for added clarity.

      Reviewer #1 (Recommendations For The Authors):

      L55-67: I feel there is a step missing in the logic of the argumentation here. The studies cited by the authors here are mostly about syntactic-like structuring but not recursion. Hence when the authors mention in the next sentence that these studies investigate the perception of recursive signalling, it seems incorrect. I agree with the logic, but the references do not seem appropriate. I would further suggest that if there are no other references, that would make the introduction of the study here even easier: there is very little work investigating this capacity in non-human animals, let alone on a production perspective, therefore, the study conducted here is paramount and fills this important gap in the literature.

      We are grateful to Reviewer #1 for these comments, and we are honoured to hear that our findings are filling a literature gap. We have now carefully revised the manuscript, hopefully, streamlining our line of reasoning and improving the paper’s overall readability. We agree that there is very little work investigating the spontaneous “production” of recursion in nonhuman animals. We decided to better detail the logic of our paper by clarifying the difference between recursion and repetition and clarifying that the motifs that we identify in wild orangutan represent a case of "temporal recursion".

      L59: Johan J should be removed (same in discussion).

      Removed, thanks.

      L60: For example is repeated twice, here and L55.

      We have rephrased this part of the manuscript, thanks.

      L72-73: If we consider the Watson et al., 2020 study an example of recursive perception (which I do not think is true), this was conducted using a passive design - i.e. with no active training.

      We have rephrased this part of the manuscript, thanks.

      L240-241: Again, non-adjacent dependency processing does not equal recursion.

      We agree that non-adjacent dependency processing does not equal recursion. We have now clarified this section accordingly.

      L269: one of the most.

      Corrected, thanks.

      L296: add space after settings.

      Corrected, thanks.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the public portion of the review, I advise the authors' to substantially alter their style of writing. The language used is not accurate and the intended meaning is often not clear. This makes it hard for any reader to follow the authors' reasoning fully. Below I list only a few of the egregious examples but the examples abound:

      • "this hints at a neuro-cognitive or neuro-computational transformation in the human brain" what meaning do the author assign to "neuro-cognitive" and "neuro-computational" ? what difference do they place between the two (so that they would be disjoined.) ? What "transformation" are we talking about ? From what to what ?

      • " However, recursive signal structures can also unfold in other manners, such as across nested temporal scales and in the absence of semantics (Fitch, 2017a), as in music." what is meant here by nested temporal scales ?

      • "The simultaneous occurrence of non-exclusive recursive patterns excludes the likelihood that orangutans concatenate long calls and their subunits in linear structure without any recursive processes": isn't there a more straightforward way to say "excludes the likelihood"? What is meant by "non-exclusive recursive patterns"?

      It seems that Reviewer #2 does not share our writing style. Nonetheless, we have tried to meet the reviewer halfway, clarifying throughout the new revised version our definitions, our line of argument, our motivations, our results, the context of our findings in what is known about recursion in animals, and the implication of our discovery for language evolution theory.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We agree with the reviewer that the statistics are buried in a dense excel file without a read-me page. We will address this by making a summary excel page for p-values during the production process.


      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study uses genomically-engineered glypican alleles to demonstrate convincingly that Dally (not Dally-like protein [Dlp]) is the key contributor to formation of the Dpp/BMP morphogen gradient in the wing disc of Drosophila. The authors provide solid genetic evidence that, surprisingly, the core domain of Dally appears to suffice to trap Dpp at the cell surface. They conclude with a model according to which Dally modulates the range of Dpp signaling by interfering with Dpp's internalization by the Dpp receptor Thickveins.

      Public Reviews:

      Reviewer #1 (Public Review):

      How morphogens spread within tissues remains an important question in developmental biology. Here the authors revisit the role of glypicans in the formation of the Dpp gradient in wing imaginal discs of Drosophila. They first use sophisticated genome engineering to demonstrate that the two glypicans of Drosophila are not equivalent despite being redundant for viability. They show that Dally is the relevant glypican for Dpp gradient formation. They then provide genetic evidence that, surprisingly, the core domain of Dally suffices to trap Dpp at the cell surface (suggesting a minor role for GAGs). They conclude with a model that Dally modulates the range of Dpp signaling by interfering with Dpp's degradation by Tkv. These are important conclusions, but more independent (biochemical/cell biological) evidence is needed.

      As indicated above, the genetic evidence for the predominant role of Dally in Dpp protein/signalling gradient formation is strong. In passing, the authors could discuss why overexpressed Dlp has a negative effect on signaling, especially in the anterior compartment. The authors then move on to determine the role of GAG (=HS) chains of Dally. They find that in an overexpression assay, Dally lacking GAGs traps Dpp at the cell surface and, counterintuitively, suppresses signaling (fig 4 C, F). Both findings are unexpected and therefore require further validation and clarification, as outlined in a and b below.

      a. In loss of function experiments (dallyDeltaHS replacing endogenous dally), Dpp protein is markedly reduced (fig 4R), as much as in the KO (panel Q), suggesting that GAG chains do contribute to trapping Dpp at the cell surface. This is all the more significant that, according to the overexpression essays, DallyDeltaHS seems more stable than WT Dally (by the way, this difference should also be assessed in the knock-ins, which is possible since they are YFP-tagged). The authors acknowledge that HS chains of Dally are critical for Dpp distribution (and signaling) under physiological conditions. If this is true, one can wonder why overexpressed dally core 'binds' Dpp and whether this is a physiologically relevant activity.

      According to the overexpression assay, DallyDeltaHS seems more stable than WT Dally (Fig. 4B’, E’, 5A’, B’). As the reviewer suggested, we addressed the difference using the two knock-in alleles and found that DallyDeltaHS is more stable than WT Dally (Fig.4 L, M inset), further emphasizing the insufficient role of core protein of Dally for extracellular Dpp distribution.

      In summary, we showed that, although Dally interacts with Dpp mainly through its core protein from the overexpression assay (Fig. 4E, I), HS chains are essential for extracellular Dpp distribution (Fig. 4R). Thus, the core protein of Dally alone is not sufficient for extracellular Dpp distribution under physiological conditions. These results raise a question about whether the interaction of core protein of Dally with Dpp is physiologically relevant. Since the increase of HS upon dally expression but not upon dlp expression resulted in the accumulation of extracellular Dpp (Fig. 2) and this accumulation was mainly through the core protein of Dally (Fig. 4E, I), we speculate that the interaction of the core protein of Dally with Dpp gives ligand specificity to Dally under physiological conditions.

      To understand the importance of the interaction of core protein of Dally with Dpp under physiological conditions, it is important to identify a region responsible for the interaction. Our preliminary results overexpressing a dally mutant lacking the majority of core protein (but keeping the HS modified region intact) showed that HS chains modification was also lost. Although this is consistent with our results that enzymes adding HS chains also interact with the core protein of Dally (Fig. 4D), the dally mutant allele lacking the core protein would hamper us from distinguishing the role of core protein of Dally from HS chains.

      Nevertheless, we can infer the importance of the interaction of core protein of Dally with Dpp using dally[3xHA-dlp, attP] allele, where dlp is expressed in dally expressing cells. Since Dally-like is modified by HS chains but does not interact with Dpp (Fig. 2, 4), dally[3xHA-dlp, attP] allele mimics a dally allele where HS chains are properly added but interaction of core protein with Dpp is lost. As we showed in Fig.3O, S, the allele could not rescue dallyKO phenotypes, consistent with the idea that interaction of core protein of Dally with Dpp is essential for Dpp distribution and signaling and HS chain alone is not sufficient for Dpp distribution.

      b. Although the authors' inference that dallycore (at least if overexpressed) can bind Dpp. This assertion needs independent validation by a biochemical assay, ideally with surface plasmon resonance or similar so that an affinity can be estimated. I understand that this will require a method that is outside the authors' core expertise but there is no reason why they could not approach a collaborator for such a common technique. In vitro binding data is, in my view, essential.

      We agree with the reviewer that a biochemical assay such as SPR helps us characterize the interaction of core protein of Dally and Dpp (if the interaction is direct), although the biochemical assay also would not demonstrate the interaction under the physiological conditions.

      However, SPR has never been applied in the case of Dpp, probably because purifying functional refolded Dpp dimer from bacteria has previously been found to be stable only in low pH and be precipitated in normal pH buffer (Groppe J, et al., 1998)(Matsuda et al., 2021). As the reviewer suggests, collaborating with experts is an important step in the future.

      Nevertheless, SPR was applied for the interaction between BMP4 and Dally (Kirkpatrick et al., 2006), probably because BMP4 is more stable in the normal buffer. Although the binding affinity was not calculated, SPR showed that BMP4 directly binds to Dally and this interaction was only partially inhibited by molar excess of exogenous HS, suggesting that BMP4 can interact with core protein of Dally as well as its HS chains. In addition, the same study applied Co-IP experiments using lysis of S2 cells and showed that Dpp and core protein of Dally are co-immunoprecipitated, although it does not demonstrate if the interaction is direct.

      In a subsequent set of experiments, the authors assess the activity of a form of Dpp that is expected not to bind GAGs (DppDeltaN). Overexpression assays show that this protein is trapped by DallyWT but not dallyDeltaHS. This is a good first step validation of the deltaN mutation, although, as before, an invitro binding assay would be preferable.

      Our overexpression assays actually showed that DppDeltaN is trapped by DallyWT and by dallyDeltaHS at similar levels (Fig. 5C), indicating that interaction of DppDeltaN and HS chains of Dally is largely lost but DppDeltaN can still interact with core protein of Dally.

      We thank the reviewer for the suggesting the in vitro experiment. Although we decided not to develop biophysical experiments such as SPR for Dpp in this study due to the reasons discussed above, we would like to point out that our result is consistent with a previous Co-IP experiment using S2 cells showing that DppDeltaN loses interaction with heparin (Akiyama2008).

      However, in contrast to our results, the same study also proposed by Co-IP experiments using S2 cells that DppDeltaN loses interaction with Dally (Akiyama2008). Although it is hard to conclude since western blotting was too saturated without loading controls and normalization (Fig. 1C in Akiyama 2008), and negative in vitro experiments do not necessarily demonstrate the lack of interaction in vivo. One explanation why the interaction was missed in the previous study is that some factors required for the interaction of DppDeltaN with core protein of Dally are missing in S2 cells. In this case, in vivo interaction assay we used in this study has an advantage to robustly detect the interaction.

      Nevertheless, the authors show that DppDeltaN is surprisingly active in a knock-in strain. At face value (assuming that DeltaN fully abrogates binding to GAGs), this suggests that interaction of Dpp with the GAG chains of Dally is not required for signaling activity. This leads to authors to suggest (as shown in their final model) that GAG chains could be involved in mediating the interactions of Dally with Tkv (and not with Dpp. This is an interesting idea, which would need to be reconciled with the observation that the distribution of Dpp is affected in dallyDeltaHS knock-ins (item a above). It would also be strengthened by biochemical data (although more technically challenging than the experiments suggested above). In an attempt to determine the role of Dally (GAGs in particular) in the signaling gradient, the paper next addresses its relation to Tkv. They first show that reducing Tkv leads to Dpp accumulation at the cell surface, a clear indication that Tkv normally contributes to the degradation of Dpp. From this they suggest that Tkv could be required for Dpp internalisation although this is not shown directly. The authors then show that a Dpp gradient still forms upon double knockdown (Dally and Tkv). This intriguing observation shows that Dally is not strictly required for the spread of Dpp, an important conclusion that is compatible with early work by Lander suggesting that Dpp spreads by free diffusion. These result show that Dally is required for gradient formation only when Tkv is present. They suggest therefore that Dally prevents Tkv-mediated internalisation of Dpp. Although this is a reasonable inference, internalisation assays (e.g. with anti-Ollas or anti-HA Ab) would strengthen the authors' conclusions especially because they contradict a recent paper from the Gonzalez-Gaitan lab.

      Thanks for suggesting the internalization assay. As we discussed in the discussion, our results suggest that extracellular Dpp distribution is severely reduced in dally mutants due to Tkv mediated internalization of Dpp (Fig. 6). Thus, extracellular Dpp available for labelling with nanobody is severely reduced in dally mutants, which can explain the reduced internalization of Dpp in dally mutants in the internalization assay. Therefore, we think that the nanobody internalization assay would not distinguish the two contradicting possibilities.

      The paper ends with a model suggesting that HS chains have a dual function of suppressing Tkv internalisation and stimulating signaling. This constitutes a novel view of a glypican's mode of action and possibly an important contribution of this paper. As indicated above, further experiments could considerably strengthen the conclusion. Speculation on how the authors imagine that GAG chains have these activities would also be warranted.

      Thank you very much!

      Reviewer #2 (Public Review):

      The authors are trying to distinguish between four models of the role of glypicans (HSPGs) on the Dpp/BMP gradient in the Drosophila wing, schematized in Fig. 1: (1) "Restricted diffusion" (HSPGs transport Dpp via repetitive interaction of HS chains with Dpp); (2) "Hindered diffusion" (HSPGs hinder Dpp spreading via reversible interaction of HS chains with Dpp); (3) "Stabilization" (HSPGs stabilize Dpp on the cell surface via reversible interaction of HS chains with Dpp that antagonizes Tkv-mediated Dpp internalization); and (4) "Recycling" (HSPGs internalize and recycle Dpp).

      To distinguish between these models, the authors generate new alleles for the glypicans Dally and Dally-like protein (Dlp) and for Dpp: a Dally knock-out allele, a Dally YFP-tagged allele, a Dally knock-out allele with 3HA-Dlp, a Dlp knock-out allele, a Dlp allele containing 3-HA tags, and a Dpp lacking the HS-interacting domain. Additionally, they use an OLLAS-tag Dpp (OLLAS being an epitope tag against which extremely high affinity antibodies exist). They examine OLLAS-Dpp or HA-Dpp distribution, phospho-Mad staining, adult wing size.

      They find that over-expressed Dally - but not Dlp - expands Dpp distribution in the larval wing disc. They find that the Dally[KO] allele behaves like a Dally strong hypomorph Dally[MH32]. The Dally[KO] - but not the Dlp[KO] - caused reduced pMad in both anterior and posterior domains and reduced adult wing size (particularly in the Anterior-Posterior axis). These defects can be substantially corrected by supplying an endogenously tagged YFP-tagged Dally. By contrast, they were not rescued when a 3xHA Dlp was inserted in the Dally locus. These results support their conclusion that Dpp interacts with Dally but not Dlp.

      They next wanted to determine the relative contributions of the Dally core or the HS chains to the Dpp distribution. To test this, they over-expressed UAS-Dally or UAS-Dally[deltaHS] (lacking the HS chains) in the dorsal wing. Dally[deltaHS] over-expression increased the distribution of OLLAS-Dpp but caused a reduction in pMad. Then they write that after they normalize for expression levels, they find that Dally[deltaHS] only mildly reduces pMad and this result indicates a major contribution of the Dally core protein to Dpp stability.

      Thanks for the comments. We actually showed that compared with Dally overexpression, Dally[deltaHS] overexpression only mildly reduces extracellular Dpp accumulation (Fig. 4I). This indicates a major contribution of the Dally core protein to interaction with Dpp, although the interaction is not sufficient to sustain extracellular Dpp distribution and signaling gradient.

      The "normalization" is a key part of this model and is not mentioned how the normalization was done. When they do the critical experiment, making the Dally[deltaHS] allele, they find that loss of the HS chains is nearly as severe as total loss of Dally (i.e., Dally[KO]). Additionally, experimental approaches are needed here to prove the role of the Dally core.

      Since the expression level of Dally[deltaHS] is higher than Dally when overexpressed, we normalized extracellular Dpp distribution (a-Ollas staining) against GFP fluorescent signal (Dally or Dally[deltaHS]). To do this, we first extracted both signal along the A-P axis from the same ROI in the previous version. The ratio was calculated by dividing the intensity of a-Ollas staining with the intensity of GFP fluorescent signal at a given position x. The average profile from each normalized profile was generated and plotted using the script described in the method (wingdisc_comparison.py) as other pMad or extracellular staining profiles.

      Although this analysis provides normalized extracellular Dpp accumulation at different positions along the A-P axis, we are more interested in the total amount of Dpp or DppDeltaN accumulation upon Dally or dallyDeltaHS expression. Therefore, in the revised ms, we decided to normalize total amount of extracellular Dpp against the level of Dally or Dally[deltaHS] by dividing total signal intensity of extracellular Dpp staining (ExOllas staining) by total GFP fluorescent signal (Dally or Dally[deltaHS]) around the Dpp producing cells in each wing disc. Statistical analysis showed that accumulation of extracellular Dpp is only slightly reduced without HS chains (Fig.4I), indicating that Dally interacts with Dpp mainly through its core protein.

      We agree with the reviewer that additional experimental approaches are needed to address the role of the core protein of Dally. As we discussed in the response to the reviewer1, to understand the importance of the interaction of core protein of Dally with Dpp, it is important to identify a region responsible for the interaction. Our preliminary results overexpressing a dally mutant lacking the majority of core protein (but keeping the HS modified region intact) showed that HS chains modification was also lost. Although this is consistent with our results that enzymes adding HS chains also interact with the core protein of Dally (Fig. 4D), the dally mutant allele lacking the core protein would hamper us from distinguishing the role of the core protein of Dally from HS chains.

      Nevertheless, we can infer the importance of the interaction of core protein of Dally with Dpp using dally[3xHA-dlp, attP] allele, where dlp is expressed in dally expressing cells. Since Dally-like is modified by HS chains but does not interact with Dpp (Fig. 2, 4), dally[3xHA-dlp, attP] allele mimics a dally allele where HS chains are properly added but interaction of core protein with Dpp is lost. As we showed in Fig.3O, S, the allele could not rescue dallyKO phenotypes, consistent with the idea that interaction of core protein of Dally with Dpp is essential for Dpp distribution and signaling.

      Prior work has shown that a stretch of 7 amino acids in the Dpp N-terminal domain is required to interact with heparin but not with Dpp receptors (Akiyama, 2008). The authors generated an HA-tagged Dpp allele lacking these residues (HA-dpp[deltaN]). It is an embryonic lethal allele, but they can get some animals to survive to larval stages if they also supply a transgene called “JAX” containing dpp regulatory sequences. In the JAX; HA-dpp[deltaN] mutant background, they find that the distribution and signaling of this Dpp molecule is largely normal. While over-expressed Dally can increase the distribution of HA-dpp[deltaN], over-expression of Dally[deltaHS] cannot. These latter results support the model that the HS chains in Dally are required for Dpp function but not because of a direct interaction with Dpp.

      Our overexpression assays actually showed that both Dally and Dally[deltaHS] can accumulate Dpp upon overexpression and the accumulation of Dpp is comparable after normalization (Fig. 5C), consistent with the idea that interaction of DppdeltaN and HS chains are largely lost. As the reviewer pointed out, these results support the model that the HS chains in Dally are required for Dpp function but not because of a direct interaction with Dpp.

      In the last part of the results, they attempt to determine if the Dpp receptor Thickveins (Tkv) is required for Dally-HS chains interaction. The 2008 (Akiyama) model posits that Tkv activates pMad downstream of Dpp and also internalizes and degrades Dpp. A 2022 (Romanova-Michaelides) model proposes that Dally (not Tkv) internalizes Dpp.

      To distinguish between these models, the authors deplete Tkv from the dorsal compartment of the wing disc and found that extracellular Dpp increased and expanded in that domain. These results support the model that Tkv is required to internalize Dpp.

      They then tested the model that Dally antagonizes Tkv-mediated Dpp internalization by determining whether the defective extracellular Dpp distribution in Dally[KO] mutants could be rescued by depleting Tkv. Extracellular Dpp did increase in the D vs V compartment, potentially providing some support for their model. However, there are no statistics performed, which is needed for full confidence in the results. The lack of statistics is particularly problematic (1) when they state that extracellular Dpp does not rise in ap>tkv RNAi vs ap>tkv RNAi, dally[KO] wing discs (Fig. 6E) or (2) when they state that extracellular Dpp gradient expanded in the dorsal compartment when tkv was dorsally depleted in dally[deltaHS] mutants (Fig. 6I). These last two experiments are important for their model but the differences are assessed only visually. In fact, extracellular Dpp in ap>tkv RNAi, dally[KO] (Fig. 6B) appears to be lower than extracellular Dpp in ap>tkv RNAi (Fig. 6A) and the histogram of Dpp in ap>tkv RNAi, dally[KO] is actually a bit lower than Dpp in ap>tkv RNAi, But the author claim that there is no difference between the two. Their conclusion would be strengthened by statistical analyses of the two lines.

      We provided statistics for all the quantifications for pMad and extracellular Dpp distribution as supplementary data. In the previous version, we argued that extracellular Dpp level in ap>tkvRNAi, dallyKO (Fig.6B) does not increase compared with that in ap>tkvRNAi (Fig.6A). Statistical analysis (t-test) showed that the extracellular Dpp level in Fig. 6B is similar to or lower than that in Fig. 6A (Fig. 6E), confirming our conclusion. Statistical analysis (t-test) also confirmed that extracellular Dpp distribution expanded when tkv was knocked down in dallyHS mutants (Fig. 6I).

      Strengths:

      1. New genomically-engineered alleles

      A considerable strength of the study is the generation and characterization of new Dally, Dlp and Dpp alleles. These reagents will be of great use to the field.

      Thanks. We hope that these resources are indeed useful to the field.

      1. Surveying multiple phenotypes

      The authors survey numerous parameters (Dpp distribution, Dpp signaling (pMad) and adult wing phenotypes) which provides many points of analysis.

      Thanks!

      Weaknesses:

      1. Confusing discussion regarding the Dally core vs HS in Dpp stability. They don't provide any measurements or information on how they "normalize" for the level of Dally vs Dally[deltaHS]? This is important part of their model that currently is not supported by any measurements.

      We explained how we normalized in the above section and updated the method section in the revised ms.

      1. Lacking quantifications and statistical analyses:

      a. Why are statistical significance for histograms (pMad and Dpp distribution) not supplied? These histograms provide the key results supporting the authors' conclusions but no statistical tests/results are presented. This is a pervasive shortcoming in the current study.

      Thanks. We provided t-test analyses together with the raw data as supplementary data.

      b. dpp[deltaN] with JAX transgene - it would strengthen the study to supply quantitative data on the percent survival/lethal stage of dpp[deltaN] mutants with or without the JAK transgene

      In this study, we are interested in the role of dpp[deltaN] during the wing disc development. Therefore, we decided not to perform the detailed analysis on the percent survival/lethal stage of dpp[deltaN] mutants with or without the JAX transgene in the current study. Nevertheless, the fact that dpp[deltaN] allele is maintained with a balanced stock and JAX;dpp[deltaN] allele can be maintained as homozygous stock indicates that the lethality of dpp[deltaN] allele comes from the early stages. Indeed, our preliminary results showed that pMad signal is severely lost in the dpp[deltaN] embryo without JAX (data not shown), indicating that the allele is lethal at early embryonic stages.

      c. The graphs on wing size etc should start at zero.

      Thanks. We corrected this in the current ms.

      d. The sizes of histograms and graphs in each figure should be increased so that the reader can properly assess them. Currently, they are very small.

      Thanks. We changed the sizes in the current ms.

      The authors' model is that Dally (not Dlp) is required for Dpp distribution and signaling but that this is not due to a direct interaction with Dpp. Rather, they posit that Dally-HS antagonize Tkv-mediated Dpp internalization. Currently the results of the experiments could be considered consistent with their model, but as noted above, the lack of statistical analyses of some parameters is a weakness.

      Thanks. We now performed and provided the statistical analyses in the revised ms.

      One problematic part of their result for me is the role of the Dally core protein (Fig. 7B). There is a mis-match between the over-expression results and Dally allele lacking HS (but containing the core). Finally, their results support the idea that one or more as-yet unidentified proteins interact with Dally-HS chains to control Dpp distribution and signaling in the wing disc.

      Our results simply suggest that Dpp can interact with Dally mainly through core protein but this interaction is not sufficient to sustain extracellular Dpp gradient formation under physiological conditions (dallyDeltaHS) (Fig. 4Q). We find that the mis-match is not problematic if the role of Dally is not simply mediated through interaction with Dpp. We speculate that interaction of Dpp and core protein of Dally is transient and not sufficient to sustain the Dpp gradient without HS chains of Dally stabilizing extracellular Dpp distribution by blocking Tkv-mediated Dpp internalization.

      There is much debate and controversy in the Dpp morphogen field. The generation of new, high quality alleles in this study will be useful to Drosophila community, and the results of this study support the concept that Tkv but not Dally regulate Dpp internalization. Thus the work could be impactful and fuel new debates among morphogen researchers.

      Thanks.

      The manuscript is currently written in a manner that really is only accessible to researchers who work on the Dpp gradient. It would be very helpful for the authors to re-write the manuscript and carefully explain in each section of the results (1) the exact question that will be asked, (2) the prior work on the topic, (3) the precise experiment that will be done, and (4) the predicted results. This would make the study more accessible to developmental biologists outside of the morphogen gradient and Drosophila communities.

      Thanks. We modified texts and changed the order of Fig.5. We hope that the changes make this study more accessible to developmental biologists outside of the field.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their feedback. Our response and a summary of the changes made to the manuscript are shown below. In addition to the changes made in response to the reviewer’s comments, we made the following changes to improve the manuscript:

      • We updated figures 8 and 9 using data with improved preprocessing and source reconstruction. We now also include graphical network plots. This helps in the cross method (figure 8 vs 9) and cross dataset (figure 9 vs 10) comparison.

      • We added funding acknowledgments and a credit author statement.

      Reviewer #1 (Public Review):

      Summary:

      These types of analyses use many underlying assumptions about the data, which are not easy to verify. Hence, one way to test how the algorithm is performing in a task is to study its performance on synthetic data in which the properties of the variable of interest can be apriori fixed. For example, for burst detection, synthetic data can be generated by injected bursts of known durations, and checking if the algorithm is able to pick it up. Burst detection is difficult in the spectral domain since direct spectral estimators have high variance (see Subhash Chandran et al., 2018, J Neurophysiol). Therefore, detected burst lengths are typically much lower than injected burst lengths (see Figure 3). This problem can be solved by doing burst estimation in the time domain itself, for example, using Matching Pursuit (MP). I think the approach presented in this paper would also work since this model is also trained on data in the time domain. Indeed, the synthetic data can be made more "challenging" by injecting multiple oscillatory bursts that are overlapping in time, for which a greedy approach like MP may fail. It would be very interesting to test whether this method can "keep up" as the data is made more challenging. While showing results from brain signals directly (e.g., Figure 7) is nice, it will be even more impactful if it is backed up with results obtained from synthetic data with known properties.

      We completely agree with the reviewer that testing the methods using synthetic data is an important part of validating such an approach. Each of the original papers that apply these methods to a particular application do this. The focus of this manuscript is to present a toolbox for applying these methods rather than to introduce/validate the methods themselves. For a detailed validation of the methods, the reader should see the citations. For example, the following paper introduces the HMM as a method for oscillatory burst detection:

      • A.J. Quinn, et al. “Unpacking transient event dynamics in electrophysiological power spectra”. Brain topography 32.6 (2019): 1020-1034. See figures 2 and 3 for an evaluation of the HMM’s performance in detecting single-channel bursts using synthetic data.

      We have added text to paragraph 2 in section 2.5 to clarify this burst detection method has been validated using simulated data and added references.

      I was wondering about what kind of "synthetic data" could be used for the results shown in Figure 8-12 but could not come up with a good answer. Perhaps data in which different sensory systems are activated (visual versus auditory) or sensory versus movement epochs are compared to see if the activation maps change as expected. We see similarities between states across multiple runs (reproducibility analysis) and across tasks (e.g. Figure 8 vs 9) and even methods (Figure 8 vs 10), which is great. However, we should also expect the emergence of new modes specific to sensory activation (say auditory cortex for an auditory task). This will allow us to independently check the performance of this method.

      The following papers study the performance of the HMM and DyNeMo in detecting networks using synthetic data:

      • D. Vidaurre, et al. “Spectrally resolved fast transient brain states in electrophysiological data”. Neuroimage 126 (2016): 81-95. See figure 3 in this paper for an evaluation of the HMM’s performance in detecting oscillatory networks using simulation data.

      • C. Gohil, et al. “Mixtures of large-scale dynamic functional brain network modes”. Neuroimage 263 (2022): 119595. See figures 4 and 5 for an evaluation of DyNeMo performance in detecting overlapping networks and long-range temporal structure in the data.

      We have added text to paragraph 2 in section 2.5 to clarify these methods have been well tested on simulated data and added references.

      The authors should explain the reproducibility results (variational free energy and best run analysis) in the Results section itself, to better orient the reader on what to look for.

      Considering the second reviewer’s comments, we moved the reproducibility results to the supplementary information (SI). This means the reproducibility results are no longer part of the main figures/text. However, we have added some text to help the reader understand what aspects indicate the results are reproducible in section 2 of the SI.

      Page 15: the comparison across subjects is interesting, but it is not clear why sensory-motor areas show a difference and the mean lifetime of the visual network decreases. Can you please explain this better? The promised discussion in section 3.5 can be expanded as well.

      It is well known that the frequency and amplitude of neuronal oscillations changes with age. E.g. see the following review: Ishii, Ryouhei, et al. "Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity." Neuropsychobiology 75.4 (2018): 151-161. We observe older people have more beta activity and less alpha activity. These changes are seen in time-averaged calculations, i.e. the amplitude of oscillations are calculated using the entire time series for each subject.

      The dynamic analysis presented in the paper provides further insight into how changes in the time-averaged quantities can occur through changes in the dynamics of frequency-specific networks. The sensorimotor network, which is a network with high beta activity, has a higher fractional occupancy. This indicates the change we observe in time-average beta power may be due to a longer amount of time spent in the sensorimotor network. The visual network, which is a network with high alpha activity, shows reduced lifetimes, which can explain the reduced time-averaged alpha activity seen with ageing.

      We hope the improved text in the last paragraph of section 3.5 clarifies this. It should also be taken into account that the focus of this manuscript is the tools rather than an in-depth analysis of ageing. We use the age effect as an example of the potential analysis this toolbox enables.

      Reviewer #2 (Public Review):

      Summary:

      The authors have developed a comprehensive set of tools to describe dynamics within a single time-series or across multiple time-series. The motivation is to better understand interacting networks within the human brain. The time-series used here are from direct estimates of the brain's electrical activity; however, the tools have been used with other metrics of brain function and would be applicable to many other fields.

      Strengths:

      The methods described are principled, and based on generative probabilistic models.

      This makes them compact descriptors of the complex time-frequency data.

      Few initial assumptions are necessary in order to reveal this compact description.

      The methods are well described and demonstrated within multiple peer-reviewed articles.

      This toolbox will be a great asset to the brain imaging community.

      Weaknesses:

      The only question I had was how to objectively/quantitatively compare different network models. This is possibly easily addressed by the authors.

      We thank the reviewer for his/her comments. We address the weaknesses in our response in the “Recommendations For The Authors” section.

      Reviewer #1 (Recommendations For The Authors):

      Figure 2 legend: Please add the acronym for LCMV also.

      We have now done this.

      Section 2.5.1 page 8: the pipeline is shown in Figure 4, not 3.

      This has been fixed.

      Reviewer #2 (Recommendations For The Authors):

      This is a great paper outlining a resource that can be applied to many different fields. I have relatively minor comments apart from one.

      How does one quantitatively compare network descriptors (from DyNeMo and TDE-HMM for example)? At the moment the word 'cleaner' (P17) is used, but is there any non-subjective way? (eg Free energy/ cross validation etc). At the moment it is useful that one method gives a larger effect size (in a comparison between groups).. but could the authors say something about the use of these methods as more/less faithful descriptors of the data? Or in other words, do all methods generate datasets (from the latent space) that can be quantitatively compared with the original data?

      In principle, the variational free energy could be used to compare models. However, because we use an approximate variational free energy (an exact measure is not attainable) for DyNeMo and an exact free energy for the HMM, it is possible that any differences we see in the variational free energy between the HMM and Dynemo are caused by the errors in its approximation. This makes it unreliable for comparing across models. That said, we can still use the variational free energy to compare within models. Indeed, we use the variational free energy for quantitative model comparisons when we select the best run to analyse from a set of 10.

      One viable approach for comparing models is to assess their performance on downstream tasks. In this manuscript, examples of downstream tasks are the evoked network response and the young vs old group difference. We argue a better performance in the downstream task indicates a more useful model within that context. This performance is a quantitative measure. Note, there is no straightforward answer to which is the best model. It is likely different models will be useful for different downstream tasks.

      In terms of which model provides a more faithful description of the data. The more flexible generative model for DyNeMo means it will generate more realistic data. However, this doesn’t necessarily mean it’s the best model (for a particular downstream task). Both the HMM and DyNeMo provide complementary descriptions that can be useful.

      We have clarified the above in paragraph 5 of section 4.

      Other comments:

      • Footnote 6 - training on concatenated group data seems to be important. It could be more useful in the main manuscript where the limitations of this could be discussed.

      By concatenating the data across subjects, we learn a group-level model. By doing this, we pool information across all subjects to estimate the networks. This can lead to more robust estimates. We have moved this footnote to the main text in paragraph 1 of section 2.5 and added further information.

      • In the TDE burst detection section- please expand on why/how a specific number of states was chosen.

      As with the HMM dynamic network analysis, the number of states must be pre-specified. For burst detection, we are often interested in an on/off type segmentation, which can be achieved with a 2 state HMM. However, if there are multiple burst types, these will all be combined into a single ‘on’ state. Therefore, we might want to increase the number of states to model multiple burst types. 3 was chosen as a trade-off to stay close to the on/off description but allow the model to learn more than 1 burst type. We have added text discussing this in paragraph 4 of section 4.

      • Normally the value of free energy is just a function of the data - and only relative magnitude is important. I think figures (eg 7c) would be clearer if the offset could be removed.

      We agree only the relative magnitude is important. We added text clarifying this in section 2 of the SI. We think it would still be worthwhile to include the offset so that future users can be sure they have correctly trained a model and calculated the free energy.

      • Related to the above- there are large differences in model evidence shown between sets. Yet all sets are the same data, and all parameter estimates are more or less the same. Could the authors account for this please (i.e. is there some other parameter that differentiates the best model in one set from the other sets, or is the free energy estimate a bit variable).

      We would like to clarify only the model parameters for the best run are shown in the group-level analysis. This is the run with the lowest variational free energy, which is highlighted in red. We have now clarified this in the caption of each figure. The difference in free energy for the best runs (across sets) is relatively small compared to the variation across runs within a set. If we were to plot the model parameters for each of the 10 runs in a set, we would see more variability. We have now clarified this in section 2 of the SI.

      Also note, the group analysis usually involves taking an average. Small differences in the variational free energy could reflect small differences in subject-specific model parameters, which are then averaged out, giving virtually identical group effects.

      • And related once again, if the data are always the same, I wonder if the free-energy plots and identical parameter estimates could be removed to free up space in figures?

      The reproducibility results have now been moved to the supplementary information (SI).

      • When citing p-values please specify how they are corrected (and over what please eg over states, nodes, etc?). This would be useful didactically as I imagine most users will follow the format of the presentation in this paper.

      We now include in the caption further details of how the permutation significance testing was done.

      • Not sure of the value of tiny power maps in 9C. Would consider making it larger or removing it?

      The scale of these power maps is identical to part (A.I). We have moved the reproducibility analysis to the SI, enlarged the figure and added colour bars. We hope the values are now legible.

      • Figure 3. I think the embedding in the caption doesn't match the figure (+-5 vs +-7 lags). Would be useful to add in the units of covariance (cii).

      The number of embeddings in the caption has been fixed. Regarding the units for the covariances, as this is simulated data there aren’t really any units. Note, there is already a colour bar to indicate the values of each element.

      • Minimize variational free energy - it may be confusing for some readers that other groups maximize the negative free energy. Maybe a footnote?

      We thank the reviewer for their suggestion. We have added a footnote (1).

      • Final question- and related to the Magnetoencephalography (MEG) data presented. These data are projected into source space using a beamformer algorithm (with its own implicit assumptions and vulnerabilities). Would be interested in the authors' opinion on what is standing between this work and a complete generative model of the MEG data - i.e. starting with cortical electrical current sources with interactions modeled and a dynamic environmental noise model (i.e. packing all assumptions into one model)?

      In principle, there is nothing preventing us from including the forward model in the generative model and training on sensor level MEG data. This would be a generative model starting from the dipoles inside the brain to the MEG sensors. This is under active research. If the reviewer is referring to a biophysical model for brain activity, the main barrier for this is the inference of model parameters. However, note that the new inference framework presented in the DyNeMo paper (Gohil, et al. 2022) actually makes this more feasible. Given the scope of this manuscript is to present a toolbox for studying dynamics with existing methods, we leave this topic as future work.

    1. Author Response

      We are delighted that the reviewers found our work to have merit and we are thankful for their careful reviews and suggestions for experiments and changes to the text to further improve this study.

    1. Author Response

      We would like to express our thorough gratitude to the editors and reviewers, for the helpful comments and valuable suggestions, which provided us an opportunity to further address our research. Prior to submitting our final revision, here we provide our preliminary responses for the comments. Please find our detailed responses to the reviewers’ recommendations below.

      Reviewer #1 (Public Review):

      Summary:

      This study examines the spatial and temporal patterns of occurrence and the interspecific associations within a terrestrial mammalian community along human disturbance gradients. They conclude that human activity leads to a higher incidence of positive associations.

      Strengths:

      The theoretical framework of the study is brilliantly introduced. Solid data and sound methodology. This study is based on an extensive series of camera trap data. Good review of the literature on this topic.

      Weaknesses:

      The authors use the terms associations and interactions interchangeably.

      Response: This is not the case. In fact, we state specifically that "... interspecific associations should not be directly interpreted as a signal of biotic interactions between pairs of species…" However, co-occurrence can be an important predictor of likely interactions, such as competition and predation. We stand by our original text.

      It is not clear what the authors mean by "associations". A brief clarification would be helpful.

      Response: Our specific definition of what is meant here by spatial association can be found in the Methods section. To clarify, the calculation of the index of associations is based on the covariance for the two species of the residuals (epsilon) after consideration of all species-specific response to known environmental covariates. These covariances are modelled to allow them to vary with the level of human disturbance, measured as human presence and human modification. After normalization, the final index of association is a correlation value that varies between -1 (complete disassociation) and +1 (complete positive association).

      Also, the authors do not delve into the different types of association found in the study. A more ecological perspective explaining why certain species tend to exhibit negative associations and why others show the opposite pattern (and thus, can be used as indicator species) is missing.

      Response: Suggesting the ecological underpinnings of the associations observed here would mainly be speculation at this point, but the associations demonstrated in this analysis do suggest promising areas for the more detailed research suggested.

      Also, the authors do not distinguish between significant (true) non-random associations and random associations. In my opinion, associations are those in which two species co-occur more or less than expected by chance. This is not well addressed in the present version of the manuscript.

      Response: Results were considered to be non-random if correlation coefficients (for spatial association) or overlap (for temporal association) fell outside of 95% Confidence Intervals. This is now stated clearly in the Methods section. In Supplementary Figures S2 and S3, p<0.01 levels are also presented.

      The obtained results support the conclusions of the study.

      Anthropogenic pressures can shape species associations by increasing spatial and temporal co-occurrence, but above a certain threshold, the positive influence of human activity in terms of species associations could be reverted. This study can stimulate further work in this direction.

      Reviewer #2 (Public Review):

      Summary:

      This study analyses camera trapping information on the occurrence of forest mammals along a gradient of human modification of the environment. The key hypotheses are that human disturbance squeezes wildlife into a smaller area or their activity into only part of the day, leading to increased co-occurrence under modification. The method used is joint species distribution modelling (JSDM).

      Strengths:

      The data source seems to be very nice, although since very little information is presented, this is hard to be sure of. Also, the JSDM approach is, in principle, a nice way of simultaneously analysing the data.

      Weaknesses:

      The manuscript suffers from a mismatch of hypotheses and methods at two different levels.

      1. At the lower level, we first need to understand what the individual species do and "like" (their environmental niche). That information is not presented, and the methods suggest that the representation of each species in the JSDM is likely to be extremely poor.

      Response: The response of each species to the environmental covariates provides a window into their environmental niche, encapsulated in the beta coefficients for each environmental covariate. This information is presented in Figure 2.

      1. The hypothesis clearly asks for an analysis of the statistical interaction between human disturbance and co-occurrence. Yet, the model is not set up this way, and the authors thus do a lot of indirect exploration, rather than direct hypothesis testing.

      Response: Our JSDM model is set up specifically to examine the effect of human disturbance on co-occurrence, after controlling for shared responses to environmental variables. It directly tests the first hypothesis, since, if increase in indices of human disturbance had not tended to increase the measured spatial correlations between species as detected by the model, we would have rejected our stated hypothesis that human modification of habitats results in increased positive spatial associations between species.

      Even when the focus is not the individual species, but rather their association, we need to formulate what the expectation is. The hypotheses point towards presenting the spatial and the temporal niche, and how it changes, species for species, under human disturbance. To this, one can then add the layer of interspecific associations.

      Response: Examining each species one by one and how each one responds to human disturbance would miss the effects of any meaningful interactions between species. The analysis presented provides a means to highlight associations that would have been overlooked. Future research could go on to analyze the strongest associations in the community and the strongest effects of human disturbance so as to uncover the underlying interactions that give rise to them and the mechanisms of human impact. We believe that this will prove to be a much more productive approach than trying to tackle this problem species by species and pair by pair.

      The change in activity and space use can be analysed much simpler, by looking at the activity times and spatial distribution directly. It remains unclear what the contribution of the JSDM is, unless it is able to represent this activity and spatial information, and put it in a testable interaction with human disturbance.

      The topic is actually rather complicated. If biotic interactions change along the disturbance gradient, then observed data are already the outcome of such changed interactions. We thus cannot use the data to infer them! But we can show, for each species, that the habitat preferences change along the disturbance gradient - or not, as the case may be.

      Then, in the next step, one would have to formulate specific hypotheses about which species are likely to change their associations more, and which less (based e.g. on predator-prey or competitive interactions). The data and analyses presented do not answer any of these issues.

      Response: We suggest that the so-called “simpler” approach described above is anything but simple, and this is precisely what the Joint Species Distribution Model improves upon. As pointed out in the Introduction, simply examining spatial overlap is not enough to detect a signal of meaningful biotic interaction, since overlap could be the result of similar responses to environmental variables. With the JSDM approach, this would not be considered a positive association and would then not imply the possible existence of meaningful interaction.

      Another more substantial point is that, according to my understanding of the methods, the per-species models are very inappropriate: the predictors are only linear, and there are no statistical interactions (L374). There is no conceivable species in the world whose niche would be described by such an oversimplified model.

      Response: While interaction terms can be included in the JSDM, this would considerably increase the complexity of the models. In previous work, we have found no strong evidence for the importance of interaction terms and they do not improve the performance of the models.

      We have no idea of even the most basic characteristics of the per-species models: prevalences, coefficient estimates, D2 of the model, and analysis of the temporal and spatial autocorrelation of the residuals, although they form the basis for the association analysis!

      Response: The coefficient estimates for response to environmental variables used in the JSDM are provided in Figure 2.

      Why are times of day and day of the year not included as predictors IN INTERACTION with niche predictors and human disturbance, since they represent the temporal dimension on which niches are hypothesised to change?

      Also, all correlations among species should be shown for the raw data and for the model residuals: how much does that actually change and can thus be explained by the niche models?

      The discussion has little to add to the results. The complexity of the challenge (understanding a community-level response after accounting for species-level responses) is not met, and instead substantial room is given to general statements of how important this line of research is. I failed to see any advance in ecological understanding at the community level.

      Response: We agree that the community-level response to human disturbance is a complex topic, and we believe it is also a very important one. This research and its support of the spatial compression hypothesis, while not providing definitive answers to detailed mechanisms, opens up new lines of inquiry that makes it an important advance. For example, the strong effects of human disturbance on certain associations that were detected here could now be examined with the kind of detailed species by species and pair by pair analysis that this reviewer appears to demand.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript has helped address a long-standing mystery in splicing regulation: whether splicing occurs co- or post-transcriptionally. Specifically, the authors (1) uniquely combined smFISH, expansion microscopy, and live cell imaging; (2) revealed the ordering and spatial distribution of splicing steps; and (3) discovered that nascent, not-yet-spliced transcripts move more slowly around the transcription site and undergo splicing as they move through the clouds. Based on the experimental results, the authors suggest that the observation of co-transcriptional splicing in previous literature could be due to the limitation of imaging resolution, meaning that the observed co-transcriptional splicing might actually be post-transcriptional splicing occurring in proximity to the transcription site. Overall, the work presented here clearly provides a comprehensive picture of splicing regulation.

      Major points:

      1. Linearity of expansion microscopy. For Figure 2B, it would be helpful to display the same sample before and after expansion, just like Supplementary Figure 3, but with a transcription site and "cloud". In the current version, the transcription site looks quite different in the not-expanded (more green dots on the left) and expanded image (more green dots on the top).

      We thank the reviewer for this comment on linearity of expansion. Based on our prior manuscript (Chen et al 2015 Nature Methods. PMID: 27376770), we expect expansion microscopy to yield isotropic expansion. Indeed, as shown in Supplemental Figure 3, we confirmed that expansion of nuclei (3B, top) and transcripts (3B, bottom) is isotropic. Additionally, before splicing inhibition, we demonstrated the linearity of expansion for a transcription site (3B, left), shown at standard resolution with intron stain. The images shown in Figure 2B are meant solely to illustrate the change in resolution upon expansion, and are not meant to imply spatial matching between the expanded and unexpanded image. We apologize for the confusion and have clarified this in the figure legend for Figure 2.

      We also point the reader towards Supplemental Figure 4, in which we validate the use of expansion microscopy in these findings. We show that transcription sites in expanded samples were the same size as those imaged using stochastic optical reconstruction microscopy (STORM), demonstrating that expansion did not significantly alter the morphology of the site.

      1. FISH dot colocalization. What is the colocalization rate of FISH dots in general under experimental conditions? In addition, in Figures 2C and 2G, why do some 3'exon dots not have co-localized 5'exon dots?

      We thank the reviewer for asking for these important clarifications. Under standard (non-expanded) conditions, our colocalization of 3’ and 5’ spots varies by gene, but more than 75% of intron spots colocalize with exon spots for the vast majority of transcripts we evaluated. The percentage of colocalization for each gene and intron can be found in column 4 of Table 1.

      Regarding the second point—these individual images may not reflect the actual quantitative number of spot counts at the site, as these transcription sites have a sizable Z dimension that is difficult to capture in one image, and certain dyes are more easily visually distinguished in contrasted images than others. These factors may cause some 3’ spots to appear without a corresponding co-localized 5’ spot in these images. We refer the reviewer to Supplemental Figure 4C for quantitative spot counting of an expanded transcription site, for which there are a similar number of 3’ end and 5’ end spots within the entire Z-stacked image. Importantly, these transcription site clouds contain longer, unspliced transcripts, potentially leading to further separation between the 5’ and 3’ ends of a single transcript when compared to a cytoplasmic, spliced transcript (quantified in Figure 2I).

      1. It would be helpful if the authors uploaded a few examples of live cell imaging movies.

      Certainly! Please refer to the new Supplementary Movies 1-3 for representative examples of live cell imaging data.

      1. It is recommended to double-check the text for errors.

      We apologize for errors in the original manuscript, and have made the appropriate corrections.

      Reviewer #2 (Public Review):

      Allison Coté et al. investigated the ordering and spatial distribution of nascent transcripts in several cells using smFISH, expansion microscopy, and live-cell imaging. They find that pre-mRNA splicing occurs post-transcriptionally at the clouds around the transcription start site, termed the transcription site proximal zone. They show that pre-mRNA may undergo continuous splicing when they pass through the zone after transcription. These data suggest a unifying model for explaining previously reported co-transcriptional splicing events and provide a direction for further study of the nature of the slow-moving zone around the transcription start site.

      This paper is well-written. The findings are very important, and the data supports the conclusions well. However, some aspects of the image and description need to be clarified and revised.

      The authors describe Figure 4E and 4F results in the main text as that "we performed RNA FISH simultaneously with immunofluorescence for SC35, a component of speckles, and saw that this compartmentalized pre-mRNA did indeed appear near nuclear speckles both before (Supplementary Figure 6C) and after (Figure 4E) splicing inhibition." However, no SC35 staining is shown in the Figure 4E. A similar situation happened in describing Figure 4F.

      We thank the reviewer for noting this error. We mistakenly called in text for Figure 4E, when we meant to refer to Figure 4G, which shows combined RNA FISH and SC35 immunofluorescence show compartmentalization within nuclear speckles. Figures 4E and 4F do not show SC35 immunofluorescence. We have altered the text and figure captions accordingly. Recommendations for the authors: please note that you control which revisions to undertake from the public reviews and recommendations for the authors Reviewer #1 (Recommendations For The Authors):

      Minor points:

      1. For Figures, it would be better to mark co-transcriptional and proximal post-transcriptional splicing in a clearer way. Like in Figure 1A, the simulated RNA FISH signals are almost identical across two conditions, which is a bit confusing. Overlapping and close proximity shall be better illustrated in related figures.

      We thank the reviewer for these suggestions. We have iterated these figures through multiple revisions and have found that these diagrams tend to resonate the most, so we have elected to keep them as is, but we do appreciate the suggestion.

      1. May include some details of expansion microscopy in the last paragraph of the Introduction. For example, why introduce expansion microscopy? To what level it can help overcome the diffraction limit?

      We thank the reviewer for this comment, and have added additional text to this paragraph to further set up the use of expansion microscopy.

      1. Double-check the formatting. Some sub-titles are in Bold, some in Italic.

      We apologize for any formatting errors, and have made the appropriate corrections.

      1. Please double-check the writing. I find many incompatible parts across the manuscript. For example, as described in the Figure 1D caption, there aren't "first" and "second" graphs in the figure. Moreover, some writings require additional refinement. For instance, in the Introduction part, the paragraph discussing RNA imaging, various techniques (such as FISH and live imaging), and concerns (such as microscopy resolution, chromatin fraction, and limitations related to reporter genes) are intertwined without clear indexing or logical structuring. Similar cases in other paragraphs too. Last but not least, I can even find repetitive sentences across the manuscript. For instance, I believe that the authors forgot to delete "By distinguishing the separate fluorescent signals from probes bound to exons and introns, we could visualize splicing intermediates (represented by colocalized intron and exon spots) relative to the site of transcription (represented by bright colocalized intron and exon spots) and fully spliced products (represented by exon spots alone)." in the first paragraph of the Results part, as the exact same sentence re-occurs right after. I've only listed a few examples here. Please refine the manuscript.

      We apologize for any errors in the original manuscript, and have made the appropriate corrections.

      Reviewer #2 (Recommendations For The Authors):

      1. The sentence "By distinguishing the separate fluorescent signals from probes bound to exons and introns, we could visualize splicing intermediates (represented by colocalized intron and exon spots) relative to the site of transcription (represented by bright colocalized intron and exon spots) and fully spliced products (represented by exon spots alone)." is accidentally repeated twice, one of them should be deleted.

      We apologize for this duplication, and have made the appropriate correction.

    1. Author Response:

      Reviewer #1 (Public Review):

      Summary:<br /> The global decline of amphibians is primarily attributed to deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). It is unclear whether and how skin-resident immune cells defend against Bd. Although it is well known that mammalian mast cells are crucial immune sentinels in the skin and play a pivotal role in the immune recognition of pathogens and orchestrating subsequent immune responses, the roles of amphibian mast cells during Bd infections are largely unknown. The current study developed a novel way to enrich X. laevis skin mast cells by injecting the skin with recombinant stem cell factor (SCF), a KIT ligand required for mast cell differentiation and survival. The investigators found an enrichment of skin mast cells provides X. laevis substantial protection against Bd and mitigates the inflammation-related skin damage resulting from Bd infection. Additionally, the augmentation of mast cells leads to increased mucin content within cutaneous mucus glands and shields frogs from the alterations to their skin microbiomes caused by Bd.

      Strengths:<br /> This study underscores the significance of amphibian skin-resident immune cells in defenses against Bd and introduces a novel approach to examining interactions between amphibian hosts and fungal pathogens.

      Weaknesses:<br /> The main weakness of the study is the lack of functional analysis of X. laevis mast cells. Upon activation, mast cells have the characteristic feature of degranulation to release histamine, serotonin, proteases, cytokines, and chemokines, etc. The study should determine whether X. laevis mast cells can be degranulated by two commonly used mast cell activators IgE and compound 48/80 for IgE-dependent and independent pathways. This can be easily done in vitro. It is also important to assess whether in vivo these mast cells are degranulated upon Bd infection using avidin staining to visualize vesicle releases from mast cells. Figure 3 only showed rSCF injection caused an increase in mast cells in naïve skin. They need to present whether Bd infection can induce mast cell increase and rSCF injection under Bd infection causes a mast cell increase in the skin. In addition, it is unclear how the enrichment of mast cells provides protection against Bd infection and alternations to skin microbiomes after infection. It is important to determine whether skin mast cells release any contents mentioned above.

      We would like to thank the reviewer for taking the time to review our work and for providing us with valuable feedback.

      Please note that amphibians do not possess the IgE antibody isotype1.

      To our knowledge there have been no published studies using approaches for studying mammalian mast cell degranulation to examine amphibian mast cells. Notably, several studies suggest that amphibian mast cells lack histamine2, 3, 4, 5 and serotonin2, 6. While there are commercially available kits and reagents for examining mammalian mast cell granule content, most of these reagents may not cross-react with their amphibian counterparts. This is especially true of cytokines and chemokines, which diverged quickly with evolution and thus do not share substantial protein sequence identity across species as divergent as frogs and mammals. Respectfully, while following up on these findings is possible, it would involve considerable additional work to find reagents that would detect amphibian mast cell contents.

      We would also like to respectfully point out that while mast cell degranulation is a feature most associated with mammalian mast cells, this is not the only means by which mammalian mast cells confer their immunological effects. While we agree that defining the biology of amphibian mast cell degranulation is important, we anticipate that since the anti-Bd protection conferred by enriching frog mast cells is seen after 21 days of enrichment, it is quite possible that degranulation may not be the central mechanism by which the mast cells are mediating this protection.

      As noted in our manuscript, frog mast cells upregulate their expression of interleukin-4 (IL4), which is a hallmark cytokine associated with mammalian mast cells7. We are presently exploring the role of the frog IL4 in the observed mast cell anti-Bd protection. Should we generate meaningful findings in this regard, we will add them to the revised version of this manuscript.

      We are also exploring the heparin content of frog mast cells and capacities of these cells to degranulate in vitro in response to compound 48/80. In addition, we are exploring in vivo mast cell degranulation via histology and avidin-staining. Should these studies generate significant findings, we will include them in the revised version of this manuscript.

      Per the reviewer’s suggestion, in our revised manuscript we also plan to include data showing whether Bd infections affect skin mast cell numbers and how rSCF injection impacts skin mast cell numbers in the context of Bd infections.

      In regard to how mast cells impact Bd infections and skin microbiomes, our data indicate that mast cells are augmenting skin integrity during Bd infections and promoting mucus production, as indicated by the findings presented in Figure 4A-C and Figure 5A-C, respectively. There are several mammalian mast cell products that elicit mucus production. In mammals, this mucus production is mediated by goblet cells while the molecular control of amphibian skin mucus gland content remains incompletely understood. Interleukin-13 (IL13) is the major cytokine associated with mammalian mucus production8, while to our knowledge this cytokine is either not encoded by amphibians or else has yet to be identified and annotated in these animals’ genomes. IL4 signaling also results in mucus production9 and we are presently exploring the possible contribution of the X. laevis IL4 to skin mucus gland filling. Any significant findings on this front will be included in the revised manuscript. Histamine release contributes to mast cell-mediated mucus production10, but as we outline above, several studies indicate that amphibian mast cells may lack histamine2, 3, 4, 5. Mammalian mast cell-produced lipid mediators also play a critical role in eliciting mucus secretion11 and our transcriptomic analysis indicates that frog mast cells express several enzymes associated with production of such mediators. We will highlight this observation in our revised manuscript.

      We anticipate that X. laevis mast cells influence skin integrity, microbial composition and Bd susceptibility in a myriad of ways. Considering the substantial differences between amphibian and mammalian evolutionary histories and physiologies, we anticipate that many of the mechanisms by which X. laevis mast cells confer anti-Bd protection will prove to be specific to amphibians and some even unique to X. laevis. We are most interested in deciphering what these mechanisms are but foresee that they will not necessarily reflect what one would expect based on what we know about mammalian mast cells in the context of mammalian physiologies.

      Reviewer #2 (Public Review):

      Summary:<br /> In this study, Hauser et al investigate the role of amphibian (Xenopus laevis) mast cells in cutaneous immune responses to the ecologically important pathogen Batrachochytrium dendrobatidis (Bd) using novel methods of in vitro differentiation of bone marrow-derived mast cells and in vivo expansion of skin mast cell populations. They find that bone marrow-derived myeloid precursors cultured in the presence of recombinant X. laevis Stem Cell Factor (rSCF) differentiate into cells that display hallmark characteristics of mast cells. They inject their novel (r)SCF reagent into the skin of X. laevis and find that this stimulates the expansion of cutaneous mast cell populations in vivo. They then apply this model of cutaneous mast cell expansion in the setting of Bd infection and find that mast cell expansion attenuates the skin burden of Bd zoospores and pathologic features including epithelial thickness and improves protective mucus production and transcriptional markers of barrier function. Utilizing their prior expertise with expanding neutrophil populations in X. laevis, the authors compare mast cell expansion using (r)SCF to neutrophil expansion using recombinant colony-stimulating factor 3 (rCSF3) and find that neutrophil expansion in Bd infection leads to greater burden of zoospores and worse skin pathology.

      Strengths: <br /> The authors report a novel method of expanding amphibian mast cells utilizing their custom-made rSCF reagent. They rigorously characterize expanded mast cells in vitro and in vivo using histologic, morphologic, transcriptional, and functional assays. This establishes solid footing with which to then study the role of rSCF-stimulated mast cell expansion in the Bd infection model. This appears to be the first demonstration of the exogenous use of rSCF in amphibians to expand mast cell populations and may set a foundation for future mechanistic studies of mast cells in the X. laevis model organism. 

      We thank the reviewer for recognizing the breadth and extent of the undertaking that culminated in this manuscript. Indeed, this manuscript would not have been possible without considerable reagent development and adaptation of techniques that had previously not been used for amphibian immunity research. In line with the reviewer’s sentiment, to our knowledge this is the first report of using molecular approaches to augment amphibian mast cells, which we hope will pave the way for new areas of research within the fields of comparative immunology and amphibian disease biology.

      Weaknesses:<br /> The conclusions regarding the role of mast cell expansion in controlling Bd infection would be stronger with a more rigorous evaluation of the model, as there are some key gaps and remaining questions regarding the data. For example:

      1. Granulocyte expansion is carefully quantified in the initial time courses of rSCF and rCSF3 injections, but similar quantification is not provided in the disease models (Figures 3E, 4G, 5D-G). A key implication of the opposing effects of mast cell vs neutrophil expansion is that mast cells may suppress neutrophil recruitment or function. Alternatively, mast cells also express notable levels of csfr3 (Figure 2) and previous work from this group (Hauser et al, Facets 2020) showed rG-CSF-stimulated peritoneal granulocytes express mast cell markers including kit and tpsab1, raising the question of what effect rCSF3 might have on mast cell populations in the skin. Considering these points, it would be helpful if both mast cells and neutrophils were quantified histologically (based on Figure 1, they can be readily distinguished by SE or Giemsa stain) in the Bd infection models.

      We thank the reviewer for this insightful suggestion. We are performing a further examination of skin granulocyte content during Bd infections and plan on including any significant findings in our revised manuscript.

      We predict that rSCF administration results in the accumulation of mast cells that are polarized such that they ablate the inflammatory response elicited by Bd infection. Mammalian mast cells, including peritonea-resident mast cells, express csf3r12, 13. Although the X. laevis animal model does not permit nearly the degree of immune cell resolution afforded by mammalian animal models, we do know that the adult X. laevis peritonea contain heterogenous leukocyte populations. We anticipate that the high kit expression reported by Hauser et al., 2020 in the rCSF3-recruited peritoneal leukocytes reflects the presence of mast cells therein. As such and in acknowledgement of the reviewer’s suggestion, we also think that the cells recruited by rCSF3 into the skin may include not only neutrophils but also mast cells. Possibly, these mast cells have distinct polarization states from those enriched by rSCF. While the lack of antibodies against frog neutrophils or mast cells has limited our capacity to address this question, we will attempt to reexamine by histology the proportions of skin neutrophils and mast cells in the skins of frogs under the conditions described in our manuscript. Any new findings in this regard will be included in the revised version of this work.

      2. Epithelial thickness and inflammation in Bd infection are reported to be reduced by rSCF treatment (Figure 3E, 5A-B) or increased by rCSF3 treatment (Figure 4G) but quantification of these critical readouts is not shown.

      We thank the reviewer for this suggestion. We will score epithelial thickness under the distinct conditions described in our manuscript and present the quantified data in the revised paper.

      3. Critical time points in the Bd model are incompletely characterized. Mast cell expansion decreases zoospore burden at 21 dpi, while there is no difference at 7 dpi (Figure 3E). Conversely, neutrophil expansion increases zoospore burden at 7 dpi, but no corresponding 21 dpi data is shown for comparison (Figure 4G). Microbiota analysis is performed at a third time point,10 dpi (Figure 5D-G), making it difficult to compare with the data from the 7 dpi and 21 dpi time points. Reporting consistent readouts at these three time points is important to draw solid conclusions about the relationship of mast cell expansion to Bd infection and shifts in microbiota.

      Because there were no significant effects of mast cell enrichment at 7 days post Bd infection, we chose to look at the microbiome composition in a subsequent experiment at 10 days and 21 days post Bd infection, with 10 days being a bit more of a midway point between the initial exposure and day 21, when we see the effect on Bd loads. We will clarify this rationale in the revised manuscript.

      The enrichment of neutrophils in frog skins resulted in prompt (12 hours post enrichment) skin thickening (in absence of Bd infection) and increased frog Bd susceptibility by 7 days of infection. Conversely, mast cell enrichment stabilized skin mucosal and symbiotic microbial environment, presumably accounting at least in part for the lack of further Bd growth on mast cell-enriched animals by 21 days of infection. Our question regarding the roles of inflammatory granulocytes/neutrophils during Bd infections was that of ‘how’ rather ‘when’ these cells affect Bd infections. Because the central focus of this work was mast cells and not other granulocyte subsets, when we saw that rCSF3-recruited granulocytes adversely affected Bd infections at 7 days post infection, we did not pursue the kinetics of these responses further. We plan to explore the roles of inflammatory mediators and disparate frog immune cell subsets during the course of Bd infections, but we feel that these future studies are more peripheral to the central thesis of the present manuscript regarding the roles of frog mast cells during Bd infections.

      4. Although the effect of rSCF treatment on Bd zoospores is significant at 21 dpi (Figure 3E), bacterial microbiota changes at 21 dpi are not (Figure S3B-C). This discrepancy, how it relates to the bacterial microbiota changes at 10 dpi, and why 7, 10, and 21 dpi time points were chosen for these different readouts (Figure 5F-G), is not discussed.

      Our results indicate that after 10 days of Bd infection, control Bd-challenged animals exhibited reduced microbial richness, while skin mast cell-enriched Bd-infected frogs were protected from this disruption of their microbiome. The amphibian microbiome serves as a major barrier to these fungal infections14, and we anticipate that Bd-mediated disruption of microbial richness and composition facilitates host skin colonization by this pathogen. Control and mast cell-enriched animals had similar skin Bd loads at 10 days post infection. However, by 21 days of Bd infection the mast cells-enriched animals maintained their Bd loads to levels observed at 10 days post infection, whereas the control animals had significantly greater Bd loads. Thus, we anticipate that frog mast cells are conferring the observed anti-Bd protection in part by preventing microbial disassembly and thus interfering with optimal Bd colonization and growth on frog skins. In other words, maintained microbial composition at 10 days of infection may be preventing additional Bd colonization/growth, as seen when comparing skins of control and mast cell-enriched frogs at 21 days post infection. By 21 days of infection, control animals rebounded from the Bd-mediated reduction in bacterial richness seen at 10 days. Considering that after 21 days of infection control animals also had significantly greater Bd loads than mast-cell enriched animals suggests that there may be a critical earlier window during which microbial composition is able to counteract _Bd_growth. 

      While the current draft of our manuscript has a paragraph to this effect (see below), we appreciate the reviewer conveying to us that our perspective on the relationship between skin mast cells and the kinetics of microbial composition and _Bd_loads could be better emphasized. We plan to revise our manuscript to include the above discussion points. 

      Bd infections caused major reductions in bacterial taxa richness, changes in composition and substantial increases in the relative abundance of Bd-inhibitory bacteria early in the infection. Similar changes to microbiome structure occur during experimental Bd infections of red-backed salamanders and mountain yellow-legged frogs15, 16. In turn, progressing Bd_infections corresponded with a return to baseline levels of _Bd-inhibitory bacteria abundance and rebounding microbial richness, albeit with dissimilar communities to those seen in control animals. These temporal changes indicate that amphibian microbiomes are dynamic, as are the effects of Bd infections on them. Indeed, Bd infections may have long-lasting impacts on amphibian microbiomes15. While Bd infections manifested in these considerable changes to frog skin microbiome structure, mast cell enrichment appeared to counteract these deleterious effects to their microbial composition. Presumably, the greater skin mucosal integrity and mucus production observed after mast cell enrichment served to stabilize the cutaneous environment during Bd infections, thereby ameliorating the Bd-mediated microbiome changes. While this work explored the changes in established antifungal flora, we anticipate the mast cell-mediated inhibition of Bd may be due to additional, yet unidentified bacterial or fungal taxa. Intriguingly, while mammalian skin mast cell functionality depends on microbiome elicited SCF production by keratinocytes17, our results indicate that frog skin mast cells in turn impact skin microbiome structure and likely their function. It will be interesting to further explore the interdependent nature of amphibian skin microbiomes and resident mast cells.

      5. The time course of rSCF or rCSF3 treatments relative to Bd infection in the experiments is not clear. Were the treatments given 12 hours prior to the final analysis point to maximize the effect? For example, in Figure 3E, were rSCF injections given at 6.5 dpi and 20.5 dpi? Or were treatments administered on day 0 of the infection model? If the latter, how do the authors explain the effects at 7 dpi or 21 dpi given mast cell and neutrophil numbers return to baseline within 24 hours after rSCF or rCSF3 treatment, respectively?

      Please find the schematic of the immune manipulation, Bd infection, and sample collection times below. We will include a figure like this in our revised manuscript.

      The title of the manuscript may be mildly overstated. Although Bd infection can indeed be deadly, mortality was not a readout in this study, and it is not clear from the data reported that expanding skin mast cells would ultimately prevent progression to death in Bd infections.

      We acknowledge this point. The revised manuscript will be titled: “Amphibian mast cells: barriers to chytrid fungus infections”.

      Reviewer #3 (Public Review):

      Summary:<br /> Hauser et al. provide an exceptional study describing the role of resident mast cells in amphibian epidermis that produce anti-inflammatory cytokines that prevent Batrachochytrium dendrobatidis (Bd) infection from causing harmful inflammation, and also protect frogs from changes in skin microbiomes and loss of mucin in glands and loss of mucus integrity that otherwise cause changes to their skin microbiomes. Neutrophils, in contrast, were not protective against Bd infection. Beyond the beautiful cytology and transcriptional profiling, the authors utilized elegant cell enrichment experiments to enrich mast cells by recombinant stem cell factor, or to enrich neutrophils by recombinant colony-stimulating factor-3, and examined respective infection outcomes in Xenopus.

      Strengths:<br /> Through the use of recombinant IL4, the authors were able to test and eliminate the hypothesis that mast cell production of IL4 was the mechanism of host protection from Bd infection. Instead, impacts on the mucus glands and interaction with the skin microbiome are implicated as the protective mechanism. These results will press disease ecologists to examine the relative importance of this immune defense among species, the influence of mast cells on the skin microbiome and mucosal function, and open the potential for modulating mucosal defense.

      We thank the reviewer for recognizing the significance and utility of the findings presented in our manuscript.

      Weaknesses:<br /> A reduction of bacterial diversity upon infection, as described at the end of the results section, may not always be an "adverse effect," particularly given that anti-Bd function of the microbiome increased. Some authors (see Letourneau et al. 2022 ISME, or Woodhams et al. 2023 DCI) consider these short-term alterations as encoding ecological memory, such that continued exposure to a pathogen would encounter an enriched microbial defense. Regardless, mast cell-initiated protection of the mucus layer may negate the need for this microbial memory defense.

      We thank the reviewer their insightful comment. We will revise our discussion to include this possible interpretation.

      While the description of the mast cell location in the epidermal skin layer in amphibians is novel, it is not known how representative these results are across species ranging in chytridiomycosis susceptibility. No management applications are provided such as methods to increase this defense without the use of recombinant stem cell factor, and more discussion is needed on how the mast cell component (abundance, distribution in the skin) of the epidermis develops or is regulated.

      We appreciate the reviewer’s comment and would like to point out that the work presented in our manuscript was driven by comparative immunology questions more than by conservation biology.

      We thank the reviewer for suggesting expanding our discussion to include potential management applications and potential mechanisms for regulating frog skin mast cells. While any content to these effects would be highly speculative, we agree that it may spark new interest and pave new avenues for research. To this end, our revised manuscript will include a paragraph to this effect.

      References:

      1.         Flajnik, M.F. A cold-blooded view of adaptive immunity. Nat Rev Immunol 18, 438-453 (2018).

      2.         Mulero, I., Sepulcre, M.P., Meseguer, J., Garcia-Ayala, A. & Mulero, V. Histamine is stored in mast cells of most evolutionarily advanced fish and regulates the fish inflammatory response. Proc Natl Acad Sci U S A 104, 19434-19439 (2007).

      3.         Reite, O.B. A phylogenetical approach to the functional significance of tissue mast cell histamine. Nature 206, 1334-1336 (1965).

      4.         Reite, O.B. Comparative physiology of histamine. Physiol Rev 52, 778-819 (1972).

      5.         Takaya, K., Fujita, T. & Endo, K. Mast cells free of histamine in Rana catasbiana. Nature 215, 776-777 (1967).

      6.         Galli, S.J. New insights into "the riddle of the mast cells": microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab Invest 62, 5-33 (1990).

      7.         Babina, M., Guhl, S., Artuc, M. & Zuberbier, T. IL-4 and human skin mast cells revisited: reinforcement of a pro-allergic phenotype upon prolonged exposure. Archives of dermatological research 308, 665-670 (2016).

      8.         Lai, H. & Rogers, D.F. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways. J Aerosol Med Pulm Drug Deliv 23, 219-231 (2010).

      9.         Rankin, J.A. et al. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc Natl Acad Sci U S A 93, 7821-7825 (1996).

      10.       Church, M.K. Allergy, Histamine and Antihistamines. Handb Exp Pharmacol 241, 321-331 (2017).

      11.       Nakamura, T. The roles of lipid mediators in type I hypersensitivity. J Pharmacol Sci 147, 126-131 (2021).

      12.       Aponte-Lopez, A., Enciso, J., Munoz-Cruz, S. & Fuentes-Panana, E.M. An In Vitro Model of Mast Cell Recruitment and Activation by Breast Cancer Cells Supports Anti-Tumoral Responses. Int J Mol Sci 21 (2020).

      13.       Jamur, M.C. et al. Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors. BMC Immunol 11, 32 (2010).

      14.       Walke, J.B. & Belden, L.K. Harnessing the Microbiome to Prevent Fungal Infections: Lessons from Amphibians. PLoS Pathog 12, e1005796 (2016).

      15.       Jani, A.J. et al. The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME J 15, 1628-1640 (2021).

      16.       Muletz-Wolz, C.R., Fleischer, R.C. & Lips, K.R. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol Ecol 28, 2917-2931 (2019).

      17.       Wang, Z. et al. Skin microbiome promotes mast cell maturation by triggering stem cell factor production in keratinocytes. J Allergy Clin Immunol 139, 1205-1216 e1206 (2017).

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the two reviewers very much for their careful review and valuable comments. Upon these comments, the following revisions have been made. First, we have performed a new analysis on human accelerated regions (HARs) recently reported by the Zoonomia Project. Second, we have presented more data on experimentally detected and computationally predicted DBSs of MALAT1, NEAT1, and MEG3. Third, we have added details on the RNA-seq data processing and subsequent differential expression testing to the Materials and Methods section. Fourth, we have clarified some details on the human ancestor sequence and the use of parameters and thresholds. Six new citations are added. In addition, we have also carefully polished the main text. We hope these revisions, together with the Responses-to-Reviewers, would help the reader better get the information from the paper.

      eLife assessment

      In this valuable manuscript, the authors attempt to examine the role of long non-coding RNAs (lncRNAs) in human evolution, through a set of population genetics and functional genomics analyses that leverage existing datasets and tools. Although the methods are at times inadequate - for example, suitable methods and/or relevant controls are lacking at many points, and selection is inferred sometimes too quickly - the results nonetheless point towards a possible contribution of long non-coding RNAs to the evolution of human biology and they suggest clear directions for future, more rigorous study.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      While DNA sequence divergence, differential expression, and differential methylation analysis have been conducted between humans and the great apes to study changes that "make us human", the role of lncRNAs and their impact on the human genome and biology has not been fully explored. In this study, the authors computationally predict HSlncRNAs as well as their DNA Binding sites using a method they have developed previously and then examine these predicted regions with different types of enrichment analyses. Broadly, the analysis is straightforward and after identifying these regions/HSlncRNAs the authors examined their effects using different external datasets.

      Strengths/weaknesses

      By and large, the analysis performed is dependent on their ability to identify HSlncRNAs and their DBS. I think that they have done a good job of showing the performance metrics of their methods in previous publications. Thereafter, they perform a series of enrichment-type analyses that have been used in the field for quite a while now to look at tissue-specific enrichment, or region-specific enrichment, or functional enrichment, and I think these have been carried out well. The authors achieved the aims of their work. I think one of the biggest contributions that this paper brings to the field is their annotation of these HSlncRNAs. Thus a major revisionary effort could be spent on applying their method to the latest genomes that have been released so that the community could get a clean annotation of newly identified HSlncRNAs (see comment 2).

      Comments

      1. Though some of their results about certain HSlncRNAs having DBSs in all genes is rather surprising/suspicious, I think that broadly their process to identify and validate DBSs is robust, they have multiple lines of checks to identify such regions, including functional validation. These predictions are bound to have some level of false positive/negative rate and it might be nice to restate those here and on what experiment/validation data these were conducted. However, the rest of their analysis comprises different types of enrichment analysis which shouldn't be affected by outlier HSlncRNAs if indeed their FPR/FNR are low.

      2. There are now several new genomes available as part of the Zoonomia consortium and 240 Primate consortium papers released. These papers have re-examined some annotations such as Human Accelerated Regions (HARs) and found with a larger dataset as well as better reference genomes, that a large fraction of HARs were actually incorrectly annotated - that is that they were also seen in other lineages outside of just the great apes. If these papers have not already examined HSlncRNAs, the authors should try and re-run the computational predictions with this updated set and then identify HSlncRNAs there. This might help to clarify their signal and remove lncRNAs that might be present in other primates but are somehow missing in the great apes. This might also help to mitigate some results that they see in section 3 of their paper in comparing DBS distances between archaics and humans.

      Responses:

      (1) Thanks for the good suggestion. We have checked the Zoonomia reported genomes and found that new primate genomes are monkeys and lemurs but not apes (Zoonomia Consortium. Nature 2023. https://doi.org/10.1038/s41586-020-2876-6), and the phylogenetic relationships between monkeys and humans are much more remote than those between apes and humans. In addition, the Zoonomia project did target identifying new lncRNA genes.

      (2) We have examined the Zoonomia-reported HARs (Keough et al. Science 2023. DOI: 10.1126/science.abm1696). Of the 312 HARs reported by Keough et al, 8 overlap 26 DBSs of 14 HS lncRNAs; moreover, DBSs greatly outnumber HARs, suggesting that HAR and DBS are different sequences with different functions.

      (3) In the revised manuscript, a new paragraph (the second one) has been added to the section “HS lncRNAs regulate diverse genes and transcripts” to describe the HAR analysis result.

      1. The differences between the archaic hominins in their DBS distances to modern humans are a bit concerning. At some level, we expect these to be roughly similar when examining African modern humans and perhaps the Denisovan being larger when examining Europeans and Asians, but they seem to have distances that aren't expected given the demography. In addition, from their text for section 3, they begin by stating that they are computing two types of distances but then I lost track of which distance they were discussing in paragraph 3 of section 3. Explicitly stating which of the two distances in the text would be helpful for the reader.

      Responses:

      (1) Upon the archaic human genomes, the genomic distances from the three modern humans are shorter to Denisovan than to Altai Neanderthal; however, upon the related studies we cite, the phylogenetic relationship between the three modern humans is more remote to Denisovan than to Altai Neanderthal. Thus, the finding that 2514 and 1256 DBSs have distances >0.034 in Denisovans and Altai Neanderthals is not unreasonable. The numbers of DBSs, of course, depend on the cutoff of 0.034, which is somewhat subjective but not unreasonable.

      (2) The second paragraph is added to the Discussion, discussing parameters and cutoffs.

      (3) Regarding the two types of distance, the distances computed in the first way were not further analyzed because, as we note, “This anomaly may be caused by that the human ancestor was built using six primates without archaic humans”.

      1. Isn't the correct control to examine whether eQTLs are more enriched in HSlncRNA DBSs a set of transcription factor binding sites? I don't think using just promoter regions is a reasonable control here. This does not take away from the broader point however that eQTLs are found in DBSs and I think they can perform this alternate test.

      Responses:

      Indeed, TFBSs are more comparable to DBSs than promoters. However, many more methods have been developed to predict TFBSs than to predict DBSs, making us concerned about TFBS prediction's reliability. Since most QTLs in DBSs are mQTLs (Supplementary Table 13), but many QTLs in TFBSs are eQTLs (Flynn et al. PLoS Genetics 2021. DOI: 10.1371/journal.pgen.1009719), it is pretty safe to conclude that DBSs are enriched in mQTLs.

      1. In the Discussion, they highlight the evolution of sugar intake, which I'm not sure is appropriate. This comes not from GO enrichment but rather from a few genes that are found at the tail of their distribution. While these signals may be real, the evolution of traits is often highly polygenic and they don't see this signal in their functional enrichment. I suggest removing that line. Moreover, HSlncRNAs are ones that are unique across a much longer time frame than the transition to agriculture which is when sugar intake rose greatly. Thus, it's unlikely to see enrichment for something that arose in the past 6000-7000 years would in the annotation that is designed to detect human-chimp or human-neanderthal level divergence.

      Responses:

      (1) The Discussion on human adaptation to high sugar intake is based on both enriched GO terms (Supplementary Table 4, 7) and a set of genes in modern humans with the most SNP-rich DBSs (Table 2). These glucose-related GO terms are not at the tail of the list because, of the 614 enriched GO terms (enriched in genes with strongest DBSs), glucose metabolism-related ones are ranked 208, 212, 246, 264, 504, 522, 591, and of the 409 enriched GO terms (enriched in the top 1256 genes in Altai Neanderthals), glucose metabolism-related ones are ranked 152 and 217.

      (2) Indeed, there are other top-ranked enriched GO terms; some (e.g., neuron projection development (GO:0031175) and cell projection morphogenesis (GO:0048858)) have known impact on human evolution, but the impact of others (e.g., cell junction organization (GO:0034330)) remain unclear. We specifically report human adaptation to high sugar intake because the DBSs in related genes show differences in modern humans (Table 2).

      Reviewer #2 (Public Review):

      Lin et al attempt to examine the role of lncRNAs in human evolution in this manuscript. They apply a suite of population genetics and functional genomics analyses that leverage existing data sets and public tools, some of which were previously built by the authors, who clearly have experience with lncRNA binding prediction. However, I worry that there is a lack of suitable methods and/or relevant controls at many points and that the interpretation is too quick to infer selection. While I don't doubt that lnc RNAs contribute to the evolution of modern humans, and certainly agree that this is a question worth asking, I think this paper would benefit from a more rigorous approach to tackling it.

      At this point, my suggestions are mostly focused on tightening and strengthening the methods; it is hard for me to predict the consequence of these changes on the results or their interpretation, but as a general rule I also encourage the authors to not over-interpret their conclusions in terms of what phenotype was selected for when as they do at certain points (eg glucose metabolism).

      Responses:

      (1) Now, we use more cautious wording to describe the results.

      (2) A paragraph (the second one) is added to Discussion to explain parameters and cutoffs.

      (3) We make the caution at the end of the third paragraph that “We note that these are findings instead of conclusions, and they indicate, suggest, or support something revealing the primary question of what genomic differences critically determine the phenotypic differences between humans and apes and between modern and archaic humans”.

      I note some specific points that I think would benefit from more rigorous approaches, and suggest possible ways forward for these.

      1. Much of this work is focused on comparing DNA binding domains in human-unique long-noncoding RNAs and DNA binding sites across the promoters of genes in the human genome, and I think the authors can afford to be a bit more methodical/selective in their processing and filtering steps here. The article begins by searching for orthologues of human lncRNAs to arrive at a set of 66 human-specific lncRNAs, which are then characterised further through the rest of the manuscript. Line 99 describes a binding affinity metric used to separate strong DBS from weak DBS; the methods (line 432) describe this as being the product of the DBS or lncRNA length times the average Identity of the underlying TTSs. This multiplication, in fact, undoes the standardising value of averaging and introduces a clear relationship between the length of a region being tested and its overall score, which in turn is likely to bias all downstream inference, since a long lncRNA with poor average affinity can end up with a higher score than a short one with higher average affinity, and it's not quite clear to me what the biological interpretation of that should be. Why was this metric defined in this way?

      Responses:

      (1) Binding affinity and length of all DBSs of HS lncRNAs are given in Supplementary Table 2 and 3. Since a triplex (say, 100 bp in length) may have 50% or 70% of nucleotides bound, it is necessary to differentiate binding affinity and length, and the two measures can differentiate DBSs of the same length but with different binding affinity and DBSs with the same binding affinity but different length.

      (2) Differentiating DBSs into strong and weak ones is somewhat subjective, accurately differentiating them demands experimental data that are currently unavailable, and it is advisable to separately analyze strong and weak DBSs because they may likely influence different aspects of human evolution.

      1. There is also a strong assumption that identified sites will always be bound (line 100), which I disagree is well-supported by additional evidence (lines 109-125). The authors show that predicted NEAT1 and MALAT1 DBS overlap experimentally validated sites for NEAT1, MALAT1, and MEG3, but this is not done systematically, or genome-wide, so it's hard to know if the examples shown are representative, or a best-case scenario.

      Responses:

      (1) We do not assume/think that identified sites will always be bound. Instead, lncRNA/DBS binding is highly context-dependent (including tissue-specific).

      (2) An extra supplementary table (Supplementary Table 15) is added to show what predicted DBSs overlap experimentally detected DBSs for NEAT1, MALAT1, and MEG3. By the way, it is more accurate to say “experimentally detected” than “experimentally validated”, because experimental data have true/false positives and true/false negatives, and different sequencing protocols (for detecting lncRNA/DNA binding) may generate somewhat different results.

      It's also not quite clear how overlapping promoters or TSS are treated - are these collapsed into a single instance when calculating genome-wide significance? If, eg, a gene has five isoforms, and these differ in the 3' UTR but their promoter region contains a DBS, is this counted five times, or one? Since the interaction between the lncRNA and the DBS happens at the DNA level, it seems like not correcting for this uneven distribution of transcripts is likely to skew results, especially when testing against genome-wide distributions, eg in the results presented in sections 5 and 6. I do not think that comparing genes and transcripts putatively bound by the 40 HS lncRNAs to a random draw of 10,000 lncRNA/gene pairs drawn from the remaining ~13500 lncRNAs that are not HS is a fair comparison. Rather, it would be better to do many draws of 40 non-HS lncRNAs and determine an empirical null distribution that way, if possible actively controlling for the overall number of transcripts (also see the following point).

      Responses:

      (1) We analyzed each and every GENCODE-annotated transcript (Supplementary Table 2). For example, if a gene has N TSS and N transcripts, DBSs are predicted in N promoter regions. When analyzing gene expression in tissues, each and every transcript is analyzed.

      (2) Ideally, it would be better to do many draws, but statistically, a huge number is needed due to the number of total genes in the human genome.

      (3) We feel that doing many draws of 40 non-HS lncRNAs and determining an empirical null distribution is not as straightforward as comparing HS lncRNA-target transcript pairs (45% show significant expression correlation) with random lncRNA-random transcript pairs (2.3% show significant expression correlation).

      1. Thresholds for statistical testing are not consistent, or always well justified. For instance, in line 142 GO testing is performed on the top 2000 genes (according to different rankings), but there's no description of the background regions used as controls anywhere, or of why 2000 genes were chosen as a good number to test? Why not 1000, or 500? Are the results overall robust to these (and other) thresholds? Then line 190 the threshold for downstream testing is now the top 20% of genes, etc. I am not opposed to different thresholds in principle, but they should be justified.

      Responses:

      (1) The over-representation analysis using g:Profiler was applied to the top and bottom 2000 genes with the whole genome as the background. The number “2000” was chosen somewhat subjectively. If more or fewer genes were chosen, more or fewer enriched GO terms would be identified, but GO terms with adjusted P-values <0.05 would be quite stable.

      (2) A paragraph (the second one) is added to the Discussion to explain parameters and cutoffs.

      Likewise, comparing Tajima's D values near promoters to genome-wide values is unfair, because promoters are known to be under strong evolutionary constraints relative to background regions; as such it is not surprising that the results of this comparison are significant. A fairer comparison would attempt to better match controls (eg to promoters without HS lncRNA DBS, which I realise may be nearly impossible), or generate empirical p-values via permutation or simulation.

      Responses:

      We examined Tajima’s D in DBSs (Supplementary Figure 9) and in HS lncRNA genes (Supplementary Figure 18). We compared the Tajima’s D values with the genome-wide background in both cases.

      1. There are huge differences in the comparisons between the Vindija and Altai Neanderthal genomes that to me suggest some sort of technical bias or the such is at play here. e.g. line 190 reports 1256 genes to have a high distance between the Altai Neanderthal and modern humans, but only 134 Vindija genes reach the same cutoff of 0.034. The temporal separation between the two specimens does not seem sufficient to explain this difference, nor the difference between the Altai Denisovan and Neanderthal results (2514 genes for Denisovan), which makes me wonder if it is a technical artefact relating to the quality of the genome builds? It would be worth checking.

      Responses:

      (1) The cutoff of 0.034 was chosen upon that DBSs in the top 20% (4248) genes in chimpanzees have distances larger than this cutoff, and accordingly, 4248, 1256, 2514, and 134 genes have DBSs distances >0.034 in chimpanzees, Altai Neanderthals, Denisovans, and Vindija Neanderthals. These numbers of genes qualitatively agree with the phylogenetic distances from chimpanzees, archaic humans to modern humans. If a percentage larger or smaller than 20% (e.g., 10% or 30%) is chosen, and so is a cutoff X, the numbers of genes with DBSs distance >X would not be 4248, 1256, 2514, and 134, but could still qualitatively agree with the phylogenetic distances from chimpanzees, archaic humans to modern humans.

      (2) The second paragraph in the Discussion now explains the parameters and cutoffs.

      1. Inferring evolution: There are some points of the manuscript where the authors are quick to infer positive selection. I would caution that GTEx contains a lot of different brain tissues, thus finding a brain eQTL is a lot easier than finding a liver eQTL, just because there are more opportunities for it. Likewise, claims in the text and in Tables 1 and 2 about the evolutionary pressures underlying specific genes should be more carefully stated. The same is true when the authors observe high Fst between groups (line 515), which is only one possible cause of high Fst - population differentiation and drift are just as capable of giving rise to it, especially at small sample sizes.

      Responses:

      (1) We analyzed brain tissues separately instead of taking the whole brain as a tissue, see Supplementary Table 12 and Figure 3.

      (2) We make the caution at the end of the third paragraph that “We note that these are findings instead of conclusions, and they indicate, suggest, or support something revealing the primary question of what genomic differences critically determine the phenotypic differences between humans and apes and between modern and archaic humans”.

      Reviewer #1 (Recommendations For The Authors):

      Some figures are impossible to see/read so I wasn't able to evaluate them - Fig, 1B, 1E, 1F are small and blurry.

      Responses:

      High-quality figures are provided.

      Typo in line 178: in these archaic humans, the distances of HS lncRNAs are smaller than the distances of DBSs.

      Responses:

      This is not a typo. We use “distance per base” to measure whether HS lncRNAs or their DBSs have evolved more from archaic humans to modern humans. See also Supplementary Note 4 and 5.

      Reviewer #2 (Recommendations For The Authors):

      1. There's some inconsistency in the genome builds and the database versions used, eg, sometimes panTro4 is used and sometimes panTro5 (line 456). Likewise, the version of GENCODE used is very old (18), the current version is 43. The current version contains 19928 lncRNAs, which is a big difference relative to what is being tested!

      Responses:

      (1) panTro4 was used to search orthologues of human lncRNAs; this time-consuming work started several years ago when the version of GENCODE was V18 (see Lin et al., 2019).

      (2) Regarding “the version of GENCODE used is very old (V18)”, we have later examined the 4396 human lncRNAs reported in GENCODE V36 and found that the set of 66 HS lncRNAs remains the same.

      (3) The counterparts of HS lncRNAs’ DBSs in chimpanzees were predicted recently using panTro5.

      1. Table 1: What does 'mostly' mean in this context? I understand that it refers to sequence differences between humans and the other genomes, but what is the actual threshold, and how is it defined?

      Responses:

      The title of Table 1 is “Genes with strongest DBSs and mostly changed sequence distances from modern humans to archaic humans and chimpanzees”. Instead of using two cutoffs, choosing genes with the two features seems easy and sensible.

      1. Line 117: The methods do not include information on the RNA-seq data processing and subsequent DE testing.

      Responses:

      The details are added to the section “Experimentally validating DBS predictiom” (The reads were aligned to the human GRCh38 genome using Hiasat2 (Kim et al., 2019), and the resulting sam files were converted to bam files using Samtools (Li et al., 2009). Stringtie was used to quantify gene expression level (Pertea et al., 2015). Fold change of gene expression was computed using the edgeR package (Robinson et al., 2010), and significant up- and down-regulation of target genes after DBD knockout was determined upon |log2(fold change)| > 1 with FDR < 0.1).

      1. Line 180: I looked at the EPO alignment and it's not clear to me what 'human ancestor' means, but it may well explain the issues the authors have with calculating distances (I agree those numbers are weird). Is it the reconstructed ancestral state of humans at around 300-200,000 years ago (coalescence of most human uniparental lineages), or the inferred sequence of the human-chimpanzee most recent common ancestor? If it's the former, it's not surprising it skews results towards shorter distances for modern humans, since the tree distance from that point to archaic hominins is significantly larger than to modern humans.

      Responses:

      The “human ancestor” is constructed by the EBI team upon the genomes of six primates in the Ensembl website. We find that the reconstructed ancestral state of humans may be unlikely around 300,000-200,000 years, and may be much earlier. We also find that many DNA sequences of the “human ancestor” are low-confidence calls (i.e., the ancestral states are supported by only one primate’s sequence).

      1. Line 221: SNP-rich DBS: Is this claim controlled for the length of the DBS?

      Responses:

      No. Long DBSs tend to have more SNPs. When comparing the same DBS in modern humans, archaic humans, and chimpanzees, both the length and SNP number reflect evolution, so it is not necessary to control for the length.

      1. Given that GTEx is primarily built off short-read data and it is impossible to link binding of a lncRNA to a DBS with its impact with a specific transcript

      Responses:

      As written in the section “Examining the tissue-specific impact of HS lncRNA-regulated gene expression”, we calculated the pairwise Spearman's correlation coefficient between the expression of an HS lncRNA (the representative transcript, median TPM value > 0.1) and the expression of each of its target transcripts (median TPM value > 0.1) using the scipy.stats.spearmanr program in the scipy package. The expression of an HS lncRNA gene and a target transcript was considered to be significantly correlated if the |Spearman's rho| > 0.3, with Benjamini-Hochberg FDR < 0.05.

      1. Line 429: should TTO be TFO?

      Responses:

      Here TTO should be TFO; the typo is corrected.

      1. Methods, section 7: Some of the text in this section should perhaps be moved to the results section?

      Responses:

      Each of the two paragraphs in Methods’ section 7 is quite large, and some contents in Supplementary Notes are also very relevant. Thus, moving them to the Results section could make the Results too lengthy and specific.

      1. Line 587: GTEx is built from samples of primarily European ancestry and has poor representation of African ancestry and negligible representation of Asian ancestry (see the GTEx v8 paper supplement). This means that it is basically impossible to find a non-European population-specific eQTL in GTEx, which in turn impacts these results.

      Responses:

      (1) Indeed, this is a serious issue of data analysis, and this issue cannot be solved until more Africans are sequenced.

      (2) Anyway, one can still find considerable African-specific eQTLs in GTEx, such as rs28540058 (with frequency of 0, 0, 0.13 in CEU, CHB, YRI) and rs58772997 (with frequency of 0, 0, 0.12 in CEU, CHB, YRI (see Supplementary Table12 and Supplementary Figure 22).

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      The finding that Fusicoccin (FC-A) promotes locomotor recovery after spinal cord injury is useful, and the idea of harnessing small molecules that may affect protein-protein interactions to promote axon regeneration is interesting and worthy of study. However, the main methods, data, and analyses are inadequate to support the primary claim of the manuscript that a 14-3-3-Spastin complex is necessary for the observed FC-A effects.

      Response: We appreciate the eLife editorial and review team for consideration and evaluation of our manuscript. In light of the feedback from the editors and reviewers, we recognize that certain aspects of the title and key conclusions require further refinement. We have shown that 14-3-3, through its interaction with phosphorylated spastin, inhibits the degradation of spastin. Also, we have demonstrated that 14-3-3 can enhance spastin's microtubule-severing ability in cell lines. Furthermore, our work has illustrated the significant roles of 14-3-3 and spastin in the repair process of spinal cord injury. However, there is currently insufficient direct evidence to confirm the cooperation between 14-3-3 and spastin during axon regeneration and the recovery of spinal cord injury. Moreover, we have not provided conclusive evidence of their simultaneous action in injured axons, mediating changes in microtubule dynamics. Consequently, we have re-evaluated the manuscript's title and primary conclusions, and have made relevant modifications. For more detailed information, please refer to the reviewer's comments.

      Public Reviews:

      Reviewer #1 (Public Review):

      The present work establishes 14-3-3 proteins as binding partners of spastin and suggests that this binding is positively regulated by phosphorylation of spastin. The authors show evidence that 14-3-3 - spastin binding prevents spastin ubiquitination and final proteasomal degradation, thus increasing the availability of spastin. The authors measured microtubule severing activity in cell lines and axon regeneration and outgrowth as a prompt to spastin activity. By using drugs and peptides that separately inhibit 14-3-3 binding or spastin activity, they show that both proteins are necessary for axon regeneration in cell culture and in vivo models in rats.

      The following is an account of the major strengths and weaknesses of the methods and results.

      Major strengths

      -The authors performed pulldown assays on spinal cord lysates using GST-spastin, then analyzed pulldowns via mass spectrometry and found 3 peptides common to various forms of 14-3-3 proteins. In co-expression experiments in cell lines, recombinant spastin co-precipitated with all 6 forms of 14-3-3 tested. The authors could also co-immunoprecipitate spastin-14-3-3 complexes from spinal cord samples and from primary neuronal cultures.

      -By protein truncation experiments they found that the Microtubule Binding Domain of spastin contained the binding capability to 14-3-3. This domain contained a putative phosphorylation site, and substitutions that cannot be phosphorylated cannot bind to 14-3-3.

      -Overexpression of GFP-spastin shows a turn-over of about 12 hours when protein synthesis is inhibited by cycloheximide. When 14-3-3 is co-overexpressed, GFP-spastin does not show a decrease by 12 hours. When S233A is expressed, a turn-over of 9 hours is observed, suggesting that phosphorylation increases the stability of the protein. In support of that notion, the phospho-mimetic S233D makes it more stable, lasting as much as the over-expression of 14-3-3.

      -By combining FCA with Spastazoline, authors claim that FCA increased regeneration is due to increased spastin activity in various models of neurite outgrowth and regeneration in cell culture and in vivo, the authors show impressive results on the positive effect of FCA in regeneration, and that this is abolished when spastin is inhibited.

      Major weaknesses

      1. The present manuscript suggests that 14-3-3 and spastin work in the same pathway to promote regeneration. Although the manuscript contains valuable evidence in support for a role of 14-3-3 and spasting in regeneration, the conclusive evidence is difficult to generate, and is missing in the present manuscript. For example, there are simpler explanations for the combined effect of FC-A and spastazoline. The FC-A mechanism of action can be very broad, since it will increase the binding of all 14-3-3 proteins with presumably all their substrates, hence the pathways affected can rise to the hundreds. The fact that spastazoline abolishes FC-A effect, may not be because of their direct interaction, but because spastin is a necessary component of the execution of the regeneration machinery further downstream, in line with the fact that spastazoline alone prevented outgrowth and regeneration, and in agreement with previous work showing that normal spastin activity is necessary for regeneration.

      With this in mind, I consider the title and most major conclusions of the manuscript related to these two proteins acting together for the observed effects are overstated.

      Response: We appreciate and acknowledge the reviewers' considerations. Our results demonstrated that the spastin inhibitor, spastazolin, almost completely inhibited axon regeneration and the spinal cord injury repair process. This, in turn, leads to the disappearance of any promoting effect on spinal cord injury repair when spastin function is compromised. While we have provided evidence that the expression levels of spastin are moderately increased at the injury site in mice after treatment with FC-A following spinal cord injury, the conclusion that FC-A promotes spinal cord injury repair through the direct interaction between 14-3-3 and spastin still lacks direct evidence. Therefore, we have made appropriate modifications to the manuscript's title and main conclusions.

      1. Authors show that S233D increases MT severing activity, and explain that it is related to increased binding to 14-3-3. An alternative explanation is that phosphorylation at S233 by itself could increase MT severing activity. The authors could test if purified spastin S233D alone could have more potent enzymatic activity.

      Response: We appreciate the considerations of the reviewer. We believe that supplementing in vitro experiments to assess whether S233D affects spastin's microtubule severing function can more intuitively demonstrate whether phosphorylation of spastin at S233 affects its microtubule severing function; however, spastin forms hexamers through its AAA domain to exert ATPase activity and cut microtubules. Current research has reported that mutation sites leading to changes in microtubule severing function are mainly located within spastin's AAA domain (affecting spastin's ATPase activity, amino acids 342-599), such as E356A, G370R, N386K, K388R, E442Q, K427R and R562Q. Furthermore, studies have shown that mutating 11 phosphorylation sites in spastin's MIT and MTBD regions to alanine does not affect spastin's microtubule severing function, including human S268 (Rat Ser233) (Phosphorylation mutation impairs the promoting effect of spastin on neurite outgrowth without affecting its microtubule severing ability. Eur J Histochem. doi: 10.4081/ejh.2023.3594). Additionally, we also provided supplementary experiments in cell lines which showed that both spastin S233A and S233D could effectively sever microtubules (Fig.S2).

      1. The interpretation of the authors cannot explain how Spastin can engage in MT severing while bound to 14-3-3 using its Microtubule Binding Domain.

      Response: We appreciate the considerations of the expert reviewer. The IP experiments with truncated fragments suggest that the binding region of 14-3-3 with spastin is located within the region (215-336 amino acids) in spastin. Furthermore, experiments involving site-directed mutagenesis confirm that the actual binding site of 14-3-3 with spastin is the S233 site, rather than its MTBD region (270-328). Therefore, we have made corrections in the manuscript. We also indicate that 14-3-3 enhances spastin's protein levels by binding to the S233 site, which may be due to 14-3-3 masking the ubiquitination sites near spastin S233 (K206 or K254). Our further experiments also demonstrate that 14-3-3 inhibits the ubiquitination degradation pathway of phosphorylated spastin.

      1. Also, the term "microtubule dynamics", which is present in the title and in other major conclusions, is overstated. Although authors show, in cell lines, changes in microtubule content, it is far from evidence for changes in "MT dynamics" in the settings of interest (i.e. injured axons).

      Response: We appreciate and acknowledge the rigorous feedback. While our manuscript demonstrated the regulatory role of 14-3-3 and spastin in microtubule dynamics in cell lines, we lack direct evidence of these changes in microtubule dynamics within injured axons. Therefore, we have made appropriate modifications to the title, main conclusions, and related statements in our manuscript.

      1. In the same lines, the manuscript lacks evidence for the changes of MT content and/dynamics as a function of the proposed 14-3-3 - Spastin pathway.

      Response: We appreciate and concur with the opinions of the expert reviewer. The observed changes in microtubule dynamics in spinal cord injury were related to the overall alterations in microtubule dynamics within the spinal cord injury site. We still lack direct evidence that 14-3-3, in conjunction with spastin, alters the microtubule dynamics within axons during the process of regeneration. Therefore, we have made modifications to the manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The idea of harnessing small molecules that may affect protein-protein interactions to promote axon regeneration is interesting and worthy of study. In this manuscript Liu et al. explore a 14-3-3-Spastin complex and its role in axon regeneration.

      Strengths:

      Some of the effects of FC-A on locomotor recovery after spinal cord contusion look interesting

      Weaknesses:

      The manuscript falls short of establishing that a 14-3-3-Spastin complex is important for any FC-A-dependent effects and there are several issues with data quality that make it difficult to interpret the results. Importantly, the effects of the spastin inhibitor has a major impact on neurite outgrowth suggesting that cells simply cannot grow in the presence of the inhibitor and raising serious questions about any selectivity for FC-A - dependent growth. Aspects of the histology following spinal cord injury were not convincing.

      Response: We appreciate the rigorous review by the expert reviewers. In response to the feedback from reviewer 1, we lack direct evidence to demonstrate that the reparative effect of FC-A on spinal cord injury is mediated by the combined action of 14-3-3 and spastin. We have accordingly made the necessary changes to our manuscript. Additionally, due to upload limitations, the resolution of our tissue slices related to spinal cord injury in the manuscript is relatively low. To address this, we have supplemented relevant images which was enlarged in the supplementary materials (Fig. S7-9), Also, the original confocal files and images were uploaded.

      Furthermore, our manuscript does not suggest that the reparative effect of FC-A in spinal cord injury selectively impacts the interaction between 14-3-3 and spastin. Therefore, we have modified our claims (title and conclusions) to ensure a more precise statement. Despite the fact that our axonal markers do not fully align, our evidence still strongly supports the role of FC-A in promoting nerve regeneration after spinal cord injury. Additionally, we will further optimize our immunohistochemistry methods.

      Reviewer #3 (Public Review):

      Summary:

      The current manuscript shows that 14-3-3 are binding partners of spastin, preventing its degradation. It is additionally shown, using complementary methods, that both 14-3-3 and spastin are necessary for axon regeneration in vitro and in vivo. While interesting in vitro and vivo data is provided, some of the claims of the authors are not convincingly supported.

      Major strengths:

      Very interesting effect of FC-A in functional recovery after spinal cord injury.

      Major Weaknesses:

      Some of the in vitro data, including colocalizations, and analysis of microtubule severing fall short to support the claims of the authors.

      The in vivo selectivity of FC-A towards spastin is not adequately supported by the data presented. There are aspects of the spinal cord injury site histology that are unclear.

      Response: Reviewer 3's comments align with those of Reviewers 1 and 2.

      Reviewer #1 (Recommendations For The Authors):

      -The new blots presented in Fig. 3N lacks corresponding labels as for antibodies used for IP and IB and molecular weight markers.

      Response: We appreciate the reviewer's feedback. We have made the corresponding modifications in the figure.

      Reviewer #2 (Recommendations For The Authors):

      The authors have addressed many of the specific concerns shared with the authors in the first round of review but several issues remain with the manuscript.

      1. Fig. 1D - the interpretation that spastin co-localizes with 14-3-3 proteins in hippocampal neurons is still tenuous since 14-3-3 uniformly labels the cell.

      Response: We appreciate the reviewer's consideration. Upon re-examining the source files, we found that the predominant reason for 14-3-3 showing a ubiquitous cellular distribution was excessive brightness and insufficient contrast. After appropriate adjustments, we discovered that 14-3-3 exhibits characteristic distribution in axons, including aggregation at growth cone and specific locations in the axon shaft. We have made the relevant changes in the revised version.

      1. Line 336. The meaning of the following statement is unclear "To further identify which isoform of 14-3-3 interacts with spastin, we generated six 14-3-3 isoforms in rats (β、γ、ε、ζ、η、θ ), then purified GST fusion 14-3-3 proteins (Figure 1G).

      Response: Sorry for any confusing statement. We obtained gene fragments of six 14-3-3 isoforms from rat brain cDNA and inserted these fragments into the pEGX-5X-3 vector. Subsequently, GST 14-3-3 fusion proteins were expressed and purified in vitro. We have made the corresponding revisions in the revised version.

      1. Line 341. The authors still fall short of showing that spastin and 14-3-3 interact directly thus it may be more accurate to say that they form a complex.

      Response: Thank you for the reviewer's advice. We have made the corresponding corrections in the manuscript.

      1. Line 388. Please clarify 2th and the meaning of "moderately" - "S233D) was moderately expressed in primary hippocampal neurons at 2th DIV." While it is specified that the transfection dosage and duration were meticulously controlled - it is unclear what the criteria was for establishing the appropriate moderate dosage.

      Response: Sorry about the mistake, it should be "2nd" instead of "2th". In order to establish a model for overexpressing spastin to promote neuronal neurite growth, we transfected 0.2 µg of plasmid into 1 well (1×104 cells/cm2, 24-well plate), with a transfection duration controlled at 24 hours.

      1. Line 395 - It is unclear if S233D is toxic as there seem to be no measurements of cell survival.

      Response: We have supplemented relevant experiments (See comment 6) based on comment 6 and found that Spastin S233D can promote neuronal neurite growth. The corresponding descriptions have been revised.

      1. The pro-growth effects of S233A still does not seem to fit the narrative and the results would have been more convincing if dosage was better controlled to establish any differences between WT and S233A Spastin.

      Response: We appreciate the constructive comments from the reviewer. In order to better illustrate the role of spastin S233 in neuronal growth, we have made appropriate adjustments to our experimental conditions based on previous experiments. Cells were transfected with plasmids expressing non-fused GFP and spastin and the relevant S233 mutants at a transfection dose of 0.2 µg into 1 well (1×104 cells/cm2, 24-well plate), duration was controlled at 12 hours. Due to the low expression state of the overexpressed protein, GFP (ab290 antibody for IF) was then stained to trace neuronal morphology. The experimental results demonstrate that spastin promotes neuronal neurite growth, and the dephosphorylation mutant of spastin (spastin S233A) significantly attenuates its neurite-promoting effect compared to wild-type spastin. Conversely, the phosphorylation mutant spastin S233D further enhances the promotion of neuronal neurite growth. We have also made corrections to the relevant statements in the manuscript.

      1. The reason for examining protection in response to glutamate is not well rationalized based on known spastin functions. The interpretation of this experiment is unclear with respect to effects on protection vs repair.

      Response: Thank you for the reviewer's consideration. We suppose that spastin may be involved in both protective and repair processes. Existing studies suggest that spastin can control store-operated calcium entry (SOCE) by altering endoplasmic reticulum morphology (doi: 10.1093/brain/awac122, doi: 10.3389/fphys.2019.01544), which may indicate its role in regulating calcium overload. Additionally, due to the critical role of spastin in axon growth, it is also essential for neuronal repair after injury. Therefore, we have not strictly distinguished between these two concepts here.

      1. It is unclear if Spastazoline simply blocks any type of growth and it is thus difficult to conclude that FC-A functions through a 14-3-3-spastin effect based on the current data.

      Response: We have re-evaluated and modified the title and main conclusions of the manuscript based on the reviewer's comments and the existing evidence, as responded to in reviewer 1's comments.

      1. The access of FC-A to the CNS with the current protocol has not been clearly established and the effects of FC_A on spastin expression seem to mirror the profile of the control condition.

      Response: We agree with the reviewer's comments. The expression trend of spastin after FC-A treatment is consistent with that of the control group, with a slight increase in its expression level compared to the control group.

      1. The NF and 5-HT staining is not convincing labelling fibres.

      Response: We appreciate the reviewer's comments. We believe that the reason for the incomplete axon staining is closely related to the thickness of the tissue sections. In our future research, we will further optimize our axon labeling methods.

      Reviewer #3 (Recommendations For The Authors):

      Figure 1D: Both spastin and 14-3-3 label the entire neuron which is rather unusual. Conditions of immunfluorescence should be improved. As it is, this image should not be used to claim colocalization.

      Response: We appreciate the reviewer's consideration. In response to comment 1 from the expert reviewer 2, we have re-examined the source files and identified that the primary reason for the overall cell-wide distribution of 14-3-3 and spastin is due to excessive brightness and a lack of sufficient contrast. After making appropriate adjustments, we found that 14-3-3 and spastin exhibit characteristic localization within the axon (concentrated in a particular region of the axon shaft and the growth cone). We have made corresponding revisions in the revised version of the manuscript.

      Figure S2: The experimental setup and data provided is not adequate to infer microtubule severing.

      Response: We appreciate the reviewer's guidance. We have improved the relevant experiments and used a 100X objective lens to observe the microtubule structures more clearly.

      Figure 2 I-K: The functional effect of spastin S233A and S233D on neurite outgrowth does not correlate with a function of 14-3-3 and thus does not support the central hypothesis of the manuscript. Minor: The images selected as representative show differences in neurite length and branching that are not portrayed in the graphs.

      Response: Thank you for the reviewer’s comment. Similar to the response to the reviewer 2's comment 6, in order to better illustrate the role of spastin S233 in neurite outgrowth, we made corresponding adjustments to our experimental conditions. Cells were transfected with plasmids expressing non-fused GFP and spastin and the relevant S233 mutants at a transfection dose of 0.2 µg into 1 well (1×104 cells/cm2, 24-well plate), duration was controlled at 12 hours. Due to the low expression state of the overexpressed protein, GFP (ab290 antibody for IF) was then stained to trace neuronal morphology. The experimental results demonstrate that spastin promotes neuronal neurite growth, and the dephosphorylation mutant of spastin (spastin S233A) significantly attenuates its neurite-promoting effect compared to wild-type spastin. Conversely, the phosphorylation mutant spastin S233D further enhances the promotion of neuronal neurite growth. We have also made corrections to the relevant statements in the manuscript.

      Figure 5 J and L: The quality, resolution and size of the images is insufficient to support the claims of the authors. As it is, one cannot interpret the data. It is very hard to envisage, even considering the explanation provided by the authors, that spinal cords where spastazoline was used correspond to contusion as a complete discontinuity between the rostral and caudal spinal cord tissue is present.

      Response: Due to limitations in file uploads, we encountered issues with the resolution of the tissue slices related to spinal cord injury. To address this, we have adjusted the size and resolution of the corresponding images in the supplementary materials (Fig.S7-S9 ) and included the original confocal files and images.

      Additionally, it's important to note that the tissue slices we presented do not represent all layers of the spinal cord, and not all layers exhibit discontinuity. Our slices are taken longitudinally at the dorsal site of the lesion area. The dorsal slices represent areas closer to the injury site, while deeper slices correspond to areas distant from the injury site. Therefore, we selected areas closer to the injury site to reflect the repair process following injury.

      Figure 7B: Similar comment to spianl cord images provided in Figure 5. NF and MBP are not supposed to colocalize as they label different cell types...

      Response: We appreciate the comments from the expert reviewer, and we agree with their suggestions. We will further optimize our axon labeling methods. The excessive brightness and lack of contrast primarily led to the non-specific labeling of other cell types with the MBP antibody. In fact, our primary goal was to highlight the injured areas by enhancing the fluorescence intensity of the images, which inadvertently resulted in neglecting the exclusion of non-specific staining. Therefore, we have made appropriate adjustments to the images to better visualize the distribution of myelin sheaths.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The importance of the role of sexual behavior, specifically ejaculation rates, is worth emphasizing for the formation of pair bonds in prairie voles. It suggests that the role of sexual behavior in contributing to the strength of pair bonds should be explored more. It is also important to add that males and females in the study were screened for sexual receptivity. It would therefore be important to identify characteristics of animals that did not mate under the laboratory conditions used that may add depth and complexity to what was identified in the current study. The identification of brain regions for pair bond maintenance centered around the amygdala was also intriguing.

      Thank you for pointing some interpretations of our findings that can be emphasized in the Discussion. We added the following sentences to the Discussion:

      “Our findings, along with this previous work, support the hypothesis that sexual behavior plays a key role in driving pair-bond strength. However, the current study focused on animals that were screened for sexual receptivity, which may have limited variation in sexual behavior across pairs. An intriguing direction for future research will be to test how this variation contributes to bond strength.”

      We also emphasized amygdala in relation to pair bond maintenance. We added the following sentence to the Discussion:

      “These brain regions, and especially amygdala, will be important candidates for future research on neural regulation of pair-bond maintenance.”

      The issue of the lack of a strong presence of the reward circuitry (nucleus accumbens) in the final models is also worth more discussion. Perhaps it has been overly emphasized in the past, but there are strong results from other studies pointing to the importance of reward circuitry.

      Thank you for this suggestion. There is a section in the Results that analyses accumbens in more detail than other brain regions. Accumbens did not survive our corrections for multiple statistical tests, however it was significant at early timepoint without these corrections. This Results paragraph states the following:

      “Although the nucleus accumbens did not survive multiple test corrections in our ROI analysis (q=0.17), it was significant in univariate analysis (p=0.03), particularly when focused on the 2.5 and 6h timepoints (two sample t-test: t=2.53, p=0.01, Video 2). Furthermore, voxel-level comparisons revealed significant sites within the ventral striatum and the posterior nucleus accumbens (Figure 2A, Figure Supplement 1b-c, Video 2).”

      We added Supplementary File 4, which contains model comparison results for accumbens and all other ROIs. We also added more detail on nucleus accumbens to the Discussion:

      “Pairing drove increased c-Fos expression in the ventral pallidum, a major node in reward circuity, as well as in the paraventricular nucleus and the medial preoptic area, modulators of reward. This is consistent with a large body of work implicating neuropeptide actions on reward circuits in the formation of bonds (Walum & Young, 2018; Young & Wang, 2004). Conspicuously missing from our list, however, is significant pairing induced c-Fos induction in the nucleus accumbens. One possibility is that an absence of significant accumbens IEG induction reflects the limitations of using c-Fos and other immediate early genes as indicators of neural activity. It is known that some neuronal populations can be active without expressing c-Fos (Sheng & Greenberg, 1990). Indeed, although a variety of studies implicate the accumbens in bond formation (Amadei et al., 2017; Aragona et al., 2006; Scribner et al., 2020), previous work finds only weak c-Fos induction in the prairie vole accumbens during bonding (Curtis & Wang, 2003). Another possibility is that there was heterogeneous activation in the accumbens that was not captured by the precision of our atlas. Consistent with this interpretation, found that the accumbens was significant in univariate tests, as well as in voxel-level analyses. Overall, our results do not conflict with pharmacological, electrophysiological, and calcium-imaging data on the role of the nucleus accumbens in prairie vole bonding (Amadei et al., 2017; Aragona et al., 2006; Scribner et al., 2020). Instead, the absence of significant effects at the level of the entire nucleus accumbens together with the presence of anatomically restricted voxel-level significance suggests substantial anatomical heterogeneity in the contributions of the nucleus accumbens to bond formation.”

      Please discuss the consequences of creating the behavioral data for pair bond formation by subtracting same-sex pairs interactions from the opposite-sex interactions. What sources of information are removed by using this approach?

      One limitation of our study’s approach is that we are unable to fully separate information related to social novelty from mating experience. Thank you for pointing out that we should touch on this sort of caveat in the paper. We added several sentences to the Discussion:

      “It seems likely that sensory and motor areas were important for social processes related to both pair-bonding and reunion with same-sex cagemates, such as investigation and recognition. Our study design, however, highlights differences between treatments, and in order to detect such effects, it might be necessary to compare mating and bonding pairs to animals left in complete isolation.”

      We reiterate the point in a new paragraph we added to the Discussion to explicitly provide caveats regarding our data:

      “Before offering a synthesis of our findings, it would be useful to acknowledge a few caveats. First, as noted above, IEG induction does not capture all relevant neural activity. Second, the design of our experiment, which controlled for social interaction, likely excluded many circuits important to both pair bonding and sibling social interactions. Third, c-Fos activity within a given brain region may nevertheless rely on distinct cell types, and so the absence of sex differences in c-Fos immunoreactivity does not definitively rule out the sexually dimorphic circuits hypothesized in the “dual function hypothesis” (de Vries, 2004). Lastly, the current study focused on animals that were screened for sexual receptivity, which may have limited the variation in sexual behavior across opposite-sex pairs.”

      Time 0 is when the barrier is removed after a two-hour exposure. Please speculate on what is going on during the two-hour exposure. Time zero is potentially more than the time of mating. Is it possible that aggression is being decreased during this timepoint that represents mating? Could it also be a measure of the outcome of an initial compatibility assessment by the male and female?

      Thank you for this interesting observation. While the opaque divider prevented physical social interactions, it is possible that animals picked up on auditory or olfactory cues. We did not detect group differences in movement patterns and vocalization rates from the 0 h timepoint group (Figure 2). These findings suggest that potential partner detection and assessment occurred in a similar way for both experiment groups. It is unlikely that this period represents a decrease in aggression, since unbonded prairie voles are not known to be aggressive towards conspecifics. However, the idea that animals may potentially use olfactory or auditory cues to assess each other is an interesting idea, and one that we cannot rule out. We added a brief statement to the Methods “Experiment Design” section about the possibility that the two hours prior to divider removal (0 h timepoint) could represent more than an acclimation period:

      “It is important to note that the opaque divider in the acclimation period prevented physical interactions, but it is possible that animal pairs may have detected each other through olfactory or auditory cues.”

      We also mention this in the revised Discussion in the context of the PFC cluster, which not only differed between mating and non-mating groups, but also showed differences between isolated (0h) and socially interacting animals (sibs and mates, 2.5h-22h):

      “A fourth cluster (“PFC,” green) is composed of prelimbic, infralimbic and olfactory cortex; activity in the vole prefrontal cortex is known to be modulated by hypothalamic oxytocin, and to shape bonding through projections to the nucleus accumbens (Amadei et al., 2017; Burkett et al., 2016; Horie et al., 2020). The pattern of activity in this cluster, however, indicates that it was due in part to differences between the isolated animals (0h) and other time points (Figure 4—figure supplement 1 and Figure 4—figure supplement 2). Because animals in the isolated condition were in a compartment adjacent to either an opposite sexed individual or a familiar former cagemate, we cannot rule out that olfactory or auditory cues may have made animals aware of the presence of a potential social partner. Indeed, we interpret this dimension as capturing appetitive aspects of behaviors associated with investigation of the animal isolated from the subject by the barrier.”

      Reviewer #2 (Public Review):

      An important caveat to this study not mentioned by the authors is that c-fos provides a snapshot of neural activity and that important populations of neurons could be active and not express c-fos. Thus observed correlations are likely to be robust, but the absence of differences (in say accumbens) may just reflect the limits of c-fos estimation of neural activity. Similarly, highly coordinated neural activity between males and females might still be driven by different mechanisms if different cell types were activated within a specific region.

      We now discuss limitations of c-Fos in the Discussion paragraph that focuses on accumbens:

      “The absence of significant accumbens IEG induction may reflect the limitations of using c-Fos and other immediate early genes as indicators of neural activity. It is known that some neuronal populations can be active without expressing c-Fos (Sheng & Greenberg, 1990). Indeed, although a variety of studies implicate the accumbens in bond formation (Amadei et al., 2017; Aragona et al., 2006; Scribner et al., 2020), previous work finds only weak c-Fos induction in the prairie vole accumbens during bonding (Curtis & Wang, 2003).”

      We also include the following sentence in a new Discussion paragraph that focuses on caveats to our findings:

      “Before offering a synthesis of our findings, it would be useful to acknowledge or reiterate a few caveats. First, as noted above, IEG induction does not capture all relevant neural activity (Sheng & Greenberg 1990). Second, the design of our experiment, which controlled for social interaction, likely excluded many circuits important to both pair bonding and sibling social interactions. Third, c-Fos activity within a given brain region may nevertheless rely on distinct cell types, and so the absence of sex differences in c-Fos immunoreactivity does not definitively rule out the sexually dimorphic circuits hypothesized in the “dual function hypothesis” (de Vries, 2004). Lastly, the current study focused on animals that were screened for sexual receptivity, which may have limited the variation in sexual behavior across opposite-sex pairs.”

      Recommendations for the authors:

      It appears as if df is missing from some statistical reporting.

      Thank you for pointing this out. We went through the manuscript and added in sample sizes to statistical reporting.

      Reviewer #1 (Recommendations for the authors):

      It is surprising that the cortex was not more extensively identified as being involved in pair bonding, but perhaps this is because the emphasis for choosing brain areas in the cortical region is biased towards olfactory regions. Please discuss. It may also be worth noting that brain regions associated with perception may be important in all of these processes, but selected out because of the design.

      Thank you for this observation. We agree that some cortical regions may not have been identified due to the study design. For example, social processes related to both pair bonding and cagemate recognition likely rely on overlapping circuits. It is also important to note here that our analysis approach identified the “most” significant regions. This means that several candidate regions did not survive the statistical threshold used to select regions. We now discuss the cortex in more detail in the Discussion, where we also identify the regions that approached significance but did not survive multiple test corrections:

      “Although the PFC and other olfactory cortical areas formed a cluster, we did not find widespread c-Fos induction throughout the cortex in response to pairing. It seems likely that sensory and motor areas were important for social processes related to both pair-bonding and reunion with same-sex cagemates, such as investigation and recognition. Our study design, however, highlights differences between treatments, and in order to detect such effects, it might be necessary to compare mating and bonding pairs to animals left in complete isolation. Moreover, several cortical regions that did not survive corrections for multiple tests may have been identified in a less stringent analysis. Several subregions within the isocortex, hippocampal formation, and cortical subplate had statistical models that approached significance (i.e., p-values < 0.1) prior to multiple test corrections. These subregions were found within primary somatosensory area, primary auditory area, dorsal and ventral auditory areas, primary visual area, anteromedial visual area, agranular insular area, temporal association areas, ectorhinal area, postsubiculum, and basomedial amygdala. Frontal cortex subregions were within the agranular insular area and orbital area, as well as additional subregions in prelimbic and infralimbic areas of the PFC.”

      Same-sex siblings were isolated for 4-5 days and then repaired. This is a creative way of dealing with this, but was any aggression displayed in the same-sex pairs? Are there bonds or preferences among same-sex individuals? Could the isolation have set the stage for neural changes associated with migrating from the natal group? 4-5 days of isolation is not trivial.

      Thank you for these questions. We did not witness aggression between same-sex pairs. We had recorded ‘aggression’ events (lunges and chases) during the 1 h behavioral observation epochs and found that these rates were nearly zero for all sibling timepoint groups (events/h per focal animal in mean ± sd: 2.5 h group = 0.58 ± 1.53, 6 h group = 0.17 ± 0.48, 22 h group = 0.25 ± 0.44).

      The question about peer relationships is a good one. Previous literature does suggest that prairie voles can develop preferences for familiar same-sex individuals (e.g., Beery et al. 2018 Front. Behav. Neuro., Lee et al. 2019 Front. Behav. Neuro). Thus, we want to reiterate here that our study design tests for differences between these baseline levels of affiliation with pair bonding in a reproductive context.

      It is possible that the period of isolation prior to experiments may have set the stage for neural changes associated with migration from the natal group. Testing this possibility is outside the scope of the current study. We want to point out here that animals were separated from their natal groups several weeks prior to the experiment. Animals were weaned at 21 days and put into same-sex cages, and then experiments occurred between 8-12 weeks of age. All experiment groups went through the same weaning and co-housing conditions.

      Pg 26, Line 655: "better" is listed twice in the sentence and only one is needed

      Thank you for catching this typo. This is fixed.

      Reviewer #2 (Recommendations for the authors):

      Why was it necessary to bring voles into estrus when they are induced ovulators? The authors need to state how voles were brought into estrus.

      Thank you for this suggestion. We explained estrus induction in the Methods, but this explanation could be missed because it was within the “Behavioral procedures” section. We put the paragraph about estrus induction into a new section called “Estrus induction and animal selection”. We also elaborated on the final sentences of this paragraph to provide a clearer rationale:

      “We used this mating assay to restrict study subjects to voles that showed lordosis (females) or mounting behavior (males). By selecting voles who showed sexual behavior, we could control the estrus state and timing of mating across the 0, 2.5, 6 and 22 h study groups. This selection process also ensured that animals assigned to the same-sex sibling pair and opposite-sex mating pair groups had similar sexual motivation and experience.”

      I assume in the final manuscript the authors will release the availability of the atlas? Making the atlas public seems to be in the spirit of the eLife publishing model.

      The prairie vole reference brain, atlas, and atlas annotation labels, are now included on the Figshare repository site. We updated the Data and code availability section to clarify this.

      Reviewer #3 (Recommendations for the authors):

      Please clarify in the Methods if same-sex sibling females were also estrogen primed. If not, could the estrogen exposure cause Fos differences?

      Thank you for this suggestion. All females were estrogen primed. We refined the Methods section “Estrus induction and animal selection” to make this part of the study design clearer. We edited one of the sentences to say “During this isolation period, all females were induced into estrus[...]” We also added a couple sentences at the end of this paragraph:

      “By selecting voles who showed sexual behavior, we could control the estrus state and timing of mating across the 0, 2.5, 6 and 22 h study groups. This selection process also ensured that animals assigned to the same-sex sibling pair and opposite-sex mating pair groups had similar sexual motivation and experience.”

    1. Author Response:

      We thank the reviewers for their careful comments. We sincerely agree with the comments from both reviewers, and noticed the word “cell transplantation”, throughout the manuscript including the title, was confusing. We will revise the manuscript to clarify the aim of the study, and to express the conclusion more straightforwardly.

      Response to reviewers:

      We interpret the data of the present study as the color of each RPE cell is a temporal condition which does not necessarily represent the quality (e.g. for cell transplantation) of the cells. We consider this may be applicable not only in vitro but also in vivo, although we do not know whether RPE shows heterogeneous level of pigmentation in vivo.

      As our concern for iPSC-RPE is always about their quality for cell transplantation, maybe we haven’t fairly evaluated the scientific significance obtained from the present study.

      Another thing we noticed was, although we used the term “cell transplantation” to explain what we meant by “quality” of the cells, we agree this was confusing. The aim of the study was not to show how the pigmentation level of transplant-RPE affects the result of cell transplantation, but to show the heterogeneous gene expression of iPSC-derived RPE cells, and the less correlation of the heterogeneity with the pigmentation level. We went through the manuscript, including the title, to more straightforwardly lead this conclusion: the degree of pigmentation had some but weak correlation with the expression levels of functional genes, and the reason for the weakness of the correlation may be because the color is a temporal condition (as we interpreted from the data) that is different from more stable characteristics of the cells.

      We agree that “cell transplantation” in the title (and other parts) was misleading. So, we will change the title, and removed the phrase that led as if the aim of the study was to show something about cell transplantation or in vivo results.

      Also, to face scientifically significant results obtained from the present study appropriately, we will discuss more about the correlation of the pigmentation level with some functional genes, and brought this as one of the conclusions of the manuscript.

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] Weaknesses:

      1. I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aim to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:

      Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.

      Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725

      Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666

      Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.

      The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d). It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?

      The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins, and the bipolar crushing is not expected to help with this.

      The authors would like to clarify that the velocity-nulling gradient is NOT designed to suppress all the contributions from intravascular blood. Instead, we tried to find a balance so that the VN gradient maximally suppressed the macrovascular signal in unspecific veins but minimally attenuated the microvascular signal in specific capillary bed. We acknowledge the reviewer's concern regarding the potential extravascular contributions from large, non-specific vessels. This aspect will be thoroughly evaluated and addressed in the revised manuscript. Additionally, we will make clarifications in other parts that may have cause the reviewer’s misunderstandings.

      1. The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions. VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.

      Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358

      Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121

      If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.

      We acknowledge that the degree of velocity nulling varies across the cortical folding pattern. We intend to discuss potential solutions to address this variance, and these may be implemented in the revised manuscript as appropriate. Furthermore, we will provide a comprehensive discussion on the advantages and disadvantages of both CBV-based and BOLD-based approaches.

      1. The comparison with VASO is misleading. The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years. Koiso et al. performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation), 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation). Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).

      Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502

      Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855

      Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544

      The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that wants to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401

      Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab? Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion, it looks like random noise, with most of the activation outside the ROI (in white matter).

      Those literatures will be included and discussed in the revised manuscript. Furthermore, we are considering the exclusion of the LGN results presented in Figure 6, as they may divert attention from the primary focus of the study.

      We are enthusiastic about sharing our imaging sequence, provided its usefulness is conclusively established. However, it's important to note that without an online reconstruction capability, such as the ICE, the practical utility of the sequence may be limited. Unfortunately, we currently don’t have the manpower to implement the online reconstruction. Nevertheless, we are more than willing to share the offline reconstruction codes upon request.

      1. The repeatability of the results is questionable. The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact, the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. The location of peaks turns into locations of dips and vice versa. The methods are not described in enough detail to reproduce these results. The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.

      It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination. No data are shared for reproduction of the analysis.

      There may have been a misunderstanding regarding the presentation in Figure 4, which illustrates the impact of TEs and the VN gradient. To enhance clarity and avoid further confusion, we will redesign this figure for improved comprehension.

      The authors are open to sharing the MATLAB codes associated with our study. However, we were limited by manpower for refining and enhancing the readability of these codes for broader use.

      Regarding the coil combination, we utilized an adaptive coil combination approach as described in the paper by Walsh DO, Gmitro AF, and Marcellin MW, titled 'Adaptive reconstruction of phased array MR imagery' (Magnetic Resonance in Medicine 2000; 43:682-690). The MATLAB code for this method was implemented by Dr. Diego Hernando. We will include a link for downloading this code in the revised manuscript for the convenience of interested readers.

      1. The application of NODRIC is not validated. Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.

      Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924

      Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658

      During our internal testing, we observed that the NORDIC denoising process did not alter the activation patterns. These findings will be incorporated into the revised manuscript. The details of NORDIC will be provided as well.

      Reviewer #2 (Public Review):

      [...] The well-known double peak feature in M1 during finger tapping was used as a test-bed to evaluate the spatial specificity. They were indeed able to demonstrate two distinct peaks in group-level laminar profiles extracted from M1 during finger tapping, which was largely free from superficial bias. This is rather intriguing as, even at 7T, clear peaks are usually only seen with spatially specific non-BOLD sequences. This is in line with their simple simulations, which nicely illustrated that, in theory, intravascular macrovascular signals should be suppressible with only minimal suppression of microvasculature when small b-values of the VN gradients are employed. However, the authors do not state how ROIs were defined making the validity of this finding unclear; were they defined from independent criteria or were they selected based on the region mostly expressing the double peak, which would clearly be circular? In any case, results are based on a very small sub-region of M1 in a single slice - it would be useful to see the generalizability of superficial-bias-free BOLD responses across a larger portion of M1.

      Given the individual variations in the location of the M1 region, we opted for manual selection of the ROI. In the revised manuscript, we plan to explore and implement an independent criterion for ROI selection to enhance the objectivity and reproducibility of our methodology.

      As repeatedly mentioned by the authors, a laminar fMRI setup must demonstrate adequate functional sensitivity to detect (in this case) BOLD responses. The sensitivity evaluation is unfortunately quite weak. It is mainly based on the argument that significant activation was found in a challenging sub-cortical region (LGN). However, it was a single participant, the activation map was not very convincing, and the demonstration of significant activation after considerable voxel-averaging is inadequate evidence to claim sufficient BOLD sensitivity. How well sensitivity is retained in the presence of VN gradients, high acceleration factors, etc., is therefore unclear. The ability of the setup to obtain meaningful functional connectivity results is reassuring, yet, more elaborate comparison with e.g., the conventional BOLD setup (no VN gradients) is warranted, for example by comparison of tSNR, quantification and comparison of CNR, illustration of unmasked-full-slice activation maps to compare noise-levels, comparison of the across-trial variance in each subject, etc. Furthermore, as NORDIC appears to be a cornerstone to enable submillimeter resolution in this setup at 3T, it is critical to evaluate its impact on the data through comparison with non-denoised data, which is currently lacking.

      We appreciate the reviewer’s comments. Those issues will be addressed carefully.

      Reviewer #3 (Public Review):

      [...] Weaknesses: - Although the VASO acquisition is discussed in the introduction section, the VN-sequence seems closer to diffusion-weighted functional MRI. The authors should make it more clear to the reader what the differences are, and how results are expected to differ. Generally, it is not so clear why the introduction is so focused on the VASO acquisition (which, curiously, lacks a reference to Lu et al 2013). There are many more alternatives to BOLD-weighted imaging for fMRI. CBF-weighted ASL and GRASE have been around for a while, ABC and double-SE have been proposed more recently.

      The principal distinction between DW-fMRI and our methodology lies in the level of the b-value employed. DW-fMRI typically measures cellular swelling by utilizing a b-value greater than 1000 s/mm^2 (e.g. 1800). Conversely, our Velocity Nulling functional MRI (VN-fMRI) approach continues to assess hemodynamic responses, utilizing a smaller b-value specifically for the suppression of signals from draining veins. In addition, other layer-fMRI methods will be discussed.

      • The comparison in Figure 2 for different b-values shows % signal changes. However, as the baseline signal changes dramatically with added diffusion weighting, this is rather uninformative. A plot of t-values against cortical depth would be much more insightful.
      • Surprisingly, the %-signal change for a b-value of 0 is not significantly different from 0 in the gray matter. This raises some doubts about the task or ROI definition. A finger-tapping task should reliably engage the primary motor cortex, even at 3T, and even in a single participant.
      • The BOLD weighted images in Figure 3 show a very clear double-peak pattern. This contradicts the results in Figure 2 and is unexpected given the existing literature on BOLD responses as a function of cortical depth.

      In our study, the TE in Figure 2 is shorter than that in Figure 3 (33 ms versus 43 ms). It has been reported in the literature that BOLD fMRI with a shorter TE tends to include a greater intravascular contribution. Acknowledging this, we plan to repeat the experiments with a controlled TE to ensure consistency in our results.

      • Given that data from Figures 2, 3, and 4 are derived from a single participant each, order and attention affects might have dramatically affected the observed patterns. Especially for Figure 4, neither BOLD nor VN profiles are really different from 0, and without statistical values or inter-subject averaging, these cannot be used to draw conclusions from.

      The order of the experiments were randomized to ensure unbiased results.

      It is important to note that the error bars presented in Figures 2, 3, and 4 do not represent the standard deviation of the residual fitting error. Instead, they illustrate the variation across voxels within a specific layer. This approach may lead to the error bars being influenced by the selection of the Region of Interest (ROI). In light of this, we intend to refine our statistical methodologies in the revised manuscript to address this issue.

      • In Figure 5, a phase regression is added to the data presented in Figure 4. However, for a phase regression to work, there has to be a (macrovascular) response to start with. As none of the responses in Figure 4 are significant for the single participant dataset, phase regression should probably not have been undertaken. In this case, the functional 'responses' appear to increase with phase regression, which is contra-intuitive and deserves an explanation.
      • Consistency of responses is indeed expected to increase by a removal of the more variable vascular component. However, the microvascular component is always expected to be smaller than the combination of microvascular + macrovascular responses. Note that the use of %signal changes may obscure this effect somewhat because of the modified baseline. Another expected feature of BOLD profiles containing both micro- and microvasculature is the draining towards the cortical surface. In the profiles shown in Figure 7, this is completely absent. In the group data, no significant responses to the task are shown anywhere in the cortical ribbon.
      • Although I'd like to applaud the authors for their ambition with the connectivity analysis, I feel that acquisitions that are so SNR starved as to fail to show a significant response to a motor task should not be used for brain wide directed connectivity analysis.

      We agree that exploring brain-wide directed functional connectivity may be overly ambitious at this stage, particularly before the VN-fMRI technique has been comprehensively evaluated and validated. In the revised manuscript, we will focus more on examining the characteristics of the layer-dependent BOLD signal rather than delving into layer-dependent functional connectivity.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors developed computational models that capture the electrical and Ca2+ signaling behavior in mesenteric arterial cells from male and female mice. A baseline model was first formulated with eleven transmembrane currents and three calcium compartments. Sex-specific differences in the L-type calcium channel and two voltage-gated potassium channels were then tuned based on experimental measurements. To incorporate the stochastic ion channel openings seen in smooth muscle cells under physiological conditions, noise was added to the membrane potential and the sarcoplasmic Ca2+ concentration equations. Finally, the models were assembled into 1D vessel representations and used to investigate the tissue-level electrical response to an L-type calcium channel blocker.

      Strengths:

      A major strength of the paper is that the modeling studies were performed on three different scales: individual ionic currents, whole-cell, and 1D tissue. This comprehensive computational framework can help provide mechanistic insight into arterial myocyte function that might be difficult to achieve through traditional experimental methods.

      The authors aimed to develop sex-specific computational models of mesenteric arterial myocytes and demonstrate their use in drug-testing applications. Throughout the paper, model behavior was both validated by experimental recordings and supported by previously published data. The main findings from the models suggested that sex-specific differences in membrane potential and Ca2+ handling are attributable to variability in the gating of a small number of voltage-gated potassium channels and L-type calcium channels. This variability contributes to a higher Ca2+ channel blocker sensitivity in female arterial vessels. Overall, the study successfully met the aims of the paper.

      Thank you for your insightful review and for recognizing the strengths of our study. We appreciate your encouraging comment regarding our multi-scale approach. Indeed, we believe that by systematically connecting these scales—individual ionic currents, whole-cell, and 1D tissue—we can integrate and reconcile experimental and clinical data. We anticipate that this approach will not only provide mechanistic insights into arterial myocyte function that may not be easy to glean from traditional experimental methods but will also facilitate the translation of this information into the development of therapeutic interventions.

      Weaknesses:

      A main weakness of the paper, as addressed by the authors, is the simplicity of the 1D vessel model; it does not take into account various signaling pathways or interactions with other cell types which could impact smooth muscle electrophysiology.

      Thank you for highlighting areas for improvement in our study. The strength of computational modeling lies in its iterative nature, allowing us to introduce and examine variables in a systematic manner. While our current model is simplified and does not contain all details, the modular nature of the build will allow continuous expansion to add the important elements described by the reviewer. We are enthusiastic about progressively enriching the model in subsequent studies, introducing signaling pathways in a step-by-step manner, and ensuring their validation with rigorous experimental data.

      Another potential shortcoming is the use of mouse data for optimizing the model, as there could be discrepancies in signaling behavior that limit the translatability to human myocyte predictions.

      We appreciate this important comment. Our model was parametrized using data from mouse mesenteric artery smooth muscle cells as initial proof of concept. Mouse arteries are a good representation of human arteries, as they have similar intravascular pressure-myogenic tone relationships, resting membrane potentials, and express similar ionic channels (e.g., CaV1.2, BK channels, RyRs, etc) (PMID: 28119464, PMID: 29070899, PMID: 23232643). In response to the reviewer, we have modified the discussion section of the manuscript to specifically note the mouse is not identical to the human but does share some common important features that make mice a good approximate model.

      Reviewer #2 (Public Review):

      In this study, Hernandez-Hernandez et al developed a gender-dependent mathematical model of arterial myocytes based on a previous model and new experimental data. The ionic currents of the model and its sex difference were formulated based on patch-clamp experimental data, and the model properties were compared with single-cell and tissue scale experimental results. This is a study that is of importance for the modeling field as well as for experimental physiology.

      Thank you for the comment. In fact, we developed a model that incorporates sex-dependent differences that allowed for male and female models. It’s an important distinction as sex is a biological variable and gender is a self-ascribed characteristic.

      Reviewer #3 (Public Review):

      Summary:

      This hybrid experimental/computational study by Hernandez-Hernandez sheds new light on sex-specific differences between male and female arterial myocytes from resistance arteries. The authors conduct careful experiments in isolated myocytes from male and female mice to obtain the data needed to parameterize sex-specific models of two important ionic currents (i.e., those mediated by CaV1.2 and KV2.1). Available experimental data suggest that KV1.5 channel currents from male and female myocytes are similar, but simulations conducted in the novel Hernandez-Hernandez sex-specific models provide a more nuanced view. This gives rise to the first of the authors' three key scientific claims: (1) In males, KV1.5 is the dominant current regulating membrane potential; whereas, in females, KV2.1 plays a primary role in voltage regulation. They further show that this (2) the latter distinction drives drive sex-specific differences in intracellular Ca2+ and cellular excitability. Finally, working with one-dimensional models comprising several copies of the male/female myocyte models linked by resistive junctions, they use simulations to (3) predict that the sensitivity of arterial smooth muscle to Ca2+ channel-blocking drugs commonly used to treat hypertension is heightened in female compared to male cells.

      Strengths:

      The Methodology is described in exquisite detail in straightforward language that will be easy to understand for most if not all peer groups working in computational physiology. The authors have deployed standard protocols (e.g., parameter fitting as described by Kernik et al., sensitivity analysis as described by Sobie et al.) and appropriate brief explanations of these techniques are provided. The manoeuvre used to represent stochastic effects on voltage dynamics is particularly clever and something I have not personally encountered before. Collectively, these strengthen the credibility of the model and greatly enrich the manuscript.

      We appreciate your comment highlighting the robustness of our methodology. Your acknowledgment of our approach to represent stochastic effects on voltage dynamics is especially encouraging. Indeed, noise is a fundamental component of physiological systems, including in vascular myocytes

      Broadly speaking, the Results section describes findings that robustly support the three key scientific claims outlined in my summary. While there is certainly room for further discussion of some nuanced points as outlined below, it is evident these experiments were carefully designed and carried out with care and intentionality. In the present version of the manuscript, there are a few figures in which experimental data is shown side-by-side with outputs from the corresponding models. These are an excellent illustration of the power of the authors' novel sex-specific computational simulation platform. I think these figures will benefit from some modest additional quantitative analysis to substantiate the similarities between experimental and computational data, but there is already clear evidence of a good match.

      We sincerely appreciate your constructive feedback on the Results section. We have included additional quantitative analysis to substantiate the similarities between experimental and computational data. We agree with the reviewer that the suggestion on the potential value of a more quantitative assessment. As such we have updated the figure to include an in-depth analysis that provides greater insights and solidifies the power of our simulation predictions when compared to experimental results. A detailed analysis of the male and female data as well as the male and female simulations are summarized in the text as follows:

      Baseline membrane potential is -40 mV in male myocytes compared to -30 mV. The frequency of hyperpolarization transients (THs) is 1 Hz in male and 2.5 Hz in female cells for the specific baseline membrane potential shown in Figure 5 A-B. In the range of membrane potentials from -50 mV to -30 mV the frequency increases from 1-2.8Hz which is identical to the experimental frequency range.

      Areas for Improvement:

      The authors used experimental data from a prior publication to calibrate their model of the BKCa current. As indicated in the manuscript, these data are for channel activity measured in a heterologous expression system (Xenopus oocytes). A similar principle applies to other major ion channels/pumps/etc. Is it possible there might be relevant sex-specific differences in these players as well? In the context of the present work, this feels like an important potential caveat to highlight, in case male/female differences in the activity of BKCa or other currents might influence model-predicted differences (e.g., the relative importance of KV1.5 and KV2.1). This should be discussed, and, if possible, related to the elegant sensitivity analysis presented in Fig. 5C (which shows, for example, that the models are relatively insensitive to variation in GBK).

      We fully agree with the reviewer - an important caveat to highlight is the unknown sex-specific differences in all the other players regulating membrane potential and calcium signaling. While our initial assessments indicated that the contribution of BKCa channels to the total voltage-gated K+ current (IKvTOT) was small within the physiological range of -50 mV to -30 mV, further analysis of spontaneous transient outward currents revealed sex-specific variations. We have investigations underway to explore if BKCa channel expression and organization may be also sex-dependent.

      The authors state that their model can be expanded to 2D/3D applications, "transitioning seamlessly from single-cell to tissue-level simulations". I would like to see more discussion of this. For example, given the modest complexity of the cell-scale model, how considerable would the computational burden be to implement a large network model of a subset of the human female or male arterial system? Are there sex-specific differences in vessel and/or network macro-structure that would need to be considered? How would this influence feasibility? Rather than a 1D cable as implemented here, I imagine a multi-scale implementation would involve the representation of myocytes wrapped around vessels. How would the behavior of such a system differ from the authors' presented work using a 1D representation of 100 myocytes coupled end-to-end? Could these differences partially explain why the traces in Fig. 8D are smoother than those in Fig. 8C? From my standpoint, discussing these points would enrich the paper.

      We appreciate the reviewer’s thoughtful and forward-looking ideas! Indeed, we are very interested to extend the model to incorporate a number of these important items.

      Our choice for the 1D cable model was driven by its anatomical relevance to the structure of third and fourth-order mesenteric arteries. These arteries possess a singular layer of vascular myocytes encircling the lumen in a cylindrical arrangement. When we conceptualize this structure as unrolled or viewed laterally, it aligns with a flat, rectangular form, closely paralleling our 1D cable implementation. One option is to expand this into a 2D representation by connecting multiple 1D cables together. Another option would be to connect the 1D cable end-to-end to create a ring to represent a cross section. While these approaches would appear to be different geometries, in either case, the dynamics will remain consistent because the cells comprising the tissue are the same. There is no propagating impulse (for example – although even then in a 2D homogenous tissue, a planar wave is identical in 1D), and the only effect will be an increase in electrotonic load (sink) from neighboring cells, which can readily be approximated in 1D by increasing coupling or modification of the boundary conditions.

      We totally agree that future investigation should include exploration into the potential sex-specific differences in vessel and/or network macro-structure, as these factors may critically impact predictions and indeed the difference in traces observed between Fig. 8D and Fig. 8C may well involve “insulating” effects of vessel layers and interaction between various cell types and other structural factors. In particular, the contribution of endothelial cells in modulating membrane potential in vascular myocytes might be one such influential factor. In future studies, we are also keen to investigate blood flow regulation where a 3D configuration might become necessary.

      The nifedipine data presented in Fig. 9 are quite compelling, and a nice demonstration of the potential power of the new models. How does this relate to what is known about the clinical male/female responses to nifedipine? Are there sex differences in drug efficacy?

      Thank you for your comment regarding Fig. 9.

      It is well known that sex-specific differences in pharmacokinetics and pharmacodynamics influence antihypertensive drug responses [PMID: 8651122., PMID: 22089536]. Previous studies, notably by Kloner et al., have illustrated this point quantitatively, highlighting a more pronounced diastolic BP response in women (91.4%) compared to men (83%) when treated with dihydropyridine-type channel blockers, such as amlodipine/nifedipine. Importantly, this distinction persisted even after adjusting for confounding factors such as baseline BP, age, weight, and dosage per kilogram [PMID: 8651122]. An interesting observation from Kajiwara et al. emphasizes that vasodilation-related adverse symptoms occur significantly more frequently in younger women (<50 years) compared to their male counterparts, suggesting a heightened sensitivity to dihydropyridine-type calcium channel blockers [PMID: 24728902].

      While our findings resonate with clinical observations, a word of caution is in order. Our data suggest that, in the mouse model, nifedipine elicits distinct sex-specific effects. Importantly, future research should test the direct translatability and implications of these observations in human subjects.

      Reviewer #1 (Recommendations For The Authors):

      1. Cellular simulations with noise: It might be useful to also include in this section how noise was introduced specifically into the [Ca]SR equations.

      We agree. The manuscript now includes an expanded explanation of how noise was incorporated into the model. This includes the addition of Equation 6 into section 2.4 "Cellular simulations with noise" to describe how noise was specifically integrated into the [Ca]SR equations. Please see LINE 355.

      1. For equation 14, the description might be confusing. RCG and Ri are not explicitly included.

      Thank you – this has been corrected.

      1. In the paragraph starting with, "Having explored the regulation of graded membrane potential..." , the references to Figure 7C-D do not seem to match the content of the text. Namely, the figures show female versus male responses to nifedipine, which is not introduced until the next paragraph. Additionally, the graphs in 7C-D do not have the panels titled and the y-axes labeled.

      We apologize for the error. We have modified the text and figures to address these issues.

      1. Perhaps give more detail on how the effects of nifedipine were mathematically simulated at the ionic current level.

      Good suggestion. Briefly, previous studies [PMID: 1329564] have shown that at the therapeutic dose of nifedipine (i.e., about 0.1 μM) L-type Cav1.2 channel currents are reduced by about 70%. Accordingly, we decreased ICaL in our mathematical simulations by the same extent. It is known that dihydropyridine-type channel blockers exhibit a voltage-dependent behavior, predominantly binding to the inactivated state. In smooth muscle cells, these blockers initiate inhibition quickly within a voltage range of -60 to -40 mV. This range aligns with the membrane potential baseline of vascular muscle cells (PMID: 8388295), ensuring the blockers are effective without the need of inducing significant depolarization. Therefore, the voltage dependency of dihydropyridine-type channel blockers can be neglected.

      1. For the simulations with 400 uncoupled myocytes, the methods stated that the "gap junctional resistance [was set] to zero". Did the authors mean to use "conductivity" or am I misunderstanding?

      Thank you for bringing up this issue with the term "gap junctional resistance." We now state that the "gap junctional conductivity" was set to zero to indicate no electrical communication/coupling.

      1. Address whether there are differences-such as in cell geometry, degree of sex-based ionic current changes, and frequency of spontaneous hyperpolarization-between mice and human smooth muscle myocytes that could limit the predictive capability of the model.

      Excellent point. Our model was parametrized using data from mouse mesenteric artery smooth muscle cells as initial proof of concept. In general terms, mouse arteries are a good animal model for human arteries, as they have similar intravascular pressure-myogenic tone relationships, resting membrane potentials, and express similar ionic channel (e.g., CaV1.2, BK channels, RyRs, etc) (PMID: 28119464, PMID: 29070899). Unfortunately, these studies have largely been done in male arteries and myocytes. Thus, while we recognize that the physiological distinctions between mice and humans could introduce variances in the model's outcomes. Our model offers valuable insights into the sex-specific mechanisms of KV2.1 and CaV1.2 channels in controlling membrane potential and Ca2+ dynamics in mice. It has been shown that sex-specific differences in pharmacokinetics and pharmacodynamics influence antihypertensive drug responses [[PMID: 8651122., PMID: 22089536]. Previous studies, notably by Kloner et al., have illustrated this point quantitatively, highlighting a more pronounced diastolic BP response in women (91.4%) compared to men (83%) when treated with dihydropyridine-type channel blockers, such as amlodipine/nifedipine. Importantly, this distinction persisted even after adjusting for confounding factors such as baseline BP, age, weight, and dosage per kilogram [PMID: 8651122]. An interesting observation from Kajiwara et al. emphasizes that vasodilation-related adverse symptoms occur significantly more frequently in younger women (<50 years) compared to their male counterparts, suggesting a heightened sensitivity to dihydropyridine-type calcium channel blockers [PMID: 24728902].

      While our findings resonate with clinical observations, a word of caution is in order. Our data suggest that, in the mouse model, nifedipine elicits distinct sex-specific effects. Importantly, future research should test the direct translatability and implications of these observations in human subjects.

      1. "A virtual drug-screening system that can model drug-channel interactions" (pg 32) sounds very novel.

      Thank you for highlighting this. We recognize the typo in our manuscript and have made the necessary corrections to ensure clarity and accuracy.

      Reviewer #2 (Recommendations For The Authors):

      The manuscript is well written. I only have some minor comments:

      1. In the patch clamp experiments, there is no information on the recovery of the ionic currents. Is recovery important or not in arterial myocytes? This question is related to the results shown in Figs 5-7. In Fig.5, is the oscillation caused by noise alone or a spontaneous oscillation (such as the oscillation in Fis.6-7) modulated by noise? In general, recovery is an important parameter for the frequency of spontaneous oscillations. It seems to me that the spontaneous oscillations in Fig.8 are mainly noise-driven since they disappear after the cells are coupled through gap junctions.

      One important aspect of the oscillatory behavior of the smooth muscle cells is the very long timescales, with fluctuations occurring on the order of seconds. But the majority of ion channels are operating and recovering on the order of milliseconds, so a reasonable approximation is that most ion channels in the cell are operating at steady state at low voltages.

      Oscillations in Fig.5: Both the intrinsic oscillations and the noise play key roles in shaping in the oscillations.

      The intrinsic deterministic dynamics of the model cells are oscillatory (as seen in Figures 6-7), but the noise can trigger sparks early or delay them, which leads to substantial fluctuations in the inter-spark intervals. Therefore, the spontaneous oscillations are technically modulated by the noise rather than driven by the noise. Nevertheless, in both cases, recovery dynamics play an essential role in shaping the oscillations and determining their frequency

      Note however that, when an excitable system is around the bifurcation for oscillations and noise is included, the "firing" statistics in the oscillatory state and the non-oscillatory state are indistinguishable for moderate to high levels of noise.

      Noise Exclusion in Figures 6-7: To offer a clear and undistracted interpretation of the results, noise was intentionally omitted from Figures 6-7. This was done to ensure that the primary phenomena under investigation were not obscured. While we recognize the significance of incorporating all elements, including noise, in simulating biological systems, in this case we prioritized a clear point to be made in this context.

      Oscillations in Fig.8: Your observation regarding Fig.8 is insightful. Here, uncoupled cells indeed display a spontaneous oscillatory behavior. As documented in previous research, this behavior is not an artifact resulting from cell isolation from the vessel but represents an intrinsic characteristic vital for maintaining electrical signals. The noise in the cells leads to substantial fluctuations in the inter-spike intervals. Because the noise in each cell is uncorrelated, it acts to desynchronize the activity of the cells. Therefore, instead of synchronizing the activity of the cells, the gap junction coupling quenches the large-scale oscillations (the spikes), creating lower amplitude irregular oscillations.

      1. The calcium level is much higher in women than in men as shown in Figs.7 and 9. Do women have higher arterial pressure than men?

      We thank the reviewer for the observation regarding the calcium levels in Figs.7 and 9. All data presented comes from both male and female C57BL/6J animal models, forming the foundation of our experimental framework.

      From earlier studies by the Santana lab (PMID: 32015129), distinct sex-specific differences were found between male and female vascular mesenteric vessels. When the endothelium was removed from small arteriole segments and these segments were subsequently pressurized within a range of 20–120 mmHg, the female arterioles exhibited a pronounced myogenic response in comparison to the male ones. This brings to the forefront the marked sex-based differences, especially in the context of vascular smooth muscle activity.

      Yet, when examining the behavior of whole, intact vessels, a different picture emerges. Despite clear sex-specific differences in conditions with the endothelium removed, these distinctions become less pronounced in whole, intact vessels. In essence, both male and female mice exhibit analogous arterial pressure patterns. This suggests possible compensatory mechanisms related to the caliber and structure of the small vessels.

      To address the core issue: Despite our data showing higher calcium levels in female samples, it doesn't necessarily imply females consistently exhibit higher arterial pressure across all physiological scenarios.

      1. In Fig.9, where is the intravascular pressure (a variable or a parameter) in the mathematical model?

      In our model, the intravascular pressure effects are implicitly introduced by modulating the conductance of the non-selective cation currents (INSCC). Specifically, the increase in INSCC is our way of simulating the effects of pressure-induced membrane depolarization. This approach allows us to capture the physiological response to intravascular pressure changes without explicitly introducing it as a separate parameter in the model. We have modified the manuscript to ensure that this rationale is clarified.

      1. In Eq.14, the given units of Rmyo (Ohmcm) and Rg (Ohmcmcm) are different, but Eq.14 implies they should have the same unit.

      We sincerely appreciate the reviewer's meticulous observation regarding the units discrepancy in Eq.14. We have revised the manuscript to correct the error.

      Reviewer #3 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data, or analyses:

      Fig. 5 A-B: This is a beautiful qualitative comparison between experimental and simulation data! I think it would be even more impactful if the authors carried out some quantitative analysis of the similarity between male/female experimental/simulation data. For example, the "resting" Vm levels (approx. -30 mV and -40 mV for females and males, respectively) and the peak levels of Vm hyperpolarization could be compared, as well as the frequency of transient hyperpolarization events. It seems like the female model is much more prone to intervals of relative quiescence (i.e., absence of transient hyperpolarization events - e.g., from ~5-6.5 s). Is this consistent with the duration of such ranges in the experimental data (e.g., from 0 to 2.5 s in Fig. 5A).

      Thank you for your positive remarks concerning the qualitative comparison in Fig. 5 A-B. We are indeed enthusiastic about the parallels we've identified between experimental and simulation outcomes. We agree with the reviewer that the suggestion on the potential value of a more quantitative assessment. As such we have updated the figure to include an in-depth analysis that provides greater insights and solidifies the power of our simulation predictions when compared to experimental results. A detailed analysis of the male and female data as well as the male and female simulations are summarized in the text as follows:

      Baseline membrane potential is -40 mV in male myocytes compared to -30 mV. The frequency of hyperpolarization transients (THs) is 1 Hz in male and 2.5 Hz in female cells for the specific baseline membrane potential shown in Figure 5 A-B. In the range of membrane potentials from -50 mV to -30 mV the frequency increases from 1-2.8Hz which is identical to the experimental frequency range.

      • Fig. 7 C-D: Likewise, it would be helpful to quantitatively characterize male/female differences in the model's response to simulated Ca channel blockade (e.g., rate of transient hyperpolarization events, relative levels of ICa and [Ca]i).

      Thank you for the constructive feedback on Fig. 7 C-D. We appreciate the emphasis on a quantitative approach to solidify our understanding and have modified the results as follows:

      Next, we simulated the effects of calcium channel blocker nifedipine on ICa at a steady membrane potential of -40 mV in male and female simulations. Briefly, previous studies70 have shown that at the therapeutic dose of nifedipine (i.e., about 0.1 μM) L-type Cav1.2 channel currents are reduced by about 70%. Accordingly, we decreased ICa in our mathematical simulations by the same extent. In Figure 7C-D, we show the predicted male (gray) and female (pink) time course of membrane voltage at -40 mV (top panel), ICa (middle panel), and [Ca2+]i (lower panel). First, we observed that in both male and females 0.1 μM nifedipine modifies the frequency of oscillation in the membrane potential, by causing a reduction in oscillation frequency. Second, both male and female simulations (middle panels) show that 0.1 μM nifedipine caused a reduction of ICa to levels that are very similar in male and female myocytes following treatment. Consequently, the reduction of ICa causes both male and female simulations to reach a very similar baseline [Ca2+]i of about 85 nM (lower panels). As a result, simulations provide evidence supporting the idea that CaV1.2 channels are the predominant regulators of intracellular [Ca2+] entry in the physiological range from -40 mV to -20 mV. Importantly, these predictions also suggest that clinically relevant concentrations of nifedipine cause larger overall reductions in Ca2+ influx in female than in male arterial myocytes.

      Recommendations for improving the writing and presentation:

      When I accessed the GitHub repository linked in section 2.7 (Aug 17, 13:30 PT) it only contained a LICENSE file and none of the described codes and model equations appeared to be publicly available. I would like to access and examine these files. Based on the Clancy lab's excellent track record for making their work publicly available, I have no doubt that the published files will be complete, thoroughly documented, and ready for implementation in studies to reproduce or extend the work described in this manuscript.

      https://github.com/ClancyLabUCD/sex-specific-responses-to-calcium-channel-blockers-in-mesenteric-vascular-smooth-muscle

      We sincerely apologize for the omission regarding the GitHub repository. It was never our intention to omit the crucial files that should accompany our manuscript. We deeply regret any inconvenience this may have caused in your review process.

      We deeply value transparency and the importance of making our work accessible to fellow researchers and the wider community. As you rightly pointed out, the Clancy lab has always been committed to ensuring that our work is available publicly, and this instance is no exception. Please find all codes and documentation here:

      Minor corrections to the text and figures:

      The introduction is somewhat lengthy, and some of the material contained therein might be more suitable to be merged into the Discussion instead (e.g., paragraphs on negative feedback regulation and the recent study by O'Dwyer et al.).

      Thank you – we have updated the introduction but left some foundational work descriptions intact.

      • Page 6, section 1.1: There is a missing word (mice?) in the first sentence.

      • Page 11, under Eqn. 7: Luo is misspelled as Lou. (Also twice on Page 20.)

      Thank you – these have been corrected.

      Figs. 2-3: As a colorblind person, it was somewhat challenging for me to differentiate between the red and black lines. Choosing a higher-contrast colour pairing would be beneficial. For some reason, this is not so much of an issue for other figures that use the red/black scheme later in the manuscript (e.g., Figs. 5, 7-8).

      We truly appreciate your feedback on the color contrast used in our figures. Accessibility and clarity are crucial to us, and we regret any difficulty you encountered due to the color choices. Based on your valuable feedback, we have included different color pairings in our visual representations to ensure they are comprehensible to all readers, including those who are colorblind.

      Fig. 2-3: I am also confused about the use of symbols to indicate significant differences in these plots. In Fig. 2, ** is defined in the legend but not used in the figure. In both figures, the symbols are placed above/below specific sets of points, but it is unclear whether large differences for other x-axis values are statistically significant (e.g., -20 mV in Fig. 3B, +40 mV in Fig. 2C, etc.) This should be clarified.

      Thank you – we now have included all the significant differences in the data discussed in the manuscript.

      Page 22: The authors state that they "introduced noise into the [Ca]SR..." but the specifics of this approach are not described. As with other aspects of the Methods section, it would be suitable to provide a brief description of the technique used in ref. 40, perhaps added to section 2.4.

      Thank you – it has been corrected.

      Fig.7 C-D: Axis labels and units are missing. Even though the labels and units will be inferred by most readers, it would be helpful to include them here (at least in C).

      Thank you for pointing out the inconsistency between the textual references and Figure 7C-D. We have added the corrected figure.

      Page 32: "...the first step toward the development of a virtual drug-screaming system..." I think the authors mean drug-screening. As a side note, this is immediately in the running for the best typo I've ever seen as a peer reviewer.

      <good laugh> Thank you for pointing out this error, and we sincerely appreciate your sense of humor about it. You are indeed correct; the intended word is "drug-screening." We have corrected this typo in the manuscript. We're grateful for your thorough review and the light-hearted way you brought this to our attention.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their strong interest in our studies and their excellent suggestions for improvement.

      Reviewer #1:

      Weaknesses:

      Comment 1. The authors identified NPR-15 and ASJ neurons that are involved in both molecular and behavioral responses to pathogen attack. This finding, by itself, is significant. However, how the NPR-15/ASJ circuit regulates the interplay between the two defense strategies was not explored. Therefore, emphasizing the interplay in the title and the abstract is misleading.

      Response to comment 1. We have removed the word “interplay.”

      Comment 2. Although the discovery of a single GPCR regulating both immunity and avoidance behavior is significant and novel, NPR-15 is not the first GPCR identified with these functions. Previously, the same lab reported that the GPCR OCTR-1 also regulates immunity and avoidance behavior through ASH and ASI neurons respectively (PMID: 29117551). This point was not mentioned in the current manuscript.

      Response to Comment 2. We’d like to clarify that it remains unclear whether OCTR-1 itself controls both immunity and behavior (PMID: 29117551). The reference study showed that OCTR-1-expressing neurons ASH and ASI control immunity and behavior, respectively. We modified the manuscript to make this point clearer: “While OCTR-1-expressing neurons ASI play a role in avoidance (34), the specific role of OCTR-1 in ASH and ASI neurons remains unclear. “

      Comment 3. The authors discovered that NPR-15 regulates avoidance behavior via the TRPM gene, GON-2. Only two factors (GON-2 and GTL-2) were examined in this study, and GON-2 happens to function through the intestine.

      Response to comment 3. We studied GON-2 and GTL-2 because a recent screen of intestinal TRPM genes showed that they are the only two involved in the control of pathogen avoidance. We modified the manuscript to make this rationale clearer: “Because transient receptor potential melastatin (TRPM) ion channels, GON-2 and GTL-2, are required for pathogen avoidance (32), we studied whether they may be part of the NPR-15 pathway that controls pathogen avoidance”

      Comment 3b. It is possible that NPR-15 may broadly regulate multiple effectors in multiple tissues. Confining the regulation to the amphid sensory neuron-intestinal axis, as stated in the title and elsewhere in the manuscript, is not accurate.

      Response to comment 3b. We agree that NPR-15 may broadly regulate multiple effectors in different tissues. Indeed, we have shown that the transcriptional activity of ELT-2, HLH-30, DAF-16, and PMK-1 is higher in npr-15 than in WT animals. We found that expression of NPR-15 only in ASJ cells rescues both the survival and behavioral phenotypes of npr-15 animals (Figs. 4F and 5C).

      Comment 4. The C. elegans nervous system is simple, and hermaphrodites only have 302 neurons. Individual neurons possessing multiple regulatory functions is expected. Whether this is conserved in mammals and other vertebrates is unknown, because in higher animals, neurons and neuronal circuits could be more specialized.

      Response to Comment 4. We agreed. We have removed the statements discussing conservation in that manner.

      Comment 5. A key question, that is, why would NPR-15 suppress immunity (which is bad for defense) but enhance avoidance behavior (which is good for defense), is not addressed or explained. This could be due to temporal regulation, for example, upon pathogen exposure, NPR-15 could regulate behavior to avoid the pathogen, but after infection, NPR-15 could suppress excessive immune responses or quench the responses for the resolution of infection.

      Response to comment 5. We found that NPR-15 controls the expression of immune genes in the absence of an infection. Without further experiments, we think it would be too speculative to discuss the possibility of a temporal regulation. However, we modified the manuscript to address the control of both molecular and behavioral immunity by NPR-15. The revised discussion reads: “Our findings shed light on the role of NPR-15 in the control of the immune response. NPR-15 seems to suppress specific immune genes while activating pathogen avoidance behavior to minimize potential tissue damage and the metabolic energy cost associated with activating the molecular immune response against pathogen infections. Overall, the control of immune activation is essential for maintaining homeostasis and preventing excessive tissue damage caused by an overly aggressive and energy-costly response against pathogens (60-63).”

      Comment 6. Discussion appears timid in scope and contains some repetitive statements. Point 5 can be addressed in the Discussion.

      Response to comment 6. We have removed repetitive concepts and modified the discussion as mentioned in the response to point 5.

      Comment 7. Overall, the authors presented an impactful study that identified specific molecules and neuronal cells that regulate both molecular and behavioral immune responses to pathogen attack. Most conclusions are supported by solid evidence. However, some statements are overreaching, for example, regulation of the interplay between molecular and behavioral immune responses was emphasized but not explored. Nonetheless, this study reported a significant and novel discovery and has laid a foundation for investigating such an interplay in the future.

      Response to comment 7: We removed the statements that may have appeared to be overreaching and addressed the weakness raised by the reviewer. The revised discussion reads “Our findings shed light on the role of NPR-15 in the control of the immune response. NPR-15 seems to suppress specific immune genes while activating pathogen avoidance behavior to minimize potential tissue damage and the metabolic energy cost associated with activating the molecular immune response against pathogen infections. Overall, the control of immune activation is essential for maintaining homeostasis and preventing excessive tissue damage caused by an overly aggressive and energy-costly response against pathogens (60-63).”

      Recommendations for the authors:

      Recommendations 1. The title, abstract and some statements in the main text need to be re-written to reflect the fact that regulation of the interplay between molecular and behavioral immune responses was not explored in this study.

      Response to recommendations 1. We modified the title and abstract accordingly.

      Recommendations 2. It should be mentioned in the manuscript that OCTR-1 is the first GPCR that was identified to regulate both immunity and avoidance behavior.

      Response to recommendation 2. We addressed this issue as discussed in the response to comment 2.

      Recommendations 3. Repetitive statements should be removed from Discussion.

      Response to recommendations 3. The statements were removed.

      Recommendations 4. It is surprising to see that pmk-1 RNAi did not affect the survival of npr-15(tm12539) animals against S. aureus because PMK-1 has a general role in defense against S. aureus infection.

      Response to recommendations 4. We agree. However, the RNAi studies were validated using mutants (Fig. S3B).

      Recommendations 4b. Also, the rationale for using skn-1 RNAi as a control was not given. These need to be explained adequately in the manuscript.

      Response to recommendations 4b. There’s no need to include skn-1 RNAi and we removed the data.

      Recommendations 5. The conclusion that the lack of avoidance behavior by NPR-15 loss-of-function is independent of immunity and neuropeptide genes was drawn entirely based on experiments with RNAi of individual genes. Functional redundancy among genes could render RNAi of individual genes ineffective, thus masking the dependence of avoidance behavior on these genes. More experiments are needed to support this conclusion, or the wording of the conclusion need to be changed.

      Response to recommendations 5. We modified the conclusion to address this issue: “Given the possibility of functional redundancy among these genes, we cannot rule out the possibility that different combinations may play a role in controlling avoidance behavior.”

      Recommendations 6. What is representation factor in Fig. 2B and 2C?

      Response to recommendations 5. Figure 2B shows significantly enriched terms with a Q value < 0.1, sorted by P values. Figure 2 C shows the representation factor that is calculated using a tool, http://nemates.org/MA/progs/overlap_stats.html. The calculation is based on the number of genes in set 1, the number of genes in set 2, and the Overlap between set 1 and set 2, as well as the number of genes in the genome.

      We corrected the Figure legends and included the corresponding information in Material and Methods.

      Recommendations 7. The legend of Fig. 6 was wrong and should be changed to 'GPCR/NPR-15 suppressed immune response and enhanced avoidance behavior via sensory neurons'.

      Response to recommendations 7. Thank you for pointing this out. We changed the legend.

      Reviewer #2:

      Comments 1. There is some variance in lawn occupancy of wt strains between the different trials in WT animals (e.g. in Fig. 1: 25 for wt vs 60% for npr mutant; S1c 5% for wt and 60% for npr mutant).

      Response to comment 1. We appreciate the observation. We did notice some variation in both the WT and npr-15(tm12539) animals during our study. Notably, the variation appeared to be more in the WT compared to the npr-15(tm12539) animals. However, it's important to note that these variations did not significantly affect the outcome of our findings. We calculated the means, standard deviation, and standard error across different experimental trials that are presented in the manuscript (Table S2) (new Table). It's worth noting that these variations did not significantly impact the observed differences in lawn occupancy between the wild-type (WT) and npr-15 mutant strains.

      We addressed this issue in the revised manuscript: “Interestingly, we noticed that the variation in lawn occupancy is greater in WT than in npr-15(tm12539) animals across experiments (Table S2), which suggests that the strong lack of avoidance of npr-15(tm12539) somehow counteracts the experimental variation”

      Comment 2. Does this reflect rates of migration or re-occupancy in WT?

      Response to comment 2. We did not observe any re-occupancy in either the WT or npr-15 animals at 24-hour time points (which we mostly use in this study) or beyond. To address the comment, we performed a new experiment and found that the re-occupancy of npr-15 mutants is comparable to that of WT animals at 4 hours post-exposure (Figure S1B).

      Comment 3. Does pathogen avoidance persist and/or the rate of avoidance differ in npr mutant worms?

      Response to comment 3. As illustrated in new Figure S1B, the avoidance behavior in response to pathogens remained consistent even when we extended our observations up to 48 hours (Figure S1B).

      Comment 4. if animals were exposed then re-exposed, could the authors to determine whether a learned avoidance was similarly affected by this mutation by assessing rate changes?

      Response to comment 4. We conducted the proposed experiment and observed that the WT animals learned to avoid the pathogen but not npr-15(tm12539) mutants (Figure S1C). The revised manuscript reads: “We also found that npr-15(tm12539) exhibited reduced learned avoidance compared to WT animals (Figure S1C).”

      Comment 5: Is there any difference in gene expression of animals that have migrated off the lawn to those remaining on the lawn (e.g. in partial lawn experiments?).

      Response to comment 5. This is an interesting question that has not been addressed in the field yet. While we think the study is exciting, we believe that it is outside the scope of our work. All the gene expression studies performed here are in non-avoiding conditions.

      Comment 6. No concerns but the P values in the legends are a pain to read. Why not put them in figures as in above figures.

      Response to comment 6. We included the P values as suggested.

      Recommendations for the authors:

      Recommendation 1. Fig. 1/S1. Comments: There is some variance in lawn occupancy of wt strains between the different trials in WT animals (e.g. in Fig. 1: 25 for wt vs 60% for npr mutant; S1c 5% for wt and 60% for npr mutant).

      Response to recommendation 1. We addressed this issue as discussed in the response to comment 1.

      Recommendation 2. Fig. 1/S1. Comments. Does this reflect rates of migration or re-occupancy in WT?

      Response to recommendation 2. We have responded to this issue in comment 2.

      Recommendations 3. Fig. 1/S1. Comments. Does pathogen avoidance persist and/or the rate of avoidance differ in npr mutant worms.

      Response to recommendation 3. We have responded to this issue in comment 3.

      Recommendation 4. Fig. 1/S1. Comments B. and if animals were exposed then re- exposed, could the authors to determine whether a learned avoidance was similarly affected by this mutation by assessing rate changes?

      Response to recommendation 4: We have responded to this issue in comment 4 above.

      Recommendation 5. Fig. 2/S2. Comment: Is there any difference in gene expression of animals that have migrated off the lawn to those remaining on the lawn (e.g. in partial lawn expts?).

      Response to recommendation 5. We have responded to this issue in comment 5 above.

      Recommendation 6. Fig. 3/S3. Comment. No concerns but the P values in the legends are a pain to read. Why not put them in figures as in above figures.

      Response to recommendation 6. We included the P values.

      Recommendation 7. Fig. 5. Comments: The authors suggest that the ASJ/NPR15 effect to limit avoidance acts via inhibition of GON-2 in the intestine. The observation that GON-2 inhibition effects on pathogen avoidance occur independently of neurons could suggest that it is a redundant way of accomplishing the same thing, which then makes one wonder if or what the connection is exists between the neuron and the gut. The effect of ASJ via NPR on pathogen avoidance is not neuropeptide dependent, which they show. So how the neuronal-gut communication works. Specific Transmitters... perhaps.

      Response to Recommendation 7 Fig. 5. Thanks for this observation. To address the recommendation, we modified the discussion: “Our research additionally indicates that the regulation of NPR-15-mediated avoidance is not influenced by intestinal immune and neuropeptide genes. Given the potential for functional redundancy and our focus on genes upregulated in the absence of NPR-15, we cannot entirely rule out the possibility that unexamined immune effectors or neuropeptides, not transcriptionally controlled by NPR-15, might be involved. Different intestinal signals may also participate in the NPR-15 pathway that controls pathogen avoidance.”

      Recommendation 8. Comment. Since ASJ neurons control entry into dauer, perhaps isn't surprising that DAF-16 showed up as an NPR-15. induced factor (and dauer worms are resistant to a lot of stressors); that said dauer hormones might be involved as well. Is there any evidence that DAF-16 down-regulates GON-2 expression (see Murphy, Kenyon et al. 2005), and along these lines would GON-2 RNAi work in a DAF-16 mutant? I think addressing these issues are the subject of future studies.

      Response to recommendation 8. We checked the data in the study by Murphy, Kenyon et al., and found that the gon-2 gene was not downregulated.

      Recommendation 9. Minor: Regarding the description to Fig. 5. "Consistently with our previous findings, we found that only " The adverb form of consistent should not be used here.

      Response to recommendation 9. Thank you for pointing this out. The description of Figure 5 was corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      A weakness of the paper is that the power of the model is illustrated for only one specific set of parameters, added in a stepwise manner and the comparison to one specific empirical TGM, assumed to be prototypical; And that this comparison remains descriptive. (That is could a different selection of parameters lead to similar results and is there TGM data which matches these settings less well.)

      The fact that the comparisons in the paper are descriptive is a central point of criticism from both reviewers. As mentioned in my preliminary response, I intentionally did not optimise the model to a specific TGM or show an explicit metric of fitness. As I now explicitly mention in the new experimental section of the paper:

      “The previous analyses were descriptive in the sense that they did not quantify how much the generated TGMs resembled a specific empirical TGM. This was deliberate, because empirical TGMs vary across subjects and experiments, and I aimed at characterising them as generally as possible by looking at some characteristic features in broad terms. For example, while TGMs typically have a strong diagonal and horizontal/vertical bars of high accuracy, questions such as when these effects emerge and for how long are highly dependent on the experimental paradigm. For the same reason, I did not optimise the model hyperparameters, limiting myself to observing the behaviour of the model across some characteristic configurations”

      And, in the Discussion:

      “The demonstrations here are not meant to be tailored to a specific data set, and are, for the most part, intentionally qualitative. TGMs do vary across experiments and subjects; and the hyperparameters of the model can be explicitly optimised to specific scientific questions, data sets, and even individuals. In order to explore the space of configurations effectively, an automatic optimisation of the hyperparameter space using, for instance, Bayesian optimisation (Lorenz, et al., 2017) could be advantageous. This may lead to the identification of very specific (spatial, spectral and temporal) features in the data that may be neurobiologically interpreted.”

      Nonetheless, it is possible to fit the model to a specific TGMs by using a explicit metric of fitness. For illustration, this is what I did in the new experimental section Fitting and empirical TGM, where I used correlation with an empirical TGM to optimise two temporal parameters: the rise slope and the fall slope. As can be seen in the Figure 8, the correlation with the empirical TGM was as high as 0.7, even though I did not fit the other parameters of the model. As mentioned in the paragraph above, more sophisticated techniques such as Bayesian optimisation might be necessary for a more exhaustive exploration, but this would be beyond the scope of the current paper.

      I would also like to point out that fitting the parameters in a step-wise manner was a necessity for interpretation. I suggest to think of the way we use F-tests in regression analyses as a comparison: if we want to know how important a feature is, we compare the model with and without this feature and see how much we loss.

      It further remained unclear to me, which implications may be drawn from the generative model, following from the capacities to mimic this specific TGM (i) for more complex cases, such as the comparison between experimental conditions, and (ii) about the complex nature of neural processes involved.

      Following on the previous points, the object of this paper (besides presenting the model and the associated toolbox) was not to mimic a specific TGM, but to characterise the main features that we generally see across studies in the field. To clarify this, I have added Figure 2 (previously a Supplemental Information figure), and added the following to the Results section:

      “Figure 2 shows a TGM for an example subject, where some archetypal characteristics are highlighted. In the experiments below, specifically, I focus on the strong narrow diagonal at the beginning of the trial, the broadening of accuracy later in the trial, and the vertical/horizontal bars of higher-than-chance accuracy. Importantly, this specific example in Figure 2 is only meant as a reference, and therefore I did not optimise the model hyperparameters to this TGM (except in the last subsection), or showed any quantitative metric of similarity.”

      I mention the possibility of using the model to explore more complex cases in the Introduction, although doing so here would be out of scope:

      “Other experimental paradigms, including motor tasks and decision making, can be investigated with genephys”

      Towards this end, I would appreciate (i) a more profound explanation of the conclusions that can be drawn from this specific showcase, including potential limitations, as well as wider considerations of how scientists may empower the generative model to (ii) understand their experimental data better and (iii) which added value the model may have in understanding the nature of underlying brain mechanism (rather than a mere technical characterization of sensor data).

      To better illustrate how to use genephys to explore a specific data set, I have added a section (Fitting an empirical TGM) where I show how to fit specific hyperparameters to an empirical TGM in a simple manner.

      In the Introduction, I briefly mentioned:

      “This (not exhaustive) list of effects was considered given previous literature (Shah, et al., 2004; Mazaheri & Jensen, 2006; Makeig, et al., 2002; Vidaurre, et al., 2021), and each effect may be underpinned by distinct neural mechanisms. For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question”

      In the Discussion, I have further commented:

      “Genephys has different available types of effect, including phase resets, additive damped oscillations, amplitude modulations, and non-oscillatory responses. All of these elements, which may relate to distinct neurobiological mechanisms, are configurable and can be combined to generate a plethora of TGMs that, in turn, can be contrasted to specific empirical TGMs. This way, we can gain insight on what mechanisms might be at play in a given task.

      The demonstrations here are not meant to be tailored to a specific data set, and are, for the most part, intentionally qualitative. TGMs do vary across experiments and subjects; and the hyperparameters of the model can be explicitly optimised to specific scientific questions, data sets, and even individuals. In order to explore the space of configurations effectively, an automatic optimisation of the hyperparameter space using, for instance, Bayesian optimisation (Lorenz, et al., 2017) could be advantageous. This may lead to the identification of very specific (spatial, spectral and temporal) features in the data that may be neurobiologically interpreted. “

      On p. 15 "Having a diversity of frequencies but not of latencies produces another regular pattern consisting of alternating, parallel bands of higher/lower than baseline accuracy. This, shown in the bottom left panel, is not what we see in real data either. Having a diversity of latencies but not of frequencies gets us closer to a realistic pattern, as we see in the top right panel." The terms frequency and latency seem to be confused.

      The Reviewer is right. I have corrected this now. Thank you.

      Reviewer #2:

      The results of comparisons between simulations and real data are not always clear for an inexperienced reader. For example, the comparisons are qualitative rather than quantitative, making it hard to draw firm conclusions. Relatedly, it is unclear whether the chosen parameterizations are the only/best ones to generate the observed patterns or whether others are possible. In the case of the latter, it is unclear what we can actually conclude about underlying signal generators. It would have been different if the model was directly fitted to empirical data, maybe of different cognitive conditions. Finally, the neurobiological interpretation of different signal properties is not discussed. Therefore, taken together, in its currently presented form, it is unclear how this method could be used exactly to further our understanding of the brain.

      This critique coincides with that of Reviewer 1. In the current version, I made more clear the fact that I am not fitting a specific empirical TGM and why, and that, instead, I am referring to general features that appear broadly throughout the literature. See more detailed changes below.

      Regarding whether the chosen parameterizations are the only/best ones to generate the observed patterns, the Discussion reflects this limitation:

      “Also importantly, I have shown that standard decoding analysis can differentiate between these explanations only to some extent. For example, the effects induced by phase-resetting and the use of additive oscillatory components are not enormously different in terms of the resulting TGMs. In future work, alternatives to standard decoding analysis and TGMs might be used to disentangle these sources of variation (Vidaurre, et al., 2019). ”

      And

      “Importantly, the list of effects that I have explored here is not exhaustive …”

      Of course, since the list of signal features I have explored is not exhaustive, it cannot be claimed without a doubt that these features are the ones generating the properties we observe in real TGMs. The model, however, is a step forward in that direction, as it provides us with a tool to at least rule out some causes.

      Firstly, it was not entirely clear to me from the introduction what gap exactly the model is supposed to fill: is it about variance in neural responses in general, about which signal properties are responsible for decoding, or about capturing stability of signals? It seems like it does all of these, but this needs to be made clearer in the introduction. It would be helpful to emphasize exactly what insights the model can provide that are unable to be obtained with the current methods.

      I have now made this explicit in in the Introduction, as suggested:

      “To gain insight into what aspects of the signal underpin decoding accuracy, and therefore the most stable aspects of stimulus processing, I introduce a generative model”

      To help illustrating what insights the model can provide, I have added the following sentence as an example:

      “For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question.”

      Furthermore, I was unclear on why these specific properties were chosen (lines 71 to 78). Is there evidence from neuroscience to suggest that these signal properties are especially important for neural processing? Or, if the logic has more to do with signal processing, why are these specific properties the most important to include?

      To clarify this the text now reads:

      “In the model, when a channel responds, it can do it in different ways: (i) by phase-resetting the ongoing oscillation to a given target phase and then entraining to a given frequency, (ii) by an additive oscillatory response independent of the ongoing oscillation, (iii) by modulating the amplitude of the stimulus-relevant oscillations, or (iv) by an additive non-oscillatory (slower) response. This (not exhaustive) list of effects was considered given previous literature (Shah, et al., 2004; Mazaheri & Jensen, 2006; Makeig, et al., 2002; Vidaurre, et al., 2021), and each effect may be underpinned by distinct neural mechanisms”

      The general narrative and focus of the paper could also be improved. It might help to start off with an outline of what the goal is at the start of the paper and then explicitly discuss how each of the steps works toward that goal. For example, I got the idea that the goal was to capture specific properties of an empirical TGM. If this was the case, the empirical TGM could be placed in the main body of the text as a reference picture for all simulated TGMs. For each simulation step, it could be emphasized more clearly exactly which features of the TGM is captured and what that means for interpreting these features in real data.

      Thank you. To clarify the purpose of the paper better, I have brought Figure 2 to the front (before a Supplementary Figure), and in the first part of Results I have now added:

      “Figure 2 shows a TGM for an example subject, where some archetypal characteristics are highlighted. In the experiments below, specifically, I focus on the strong narrow diagonal at the beginning of the trial, the broadening of accuracy later in the trial, and the vertical/horizontal bars of higher-than-chance accuracy. Importantly, this specific example in Figure 2 is only meant as a reference, and therefore I did not optimise the model hyperparameters to this TGM (except in the last subsection), or showed any quantitative metric of similarity. ”

      I have enunciated the goals more clearly in the Introduction:

      “To gain insight into what aspects of the signal underpin decoding accuracy, and therefore the most stable aspects of stimulus processing, …”

      Relatedly, it would be good to connect the various signal properties to possible neurobiological mechanisms. I appreciate that the author tries to remain neutral on this in the introduction, but I think it would greatly increase the implications of the analysis if it is made clearer how it could eventually help us understand neural processes.

      The Reviewer is right in pointing out that I preferred to remain neutral on this. While I have still kept that tone of neutrality throughout the paper, I have now included the following sentence as an example of a neurobiological question that could be investigated with the model:

      “For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question.”

      And, more generally,

      “Genephys has different available types of effect, including phase resets, additive damped oscillations, amplitude modulations, and non-oscillatory responses. All of these elements, which may relate to distinct neurobiological mechanisms, are configurable and can be combined to generate a plethora of TGMs that, in turn, can be contrasted to specific empirical TGMs. This way, we can gain insight on what mechanisms might be at play in a given task. ”

      Line 57: this sentence is very long, making it hard to follow, could you break up into smaller parts?

      Thank you. The sentence is fragmented now.

      Please replace angular frequencies with frequencies in Hertz for clarity.

      Here I have preferred to stick to angular frequencies because it is more general than if I talk about Hertz, because that would entail having a specific sampling frequency. I think doing so would create confusion precisely of the sorts that I am trying to clarify in this revision: that is, that these results are not specific of one TGM but reflect general features that we see broadly in the literature.

      There are quite some types throughout the paper, please recheck

      Thank you. I have revised and have made my best to clear them out.

    2. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      A weakness of the paper is that the power of the model is illustrated for only one specific set of parameters, added in a stepwise manner and the comparison to one specific empirical TGM, assumed to be prototypical; And that this comparison remains descriptive. (That is could a different selection of parameters lead to similar results and is there TGM data which matches these settings less well.)

      The fact that the comparisons in the paper are descriptive is a central point of criticism from both reviewers. As mentioned in my preliminary response, I intentionally did not optimise the model to a specific TGM or show an explicit metric of fitness. As I now explicitly mention in the new experimental section of the paper:

      “The previous analyses were descriptive in the sense that they did not quantify how much the generated TGMs resembled a specific empirical TGM. This was deliberate, because empirical TGMs vary across subjects and experiments, and I aimed at characterising them as generally as possible by looking at some characteristic features in broad terms. For example, while TGMs typically have a strong diagonal and horizontal/vertical bars of high accuracy, questions such as when these effects emerge and for how long are highly dependent on the experimental paradigm. For the same reason, I did not optimise the model hyperparameters, limiting myself to observing the behaviour of the model across some characteristic configurations”

      And, in the Discussion:

      “The demonstrations here are not meant to be tailored to a specific data set, and are, for the most part, intentionally qualitative. TGMs do vary across experiments and subjects; and the hyperparameters of the model can be explicitly optimised to specific scientific questions, data sets, and even individuals. In order to explore the space of configurations effectively, an automatic optimisation of the hyperparameter space using, for instance, Bayesian optimisation (Lorenz, et al., 2017) could be advantageous. This may lead to the identification of very specific (spatial, spectral and temporal) features in the data that may be neurobiologically interpreted.”

      Nonetheless, it is possible to fit the model to a specific TGMs by using a explicit metric of fitness. For illustration, this is what I did in the new experimental section Fitting and empirical TGM, where I used correlation with an empirical TGM to optimise two temporal parameters: the rise slope and the fall slope. As can be seen in the Figure 8, the correlation with the empirical TGM was as high as 0.7, even though I did not fit the other parameters of the model. As mentioned in the paragraph above, more sophisticated techniques such as Bayesian optimisation might be necessary for a more exhaustive exploration, but this would be beyond the scope of the current paper.

      I would also like to point out that fitting the parameters in a step-wise manner was a necessity for interpretation. I suggest to think of the way we use F-tests in regression analyses as a comparison: if we want to know how important a feature is, we compare the model with and without this feature and see how much we loss.

      It further remained unclear to me, which implications may be drawn from the generative model, following from the capacities to mimic this specific TGM (i) for more complex cases, such as the comparison between experimental conditions, and (ii) about the complex nature of neural processes involved.

      Following on the previous points, the object of this paper (besides presenting the model and the associated toolbox) was not to mimic a specific TGM, but to characterise the main features that we generally see across studies in the field. To clarify this, I have added Figure 2 (previously a Supplemental Information figure), and added the following to the Results section:

      “Figure 2 shows a TGM for an example subject, where some archetypal characteristics are highlighted. In the experiments below, specifically, I focus on the strong narrow diagonal at the beginning of the trial, the broadening of accuracy later in the trial, and the vertical/horizontal bars of higher-than-chance accuracy. Importantly, this specific example in Figure 2 is only meant as a reference, and therefore I did not optimise the model hyperparameters to this TGM (except in the last subsection), or showed any quantitative metric of similarity.”

      I mention the possibility of using the model to explore more complex cases in the Introduction, although doing so here would be out of scope:

      “Other experimental paradigms, including motor tasks and decision making, can be investigated with genephys”

      Towards this end, I would appreciate (i) a more profound explanation of the conclusions that can be drawn from this specific showcase, including potential limitations, as well as wider considerations of how scientists may empower the generative model to (ii) understand their experimental data better and (iii) which added value the model may have in understanding the nature of underlying brain mechanism (rather than a mere technical characterization of sensor data).

      To better illustrate how to use genephys to explore a specific data set, I have added a section (Fitting an empirical TGM) where I show how to fit specific hyperparameters to an empirical TGM in a simple manner.

      In the Introduction, I briefly mentioned:

      “This (not exhaustive) list of effects was considered given previous literature (Shah, et al., 2004; Mazaheri & Jensen, 2006; Makeig, et al., 2002; Vidaurre, et al., 2021), and each effect may be underpinned by distinct neural mechanisms. For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question”

      In the Discussion, I have further commented:

      “Genephys has different available types of effect, including phase resets, additive damped oscillations, amplitude modulations, and non-oscillatory responses. All of these elements, which may relate to distinct neurobiological mechanisms, are configurable and can be combined to generate a plethora of TGMs that, in turn, can be contrasted to specific empirical TGMs. This way, we can gain insight on what mechanisms might be at play in a given task.

      The demonstrations here are not meant to be tailored to a specific data set, and are, for the most part, intentionally qualitative. TGMs do vary across experiments and subjects; and the hyperparameters of the model can be explicitly optimised to specific scientific questions, data sets, and even individuals. In order to explore the space of configurations effectively, an automatic optimisation of the hyperparameter space using, for instance, Bayesian optimisation (Lorenz, et al., 2017) could be advantageous. This may lead to the identification of very specific (spatial, spectral and temporal) features in the data that may be neurobiologically interpreted. “

      On p. 15 "Having a diversity of frequencies but not of latencies produces another regular pattern consisting of alternating, parallel bands of higher/lower than baseline accuracy. This, shown in the bottom left panel, is not what we see in real data either. Having a diversity of latencies but not of frequencies gets us closer to a realistic pattern, as we see in the top right panel." The terms frequency and latency seem to be confused.

      The Reviewer is right. I have corrected this now. Thank you.

      Reviewer #2:

      The results of comparisons between simulations and real data are not always clear for an inexperienced reader. For example, the comparisons are qualitative rather than quantitative, making it hard to draw firm conclusions. Relatedly, it is unclear whether the chosen parameterizations are the only/best ones to generate the observed patterns or whether others are possible. In the case of the latter, it is unclear what we can actually conclude about underlying signal generators. It would have been different if the model was directly fitted to empirical data, maybe of different cognitive conditions. Finally, the neurobiological interpretation of different signal properties is not discussed. Therefore, taken together, in its currently presented form, it is unclear how this method could be used exactly to further our understanding of the brain.

      This critique coincides with that of Reviewer 1. In the current version, I made more clear the fact that I am not fitting a specific empirical TGM and why, and that, instead, I am referring to general features that appear broadly throughout the literature. See more detailed changes below.

      Regarding whether the chosen parameterizations are the only/best ones to generate the observed patterns, the Discussion reflects this limitation:

      “Also importantly, I have shown that standard decoding analysis can differentiate between these explanations only to some extent. For example, the effects induced by phase-resetting and the use of additive oscillatory components are not enormously different in terms of the resulting TGMs. In future work, alternatives to standard decoding analysis and TGMs might be used to disentangle these sources of variation (Vidaurre, et al., 2019). ”

      And

      “Importantly, the list of effects that I have explored here is not exhaustive …”

      Of course, since the list of signal features I have explored is not exhaustive, it cannot be claimed without a doubt that these features are the ones generating the properties we observe in real TGMs. The model, however, is a step forward in that direction, as it provides us with a tool to at least rule out some causes.

      Firstly, it was not entirely clear to me from the introduction what gap exactly the model is supposed to fill: is it about variance in neural responses in general, about which signal properties are responsible for decoding, or about capturing stability of signals? It seems like it does all of these, but this needs to be made clearer in the introduction. It would be helpful to emphasize exactly what insights the model can provide that are unable to be obtained with the current methods.

      I have now made this explicit in in the Introduction, as suggested:

      “To gain insight into what aspects of the signal underpin decoding accuracy, and therefore the most stable aspects of stimulus processing, I introduce a generative model”

      To help illustrating what insights the model can provide, I have added the following sentence as an example:

      “For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question.”

      Furthermore, I was unclear on why these specific properties were chosen (lines 71 to 78). Is there evidence from neuroscience to suggest that these signal properties are especially important for neural processing? Or, if the logic has more to do with signal processing, why are these specific properties the most important to include?

      To clarify this the text now reads:

      “In the model, when a channel responds, it can do it in different ways: (i) by phase-resetting the ongoing oscillation to a given target phase and then entraining to a given frequency, (ii) by an additive oscillatory response independent of the ongoing oscillation, (iii) by modulating the amplitude of the stimulus-relevant oscillations, or (iv) by an additive non-oscillatory (slower) response. This (not exhaustive) list of effects was considered given previous literature (Shah, et al., 2004; Mazaheri & Jensen, 2006; Makeig, et al., 2002; Vidaurre, et al., 2021), and each effect may be underpinned by distinct neural mechanisms”

      The general narrative and focus of the paper could also be improved. It might help to start off with an outline of what the goal is at the start of the paper and then explicitly discuss how each of the steps works toward that goal. For example, I got the idea that the goal was to capture specific properties of an empirical TGM. If this was the case, the empirical TGM could be placed in the main body of the text as a reference picture for all simulated TGMs. For each simulation step, it could be emphasized more clearly exactly which features of the TGM is captured and what that means for interpreting these features in real data.

      Thank you. To clarify the purpose of the paper better, I have brought Figure 2 to the front (before a Supplementary Figure), and in the first part of Results I have now added:

      “Figure 2 shows a TGM for an example subject, where some archetypal characteristics are highlighted. In the experiments below, specifically, I focus on the strong narrow diagonal at the beginning of the trial, the broadening of accuracy later in the trial, and the vertical/horizontal bars of higher-than-chance accuracy. Importantly, this specific example in Figure 2 is only meant as a reference, and therefore I did not optimise the model hyperparameters to this TGM (except in the last subsection), or showed any quantitative metric of similarity. ”

      I have enunciated the goals more clearly in the Introduction:

      “To gain insight into what aspects of the signal underpin decoding accuracy, and therefore the most stable aspects of stimulus processing, …”

      Relatedly, it would be good to connect the various signal properties to possible neurobiological mechanisms. I appreciate that the author tries to remain neutral on this in the introduction, but I think it would greatly increase the implications of the analysis if it is made clearer how it could eventually help us understand neural processes.

      The Reviewer is right in pointing out that I preferred to remain neutral on this. While I have still kept that tone of neutrality throughout the paper, I have now included the following sentence as an example of a neurobiological question that could be investigated with the model:

      “For example, it is not completely clear the extent to which stimulus processing is sustained by oscillations, and disentangling these effects can help resolving this question.”

      And, more generally,

      “Genephys has different available types of effect, including phase resets, additive damped oscillations, amplitude modulations, and non-oscillatory responses. All of these elements, which may relate to distinct neurobiological mechanisms, are configurable and can be combined to generate a plethora of TGMs that, in turn, can be contrasted to specific empirical TGMs. This way, we can gain insight on what mechanisms might be at play in a given task. ”

      Line 57: this sentence is very long, making it hard to follow, could you break up into smaller parts?

      Thank you. The sentence is fragmented now.

      Please replace angular frequencies with frequencies in Hertz for clarity.

      Here I have preferred to stick to angular frequencies because it is more general than if I talk about Hertz, because that would entail having a specific sampling frequency. I think doing so would create confusion precisely of the sorts that I am trying to clarify in this revision: that is, that these results are not specific of one TGM but reflect general features that we see broadly in the literature.

      There are quite some types throughout the paper, please recheck

      Thank you. I have revised and have made my best to clear them out.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful for the comments and suggestions from the reviewers and have followed the recommendation in producing our revised manuscript. We have modified the text and performed additional statistical analysis as detailed below, which we believe has improved the overall manuscript.

      Reviewer #1 (Public Review):

      Establishing direct links between the neuronal connectivity information of connectomics datasets with circuit physiology and behavior and exciting current research area in neurobiology. Until recently, studies of aggression in Drosophila had been conducted largely in males, and many of the neurons involved in this behavior are male-specific clusters. Since the currently available fly brain connectomes come from female brains, their applicability for the study of the circuitry underlying aggressive behavior is very limited.

      The authors have previously used the Janelia hemibrain connectome paired with behavior analysis to show that activating either the aIPg or pC1d cell types can induce short-term aggression in females, while activation of other PC1 clusters (a-c and e) does not. Here they expand on those findings, showing that optogenetic stimulation of aIPg neurons was sufficient to promote an aggressive internal state lasting at least 10 minutes following a 30-second activation. In addition, the authors show that while stimulation of PC1d alone is not sufficient to induce this persistent aggressive state, simultaneous activation of PC1d + PC1e is, suggesting a synergistic effect. Connectomics analysis performed in the authors' previous study had shown that PC1d and aIPg are interconnected. However, silencing pC1d neuronal activity did not reduce aIPg-evoked persistent aggression, indicating that the aggressive state did not depend on pC1d-aIPg recurrent connectivity.

      The conclusions are well supported by the data, and the results presented in this manuscript represent an important contribution to our understanding of the neuronal circuitry underlying female aggression.

      Reviewer #1 (Recommendations For The Authors):

      1. Previously, the authors have shown that the activation of PC1e alone does not induce female aggression. In this study, they investigate the role of aIPg, PC1d, or PC1d+e on aggression persistence, but they do not explore the effect of activation of PC1e alone. It is possible that PC1e activation may not produce an immediate short-term effect but could lead to a gradual increase in aggression over time, potentially explaining at least in part the observed effect upon PC1d+e activation. Incorporating an examination of the long-term impact of PC1e activation on aggression could provide valuable information.

      We did perform mixed pair experiments with the pC1e-SS1 line from the Schretter et al. (2020) paper and did not find any significant changes in aggression over time in this setup as well. We have now added a reference to these experiments in the revised submission in lines 135 to 136.

      1. Some important controls are missing: flies with the genetic combinations employed in the activation experiments shown in Figure 2 but in the absence of activation and under the exact same conditions and for a similar observation period.

      For Figure 2, we used an empty split-Gal4 driver as a genetic control for our activation paradigms. As these flies contain the same number of copies of mini-white while not labeling the targeted cell types, we believe that they provide an appropriate control for these experiments. The control information is specified in all figure legends as well.

      1. The quantification shown in Fig 3- Supplementary Figure 1 shows no effect during stimulation (13 s + 15s), but based on the plots of Figure 3, there may be an effect of silencing PC1d on aIPg-induced aggression during the initial 13 second period. Those two time periods (13 s vs 15 s) could be quantified separately to determine if this is the case.

      We examined the two stimulation periods separately and did not find any significant differences in either period (13s period, p = 0.2978; 15s period, p = 0.6650). We have now added this into the figure legend for Figure 3 and Figure 3 supplement 1.

      1. Expression of Kir2.1 in pC1d neurons while aIPg neurons were activated did not suppress aggression after aIPg stimulation, suggesting that connections from pC1d neurons are not necessary for the persistent aggressive state promoted by aIPg. Since previously the authors have shown that TNT-mediated inhibition of aIPg reduces aggression, the reciprocal experiment would be informative: determining if stimulation of PC1d+e no longer produces persistent aggression when aIPg neurons are silenced.

      In this manuscript, we were primarily testing if the connections from aIPg to pC1d were necessary for the persistent aggressive state induced by aIPg activation. Therefore, we believe the suggested experiment is beyond the scope of the current manuscript.

      1. How many times was each experiment repeated? This is important information and should be in the methods section for each type of experiment or in each figure legend.

      We have now added this information in the appropriate figure legends.

      1. Determining the effect on persistent aggression of silencing sNPF (for example via RNAi or Crispr-Cas9 mediated mutagenesis) in aIPG neurons would be an important addition to the manuscript. If peptidergic signaling is underlying the persistence phenotype of aIPg neurons, that would explain why the recurrent connectivity found between those cells and the PC1 cluster does not play a role.

      We agree with the reviewer that this would be a logical next step in extending this work.

      Reviewer #2 (Public Review):

      The mechanisms that mediate female aggression remain poorly understood. Chiu, Schretter, and colleagues, employed circuit dissection techniques to tease apart the specific roles of particular doublesex and fruitless expressing neurons in the fly Drosophila in generating a persistent aggressive state. They find that activating the fruitless positive alPg neurons, generated an aggressive state that persisted for >10min after the stimulation ended. Similarly, activating the doublesex positive pC1de neurons also generated a persistent state. Activating pC1d or pC1e individually did not induce a persistent state. Interestingly, while neural activation of alPGs and pC1d+e neurons induced persistent behavioural states it did not induce persistent activity in the neurons being activated.

      The conclusions of this paper are well supported by the data, there were only a few points where clarification might help:

      1. Figure 3 is a little confusing. This is a circuit behavioural epistasis experiment where the authors activate alPg with CsChrimson while inhibiting pC1d with Kir2.1. In Fig. 2 flies were separated for 10 min following stimulation which allowed for identification of a persistent state. However, in Fig 3 it appears as if flies were allowed to freely interact during and immediately post-stimulation. It is unclear why flies were not separated as in Fig. 2, which makes it difficult to compare the two results. Some discussion of this point would help. Also, from the rasters it appears as if inhibition of pC1d reduced aggression induced by alPg during the stimulation period. Is this true?

      We thank the reviewer for pointing out the need for clarification and we have modified the legend in Figure 3 to address the points raised. The flies were allowed to freely interact during the experiments shown in Figure 3 and we have added this information to the figure legend. To obtain a high level of aggressive behavior that would make it easier to observe a suppression of aggression, the epistasis experiments were performed with freely moving same-genotype pairs. The level of aggression triggered by the generation 1 LexA line labeling aIPg was lower than that observed when using with the aIPg-SS GAL4 line. The experiment was performed as in Schretter et al. (2020) where we found that aIPg activation induced persistent fighting in same genotype pairs. We have added a brief explanation in lines 152 to 155.

      Inhibition of pC1d does not significantly reduce the overall aggression induced by aIPg stimulation in the 13s + 15s period. We also examined the differences within the two stimulation periods and did not find any significant differences (13s period, p = 0.2978; 15s period, p = 0.6650). We have now added this information to the figure legends for Figure 3 and Figure 3 supplement 1.

      1. pC1e neurons also have recurrent connectivity with alPg neurons. It might help to also discuss the potential role of this arm of the microcircuit.

      We thank the review for this suggestion. The number of synapses that aIPg sends back to pC1e is a very low proportion of its total output (0.177%). However, based on the experiments that we have performed, we cannot rule out that this microcircuit might contribute to maintaining persistence. We have added this point into the discussion in lines 210 to 211.

      Reviewer #2 (Recommendations For The Authors):

      1. Line 129-130: A citation for group-housed flies showing lower aggression would be helpful.

      We have now added in the reference to Chiu et al. (2021), as they showed this effect for females, in line 130.

      1. Figure 2 - figure supplement 1: In the legend, change "when pC1d neurons were stimulation" to "when pC1d neurons were stimulated".

      We thank the reviewer for finding this error and have now corrected this.

      Reviewer #3 (Public Review):

      Two studies published in 2020 independently identified the alPg, pC1d, and pC1e neurons to be involved in initiating and maintaining a state of aggression in female Drosophila. Both studies combined behavioural analyses, optogenitic manipulation of neurons, and connectomics. One of these studies proposed that the extensive interconnections seen between the alPg and pC1d+e neurons might represent a recurrent motif known to support persistent behvioural states in other systems. In this manuscript, the authors test this idea and report that their data do not support it. Specifically, they report that alPg or pC1d+e (but not pC1d alone) can initiate a persistent state of aggression. But they find that the persistent aggressive state is maintained even when the pC1d neurons are inactivated. Finally, they show that neither of these neurons themselves sustains neuronal activity upon stimulation, nor do either of them induce a persistent activity in the other. Together, their data suggest that the recurrent connection between alPg and pC1d is not what supports the persistent state. The data underlying these claims are convincing. A possibility to explore before ruling out recurrent motifs (at this circuit level) in maintaining aggression is that the connections between alPg and pC1e can compensate for the loss of pC1e. Overall, the study is important and will be of interest to those who study the circuit basis of persistent behavioural states, but also to neuroscientists in general.

      Reviewer #3 (Recommendations For The Authors):

      I enjoyed reading this manuscript for its clarity in writing and data presentation.

      I would like the authors to comment on the possibility that pC1e can compensate for the loss of pC1d. It is possible that if they silence both pC1d+e in the context of alPg activation, the persistent aggression is lost?

      We agree with the reviewer that this is an intriguing hypothesis. In order to examine if pC1e does compensate for pC1d, we would need to also activate pC1e while inhibiting pC1d. However, such an experiment is not currently possible as we do not have a LexA line that specifically labels either pC1d or pC1e alone.

      For the pC1d+e silencing experiments, we were primarily testing to see if the most prominent recurrent connection, which is between pC1d and aIPg, was responsible for the behavioral persistence. We agree with the reviewer that this would be a logical follow up experiment to be performed in the future.

      Have the authors looked for activity in the pC1e neuron upon simulation of alPg? (Deutsch et al 2020 observed many regions in the brain that maintained sustained activity upon pC1d+e stimulation.)

      We have not examined this activity. We agree that this would be a good follow up experiment; however, we believe it is beyond the scope of the current work.

      Would the more appropriate experiment in Figure 4c be the co-stimulation of pC1d+e while imaging from alPg?

      For these experiments, we were testing to see if the most prominent recurrent connection, which is between pC1d and aIPg, was responsible for the behavioral persistence. We agree with the reviewer that this would be a good follow up experiment

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      This study uses whole genome sequencing to characterise the population structure and genetic diversity of a collection of 58 isolates of E. coli associated with neonatal meningitis (NMEC) from seven countries, including 52 isolates that the authors sequenced themselves and a further 6 publicly available genome sequences. Additionally, the study used sequencing to investigate three case studies of apparent relapse. The data show that in all three cases, the relapse was caused by the same NMEC strain as the initial infection. In two cases they also found evidence for gut persistence of the NMEC strain, which may act as a reservoir for persistence and reinfection in neonates. This finding is of clinical importance as it suggests that decolonisation of the gut could be helpful in preventing relapse of meningitis in NMEC patients.

      Strengths:

      The study presents complete genome sequences for n=18 diverse isolates, which will serve as useful references for future studies of NMEC. The genomic analyses are high quality, the population genomic analyses are comprehensive and the case study investigations are convincing.

      We agree

      Weaknesses:

      The NMEC collection described in the study includes isolates from just seven countries. The majority (n=51/58, 88%) are from high-income countries in Europe, Australia, or North America; the rest are from Cambodia (n=7, 12%). Therefore it is not clear how well the results reflect the global diversity of NMEC, nor the populations of NMEC affecting the most populous regions.

      The virulence factors section highlights several potentially interesting genes that are present at apparently high frequency in the NMEC genomes; however, without knowing their frequency in the broader E. coli population it is hard to know the significance of this.

      We acknowledged the limitations of our NMEC collection in the Discussion. We agree the prevalence of virulence factors in our collection is interesting. The limited size of our collection prevented further evaluation of the prevalence of these virulence factors in a broader E. coli population.

      Reviewer #2 (Public Review):

      Summary:

      In this work, the authors present a robust genomic dataset profiling 58 isolates of neonatal meningitis-causing E. coli (NMEC), the largest such cohort to be profiled to date. The authors provide genomic information on virulence and antibiotic resistance genomic markers, as well as serotype and capsule information. They go on to probe three cases in which infants presented with recurrent febrile infection and meningitis and provide evidence indicating that the original isolate is likely causing the second infection and that an asymptomatic reservoir exists in the gut. Accompanying these results, the authors demonstrate that gut dysbiosis coincides with the meningitis.

      Strengths:

      The genomics work is meticulously done, utilizing long-read sequencing.

      The cohort of isolates is the largest to be sampled to date.

      The findings are significant, illuminating the presence of a gut reservoir in infants with repeating infection.

      We agree

      Weaknesses:

      Although the cohort of isolates is large, there is no global representation, entirely omitting Africa and the Americas. This is acknowledged by the group in the discussion, however, it would make the study much more compelling if there was global representation.

      We agree. In the Discussion we state this is likely a reflection of the difficulty in acquiring isolates causing neonatal meningitis, in particular from countries with limited microbiology and pathology resources.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Schembri et al performed a molecular analysis by WGS of 52 E. coli strains identified as "causing neonatal meningitis" from several countries and isolated from 1974 to 2020. Sequence types, virulence genes content as well as antibiotic-resistant genes are depicted. In the second part, they also described three cases of relapse and analysed their respective strains as well as the microbiome of three neonates during their relapse. For one patient the same E. coli strain was found in blood and stool (this patient had no meningitis). For two patients microbiome analysis revealed a severe dysbiosis.

      Major comments:

      Although the authors announce in their title that they study E. coli that cause neonatal meningitis and in methods stipulate that they had a collection of 52 NMEC, we found in Supplementary Table 1, 29 strains (therefore most of the strains) isolated from blood and not CSF. This is a major limitation since only strains isolated from CSF can be designated with certainty as NMEC even if a pleiocytose is observed in the CSF. A very troubling data is the description of patient two with a relapse infection. As stated in the text line 225, CSF microscopy was normal and culture was negative for this patient! Therefore it is clear that patient without meningitis has been included in this study.

      We have reviewed the clinical data for our 52 NMEC isolates, noting that for some of the older Finish isolates we relied on previous publications. This data is shown in Table S1. To address the Reviewer’s comment, we have added the following text to the methods section (new text underlined).

      ‘The collection comprised 42 isolates from confirmed meningitis cases (29 cultured from CSF and 13 cultured from blood) and 10 isolates from clinically diagnosed meningitis cases (all cultured from blood).’

      Patient 2 was initially diagnosed with meningitis based on a positive blood culture in the presence of CSF pleocytosis (>300 WBCs, >95% polymorphs). We understand there may be some confusion with reference to a relapsed infection, which we now more accurately describe as recrudescent invasive infection in the revised manuscript.

      Another major limitation (not stated in the discussion) is the absence of clinical information on neonates especially the weeks of gestation. It is well known that the risk of infection is dramatically increased in preterm neonates due to their immature immunity. Therefore E. coli causing infection in preterm neonates are not comparable to those causing infection in term neonates notably in their virulence gene content. Indeed, it is mentioned that at least eight strains did not possess a capsule, we can speculate that neonates were preterm, but this information is lacking. The ages of neonates are also lacking. The possible source of infection is not mentioned, notably urinary tract infection. This may have also an impact on the content of VF.

      We agree. In the Discussion we now note the following (new text underlined):

      ‘… we did not have clinical data on the weeks of gestation for all patients, and thus could not compare virulence factors from NMEC isolated from preterm versus term infants.’

      Submission to Medrxiv, a requirement for review of our manuscript at eLife, necessitated the removal of some patient identifying information, including precise age and detailed medical history.

      Sequence analysis reveals the predominance of ST95 and ST1193 in this collection. The high incidence of ST95 is not surprising and well previously described, therefore, the concluding sentence line 132 indicating that ST95 E. coli should exhibit specific virulence features associated with their capacity to cause NM does not add anything. On the contrary, the high incidence of ST1193 is of interest and should have been discussed more in detail. Which specific virulence factors do they harbor? Any hypothesis explaining their emergence in neonates?

      We compared the virulence factors of ST95 and ST1193 and summarized this information in Figure 4. We also discussed how the K1 polysialic acid capsule in ST95 and ST1193 could contribute to the emergence of these STs in NM. Specifically, we stated the following: ‘We speculate this is due to the prevailing K1 polysialic acid capsule serotype found in ST95 and the newly emerged ST1193 clone [22, 37] in combination with other virulence factors [15, 28, 29] (Figure 4) and the immature immune system of preterm infants.’

      In the paragraph depicted the VF it is only stated that ST95 contained significantly more VF than the ST1193 strains. And so what? By the way "significantly" is not documented: n=?, p=?

      We compared the prevalence of known virulence factors between ST95 and ST1193, and showed that ST95 strains in our collection contained significantly more virulence factors than the ST1193 strains. The P-value and the statistical test used were included in Supplementary Figure 3. To address the reviewers concern, we have now also added this to the main manuscript text as follows (new text underlined):

      ‘Direct comparison of virulence factors between ST95 and ST1193, the two most dominant NMEC STs, revealed that the ST95 isolates (n = 20) contained significantly more virulence factors than the ST1193 isolates (n=9), p-value < 0.001, Mann-Whitney two-tailed unpaired test (Supplementary Table 1, Supplementary Figure 3).’

      The complete sequence of 18 strains is not clear. Results of Supplementary Table 2 are presented in the text and are not discussed.

      NMEC isolates that were completely sequenced in this study are indicated in bold and marked with an asterisk in Figure 1. This information is indicated in the figure legend and was provided in the original submission. All information regarding genomic island composition and location, virulence genes and plasmid and prophage diversity is included in Supplementary Table 2. This information is highly descriptive and thus we elected not to include it as text in the main manuscript.

      46 years is a very long time for such a small number of strains, making it difficult to put forward epidemiological or evolutionary theories. In the analysis of antibiotic resistance, there are no ESBLs. However, Ding's article (reference 34) and other authors showed that ESBLs are emerging in E. coli neonatal infection. These strains are a major threat that should be studied, unfortunately, the authors haven't had the opportunity to characterize such strains in their manuscript.

      We agree 46 years is a long time-span. The study by Ding et al examined 56 isolates comprised of 25 different STs isolated in China from 2009-2015, with ST1193 (n=12) and ST95 (n=10) the most common. Our study examined 58 isolates comprised of 22 different STs isolated in seven different geographic regions from 1974-2020, with ST1193 (n=9) and ST95 (n=20) the most common. Thus, despite differences in the geographic regions from which isolates in the two studies were sourced, there are similarities in the most common STs identified. The fact that we observed less antibiotic resistance, including a lack of ESBL genes, in ST1193 is likely due to the different regions from which the isolates were sourced. We acknowledged and discussed the potential of ST1193 harbouring multidrug resistance including ESBLs in our manuscript as follows:

      ‘Concerningly, the ST1193 strains examined here carry genes encoding several aminoglycoside-modifying enzymes, generating a resistance profile that may lead to the clinical failure of empiric regimens such as ampicillin and gentamicin, a therapeutic combination used in many settings to treat NM and early-onset sepsis [35, 36]. This, in combination with reports of co-resistance to third-generation cephalosporins for some ST1193 strains [22, 34], would limit the choice of antibiotic treatment.’

      Second part of the manuscript:

      The three patients who relapsed had a late neonatal infection (> 3 days) with respective ages of 6 days, 7 weeks, and 3 weeks. We do not know whether they are former preterm newborns (no term specified) or whether they have received antibiotics in the meantime.

      As noted above, patient ages were not disclosed to comply with submission to Medrxiv, a requirement for review of our manuscript at eLife.

      Patient 1: Although this patient had a pleiocytose in CSF, the culture was negative which is surprising and no explanation is provided. Therefore, the diagnosis of meningitis is not certain. Pleiocytose without meningitis has been previously described in neonates with severe sepsis. Line 215: no immunological abnormalities were identified (no details are given).

      We respectfully disagree with the reviewer. The diagnosis of meningitis is made unequivocally by the presence of a clearly abnormal CSF microscopy (2430 WBCs) and an invasive E. coli from blood culture. This does not seem controversial to the authors. We had believed it unnecessary to include this corroborative evidence, but have added the following to support our assertion:

      ‘The child was diagnosed with meningitis based on a cerebrospinal fluid (CSF) pleocytosis (>2000 white blood cells; WBCs, low glucose, elevated protein), positive CSF E. coli PCR and a positive blood culture for E. coli (MS21522).’

      On the contrary, the authors are surprised by the statement that CSF pleocytosis occurs in neonatal sepsis ‘without meningitis’ and do not know of any definitions of neonatal meningitis that are not tied to the presence of a CSF pleocytosis. Furthermore, the later isolation of E. coli from the CSF during the relapsed infection re-enforces the initial diagnosis.

      Patient 2: This patient had a recurrence of bacteremia without meningitis (line 225: CSF microscopy was normal and culture negative!). This case should be deleted.

      In a similar vein to the previous comment, we respectfully assert that this patient has clear evidence of meningitis (330 WBCs in the CSF, taken 24h after initiation of antibiotic treatment). In this case, molecular testing was not performed as, under the principle of diagnostic stewardship, it was not considered necessary by the clinical microbiologists and treating clinicians following the culture of E. coli in the bloodstream. We agree that this is not a case of recurrent meningitis, but our intention was to highlight the recrudescence of an invasive infection (urinary sepsis requiring admission to hospital and intravenous antibiotics) which we hypothesise has arisen from the intestinal reservoir. We did not state that all patients suffered from relapsed meningitis.

      Despite this, to address this reviewers concern, we have changed all reference to ‘relapsed infection’ to now read ‘recrudescent invasive infection’ in the revised manuscript.

      Patient 3: This patient had two relapses which is exceptional and may suggest the existence of a congenital malformation or a neurological complication such as abscess or empyema therefore, "imaging studies" should be detailed.

      This patient underwent extensive imaging investigation to rule out a hidden source. This included repeated MRI imaging of head and spine, CT imaging of head and chest, USS imaging of abdomen and pelvis and nuclear medicine imaging to detect a subtle meningeal defect and CSF leak. All tests were normal, and no abscess or empyema found.

      We have modified the text to include this information:

      Text in original submission: ‘Imaging studies and immunological work-up were normal.’

      New text in revised manuscript (underlined): ‘Extensive imaging studies including repeated MRI imaging of the head and spine, CT imaging of the head and chest, ultrasound imaging of abdomen and pelvis, and nuclear medicine imaging did not show a congenital malformation or abscess. Immunological work-up did not show a known primary immunodeficiency. At two years of age, speech delay is reported but no other developmental abnormality.’

      The authors suggest a link between intestinal dysbiosis and relapse in three patients. However, the fecal microbiomes of patients without relapse were not analysed, so no comparison is possible. Moreover, dysbiosis after several weeks of antibiotic treatment in a patient hospitalized for a long time is not unexpected. Therefore, it's impossible to make any assumption or draw any conclusion. This part of the manuscript is purely descriptive. Finally, the authors should be more prudent when they state in line 289 "we also provide direct evidence to implicate the gut as a reservoir [...] antibiotic treatment". Indeed the gut colonization of the mothers with the same strain may be also a reservoir (as stated in the discussion line 336). Finally, the authors do not discuss the potential role of ceftriaxone vs cefotaxime in the dysbiosis observed. Ceftriaxone may have a major impact on the microbiota due to its digestive elimination.

      We addressed the limitations of our study in the Discussion, including that we did not have access to urine or stool samples from the mother of the infants that suffered recrudescence, and thus cannot rule out mother-to-child transmission as a mechanism of reinfection. We have now added that we did not have clinical data on the weeks of gestation for all patients, and thus could not compare virulence factors from NMEC isolated from preterm versus term infants. The limitations of our study are summarised as follows in the Discussion (new text underlined):

      ‘This study had several limitations. First, our NMEC strain collection was restricted to seven geographic regions, a reflection of the difficulty in acquiring strains causing this disease. Second, we did not have access to a complete set of stool samples spanning pre- and post-treatment in the patients that suffered NM and recrudescent invasive infection. This impacted our capacity to monitor E. coli persistence and evaluate the effect of antibiotic treatment on changes in the microbiome over time. Third, we did not have access to urine or stool samples from the mother of the infants that suffered recrudescence, and thus cannot rule out mother-to-child transmission as a mechanism of reinfection. Finally, we did not have clinical data on the weeks of gestation for all patients, and thus could not compare virulence factors from NMEC isolated from preterm versus term infants.’

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Shibl et al., studied the possible role of dicarboxylate metabolite azelaic acid (Aze) in modulating the response of different bacteria, it was used as a carbon source by Phycobacter and possibly toxic for Alteromonas. The experiments were well conducted using transcriptomics, transcriptional factor coexpression networks, uptake experiments, and chemical methods to unravel the uptake, catabolism, and toxicity of Aze on these two bacteria. They identified a putative Aze TRAP transporter in bacteria and showed that Aze is assimilated through fatty acid degradation in Phycobacter. Meanwhile, in Alteromonas it is suggested that Aze inhibits the ribosome and/or protein synthesis, and that efflux pumps shuttles Aze outside the cytoplasm. Further on, they demonstrate that seawater amended with Aze selects for microbes that can catabolize Aze.

      Major strengths:

      The manuscript is well written and very clear. Through the combination of gene expression, transcriptional factor co-expression networks, uptake experiments, and chemical methods Shibl et al., showed that Aze has a different response in two bacteria.

      Major weakness:

      There is no confirmation of the Aze TRAP transporters through mutagenesis.

      Impact on the field:

      Metabolites exert a significant influence on microbial communities in the ocean, playing a crucial role in their composition, dynamics, and biogeochemical cycles. This research highlights the intriguing capacity of a single metabolite to induce contrasting responses in distinct bacterial species, underscoring its role in shaping microbial interactions and ecosystem functions.

      We thank the reviewer for their comments on the paper and we appreciate their suggestion to confirm the activity of Aze TRAP transporters through mutagenesis. We agree that this would be a valuable addition to the study, and we mention in the text that “Despite numerous attempts, our efforts to knock-out azeTSL in Phycobacter failed.”

      The success rate of mutagenesis experiments is often low and time-consuming. There are a few reasons why our knock-out experiments with Phycobacter have not been successful. Despite using several modified protocols for electroporation, no Phycobacter colonies grew on the antibiotic plate. We then tried the homologous recombination approach for conjugation but were not successful in selecting for Phycobacter cells, even when grown in high salinity conditions that favor Phycobacter and disfavor the carrier, E. coli . While we would love to include a mutagen to confirm the function of this cluster, the task seems to be unattainable at the moment .

      Reviewer #2 (Public Review):

      This study explores the breadth of effects of one important metabolite, azelaic acid, on marine microbes, and reveals in-depth its pathway of uptake and catabolism in one model bacterial strain. This compound is known to be widely produced by phytoplankton and plants, and to have complex effects on associated microbiomes.

      This work uses transcriptomics to assay the response of two strains that show contrasting responses to the metabolite: one catabolizes the compound and assimilates the carbon, while the other shows growth inhibition and stress response. A highly induced TRAP transporter, adjacent to a previously identified regulator, is inferred to be the specific uptake system for azelaic acid. However the transport function was not directly tested via genetic or biochemical methods. Nevertheless, this is a significant finding that will be useful for exploring the distribution of azelaic acid uptake capability across metagenomes and other bacteria.

      The authors use pulse-chase style metabolomics experiments to beautifully demonstrate the fate of azelaic acid through catabolic pathways. They also measure an assimilation rate per cell, though it remains unclear how this measured rate relates to natural systems. The metabolomics approach is an elegant way to show carbon flux through cells, and could serve as a model for future studies.

      The study seeks to extend the results from two model strains to complex communities, using seawater mesocosm experiments and soil/Arabidopsis experiments. The seawater experiments show a community shift in mesocosms with added azelaic acid. However, the mechanisms for the shift were not determined; further work is necessary to demonstrate which community members are directly assimilating the compound vs. benefitting indirectly or experiencing inhibition. In my opinion the soil and Arabidopsis experiments are quite preliminary. I appreciate the authors' desire to broaden the scope beyond marine systems, but I believe any conclusions regarding different modes of action in aquatic vs terrestrial microbial communities are speculative at this stage.

      This work is a nice illustration of how we can begin to tease apart the effects of chemical currencies on marine ecosystems. A key strength of this work is the combination of transcriptomics and metabolomics methods, along with assaying the impacts of the metabolite on both model strains of bacteria and whole communities. Given the sheer number of compounds that probably play critical roles in community interactions, a key challenge for the field will be navigating the tradeoffs between breadth and depth in future studies of metabolite impacts. This study offers a good compromise and will be a useful model for future studies.

      We thank the reviewer for their thoughtful comments on the manuscript. We appreciate their feedback on the breadth of effects of Aze on marine microbes, and their insights into the strengths and limitations of our study.

      We agree that the specific mechanisms underlying community-level shifts in seawater mesocosm experiments with added Aze are not yet fully understood and we believe such work is beyond the scope of this paper and warrants an in-depth study of its own. This can perhaps be conducted at a larger scale by using a combination of meta-omics and targeted enrichment to identify the community members directly assimilating Aze, as well as those that are benefitting indirectly or experiencing inhibition.

      We also agree that the soil and Arabidopsis experiments are exploratory. However, we believe that these experiments are a valuable first step in highlighting the potential for Aze to have different modes of action in aquatic versus terrestrial microbial communities. Our interest in contrasting bacterial molecular responses in terrestrial plant rhizospheres and marine algal phycospheres stems from the fact that both environments share similar molecules and related bacteria, yet exhibit significantly different evolutionary histories and fluid dynamic profiles (Seymour et al 2017, Nature Microbiol ). Although more is known about Aze in Arabidopsis than phytoplankton, there are still gaps in this knowledge. For example, recent work has shown that Aze and derivatives can be secreted into soil (Korenblum et al 2020, PNAS ), but whether Aze directly influences microbial communities in soil as we have shown in seawater has not been explored. Thus, we feel our preliminary experiments in soil are important to provide such a distinction with seawater. Additional studies in these systems to further investigate the importance of Aze, which were beyond the scope of this current work, would be quite beneficial.

      Reviewer #1 (Recommendations For The Authors):

      General comments:

      A complete supplemental file of differentially expressed genes should be provided in the supplemental. Please add tables with the entire DESeq output for Aze additions in the genomes of Phycobacter (0.5 and 8 h) and Alteromonas (0.5 h). While it makes sense to focus the paper on Aze related genes, the full dataset should be made available in a more curated form than just the raw reads in the SRA.

      We thank the reviewer for this suggestion. We have included three more sheets in Supplementary Table 1 file where readers can find the entire DESeq outputs of Phycobacter (0.5 and 8 h) and Alteromonas (0.5 h) experiments.

      Specific comments:

      • L82 indicates the TRAP transporter for Aze. Looking at the table for gene expression of Phycobacter there are 26 significantly enriched transport genes at 0.5 h other than the putative Aze TRAP transporter. Even though the TRAP transporter is likely transporting Aze, it would be good to let the readers know that other transporters showed transcript enrichment.

      Thank you for this helpful comment. We modified the sentence accordingly to read as follows: “Among 26 enriched transporter genes in our dataset, a C 4 - dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter substrate-binding protein (INS80_RS11065) was the most and the third most upregulated gene in Phycobacter grown on Aze at 0.5 and 8 hours, respectively.”

      • Figure 1: There are many genes enriched from -1 to 1. Is there a cut off, p-val (can you add it to the caption)? It would be good to have a dashed line or something that indicates the -1 and 1 log2 fold change in the figure.

      We thank the reviewer for this suggestion. We added the following sentence to the legend of Fig. 1: “Genes were considered DE with a p -adjusted value of < 0.05 and a log2 fold-change of ≥ ±0.50.”

      • Supplementary tables: Add a title on all the supplementary tables. It's hard to tell what each one of the tables means without looking at the text and content of each tables.

      A short descriptive title is now added to all supplementary tables.

      • Not sure if it matters, though Table S1 was not available in the attached files, though it is in the complete pdf.

      Table S1 is now in the attached files and the DESeq output has been added to it as suggested in the general comment above.

      Reviewer #2 (Recommendations For The Authors):

      Here I offer some more specific suggestions and comments on the methods and presentation.

      I recommend being careful throughout with the language regarding conclusions. For instance, the study does not directly demonstrate the activity of the TRAP transporter (as mentioned above), and does not directly demonstrate that the bacteria that increase in abundance in the mesocosm experiments are actually assimilating azelaic acid.

      We thank the reviewer for this comment. We agree that further studies are required to get definitive answers regarding the direct activity of the transporter genes and direct assimilation of Aze by bacteria in the mesocosm. These complex experiments would require establishing a reproducible workflow for knocking out genes and further isotope labeling experiments to track Aze assimilation in a natural setting. To that end, we were keen on using language throughout the manuscript indicating that transporter activity is putative. We went through the manuscript again to make sure it was clear that the transporter activity is putative at this time and is not confirmed. For the mesocosms, we cannot rule out that the changes in community structure is not due to other factors besides Aze. We have added this sentence in the discussion of the mesocosm experiments to indicate that the observed changes in microbial community cannot be directly attributed to Aze activity and may be a byproduct of other mechanisms.

      Additionally, I find the soil and plant experiments to be very preliminary, and would personally recommend removing them from the manuscript. This is of course the authors' choice, but I find they detract from an otherwise more solid story. I wonder whether 16 hours was sufficient to see community changes and whether adding azelaic acid directly into the plant is necessary or relevant. The study does not measure any plant immune responses so I caution against drawing conclusions about the mechanism. It seems the connection to plant immunity was already shown in the literature, in which case I'm not sure whether these experiments presented here really add anything new to the paper.

      We thank the reviewer for these comments. Our 16-hour sampling time point (similar to the seawater experiment) represents an overnight incubation period that should allow sufficient change in the natural microbial composition yet avoids the long-term succession of microbes with high metabolic capacities that may outcompete the rest of the community at long incubation periods. Deciding on this length of incubation was also informed by the uptake rate of Aze and its influence on either bacteria assimilating it as a carbon source or being inhibited by it.

      Since no significant changes were observed in the soil, it was necessary to test the hypothesis that the plant host might be indirectly influencing the rhizosphere microbial communities by infiltrating A. thaliana leaves with Aze. As the reviewer mentions, the association between Aze and plant immunity was previously shown; however, the overall influence on the microbial community has not been fully explored yet. The soil and plant experiments were meant to serve an exploratory purpose and we find them necessary to keep in the manuscript as a first step in comparing the mode of action of Aze within marine and terrestrial ecosystems. They are by no means the answer to what role Aze plays in soil systems, but rather they are the starting point. We hope that our results encourage some readers to investigate similar common metabolites to further elucidate the molecular underpinnings of microbial modulation in both environments.

      Regarding the transcriptomics data, I am not clear on why the "expression ratio" -- i.e. the fraction of pathway genes that were differentially abundant -- was used. I would not expect all transcripts in a pathway to behave the same way in response to a perturbation, due to variation in half-life/stability, post-transcriptional and post-translational regulation, etc. I recommend removing the expression ratio (right panel) from Figure 1. The left panel shows the data more clearly and more directly.

      We thank the reviewer for their insight and we agree that not all transcripts in a pathway behave the same way. However, we find the expression ratio panel visually informative to highlight the importance of a pathway in response to Aze, taking into consideration the total number of key genes involved in a pathway. For example, despite the larger number of DE genes associated with the Amino Acid Metabolism & Degradation pathway compared to the Fatty Acid Degradation pathway, the expression ratio for the former in each transcriptome is lower than its Fatty Acid Degradation counterpart, indicating that the response of key fatty acid degradation genes to Aze is more pronounced. We have qualified the reasons for including expression ratios in Figure 1 legend.

      Overall I enjoyed reading the manuscript and applaud the authors on a nice contribution to this important field.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Peng et al develop a computational method to predict/rank transcription factors (TFs) according to their likelihood of being pioneer transcription factors--factors that are capable of binding nucleosomes--using ChIP-seq for 225 human transcription factors, MNase-seq and DNase-seq data from five cell lines. The authors developed relatively straightforward, easy to interpret computational methods that leverage the potential for MNase-seq to enable relatively precise identification of the nucleosome dyad. Using an established smoothing approach and local peak identification methods to estimate positions together with identification of ChIP-seq peaks and motifs within those peaks which they referred to as "ChIP-seq motifs", they were able to quantify "motif profiles" and their density in nucleosome regions (NRs) and nucleosome depleted regions (NDRs) relative to their estimated nucleosome dyad positions. Using these profiles, they arrived at an odd-ratio based motif enrichment score along with a Fisher's exact test to assess the odds and significance that a given transcription factor's ChIP-seq motifs are enriched in NRs compared to NDRs, hence, its potential to be a pioneer transcription factor. They showed that known pioneer transcription factors had among the highest enrichment scores, and they could identify a number of relatively novel pioneer TFs with high enrichment scores and relatively high expression in their corresponding cell line. They used multiple validation approaches including (1) calculating the ROC-AUC and Matthews correlation coefficient (MCC) and generating ROC and precision-recall curves associated with their enrichment score based on 32 known pioneer TFs among their 225 TFs which they used as positives and the remaining TFs (among the 225) as negatives; (2) use of the literature to note that known pioneer TFs that acted as key regulators of embryonic stem cell differentiation had a highest enrichment scores; (3) comparison of their enrichment scores to three classes of TFs defined by protein microarray and electromobility shift assays (1. strong binder to free and nucleosomal DNA, 2. weak binder to free and nucleosomal DNA, 3. strong binding to free but not nucleosomal DNA); and (4) correlation between their calculated TF motif nucleosome end/dyad binding ratio and relevant data from an NCAP-SELEX experiment. They also characterize the spatial distribution of TF motif binding relative to the dyad by (1) correlating TF motif density and nucleosome occupancy and (2) clustering TF motif binding profiles relative to their distance from the dyad and identifying 6 clusters.

      The strengths of this paper are the use of MNase-seq data to define relatively precise dyad positions and ChIP-seq data together with motif analysis to arrive at relatively accurate TF binding profiles relative to dyad positions in NRs as well as in NDRs. This allowed them to use a relatively simple odds ratio based enrichment score which performs well in identifying known pioneer TFs. Moreover, their validation approaches either produced highly significant or reasonable, trending results.

      The weaknesses of the paper are relatively minor, and the authors do a good job describing the limitations of the data and approach.

      Reviewer #2 (Public Review):

      In this study, the authors utilize a compendium of public genomic data to identify transcription factors (TF) that can identify their DNA binding motifs in the presence of nuclosome-wrapped chromatin and convert the chromatin to open chromatin. This class of TFs are termed Pioneer TFs (PTFs). A major strength of the study is the concept, whose premise is that motifs bound by PTFs (assessed by ChIP-seq for the respective TFs) should be present in both "closed" nucleosome wrapped DNA regions (measured by MNase-seq) as well as open regions (measured by DNAseI-seq) because the PTFs are able to open the chromatin. Use of multiple ENCODE cell lines, including the H1 stem cell line, enabled the authors to assess if binding at motifs changes from closed to open. Typical, non-PTF TFs are expected to only bind motifs in open chromatin regions (measured by DNaseI-seq) and not in regions closed in any cell type. This study contributes to the field a validation of PTFs that are already known to have pioneering activity and presents an interesting approach to quantify PTF activity.

      For this reviewer, there were a few notable limitations. One was the uncertainty regarding whether expression of the respective TFs across cell types was taken into account. This would help inform if a TF would be able to open chromatin. Another limitation was the cell types used. While understandable that these cell types were used, because of their deep epigenetic phenotyping and public availability, they are mostly transformed and do not bear close similarity to lineages in a healthy organism. Next, the methods used to identify PTFs were not made available in an easy-to-use tool for other researchers who may seek to identify PTFs in their cell type(s) of interest. Lastly, some terms used were not define explicitly (e.g., meaning of dyads) and the language in the manuscript was often difficult to follow and contained improper English grammar.

      Reviewer #3 (Public Review):

      Peng et al. designed a computational framework for identifying pioneer factors using epigenomic data from five cell types. The identification of pioneer factors is important for our understanding of the epigenetic and transcriptional regulation of cells. A computational approach toward this goal can significantly reduce the burden of labor-intensive experimental validation.

      The authors have addressed my previous comments.

      The main issue identified in this re-review is based on the authors' additional experiments to investigate the reproducibility of the pioneer factors identified in the previously analysis that anchored on H1 ESCs.

      The additional analysis that uses the other four cell types (HepG2, HeLa-S3, MCF-7, and K562) as anchors reveals the low reproducibility/concordance and high dependence on the selection of anchor cell type in the computational framework. In particular, now several stem cell related TFs (e.g. ESRRB, POU5F1) are ranked markedly higher when H1 ESC is not used as the anchor cell type as shown in Supplementary Figure 5.

      Of note, the authors have now removed the shape labels that denote Yamanaka factors in Figure 2c (revised manuscript) that was presented in the main Figure 2a in the initial submission. The NFYs and ESRRB labels in Supplementary 4a are also removed and the boxplot comparing NFYs and ESRRB with other TF are also removed in this figure. Removing these results effectively hides the issues of the computational framework we identified in this revision. Please justify why this was done.

      In summary, these new results reveal significant limitations of the proposed computational framework for identifying pioneer factors. The current identifications appear to be highly dependent on the choice of cell types.

      Response: We thank all reviewers for their thoughtful and constructive comments and suggestions, which helped us to strengthen our paper. Following the suggestions, we have further addressed the reviewer’s comments and the detailed responses are itemized below.

      Reviewer #1 (Recommendations For The Authors):

      The following few minor mistakes/discrepancies/omissions should be addressed:

      1. In Figure 3, the Nucleosome Occupancy curves and legend are orange and the Binding Motif Profiles are blue; however, the y-axis label for Nucleosome occupancy profile is blue, and the y-axis label of Binding motif profile is orange. The colors seem to be switched, or I'm missing something.

      Response: We thank the reviewer for pointing it out. We have changed the colors to make it consistent.

      1. The text at the bottom of p. 11 of the main manuscript describing Supplementary Fig. 5 states: "If we repeat our anaysis by redefining differentially open regions as those closed in differentiated cell lines and open in H1 embryonic cell line, then ESSRB and Yamanaka pioneer transcription factor POU5F1 (OCT4) showed significantly higher enrichment scores (Supplementary Figure 5)." However, Supplementary Fig. 5 legend states: "Enrichment analysis of different TFs using the differentially open from one cell line (shown in the title) and conserved open regions from other four cell lines.". These two descriptions of the differential chromatin criteria used in the analysis don't appear to match. The description in the text is the one that makes much more sense to me. The legend should be written a little more clearly and reflect the statement in the main text. One can see from the cut and paste the "analysis" is also misspelled.

      Response: We have rewritten the legend of Supplementary Figure 5 to make it clear and consistent. The misspelling has also been corrected.

      1. It might be helpful to add that a random classifier would yield a constant precision recall (PR) curve (as a function of Recall) with the Precision = P/(P+N) or the fraction of positives for all plotted PR curves which in the case of Fig. 2a is 32/225 = 0.142, for example.

      Response: We thank the reviewer for the suggestions. We have added the fraction of positives for Figure 2.

      1. On p. 17 line 513, the authors refer to "Supplementary 7, 9 and 13". I'm assuming it's "Supplementary Tables 7, 9 and 13".

      Response: It has been corrected.

      1. On p. 18 line 539, "essays" should be "assays".

      Response: It has been corrected.

      Reviewer #2 (Recommendations For The Authors):

      We are satisfied with the revisions in this version of the manuscript.

      Reviewer #3 (Public Review):

      The main issue identified in this re-review is based on the authors' additional experiments to investigate the reproducibility of the pioneer factors identified in the previously analysis that anchored on H1 ESCs.

      The additional analysis that uses the other four cell types (HepG2, HeLa-S3, MCF-7, and K562) as anchors reveals the low reproducibility/concordance and high dependence on the selection of anchor cell type in the computational framework. In particular, now several stem cell related TFs (e.g. ESRRB, POU5F1) are ranked markedly higher when H1 ESC is not used as the anchor cell type as shown in Supplementary Figure 5.

      Of note, the authors have now removed the shape labels that denote Yamanaka factors in Figure 2c (revised manuscript) that was presented in the main Figure 2a in the initial submission. The NFYs and ESRRB labels in Supplementary 4a are also removed and the boxplot comparing NFYs and ESRRB with other TF are also removed in this figure. Removing these results effectively hides the issues of the computational framework we identified in this revision. Please justify why this was done.

      In summary, these new results reveal significant limitations of the proposed computational framework for identifying pioneer factors. The current identifications appear to be highly dependent on the choice of cell types.

      Response: We would like to clarify that our enrichment score used for TF classification, defined by Equation 3, is expected to be cell-type specific. The value of the enrichment score is modulated by a number of factors beyond the property of a TF to act as a PTF, such as the abundance of a given TF in a given cell line, cell type-specific nucleosome binding maps and interactions with other TFs. Thus, it is expected that the enrichment scores calculated for the same TF in different cell lines should be quantitatively different. Following the initial suggestion of Reviewer 3, we have diversified our analysis by using different cell lines as anchors. This analysis showed that most PTFs that we identified could be confirmed based on different cell lines, when comparing the relative enrichment scores within each cell line. On the other hand, it is not expected that the values of enrichment scores of a given TF should be similar across different cell lines.

      Regarding a specific comment about ESRRB and POU5F1, these TFs are known pioneer factors with roles in reprogramming of somatic cells into induced pluripotent stem cells and suppressing cell differentiation. They have the ability to open closed chromatin regions in the differentiated cell lines. Therefore, if we redefine the differentially open regions as those closed in differentiated cell lines and open in H1 embryonic cell line, these pioneer factors are expected to have high enrichment scores. Indeed, our new results validated the roles of these PTFs in cell reprogramming. As mentioned above, their enrichment scores in different cell lines are not expected to be the same.

      We also would like to clarify that no results were removed during the update of the figures, and all modifications of the manuscript following the suggestions of the reviewers were only made to improve the figures and make them clearer and the message more straightforward.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We would like to thank the Editors and Reviewers for their additional comments and constructive feedback on our manuscript. We have made minor adjustments to the figures and texts based on their suggestions, including improved images in Figure 1 and correction of figure labels.

      Reviewer #1 (Public Review):

      In their previous paper (Lari et al, 2019; Azra Lari Arvind Arul Nambi Rajan Rima Sandhu Taylor Reiter Rachel Montpetit Barry P Young Chris JR Loewen Ben Montpetit (2019) A nuclear role for the DEAD-box protein Dbp5 in tRNA export eLife 8:e48410.) as well as in the current manuscript the authors states that Dbp5 is involved in the export of tRNA that is independent of and parallel to Los1. They state that Dbp5 binds to the tRNA independent of known tRNA export proteins. The obtained conclusion is both intriguing and innovative, since it suggests that there are other variables, beyond the ones previously identified as tRNA factors, that might interact with Dbp5 to facilitate the export process. In order to find out additional factors aiding this process the authors may employ total RNA-associated protein purification (TRAPP) experiments ( Shchepachevto et al., 2019; Shchepachev V, Bresson S, Spanos C, Petfalski E, Fischer L, Rappsilber J, Tollervey D. Defining the RNA interactome by total RNA-associated protein purification. Mol Syst Biol. 2019 Apr 8;15(4):e8689. doi: 10.15252/msb.20188689. PMID: 30962360; PMCID: PMC6452921) to identify extra factors involved in conjunction with Dbp5. The process elucidates hitherto uninvestigated tRNA export components that function in conjunction with Dbp5.

      Author Response: We greatly appreciate this suggestion and agree with the reviewer that identification of the composition of the export competent Dbp5 containing tRNA complex is a critical next step for understanding the mechanism of Dbp5 mediated tRNA export, which will form the foundation of a future investigation in the laboratory and warrants its own study.

      Reviewer #1 (Public Review):

      Various reports suggest that eukaryotic translation elongation factor 1 eEF1A is involved tRNA export Bohnsack et al., 2002 (Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Görlich D. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 2002 Nov 15;21(22):620515. doi: 10.1093/emboj/cdf613. PMID: 12426392; PMCID: PMC137205), Grosshans etal., 2002; Grosshans H, Hurt E, Simos G. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev. 2000 Apr 1;14(7):830-40. PMID: 10766739; PMCID: PMC316491). The presence of mutations in eEF1A has been seen to hinder the nuclear export process of all transfer RNAs (tRNAs). eEF1A has been shown to interact with Los1 aiding in tRNA export. The authors can also explore the crosstalk between Dbp5 and eEF1A in this study. Additionally, suppressor screening analysis in dbp5R423A , los1∆dbp5R423A los1∆msn∆dbp5R423A could shed more light on this.

      Author Response: Thank you for this suggestion and raising an important possible role for Dbp5 in eEF1A mediated tRNA export. Based on more recent investigation of eEF1A function in tRNA export (PMID: 25838545), it is likely that eEF1A functions in re-export of charged tRNAs specifically (likely in conjunction with Msn5). The current manuscript has largely focused on the role of Dbp5 in pre-tRNA export, but a more careful mechanistic characterization of Dbp5 and re-export will be conducted in follow-up studies given the physical interaction between Dbp5 and spliced tRNAs we previously reported. Similarly, suppressor screens with the Dbp5 and los1Δmsn5Δ mutants will likely be a useful tool in identifying additional tRNA export factors and we thank the reviewer for this suggestion.

      Reviewer #1 (Public Review):

      The addition of Gle1 is potentially novel but it's unclear why the authors didn't address the potential involvement of IP6.

      Author Response: The text has been revised to highlight the importance of InsP6 in Gle1 mediated activation of Dbp5. This includes referencing InsP6 throughout the manuscript during discussions of Gle1 activation of Dbp5 and lines 401-404 discussing the potential role for the small molecule in regulating mRNA and tRNA export in different cellular contexts (e.g., stress and disease).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Weaknesses:

      Reviewer comment: Here, the activity of SWIFT molecules was assessed in single cell types with or without BKlotho expression. Ultimately, the ability of the SWIFT molecules to activate Wnt signaling in a cell type-specific manner should be tested in the context of many different cellular identities that express BKlotho to different extents. It would be good to demonstrate that Wnt activation by SWIFT correlates with BKlotho expression level in multiple cell types - such data would strengthen the claim of cell-type specificity.

      Response: We agree with the reviewer’s comment, it would be interesting to correlate the signaling level to the expression levels of βKlotho. The tools to carry out such an experiment are not currently available, as this would require a culture system that allows efficient growth of different cell types, and the reagents to detect both the receptor protein levels of βKlotho (as well as FZD/LRP) and signaling levels. We did perform an additional experiment to further support this targeting approach using a 2-layered (transwell) cell culture system. In this culture system, one cell type is put into the top well and the other cell type is put into the bottom well. Molecules to be tested were added to the media which is shared and freely diffuse across the two cell types. In this 2-layer cell system, the results again demonstrate the ability of the SWIFT molecules to specifically induce signaling only in βKlotho expressing hepatoma Huh7 cells and not in non-targeting HEK293 cells. This new data is included as Fig. 3H in the revised manuscript.

      Reviewer comment: The study does not address whether the targeted cells express FGFR1c/2c/3c and whether the FGF21 full-length moiety or the 39F7 IgG moiety of SWIFT molecules could unintentionally activate FGF signaling in these cells.

      Response: We agree with the reviewer’s comment. The receptor βKlotho and its binders (FGF21 and 39F7) were used to test the BRAID/SWIFT concept, the effects on FGF signaling were not the focus of the current study. This comment has now been added to the revised manuscript in the discussion. Inclusion of αGFP controls in the study also suggests the observed reporter activity in the targeted scenario is unlikely caused indirectly by any unexpected FGF signaling.

      Reviewer #2 (Public Review):

      Weaknesses:

      Reviewer comment: The study shows the SWIFT approach works in vitro using cell lines, primary human hepatocytes, and human intestinal organoids, but it lacks an in vivo animal model or clinical validation. The applicability of this approach to therapy is still unknown.

      Response: The βKlotho binder, 39F7, is specific to the human receptor and does not cross react with mouse. Unfortunately, we are not able to test these SWIFTs in a mouse model.

      Reviewer comment: The success of SWIFT depends on the presence and expression of the bridging receptor (βKlotho) on target cells. The approach may fail if the target receptor is not expressed or available.

      Response: We agree with the reviewer, the SWIFT molecules should not induce signaling on cells where bridging receptor is not expressed, therefore, achieving target cell specificity. As pointed out by the reviewer, finding the right bridging receptor on the target cell is critical.

      Reviewer #1 (Recommendations For The Authors):

      Reviewer comment 1: One way to further validate the specificity of SWIFT molecules would be to apply them to a mix of different cell types and quantify BKlotho level and Wnt reporter activity at the single cell level, potentially through imaging, FACS, or transcriptomics.

      Response: We agree with the reviewer’s comment, it would be interesting to correlate the signaling level to the expression levels of βKlotho. The tools to carry out such an experiment are not currently available, as this would require a culture system that allows efficient growth of different cell types, and the reagents to detect both the receptor protein levels of βKlotho (as well as FZD/LRP) and signaling levels. We did perform an additional experiment to further support this targeting approach using a 2-layered (transwell) cell culture system. In this culture system, one cell type is put into the top well and the other cell type is put into the bottom well. Molecules to be tested were added to the media which is shared and freely diffuse across the two cell types. In this 2-layer cell system, the results again demonstrate the ability of the SWIFT molecules to specifically induce signaling only in βKlotho expressing hepatoma Huh7 cells and not in non-targeting HEK293 cells. This new data is included as Fig. 3H in the revised manuscript.

      Reviewer comment 2: The experiments presented demonstrate activation of one signaling pathway in cells specifically expressing a target receptor rather than demonstrating "the feasibility of combining different signaling pathways" as stated in the abstract.

      Response: We thank the reviewer for pointing this out and have adjusted the sentence accordingly.

      Reviewer comment 3: What are the biological consequences of activating Wnt signaling in cells expressing BKlotho and why is that of interest? Could these biological outcomes be used as an additional, perhaps more consequential, readout for SWIFT activity?

      Response: βKlotho is expressed on several different cell types that include hepatocytes, WAT, BAT, and certain regions in CNS. Our studies here focused on the WNT signaling pathway, and βKlotho/FGF21/39F7 receptor ligand system was used to illustrate the BRAID/SWIFT cell targeting concept. Whether these molecules may additional modulate endocrine FGF signaling and metabolic homeostasis, and whether there is any interaction between βKlotho and Wnt signaling pathways could be the subject of future studies. This is now added to the revised manuscript.

      Reviewer comment 4: The manuscript would benefit from a careful review to improve wording and address grammatical errors.

      Response: We thank the reviewer for this suggestion, and we have now had another round of language editing by a professional service.

      Reviewer #2 (Recommendations For The Authors):

      Reviewer comment 1. The expression of KLB in Fig 3G and 4B seems way too low and may not represent the amount on the cell surface. Did the authors validate the expression on the cell surface?

      Response: In both figures we have displayed the expression level normalized to housekeeping gene ACTB. Housekeeping genes such as ACTB can be among the most abundant transcripts in a cell. The observation that KLB mRNA detection is below ACTB mRNA levels is expected and we would argue not too low. The average real-time PCR cycle threshold (Ct) for KLB in Huh7 and primary hepatocytes was 18 and 24 respectively. To avoid any confusion, we have now displayed the expression data normalized to HEK293 and intestinal organoids as a fold difference in a new Figure 3G and 4B.

      Comment 2. Fig 3G needs statistical significance.

      Response: We thank the reviewer for highlighting this, we have now included the statistical analysis in an updated Figure 3G.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the manuscript there is not much comparison between the crystal and cryoEM structures provided, and on inspection they appear to be very similar. The crystal structures also reveal parts of the CC domains in Las1, which is not present in the cryoEM structures. It is interesting the CC domains in Sc and Cj are quite different as illustrated in Figure 4B. They also seem to be somewhat disconnected from the rest of the complex (more so for Cj), even though that's not apparent in Figures 2-4. Despite this, it would be very useful to show the cryoEM densities when describing the catalytic site and C-terminal domain interactions, for example, as this can be very useful to increase confidence in the model and proposed mechanisms.

      We thank the reviewer for this suggestion. We have added a figure (Figure 5- Figure supplement 3) to show cryo-EM and crystal densities of key amino acids, when describing the catalytic site and C-terminal domain interactions. In analyzing the interaction between Las1 and Grc3, we have also provided additional comparisons of the crystal structure and the cryo-EM structure (Figure 5, Figure 5-figure supplement 1, 2 and 3, Figure 6, Figure 6-figure supplement 1).

      The description of the complex as a butterfly is engaging, and from a certain angle it can be made to look as such; this was also described previously in (Pillon et al., 2019, NSMB) for the same complex from a different organism (Ct). However, it is a bit misleading, because the complex is actually C2 symmetric. Under this symmetry, the 'body' would consist of two 'heads' one pointing up, one down facing towards the back, and one wing would have its back toward the viewer, the other the front. The structures presented here in Sc and Cj seem quite similar to the previous structure of the same complex in Ct, though the latter was only solved with cryoEM, and was also lacking the structure of the CC domain in Las1.

      We thank the reviewer for pointing out this issue. We have re-wrote these sentences and changed the butterfly description of Las1-Grc3 complex in the revised manuscript.

      For the model suggested in Figure 8, perhaps in the 'weak activity' state, the LCT in Las1 could still be connected to Grc3, via the LCT, rather than disconnected as shown. This could facilitate faster assembly of the 'high activity' state. The complex is described as 'compact and stable', but from the structure and this image, it appears more dynamic, which would serve its purpose and the illustrated model better. The two copies of HEPN appear to have more connective area, meaning they are indeed more likely to remain assembled in the 'weak activity' state. On the other hand, HEPN in one protein appears to have less binding surface with PNK in Grc3, and even less so with the CTD (both PNK and CTD being from the other associated protein), meaning these bindings could release easily to form the 'weak activity' state.

      There is also the potential to speculate that the GCT is bound to HEPN near the catalytic area in the 'weak activity' state. The reduced activity when the GCT residues are replaced by Alanine could then be explained by the complex not being able to assemble as quickly upon binding of the substrate, as it could if the GCT remained bound, rather than by a conformational change that it induces upon binding. The conformational change is also likely to be influenced by the combined binding of PNK and CTD in the assembled state, which also contact HEPN, rather than by GCT alone.

      We thank the reviewer for this suggestion. We have revised our model in the new Figure 8 of our revised manuscript. We apologize for the un-clarity description of the 'weak activity' state in our model. In fact, we believe that Las1 is in a "weakly activity" state before binding to Grc3 and is in a "highly activity" state when it forms a complex with Grc3. We strongly agree that the Las1-Grc3 complex is more dynamic than compact and stable, so it is easy to change its active state. We have changed our description and revised our model in the revised manuscript.

      When comparing the structure of the HEPN domain in the lone Las1 protein to the structure of Las1-HEPN in the Las1-Grc3 complex, it is mentioned that 'large conformational changes are observed'. These could be described a bit better. The conformational change is ~3-4Å C-alpha RMSD across all ~150 residues in the domain (~90 residues forming a stable core that only changes by ~1Å). There is also a shift in the associated HEPN domain in Las1B domain compared to the bound HEPN in the Las1-Grc3 complex, as shown in Figure 7D: ~1Å shift and ~12degrees rotation. This does point to the conformation of HEPN changing upon complex formation, as does the relative positions of the HEPN domains in Las1A and Las1B. The conformational change and relative shift could indeed by key for the catalysis of the substrate as mentioned.

      We thank the reviewer for this great suggestion. We have replaced the sentence describing the conformational changes in our revised manuscript.

      Overall, the structures presented should be very useful in further study of this system, even though the exact dynamics and how the substrate is bound are aspects that are perhaps not fully clear yet. The addition of the structures of the CC domain in two different organisms and the Las1 HEPN domain (not in complex with Grc3) as new structural information should allow for increasing our understanding of the overall complex and its mechanism.

      We thank this reviewer for these encouraging comments, which helped us with greatly improving our manuscript.

      Reviewer #2 (Public Review):

      In this manuscript, Chen et al. determined the structural basis for pre-RNA processing by Las1-Grc3 endoribonuclease and polynucleotide kinase complexes from S. cerevisiae (Sc) and C. jadinii (Cj). Using a robust set of biochemical assays, the authors identify that the sc- and CjLas1-Grc3 complexes can cleave the ITS2 sequence in two specific locations, including a novel C2' location. The authors then determined X-ray crystallography and cryo-EM structures of the ScLas1-Grc3 and CjLas1-Grc3 complexes, providing structural insight that is complimentary to previously reported Las1-Grc3 structures from C. thermophilum (Pillon et al., 2019, NSMB). The authors further explore the importance of multiple Las1 and Grc3 domains and interaction interfaces for RNA binding, RNA cleavage activity, and Las1-Grc3 complex formation. Finally, evidence is presented that suggests Las1 undergoes a conformational change upon Grc3 binding that stabilizes the Las1 HEPN active site, providing a possible rationale for the stimulation of Las1 cleavage by Grc3.

      Several of the conclusions in this manuscript are supported by the data provided, particularly the identification and validation of the second cleavage site in the ITS2. However, several aspects of the structural analysis and complimentary biochemical assays would need to be addressed to fully support the conclusions drawn by the authors.

      We thank the reviewer for the positive comments.

      • There is a lack of clarity regarding the number of replicates performed for the biochemical experiments throughout the manuscript. This information is critical for establishing the rigor of these biochemical experiments.

      We apologize for not providing the detailed information on the number of replicates of biochemical experiments. All the biochemical experiments were repeated three times. We have provided this information in the figure legends.

      • The authors conclude that Rat1-Rai1 can degrade the phosphorylated P1 and P2 products of ITS2 (lines 160-162, Figure 1H). However, the data in Fig. 1H shows complete degradation of 5'Phos-P2 and 5'Phos-P4 of ITS2, while the P1 and 5'Phos-P3 fragments remain in-tact. Additional clarification for this discrepancy should be provided.

      We thank the reviewer for pointing out this issue. “phosphorylated P1 and P2 products” should be “phosphorylated P2 and P4 products”. We have corrected this clerical error. In addition, we have also provided an explanation for why phosphorylated P3 product show only partial degradation. We suspect that P3 product may be too short to completely degrade.

      • The authors determined X-ray crystal structures of the ScLas1-Grc3 (PDB:7Y18) and CjLas1-Grc3 (PDB:7Y17) complexes, which represents the bulk of the manuscript. However, there are major concerns with the structural models for ScLas1-Grc3 (PDB:7Y18) and CjLas1-Grc3 (PDB:7Y17). These structures have extremely high clashscores (>100) as well as a significant number of RSRZ outliers, sidechain rotamer outliers, bond angle outliers, and bond length outliers. Moreover, both structures have extensive regions that have been modeled without corresponding electron density, and other regions where the model clearly does not fit the experimental density. These concerns make it difficult to determine whether the structural data fully support several of the conclusions in the manuscript. A more careful and thorough reevaluation of the models is important for providing confidence in these structural conclusions.

      We thank the reviewer for pointing out this issue. We have used the cryo-EM datasets to further validate our conclusions of the manuscript. We analyzed the active site of Las1-Grc3 complex and the interactions between Las1 and Grc3 using the cyro-EM structures and presented new figures (Figure 5- Figure supplement 1, Figure 5- Figure supplement 2, Figure 5- Figure supplement 3, Figure 6- Figure supplement 1) in our revised manuscript. Both the refinement and validation statistical parameters of the cryo-EM datasets are within a reasonable range (Table 2), which will provide confidence for our structure conclusions. The X-ray crystal structures of ScLas1-Grc3 (PDB:7Y18) and CjLas1-Grc3 (PDB:7Y17) complexes has high calshscores and many outliers, which is mainly due to the great flexibility of Las1-Grc3 complex, especially the CC domain of Las1. We have improved our crystal structure models with better refinement and validation of statistical parameters. The clashscores of ScLas1-Grc3 complex and CjLas1-Grc3 complex are 25 and 45, respectively. There are no rotamer outliers and C-beta outliers to report for both ScLas1-Grc3 complex and CjLas1-Grc3 complex.

      • The presentation of the cryo-EM datasets is underdeveloped in the results section drawing and the contribution of these structures towards supporting the main conclusions of the manuscript are unclear. An in-depth comparison of the structures generated from X-ray crystallography and cryo-EM would have greatly strengthened the structural conclusions made for the ScLas1-Grc3 and CjLas1-Grc3 complexes.

      We thank the reviewer for this suggestion. We have performed structural comparisons between X-ray crystal structure and cyro-EM structure in analyzing the active site of Las1-Grc3 complex and the interactions between Las1 and Grc3 (Figure 5- Figure supplement 1, Figure 5- Figure supplement 2, Figure 6- Figure supplement 1). We have also added a figure (Figure 5- Figure supplement 3) to show cryo-EM and crystal densities of the Las1 active site as well as the key amino acids for Las1 and Grc3 interactions. These comparisons and densities have greatly strengthened our structural conclusions.

      • The authors conclude that truncation of the CC-domain contributes to Las1 IRS2 binding and cleavage (lines 220-222, Fig. 4C). However, these assays show that internal deletion of the CC-domain alone has minimal effect on cleavage (Fig 4C, sample 3). The loss in ITS2 cleavage activity is only seen when truncating the LCT and LCT+CC-domain (Fig 4C, sample 2 and 4, respectively). Consistently, the authors later show that Las1 is unable to interact with Grc3 when the LCT domain is deleted (Fig. 6 and Fig. 6-figure supplement 2). These data indicate the LCT plays a critical role in Las1-Grc3 complex formation and subsequent Las1 cleavage activity. However, it is unclear how this data supports the stated conclusion that the CC-domain is important for LasI cleavage.

      Our EMSA data shows that the CC domain contributes to the binding of ITS2 RNA (Figure 4D), suggesting that the CC domain may play a role of ITS2 RNA stabilization in the Las1 cutting reaction. The in vitro RNA cleavage assays (Figure 4C) indicate that the LCT is important for Las1 cleavage because it plays a critical role in the formation of the Las1-Grc3 complex. Compared with LCT, the CC domain, although not particularly important for Las1 cutting ITS2, still has some influence (Fig 4C, sample 1 and 3, sample 2 and 4,). Therefore, we conclude that the CC domain may mainly play a role in the stabilization of ITS2 RNA, thereby enhancing ITS2 RNA cleavage.

      • The authors conclude that the HEPN domains undergo a conformational change upon Grc3 binding, which is important for stabilization of the Las1 active site and Grc3-mediated activation of Las1. This conclusion is based on structural comparison of the HEPN domains from the CjLas1-Grc3 complex (PDB:7Y17) and the structure of the isolated HEPN domain dimer (PDB:7Y16). However, it is also possible that the conformational changes observed in the HEPN domain are due to truncation of the Las1 CC and CGT domains. A rationale for excluding this possibility would have strengthened this section of the manuscript.

      We thank the reviewer for pointing out this issue. We agree that the complete Las1 structure information is helpful in illuminating the conformational activation of the Las1 by Grc3. We screened about 1200 crystallization conditions with full-length Las1 proteins, but ultimately did not obtain any crystals, probably due to flexibility. The CC domain exhibits a certain degree of flexibility, which has not been observed in the structure obtained from electron microscopy. The LCT is involved in binding to the CTD domain of Grc3. The coordination of the active center of HEPN domains by LCT and CC domains is unlikely due to the limited nuclease activity observed in full-length Las1. The conformational changes of the active center are essential for HEPN nuclease activation. Our structure shows that the GCTs of Grc3 interact with the active residues of Las1 HEPN domains, which probably induce conformational changes in the active center of the HEPN domain to activate Las1. Of course, we cannot exclude the possibility that truncation of the Las1 CC and LCT domains will result in little conformational change in the HEPN domains. We have explained this possibility in our revised manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1) It would be very useful to show the cryoEM densities when describing the catalytic site and C-terminal domain interactions.

      The new Figure 5-figure supplement 2 have showed the Cyro-EM densities of the catalytic site of ScLas1 and the C-terminal domain of ScGrc3.

      2) "ScLas1 cleaves the 33-nt ITS2 at C2 site to theoretically generate a 10-nt 5′-terminal product and a 23-nt 3′-terminal product (Figure 1A). Our merger data shows that the final 5′-terminal and 3′-terminal product bands are at nearly the same horizontal position on the gel (Figure 1B), indicating that they are similar in size." These two sentences seem to contradict, i.e. 10-nt and 23-nt are similar in size even though they are different lengths?

      We apologize for the contradiction in these two sentences mentioned above. We have re-wrote these two sentences in the revised manuscript.

      3) We observed four cleavage bands of approximately 23-nt (P2), 14-nt (P3), 10-nt (P1), and 9-nt (P4) in length (Figure 1C). "

      Figure 1C. The bands show 23 nt, 22 nt, 21nt, 14 nt, 13nt, and 11nt, so this text does not seem to describe the figure.

      We have re-wrote this sentence in the revised manuscript.

      4) "We obtained similar cleavage results with a longer 81-nt ITS2 RNA substrate 6 (Figure 1D, E). " Figure 1D,E. The lengths in Figure 1E do not correspond to all bands in Figure 1E, e.g. the 13 nt band, though the others do, e.g. 14 nt, 30nt, 37nt, etc.

      In order to better evaluate the size of the cut product, we used an RNA marker as a comparison. The RNA marker will have more bands than the cleavage products. To further confirm the cleavage site of C2′, we also mapped the cleavage sites of the 81-nt ITS2 using reverse transcription coupling sequencing methods (Figure 1F).

      5) In Figure 3, domains are colored different but it's hard to know which are different proteins.

      We have added a diagram in Figure 3 to show the Las1-Grc3 complex structure, and it is now clear how Las1 and Grc3 are assembled into a tetramer.

      6) Line 267. "we screened a lot of crystallization conditions with full-length Las1 proteins" How many? Rough numbers ok, but 'a lot' is not very informative

      We have provided the approximate numbers of crystallization conditions in our revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      1) The authors missed an excellent opportunity to compare and contrast the ScLas1-Grc3 and CjLas1-Grc3 complex structures presented here with that of the previously determined CtLas1-Grc3 structure (Pillon et al., 2019, NSMB). For example, His130 in the ScLas1-Grc3 complex active site adopts a similar conformation to His142 in the TcLas1-Grc3 complex active site (Pillon et al., 2019, NSMB). Interestingly, the analogous His134 active site residue in the CjLas1-Grc3 adopts an alternative (maybe inactive) conformation. This observation could provide a structural rationale for the activation of scLas1 and TcLas1 by Grc3, while also providing a rationale for the fairly weak activation of CjGrc3 by CjGrc3.

      We thank the reviewer for this suggestion. We have performed structural comparisons between ScLas1-Grc3, CjLas1-Grc3 and CtLas1-Grc3 complexes, especially the Las1 nuclease active center. We added two figures (Figure7-figure supplement 3A and 3B) in the revised manuscript to contrast and highlight the conformational differences of active amino acids in active centers between ScLas1-Grc3, CtLas1-Grc3 and CjLas1-Grc3. These structural comparisons provide stronger evidence that further reinforces the conclusions of our manuscript.

      2) Can the authors speculate as to whether the structural data can provide any insight into how the Las1-Grc3 may cleave both C2 and C2' positions in the ITS2 RNA? This commentary would further strengthen the discussion section of the manuscript.

      We thank the reviewer for this suggestion. We have provided a speculation in the discussion section of the revised manuscript.

      We think that the structural data may provide some insight into how Las1-Grc3 complex cleaves ITS2 RNA at both C2 and C2' positions. The Las1-Grc3 tetramer complex has one nuclease active center and two kinase active centers. The nuclease active center consists of two Las1 molecules in a symmetric manner, while the kinase active center consists of only one Grc3 molecule. The ITS2 RNA is predicted to form a stem-loop structure. The symmetrical nuclease active center recognizes the stem region of ITS2 RNA and makes it easy to perform C2 and C2' cleavages on both sides of the stem. C2 and C2' cleavage products are further phosphorylated by two Grc3 kinase active centers, respectively.

      3) The method used for the plasmid generation, expression, and purification of the Las1 truncations and the Las1 and Grc3 point mutants should be provided in the methods section.

      The method used for the plasmid generation, expression, and purification of the Las1 truncations and the Las1 and Grc3 point mutants have be provided in the methods section.

      4) The exact amino acid cutoffs for the truncated forms of Las1 used for the biochemical assays in Fig. 4 should be provided.

      We have provided the exact amino acid cutoffs for the truncated forms of Las1 in the figure legend of Figure 4C.

      5) The models associated with the cryo-EM datasets should be deposited in the PDB.

      The models associated with the Cryo-EM datasets have be deposited in the PDB with the following accession codes: 8J5Y (ScLas1-Grc3 complex), and 8J60 (CjLas1-Grc3 complex).

      6) Lines 232-234: Arg129 should be changed to His134.

      We have corrected it.

      7) Figure 5B: the bottom half of the HEPN active site has been labeled incorrectly. The labels should be Arg129, His130, and His134 (from left to right).

      We have corrected it.

      8) Line 252: "multitudinous" should be changed to "multiple."

      We have corrected it.

    1. Author Response

      We are grateful to the reviewers for their thorough and thoughtful critiques, including their agreement on the significant value of this dataset. We intend to respond to their comments in full with a revision in the near future. However, we would like to make an initial comment at this stage. A key concern raised by the reviewers was that the analyses described do not adequately support the claim that "movie-watching data can identify retinotopic regions" (quoted from R2, similar sentiment expressed by R1). To be clear, we agree with this assessment. Our primary aim was not to identify visual areas with movie-watching data. Rather, our focus was on how movies can reveal fine-grained organization in infant visual cortex, which would support their potential utility for understanding the development of dynamic visual processing. To demonstrate this potential, we tested and found that maps of visual activity generated from movies are significantly similar to those generated by a retinotopy task. Nevertheless, we did not intend to argue that movie-based maps are sufficiently accurate to replace task-based retinotopic maps when defining visual areas, nor did we test this possibility. We accept that this point was unclear in the original manuscript and will make edits to avoid this miscommunication. We also plan to incorporate the reviewers’ many other helpful recommendations, including addressing concerns about the clarity of the presentation and double dipping, as well as adding several new analyses we hope will provide greater confidence in the findings and interpretation.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like the reviewers for their positive and useful comments. Below please find our answers to the issues raised.

      Reviewer #1 (Public Review):

      Overall, the experiments are well-designed and the results of the study are exciting. We have one major concern, as well as a few minor comments that are detailed in the following.

      Major:

      1) The authors suggest that "Visuomotor experience induces functional and structural plasticity of chandelier cells". One puzzling thing here, however, is that mice constantly experience visuomotor coupling throughout life which is not different from experience in the virtual tunnel. Why do the authors think that the coupled experience in the VR induces stronger experience-dependent changes than the coupled experience in the home cage? Could this be a time-dependent effect (e.g. arousal levels could systematically decrease with the number of head-fixed VR sessions)? The control experiment here would be to have a group of mice that experience similar visual flow without coupling between movement and visual flow feedback.

      Either change would be experience-dependent of course, but having the "visuomotor experience dependent" in the title might be a bit strong given the lack of control for that. We would suggest changing the pitch of the manuscript to one of the conclusions the authors can make cleanly (e.g. Figure 4).

      Although the plasticity is induced by the visuomotor experience in the tunnel, we agree that we do not know what aspect of the repeated exposure to the virtual tunnel caused the plasticity. We cannot rule out that it was the exposure to the visual stimuli alone that caused it. Therefore, we rephrased sentences that suggested that it was the coupling between visual stimuli and motor behavior that was responsible for the plasticity. We also changed the title to “Experience Shapes Chandelier Cell Function and Structure in the Visual Cortex”.

      We do believe that training the mice in the virtual tunnel does significantly increase experience with coupled visuomotor activity, though. In their home cage, mice are mostly active in the dark and there is litle space to run.

      Minor:

      2). "ChCs shape the communication hierarchy of cortical networks providing visual and contextual information." We are not sure what this means.

      We thank the reviewer for helping to raise clarity and we rephrased this sentence to: “…ChCs may establish a hierarchical relationship among cortical networks.”

      3) "respond to locomotion and visuomotor mismatch, indicating arousal-related activity" This is not clear. We think we understand what the authors mean but would suggest rephrasing.

      Agreed. We rephrased this sentence to: "...respond to events that are known to increase arousal levels, such as locomotion and visuomotor mismatch.”

      4) 'based on morphological properties revealed that 87% (287/329) of labeled neurons were ChCs" Please specify the morphological properties used for the classification somewhere in the methods.

      We added that the neurons were positioned at the border of L1 and L2 and had a dendrite reaching into layer 1.

      5) We may have missed this - in the patch clamp experiment (Fig.1 H-K), please add information about how many mice/slices these experiments were performed in.

      We have added the information to the legend of Fig. 1.

      6) "These findings suggest that the rabies-labeled L1-4 neurons providing monosynaptic input to ChCs are predominantly inhibitory neurons". We are not sure this conclusion is warranted given the sparse set of neurons labelled and the low number of cells recorded in the paired patch experiment. We would suggest properly testing (e.g. stain for GABA on the rabies data) or rephrasing.

      We weakened the statement to: “These findings suggest that the rabies-labeled L1-4 neurons providing monosynaptic input to ChCs may include many inhibitory neurons.”

      7) Figure 2E. A direct comparison of dF/F across different cell types can be subject to a problematic interpretation. The transfer function from spikes to calcium can be different from cell type to cell type. Additionally, the two cell populations have been marked with different constructs (despite the fact that it's the same GECI) further reducing the reliability of dF/F comparisons. We would recommend using a different representation here that does not rely on a direct comparison of dF/F responses (e.g. like the "response strength" used in Figure 3B). Assuming calcium dynamics are different in ChCs and PyCs - this similarity in calcium response is likely a coincidence.

      We have removed the quantification in this figure.

      8) If ChCs are more strongly driven by locomotion and arousal, then it's a bit counterintuitive that at the beginning of the visual corridor when locomotion speed consistently increases, the activity of ChCs consistently decreases. This does not appear to be driven by suppression by visual stimuli as it is present also in the first and last 20cm of the tunnel where there are no visual stimuli. How do the authors explain this?

      We do believe that this is suppression driven by visual stimuli. Although on average the strongest visual suppression happens between 20-80 cm, neurons that have their receptive fields toward the center of the visual field will already respond to the stimuli before the mouse reaches the 20 cm location of the tunnel. In addition, although the visual stimuli are the strongest sensory inputs, the background of the visual part of the tunnel has a black and white noise patern, which might already mildly suppress ChC activity. Both arguments are supported by the observation that the visual PyCs (V-PyCs, blue line) in Fig. 4D are already activated at the beginning of the tunnel and that the activity of V-PyCs matches well with the suppression of ChC activity.

      9) The authors mention that "ChC responses underwent sensory-evoked plasticity during the repeated visual exposure, even though the visual stimuli were different from those encountered during training in the virtual tunnel". How would this work? And would this mean all visual responses are reduced? What is special about the visual experience in the virtual tunnel? It does not inherently differ from visual experience in the home cage, given that the test stimuli (full field gratings) are different from both.

      As mentioned in our answer to point 1, the exposure to visual stimuli is strongly increased since, firstly, they are presented during the dark phase when the mice are most active and, secondly, they do not get these types of visual inputs in their home cage.

      10) Just as a point to consider for future experiments: For the open-loop control experiments, the visual flow is constant (20cm/s) - ideally, this would be a replay of the running speed the mouse previously generated to match statistics.

      We agree with this point and will implement replay of earlier sessions in future experiments.

      11) We would recommend specifying the parameters used for neuropil correction in the methods section.

      This is described on page 24, under “preprocessing”. We also refer to the analysis package (Spectral Segmentation - SpecSeg) in which the neuropil correction as used by us here is explained in more detail.

      12) If we understand correctly, the F0 used for the dF/F calculation is different from that used for division. Why is this?

      We apologize for this mistake, which was based on an older version of the software. We have now corrected this in the revised manuscript.

      13) Authors compare neuronal responses using "baseline-corrected average". Please specify the parameters of the baseline correction (i.e. what is used as baseline here).

      In the revised version we have now beter explained this in the methods, page 24, under “Passive Sessions”.

      Reviewer #2 (Public Review):

      Summary:

      Seignete et al. investigated the potential roles of axo-axonic (chandelier) cells (ChCs) in a sensory system, namely visual processing. As introduced by the authors, the axo-axonic cell type has remained (and still is) somehow mysterious in its function. Seignete and colleagues leveraged the development of a transgenic mouse line selective for ChC, and applied a very wide range of techniques: transsynaptic rabies tracing, optogenetic input activation, in vitro electrophysiology, 2-photon recording in vivo, behavior and chemogenetic manipulations, to precisely determine the contribution of ChCs to the primary visual cortex network.

      The main findings are 1) the identification of synaptic inputs to ChC, with a majority of local, deep layer principal neurons (PN), 2) the demonstration that ChC is strongly and synchronously activated by visual stimuli with low specificity in naive animals, 3) the recruitment of ChC by arousal/visuomotor mismatch, 4) the induction of functional and structural plasticity at the ChC-PN module, and, 5) the weak disinhibition of PNs induced by ChCs silencing. All these findings are strongly supported by experimental data and thoroughly compared to available evidence.

      Strengths:

      This article reports an impressive range of very demanding experiments, which were well executed and analyzed, and are presented in a very clear and balanced manner. Moreover, the manuscript is well- writen throughout, making it appealing to future readers. It has also been a pleasure to review this article.

      In sum, this is an impressive study and an excellent manuscript, that presents no major flaws.

      Notably, this study is one of the first studies to report on the activities and potential roles of axo-axonic cells in an active, integrated brain process, beyond locomotion as reported and published in V1. This type of research was much awaited in the fields of interneuron and vision research.

      Weaknesses:

      There are no fundamental weaknesses; the later mainly concern the presentation of the main results. The main weakness may be that the different sections appear somehow disconnected conceptually.

      Additionally, some parts deserve a more in-depth clarification/simplification of concepts and analytic methods for scientists outside the subfield of V1 research. Indeed, this paper will be of key interest to researchers of various backgrounds.

      Reviewer #3 (Public Review):

      Summary:

      The authors set out to characterize the anatomical connectivity profile and the functional responses of chandelier cells (ChCs) in the mouse primary visual cortex. Using retrograde rabies tracing, optogenetics, and in vitro electrophysiology, they found that the primary source of input to ChCs are local layer 5 pyramidal cells, as well as long-range thalamic and cortical connections. ChCs provided input to local layer 2/3 pyramidal neurons, but did not receive reciprocal connections.

      With two-photon calcium imaging recordings during passive viewing of drifting gratings, the authors showed that ChCs exhibit weakly selective visual responses, high correlations within their own population, and strong responses during periods of arousal (assessed by locomotion and pupil size). These results were replicated and extended in experiments with natural images and prediction of receptive field structure using a convolutional neural network.

      Furthermore, the authors employed a learned visuomotor task in a virtual corridor to show that ChCs exhibit strong responses to mismatches between visual flow and locomotion, locomotion-related activation (similar to what was shown above), and visually-evoked suppression. They also showed the existence of two clusters of pyramidal neurons with functionally different responses - a cluster with "classically visual" responses and a cluster with locomotion- and mismatch-driven responses (the later more correlated with ChCs). Comparing naive and trained mice, the authors found that visual responses of ChCs are suppressed following task learning, accompanied by a shortening of the axon initial segment (AIS) of pyramidal cells and an increase in the proportion of AIS contacted by ChCs. However, additional controls would be required to identify which component(s) of the experimental paradigm led to the functional and anatomical changes observed.

      Finally, using a chemogenetic inactivation of ChCs, the authors propose weak connectivity to pyramidal cells (due to small effects in pyramidal cell activity). However, these results are not unequivocally supported, as the baseline activity of ChCs before inactivation is considerably lower, suggesting a potentially confounding homeostatic plasticity mechanism might already be operating.

      Strengths:

      The authors bring a comprehensive, state-of-the-art methodology to bear, including rabies tracing, in vivo two-photon calcium imaging, in vitro electrophysiology, optogenetics and chemogenetics, and deep neural networks. Their analyses and statistical tests are sound and for the most part, support their claims. Their results are in line with previous findings and extend them to the primary visual cortex.

      Weaknesses:

      • Some of the results (e.g. arousal-related responses) are not entirely surprising given that similar results exist in other cortical areas.

      We agree that previous studies have shown arousal-related responses of ChC cells and our study confirms those findings. However, this is not the main message of the article and we present many findings that are novel.

      • Control analyses regarding locomotion paterns before and atier learning the task (Figure 5), and additional control experiments to identify whether functional and anatomical changes following task learning were due to learning, repeated visual exposure, exposure to reward, or visuomotor experience would strengthen the claims made.

      In figure 5 we excluded running trials, so locomotion paterns are unlikely to play a major role. We agree that testing what are the factors that contribute to the observed plasticity are important to investigate in future experiments.

      • The strength of the results of the chemogenetics experiment is impacted by the lower baseline activity of ChCs that express the KORD receptor. At present, it is not possible to exclude the presence of homeostatic plasticity in the network before the inactivation takes place.

      Although we do not know why there is a difference in the baseline df/f (e.g. expression levels), we consider it unlikely that expression of the KORD receptor itself without exposure to the ligand causes reduction of ChC activity. Moreover, we are not sure how homeostatic plasticity in the network would occur selectively in KORD-expressing ChCs. Finally, we do not find evidence for a relationship between lower ChC calcium signals and the effects of ChC silencing on PyC activity. We performed an additional analysis in which we correlated baseline ChC activity (before salvinorin B injection) with the effect of ChC silencing on PyC activity (post – pre) across mice, and found that this correlation was not significant (R = 0.41, p = 0.18).

      Reviewer #1 (Recommendations For The Authors):

      In the spirit of openness of the scientific discussion, all our feedback and recommendations to the authors are included in the public reviews.

      Reviewer #2 (Recommendations For The Authors):

      Most of my comments and suggestions concern the presentation of the data, to (hopefully) help and convey as clearly as possible the messages of this important article.

      Main

      The main weakness of the paper may be that the different sections appear somehow disconnected conceptually. This is particularly true for:

      -structural plasticity: how can we link this finding with the rest of the study? Are there ways to correlate this finding with physiological recordings in individual animals, or to directly test whether particular functional types of PNs (visual, non-visual) undergo plasticity at their AIS?

      This is a very interesting question that may be addressed in future experiments.

      -the indirect finding suggesting that ChC weakly inhibits PNs using chemogenetic silencing of PNs. Do chemogenetic manipulations of ChCs affect PN responses in visual paradigm and/or modify the induction of structural plasticity at the ChC-AIS connection?

      This is also a very interesting question for future work.

      Additionally, some parts would deserve a more in-depth clarification/simplification of concepts and analytic methods (OSI, DSI, MEI...) for scientists outside the subfield of V1 research. Indeed, this paper will be of key interest to researchers of various backgrounds.

      In the revised manuscript we briefly explain what an MEI is when first introduced, and introduce the abbreviations OSI and DSI at the correct location. We believe orientation and direction selectivity are well-known concepts for the audience reading this article.

      Minor

      These are discussed by order of appearance in the text.

      Abstract

      The alternative interpretation of error/mismatch negativity to explain ChC activation deserves to appear in the abstract. Arousal consistency in prediction should be in the introduction. "In mice running in a virtual tunnel, ChCs respond strongly to locomotion and halting visual flow, suggesting arousal-related activity."

      This comment holds for the end of the introduction and the beginning of the discussion, as well.

      "These findings suggest that ChCs provide an arousal-related signal to layer 2/3 pyramidal cells that may modulate their activity". This statement appears to be in contradiction with the weak effect mentioned just before. This comment holds for the end of the introduction.

      The full sentence was: “These findings suggest that ChCs provide an arousal-related signal to layer 2/3 pyramidal cells that may modulate their activity and/or gate plasticity of L2/3 PyCs in V1.” Our results show that activity of layer 2/3 pyramidal cells is modulated (albeit weakly) and it is well possible that ChCs regulate plasticity at the AIS. Therefore, we do not believe that this statement contradicts the weak direct effect of ChCs on layer 2/3 pyramidal cell activity. Therefore , we think that this statement does not contradict the weak direct effect of ChCs on layer 2/3 pyramidal cell activity.

      We changed the last sentence of the introduction to “Our findings suggest that ChCs predominantly respond to arousal related to locomotion or unexpected events/stimuli, and act to weakly modulate activity and/or gate plasticity of L2/3 PyCs in V1.”

      Introduction First paragraph

      Coming from a field outside of vision research, it is not obvious to me what has been learned from interneuron classes in the past. An example would be welcome in the introduction.

      The literature on the role of different interneuron types in visual processing and plasticity is too large to pick one or two examples. For the sake of conciseness, we have therefore provided some important references and reviews for the interested readers (references 1 to 10).

      Interneuron "subtypes" seem to refer to main classes (e.g. PV+): please rephrase accordingly (ChC being a type and PV+ ChC a subtype).

      We changed interneuron “subtypes” to “types” and left L2/3 pyramidal cell “subtypes” unchanged.

      Second paragraph

      Beyond the reversal potential of GABA-ARs at the axon initial segment, GABA may inhibit action potential generation in various conditions (Lipkin et al. 2023, DOI: 10.1523/JNEUROSCI.0605-23.2023 : should be cited).

      We added this citation.

      Fourth paragraph

      "ChCs alter the number of synapses at the AIS based on the activity of their postsynaptic targets": the concept of alteration is too vague to let the reader grasp the concept: could the authors rephrase?

      We have rephrased the sentence to:

      “…ChCs increase the number of synapses at the AIS if their postsynaptic targets are chemogenetically activated…”

      Results 1) ChCs receive input from long-range sources and L5 PyCs in V1 It is not clear how morphological identification of ChC was performed. Did dendrites and/or axons of starter cells occasionally overlap as can be expected, complicating the cell-by-cell morphological classification?

      "Most labeled neurons were located on the border between L1 and L2/3 and displayed typical ChC morphology": maybe clarify that this concerns neurons expressing eYFP-TVA?

      We assessed the location (at the border of L1 and L2) and spatial distribution of the labeled cells and whether they had a dendrite extending upwards towards into L1. We have now indicated this in the results section and clarified that these neurons express eYFP-TVA.

      -Likewise the following would benefit from clarification " This is further supported by the distributed localization of the labeled neurons": it would also help here to remind the reader of the labelling (presumably retrogradely-labeled mCherrry+ neurons).

      We have now clarified in the text that these are mCherry+ neurons labeled by the rabies virus

      2) Chandelier cells are modulated by arousal and show high correlations

      -The authors indicate that the results "(suggest) that ChCs distribute a synchronized signal during high arousal." : it would be stronger to defend this claim by showing a higher ChC-ChC correlation during "arousal" vs. baseline (i.e. analyze high arousal epochs outside of movement). It may be difficult to perform this analysis due to low fluorescence changes outside running episodes, but this should be discussed accordingly. In this respect, the title of the section is more in line with the data presented.

      We believe our statement is correct. The activity of ChCs is highly synchronized and their firing rates increase during arousal. We do not state that synchronization increases with arousal.

      -A brief explanation of DSI and OSI meaning would be nice for the audience that will definitely extend beyond vision research given the importance of this study.

      See above

      3) ChCs are weakly selective to visual information

      -I may very well miss the point, but the equivalence in response strength among cell classes (Fig3B) seems inconsistent with the wider distribution of high response strength in ChCs (Fig3C). Perhaps a graphical representation taking into account the distribution of single data points in Fig3B would help resolve this discrepancy.

      This is because in panel C the response strengths are normalized. We now also state this in the legend to avoid confusion.

      -"clearly oriented edge-like paterns with sharp ON and OFF regions": it would help if a representative example was highlighted in Figure 3F.

      The majority of L2/3 pyramidal MEIs presented in this panel show this patern.

      -It is interesting and surprising that properties of ChCs appear more distinct from those of L5 PNs than from those of L2-3 PNs (Fig 3G-J), given the fact that V1 ChCs were found by the authors to derive their inputs from V1 L5 PNs (please see comments of the discussion for this specific point).

      How ChCs respond based on L5 input depends strongly on how the connections between L5 and ChCs are organized. Similarity between responses of L5 and ChC neurons is not required.

      4) Locomotion and visuomotor mismatch drive chandelier cell activity in a virtual tunnel This is the least convincing part in terms of presentation.

      -It is unclear where/when visuomotor mismatch has been induced in the tunnel: please clarify in the text and in Fig 4B.

      We realized that the title of the paragraphs was indeed confusing. In fig. 4A-D and the first paragraph about the virtual tunnel, we do not discuss the visuomotor mismatch. This comes later, when we describe the results in Fig. 4E. The titles have been changed.

      -No result on visuomotor mismatch is reported in the text of this section, while this is presented in the subsequent section: this needs to be corrected (merge this section with the next?).

      We agree, apologies for the confusion. See above.

      -It would be interesting to further analyze responses to CS and US. Regarding the US: is water rewarding in non-water-restricted mice? This should be mentioned.

      We realized that we did not mention that the mice were water restricted during behavioral training and during the imaging sessions when mice performed the virtual tunnel task. We have now added this to the methods section. Sorry for the omission.

      -Along this line: was water sometimes omited? This would provide a complementary way to test the prediction error theory for ChC activation with an alternative modality.

      We never omited the water reward. It would be interesting to test this in a future experiment.

      5) ChCs have similar response properties as non-visual PyCs

      • It would help to explicitly mention that in Ai65 mice, only Cre and Flp+ cells express tdTomato (here Vipr2 and PV+).

      We added the following sentence: “In these mice, tdTomato was only expressed in cells expressing both Vipr2 and PV.”

      6) Visuomotor experience in the virtual tunnel induces plasticity of ChC-AIS connectivity

      • In relation to the previous section, Jung et al. (doi.org/10.1038/s41593-023-01380-x) recently reported that motor learning reduced ChC-ChC synchrony in M2. Did the author observe a similar change in ChC- ChC synchrony with visual experience/habituation to the task? If available, these data should be reported to help build a clearer picture of ChC functions in the neocortex.

      We tested this and also found reduced correlations between ChCs in trained mice vs naïve mice. We added this as text on p14 in the results section.

      • The low number of ChC boutons' appositions per AIS may be misleading: "While the average number of ChC boutons per AIS remained constant (~2-3 ChC boutons/AIS)"). It would be helpful to make it clear that these are "virally" labelled boutons, as opposed to absolute numbers, if compared with the detailed quantification of Schneider-Mizell et al, 2021 (7.4 boutons per AIS in average; doi: 10.7554/eLife.73783.).

      We added "virally labeled"

      • It may be difficult to clearly isolate boutons in light microscopic images of ChC boutons. could the authors comment on this and explain how they solved this issue (in the methods section for instance)?

      We elaborated on our definition of a bouton under confocal microscopy conditions. We also added that the analysis was performed under blinded conditions for the experimenter (i.e. the experimenter did not know whether the images came from trained or untrained mice).

      • Is there any suggestion for heterogeneity/selectivity for a subset of PNs (the distribution does not seem to show this, though)? It would be interesting to discuss this and try to link this finding to the rest of the study a bit more directly. Future work could also investigate if genetically defined PN types undergo different pre-synaptic plasticity at their AISs (e.g. work cited by the authors by O'Toole et al, 2023 doi: 10.1016/j.neuron.2023.08.015 -this reference can be updated as well, since the work has been published in the meantime).

      In our data, we did not find evidence for heterogeneity or selectivity of targeting, also not in the physiology using KORD (see below). We do agree that it is an interesting question and deserves atention in future experiments. We also updated the reference.

      7) ChCs weakly inhibit PyC activity independent of locomotion speed

      The authors state that "recent work in adult mice has reported hyperpolarizing and shunting effects in prelimbic cortex, S1 and hippocampus (18, 26, 27)": however, to my knowledge studies presented in refs 26 & 27 found reduced activity/firing of PNs upon optogenetic activation of ChCs in vivo, but did not perform intracellular recordings to assess GABA-A reversal potential at the AIS. I would like to kindly ask the authors to correct this sentence.

      If the polarity of responses is discussed, they may rather refer to the corresponding literature including Rinetti Vargas et al (doi: 10.1016/j.celrep.2017.06.030), Lipkin et al (doi: 10.1523/JNEUROSCI.0605- 23.2023), and Khirug et al (doi: 10.1523/JNEUROSCI.0908-08.2008.).

      We added the reference to Lipkin et al and changed the sentence so that it matches the references..

      • In an atempt to link findings from several parts of the article, did the authors investigate whether chemogenetic effects were different in visual vs non-visual PNs? As ChCs are functionally related to visual PNs, one might indeed speculate that these cells are synaptically connected.

      We did not find evidence for selectivity in the chemogenetic effect. We compared the chemogenetic effect to locomotion modulation (see text accompanying Fig 7.) – based on our observation that non- visual PyCs were more strongly modulated by locomotion (see Fig. 4) – but did not find any significant correlation.

      • " We first looked at the average activity of neurons in both essions.": sessions

      Thank you for noticing. We corrected this.

      Discussion

      Summary of findings

      -It would be worthwhile to include in the summary the finding of mismatch-related activity, that appears to explain more convincingly ChC activation than arousal per se (with the data available).

      We updated the summary of the discussion accordingly.

      -Moreover, the last part of the article (weak inhibition of PNs by ChCs), despite being very important, is not mentioned.

      We now mention this in the summary of the discussion (“Finally, ChCs only weakly inhibit PyCs.”)

      Discussion of findings

      -" Optogenetic activation of cortical feedback": it is not clear what the authors mean by cortical feedback. As RS was retrogradely labeled, this region may rather provide feedforward inhibition to V1 via ChCs.

      Retrosplenial cortex is a higher order cortical area and only provides feedback to V1.

      -"This means that each ChC receives input from many L5 PyCs, which could explain the low selectivity of ChC responses we observed to natural images compared to those of L2/3 and L5 PyCs". : perhaps state explicitly that the convergence of many PN inputs each carrying different RF/visual properties "averages out" in ChC (as you do a few lines below for MEI).

      At this point, we do not know how the connections from L5 to ChCs are organized. Whether this converge results in “average out” is therefore not so certain. We have made an atempt to clarify the situation. (“This convergence of L5 PyC inputs, if not strongly organized, could explain the low selectivity of ChC responses we observed to natural images compared to those of L2/3 and L5 PyCs.”)

      -"However, we did not identify neuromodulatory inputs to ChCs in our rabies tracing experiment. Possibly, these inputs act predominantly through extrasynaptic receptors and were therefore not labeled by the transsynaptic rabies approach.": here, the authors should cite the work by Lu et al (doi: 10.1038/nn.4624) which found basal forebrain (diagonal band of Broca) cholinergic inputs to ChC of the PFC in the Nkx2.1CreER mouse model. Moreover, the authors should discuss potential technical differences (?) responsible for this discrepancy. Beyond the extrasynaptic release of neuromodulators, rabies strains may display different tropism profiles for neuron classes.

      We have now added a sentence discussing this and added the reference in the revised manuscript.

      -The section dedicated to prediction error is particularly interesting and relevant. In my opinion, this interpretation should be further emphasized in the abstract and summary of findings paragraph in the discussion (as already indicated).

      Yes, we agree and have added some emphasis.

      -" These findings are thus in contrast with the general notion that ChCs exert powerful control over PyC output (28, 78), but consistent with computational simulations predicting a relatively small inhibitory effect of GABAergic innervation of the AIS, possibly involving shunting inhibition (79, 80)." These findings are also consistent with results from PFC and dCA1 studies showing, with electrophysiological recordings combined with optogenetic stimulation of ChCs, that a small proportion of putative PNs was inhibited upon ChC stimulation (doi: 10.1038/nn.4624 doi: 10.1016/j.neuron.2021.09.033).

      Perhaps the effect of ChCs is limited in all these experiments by a suboptimal efficiency of ChC targeting. Moreover, inhibition might be restricted to a subset of PNs carrying a specific function. This could be discussed.

      We added an explanation for the weak effects of silencing to the discussion and stated that our results are in line with findings in PFC and CA1. (“One explanation for the weak effects we observed is the high variability in the number of GABAergic boutons that PyCs receive at their AISs. Possibly, only a smaller fraction of PyCs with high numbers of AIS synapses are inhibited when ChCs are active. Indeed, we find that only a small fraction of PyCs increased their activity upon chemogenetic silencing of ChCs, in line with findings by others showing that manipulating ChC activity in vivo has relatively weak effects on small populations of PyCs (27, 28).”)

      Although we cannot rule out that ChC targeting is suboptimal in our and other experiments, the expression of the KORD receptor as visualized by mCyRFP1 fluorescence appeared very strong. In addition, the common notion in the ChC field is that ChCs exert powerful control over PyC firing. Even suboptimal labeling should in that case show clear inhibitory effects. Similar experiments with PV+ interneurons would show very convincing inhibition, even if labeling is suboptimal. To keep the discussion concise, we prefer to leave this particular point out.

      -" ChC activation could prevent homeostatic AIS shortening of L2/3 PyCs if their activity occurs during behaviorally relevant, arousal inducing events": this postulate seems to be very interesting but is not very clear and lacks some mechanistic speculation.

      We considered elaborating more on this hypothesis. However – given that it is merely a speculation at this point – we do not wish to lengthen the discussion further on this point.

      • A reference to previous studies demonstrating high levels of synchronous ChC activities is missing: the authors may cite Dudok et al., Schneider-Mizell et al., and Jung et al. (and discuss a change in synchrony with learning or habituation in the case of this study; see above).

      We have now also referred to these papers in the context of high correlations between ChCs.

      Methods

      Beyond references to reagents (eg antibodies, viruses), lot numbers should be provided whenever this is possible. Indeed, there might be strong lot-to-lot variations in specificity and efficiency.

      Reviewer #3 (Recommendations For The Authors):

      Major:

      • (Figure 5) Control analysis missing. Mice before and after training in VR will almost definitely exhibit different running paterns when viewing driftng gratings. Since ChCs are strongly modulated by locomotion, assess whether results depend on changes in running.

      Although we did not compare locomotion paterns before and after training, we removed all trials in which the mice were running (see methods). Therefore, we can exclude that these results are caused by changes in running behavior.

      • (Figure 5 & 6) What would happen with simple passive visual experience, not in a visuomotor task? What if there was no reward? What if there was an open-loop experiment with random reward? To which specific aspect of the experiment are the results atributable?

      These are indeed very interesting questions that may be tested in future experiments.

      (Figure 7 B, H) The pre-injection ChC activity in the KORD group is less than 50% of that in control mice! Discuss the effect of such a shift in baseline. Plasticity of PyCs even before ChC inactivation?

      See answer to the above question in the public section of reviewer 3.

      • (Figure 3 H) Contrast tuning results, as far as I understand, come only from the CNN. However, if I understood correctly, during the passive viewing of gratings there were already different contrasts. Why not show contrast tuning there? Do the results disagree?

      We did indeed show stimuli at different contrasts during the passive viewing of gratings. Although the results from those recordings were not optimal for defining contrast sensitivity, they also showed that ChC responses were less modulated by contrast than PyCs.

      Minor: - (Figure 3) Explain the potential impact of different indicators 8m vs 6f due to different baselines and dynamics.

      We believe there is no impact of different indicators, because for the CNN analyses we estimated spikes using CASCADE. This toolbox is specifically designed to generalize across different calcium indicators. Although GCaMP8m was not included in their training set, the wide variety of indicators used provides a solid basis for generalizable spike estimation. Importantly, comparisons between L2/3 PyCs and ChCs also would not be affected by this concern.

      • (Figure 4) NV-PyCs. Would you call all of these mismatch-responsive neurons? Discuss the difference in the percentage of neurons (more than 50% of total PyCs here, compared to significantly less - up to 40% in previous studies, as far as I'm aware)

      Not all NV-PyCs appeared to be mismatch-responsive neurons.

      • (Figure 6 D) No error bars?

      This is a representation of the fraction of all contacted AISs, which has no error bars indeed.

      • (Figure 6 E-F and H-I) These pairs of panels contain essentially the same information. The first panel of each pair seems redundant.

      We prefer to keep both plots in place, as in this case the skewness of the histogram can be helpful, which is less clear in the boxplot (which in itself displays the quantiles beter).

      • The equation for direction tuning still has ang_ori, instead of ang_dir which I'm assuming should be there.

      Thank you for noticing, we corrected it.

      • The response for drifting gratings is calculated from a different interval (0.2-1.2s) compared to natural images (0-0.5s). Why?

      Because we used spike probability in the case of the natural images to shorten the signal, and the visual stimuli were presented for 0.5 s (instead of 1 s as with the gratings).

      Very minor:

      • It would be helpful for equations to have numbers.

      Done

      • Sparsity equation. Beter to have it as a general equation, with N instead of 40. Then below it can be explained that N is the number of images = 40.

      Done

      • "The similarity of these MEIs with those we found for ChCs is in line with the idea that ChCs are driven by input from a large number of L5 PyCs (but do not exclude alternative explanations)." - in parenthesis it should be does not exclude.

      Corrected.

      • "In contrast, the response strength of PyCs was only mildly and non-significantly reduced after training"

      • statistically non-significant..

      Corrected.

      "We first looked at the average activity of neurons in both essions." - sessions

      Corrected.

      • (Figure 7 C) Explain what points and error bars represent

      Done.

    1. Author Response

      Reviewer #2 (Public Review):

      The study from Gumaste et al investigates whether mice can use changes of intermittency, a temporal odor feature, to locate an odor source. First, the study tries to demonstrate that mice can discriminate between low and high intermittency and that their performance is not affected by the odor used or the frequency of odor whiffs. Then, they show that there is a correlation between glomerular responses (OSNs and mitral cells) and intermittency. Finally, they conclude that sniffing frequency impacts the behavioral discrimination of intermittency as well as its neural representation. Overall, the authors seek to demonstrate that intermittency is an odor-plume property that can inform olfactory navigation.

      The paper explored an interesting question, the use of intermittency of an odor plume as a behavioral cue, which is a new and intriguing hypothesis. However, it falls short in demonstrating that the animal is actually sensitive to intermittency but not other flow parameters, and is missing some important details.

      Major concerns

      1) One of the cornerstones of this paper consists in showing that mice are behaviorally able to distinguish among different intermittency values (high or low), across a variety of different stimuli and without confounds such as the number of whiffs or concentration. However, I could not find in the paper a convincing explanation of how these confounds were tested. It is clear that the authors repeat their measurements in different conditions (low or high concentration, and different whiff numbers) but it is not specified how: do the authors mix all stimuli in the same session, and so the animals simply generalize across all the stimuli and only consider intermittency for the behavioral choices? Or do authors repeat different sessions for different parameters? For example: do they perform two separate sessions with low concentration and high concentration? If this last one is the case, I would argue that this is not enough proof that animals generalize across concentrations, as the animals might simply use concentration as a cue and change the decision criteria at each session. Please clarify.

      We appreciate the reviewer pointing out our oversight in including this information in the manuscript. Trials of the two gain values (which modulate the maximum concentration) are presented interleaved within a session. These trials are solely separated for post-session analysis to test the effect of gain on animal performance. To make this point clearer we have included the following text on line 952 of the manuscript:

      “Additionally, trials of a gain of 0.5 and a gain of 1 are interwoven randomly during the session with each unique stimulus being presented at both a gain of 0.5 and 0.1. Thus, after the initial engagement trials, animals are presented with a total of 28 trials at a gain of 0.5 and 28 trials at a gain of 0.1.”

      Additionally, to address one of the reviewer’s overarching points, that the manuscript “falls short in demonstrating that the animal is actually sensitive to intermittency but not other flow parameters,” we would like to highlight that through our olfactometer design (described in the Olfactometer Design subsection of the Methods section and illustrated in Figure 1C) the flow rate is held constant throughout the experiment. To further ensure that the animal is not using flowrate or other experimental conditions to perform the task, we tested all animals on a “no odor” condition in which the vial of odor is replaced with a vial of mineral oil. In this condition, their hit rate significantly lowered, as shown in Figure 2C and described in Lines 240- 245:

      “Animals’ hit rate also significantly decreased when tested on the Go/No-Go task with the odor vial replaced with mineral oil (n=12 mice, two-sample t-test Naturalistic: odor hit rate = 0.87 ±0.01, no odor hit rate= 0.23 ±0.05, p<0.0001; two-sample t-test Binary Naturalistic: odor hit rate= 0.89±0.01, no odor hit rate= 0.18±0.07, p<0.0001; two-sample t-test Synthetic: odor hit rate= 0.86±0.007, no odor hit rate= 0.23±0.07, p<0.0001), confirming that mice are using odor to perform the task.”

      2) It looks to me that the measure of intermittency strongly depends on the set. What is the logic of setting a specific threshold? Do the results hold when this threshold changes within a reasonable range? The same questions (maybe even more important) go for the measure of glomerular intermittence. Unfortunately, a sensitivity analysis for both measures is missing, which makes it hard to interpret the results.

      We assume the reviewer suggests that we could have tested discrimination at various Intermittency thresholds. This is indeed wat we did, though not by varying the threshold parametrically (due to abovementioned time constraints), but rather qualitatively/categorically. We tested our mice on 3 stimulus "types" (Figure 1F): actual continuous plume concentration traces (naturalistic), thresholded traces (binarized by threshold 0.1) and square wave (odor agnostic periodic binary). Further, each was tested at 2 gain levels. Figure 2B demonstrates mice discriminate similarly across these 3 widely differing stimuli, while traces were spanning most of the range of possible intermittencies. Reducing the threshold by 1 or 2 orders would skew the range of trials toward many more CS+ trials. We hence conclude that the mice are robustly discriminating and that the paradigm chosen and its associated constraints provide a reasonable test of "intermittency space".

      We agree nonetheless that future work should address your suggestion directly by implementing an alternate paradigm. For example, in such a paradigm, mice may be trained to discriminate high vs low intermittencies at varying absolute levels (e.g. 1 vs 0.9 and 0.1 vs 0), etc., however that was well outside the scope of what we aimed to test.

      See Figure 1- Supplement 1A. We varied the threshold half a log unit around the 0.1 threshold used in the neuro-behavioral research. As expected, the higher the odor threshold, the more left-shifted the curve. You can see that the monotonic relationship is qualitatively the same across thresholds.

      3) The logic of choosing the decision boundary for the discrimination task is not clear: low intermittency is considered to be below 0.15 and high intermittency is considered to be between 0.2 and 0.8. Do these values correspond to natural intermittency distribution? How were these values chosen?

      Intermittency drops as function of distance from the source (downwind). It also has a close to normal (with kurtosis) distribution across wind, peaking at the center (see e.g. Crimaldi 2002, Connor 2018). So, animals may encounter any and all intermittencies (0-1). Given our Go/No-Go paradigm we had to set a CS-/CS+ boundary. Typically, to generate an adequate psychometric curve using this paradign, either the CS- or CS+ stimuli need to represent a wide range of values of which the animals are required to compare against a narrow range (or single value). Again, bounded by effective behavioral paradigm design, the number of CS+ and CS- trials need to be even in order to appropriately motivate animals to engage in the task. Thus, considering the entire range of intermittency values animals can encounter while navigating through a plume in conjunction with effective behavioral design, we arrived at our chosen values for low and high intermittency.

      As you can see in Figure 1- Supplement 1A (and also reviewer #1, comment 2), I=0.15 is roughly at the knee where the monotonic decrease begins to asymptote. This is roughly true for all 3 concentration thresholds. Consequently, I=0.2-0.8 effectively samples the region where intermittency clearly relates to distance to the source, which is where we hypothesize animals.

      4) Only 2 odors were used in the whole study and some results were in disagreement between the two odors. By looking at only two odors it is very difficult to make a general conclusion about intermittency encoding in the OB.

      We agree 2 odors are limited, but we were constrained in terms of number of tests that we could run on our cohort of animals. Nonetheless intermittency of both odors is clearly discriminable. As explained to comment 3 by Reviewer 1:

      “We indeed considered several odorants and associated properties. Given time constrains we were limited to 2 stimuli of which we had to vary many parameters (type, I, gain, sniffing) in assessing both discrimination and neural processing.”

      “Additionally, these two odorants recruit glomeruli in different regions of the dorsal olfactory bulb, have different functional groups and elicit different spatiotemporal response properties in the olfactory bulb (Figure 6- figure supplement 1A, stated on line 507). Both odorants are fruit-associated odors with neutral preference indices (Saraiva et al., 2016, Fletcher, 2012). Thus, while we do not explore a panel of odorants, we do explore the generalizability of intermittency processing with two distinct odorants.”

      We decided to test 2 monomolecular odorants (2-heptanone and methyl valerate) as these have been widely used in rodent olfactory bulb imaging, providing distinct and clear glomerular response patterns. They are both fruity smelling odors, implying a relationship to edible food (at least, for humans). Methyl valerate is a methyl ester of pentanoic acid with a fruity (apple) smell and 2-Heptanone is a ketone with a fruity (green banana) smell.

      5) Assuming that all the above issues are resolved, one can conclude that intermittency can be perceived by an animal. The study puts a strong accent on the fact that this feature could be used for navigation. I understand that it is extremely hard to demonstrate that this feature is actually used for navigation, however, the analysis of relevance of this measure is missing. Even if it is used in navigation, most probably this would be in combination with other features, thus its relative importance needs to be discussed, or even better, established.

      We fully appreciate the reviewers reasoning. Our approach indeed intended to establish a conditio sine qua non: if mice could not discriminate these stimuli they would likely not be able to use intermittency in general for navigation (at least for the odorants tested, for the intermittency ranges tested). We show however that they can, and hence they could use it. To demonstrate their use of intermittency alone or combined with other modalities or properties is well beyond the scope of this manuscript and we agree is a very interesting endeavor.

      We discussed other temporal properties on line 58-71 and 657-664 and other general properties on lines 46-56. The relative roles were briefly addressed on lines 664-676 and we hesitate to speculate beyond this.

    1. Author Response

      Reviewer #1 (Public Review):

      With MERGEseq, the authors sought to develop a scalable and accessible method for getting both projectome and transcriptome information at the single-cell level from multiple projection targets within a single animal. MERGEseq uses a retro rAAV2 to deliver a 15-nucleotide barcode driven by a CAG promoter with co-expression of eGFP to enrich barcoded cells using FACS. Injection of this rAAV2 in distinct regions (with each injection region distinguished by a unique barcode that is specific to the virus used) allows retrograde trafficking and expression of the barcodes in cells that project to the injected region. In this manuscript, rAAVs harboring 5 unique barcodes were stereotactically delivered to 5 targets of the mouse: dorsomedial striatum (DMS), mediodorsal thalamic nucleus (MD), basal amygdala (BLA), lateral hypothalamus (LH), and agranular insular cortex (AI). After a 6-week period to allow for viral transduction and expression, the ventromedial prefrontal cortex (vmPFC) was harvested for scRNAseq. vmPFC scRNAseq data were validated against previously published PFC datasets, demonstrating that MERGEseq does not disrupt transcript expression and identifies the same principal cell types as annotated in previous studies. Importantly, MERGEseq enabled the identification of cell types in the vmPFC that project to distinct areas, with separation occurring largely based on cell type and cortical layer. The application of stringent criteria for barcode index determination is rigorous and improves confidence that barcoded cells are correctly identified. The observation that all barcoded cells were excitatory is consistent with prior work, although it is not clear if viral tropism contributes to this in some way. In a parallel experiment, FAC-sorted cells (vmPFC cells expressing EGFP) were isolated as a comparison. Notably, EGFP+ cells were exclusively excitatory neurons, consistent with literature showing PFC projection neurons are excitatory. Next, barcode analysis was combined with transcriptional identification of neuronal subtypes to define general projection patterns and single-cell projection patterns, which were validated by the DMS and MD in situ using retrograde tracing in combination with RNA FISH. MERGEseq data were also used to identify transcriptional differences between neurons with dedicated and bifurcated projections. DMS+LH and DMS+MD projecting neurons had distinct transcriptional profiles, unlike cells with other targets. RNA FISH for marker gene Pou3f and retrograde tracing from DMS+LH projecting cells demonstrate enrichment of this gene in this projection population. Finally, machine-learning was used to predict projection targets based on transcriptional profiles. In this dataset, 50 highly variable genes (HVGs) were optimal for predicting projection patterns, though this might vary in different circuits. Overall, the results of this manuscript are well presented and include rigorous validation for select vmPFC targets with in situ techniques. The application of unique barcodes for retro-AAV delivery is an accessible tool that other labs can implement to study other brain circuits.

      Ultimately, MERGEseq is a subtle conceptual advancement over VECTORseq (retro-AAV delivered transgenes rather than barcodes, in combination with scRNAseq) that offers higher confidence in the described projectome diversity in comparison. The use of a retrograde AAV inherently limits the number of projection areas that can be assessed, a weakness compared to anterograde approaches such as MAPseq/BARseq. However, BARseq demands more time and resources; further, the use of the highly toxic Sindbis virus limits the application of this technique. This manuscript builds upon previous work by utilizing machine learning to predict projection targets. BARseq2 could be used to rigorously validate predicted projectomes and gain single-cell information regarding target neurons. Overall, MERGEseq is an accessible technique that can be used across many animal models and serve as an important starting point to define circuits at the single-cell level.

      We thank reviewer for the comprehensive review. We are grateful for reviewer’s recognition of the conceptual advancement of MERGE-seq and the rigorous criteria we applied for projection barcode determination. We have revised the Introduction to highlight advancements in our method. We also discussed the balance of transcriptomic comprehensiveness against spatial resolution in the revised Discussion. Reviewer’s comments have been invaluable in enhancing the clarity and depth of our manuscript.

      Reviewer #2 (Public Review):

      Investigating the relationship between transcriptomic profiles, their axonal projection and collateralization patterns will help define neuronal cell types in the mammalian central nervous system. The study by Xu et al. combined multiple retrograde viruses with barcodes and single-cell RNA-sequencing (MERGE-seq) to determine the projection and collateralization patterns of transcriptomically defined ventral medial prefrontal cortex (vmPFC) projection neurons. They found a complex relationship: the same transcriptomically defined cell types project to multiple target regions, and the same target region receives input from multiple transcriptomic types of vmPFC neurons. Further, collateralization patterns of vmPFC to the five target regions they investigated are highly non-random.

      While many of the biological conclusions are not surprising given recent studies on the collateralization patterns of vmPFC neurons using single neuron tracing and other methods that integrate transcriptomics and projections, MERGE-seq provides validation, at the single cell level, collateralization patterns of individual vmPFC neurons, and thus offer new and valuable information over what has been published. The method can also be used to study collateralization patterns of other neuron types.

      Some of the conclusions the authors draw depend on the efficiency of retrograde labeling, which was not determined. Without quantitative information on retrograde labeling efficiency, and unless such efficiency is close to 100%, these conclusions are likely misleading.

      We thank reviewer for recognizing the contributions of our MERGE-seq technique in advancing the understanding of projection patterns of vmPFC neurons. We concur that while our conclusions align with previous findings, our single-cell level analysis provides additional depth to the existing knowledge of the field. We acknowledge the challenge to quantify retrograde labeling efficiency to draw quantitive conclusions based on our findings. Alternatively, we have used fMOST-based single-neuron tracing data and analysis to validate our projection patterns and ensure the robustness of our conclusions in the revised manuscript. We also more explicitly clarified the limitations of the quantitive conclusion drawn from MERGE-seq in the revised Discussion. The insights of reviewer are greatly appreciated and will inform the improvement of our research methodology.

      Reviewer #3 (Public Review):

      This manuscript describes a multiplexed approach for the identification of transcriptional features of neurons projecting to specific target areas at the single-cell level. This approach, called MERGE-seq, begins with multiplexed retrograde tracing by injecting distinctly barcoded rAAV-retro viruses into different target areas. The transcriptomes and barcoding of neurons in the source area are then characterized by single-cell RNA sequencing (scRNAseq) on the 10xGenomics platform. The projection targets of barcoded neurons in the source area can be inferred by matching the detected barcodes to the barcode sequences to of rAAV-retro viruses injected into the target areas.

      The authors validated their approach by injecting five rAAV-retro GFP viruses, each encoding a different barcode, into five known targets of the ventromedial prefrontal cortex (vmPFC). The transcriptomes and barcoding of vmPFC neurons were then analyzed by scRNA-seq with or without enrichment of retrogradely labeled neurons based on GFP fluorescence. The authors confirmed the previously described heterogeneity of vmPFC neurons. In addition, they showed that most transcriptionally defined cell types project to multiple targets and that the five targets received projections from multiple transcriptomic types. The authors further characterized the transcriptomic features of barcoded vmPFC neurons with different projection patterns and defined Pou3f1 as a marker gene of neurons extending collateral branches to the dorsomedial striatum and lateral hypothalamus.

      Overall, the results of the manuscript are convincing: the transcriptomic vmPFC cell types defined by scRNAseq in this study appear to correlate well with previous studies, the bifurcated projection patterns inferred by barcoding are validated using dual-color retro-AAV tracing, and marker genes for projection-specific cell subclasses are validated in retrogradely labeled vmPFC using RNA FISH for marker detection.

      The concept of combining retrograde tracing and scRNAseq is not new. Previous studies have applied recombinase-expressing viruses capable of retrograde labeling, such as CAV, rabies virus, and AAV2-Retro, to retrogradely label and induce the expression of fluorescence markers in projection neurons, therefore facilitating enrichment and analysis of neurons projecting to a specific target. Multiplexed analysis can be achieved with the combination of different reporter viruses or viruses expressing different recombinases and appropriate reporter mouse lines. The advantages of MERGE-seq include that no transgenic lines are required and that it could be applied at even higher levels of multiplexity.

      We thank reviewer for the insightful review of our manuscript and the recognition of the advantages of MERGE-seq. We appreciate reviewer acknowledged the robust validation of the method through dual-color retro-AAV tracing and RNA FISH, and the confirmation of previous findings on vmPFC neuronal heterogeneity and collateral projection patterns. We provided additional joint analysis with fMOST-based single-neuron projectome data (Gao et al., 2022, Nature Neuroscience) to further validate the projection patterns (>= 3 targets) that cannot be easily validated with dual-color retro-AAV tracing.

      However, previously existing datasets that have already profiled this region with scRNAseq have not been utilized to their full extent. Therefore, for the proper context with prior literature, bioinformatic integration of these scRNAseq and prior scRNAseq data is needed.

      Moreover, robust detection of barcodes in neurons labeled by barcoded AAV-retro viruses remains a challenge. The authors should clearly discuss the difficulties with barcode detection in this approach, as well as discuss potential solutions, which are important for others interested in its approach.

      While this study is limited to the five known targets of vmPFC, the results suggest that MERGE-seq is a valuable tool that could be used in the future to characterize projection targets and transcriptomes of neurons in a multiplexed manner. As MERGE-seq uses AAVs to deliver barcodes, this method has the potential for application in model organisms for which transgenic lines are not available. Further improvements in experimental design and data analysis should be considered when applying MERGE-seq to poorly characterized source areas or with increased multiplexity of target areas.

      In summary, this is a valuable approach, but the authors should clearly provide the context for their study within the existing literature, transparently discuss the limitations of MERGE-seq, as well as suggest improvements for the future.

      We appreciate your positive assessment of MERGE-seq as a valuable approach with future potential. As recommended, we have performed integration analysis with existing vmPFC scRNA-seq studies, including Bhattacherjee et al., 2019, Lui et al., 2021, Yao at al., 2021, and specifically recently published MERFISH data of PFC (Bhattacherjee et al., 2023).

      In the revised Discussion, we have transparently addressed the current limitations of MERGE-seq, including imperfect retrograde labeling efficiency, variable barcode recovery rates and cell loss during dissociation. We also addressed the challenges in detecting and recovering projection barcodes and suggested potential solutions such as using FAC-sorted EGFP-negative cells for control and applying single-molecule FISH techniques. We sincerely appreciate reviewer’s rigorous and insightful feedback, which has substantially strengthened our manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      In this paper, the authors develop new models of sequential effects in a simple Bernoulli learning task. In particular, the authors show evidence for both a "precision-cost" model (precise posteriors are costly) and an "unpredictabilitycost" model (expectations of unpredictable outcomes are costly). Detailed analyses of experimental data partially support the model predictions.

      Strengths:

      • Well-written and clear.

      • Addresses a long-standing empirical puzzle.

      • Rigorous modeling.

      Weaknesses:

      • No model adequately explains all of the data.

      • New empirical dataset is somewhat incremental.

      • Aspects of the modeling appear weakly motivated (particularly the unpredictability model).

      • Missing discussion of some relevant literature.

      We thank Reviewer #1 for her/his positive comments on our work and her/his comments and suggestions.

      Reviewer #2 (Public Review):

      This paper argues for an explanation of sequential effects in prediction based on the computational cost of representing probability distributions. This argument is made by contrasting two cost-based models with several other models in accounting for first- and second-order dependencies in people's choices. The empirical and modeling work is well done, and the results are compelling.

      We thank Reviewer #2 for her/his positive comments on our work.

      The main weaknesses of the paper are as follows:

      1) The main argument is against accounts of dependency based on sensitivity to statistics (ie. modeling the timeseries as having dependencies it doesn't have). However, such models are not included in the model comparison, which makes it difficult to compare these hypotheses.

      Many models in the sequential-effects literature (Refs. [7-12] in the manuscript) are ‘leaky-integration’ models that interpret sequential effects as resulting from an attempt to learn the statistics of a sequence of stimuli, through exponentiallydecaying counts of the simple patterns in the sequence (e.g., single stimuli, repetitions, and alternations). In some studies, the ‘forgetting’ of remote observations that results from the exponential decay is justified by the fact that people live in environments that are usually changing: it is thus natural that they should expect that the statistics underlying the task’s stimuli undergo changes (although in most experiments, they do not), and if they expect changes, then they should discard old observations that are not anymore relevant. This theoretical justification raises the question as to why subjects do not seem to learn that the generative parameters in these tasks are in fact not changing — all the more as other studies suggest that subjects are able to learn the statistics of changes (and consistently they are able to adapt their inference) when the environment does undergo changes (Refs. [42,57]).

      Our models are derived from a different approach: we derive behavior from the resolution of a problem of constrained optimization of the inference process. It is not a phenomenological model. When the constraint that weighs on the inference process is a cost on the precision of the posterior, as measured by its entropy, we find that the resulting posterior is one in which remote observations are ‘forgotten’, through an exponentially discount, i.e., we recover the predictions of the leaky-integration models, which past studies have empirically found to be reasonably good accounts of sequential effects. (Thus these models are already in our model comparison.) In our framework, the sequential effects do not stem from the subjects’ irrevocable belief that the statistics of the stimuli change from time to time, but rather from the difficulty that they have in representing precise belief; a rather different theoretical justification.

      Furthermore, we show that a large fraction of subjects are not best-fitted by precision-cost models (i.e., they are not best-fitted by leaky integration), but instead they are best fitted by unpredictability-cost models. These models suggest a different explanation of sequential effects: that they result from the subjects favoring predictable environments, in their inference. In the revised version of the manuscript, we have made clearer that the derivation of the optimal posterior under a precision cost results in the exponential forgetting of remote observations, as in the leaky-integration models. We mention it in the abstract, in the Introduction (l. 76-78), in the Results when presenting the precision-cost models (l. 264-278), and in the Discussion (l.706-716).

      2) The task is not incentivized in any way. Since incentives are known to affect probability-matching behaviors, this seems important. In particular, we might expect incentives would trade off against computational costs - people should increase the precision of their representations if it generates more reward.

      We thank Reviewer #2 for her/his attention to our paper and for her/his comments. As for the point on the models, see answer above (point 1).

      As for the point on incentivization: we agree that it would be very interesting to measure whether and to which extent the performance of subjects increases with the level of incentivization. Here, however, we wanted, first, to establish that subjects’ behavior could be understood as resulting from inference under a cost, and second, to examine the sensitivity of their predictions to the underlying generative probability — rather than to manipulating a tradeoff involving this cost (e.g. with financial reward). We note that we do find that subjects are sensitive to the generative probability, which implies that they exhibit some degree of motivation to put some effort in the task (which is the goal of incentivization), in spite of the lack of economic incentives. But it would indeed be interesting to know how the potential sensitivity to reward interacts with the sensitivity to the generative probability. Furthermore, as Reviewer #2 mentions, some studies show that incentives affect probability-matching behavior: it is then unclear whether the introduction of incentives in our task would change the inference of subjects (through a modification of the optimal trade-off that we model); or whether it would change their probability-matching behavior, as modeled by our generalized probability-matching response-selection strategy; or both. Note that we disentangled both aspects in our modeling and that our conclusions are about the inference, not the response-selection strategy. We deem the incentivization effects very much worth investigating; but they fall outside of the scope of our paper.

      We now mention this point in the Discussion of the revised manuscript (l. 828-840).

      3) The sample size is relatively small (20 participants). Even though a relatively large amount of data is collected from each participant, this does make it more difficult to evaluate the second-order dependencies in particular (Figure 6), where there are large error bars and the current analysis uses a threshold of p < .05 across a large number of tests hence creating a high false-discovery risk.

      Indeed we agree with Reviewer #2 that as the number of tests increases, so does the probability that at least one null hypothesis is rejected at a given level, even if the null hypothesis is correct. But in the panels a, b and c of Figure 6, about half of the tests are rejected, which is very unlikely under the null hypothesis that there is no effect of the stimulus history on the prediction, all the more as the signs of the non-significant results are in most cases consistent with the direction of the significant results. (In panel e, which reports a finer analysis in which the number of subjects is essentially divided by 2, about a fourth of the tests are rejected, and here also the non-significant results are almost all in the same direction as the significant ones.)

      However, we agree that there remains a risk of false discovery, thus we applied a Bonferroni-Holm-Šidák correction to the p-values in order to mitigate this risk. With these more conservative p-values, a lower number of tests are rejected, but in most cases in Fig. 6abc the effects remain significant. In particular, we are confident that there is a repulsive effect of the third-to-last stimulus in the case of Fig. 6c, while there is an attractive effect in the other cases.

      In the revised manuscript, Figure 6 now reports whether the tests are rejected when the p-values are corrected with the Bonferroni-Holm-Šidák correction.

      (We also applied this correction to the p-values of the tests in Fig. 2, which has more data: the corrected p-values are all below 1e-13, which we now indicate in the caption of this figure.)

      4) In the key analyses in Figure 4, we see model predictions averaged across participants. This can be misleading, as the average of many models can produce behavior outside the class of functions the models themselves can generate. It would be helpful to see the distribution of raw model predictions (ideally compared against individual data from humans). Minimally, showing predictions from representative models in each class would provide insight into where specific models are getting things right and wrong, which is not apparent from the model comparison.

      In the main text of the original manuscript, we showed the behavior of the pooled responses of the best-fitting models, and we agree with Reviewer #2 that it did not make clear to the reader that the apparent ability of the models to reproduce the subjects’ behavioral patterns was not a misleading byproduct of the averaging of different models. In the original version of the manuscript, we had put a figure showing the behavior of each individual model (each cost type with each Markov order) in the Methods section of the paper; but this could easily be overlooked, and indeed it would be beneficial for the reader to be shown the typical behaviors of the models, in the main text. We have reorganized the presentation of the models’ behaviors: the first panels in Fig. 4 (in the main text) are now dedicated to showing the individual sequential effects of the precision-cost and of the unpredictabilitycost models with Markov order 0 and 1. The Figure 4 is reproduced in the response to Reviewer #1, above, along with comments on the sequential effects produced by these models (and also on the impact of the generalized probability-matching response-selection strategy, in comparison with the traditional probability matching). We believe that this figure makes clearer how the individual models are able to reproduce the patterns in subjects’ predictions — in particular it shows that this ability of the models is not just an artifact of the averaging of many models, as was the legitimate concern of Reviewer #2. We have left the illustration of the firstorder sequential effects of the other models (with Markov order 2 and 3) in the Methods section (Fig. 7), so as not to overload Fig. 4, and because they do not bring new critical conceptual points.

      As for the higher-order sequential effects, the updated Figure 5, also reproduced above in the responses to Reviewer #1, now includes the sequential effects obtained with the precision-cost model of a Bernoulli observer (m=0), in addition to the precision-cost model of a Markov observer (m=1) and to the unpredictabilitycost model of a Markov observer (m=3), in order to better illustrate the behaviors of the different models. The higher-order sequential effects of the other models can be found in Fig. 8 in Methods.

      Reviewer #3 (Public Review):

      This manuscript offers a novel account of history biases in perceptual decisions in terms of bounded rationality, more specifically in terms of finite resources strategy. Bridging two works of literature on the suboptimalities of human decision-making (cognitive biases and bounded rationality) is very valuable per se; the theoretical framework is well derived, building upon the authors' previous work; and the choice of experiment and analysis to test their hypothesis is adequate. However, I do have important concerns regarding the work that do not enable me to fully grasp the impact of the work. Most importantly, I am not sure whether the hypothesis whereby inference is biased towards avoiding high precision posterior is equivalent or not to the standard hypothesis that inference "leaks" across time due to the belief that the environment is not stationary. This and other important issues are detailed below. I also think that the clarity and architecture of the manuscript could be greatly improved.

      We thank Reviewer #3 for her/his positive comments on our work and her/his comments and suggestions.

      1) At this point it remains unclear what is the relationship between the finite resources hypothesis (the only bounded rationality hypothesis supported by the data) and more standard accounts of historical effects in terms of adaptation to a (believed to be) changing environment. The Discussion suggests that the two approaches are similar (if not identical) at the algorithmic level: in one case, the posterior belief is stretched (compared to the Bayesian observer for stationary environments) due to precision cost, in other because of possible changes in the environment. Are the two formalisms equivalent? Or could the two accounts provide dissociable predictions for a different task? In other words, if the finite resources hypothesis is not meant to be taken as brain circuits explicitly minimizing the cost (as stated by the authors), and if it produces the same type of behavior as more classical accounts: is the hypothesis testable experimentally?

      We agree with Reviewer #3 that the relation between our approach and other approaches in the literature should be made clearer to the reader.

      Since the 1990s, in the psychology and neuroscience literature, many models of perception and decision-making have featured an exponential decay of past observations, resulting in an emphasis, in decisions, of the more recent evidence (‘leaky integration’, Refs. [7-12, 76-86]). In the context of sequential effects, this mechanism has found a theoretical justification in the idea that people believe that statistics typically change, and thus that remote observations should indeed be discarded [8,12]. In inference tasks with binary signals, in which the optimal Bayesian posterior is in many cases a Beta distribution whose two parameters are the counts of the two signals, one way to conveniently incorporate a forgetting mechanism is to replace these counts with exponentially-filtered counts, in which more recent observations have more weight (e.g., Ref. [12]).

      Our approach to sequential effects is not grounded in the history of leakyintegration models: we assume, first, that subjects attempt at learning the statistics of the signals presented to them (this is also the assumption in many studies [712]), and second, that their inference is subject to a cost, which prevents them from reaching the optimal, Bayesian posterior; but under the constraint of this cost, they choose the optimal posterior. We formalize this as a problem of constrained optimization.

      The two formalisms are thus not equivalent. Beyond the fact that we clearly state the problem which we assume the brain is solving, we do not propose that the origin of sequential effects resides in an adaptation to putatively changing environments: instead, we assume that they originate in a cognitive cost internal to the decision-maker. If this cost is proportional to the entropy of the posterior, as in our precision cost, then the optimal approximate posterior is one in which remote observations are ‘forgotten’ through an exponential filter, as in the leakyintegration models. In other words, in the context of this task and with this kind of cost, the models are, as Reviewer #3 writes, identical at the algorithmic level. As for the unpredictability cost, it does not result in a solution that resembles leaky integration; about half the subjects, however, are best fitted by unpredictabilitycost models. We thus provide a different rationale for sequential effects — that the brain favors predictive environment, in its inference — and this alternative account is successful in capturing the behavior of a large fraction of the subjects.

      In the revised manuscript, we now clarify that the precision cost results in leaky integration, in the abstract, in the Introduction (l. 76-78), in our presentation of the precision-cost models (Results section, l. 264-275), and in the Discussion (l. 706716). (We also refer Reviewer #3 to our response to the first comment of Reviewer #2, above.)

      Finally, Reviewer #3 asks the interesting question as to whether the “two accounts provide dissociable predictions for a different task”. Given that the leakyintegration approach is justified by an adaptation to potential changes, and our approach relies on the hypothesis that precision in beliefs is costly, one way to disentangle the two would be to eliminate the sequential nature of the task and presenting instead observations simultaneously. This would eliminate the mere notion of change across time. In this case, the leaky account would predict that subjects’ inference becomes optimal (because the leak should disappear in the absence of change), while in the second approach the precision cost would still weigh on the inference, and result in approximate posteriors that are “wider” (less precise) than the optimal one. The resulting divergence in the predictions of these models is very interesting, but out of the scope of this study on sequential effects.

      2) The current analysis of history effects may be confounded by effects of the motor responses (independently from the correct response), e.g. a tendency to repeat motor responses instead of (or on top of) tracking the distribution of stimuli.

      We thank Reviewer #3 for pointing out the possibility that subjects may have a tendency to repeat motor responses that is not related to their inference.

      We note that in Urai et al., 2017, as in many other sensory 2AFC tasks, successive trials are independent: the stimulus at a given trial is a random event independent of the stimulus at the preceding trial; the response at a given trial should in principle be independent of the stimulus at the preceding trial; and the response at the preceding trial conveys no information about the response that should be given at the current trial (although subjects might exhibit a serial dependency in their responses). By contrast, in our task an event is more likely than not to be followed by the same event (because observing this event suggests that its probability is greater than .5); and a prediction at a given trial should be correlated with the stimuli at the preceding trials, and with the predictions at the preceding trials. In a logit model (or any other GLM), this would mean that the predictors exhibit multicollinearity, i.e., they are strongly correlated. Multicollinearity does not reduce the predictive power of a model, but it makes the identification of parameters extremely unreliable: in other words, we wouldn’t be able to confidently attribute to each predictor (e.g., the past observations and the past responses) a reliable weight in the subjects’ decisions. Furthermore, our study shows that past stimuli can yield both attractive and repulsive effects, depending on the exact sequence of past observations. To capture this in a (generalized) linear model, we would have to introduce interaction terms for each possible past sequence, resulting in a very high number of parameters to be identified.

      However, this does not preclude the possibility that subjects may have a motor propensity to repeat responses. In order to take this hypothesis into account, we examined the behavior and the ability to capture subjects’ data of models in which the response-selection strategy allows for the possibility of repeating, or alternating, the preceding response. Specifically, we consider models that are identical to those in our study, except for the response-selection strategy, which is an extension of the generalized probability-matching strategy, in which a parameter eta, greater than -1 and lower than 1, determines the probability that the model subject repeats its preceding response, or conversely alternates and chooses the other response. With probability 1-|η|, the model subject follows the generalized probability-matching response-selection strategy (parameterized by κ). With probability |η|, the model subject repeats the preceding response, if η > 0, or chooses the other response, if η < 0. We included the possibility of an alternation bias (negative η), but we find that no subject is best-fitted by a negative η, thus we focus on the repetition bias (positive η). We fit the models by maximizing their likelihoods, and we compared, using the Bayesian Information Criterion (BIC), the quality of their fit to that of the original models that do not include a repetition propensity.

      Taking into account the repetition bias of subjects leaves the assignment of subjects into two families of inference cost mostly unchanged. We find that for 26% of subjects the introduction of the repetition propensity does not improve the fit (as measured by the BIC) and can therefore be discarded. For 47% of subjects, the fit is better with the repetition propensity (lower BIC), and the best-fitting inference model (i.e., the type of cost, precision or unpredictability, and the Markov order) is the same with or without repetition propensity. Thus for 73% (=26+47) of subjects, allowing for a repetition propensity does not change the inference model. We also find that the best-fitting parameters λ and κ, for these subjects, are very stable, when allowing or not for the repetition propensity. For 11% of subjects, the fit is better with the repetition propensity, and the cost type of the inference model is the same (as without the repetition propensity), but the Markov order changes. For the remaining 16%, both the cost type and the Markov order change.

      Thus for a majority of subjects, the BIC is improved when a repetition propensity is included, suggesting that there is indeed a tendency to repeat responses, independent of the subjects’ inference process and generative stimulus probability. In Figure 7, in Methods, we show the behavior of the models without repetition propensity, and with repetition propensity, with a parameter η = 0.2 close to the average best-fitting value of eta across subjects. We show, in Methods, that (i) the unconditional probability of a prediction A, p(A), is the same with and without repetition propensity, and that (ii) the conditional probabilities p(A|A) and p(A|B) when η≠0 are weighted means of the unconditional probability p(A) and of the conditional probabilities when eta=0 (see p. 47-49 of the revised manuscript).

      In summary, our results suggest that a majority of subjects do exhibit a propensity to repeat their responses. Most subjects, however, are best-fitted by the same inference model, with or without repetition propensity, and the parameters λ and κ are stable, across these two cases; this speaks to the robustness of our model fitting. We conclude that the models of inference under a cost capture essential aspects of the behavioral data, which does not exclude, and is not confounded by, the existence of a tendency, in subjects, to repeat motor responses.

      In the revised manuscript, we present this analysis in Methods (p.47-49), and we refer to it in the main text (l. 353-356 and 400-406).

      3) The authors assume that subjects should reach their asymptotic behavior after passively viewing the first 200 trials but this should be assessed in the data rather than hypothesized. Especially since the subjects are passively looking during the first part of the block, they may well pay very little attention to the statistics.

      The assumptions that subjects reach their asymptotic behavior after being presented with 200 observations in the passive trials should indeed be tested. To that end, we compared the behavior of the subjects in the first 100 active trials with their behavior in the remaining 100 active trials. The results of this analysis are shown in Figure 9.

      For most values of the stimulus generative probability, the unconditional proportions of predictions A, in the first and the second half (panel a, solid and dashed gray lines), are not significantly different (panel a, white dots), except for two values (p-value < 0.05; panel a, filled dots). Although in most cases the difference between the two is not significant, in the second half the proportions of prediction A seem slightly closer to the extremes (0 and 1), i.e., closer to the optimal proportions. As for the sequential effects, they appear very similar in the two halves of trials. We conclude that for the purpose of our analysis we can reasonably consider that the behavior of the subjects is stationary throughout the task.

      4) The experiment methods are described quite poorly: when is the feedback provided? What is the horizontal bar at the bottom of the display? What happens in the analysis with timeout trials and what percentage of trials do they represent? Most importantly, what were the subjects told about the structure of the task? Are they told that probabilities change over blocks but are maintained constant within each block?

      We thank Reviewer #3 for her/his close attention to the details of our experiment. Here are the answers to the reviewer’s questions:

      • The feedback (i.e., a lightning strike on the left or the right rod, with the rod and the battery turning yellow if the strike is on the side predicted by the subject,) is immediate, i.e., it is provided right after the subject makes a prediction, with no delay. We now indicate this in the caption of Figure 1.

      • The task is presented to the subjects as a game in which predicting the correct location of the lightning strike results in electric power being collected in the battery. The horizontal bar at the bottom of the display is a gauge that indicates the amount of power collected in the current block of trials. It has no operational value in the task. We now mention it in the Methods section (l. 872-874).

      • The timeout trials were not included in the analysis. The timeout trials represented 1.27% of the trials, on average (across subjects); and for 95% of the subjects the timeout trials represented less than 2.5% of the trials. This information was added in Methods (l. 887-889).

      • Each new block of trials was presented to the subject as the lightning strikes occurring in a different town. The 200 passive trials at the beginning of each block, in which subjects were asked to observe a sequence of 200 strikes, were presented as the ‘track record’ for that town, and the instructions indicated that it was ‘useful’ to know this track record. No information was given on the mechanism governing the locations of the strikes. In the main text of the revised manuscript, we now include these details when describing the task (p. 6).

    1. Author Response

      Reviewer #1 (Public Review):

      Sun et al. investigated the circuit mechanism of a novel type of synaptic plasticity in the projection from the visual cortex to the auditory cortex (VC-AC), which is thought to play an important role in visuo-auditory associative learning. The key question behind this paper is what is the role of CCK positive projection from the entorhinal cortex in the plasticity of VC-AC projections? They discover that the strength of VC-AC projections does not change when pairing the stimulation of this pathway with the acoustic stimulation of the auditory cortex (AC) unless CCK is applied to the AC or CCK positive projection from the entorhinal cortex to auditory cortex (EC-AC) is optogenetically stimulated. In contrast, optogenetically stimulating VC-AC projections, which express a lower level of CCK than the EC-AC projection, do not induce such synaptic plasticity. Interestingly, the data also indicates that even if the EC-AC pathway is stimulated 500ms ahead of the pairing of stimulating VC-AC pathway and the AC, the VC-AC synaptic strength can still be potentiated, consistent with the long-lasting nature of CCK as a neuropeptide. By performing a fear conditioning assay, the authors demonstrate that the CCK signaling is indeed required for the association of visual and auditory cues.

      The proposed mechanism is interesting because it not only helps explain the heterosynaptic plasticity of the visual-auditory projection but also will provide insight into how the entorhinal cortex as an association area contributes to the association of visual and auditory cues. Nevertheless, this study suffers from the lack of a few key experiments, which prevents drawing a conclusion on the contribution of CCK release from the EC-AC projection to the plasticity of the VC→AC projection.

      We are grateful for the constructive comments provided by the reviewers and appreciate the significant effort they have dedicated to reviewing our manuscript. To enhance our study and strengthen our conclusions, we have made the following revisions in response to their feedback.

      1) One main conclusion from figures 1-3 is that CCK released from the EC-AC projection is required for the plasticity of VC-AC projection in addition to pairing VALS with noise/electrical stimulation. But the data in those figures cannot exclude alternative explanations that CCK alone or the pairing CCK with either VALS or noise are sufficient to make the VC-AC synaptic connection more potent. It concerns the mechanism underlying the effect of CCK: CCK may function simply as a neuromodulator to regulate the excitatory synaptic transmission, but not to promote long term synaptic plasticity.

      Thanks for the valuable comment and pointing out the weakness. In response to the comment, we have conducted additional control experiments to reinforce our conclusions. These include: For Figure 1G, we introduced three control groups: CCK alone (Figure1-figure supplement 1F-G), CCK + presynaptic activation of VC-to-AC inputs (Figure 1-figure supplement 1H-I), and CCK + postsynaptic firing induced by noise (Figure 1-figure supplement 1J-K). Our findings from these control experiments indicate that in all three scenarios, there was no potentiation of the VC-to-AC inputs. Further details can be found in Figure 1-figure supplement 1F-K.

      For Figure 2E, we introduced three control groups: HFS laser EC-to-AC alone (Figure 2-figure supplement 1H-I), HFS laser EC-to-AC + presynaptic activation of VC-to-AC inputs (Figure 2-figure supplement 1L-M), and HFS laser + postsynaptic firing induced by noise (Figure 2-figure supplement 1P-Q). And we found that in all three scenarios, the VC-to-AC inputs were not significantly potentiated. Please see details in Figure 2-figure supplement 1.

      Given that our in vivo results already demonstrated that neither HFS laser EC-to-AC alone, nor its combination with presynaptic or postsynaptic activation, potentiated the VC-to-AC inputs, we did not replicate these control groups in our ex vivo setup. These additional experiments enhance the robustness of our findings and address the initial concerns raised.

      2) Similar issue exists in Fig. 2H and 3J. Without proper controls, it is impossible to tell whether all three conditions (HFLSEA, VALA, noise/electrical stimulation) are necessary for potentiated AC responses to acoustic/electrical stimulation.

      Same as above, we have conducted additional control experiments to reinforce our conclusions. These include:

      For Figure 2H, we also tested the noise response in the above three control groups: HFS laser EC to AC alone (Figure 2-figure supplement 1J-K), HFS laser EC-to-AC + presynaptic activation of VC-to-AC inputs (Figure 2-figure supplement 1N-O), and HFS laser + postsynaptic firing induced by noise (Figure 2-figure supplement 1R-S). And we found that fEPSPs evoked by noise stimuli were significantly potentiated after HFS laser EC-to-AC + Post (Figure 2-figure supplement 1R-S). However, there was no potentiation observed following HFS laser EC-to-AC alone (Figure 2-figure supplement 1J-K) and HFS laser EC-to-AC + Pre (Figure 2-figure supplement 1N-O).

      These results suggest that both HFS laser targeting the EC-to-AC projection and noise-induced AC firing are required to potentiate the AC's response to acoustic stimuli. In contrast, activation of the VC-to-AC projection is not necessary. This finding aligns with our previous research (Li et al., 2014).

      Given the similarity in experimental design, we opted not to replicate these specific control groups in our ex vivo setup.

      These additional control experiments have been crucial in reinforcing the conclusions of our study.

      3) Fig. 2E and 3G show that the stimulation of CCK-positive EC-AC projection is required for the plasticity of VC-AC projection. Considering most EC-AC projection neurons co-release glutamate and CCK, however, we cannot tell if CCK or glutamate or both matter to this type of plasticity. Even though the long delay in Fig 5B is consistent with the neuropeptide nature of CCK, direct experimental evidence is needed, since it is where the novelty of the paper is.

      Thank you for your constructive feedback. In response to the suggestions, for Figure 2E, we have incorporated two additional experiments: one with a CCKB receptor (CCKBR) antagonist and another with ACSF infused into the AC prior to HFS laser EC-to-AC + Pre/Post Pairing (Figures 2N-P). Our findings demonstrate that the CCKBR antagonist effectively inhibited the potentiation of the VC-to-AC inputs following the HFS laser EC-to-AC + Pre/Post Pairing. Conversely, ACSF did not exhibit this inhibitory effect. For further information, please refer to Figures 2N-P. Given the similarity in experimental design, we opted not to replicate these groups in our ex vivo setup.

      4) In Fig. 6, the authors examined the necessity of CCK for the generation of the visuo-auditory association. The experimental approach of injection CCK receptor blocker or CCK-4 is not specific to the EC-AC pathway. There is neither a link between VC-AC plasticity nor this behavioral result. Thus, the explanatory power of this experiment is limited in the context set up by the first 5 figures.

      Thank you for highlighting this area for improvement. To enhance the explanatory power of our behavioral experiments, we conducted the following additional studies:

      1) Assessing the Necessity of CCK+ EC-to-AC Projection in Establishing Visuo-Auditory Association:

      We bilaterally injected AAV9-syn-DIO-hM4Di-eYFP or AAV9-syn-DIO-eYFP into the EC and implanted cannulae in the AC of Cck Ires-Cre mice. During the encoding phase, we inactivated the CCK+ EC-to-AC pathway via CNO infusion into the AC. Our results show that this inactivation prevents the behavioral establishment of an association between the visual stimulus (VS) and auditory stimulus (AS), without affecting the fear conditioning memory to the AS (Figure 6B, beige).

      2) Determining the Role of VC-to-AC Projection in Establishing Visuo-Auditory Association: We bilaterally injected AAV9-syn-hM4Di-eYFP or AAV9-syn-eYFP into the visual cortex (VC) and also implanted cannulae in the AC of Cck Ires-Cre mice. Inactivating the VC-to-AC pathway during the encoding phase with CNO infusion in the AC, we observed that this inactivation hinders the establishment of a behavioral association between VS and AS, but does not interfere with the fear conditioning memory to the AS (Figure 6B, red).

      3) Investigating the Importance of CCK+ EC-to-AC Projection in Recalling Recent Visuo-Auditory Association:

      Again, AAV9-syn-DIO-hM4Di-eYFP or AAV9-syn-DIO-eYFP was injected bilaterally into the EC, and cannulae were implanted in the AC of Cck Ires-Cre mice. By inactivating the CCK+ EC-AC pathway during the retrieval phase with CNO infusion into the AC, we found that such inactivation disrupted the recall of the recent association between VS and AS behaviorally, yet did not affect the fear conditioning memory to the AS (Figure 6D, beige).

      4) Assessing the Necessity of VC-to-AC Projection in Recalling Recent Association Memory: For this experiment, AAV9-syn-hM4Di-eYFP or AAV9-syn-DIO-eYFP was injected bilaterally into the VC, and cannulae were placed in the AC of Cck Ires-Cre mice. Inactivating the VC-AC pathway during the retrieval phase with CNO infusion in the AC led to the discovery that this inactivation disrupted the behavioral recall of the recent association between VS and AS but did not disrupt the fear conditioning memory to the AS (Figure 6D, red).

      These additional experiments significantly contribute to our understanding of the roles played by the CCK+ EC-AC and VC-AC projections in both the establishment and recall of visuo-auditory associative memories.

      5) In page 16, line 322-326, the authors concluded that to induce the plasticity of VC→AC projection, Delay 1 should be longer than 10 ms and Delay 2 should be longer than 0 ms. This conclusion was not fully supported by the data from Figure 5B-D, because there is no data point between -65 ms and 10 ms for Delay 1 (for example 0 ms), and no negative values for Delay 2.

      We rewrote this paragraph and hope it is more accurate now.

      “Taken together, our study indicates that significant potentiation of the VC-to-AC inputs can be observed (Figure 5D, black cube) across five pairing trials with a 10-second inter-trial interval, under certain tested conditions: (i) the frequency of repetitive laser stimulation of the CCK+ entorhinal cortex (EC) to AC projection was maintained at 10 Hz or higher (as we did not test frequencies between 1 to 10 Hz), (ii) Delay 1 was set within the tested range of 10 to 535 ms (noting the absence of data between -65 to 10 ms), and (iii) Delay 2 was within the range of 0 to 200 ms (acknowledging that negative values for Delay 2 were not explored).”

      Reviewer #2 (Public Review):

      The manuscript by Sun et al., investigates the synaptic plasticity underlying visuo-auditory association. Through a series of in vivo and ex vivo electrophysiology recordings, the authors show that high-frequency stimulation (HFLS) of the cholecystokinin (CCK) positive neurons in the entorhino-auditory projection paired with an auditory stimulus can evoke long-term potentiation (LTP) of the visuo-auditory projection. However, LTP of the visuo-auditory projection could not be elicited by HFLS of the visuo-auditory projection itself or by an unpaired stimulus. They further demonstrate that auditory stimulus pairing with CCK is required to elicit LTP of the visuo-auditory projection as well as visuo-auditory association in a fear conditioning behavioral experiment. As they found elevated expression of CCK in entorhinal neurons which project to the auditory cortex, they conclude that HFLS of the entorhino-auditory projection causes CCK release.

      Strengths:

      The authors use an elegant approach with Chrimson and Chronos to stimulate different auditory inputs in the same mouse in vivo and also in slice and demonstrate that potentiation of the visuo-auditory projection is dependent on HFLS of the entorhino-auditory projection paired with auditory stimulus. Furthermore, they test several parameters in a systematic fashion, generating a comprehensive analysis of the plasticity changes that regulate visuo-auditory association.

      Weaknesses:

      In their previous publications (Chen et al., 2019; Li et al., 2014; Zhang et al., 2020), it has been established that HFLS of the entorhino-auditory projection and CKK release are important for visuo-auditory association via electrophysiology and behavioral experiments. The Chrimson and Chronos approach was applied by Zhang et al., 2020, where they already found that the visuo-auditory projection was potentiated through HFLS of entorhino-neocortical fibers. This manuscript extends those findings by testing different parameters of pairing, which may not represent a major conceptual advance. Unlike the electrophysiological recordings, drug infusion is used in behavioral manipulations to show that HFLS of the entorhino-auditory projection is important for visuo-auditory association. While the use of drugs to inhibit CKK receptors is important, it does not directly demonstrate that CCK release from the entorhino-auditory is necessary.

      We deeply appreciate the reviewer's constructive and insightful feedback. Building on our previous work (Zhang et al., 2020), which highlighted the potentiation of the VC-to-AC projection through high-frequency laser stimulation (HFS laser) of entorhino-neocortical fibers, our current study probes further into the intricacies of this process. We have thoroughly explored the specific conditions necessary for the potentiation of the VC-to-AC projection, assessing a wide range of parameters.

      A significant advancement in our current research is the elucidation of why HFS of the VC-to-AC pathway alone fails to induce potentiation, whereas HFS of the EC-to-AC pathway, coupled with Pre/Post Pairing, is effective. This critical distinction is linked to the heightened expression of CCK in EC neurons projecting to the AC, in contrast to those from the VC. In this revised version of our study, we have also demonstrated that HFS laser stimulation of the EC-to-AC CCK+ projection induces the release of endogenous CCK in the AC using a combination of a CCK sensor and fiber photometry.

      Behaviorally, our revised research emphasizes the vital role of the CCK+ EC-AC projection in both establishing and retrieving visuo-auditory memories, thereby highlighting its fundamental importance in memory processing. Moreover, our study confirms that the CCK+ EC-AC projection is not only crucial for memory formation and retrieval but also indicates that the VC-to-AC projection is the anatomical basis for establishing visuo-auditory associations and serves as the principal storage site for visuo-auditory associative memory. These findings represent significant strides in our understanding of synaptic plasticity and memory mechanisms.

      For the behavioral part, to build the link that HFS laser of the EC-to-AC CCK+ projection is important for visuo-auditory association in the behavioral context, we conducted the following additional behavioral studies (for details please see the response to comment 4 of reviewer 1):

      1) Assessing the Necessity of CCK+ EC-to-AC Projection in Establishing Visuo-Auditory Associative memories, by inactivating the pathway with inhibitory DREADD during the encoding phase.

      2) Investigating the Importance of CCK+ EC-to-AC Projection in Recalling Visuo-Auditory Association, by inactivating the pathway with inhibitory DREADD during the retrieving phase.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper combines an array of techniques to study the role of cholecystokinin (CCK) in motor learning. Motor learning in a pellet reaching task is shown to depend on CCK, as both global and locally targeted CCK manipulations eliminate learning. This learning deficit is linked to reduced plasticity in the motor cortex, evidenced by both slice recordings and two-photon calcium imaging. Furthermore, CCK receptor agonists are shown to rescue motor cortex plasticity and learning in knockout mice. While the behavioral results are clear, the specific effects on learning are not directly tested, nor is the specificity pathway between rhinal CCK neurons and the motor cortex. In general, the results present interesting clues about the role of CCK in motor learning, though the specificity of the claims is not fully supported.

      Since all CCK manipulations were performed throughout learning, rather than after learning, it is not clear whether it is learning that is affected or if there is a more general motor deficit. Related to this point, Figure 1D appears to show a general reduction in reach distance in CCK-/- mice. A general motor deficit may be expected to produce decreased success on training day 1, which does not appear to be the case in Figure 1C and Figure 2B, but may be present to some degree in Figure 5B. Or, since the task is so difficult on day 1, a general motor deficit may not be observable. It is therefore inconclusive whether the behavioral effect is learning-specific.

      Thanks for your comments and suggestions.

      We have tested the basic movement ability of CCK-/- and WT mice and we found that there were no significant difference between CCK-/- and WT in terms of stride length, stride time, step cycle ratio and grasp force (Figure S1C, S1D, S1E, S1F). Besides, we also have tested the performance of mice injected with CCKBR antagonist or injected with hM4Di together with clozapine after learned the task (Figure S2D, S8D). The performance of mice before and after antagonist injection or chemogenetic manipulation were comparable. These results suggested that all the CCK manipulations did not cause general defects to the movement ability of mice.

      The paper implicates motor cortex-projecting CCK neurons in the rhinal cortex as being a key component in motor learning. However, the relative importance of this pathway in motor learning is not pinned down. The necessity of CCK in the motor cortex is tested by injecting CCK receptor antagonists into the contralateral motor cortex (Figure 2), though a control brain region is not tested (e.g. the ipsilateral motor cortex), so the specificity of the motor cortex is not demonstrated.

      Thanks for your comments and suggestions.

      In this study, we focus on the role played by CCK from the rhinal cortex to the motor cortex, and how CCK affects motor learning. The single pellet reaching task was selected to study the role of CCK from the rhinal cortex to the motor cortex in motor skill learning and the motor cortex is considered as the main area generates motor memory when training in this task (Komiyama et al., 2010; Peters et al., 2014; Richard et al., 2019). We emphasized that the importance of the motor cortex in motor learning, not meant that other brain areas where also receive CCK-positive neural projections from the rhinal cortex, for example hippocampus (spatial memory), are not important for the performance of this task. In fact, specifically inhibiting the projection from the rhinal cortex to the contrallateral motor cortex is not enough to suppress the motor learning ability of, but inhibiting projecting in both sides (contro- and ipsi-lateral) could suppress the learning ability of mice, suggesting that the whole motor cortex is critical for motor skill learning (Figure 6, S8). In this paper, we studied the relationship between the rhinal cortex and the motor cortex and the role played by CCK in this circuit. The specificity of the motor cortex is task-dependent, not the main purpose in this study.

      The learning-related source of CCK in the motor cortex is also unclear, since even though it is demonstrated that CCK neurons in the rhinal cortex project to the motor cortex in Figure 4D, Figure 4C shows that there is also a high concentration of CCK neurons locally within the motor cortex. Likewise, the importance of the projection from the rhinal cortex to the motor cortex is not specifically tested, as rhinal CCK neurons targeted for inactivation in Figure 5 include all CCK cells rather than motor cortex-projecting cells specifically.

      Thanks for your comments and suggestions.

      The specificity of the CCK-projection from the rhinal cortex to the motor cortex for motor skill learning was studies using chemogenetic methods in the revised version of the manuscript. We first determined that over 98% of neurons in the rhinal cortex that projected to the motor cortex are CCK positive (Figure 6A, S6A, S6B). Next, we injected the retro-Cre virus in the motor cortex and the Cre-dependent hM4Di in the rhinal cortex in C57BL/6 mice to specifically inhibit the CCK neurons from the rhinal cortex to the motor cortex. Compared to two control groups, the learning ability of the experimental group was significant suppressed, suggesting that CCK projections from the rhinal cortex to the motor cortex are critical for motor skill learning (Figure 6). Detailed description was added in the part of "Result" in the manuscript.

      CCK is suggested to play a role in producing reliable activity in the motor cortex through learning through two-photon imaging experiments. This is useful in demonstrating what looks like normal motor cortex activity in the presence of CCK receptor antagonist, indicating that the manipulations in Figure 2 are not merely shutting off the motor cortex. It is also notable that, as the paper points out, the activity appears less variable in the CCK manipulations (Figure 3G). However, this could be due to CCK manipulation mice having less-variable movements throughout training. The Hausdorff distance is used for quantification against this point in Figure 1E, though the use of the single largest distance between trajectories seems unlikely to give a robust measure of trajectory similarity, which is reinforced by the CCK-/- traces looking much less variable than WT traces in Figure 1D. The activity effects may therefore be expected from a general motor deficit if that deficit prevented the mice from normal exploratory movements and restricted the movement (and activity) to a consistently unsuccessful pattern.

      Thanks for your comments and suggestions.

      To totally suppress CCK receptors in the motor cortex, the antagonist is unavoidable to diffuse to the adjacent brain areas as the motor cortex is not regularly circular. But the area inhibited most should be the motor cortex. We applied the chemogenetics method to further determine the specificity of the motor cortex in the motor skill learning. Specific projection from the RC to the MC was inhibited bilaterally, which suppressed the motor learning ability.

      For a wild-type mouse, neurons were activated when it try to get the food pellet. Neuronal pattern corresponding to each trial will be remembered, and the patterns corresponding to successful movements will tend to be repeated. Manipulations of CCK prevented neurons from remembering the pattern they tried and repeated the pattern they tried before no matter it is successful or not. This is corresponding to the neuron-activation pattern showed in figure 3D, 3E and 3G, the population activities (neuronal activities) are comparable, while the trial-to-trial population correlation is a little bit higher for the CCK-manipulation groups on Day 1. In terms of the behavior, manipulations of CCK decreased the possibility to explore the best path to get food pellets and just repeating a reach for the food pellet like it was the first time. Besides, many tests including the movement ability of CCK-/-, performance of antagonist injection group and chemogenetics manipulation group after learning indicated that CCK-manipulation did not affect the basic movement ability.

      Hausdorff distance is the greatest of all the distances from a point in one set to the closest point in the other set. It is not just the largest distance between two trajectories, but comprehensively takes all points in each trajectory into consideration. Hausdorff distance is widely used to assess the variation of two trajectories. The similarity of the shapes of trajectories is not applied for analysis because it is not very effective to assess the performance of a mouse. The fixed location of the initial site and food site makes all trajectories are single lines in the same direction, thus, the shapes of the trajectories are very similar among different trials. Two trajectories with similar shape but far from each other (big Hausdorff distance) should be treated as big variation because, in terms of the final results, they are quite different (success vs. miss). Therefore, Hausdorff distance is more reliable to be applied for assessment of the performance of mice.

      Finally, slice experiments are used to demonstrate the lack of LTP in the motor cortex following CCK knockout, which is rescued by CCK receptor agonists. This is a nice experiment with a clear result, though it is unclear why there are such striking short-term depression effects from high-frequency stimulation observed in Figure 6A that are not observed in Figure 1H. Also, relating to the specificity of the proposed rhinal-motor pathway, these experiments do not demonstrate the source of CCK in the motor cortex, which may for example originate locally.

      Thanks for your comments.

      1. Because CCK4 is a small molecule, which degrades very fast with half-time less than 1 min in the rat serum and 13 min in the human serum, we injected the drug into the electrode recording dishes, while the ACSF was stopped flowing, leading to a relatively low oxygen condition. As it showed in Figure 6A, it cost about 15 min for the brain slices to recover. Compared with CCK4 manipulation, the depression of vehicle group is stronger, which could be due to the effects of CCK4 induced LTP after HFS compensated the depression.

      2. In the motor cortex, many CCK-positive neurons are γ-aminobutyric acid-ergic (GABAergic) neurons, in which the role played by CCK is not very clear (Whissell et al., 2015). However, evidence showed that GABA may inhibit the release of CCK in the neocortex (Yaksh et al., 1987). Many glutamatergic neurons in the neocortex also express CCK (Watakabe et al., 2012). In this study, the stimulation electrode was placed on the layer 1, where receives most CCK projections from the rhinal cortex, to release CCK from the rhinal cortex, but can not rule out the possibility that some CCK may release from the local CCK neurons (Figure 4B). We focused on the importance of CCK for neural plasticity in the motor cortex, but did not aim to figure out the role played by the cortical CCK-positive neurons, including inhibitory and excitatory neurons, in neuronal plasticity and motor skill learning by this experiment.

      Therefore, the specificity of the projections from the rhinal cortex to the motor cortex was further studied by chemogenetic manipulation. Inhibiting the activity of the projections suppressed the learning ability compared with two types of control manipulations, indicating the CCK projections from RC to the MC is critical for motor skill learning.

      Reviewer #2 (Public Review):

      This study aims to test whether and if so, how cholecystokinin (CCK) from the mice rhinal cortex influences neural activity in the motor cortex and motor learning behavior. While CCK has been previously shown to be involved in neural plasticity in other brain regions/behavioral contexts, this work is the first to demonstrate its relationship with motor cortical plasticity in the context of motor learning. The anatomical projection from the rhinal cortex to the motor cortex is also a novel and important finding and opens up new opportunities for studying the interactions between the limbic and motor systems. I think the results are convincing to support the claim that CCK and in particular CCK-expressing neurons in the rhinal cortex are critical for learning certain dexterous movements such as single pellet reaching. However, more work needs to be done, or at least the following concerns should be addressed, to support the hypothesis that it is specifically the projection from the rhinal cortex to the motor cortex that controls motor learning ability in mice.

      1)Because CCK is expressed in multiple brain regions, as the authors recognized, results from the CCK knock-out mice could be due to a global loss of neural plasticity. In comparison, the antagonist experiment is in my opinion the most convincing result to support the specific effect of CCK in the motor cortex. However, it is unclear to me whether the CCK knock-out mice exhibited an impaired ability to learn in general, i.e., not confined to motor skills. For instance, it would be very valuable to show whether these mice also had severe memory deficits; this would help the field to understand different or similar behavioral effects of CCK in the case of global vs. local loss of function. If the CCK knock-out mice only exhibited motor learning deficits, that would be surprising but also very interesting given previous studies on its effect in other brain areas.

      Thanks for your comments. According to the studies in our lab, we found that CCK is critical for the neural plasticity in the auditory cortex, hippocampus and the amygdala and CCK-/- mice performed much worse than wildtype mice in associative, spatial and fear memory (Li et al.,2014; Chen et al., 2019; Su et al. 2019; Feng et al. 2021).

      2) Related to my last point, I believe that normal neural plasticity should be essential to motor skill learning throughout development not just during the current task. Thus, it would be important to show whether these CCK knock-out mice present any motor deficits that could have resulted from a lack of CCK-mediated neural plasticity during development. If not, the authors should explain how this normal motor learning during development is consistent with their major hypothesis in this study (e.g., is CCK not critical for motor learning during early development).

      Thanks for your comments and suggestions.

      Development is mainly gene-guided which prepares the physical structure for learning, while learning is dependent on the neural plasticity and a period of experience (such as motor training in this research). Besides, development is deemed as "experience-expectant", using common environmental information, while learning is "experience-dependent", sensitive to the specific individual experiences (Greenough et al., 1987; Galván, 2010). Moreover, development costs longer time to form a specific ability of a species in general. The role of CCK plays in the development is not clear. Duchemin et al. (1987) studied the CCK gene expression level in the brain of rats pre- and postnatally. They found that the CCK mRNA was detectable on embryonic day 14 (E14) and gradually increased to the maximum level on postnatal day 14 (P14), indicating that CCK might participate in the development of rats. Paolo et al. (2007) mapped the expression of CCK in the mouse brain. Plentiful CCK expression was observed at E12.5 in the thalamus and spinal cord and by E17.5 CCK expression extended to the cortex, hippocampus and hypothalamus, suggesting that CCK might also regulate the development of mice. Paolo et al. (2004) found that CCK suppressed the migration of GnRH-1 through CCK-A receptor in the brain. Besides, postnatal early learning may participate in development. CCK-B receptor antagonist administration (postnatal 6 hours) suppressed the infant sheep get motor preference, indicating that CCK might be important for the development of mother preference of sheep. However, what the role CCK played in the development of motor system is not known.

      In this study, the performance of both CCK-/- and WT mice is at the same level without significant difference on Day one, in terms of the percentage of "miss", "no-grasp", "drop" and "success". Besides, the movement abilities, including stride length, stride time, step cycle ratio and grasp force, were comparable for both CCK-/- and WT mice (Figure S1C, S1D, S1E, S1F), suggesting that knockout of cck gene did not affect the basic movement ability. This could be because the development of basic movement ability is not learning-guided, but is physical structure-determined. However, all these tests were on physical level, but how CCK affected the motor system on the molecular and cellular level is not known. Therefore, we further applied CCK-BR antagonist and chemogenetic method to study the role of CCK in the motor learning.

      3)Lines 198-200 and Fig. 2C: The authors found that the vehicle group showed significantly increased "no grasp" behavior, and reasoned that the implantation of a cannula may have caused injuries to the motor cortex. In order to support their reasoning and make the control results more convincing, I think it would be helpful to show histology from both the antagonist and control groups and demonstrate motor cortical injury in some mice of the vehicle group but not the antagonist group. Otherwise, I'm a bit concerned that the methods used here could be a significant confounding factor contributing to motor deficits.

      Thanks for your comments and suggestions.

      The injury of the motor cortex can not be avoided, because the cannula was inserted below the surface of the cortex (Figure S2C). The significantly increased "no-grasp" rate is because the improvement of miss rate of the Vehicle group, which turned to "no-grasp" but failed to further improve to drop or success, while for the Antagonist group, there is no significant improving from "miss" to "no-grasp", leaving no change in the "no grasp".

      4) The authors showed that chemogenetic inhibition of CCK neurons in the rhinal cortex impaired motor skill learning in the pellet-reaching task. However, we know that the rhinal cortex projects to multiple brain regions besides the motor cortex (e.g., other cortical areas and the hippocampus). Thus, the conclusion/claim that the observed behavioral deficits resulted from inhibited rhinal-motor cortical projections is not strongly supported without more targeted loss-of-function or rescue experiments.

      It would also be very informative to the field to compare the specific behavioral deficits, if any, of inhibiting specific downstream targets of the rhinal CCK neurons. As a concrete example, the hippocampus may be involved in learning more sophisticated motor skills (as the authors pointed out in the Discussion) besides the motor cortex. It would be a critical result if the authors could either show or exclude the possibility that the motor learning deficits observed in CCK-/- mice were at least partially due to the inhibition of hippocampal plasticity. This echoes my earlier point (point 1) that it is unclear whether the effect of lacking CCK in knock-out mice is specific in the motor cortex or engages multiple brain regions.

      Lastly, because Fig. 4 only showed histology in the rhinal and motor cortices, I am not sure whether the motor cortex solely receives CCK input from the rhinal cortex. A more comprehensive viral tracing result could be important to both supporting the circuit-specificity of the observed behavior in this study and providing a clearer picture of where the motor cortex receives CCK inputs.

      Thanks for your comments.

      The specificity of the CCK-projection from the rhinal cortex to the motor cortex for motor skill learning was studies using chemogenetic methods in the revised version of the paper. We first determined that over 98% of neurons in the rhinal cortex that projected to the motor cortex are CCK positive (Figure 6A, S6A, S6B). Next, we injected the retro-Cre virus in the motor cortex and the Cre-dependent hM4Di in the rhinal cortex in C57BL/6 mice to specifically inhibit the CCK neurons from the rhinal cortex to the motor cortex. Compared to two control groups, the learning ability of the experimental group was significantly suppressed, suggesting that CCK projections from the rhinal cortex to the motor cortex are critical for motor skill learning (Figure 6). Detailed description was added in the part of "Result" in the manuscript.

      In this study, we focus on the role played by CCK from the rhinal cortex, and how CCK affects motor learning. The single pellet reaching task was selected to study the role of CCK from the rhinal cortex in motor skill learning and the motor cortex is considered as the main area generates motor memory when training in this task (Komiyama et al., 2010; Peters et al., 2014; Richard et al., 2019). We emphasized that the importance of the contrallateral motor cortex in motor learning, not meant that other brain areas where also receive CCK-positive neural projections from the rhina cortex, for example hippocampus (spatial memory), are not important for the performance of this task. In fact, specifically inhibiting the projection from the rhinal cortex to the contrallateral motor cortex is not enough to suppress the motor learning ability, but inhibiting projecting in both sides (contro- and ipsi-lateral) could suppress the learning ability of mice, suggesting that the whole motor cortex is critical for motor skill learning (Figure 6, S8). In our lab, we found that CCK projection from the entorhinal cortex to the hippocampus is critical for spatial memory formation (Su et al., 2019). Impaired hippocampus, to some extent, affected the performance in single pellet reaching task (Shwuhuey et al., 2007). Therefore, manipulation of CCK projections from the rhinal cortex to the hippocampus may also affect the performance in the single pellet reaching task. In this paper, we aim to study the relationship between the rhinal cortex and the motor cortex and the role played by CCK in this circuit. Other brain areas involved in the single pellet reaching task are not the core concern in this study.

      The motor cortex also receive CCK projections from other cortices, such as the contrallateral motor cortex, the deep layer of visual cortex and auditory cortex, and thalamus (Figure S4).

      5) I am glad to see the CCK4 rescue experiment to demonstrate the sufficiency of CCK in promoting motor learning. However, the rescue experiment lacked specificity: IP injection did not allow specific "gain of function" in the motor cortex but instead, the improved learning ability in CCK knock-out mice could be a result of a global effect of CCK4 across multiple brain regions. CCK4 injection specifically targeted at the motor cortex would be necessary to support the sufficiency of CCK-regulated neuroplasticity in the motor cortex to promote motor learning.

      Thanks for your comments.

      First, the specificity of the circuit were studied by injecting a Cre virus in the MC and a Cre-dependent hM4Di virus in the RC. After injection with clozapine, the motor learning ability were significantly suppressed compared with the saline control and the control virus combined with clozapine.

      Besides, we emphasized that the importance of the motor cortex in motor learning, not meant that other brain areas where also receive CCK-positive neuronal projections from the rhinal cortex, for example hippocampus (spatial memory), are not important for the performance of this task. Specific infusion the drug into the motor cortex is hard to rescue the motor learning ability of CCK-/- mice because the motor cortex is very large, varying from AP: -1.3 to 2.46 mm and ML: ±0.5 to ±2.75 mm and other areas receiving CCK projections from the rhinal cortex also could be important for motor learning. Actually, we tried to inject CCK into the motor cortex through a drug cannula, but the result showed that it is hard to compensate the knock out of cck gene in the whole brain, and rescue the motor learning ability (Figure S11D, S11E). Moreover, cannula implantation causes inescapable injury to the motor cortex, because the cannula must be inserted into the brain, so that the drug could be infused into the brain. This injury may affect the performance in the task, as the motor cortex is very critical for motor learning. Therefore, it is not the best method to be applied for motor skill rescuing.

      Furthermore, CCK4 molecules can be transported to the whole brain by i.p. injection, as CCK4 is capable to pass through brain blood barrier, which compensates the knockout of cck gene in the whole brain, leading to the rescuing of motor learning ability. Furthermore, i.p. injection is widely accepted for drug discovery because it is very convenient, simply manipulated and does not causes any direct injury on the brain. Thus, we applied i.p. injection not only for whole brain CCK compensation, but also for the further study of the application in drug discovery.

      Reviewer #3 (Public Review):

      The authors elucidated the roles of cholecystokinin (CCK)-expressing excitatory neurons, which project from the rhinal cortex to the motor cortex, in motor skill learning. The authors found CCK knock-out mice exhibited learning defects in the pellet reaching task while the baseline success rate of the knock-out mice was similar to that of the wild-type mice. Application of a CCK B receptor (CCKBR) antagonist into the motor cortex lowered the success rate in the motor task. The authors found the population activity which was observed in the in vivo calcium imaging during motor learning was elevated after motor learning, but this increase disappeared in CCK knock-out mice and animals with CCKBR antagonist administration. Anterograde and retrograde viral tracing revealed that CCK-expressing excitatory neurons in the rhinal cortex projected to the motor cortex. Chemogenetic inhibition of the CCK-expressing neurons in the rhinal cortex lowered the ability for motor learning. The application of a CCKBR agonist increased the motor learning ability of CCK knock-out animals as well as long-term potentiation (LTP) observed in the slice of the motor cortex.

      However, the manuscript contains several shortcomings:

      First, the "Discussion" has several statements that are only supported weakly by the results, for example, ll. 429-431, ll. 432-433, and ll. 447-448. In addition, most of the sentences in this section are not divided into subsections. The paragraphs should be composed in multiple subsections with appropriate subheadings, even though the initial section summarizing the results can lack a subheading.

      Thanks for your suggestions. The statements were revised and the discussion was divided into subsections.

      Second, it would be important that the authors showed which area(s) of the brain is affected by the CCKBR antagonist in the experiments described in ll. 166-206 and Fig. 2. The authors injected the drug into the motor cortex, but the chemical can spread to neighboring cortical areas (e.g. somatosensory cortex) or wider brain regions. If so, the blockade of the CCKBR in the brain areas other than the motor cortex could cause the defects of the motor task learning observed in these experiments. I think it is desirable that such a possibility should be excluded. Conversely, it is possible that the antagonist had an effect on a limited subarea of the motor cortex (e.g. only the primary motor cortex (M1)). In this case, the information about the field altered by the CCKBR blocker would be useful to interpret the results of the learning defects.

      Thanks for your comments and suggestions.

      The drug cannula was implanted in the motor cortex (coordinates: AP, 1.4 mm, ML, -/+1.6 mm, DV, 0.25 - 0.3 mm) contralateral to the dominant hand of the mice (Figure S2C). To totally inhibit CCKBR in the motor cortex, we injected over-dosage of antagonist into the motor cortex. Thus, we cannot totally exclude the possibility that some antagonist spread to the neighboring cortices. However, the fact is that the motor cortex is very large, varying from AP: -1.3 to 2.46 mm and ML: ±0.5 to ±2.75 mm. It is not easily to spread out of the motor cortex with high concentration.

      Third, the authors need to show bilateral data about their anterograde and retrograde tracking of CCK-expressing neurons in the rhinal cortex. In ll. 290-292, they described as follows: "Both anterograde and retrograde tracking results indicated that CCK-expressing neurons in the rhinal cortex projecting to the motor cortex were asymmetric, showing a preference for the ipsilateral hemisphere." However, they provided only unilateral data for the anterograde (Fig. 4B) and the retrograde (Fig. 4D) experiments.

      Thanks for your comments. Both anterograde and retrograde tracking data from bilateral hemisphere were added to the supplementary file (Figure S4).

      Fourth, unilateral (contralateral to the dominant forelimb) experiments are needed in the chemogenetic inhibition of the CCK neurons. In ll. 301-338 and Fig. 5, the authors inhibited the CCK -expressing neurons in both hemispheres by injecting the virus into both sides. However, the CCKBR antagonist injection into the motor cortex contralateral to the dominant forelimb caused defects in motor learning ability, as described in ll. 166-206. The authors also observed that the population neuronal activity in the motor cortex contralateral to the dominant forelimb changed in accordance with the improvement of the motor skill in ll. 208-269. Therefore, it may be the case that inhibition of CCK neurons only in the side contralateral to the dominant forelimb - not bilaterally, as the authors did - could cause the lowered ability of motor learning. Such unilateral inhibition can be carried out by unilateral injection of the virus. In relation to the point above, in the chemogenetic inhibition experiments, it would be important to show which neurons in which cortical area is inhibited. This could be done by examining the distributions of the mCherry-labeled somata in the rhinal cortex using histochemistry.

      Thanks for your comments and suggestions.

      The specific of the CCK-projection from the rhinal cortex to the motor cortex for motor skill learning was studied using chemogenetic methods in the revised version of the paper. We first determined that over 98% of neurons in the rhinal cortex that projected to the motor cortex are CCK positive by retrograde virus injection and immunostaining (Figure 6A, S6A, S6B). Next, we injected the retro-Cre virus in the motor cortex and the Cre-dependent hM4Di in the rhinal cortex in C57BL/6 mice to specifically inhibit the CCK neurons from the rhinal cortex to the motor cortex. Compared to two control groups, the learning ability of the experimental group was significant suppressed, suggesting that CCK projections from the rhinal cortex to the motor cortex are critical for motor skill learning (Figure 6). Furthermore, we also injected the retro-Cre virus into the single site of the motor cortex controlateral to the dominant forelimb together with Cre-dependent hM4Di virus in the rhinal cortex. The result showed that after injection of clozapine, the motor learning ability was not significantly suppressed, suggesting that the bilateral motor cortex is important for motor skill learning. This is consistent with the previous findings that the increased GluA1 expression were observed bilaterally in the motor cortex after training in the single pellet reaching task. Detailed description was added in the part of "Result" in the manuscript.

      Fifth, it would be valuable to further examine differences in task performance across sessions and groups. The paragraph in ll. 138-153 needs a comparison of the "miss" rates of CCK-/- animals between Day 1 vs. Day 6 (related to ll. 429- 431). This paragraph also needs comparisons of the "no-grasp" and "drop" rates of CCK-/- animals between Day 1 vs. Day 6 (related to ll. 432- 433). The paragraph in ll. 175-190 needs comparisons of success rates between Day 1 and Day 5/6 within the antagonist group (related to ll. 447-448).

      Thanks for your comments. The comparisons were made in the revised manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      This thorough study expands our understanding of BMP signaling, a conserved developmental pathway, involved in processes diverse such as body patterning and neurogenesis. The authors applied multiple, state-of-art strategies to the anthozoan Nematostella vectensis in order to first identify the direct BMP signaling targets - bound by the activated pSMAD1/5 protein - and then dissect the role of a novel pSMAD1/5 gradient modulator, zwim4-6. The list of target genes features multiple developmental regulators, many of which are bilaterally expressed, and which are notably shared between Drosophila and Xenopus. The analysis identified in particular zswim4-6 a novel nuclear modulator of the BMP pathway conserved also in vertebrates. A combination of both loss-of-function (injection of antisense morpholino oligonucleotide, CRISPR/Cas9 knockout, expression of dominant negative) and gain-of-function assays, and of transcriptome sequencing identified that zwim acts as a transcriptional repression of BMP signaling. Functional manipulation of zswim5 in zebrafish shows a conserved role in modulating BMP signaling in a vertebrate.

      The particular strength of the study lies in the careful and thorough analysis performed. This is solid developmental work, where one clear biological question is progressively dissected, with the most appropriate tools. The functional results are further validated by alternative approaches. Data is clearly presented and methods are detailed. I have a couple of comments.

      1) I was intrigued - as the authors - by the fact that the ChiP-Seq did not identify any known BMP ligand bound by pSMAD1/5. Are these genes found in the published ChiP-Seq data of the other species used for the comparative analysis? One hypothesis could be that there is a change in the regulatory interactions and that the initial set-up of the gradient requires indeed a feedback loop, which is then turned off at later gastrula. In this case, immunoprecipitation at early gastrula, prior to the set-up of the pSMAD1/5 gradient, could reveal a different scenario. Alternately, the regulation could be indirect, for example, through RGM, an additional regulator of BMP signaling expressed on the side of lower BMP activity, which is among the targets of the ChiP-Seq. This aspect could be discussed. Additionally, even if this is perhaps outside the scope of this study, I think it would be informative to further assess the effect of ZSWIM manipulation on RGM (and vice versa).

      Indeed, BMP genes are direct BMP signaling targets in Drosophila (dpp) (Deignan et al., 2016, https://doi.org/10.1371/journal.pgen.1006164) and frog (bmp2, bmp4, bmp5, bmp7) (Stevens et al., 2021, https://doi.org/10.1242/dev.145789). Of all these ligands, only the dorsally expressed Xenopus bmp2 is repressed by BMP signaling, while another dorsally expressed Xenopus BMP gene admp is not among the direct targets. All other BMP genes listed here are expressed in the pMad/pSMAD1/5/8-positive domain and are activated by BMP signaling.

      In Nematostella, we do not find BMP genes among the ChIP-Seq targets, but this is not that surprising considering the dynamics of the bmp2/4, bmp5-8 and chordin expression, as well as the location of the pSMAD1/5-positive cells. In late gastrulae/early planulae, Chordin appears to be shuttling BMP2/4 and BMP5-8 away from their production source and over to the gdf5-like side of the directive axis (Genikhovich et al., 2015; Leclere and Rentsch, 2014). By 4 dpf, chordin expression stops, and BMP2/4 and BMP5-8 start to be both expressed AND signal in the mesenteries. If bmp2/4 and bmp5-8 expression were directly suppressed by pSMAD1/5 (as is the case chordin or rgm expression), this mesenterial expression would not be possible. Therefore, in our opinion, it is most likely that at late gastrula and early planula the regulation of bmp2/4 and bmp5-8 expression by BMP signaling is indirect. We do not have an explanation for why gdf5-like (another BMP gene expressed on the “high pSMAD1/5” side) is not retrieved as a direct BMP target in our ChIP data. Since we do not understand well enough how BMP gene expression is regulated, we do not discuss this at length in the manuscript.

      As the Reviewer suggested, we analyzed the effect of ZSWIM4-6 KD on the expression of rgm. Expectedly, since it is expressed on the “low BMP side”, its expression was strongly expanded (Figure 6 - Figure Supplement 4)

      2) I do not fully understand the rationale behind the choice of performing the comparative assays in zebrafish: as the conservation was initially identified in Xenopus, I would have expected the experiment to be performed in frog. Furthermore, reading the phylogeny (Figure 4A), it is not obvious to me why ZSWIM5 was chosen for the assay (over the other paralog ZSWIM6). Could the Authors comment on this experiment further?

      The comparison was done in zebrafish because we were planning to generate zswim5 mutants, whose analysis is currently in progress. ZSWIM6 is not expressed at the developmental stages we were interested in, while ZSWIM5 was, based on available zebrafish expression data (White et al., 2017):

      Reviewer #2 (Public Review):

      The authors provide a nice resource of putative direct BMP target genes in Nematostella vectensis by performing ChIP-seq with an anti-pSmad1/5 antibody, while also performing bulk RNA-seq with BMP2/4 or GDF5 knockdown embryos. Genes that exhibit pSmad1/5 binding and have changes in transcription levels after BMP signaling loss were further annotated to identify those with conserved BMP response elements (BREs). Further characterization of one of the direct BMP target genes (zswim4-6) was performed by examining how expression changed following BMP receptor or ligand loss of function, as well as how loss or gain of function of zswim4-6 affected development and BMP signaling. The authors concluded that zswim4-6 modulates BMP signaling activity and likely acts as a pSMAD1/5 dependent co-repressor. However, the mechanism by which zswim4-6 affects the BMP gradient or interacts with pSMAD1/5 to repress target genes is not clear. The authors test the activity of a zswim4-6 homologue in zebrafish (zswim5) by over-expressing mRNA and find that pSMAD1/5/9 labeling is reduced and that embryos have a phenotype suggesting loss of BMP signaling, and conclude that zswim4-6 is a conserved regulator of BMP signaling. This conclusion needs further support to confirm BMP loss of function phenotypes in zswim5 over-expression embryos.

      Major comments

      1) The BMP direct target comparison was performed between Nematostella, Drosophila, and Xenopus, but not with existing data from zebrafish (Greenfeld 2021, Plos Biol). Given the functional analysis with zebrafish later in the paper it would be nice to see if there are conserved direct target genes in zebrafish, and in particular, is zswim5 (or other zswim genes) are direct targets. Since conservation of zswim4-6 as a direct BMP target between Nematostella and Xenopus seemed to be part of the rationale for further functional analysis, it would also be nice to know if this is a conserved target in zebrafish.

      Thank you for the suggestion. In the paper by Greenfeld et al., 2021, zebrafish zswim5 was downregulated approximately 2.4x in the bmp7 mutant at 6 hpf, while zswim6 was barely expressed and not affected at this stage. We added this information to the text of the manuscript. Expression of several other zebrafish zswim genes was also affected in the bmp7 mutant, but these genes do not appear relevant for our study since their corresponding orthologs are not identified as pSMAD1/5 ChIP-Seq targets in Nematostella. Notably, zebrafish zzswim5 is not clearly differentially expressed in BMP or Chd overexpression conditions (See Supplementary file 1 in Rogers et al. 2020). Importantly, in the paper, we wanted to compare ChiP-Seq data with ChIP-Seq data, however, unfortunately, no ChIP-Seq data for pSMAD1/5/8 is currently available for zebrafish, thus precluding comparisons.

      Related to this, in the discussion it is mentioned that zswim4/6 is also a direct BMP target in mouse hair follicle cells, but it wasn't obvious from looking at the supplemental data in that paper where this was drawn from.

      Please see Supplementary Table 1, second Excel sheet labeled “Mx ChIP_Seq” in Genander et al., 2014, https://doi.org/10.1016/j.stem.2014.09.009. Zswim4 has a single pSMAD1 peak associated with it, Zswim6 has two.

      2) The loss of zswim4-6 function via MO injection results in changes to pSmad1/5 staining, including a reduction in intensity in the endoderm and gain of intensity in the ectoderm, while over-expression results in a loss of intensity in the ectoderm and no apparent change in the endoderm. While this is interesting, it is not clear how zswim4-6 is functioning to modify BMP signaling, and how this might explain differential effects in ectoderm vs. endoderm. Is the assumption that the mechanism involves repression of chordin? And if so one could test the double knockdown of zswim4-6 and chordin and look for the rescue of pSad1/5 levels or morphological phenotype.

      We do not think that the mechanism of the ZSWIM4-6 action is via repression of Chordin. As loss of chordin leads to the loss of pSMAD1/5 in Nematostella (Genikhovich et al., 2015), the proposed experiment is, unfortunately, not feasible to test this hypothesis. Currently, we see two distinct effects of the modulation of zswim4-6 expression. First, it affects the pSMAD1/5 gradient, possibly by destabilizing nuclear SMAD1/5, as has been proposed by Wang et al., 2022 for the vertebrate Zswim4. This is in line with our results shown on Fig. 6C-F’ and Fig. 6-Figure supplement 3. In our opinion, the reaction of the genes expressed on the “high BMP” side of the directive axis to the overexpression or KD of ZSWIM4-6 (Fig. 6I-K’, 6N-P’) can be explained by these changes in the pSMAD1/5 signaling intensity. Secondly, zswim4-6 appears to promote pSMAD1/5-mediated gene repression. This is in line with the reaction of the genes expressed on the “low BMP” side of the directive axis (Fig. 6G-H’, 6L-M’, Fig. 6-Figure Supplement 4). These genes are repressed by BMP signaling, but they expand their expression upon zswim4-6 KD in spite of the increased pSMAD1/5. Our ChiP experiment (Fig. 6Q) supports this view.

      3) Several experiments are done to determine how zswim4-6 expression responds to the loss of function of different BMP ligands and receptors, with the conclusion being that swim4-6 is a BMP2/4 target but not a GDF5 target, with a lot of the discussion dedicated to this as well. However, the authors show a binary response to the loss of BMP2/4 function, where zswim4-6 is expressed normally until pSmad1/5 levels drop low enough, at which point expression is lost. Since the authors also show that GDF5 morphants do not have as strong a reduction in pSmad1/5 levels compared to BMP2/4 morphants, perhaps GDF5 plays a positive but redundant role in swim4-6 expression. To test this possibility the authors could inject suboptimal doses of BMP2/4 MO with GDF5 MO and look for synergy in the loss of zswim4-6 expression.

      Thanks for this great suggestion! We performed this experiment (Fig. 5H’’-L) and indeed, a suboptimal dose of BMP2/4MO + GDF5lMO results in a complete radialization of the embryo and abolished zswim4–6, similar to the effect of a high dose of BMP2/4. This result suggests that rather than being a ligand-specific signaling function, GDF5-like signaling alone still provides sufficiently high pSmad1/5 levels to activate zswim4-6 expression to apparent wildtype levels, demonstrating the sensitivity of this gene to even very low amounts of BMP signaling.

      4) The zswim4-6 morphant embryos show increased expression of zswim4-6 mRNA, which is said to indicate that zswim4-6 negatively regulates its own expression. However in zebrafish translation blocking MOs can sometimes stabilize target transcripts, causing an artifact that can be mistakenly assumed to be increased transcription (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162184/). Some additional controls here would be warranted for making this conclusion.

      Thanks for raising this important experimental consideration. To-date, we do not have any evidence for MO-mediated transcript stabilization in Nematostella, and we have not found such data in the literature on models other than zebrafish. mRNA stabilization by the MO also seemed unlikely because we were unable to KD zswim4-6 using several independent shRNAs - an effect we frequently observe with genes, whose activity negatively regulates their own expression. However, to test the possibility that zswim4-6MO binding stabilizes zswim4-6 mRNA, we injected mRNA containing the zswim4-6MO recognition sequence followed by the mCherry coding sequence (zswim4-6MO-mCherrry) with either zswim4-6MO or control MO. We could clearly detect mCherry fluorescence at 1 dpf if control MO was co-injected with the mRNA, but not if zswim4-6MO was coninjected with the mRNA. At 2 dpf (the stage at which we showed upregulation of zswim4-6 upon zswim4-6MO injection on Fig. 6I-I’), zswim4-6MO-mCherrry mRNA was undetectable by in situ hybridization with our standard FITC-labeled mCherry probe independent of whether zswim4-6MO-mCherrry mRNA was co-injected with the control MO or ZSWIM4-6MO, while hybridization with the FITC-labeled FoxA probe worked perfectly.

      Author response image 1.

      We are currently offering two alternative hypothesis for the observed increase in zswim4-6 levels in the paper rather than stating explicitly that ZSWIM4-6 negatively regulates its own expression: “The KD of zswim4-6 translation resulted in a strong upregulation of zswim4-6 transcription, especially in the ectoderm, suggesting that ZSWIM4-6 might either act as its own transcriptional repressor or that zswim4-6 transcription reacts to the increased ectodermal pSMAD1/5 (Fig. 6I-I’).” Given the sensitivity of zswim4-6 to even the weakest pSMAD1/5 signal (zswim4/6 is expressed upon GDF5-like KD, which drastically reduces pSMAD1/5 signaling intensity (see Fig. 1 and 2 in Genikhovich et al., 2015, http://doi.org/10.1016/j.celrep.2015.02.035 and Fig. 6-Figure supplement 3 of this paper), the latter option (that it reacts to the increased ectodermal pSMAD1/5) is, in our opinion, clearly the more probable one.

      5) Zswim4-6 is proposed to be a co-repressor of pSmad1/5 targets based on the occupancy of zswim4-6 at the chordin BRE (which is normally repressed by BMP signaling) and lack of occupancy at the gremlin BRE (normally activated by BMP signaling). This is a promising preliminary result but is based only on the analysis of two genes. Since the authors identified BREs in other direct target genes, examining more genes would better support the model.

      We suggest that ZSWIM4-6 may be a co-repressor of pSMAD1/5 targets because it is a nuclear protein (Fig. 4G), whose knockdown results in the expansion of the ectodermal expression of several genes repressed by pSMAD1/5 in spite of the expansion of pSMAD1/5 itself (Fig. 6G-H’, 6L-M’, Fig. 6-Figure Supplement 4). Our limited ChIP analysis supports this idea by showing that ZSWIM4-6 is bound to the pSMAD1/5 site of chordin (repressed by pSMAD1/5) but not on gremlin (activated by pSMAD1/5). We agree that adding the analysis of more targets in order to challenge our hypothesis would be good. However, given technical limitations (having to inject many thousands of eggs with the EF1a::ZSWIM4-6-GFP plasmid in order to get enough nuclei to extract sufficient immunoprecipitated chromatin for qPCR on 3 genes (chordin, gremlin, GAPDH) for each biological replicate, it is currently unfortunately not feasible to test more genes. It will be of great interest for follow up studies to generate a knock-in line with tagged zswim4-6 to analyze target binding on a genome-wide scale. We stress in the discussion that currently the power of our conclusion is low.

      6) The rationale for further examination of zswim4-6 function in Nematostella was based in part on it being a conserved direct BMP target in Nematostella and Xenopus. The analysis of zebrafish zswim5 function however does not examine whether zswim5 is a BMP target gene (direct or indirect). BMP inhibition followed by an in situ hybridization for zswim5 would establish whether its expression is activated downstream of BMP.

      In the paper by Greenfeld et al., 2021, zebrafish zswim5 was downregulated approximately 2.4x in the bmp7 mutant at 6 hpf. However, this gene was not among the 57 genes, which were considered to be direct BMP targets because their expression was affected by bmp7 mRNA injection into cycloheximide-treated bmp7 mutants (Greenfeld et al., 2021). We added this information to the text of the manuscript.

      7) Although there is a reduction in pSmad1/5/9 staining in zebrafish injected with zswim5 mRNA, it is difficult to tell whether the resulting morphological phenotypes closely resemble zebrafish with BMP pathway mutations (such as bmp2b). More analysis is warranted here to determine whether stereotypical BMP loss of function phenotypes are observed, such as dorsalization of the mesoderm and loss of ventral tail fin.

      We agree, and we have tuned down all zebrafish arguments. Analyses of zswim5 mutants are currently ongoing.

    1. Author Response

      Reviewer #1 (Public Review):

      Strengths:

      The study addresses an intriguing research question that fills a gap in existing literature, and was carefully designed and well-executed, with a series of experiments and control experiments.

      We thank the reviewer for the positive statement about the conception and execution of the study as well as the potential interest to the community within a broader field.

      Weaknesses:

      1) My main concern is the null effect of precision estimation pattern between cued and un-cued trials. It is well established that relative to the un-cued stimuli, the cued stimuli obtain more attentional resource and this study claimed serial attentional resource allocation during parallel feature value tracking. However, all Experiments 3a-c did not find any difference in precision estimates between these two types of trials.

      We would like to annotate that the terminology „cued versus uncured trials“ in the usual sense of distinguishing between stimuli being attended versus unattended is admittedly somewhat misleading in the current work. In cued and uncured trials of the present experiments 3a-c the allocation of attention is equal. The difference is that the color stream that is attended first is defined (knowable) in the cued but not in the uncued trials. In all cases subjects had to track both color streams and report any of the probed streams as accurately as possible. In other words, the overall allocation of attention in cued and uncured trials is the same. Also, the „cue“ did not provide any information regarding the following probe (no indication of likelihood for a probe in that stream as in an attention experiment). It was entirely irrelevant and was therefore expected not to alter subjects overall performance – as confirmed by the mentioned null-result. The performed test shows, that the reported bias of ~2:1 does not depend on whether in one set of the trials one stream is cued or not. The sole purpose of the “cue” was to subconsciously redirect attention briefly towards that particular stream at the start of each trial in order to ‘phase-reset’ any process, switching/oscillating feature-based resources over time. Performance imbalance across streams is hereby not altered by this phase-reset but remains constant since precision ratio is estimated across a large number of trials and durations. To clarify this issue, we rephrased relevant descriptions in the methods section.

      2) Results of Exp.1 in the main text were different from those in Figure.

      Thank you for spotting that error. We have corrected the figure accordingly.

      3) It would be helpful to add more details for the assignation of response 1 and response 2 to target 1 and target 2, respectively, in all experiments.

      For Experiment 2 and 3 only one response per trial was required by the subjects. This design was chosen to avoid potentially ambiguous response-target assignments.

      However in the first experiment, as the reviewer points out, subjects gave two color estimates (one for each of the tracked color streams) within each trial. Given that we intend to split subjects’ target-response differences (precisions) into two distributions (based on the idea that each stream is being maintained by an independent attentional resource), there are two possible ways of assigning responses:

      (1) We split responses into a best and worst independent of which response was given first.

      (2) Alternatively, we assign target-response pairs based on the order of response. The assumption would be, that the first response would be the one with the highest confidence and would be paired with the target closest. This pairing would occur independent of the second response, which is consequently paired with the remaining target. This leaves open the possibility of the second target-response difference being better than the first one due to resource fluctuations. In general, this strategy would be less ‘rigid’ in dividing the two precision-responses into ‘good’ and ‘bad’ responses and was consequently chosen.

      To avoid problems arising from the ambiguity of target-response assignments, in all following experiments (2/3), subjects were required to give one response per trial only. We will go into further detail on this issue with reviewer 3 as well, including a numerical example. The logic behind the target-response assignments in experiment 1 has been described in more detail in the methods.

      Reviewer #2 (Publlic Review):

      The authors asked the question about whether and how changing feature values within the same feature dimensions are tracked. Using a series of behavioral studies combined with modeling approaches, the authors report interesting results regarding a robust, uneven distribution of attentional resources between two changing feature values (in a 2:1 ratio), alternating at 1 Hz. Although the results are clear, it is important to rule out the possible biases due to computational processes. The results advanced our understanding of how parallel tracking of multiple feature values within the same dimension is achieved.

      We thank the reviewer for the summary, including the potential impact on the field and we look forward to clarify methodological imprecisions.

      Reviewer #3 (Public Review):

      The study is interesting and the results are informative in how well people can report colors of two superimposed dot clouds. It reveals that there are trade-offs between reporting two colors. However, I have a few basic but major concerns with the present study and its conclusions about people's abilities to continuously track color values and the rate at which attention may be allocated across the two streams which I am outlining below.

      We thank the reviewer for the positive description of our findings and look forward to address any remaining issues.

      1) The first concern regards the task that was used to measure continuous tracking of feature values, which in my view is ambiguous in whether it truly assesses active tracking of features or rather short-term memory of the last-seen colors. Specifically, participants were viewing two colored dot clouds that then turned gray, and were asked to report each of the colors they saw using continuous report. The test usually occurred after 6-8s (in Exp. 1 &2), so while not completely predictable, participants could easily perform the task without tracking both feature streams continuously and simply perform the color report based on the very last colors they saw. In other words, it does not seem necessary to know which color belonged to which stream, or what color it was before, to perform the task successfully. Thus, it is unclear to what extent this task is actually measuring active tracking, the same way tracking of spatial locations in multiple-object tracking tasks has been studied, which is the literature that the authors are trying to draw parallels to. In multiple-object tracking tasks, targets and nontarget objects look identical and so to keep track of which of the moving objects are targets, participants need to attend to them actively and selectively. (Similarly, the original feature-tracking study by Blaser et al., at least in their main experiment, people were asked to track an object superimposed on a second object which required continuous and selective tracking of that object).

      The reviewer addresses a very fundamental point regarding ‘tracking’ in general: Does tracking rely on attentional processes or mere perception.

      The reviewer posits that subjects may simply ‘report based on the very last color they saw’ without the need to track both features streams continuously. Our argument supported by a broad literature on change blindness, inattentional blindness and related phenomena (c.f. Rensink, 2000) is, that one cannot consciously report a changing feature-value without continuously attending to it, in particular when it moves around randomly in feature space. The report of a feature value at a random unpredictable time t by ‘identifying it’ includes its attentive processing immediately before t. Since the time of the probing identification is random, it must continue throughout the trial. We do also rule out any strategy in which subjects only start tracking after some time (the probe appears between 6-8sec after trial onset) since such a strategy would involve processes of temporal attention as well and increase difficulty.

      Lastly, the reviewer refers to Blaser et al. as an example in which attentive tracking would be required, since ‘an object [is] superimposed on a second object’. We do absolutely agree. However, the same design principle applies in the current experiment: Two objects with separate values in feature space, that continuously change, are superimposed, that is, spatially inseparable. We do believe that the continuous movement of the feature values through color space separates this work from previous feature-tracking studies like Re et al., in which the presented features remained static. The latter work gives rise to alternate explanations in terms of working memory (mentioned in the next point of the reviewer). Once feature values keep changing and are relevant, a process of updating their internal representations in order to grant access is required (i.e. attention).

      2) The main claim that tracking two colors relies on a shared and strictly limited resource is primarily based on the relation between the two responses people give, such that the first response about one color tends to be higher accuracy than for the second response of the other color across participants. In my view, this is a relatively weak version of looking at trade-offs in resources, and it would have been more compelling to show such trade-offs at a single-trial level, or assess them with well-established methods that have been developed to look at attentional bottlenecks such as attention-operating characteristics that allow quantifying the cost of adding an additional task in a precise and much more direct manner.

      The reviewer suggests showing trade-offs at a single trial level within subject, which is in essence what we have done in experiment 1. Testing both streams simultaneously, however, has the drawback of introducing interference effects during the report (Reporting the first stream may degrade the precision of reporting the second stream) as well as the mentioned ambiguity between targets and responses. The second and third experiment circumvent this by probing only one color stream, as to analyze the data with a minimal set of assumptions. As the dependent measure of ‘precision’ fluctuates highly across trials, we have to estimate an overall tracking resource by creating a ‘precision’ distribution across many trials.

      3) Finally, the data of the last experiment is taken as evidence that feature-based selection oscillates at 1Hz between the two streams. This is based on response errors changing across time points with respect to an exogenous cue that is thought to "reset" attentional allocation to one stream. Only one of three data sets (which uses relatively sparse temporal sampling) shows a significant interaction between cue and time, and given that there was no a priori prediction of when such interaction should occur, this result begs for a replication to ensure that this is not a false positive result. Furthermore, based on the analyses done in the paper, it may very well be the case that the presumed "switching rate" is entirely non-oscillatory based on a recent very important paper by Geoffrey Brookshire (2022, Nature Human Behavior) that demonstrates that frequency analysis are not just sensitive to periodic but also aperiodic temporal structures. The paper also has a series of suggested analyses that could be used here to further test the current conclusions.

      The reviewer is absolutely correct in doubting the oscillatory nature of the results in Exp3. Importantly, in our discussion we do not claim that a regular periodicity of the attentional process maintains both color streams. In contrast, we stress the point of ‘one-feature at a time’, indicating a constraint that entails alternation between two representations. We do not presume any sort of regularity of this process but, instead, consider the switching being determined by the recurrent processing of tuning towards one of the two relevant values. Our interpretation is therefore largely in line with Brookshires criticism of previous attentional oscillation studies. In fact, we entirely share the doubtful interpretation of attentional oscillations that transfer mathematical modelling onto functional processes. In our study we use the tool of Fourier transformation in a mere methodological manner, in order to quantify alternations between our color streams but not to imply an underlying oscillatory process. We cannot draw conclusions about underlying attentional oscillations especially since we quantify the alternation/switch only across one full and one half period, in exp3a and exp3b respectively.

      We make the distinction between oscillations as a methodological tool and functional cognitive process more clear in the paper.

    1. Author Response

      eLife Assessment:

      The fluorescently tagged SYT-1 mouse line will be useful for the field. Importantly, the authors used a comprehensive set of immunohistochemical and physiological experiments to demonstrate that the fluorescence tagging did not alter the function of SYT-1. These are important control experiments that will make the strain useful for physiological experiments in the future. However, the advance of this manuscript is less clear.

      We thank the editor for raising this point. In the revised manuscript, we performed additonal experiments including testing the expression level of Syt1-TDT and testing the co-labeling of Syt1-TDT with synaptic marker in situ. We also dicussed the advantage of our model compared with the existed ones in line 285 to 300 in the section of discusion. Briefly, we conclude the advance of our models as follows: First, the Syt1-TDT could label synapse in situ, especially in glomerular layer of olfactory bulb (compared with B6SJL-Tg(Thy1-Syt1/ECFP)1Sud/J (Han et al. 2005)). Second, we provided a potential usage of our model in the study of electrophysiological recording and imaging in vivo, as the electrophyiological properties of neurons from Syt1-TDT mice are normal (not be analyzed in B6.Cg-Tg(Thy1-YFP/Syp)10Jrs/J and B6;CBA-Tg(Thy1-spH)21Vnmu/J (Umemori et al. 2004; Li et al. 2005)), which might be result from the relative low expression of Syt1-TDT compared with the native Syt1. Third, the neurons from the transgenic mice can be used in ASF screening by skiping the procedure of immunostaining. It will save the cost of time, reagents and work.

      Reviewer #1 (Public Review):

      In this manuscript, Zhang and colleagues created a transgenic mouse strain that expresses SYT-1-tdt in all neurons. They showed that the labelled SYT-1 colocalizes with multiple synaptic markers and label synapses in different regions. More importantly, they showed that the transgenic expression does not alter synaptic function using ephys assays. This is a straightforward paper that generated a useful reagent that will be used broadly.

      We are grateful for the reviewer’s positive comments.

      Reviewer #2 (Public Review):

      Yang et al. produced a transgenic mouse line (Syt1-TDT) that could be used for labeling both excitatory and inhibitory synaptic sites in cultured neurons and in vivo neurons. The strength of the current study is to provide a series of thorough analyses to claim the applicability of this mouse line in the relevant neuroscience research field(s). The weakness is the potential impact/usefulness of this mouse line. To strengthen the merit of this mouse line, the authors should present evidence showing its advantage over other similar genetic approaches.

      We thank the reviewer for raising this point. To strengthen the merit of this mouse line, we tested the application of Syt1-TDT in labeling synapse in situ. We found that the Syt1-TDT is highly overlapped with synapsin in the brain slice, especially in hippocampus, cerebellum and olfactory bulb, which suggest a potential usage of our model in imaging synapse in vivo. We also compared our transgenic model with the existed ones in line 285 to 300 in the section of discussion in the revised manuscript:

      “Several fluorescently tagged synaptic protein transgenic mice model, such as YFP tagged synaptophysin and pHluorin tagged synaptobrevin have been developed to label synapses [49, 50]. While these models can label synapse well, it lacks the functional analysis of neurotransmitter release in the overexpressed neurons as synaptophysin and synaptobrevin were reported to play a role in regulating neurotransmitter release. Considering the overexpression of synaptobrevin or synaptophysin were reported to promote neurite elongation or enhance neurotransmitter secretion, the synaptic organization and synaptic transmission might be changed in these models. Weiping Han et al. in their previous work [47] have generated transgenic mice expressing a Syt1-ECFP fusion protein. The Syt1-ECFP mice expressed the fluorescent protein ECFP in the cortex, midbrain, and cerebellum. However, the expression pattern in their model showed some difference with ours: In the olfactory bulb, the Syt1-TDT signals were highly enriched in glomerular layer in our model, which was not observed in the previously reported Syt1-ECFP transgenic mice [47]. It suggested a potential application of our model in labeling synapse in glomerular layer of olfactory bulb compared with Syt1-ECFP transgenic mice.”

      Reviewer #3 (Public Review):

      Yang and colleagues provide a thorough characterization of a transgenic mouse model expressing fluorescently tagged synaptotagmin. In particular, they present key controls validating this mouse model as a tool, including co-localization of the tagged synaptotagmin with other synaptic markers as well as normalcy of synaptic transmission mediated by synaptic terminals expressing the tagged synaptotagmin. Importantly, the authors present data on the potential use of neuronal cultures obtained from these mice in synaptic co-culture assays. In these assays, synaptic cell adhesion molecules expressed on non-neuronal cell lines such as HEK-293 cells or COS cells are used to test the sufficiency of these molecules to trigger synapse assembly. This mouse model will be a useful addition to existing models expressing fluorescently-tagged synaptic vesicle proteins such as synaptophysin, synaptotagmin as well as synaptobrevin.

      We are grateful for the reviewer’s positive comments.

    1. Author Response

      Reviewer #1 (Public Review):

      Bakoyiannis et al. investigated the distinct contribution of ventral hippocampal outputs to the nucleus accumbens and medial prefrontal cortex on memory in mice exposed to a high-fat diet (HFD) beginning in adolescence. The authors first characterize the hippocampal to accumbens or mPFC circuits using intersectional viral approaches. They then replicate their previous finding that adolescent HFD contributes to the overactivation of the ventral hippocampus during contextual learning via quantification of c-fos+ cells. In this manuscript, the authors further explore the distinct contribution of these two outputs from the ventral hippocampus using chemogenetics to specifically inhibit one circuit or the other. Interestingly, the authors find that inhibition of either circuit returns c-fos+ cell number to control levels, but the effects on memory are dissociable. They demonstrate that inhibition of output to the NAc rescues HFD-induced deficits on object recognition, while inhibition of mPFC outputs rescues HFD-induced deficits on object location recall. The authors further confirmed that chemogenetic manipulations resulted in alterations in c-fos+ cells that were specific to CA1, and not CA3 or DG. Behaviorally, they excluded any contribution of anxiety on recall, finding no effect on the elevated plus maze.

      The strengths of this manuscript include robust behavioral findings that can be attributed to specific circuits. The conclusions of this paper are largely well supported by the data, although some of the methods could provide more detail and the statistical approaches used for analysis need improvement.

      We thank the Reviewer for thoroughly summarizing the main results of the study and for providing the comments that we address below.

      Reliance on only one measure of anxiety to exclude this as a confound on recall performance is a weakness of the manuscript. To be more convincing that anxiety is not a confound, more than one behavioral assay should be performed.

      Reviewer #2 (Public Review):

      Bakoyiannis et al. aim to analyze the impact of high-fat diet (HFD) intake during the preadolescent period on memory performances by optogenetically manipulating the circuits responsible for related memory performances. In previous work, they showed the possibility to rescue object-based memory impairments in HFD-exposed animals by silencing the ventral hippocampus (vHPC). Here they investigated further the projections to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), 2 of the main monosynaptic targets of the vHPC.

      They used a precise strategy to target and manipulate only vHPC cells that project to either NAc or mPFC. They found that preadolescent HFD can induce different types of memory deficits related to different vHPC pathways. In particular, they found that silencing vHPC-NAc, but not vHPC-mPFC, pathway restored HFD-induced object recognition memory deficit. On the other side, silencing vHPC to mPFC, but not vHPC-NAc, pathway rescued HFD-induced object location memory deficits. Moreover, these pathways do not control anxiety-like behaviours since their inactivation has no effect on anxiety levels.

      We thank the Reviewer for summarizing the findings of the study and for their positive comments on our manuscript.

      The conclusions of the manuscript are mostly supported by the results, but there are some points and controls that need to be addressed and clarified:

      • While identifying the relevance of hippocampal cells projecting to NAc and mPFC, a missing control is to verify the activity of vHPC not projecting to these 2 regions in normal conditions or when the investigated pathways are manipulated. This control is essential to refine and bring novel results related to their previous discovery that vHPC overall is involved in the process.

      • A downstream effect of their optogenetic manipulation on NAc and mPFC cellular populations should be shown if they want to claim that their chemogenetic inhibition decrease the activation of the pathway and not only of vHPC projecting neurons.

      New c-Fos experiments were performed. Please see our response to points 4-5-6 in the “Essential Revision” section.

      Reviewer #3 (Public Review):

      "Obesogenic diet induces circuit-specific memory deficits in mice" by Bakoyiannis et al., investigates the role of specific ventral hippocampal circuits (specifically to nucleus accumbens and mPFC) in high-fat diet-induced memory deficits. The authors had previously shown that increases in activity in the ventral hippocampus accompany high-fat diet-induced memory deficits, and that inhibition of activity thereby normalizes those memory deficits. In this manuscript, the authors extend these findings to specific projections, showing that they normalize different types of memories by inhibiting the two different pathways.

      The strengths of the paper include the pathway-specific manipulations that reveal a difference between the two types of memory. The results are a modest step forward for the field of feeding and learning and memory and would be of interest to that subgroup of neuroscientists. However, the paper also has a number of weaknesses which I detail below.

      We thank the Reviewer for summarizing the finding of our study and for the positive feedback.

      1) First, the authors show an effect of cfos from both pathways in Figure 2 on object learning. However, the inactivation studies show a pathway-specific effect on object recognition and object location, with no experiments to delineate how this divergence occurs. The authors do not specify whether they compared cfos in the control group between NAc and mPFC projections (presumably they did some controls with each injection), which might reveal differences.

      We have added new groups and presented/analyzed the results for each pathway (either vHPC-NAc pathway or vHPC-mPFC pathway) separately for c-Fos (new Figure 2 and Figure 2-Figure Supplement 1) or behaviours (new Figure 3 and Figure 3-Figure Supplement 1). Please see our responses to points 2, 4-5-6 and 9 in the “Essential Revision” section.

      2) Related to this, it is unclear how the pathways end up diverging for memory if they do not show any differences in cfos during training. Perhaps there are pathway-specific differences in cfos following the ORM and OLM tests? It is difficult to support the claim that there are pathway differences in memory following inactivation if we do not see any pathway-specific change in activity.

      We thank the Reviewer for this comment. Please see our answer to point 7 in the “Essential Revision” section above.

      3) Figure 2 and Figure 3 are also hard to interpret because of the usage of a 1-way ANOVA which is not the appropriate statistical test when there are two independent variables (HFD and DREADD manipulation). Indeed, noticing the statistical test also reveals that a critical control missing: HFD -, hM4di+CNO +. It is possible that inactivation simply brings down cfos levels regardless of diet. While this might benefit memory in the case of HFD, it is critical to know whether the manipulation is specific to the overactivation caused by HFD or just provides a general decrease in activity.

      Based on this comment we added new HFD-hM4di+CNO+ groups and modified statistical analyses accordingly. Indeed, inactivation of each pathway (vHPC-NAc or vHPC-mPFC) decreases c-Fos in both HFD+ and HFD- (CD+) groups (new Figure 2) whereas it has opposite effect on behaviors, improving memory performance in HFD+ groups but impairing or having no effect in HFD- (CD+) groups (new Figure 3). We have corrected this in the manuscript (please see our responses to points 2 and 9 of “Essential Revision” section).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper reports the fundamental discovery of adrenergic modulation of spontaneous firing through the inhibition of the Na+ leak channel NALCN in cartwheel cells in the dorsal cochlear nucleus. This study provides unequivocal evidence that the activation of alpha-2 adrenergic or GABA-B receptors inhibit NALCN currents to reduce neuronal excitability. The evidence supporting the conclusions is compelling, the electrophysiological data is high quality and the experimental design is rigorous.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study uses electrophysiological techniques in vitro to address the role of the Na+ leak channel NALCN in various physiological functions in cartwheel interneurons of the dorsal cochlear nucleus. Comparing wild type and glycinergic neuron-specific knockout mice for NALCN, the authors show that these channels 1) are required for spontaneous firing, 2) are modulated by noradrenaline (NA, via alpha2 receptors) and GABA (through GABAB receptors), 3) how the modulation by NA enhances IPSCs in these neurons.

      This work builds on previous results from the Trussell's lab in terms of the physiology of cartwheel cells, and from other labs in terms of the role of NALCN channels, that have been characterized in more and more brain areas somewhat recently; for this reason, this study could be of interest for researchers that work in other preparations as well. The general conclusions are strongly supported by results that are clearly and elegantly presented.

      I have a few comments that, in my opinion, might help clarify some aspects of the manuscript.

      1. It is mentioned throughout the manuscript, including the abstract, that the results suggest a closed apposition of NALCN channels and alpha2 and GABAB receptors. From what I understand, this conclusion comes from the fact that GABAB receptors activate GIRK channels through a membrane-delimited mechanism. Is it possible that these receptors converge on other effectors, for example adenylate cyclase (see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374141/).

      We have now tested the role of adenylyl cyclase modulation in the control of NALCN, by saturating the cells with a cAMP analogue 8-Br-cAMP and found no effect on the NA response. These data are included in the paper. While further experiments are necessary, these results argue in favor of a direct gating by G-proteins.

      1. In Figure 2G, the neurons from NALCN KO mice appear to reach a significantly higher frequency than those from WT (figure 2E, 110 vs. 70 spikes/s). Was this higher frequency a feature of all experiments? The results mention a rundown of peak firing rate due to whole-cell dialysis, but, from what I understand, the control conditions should be similar for all experiments.

      The peak firing rates in control solutions for WT and KO CWC are not statistically different.

      1. Also in Figure 2, the firing patterns for neurons from WT and NALCN KO mice appear to be quite different, with spikes appearing to be generated during the hyperpolarization of the bursts in the second half of the current step for WT neurons but always during the depolarization in KO neurons. Was this always the case? If so, could NALCN channels be involved in this type of firing? Along these lines, it would be interesting to show an example of a firing pattern of neurons from WT mice in the presence of NA, which inhibits NALCN channels.

      The specific pattern of spikes in CWC is quite variable from trial-to-trial or cell-to-cell, as it is dependent on multiple CaV and calcium dependent K channels subtypes, and is not dependent on the genotypes used here. The primary effects observed in the KO are in background firing and sensitivity to NA, both reflected alterations in rheobase. The firing pattern example requested was shown in the raster plot of fig 2B2.

      1. It might be interesting to discuss how the hyperpolarization induced by the activation of GIRK channels and inhibition of NALCN channels could have different consequences due to their opposite effect on the input resistance.

      We considered this as a point of discussion, but decided that making sense of it would depend on assumptions about the location of the channels (dendritic vs somatic, distance to AIS) that we do not have data for. For example, a dendritic increase in resistance through NALCN block, leading to a hyperpolarization of the soma, might have actions similar to a somatic hyperpolarizing conductance increase by GIRK, as far as the voltage at the AIS is concerned.

      Reviewer #2 (Public Review):

      This is a very interesting paper with several important findings related to the working mechanism of the cartwheel cells (CWC) in the dorsal cochlear nucleus (DCN). These cells generate spontaneous firing that is inhibited by the activation of α2-adrenergic receptors, which also enhances the synaptic strength in the cells, but the mechanisms underlying the spontaneous firing and the dual regulation by α2-adrenergic receptor activation have remained elusive. By recording these cells with the NALCN sodium-leak channel conditionally knocked, the authors discovered that both the spontaneous firing and the regulation by noradrenaline (NA) require NALCN. Mechanistically, the authors found that activation of the adrenergic receptor or GABAB receptor inhibits NALCN. Interestingly, these receptor activations also suppress the low [Ca2+] "activation" of NALCN currents, suggesting crosstalk between the pathways. The finding of such dominant contribution of the NALCN conductance to the regulation of firing by NA is somewhat surprising considering that NA is known to regulate K+ conductances in many other neurons.

      The studies reveal the molecular mechanisms underlying well known regulations of the neuronal processes in the auditory pathway. The results will be important to the understanding of auditory information processing in particular, and, more generally, to the understanding of the regulation of inhibitory neurons and ion channels. The results are convincing and are clearly presented.

      Reviewer #3 (Public Review):

      The study by Ngodup and colleagues describes the contribution of sodium leak NALCN conductance on the effects of noradrenaline on cartwheel interneurons of the DCN. The manuscript is very well-written and the experiments are well-controlled. The scope of the study is of high biological relevance and recapitulates a primary finding of the Khaliq lab (Philippart et al., eLife, 2018) in ventral midbrain dopamine neurons, that Gi/o-coupled receptors inhibit NALCN current to reduce neuronal excitability. Together these studies provide unequivocable evidence for NALCN as a downstream target of these receptors. There are no major concerns. I have only minor suggestions:

      Minor

      1. As introduced in the introduction, NALCN is inhibited by extracellular calcium which has led to some discourse of the relevance of NALCN when recorded in 0.1 mM calcium. A strength of this study is the effect of NA on NALCN is recorded in physiological levels of calcium (1.2 mM). I suggest including the concentration of extracellular calcium in the aCSF in the Results section instead of relying on the reader to look to the Methods.

      Done.

      1. It would be interesting to include the basal membrane properties of the KO compared to wildtype, including membrane resistance and resting membrane potential. From the example recording in Figure 2, one might think that the KOs have lower membrane resistance, so it is interesting that the 2 mV hyperpolarization produced similar effects on rheobase. In addition, from the example in Figure 2G, it appears that NA has an effect on firing frequency with large current injection in the KO. Is this true in grouped data and if so, is there any speculation into how this occurs?

      We have included in the text a comparison of the input resistance in WT and KO. These were not different. This should not be too surprising given the wide range of values between animals, and the necessity to compare populations. Measurements of resting potential are complicated by the fact that CWC are normally spontaneously active. As was discussed in the text, peak firing frequency declined with time during recording in both control and KO, necessitating normalization as shown in Fig 2E-H.

      1. Please expand on the rationale for why GABAB and alpha2 must be physically close to NALCN. To my knowledge, the mechanism by which these receptors inhibit NALCN is not known. Must it be membrane-delimited?

      Given the known membrane delimited modulation of GIRK by GABAB, and that alpha2 and GABAB receptors appear to share the same population of NALCN channels, and that alpha2 receptors do not appear to target GIRK channels, we felt the simplest explanation would be coupling through G-proteins, with spatial segregation of different receptor/channel pools providing the means for separating GIRK and NALCN effects. Given that the alpha2 receptor is a Gi/o GPCR, we have now included in the revision new experiments using 8-Br-cAMP, as discussed above. These showed no effect on the NA response, consistent with a direct effect membrane delimited of G-proteins. We acknowledge however that further experiments are warranted.

      Reviewer #1 (Recommendations For The Authors):

      1. I suggest labeling the voltage traces in Figure 2 with WT and KO for easier comprehension; in addition, I suggest adding the average data to the plots in Figure 2, as in Figure 2-supplementary Figure 1 panel F.

      We have added the figure labels as requested. We chose not to add the average data as we noticed that averaging the full FI plots led to a smearing of the curves and a distortion in the apparent rheobase. Thus, we instead measured the rheobase for individual cells and report their average.

      1. For readers that are not familiar with the field, more details should be given about the electrical stimulation to evoke IPSCs in cartwheel cells, and what they represent.

      Done.

      1. The methods should mention if and how the concentrations of divalents were adjusted in the experiments with 0.1 extracellular Ca2+

      Done.

      Reviewer #2 (Recommendations For The Authors):

      I only have several minor comments.

      1. The total lack of spontaneous firing in CWCs in the NALCN KO (Fig. 1) is interesting and provides an opportunity to probe the in vivo function of such spontaneous firing. Besides being a little smaller, do the mutant mice have any sign of abnormality in sound signal processing?

      Figure 1 – Figure supplement 1 showed that there are no effects on auditory brainstem responses in the KO.

      1. Figs. 3&4 (and several other figures with voltage-clamp recordings), a line indicating zero current level would be useful.

      Done

      1. page 7, "Outward current generated by suppression of NALCN": it might be better to state as "Outward response generated by suppression of NALCN", as the authors correctly pointed out that the NA-induced apparently outward current response is largely a result of an inhibition of NALCN-mediated inward Na+ current. One way to clarify this might be to record at the Nernst potential of K+ to isolate the contribution of Na+ currents (unclear if K+- or Cs+-based pipette was used in the experiment in Fig 3).

      Text has been modified.

      1. Figs. 5,6&7: do the dashed lines indicate initial current level or zero current level?

      Initial current. See legends.

      1. The labeling of some of the bar graphs can be made more clear. For example, in Fig. 2K, the right two columns should be labeled as WT as well. Fig. 3C & Fig. 4C, the left two columns should be labeled as WT and the right two as KO.

      Added labels to Fig 2 as requested.

      1. Figs. 5-7: The suppression of low extracellular [Ca2+]-induced NALCN-dependent current by NA and baclofen is very interesting. As the tonic inhibition of NALCN by extracellular Ca2+ is likely through a Ca2+-sensing GPCR (CaSR) and G-proteins (lowering [Ca2+] releases the inhibition and generates inward current) (Lu et al. 2010), the action of NA and baclofen may all converge onto the same G-protein dependent pathway of the Ca2+-sensing receptor. I'd include this in the discussion to provide a potential mechanistic explanation of the interesting observation.

      This is indeed an interesting idea. We prefer not to discuss here, as 1) the source of Ca2+ sensitivity of the channel seems to be controversial (Chua et al 2020), and 2) the effect of Ca2+ reduction is enormously slower than the effect of the modulators (Fig 5-7), implying distinct mechanisms.

      Reviewer #3 (Recommendations For The Authors):

      Typos/general comments

      1. Figure 2 would be easier to comprehend with WT and KO labels as in the other figures. Done

      2. Page 11, size of the IPSCs in NA is missing the minus sign.

      Corrected.

      1. Is the y-axis correct on Figure 8B? This looks like it is doubling the size of the IPSC.

      Thank you for catching this mistake. The formula used to calculate % change was in error. We have corrected all the data analysis in the figure, which fortunately did not change the conclusion. Regarding the axis, note that the measurement was % change, not ratio of drug vs control.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and editors for their constructive comments on the manuscript. We have extensively revised the manuscript based on these concerns and comments. The followings are the specific answers.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the manuscript "Long‐read single‐cell sequencing reveals expressions of hypermutation clusters of isoforms in human liver cancer cells", S. Liu et al present a protocol combining 10x Genomics single-cell assay with Element LoopSeq synthetic long-read sequencing to study single nucleotide variants (SNVs) and gene fusions in Hepatocellular carcinoma (HCC) at single‐cell level. The authors were the first to combine LoopSeq synthetic long‐read sequencing technology and 10x Genomics barcoding for single cell sequencing. For each cell and each somatic mutation, they obtain fractions of mutated transcripts per gene and per each transcript isoform. The manuscript states that these values (as well as gene fusion information) provide better features for tumor-normal classification than gene expression levels. The authors identified many SNVs in genes of the human major histocompatibility complex (HLA) with up to 25 SNVs in the same molecule of HLA‐DQB1 transcript. The analysis shows that most mutations occur in HLA genes and suggests evolution pathways that led to these hypermutation clusters. Yet, very little is said about novel isoforms and alternative splicing in HCC cells, differences in isoform ratio between cells carrying different mutations, or diversity of alternative isoforms across cells. While the manuscript by Liu et al. presents a promising combination of technologies, it lacks significant insights, a comprehensive introduction, and has significant problems with data description and presentation.

      Answer: Thanks for the precious suggestion. Our long-read single-cell sequencing has discovered an average of 442 novel isoform transcripts per benign liver cell and 450 novel isoform transcripts per HCC cell per SCANTI v1.2 analysis. These are stated in the revised manuscript. The alternative splicing was detected by differential isoform expression as demonstrated in supplemental figures 6 and 7 and supplemental tables 8-11. The examples of differences in isoform ratio between cells carrying different mutations are now shown by DOCK8 and STEAP4 (figure 5 in the revised manuscript). A new section was added in the results to discuss the mutation expression of these two genes. The diversity of isoforms of the selected genes is shown in Supplemental Figure 10.

      This study showed how mutations in the same allele evolved in liver cancer. In particular, HLA hypermutations were found to develop from some specific sites of the molecules into large clusters of mutations in the same molecules. A new paragraph of introduction was added about the role of mutations in human cancer development. We also revised the figures to present the information better. All the HLA genes expressed only one known isoform, as shown in Figure 4 and Supplemental Figure 3, regardless of mutations.

      Major comments:

      1. The introduction section is scarce. It lacks description of important previous works focused on clustered mutations in cancers (for example, PMID35140399), on deriving the process of cancer development through somatic evolution (PMID32025013, from single cell data PMID32807900). Moreover, some key concepts e.g. mutational gene expression and mutational isoform expression are not defined. The introduction and the abstract contain slang expressions e.g. "protein mutation', a combination of terms I teach my students not to use.

      Answer: We appreciate the reviewer for the idea of more solid background introduction and term definition. We added a new paragraph in the introduction section to introduce the role of mutations and hypermutations in human cancers. Some important work has been cited. We added a new section in the "Methods" to define "mutation gene expression share" and "mutation isoform expression share". "Protein mutation" has been replaced by "genetic mutation".

      1. In the results section, to select the mutations of interest, the authors apply UMAP dimensionality reduction to the mutation isoforms expression and cluster samples in UMAP space, then select the mutations that are present only in one cluster, then apply UMAP to the selected mutations only and cluster the samples again. The motivation for such a procedure seems unclear, could it be replaced with a more straightforward feature selection?

      Answer: Thanks for raising up this important question. The goal of the analysis is an unbiased classification of the cell populations in the samples. We found that by removal of mutated isoform expressions that were at similar levels of all cells, the UMAP clustering generated clear segregation of three population cells. When the unique mutated isoform expressions from each group were applied, it generated highly distinct 8 groups of cells, with each group having a distinct mutation isoform expression pattern. If we force known knowledge into the mix of the analysis, it may generate unwanted bias. Specifically, the first UMAP was performed in an unbiased way to cluster cells, while the second step is a supervised approach by selecting the unique mutations in each cluster to identify the classifiers. The second UMAP matches the Benign/HCC labeling well.

      1. As I understand, the first "mutated isoform"-based UMAP clustering was built from expression levels of 205 "mutational isoforms". What was the purpose and outcome of the second "mutated isoform"based UMAP clustering (Figure 2E)? In the manuscript the authors just describe the clusters and do not draw any conclusions or use the results of the clustering anywhere further.

      Answer: Thanks for pointing this out. Figure 2E was generated from unique mutation isoform expressions in groups A, B, and C from Figure 2D. The purpose of Figure 2E is to investigate whether these unique mutation isoforms can further classify the cell populations free of prior biological knowledge. We added a sentence in the revision to clarify the purpose of the clustering. The conclusion from this analysis, including Figure 2F and Figure 3 (which is an extension of Figure 2E), is that HLA mutation isoform expressions dominated the classifications of cell populations.

      1. The authors just cluster the data three times based on expression levels of different sets of "mutational isoforms" and describe the clusters. What do we need to gather from these clustering attempts besides the set of 113 mutations used for further analysis? What was the point of the reclusterings? Did the authors observe improvement of the classification at each step?

      Answer: Thanks for asking this important question. The improvement of re-clustering to classify cell populations is the obvious segregation of 8 different groups of cells without any manual classification through prior knowledge. The distances among groups were far apart in comparison to the first clustering (figure 2B). Detailed subclassifications were achieved on cell populations that otherwise could not be segregated based on the first clustering.

      1. The alignment of short reads generated from hypermutated transcriptomes is non-trivial. The proposed approach could address the issue without the need for whole genome sequencing and offer insights about the cancer development through somatic evolution. Why didn't the authors use modern phylogenetic approaches in the "Evolution of mutations in HLA molecules" section or at least utilize the already performed clustering to infer cell lineages?

      Answer: We appreciate for the great question. For a single molecule mutation evolution, single gene clustering may not produce a desirable and robust effect. A simple evolution snowball chart in Figure 4B may be easier to be understood.

      1. I am not sure I understood the definition of "mutated gene expression levels" and "mutated isoform expression levels" in the "Mutational gene expression and fusion transcript enhanced transcriptome clustering of benign hepatocytes and HCC" section. The authors mention that gene lists included all the isoforms within the same range of standard deviation. If I understand it correctly, they are equal if there is only one expressed transcript isoform. In that case, this overlap is not surprising at all.

      Answer: We thank the reviewer for the great question. The definition of mutation gene expression level, mutation isoform expression level, and fusion gene expression level are now defined in the "Methods" section. In all HLA mutation transcripts, there were multiple transcripts with or without mutations for a single dominant isoform.

      1. "To investigate the roles of gene expression alterations that were not accompanied with isoform expression changes, UMAP analyses were performed based on the non‐overlapped genes." Venn diagrams (Sup Figure 8) show that there are much less "non-overlapped genes" than "genes that showed both gene and isoform level changes" for each SD threshold (for example, for SD>=0.8 59 vs 275). Could that be the reason why clustering based on the former group is worse i.e the cancer and normal cells are separated less clearly?

      Answer: The number of (attributes) genes could be a contributing factor in the segregation of cell populations. However, the number of attributes is not the underlying reason for worse performance for gene only classifier because much smaller isoforms/genes (22) overlap in SD>=1 outperformed a large number of genes (59) with SD>=0.8. It suggested that 59 gene expression classifier is less efficient in segregating the cell populations. To address this concern, we took SD>=0.8 as an example for demonstration if we subsampled the 275 overlapped genes/isoforms to 59 (equal to 59 non-overlapped genes in terms of number), we can still get better separation than the 59 DEG only. We repeated this subsampling process for three times. Similar results were found. The new data were inserted into supplemental Figure 8

      Reviewer #2 (Public Review):

      In the present study, Liu et al present an analysis of benign and HCC liver samples which were subjected to a new technology (LOOP-Seq) and paired WES. By integrating these data, the authors find isoforms, fusions and mutations which uniquely cluster within HCC samples, such as in the HLA locus, which serve as candidate leads for further investigation. The main appeal of the study is in the potential of LOOPSeq as a method to present isoform-resolved data without actually performing long-read sequencing. While this presents an exciting new method, the current study lacks systematic comparisons with other technologies/data to test the robustness, reproducibility and utility of LOOPSeq. Further, this study could be further improved by giving more physiologic context and examples from the analyses, thus providing a new resource to the HCC community. A few suggestions based on these are below:

      Answer: We appreciate the reviewer to raise up all the important questions and the great suggestions. The LOOPseq technology was compared with Oxford nanopore and PacBio long-read sequencing in our previous study. We have cited analysis in the introduction section of the paper. HLA mutation clusters in the single molecules are our finding with major physiological significance since these mutations may help liver cancer cells evade immune surveillance. We have extensively discussed the potential impact of these mutations on cancer development in the discussion. In addition, we added a new section of DOCK8 and STEAP4 mutation expressions in the results (page 11, new Figure 5) that are highly relevant to the pathogenesis of HCC.

      1. A primary consideration is that this seems to be the first implementation of LOOP-Seq, where the technology, while intriguing, has not been evaluated systematically. It seems like a standard 10x workflow is performed, where exons are selectively pulled down and amplified. Subsequent ultra-deep sequencing is assumed to give isoform-resolution of the sc-seq data. To demonstrate the utility of the approach it would benefit the study to compare the isoform-resolved results with studies where long-read sequencing was actually performed (ex: https://journals.lww.com/hep/Fulltext/2019/09000/Long_Read_RNA_Sequencing_Identifies_Alternativ e.19.aspx, https://www.jhep-reports.eu/article/S2589-5559(22)00021-0/fulltext, https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010342). Presumably, a fair amount of overlap should occur to justify the usage.

      Answer: We have discussed the utility of the methodology in comparison with the previous studies by these three groups in the revision (results, page 12).

      1. Related to this point, the sc-seq cell types and benign vs HCC genes should be compared with the wealth of data available for HCC sc-seq (https://www.nature.com/articles/s41467-022-322833, https://www.nature.com/articles/s41598-021-84693-w). These seem to be important to benchmark the technology in order to demonstrate that the probe-based selection and subsequent amplification does not bias cell type definition and clustering. In particular, https://www.nature.com/articles/s41586021-03974-6 seems quite relevant to compare mutational landscapes from the data.

      Answer: This is a great point. The consistency probe-based analysis was demonstrated in our previous analyses and the analyses mentioned in the comments. We further discussed it in the results section of the paper (page 12).

      1. From the initial UMAP clustering, it will be important to know what the identities are of the cells themselves. Presumably, there is quite a bit of immune cells and hepatocytes, but without giving identities, downstream mechanistic interpretation is difficult.

      Answer: When mutation analyses were combined with cell marker analysis, i.e., immune marker positive but negative in HLA mutation, we found only one bona fide immune cell in the HCC sample. Thus, immune cells may not be significant in the current analysis.

      1. In general, there are a fair amount of broad analyses, such as comparisons of hierarchical clustering of cell types, but very little physiologic interpretations of what these results mean. For example, among the cell clusters from Fig 6, knowing the pathways and cell annotations would help to contextualize these results. Without more biologically-meaningful aspects to highlight, most of the current appeal for the manuscript is dependent on the robustness of LOOP-seq and its implementation.

      Answer: To address this comment, a new pathway analysis was performed on the cluster results of Figure 6. A new supplemental table was generated. The results are now discussed on page 13.

      1. Many of the specific analyses are difficult and the methods are brief. Especially given that this technology is new and the dataset potentially useful, I would strongly recommend the authors set up a git repository, galaxy notebook or similar to maximize utility and reproducibility

      Answer: The script file has been uploaded to GIT to facilitate the reproducibility of the analysis. We also added a new pipeline description script in the methods (pages 19-20).

      1. The authors claim that clustering between benign and HCC samples was improved by including isoform & gene (Suppl fig 8). This seems like an important conclusion if true, especially to justify the use of longread implementation. Given that the combination of isoform + gene presents ~double the number of variables on which to cluster, it would be important to show that the improved separation on UMAP distance is actually due to the isoforms themselves and not just sampling more variables from either gene or isoform

      Answer: The number of (attributes) genes could be a contributing factor in the segregation of cell populations. However, the number of attributes is not the underlying reason for worse performance for gene only classifier because much smaller isoforms/genes (22) overlap in SD>=1 outperformed a large number of genes (58) with SD>=0.8. It suggested that 58 gene expression classifier is less efficient in segregating the cell populations. To address this comment, we performed random subsampling to reduce the isoform/gene overlap iterates, similar results were obtained. A new supplemental figure was generated to reflect the new analyses.

      1. SQANTI implementation to identify fusions relevant for the HCC/benign comparison. How do the fusions compare with those already identified for HCC? These analyses can be quite messy when performed on WES alone so it seems that having such deep RNA-seq would improve the capacity to see which fused genes are strongly expressed/suppressed. This doesn't seem as evident from current analysis. There are quite a bit of WES datasets which could be compared: https://www.nature.com/articles/ng.3252, https://www.nature.com/articles/s41467-01803276-y

      Answer: Exome sequencing is not an ideal tool to identify fusion genes. Very few fusion genes have been discovered based on RNA sequencing so far. The fusion genes discovered in the study appeared mostly novel. No exome sequencing was involved in the identification of fusion genes.

      1. Figure 4 is fairly unclear. The matrix graphs showing gene position mutations are tough to interpret and make out. Usually, gene track views with bars or lollipop graphs can make these results more readily interpretable. Also, how Figure 4 B infers causal directions from mutations is unclear.

      Answer: We appreciate the reviewer for pointing this out. We have revised the diagram in Figure 4A to reflect the proper distance between the mutations in HLA-DQB1 NM_002123. Since these are the positions in the same alleles (protein), the gene track view or lollipop graph may not show that properly. The mutation clusters started from an isolated mutation, and mutation did not revert to wild type sequence after occurring. Based on these two principles, we showed several mutation accumulation pathways leading to hypermutation clusters.

      Reviewer #3 (Public Review):

      The Liu, et al. manuscript focuses on the interesting topic of evaluating in an almost genome-wide-scale, the number of transcriptional isoforms and fusion gene are present in single cells across the annotated protein coding genome. They also seek to determine the occurrences of single nucleotide variations/mutations (SNV) in the same isoform molecule emanating from the same gene expressed in normal and normal and hepatocellular carcinoma (HCC) cells. This study has been accomplished using modified LoopSeq long‐read technology (developed by several of the authors) and single cell isolation (10X) technologies. While this effort addresses a timely and important biological question, the reader encounters several issues in their report that are problematic.:

      1. Much of the analysis of the evolution of mutations results and the biological effects of the fusion genes is conjecture and is not supported by empirical data. While their conclusions leave the reader with a sense that the results obtained from the LoopSeq has substantive biological implications. However, they are extended interpretations of the data. For example: The fusion protein likely functions as a decoy interference protein that negatively impacts the microtubule organization activity of EML4.(pg 9)... and other statements presented in a similar fashion.

      Answer: We thank the reviewer for the helpful comment. The mutation results were experimentally validated by exome sequencing on the same samples. Furthermore, these mutations were filtered by requiring their presence in three different transcriptomes. The biological significance of these mutations is probably the subject of investigation in the next phase. Since a large number of HLA mutations did not occur overnight, the analysis of the accumulation pathways for these mutations was warranted, given the extensive evidence of such a process. The impact of mutations on HLA molecules appeared obvious and should be discussed. For ACTR2-EML4 fusion, we revised it as "The loss of microtubule binding domain may negatively impact the microtubule organization activity of EML4 domain of the fusion protein." We only discussed the obvious impact due to the loss of a large protein domain.

      2, LoopSeq has the advantage of using short read sequencing analyses to characterize the exome capture results and thus benefits from low error rate compared to standard long-read sequencing techniques. However, there is no evidence obtained from standard long read sequencing that the isoforms observed with LoopSeq are obtained with parallel technologies such as long read technologies. It is not made clear how much discordance there is in comparing the LoopSeq results are with either PacBio or ONT long read technologies.

      Answer: The comparative analyses among LOOPSeq, Oxford nanopore, and PacBio sequencing were performed in our previous study. We have cited the study in our introduction.

      1. There is no proteome evidence (empirically derived or present in proteome databases) from the HCC and normal samples that confirms the presence or importance of the identified novel isoforms, nor is there support that indicate that changes in levels HLA genes translate to effects observed at the protein level. Since the stability and transport differences of isoforms from the same gene are often regulated at the post-transcriptional level, the biological importance of the isoform variations is unclear.

      Answer: Given the transcriptome sequencing data, we can only focus on the isoform variation analysis but not directly link to the protein level variation because of the post-transcriptional level regulation. We discussed this in the revised manuscript (page 14).

      4 It is unclear why certain thresholds were chosen for standard deviation (SD) <0.4 (page 5), SD >1.0 (pg 11).

      Answer: The threshold is flexible and arbitrary. We showed different thresholds, and the same conclusion holds. We just choose the thresholds with better separation and a reasonable number of genes/isoforms for the downstream analysis. (Supplemental Figure 6-7 with different thresholds and supplemental tables 4-12).

      1. HLA is known to accumulate considerable somatic variation. Of the many non-immunological genes determined to have multiple isoforms what are the isoform specific mutation rates in the same isoform molecule? Are the HLA genes unique in the number of mutations occurring in the same isoform?

      Answer: We thank the reviewer for this important suggestion. We now show mutation expression patterns in isoforms of DOCK8 and STEAP4 in Figure 5. A new section is added to discuss the mutation expression of these two genes. As shown in supplemental figure 10, HLA-DQB1, HLA-DRB1, HLA-B, and HLA-C, have only one known isoform detected,

      Editorial comments:

      The present study pairs single-cell seq with LoopSeq synthetic long-read sequencing on samples of HCC and benign liver to identify mutations and fusion transcripts specific to cancer cells. The authors present a potentially important resource; however the overall support remains incomplete.

      While the approach of evaluating isoform-specific changes at the cellular level to cancer seeks to address a timely and important topic, there is currently incomplete evidence in support of the major claims in the manuscript. In particular, major recommendations to provide stronger support for the combination of technologies and interpretation regarding cancer-associated genomic changes include: 1) systematic evaluation of UMAP-based clustering methods, to what subsets of data they are applied and subsequent interpretations, 2) direct comparisons of results with additional methods to quantify long-read sequencing data and those evaluating mutational consequences of HCC progression and 3) detailed expansion of the description of methods and rationale for selecting specific parameters and cell types for further analyses. Including these changes would significantly strengthen the support for utility of combining 10x single-cell with Loop-seq and provide compelling evidence for usage of this resource in dissecting HCC-associated molecular changes.

      Answer: We appreciate the frank and constructive comments. The goal of UMAP is to obtain biological knowledge through unbiased data selection. Systematically, we select classifiers without any prior knowledge (blind to the samples). In our case, classifiers with high standard deviation across all the cells were chosen. We stressed this in the result section. The comparison among LOOPSeq, PacBio, and Oxford nanopore was made in our previous study. We cited that analysis in this paper. Analysis detail and pipelines were added in the revised manuscript to improve the reproducibility. The mutation expression analysis was quite clear-cut. The clustering classified the HCC and benign liver cells by itself and identified a few cancer cells in the benign liver sample. All these were accomplished without applying any knowledge.

      Reviewer #1 (Recommendations For The Authors):

      Overall, there are numerous problems with data presentation and insufficient description, which authors could fix.

      1. Figure 4. A. It would be more clear if the figure showed the distribution of mutations in the molecule. Otherwise, it's hard to see if we see clusters of mutations or just 25 mutations spread uniformly across the transcript. B. It's unclear what the reader needs to take away from these columns of numbers.

      Answer: The mutation positions are now presented as proportion to the location in a molecule. Column B is the distribution of mutation molecules from left panel in each cluster of cells (from Figure 3A) and their sample origin (HCC or benign liver). We clarify it a little more in the legend of Figure 4A.

      1. As a reader, I did not understand how "mutated gene expression levels" and "mutated isoform expression levels" were calculated in terms of sequenced long reads

      Answer: We defined the term and calculations in the methods section of the revised manuscript.

      1. Page 6 "genes involving antigen presentation"

      Answer: The full sentence of the subtitle is" Mutations of genes involving antigen presentation dominated the mutation expression landscape."

      1. Page 6 "These unique mutational isoforms" - how are these isoforms unique?

      Answer: We take away most of the "unique" adjectives to describe the non-redundant mutations.

      1. Page 6. Unclear "All but one clusters contained cells co‐migrated with cells of their sources."

      "Among 113 mutation isoforms, the major histocompatibility complex (HLA) was the most prominent with 68 iterations (60.2%) (Supplemental Table 3, Figure 3B)" There is nothing about HLA in Figure 3B.

      Answer: We revised the sentence as "Cells in all but one clusters co-migrated with cells of their sources". The mutation isoform expressions were listed in supplemental Table 3. They are too small and become unreadable when put in the figure.

      1. Page 10 "genes or isoforms that across all samples had with expression standard deviations less than" - probably "with" should not be there.

      Answer: We correct the error and thank the reviewer for the comment.

      1. Page 11 "UMAP analysis was performed using genes with standard deviations {greater than or equal to} 1.0 (182 wild‐type genes) and standard deviations >0.4 (282 mutated genes)". What do "wild-type" and "mutated" mean here?

      Answer: We edited as "UMAP analysis was performed using gene expressions with standard deviations ≥ 1.0 (182 non-mutated genes) and gene mutation expression with standard deviations 0.4 (282 mutated genes)."

      1. I could not find the description of Supplementary Tables.

      Answer: The supplemental table legends are added in the revised manuscript.

      1. In the Discussion section, the authors mention that mutations were mainly expressed in a specific isoform of a gene for a given cell. I suggest to emphasize this point in the Results section and illustrate it with a comparison of abundance of mutated and non-mutated isoforms

      Answer: For HLA molecules, their expression appeared to be restricted to one known isoform, regardless of mutation status. This sentence is removed in the revision. A new section of DOCK8 and STEAP4 mutation expression is added to the result.

      1. It is also mentioned that mutations may have an impact on the RNA splicing process. The authors should compare the observed isoform ratio to a prediction of the effect of variants on splicing by SpliceAI or similar tools

      Answer: This sentence was removed from the discussion.

      1. Figure 3c: triangles corresponding to HLA-positive cells are hard to distinguish

      Answer: We provide a larger representation of the triangle and circle in figure 3c in the revision.

      Reviewer #2 (Recommendations For The Authors):

      Many of my comments could be addressed by spending time to provide the code/data and a walkthrough of analyses so that other users would be able to answer these questions on their own.

      Answer: We have included a script section in the revision to ensure the reproducibility of the analysis. The raw data had been uploaded to GEO (see Methods).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      1. The results that TF binding produces microdomains at medium and long linker DNA but not short linker is very interesting. Although the differences can be observed from the figure, it still lacks of quantitative comparison. It is not clear the exact definition of the microdomain observed from simulations and what numbers of microdomains can be identified under different conditions. A quantitative comparison of different conditions could also be provided.

      We thank the reviewer for this suggestion. Our intent was to show qualitatively how TF binding locations that we design can direct fiber folding and create microdomains, which we define in the paper as high frequency contact regions in the contact maps, similar to the TADs observed in HiC maps. Together with the fiber configurations, contact maps allow us to identify formation of such microdomains, and to observe how these microdomains change depending on the conditions we build into the model, such as TF binding region or linker DNA length.

      To address your point, we have added a clustering analysis of the contact matrices with nucleosome resolution and assign each contact along the genome position (nucleosome index) to a cluster. In Supporting Figure S6, we show how DBSCAN clustering provides a clustering distribution that quantitatively describes the microdomains observed in the matrices and estimates the number of microdomains. For example, in the 44 and 62 bp systems, the contacts along the genomic distance separate into 5, 2, and 1 nucleosome groups for topologies 1 to 3, and into 2 and 1 group for topology 4, respectively. In the 26 bp and Life-Like systems, where microdomains are more diffuse due to fiber rigidity or polymorphism, we see that the clustering results are not as TF-topology-dependent as in the 44 and 62 bp systems. We also decomposed the contact matrices into one dimensional plots that depict the magnitude of 𝑖, 𝑖 ± 𝑘 internucleosome interactions. We see that internucleosome patterns change with the TF binding topology, and that the 26 bp and Life-Like systems show the least changes.

      1. When increasing TF concentration, from 0 to 100%, it seems that both packing ratio and sedimentation coefficients are not sensitive to the TF concentrations after 25%. Is it due to the saturation of TF binding? How many TF binding sites are considered at each concentration?

      Yes, in most cases, at TF concentrations higher than 25%, the fiber compaction does not change due to saturation of TF binding. Although the TF concentrations are reached, such as 50%, 70%, or 100%, these do not influence the fiber architecture. A higher order folding and compaction cannot be reached due to excluded volume interactions that impede overlapping of beads in the model.<br /> We have clarified this in the manuscript.

      As stated in the Methods section, the TF concentration refers to the number of linker DNA beads that can engage in a constraint compared to the total number of linker DNA beads. Thus, at 25% TF, 25% of linker DNA beads are engaged in TF constraints. We have added a comment on this in the Results section.

      1. It is shown that the contact maps that reveal microdomains are ensemble-based maps and single trajectories do not show clear formation of microdomains. Does the formation of microdomains increase with the number of combined trajectories?

      The formation of microdomains occurs in each single trajectory. However, the microdomains formed in each trajectory can be different. That is why ensemble-based maps show clearer trends of microdomains that might not be as visible in single-trajectory maps. If we increase the number of trajectories, the macrodomains will be more visible and there will be more macrodomains in the contact map, but the formation of microdomains will not increase in each single trajectory.

      1. "As we see from Figure 4A, when the linker DNA is short, such as 26 and 35 bp, TF binding does not increase the packing ratio of the fiber." The results of 35bp cannot be found in Figure 4A. In addition, the color of 44 and 62 bp should be changed since they are very similar in the figure.

      Thank you for catching this. The results corresponding to the 35 bp system are presented in the Supporting Figure 7. We have changed the text to read “As we see from Figure 4A and Figure S7..”.

      We have changed the color of the 62 bp trace to blue in the plots of Figure 4. Consistently, we have also changed the color of the 62 bp fiber in Figure 2 and Figure 5.

      1. For modelling of TF binding at increasing concentrations, it is mentioned that in these three conditions, TFs are allowed to bind to any region. Do you mean TF can also bind to nucleosomal DNA? Nucleosome structure prevents the binding of many TFs.

      In our model, only linker DNA beads can engage in the constraints (bind TF).<br /> We have changed the text to read “TFs are allowed to bind to any linker DNA region”.

      1. The details of the Mnase-seq dataset and how NFRs are identified should be provided, such as the coverage of the data and what read fragments are selected for NFR mapping.

      MNase data in bedgraph format were downloaded from the Genome Expression Omnibus (GSM2083107) repository and loaded without further processing into the Genome Browser. NFRs were visually inspected and detected as genomic regions without peaks. As detailed in the GEO repository, the sequenced paired-end reads were mapped to the mm9 genome. Only uniquely mapped reads with no more than two mismatches were retained and reads with insert sizes less than 50 or larger than 500 bp were discarded.

      We have clarified this in the manuscript.

      1. The calculations of volume and area of the Eed promoter region should be further elucidated.

      Thank you. We now elaborate upon these calculations. In particular, the Eed promoter region is defined between cores 123 and 129. The x,y or x,y,z coordinates of those cores are used to create the bounding area or volume by defining the shape’s vertices.

      1. In Figure 3, it is not clear how different topology are identified.

      In Figure 3 the topology, or TF binding regions, is the same for each of the 10 contact maps as these emerge from trajectory replicas of the same system which we named Topology 1. Different microdomains are formed in each individual trajectory as the high-frequency regions appear in different locations on each contact map. However, when these 10 maps are summed, the ensemble contact map clearly shows consensus microdomains in each region where TF binds.

      Reviewer #2:

      To further improve the manuscript, I have the following suggestions/comments.

      1. While most of the conclusions in this paper follow from the evidence provided by the ximulations, the result in section 3.3 title "Gene locus repression is medicated by TF finding," may not follow from the results. In my opinion, repression is a more complex process, and many more factors (such as nucleosome positioning, nucleosome sliding, histone methylation, and other proteins such as PRC or HP1, etc) may be involved in repression. While compaction is often associated with repressed chromatin (heterochromatin), recent studies have shown that heterochromatin fibers are highly diverse, and compaction alone may not be the criteria for repression (eg. see Spracklin et al. Nat. Struct. Mol. Biol. 30, 38-51 (2023).). In this light, I would recommend slightly modifying the title to say, "TF binding-mediated compaction can help in gene locus repression" or something similar.

      Yes! We completely agree that gene repression is a very complex phenomenon that involves many factors that we are approaching by modeling starting from the simplest strategy. Thus, we have changed the subtitle to read “TF binding-mediated compaction as possible mechanism of gene locus repression”.

      1. Authors could also present the contact probability versus genomic distance. This may provide some generic features at nucleosome resolution, given the variability in linker length and LH density.

      We thank the reviewer for this suggestion. We have now calculated the contact probability for the EED gene with and without TF binding (Supporting Figure 8). We see that the contact probability corresponding to short range interactions (i ± 2, 3, 4, 5, and 6) is slightly lower for the EED gene upon TF binding. However, a striking increase in the contact probability upon TF binding is seen in the genomic region between 3 and 5 kb, which corresponds to local loop interactions. Thus, TF binding slightly decreases local interactions but increases chromatin loops. Such changes are not observed for the EED system with LH density 0.8 (Supporting Figure 9), further supporting the idea that an increase in LH density hampers the effect of TF binding for the EED gene architecture. <br /> We have now added these results to the manuscript.

      1. Write a short paragraph about the limitations of the model/study. For example, one of the limitations could be that, as of now, it has only the effect of a few proteins, but to predict repression, one may need to incorporate the effect of several proteins.

      We agree with the reviewer that our model is a simple, first-step approach. Nonetheless, even the simplest mathematical model can be enlightening in helping dissect essential factors. Here, our model clearly shows how TF binding location modulates fiber architecture and the interplay between TF binding and other chromatin elements, like linker DNA length, LH density, and histone acetylation. We have now stated in the Discussion section that although limited due to being implicit and not considering other protein partners, our model can provide insights on the regulation of chromatin architecture by protein binding. Future modeling with explicit protein binding or combination of several proteins will further help us understand genome folding regulation.

      1. The radius of gyration of 26 kb chromatin is around ~60nm in this paper. Is there any experimental measurement to compare (approximate order of magnitude)? While I do not know any measurement for Eed gene locus, I am aware of the results in the Boettiger et al. paper from Xiaowei Zhuang lab (Nature 2016). There, they find that the Rg of a 26 kb region is above 100nm. But that is for a different organism, a different set of genes. Also, see Sangram Kadam et al. Nature Communications 14 (1), 4108, 2023.

      Thank you for this suggestion. To the best of our knowledge, there are no radius of gyration measurements for the EED gene. Regarding the two papers you cite, in the paper from Boettiger et al. (1) they determine by microscopy experiments that Rg ∝ 𝐿! where 𝐿 is the genomic length and 𝑐 is 0.37 ± 0.02 for active chromatin (Figure 1d of the paper). In such case, the Rg for a 26 kb region would be 43 ± 9 nm. Considering that these are Drosophila cells, our value of 62 nm is in good agreement with that estimate. Regarding the Kadam et al. paper (2), by coarse grained modeling they find an Rg of around 100 nm for different genes. Considering that the radius of gyration depends on cell type and fiber configuration (see for example (3) for the dependency of Rg on loop number and persistence length), we believe that our measurements in the same ball park as experimental results and other theoretical modeling studies are good indicators of our model’s reasonableness.

      We have added this comparison to the manuscript.

      1. The reason why it is useful to compare some distance measurements (physical dimension) with experiments is the following: The contact map in Hi-C only gives relative contact probabilities. It does not give absolute contact probabilities. To convert a Hi-C map into a physical distance, one requires comparison with some experimentally measured 3D distance. The radius of gyration is an ideal quantity to compare. From my experience, the contact probability is often much smaller than 1, suggesting that the chromatin is more expanded. But this could be due to the effect of many other proteins in vivo and the crowding, etc. I do not expect this work to incorporate all those effects. However, it may be useful to make a comment about it in the manuscript.

      Thank you. We have added to the discussion a comment on our first-generation model of TF binding to chromatin and the neglect of many associated protein and RNA cofactors that certainly influence chromosome folding and domain formation on higher scales. Some distance measures are also added to the Results as mentioned above.

      References

      1. Boettiger,A.N., Bintu,B., Moffitt,J.R., Wang,S., Beliveau,B.J., Fudenberg,G., Imakaev,M., Mirny,L.A., Wu,C. and Zhuang,X. (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature, 529, 418–422.

      2. Kadam,S., Kumari,K., Manivannan,V., Dutta,S., Mitra,M.K. and Padinhateeri,R. (2023) Predicting scale-dependent chromatin polymer properties from systematic coarsegraining. Nat. Commun., 14, 4108.

      3. Wachsmuth,M., Knoch,T.A. and Rippe,K. (2016) Dynamic properties of independent chromatin domains measured by correlation spectroscopy in living cells. Epigenetics Chromatin, 9, 57.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      I have only a few very minor suggestions for improvement.

      • the text repeatedly uses the terms "central nervous system" and "enteric nervous system", which are not in standard use in the field. These terms are not defined until the bottom of p. 12 even though they are used earlier. It would be useful for the authors to explicitly describe their definitions of these terms earlier in the paper.

      Fixed.

      • the inclusion of four pre-trained models is a powerful and useful aspect of WormPsyQi. Would it be possible to develop a simple tool that, when given the user's images, could recommend which of the four models would be most appropriate?

      We appreciate the reviewer for bringing this up. To address this, we have now added an additional function in the pipeline to test all pre-trained models on representative input images. Before processing an entire dataset, users can view all segmentation results for images in Fiji to assess which model performed best, judged by the user. The GUI, running guide document, and manuscript have been modified accordingly.

      In addition, we would like to emphasize that the pre-trained models were developed by iterative analyses of many reporters, often with multiple rounds of parameter tuning; the results were validated post hoc to choose the optimal model for each reporter, and we have listed this information in Supplemental Table 1 to inform the choice of the pre-trained model for commonly used reporter types.

      • On p. 11 (and elsewhere), the differences in the performance of WormPsyQi and human experimenters are called "statistically insignificant". This statement is not particularly informative (absence of evidence is not evidence of absence). Can the authors provide a more rigorous analysis here - or provide an estimate of the typical effect size of the machine-vs-human difference?

      To address this, we have included additional analysis in Figure 2 – figure supplement 3. For two reporters - I5 GFP::CLA-1 and M4 GFP::RAB-3 - we compare WormPsyQi vs. labelers and inter-labeler puncta quantification. A high Pearson correlation coefficient (r2) reflects greater correspondence between two independent scoring methods. We chose these two test cases to demonstrate that the machine-vs-human effect size is reporter-dependent. For I5, where the CLA-1 signal is very discrete and S/N ratio is high, the discrepancy between WormPsyQi, labeler 1, and labeler 2 is minimal (r2=0.735); moreover, scoring correspondence depends on the labeler (r2=0.642 and 0.942, respectively). In other words, WormPsyQi mimics some labelers better than others, which is to be expected. For M4, where the RAB-3 signal is diffuse and synapse density is high in the ROI, the inter-labeler discrepancy is high (r2=0.083) and WormPsyQi vs labeler (1 or 2) discrepancy is slightly reduced (r2=0.322 and 0.116, respectively). The problematic regions for the M4 RAB-3 reporter are emphasized in Figure 6 - figure supplement 1A. Overall, the additional analysis suggests that the effect size is contingent on the reporter type and image quality, and importantly for scoring difficult strains WormPsyQi may average out inter-labeler scoring variability.

      • p. 12: "Again, relying on alternative reporters where possible..." This is an incomplete sentence - are some words missing?

      Edited.

      Reviewer #2 (Recommendations For The Authors):

      1. The authors effectively validated the sexually dimorphic synaptic connectivity by comparing the synapse puncta numbers of PHB>AVA, PHA>AVG, PHB>AVG, and ADL>AVA. However, these differences appear to be quite robust. It would be beneficial for the authors to test whether WormPsyQi can detect more subtle changes at the synapses, such as 10-20% changes in puncta number and fluorescence intensity.

      While the dimorphic strains were used to first validate WormPsyQi based on the ground truth of very well-characterized reporters, the reviewer reasonably asks whether our pipeline can pick up on more subtle differences. To address this, we have now included an additional figure (Figure 9 – figure supplement 2), where we performed pairwise comparisons between L4 and adult timepoints for the reporter M3 GFP::RAB-3. As reflected in panels A and C, although the difference between puncta number and mean intensity between L4 and adult is marginal (22% increase in puncta number and 13% increase in mean intensity from L4 to adult), WormPsyQi can pick it up as statistically significant.

      1. On page 10, the authors mentioned that "cell-specific RAB-3 reporters have a more diffuse synaptic signal compared to the punctate signal in CLA-1 reporters for the same neuron, as shown for the neuron pair ASK (Figure 4 -figure supplement 1B, C)". It is important to note that in this case, the reporter gene expressing RAB-3 is part of an extrachromosomal array, whereas the reporter gene expressing CLA-1 is integrated into the chromosome. It's possible that the observed difference in pattern may arise from variations in the transgenic strategies employed.

      To emphasize the difference in puncta features inherent to the reporter type, we have now added WormPsyQi segmentation results for ASK CLA-1 extrachromosomal reporter (otEx7455) next to the ASK CLA-1 integrant (otIs789) and ASK RAB-3 reporter (otEx7231) in Figure 4 – figure supplement 1C. Importantly, otEx7455 was integrated to generate otIs789, so they belong to the same transgenic line. Literature shows that RAB-3 and CLA-1 have different localization patterns and corresponding functions at presynaptic specializations, and this is qualitatively and quantitatively shown by the significant difference in puncta area size between RAB-3 and both CLA-1 reporters, i.e., both CLA-1 reporters have smaller, discrete puncta compared to RAB-3 (Figure 4 – figure supplement 1C). Quantitatively, in the case of ASK - where the synapse density is sparse enough that even diffuse RAB-3 puncta can be segmented without confounding adjacent puncta – overall puncta number between otEx7231 and otIs789 are similar. However, RAB-3 signal is diffuse and this poses quantification problems in cases where the synapse density is higher (e.g. AIB, SAA in Figure 4 – figure supplement 1D) and WormPsyQi fails to score puncta in these reporters since the signal is not punctate. As far as integrated vs. extrachromosomal reporters go, the reviewer is right in pointing out that some differences may be stemming from reporter type as our additional analysis between otIs789 and otEx7455 indeed shows fewer puncta in the latter owing to variable expressivity.

      1. The authors mentioned that having a cytoplasmic reporter in the background of the synaptic reporter enhanced performance. It would be more informative to provide comparative results with and without cytoplasmic reporters, particularly for scenarios involving dim signals or densely distributed signals.

      The presence of a cytoplasmic marker is critical in two specific scenarios: 1) images where the S/N ratio is poor, and 2) when the image S/N ratio is good, but the ROI is large, which would make the image processing computationally expensive.

      To demonstrate the first scenario, we have included an additional panel in Figure 4 – figure supplement 1(B) to show how WormPsyQi performs on the PHB>AVA GRASP reporter with and without the channel having cytoplasmic marker. The original image was processed as-is in the former case with both the synaptic marker in green and cytoplasmic marker in red; for comparison, only the green channel having synaptic marker was used to simulate a situation where the strain does not have a cytoplasmic marker. As shown in the figure, in the presence of background autofluorescence signal from the gut (which can be easily confounded with GRASP puncta depending on the worm’s orientation), WormPsyQi quantified GRASP puncta much more robustly with the cytoplasmic label; without the cytoplasmic marker, gut puncta are incorrectly segmented as synapses (highlighted with red arrows) while some dim synaptic puncta are not picked up (highlighted with yellow arrows).

      To demonstrate the second scenario, we now highlight the case of ASK CLA-1 in Figure 2 - figure supplement 4E. Additionally, we have emphasized in the manuscript that in cases where the S/N ratio is good and the image is restricted to a small ROI, WormPsyQi will perform well even in the absence of a cytoplasmic marker. This is equally important to note as having a specific cytoplasmic marker in the background may not always be feasible and, in fact, if the cytoplasmic marker is discontinuous or dim relative to puncta signal, using a suboptimal neurite mask for synapse segmentation would result in undercounting synapses.

      1. On page 12, the author stated "We also note that in several cases, GRASP quantification differed from EM scoring". However, the EM scoring is primarily based on a single sample, making it challenging to conduct a statistical analysis for the purpose of comparison.

      This is correct and is indeed a limitation of EM for this type of analysis. We have now reworded this sentence (page 14) to emphasize the reviewer’s point, and it is also elaborated further in the limitations section.

      1. In Figure 6F, the discrepancy between WormPsyQi and human quantification in the analysis of RAB-3 is observed. The author stated that "the RAB-3 signal was too diffuse to resolve all puncta". To better illustrate this discrepancy, it would be beneficial to include images highlighting the puncta that WormPsyQi cannot score, providing direct evidence that diffusing signals are not able to automatically detectable.

      To highlight puncta that were not segmented by WormPsyQi but were successfully scored manually, we have included arrows in Figure 6. In addition, for reporter M4p::GFP::RAB-3, we have included magnified insets in Figure 6 - figure supplement 1A to highlight the region where human annotator scores more puncta than WormPsyQi owing to the high synapse density. In future implementations, additional functionality can be built for separating these merged puncta into instances based on geometrical features such as shape and intensity contour.

      1. In Figure 9 S1D, the results from WormPsyQi and the manual are totally different. To address this notable discrepancy, the authors should highlight and illustrate the areas of discrepancy in the images. This visual representation can assist future users in identifying signal types that may not be well-suited for WormPsyQi analysis and inspire the development of new strategies to tackle such challenges.

      This is now addressed in additional figure panels in Figure 4 – figure supplement 1B and Figure 6 - figure supplement 1A.

      Reviewer #3 (Recommendations For The Authors):

      I found the comparison between manual quantification and WormPsyQi-based quantification to be very informative. In my opinion, quantifying the number of puncta is not the most tedious/difficult quantification even when done manually. Would the authors be able to include manual-WormPsyQi comparison for more time-consuming and potentially more prone to human error/bias quantifications such as puncta size or distribution patterns using a few markers with some inter/intra animal variabilities?

      To address this point, we have now included an additional figure supplement to Figure 2 (Figure 2 – figure supplement 4). We focused on the ASK GFP::CLA-1 reporter and had two human annotators manually label the masks of puncta for each worm by scanning Z-stacks and drawing all pixels belonging to each puncta in Fiji, which were then processed by WormPsyQi’s quantification pipeline to score puncta number, volume, and distribution. We also included a comparison of overall image processing time for each annotator and WormPsyQi. For features analyzed, the difference between WormPsyQi and human annotators for ASK CLA-1 is not statistically significant for multiple puncta features. Importantly, WormPsyQi reduces overall processing time by at least an order of magnitude, and while this is already advantageous for counting puncta, it is especially useful for other important puncta features since a) they may not be easily discernible, and b) it is extremely laborious to quantify them manually in large datasets when pixel-wise labels are required.

      The authors listed minimum human errors and biases as one of the benefits of WormPsyQi. For the markers with discrepancies in quantifications between human and WormPsyQi, have the authors encountered or considered human errors/biases as potential reasons for such discrepancies?

      This is the same point brought up by reviewer 1. We added Figure 2- figure supplement 3 to compare WormPsyQi to different human labelers, and show that because human labels can introduce systematic bias, WormPsyQi reduces such bias by scoring images using the same metric.

      The authors noted that WormPsyQi would be useful for comparing different genotypes/environments. Some mutants have known changes in synapse patterning/number. It would be helpful if the authors could validate WormPsyQi using some of the mutants with known synapse defects. For instance, zig-10 mutant increases the cholinergic synapse density just by a bit (Cherra and Jin, Neuron 2016), and nlr-1 mutant disrupts punctated localization of UNC-9 gap junction in the nerve ring (Meng and Yan, Neuron 2020), which could only be detectable by experts' eyes. It would be interesting to see if WormPsyQi picks up such subtle phenotypes.

      We agree that our pipeline would need to be tested in multiple paradigms to test its performance on detecting additional subtle phenotypes. In the context of this paper, we note that the developmental analysis of puncta in Figure 8 was performed to validate the ground truth from previous EM-based analyses (Witvliet et al., 2021), albeit the latter was limited by sample size. We extended this developmental analysis to the pharyngeal reporters, and in some cases the difference across timepoints was marginal (as emphasized by additional Figure 9 - figure supplement 2), but still detected by WormPsyQi. Lastly, our synapse localization analysis in Figure 10 assigns the probability of finding a synapse at a particular location along a neurite, which is not easily discernible by manual scoring.

      One of the benefits of the automated data analysis program is to be able to notice the differences you do not expect. For example, there are situations where you feel that in certain genotypes there is something different from wild type with their synapses but you can't tell what's different from wild type. In such cases, you may not know what to quantify. I think it would be beneficial if there were more parameters to be included in the default qualifications such as puncta number/size/intensity/distributions in the pipeline, so that the users may find unexpected phenotypes from one of the default quantifications.

      We apologize if this was not clearer in the manuscript where we first describe the pipeline in detail. To clarify, the output of WormPsyQi is a CSV file which includes several quantitative features, such as mean/max/min fluorescence intensity, puncta volume, and position. While most of our analyses are focused on puncta count, the user can perform downstream statistical analyses on all additional features scored to infer which features are most significantly variable across conditions. To make this clearer, we have elaborated the text when we first describe our pipeline, and along with the new Figure 2 - figure supplement 4, we hope that this point is clearer now.

      In addition, most proof-of-principle analysis we performed was focused on an ROI where we expect the synapses to localize. In practice, the user can input images and perform quantification across the entire image without biasing toward an ROI (this can be done in the GUI synapse corrector window) to also evaluate synaptic changes in regions outside the usual ROI.

      The authors stated that WormPsyQi could mitigate the problems stemming from scoring images with low signal-to-noise ratio or in regions with high background autofluorescence, laboriousness of scoring large datasets, and inter-dataset variability. Other than the 'laboriousness of scoring large datasets' it appeared to me that WormPsyQi does not do better than manual quantifications, especially inter-dataset variability, as the authors noted variability among the transgenes as one of the limitations of the toolkits. If two datasets are taken with completely different setups such as two independent arrays taken with two distinct confocal microscopes, would WormPsyQi make these two datasets comparable?

      We have included additional figure supplements to address the reviewer’s point. A significant advantage WormPsyQi offers over manual scoring is that it provides a standardized method of quantifying synapse features. As shown in Figure 2 – figure supplement 3, human labelers can introduce systematic bias (e.g. some over count puncta, while some undercount). In addition, while puncta number may be relatively easy to quantify, especially in a high-quality dataset, more subtle puncta features such as size, intensity, and distribution are much more laborious to quantify and require a priori knowledge of signal localization (Figure 2 – figure supplement 4, Figure 10). Altogether, our pipeline facilitates multiple measurements while also enabling robust quantification in hard-to-score cases such as the example shown for PHB>AVA reporter (Figure 4 - figure supplement 1B).

      Minor comments:

      Limitations are not quite specific to this work but those are general limitations to the concatemeric trans genes and fluorescently labeled synaptic proteins. I'd appreciate discussing specific limitations to WormPsyQi related to image acquisitions. For instance, for neurons with 3D structures would WormPsyQi be able to handle z-stacks closer to coverslip and stacks that are deeper side in a similar manner? Would the users need to be aware of such limitations when comparing different genotypes?

      To address the reviewer’s comment, we have elaborated the last paragraph in the limitations section to explicitly discuss where the user should exercise caution. The reviewer reasonably points out that the fluorescent signal away from the cover slip is typically dimmer, and neurite masking in this case is indeed compromised if dim to start with. In such cases, we recommend that the user either performs some preprocessing such as deconvolution, denoising, or contrast enhancement to boost the neurite signal, or segment synapses without the neurite mask if the puncta signal is brighter than that of the cytoplasmic marker. We hope that our additional figure supplements will clarify that WormPsyQi’s performance is contingent on reporter type and image quality, thus making it easier for the user to discern where automated quantification falls short and alternative reporters should be explored. In general, if puncta are not discernible to the user due to very poor S/N ratio, for instance, we do not recommend using WormPsyQi to process such datasets; this will be manifest in the results of the new “test all models” feature we added in the revised version.

      Some Rab-3 fusion proteins are described as RAB-3::GFP(BFP). Do these represent the C-terminal fusion of the fluorescent proteins? RAB-3 is a small GTPase with a lipid modification site at its C-terminus essential for its localization and function. Is it possible that the diffuse signal of some RAB-3 markers is caused by c-terminal fusion of the fluorescent protein?

      While we do have reporters with N- and C-terminal RAB-3 fusions for different neurons, we do not have both for the same neuron to perform a fair comparison. However, as noted in response to a previous comment by reviewer 2, RAB-3 and CLA-1 have distinct localization patterns at the synapse and this aligns with their distinct functions: while RAB-3 localizes at synaptic vesicles, CLA-1 is an active zone protein required for synaptic vesicle clustering. Accordingly, we have observed diffuse RAB-3 signal in reporters irrespective of where the protein is tagged, and while this is not problematic for ROIs with a low synapse density, it confounds quantification in synapse-dense regions. In contrast, CLA-1 puncta are typically easier to quantify more discretely, which is particularly relevant for features such synapse distribution, size, and intensity.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this very strong and interesting paper the authors present a convincing series of experiments that reveal molecular mechanism of neuronal cell type diversification in the nervous system of Drosophila. The authors show that a homeodomain transcription factor, Bsh, fulfills several critical functions - repressing an alternative fate and inducing downstream homeodomain transcription factors with whom Bsh may collaborate to induce L4 and L5 fates (the author's accompanying paper reveals how Bsh can induce two distinct fates). The authors make elegant use of powerful genetic tools and an arsenal of satisfying cell identity markers.

      Thanks!

      I believe that this is an important study because it provides some fundamental insights into the conservation of neuronal diversification programs. It is very satisfying to see that similar organizational principles apply in different organisms to generate cell type diversity. The authors should also be commended for contextualizing their work very well, giving a broad, scholarly background to the problem of neuronal cell type diversification.

      Thanks!

      My one suggestion for the authors is to perhaps address in the Discussion (or experimentally address if they wish) how they reconcile that Bsh is on the one hand: (a) continuously expressed in L4/L4, (b) binding directly to a cohort of terminal effectors that are also continuously expressed but then, on the other hand, is not required for their maintaining L4 fate? A few questions: Is Bsh only NOT required for maintaining Ap expression or is it also NOT required for maintaining other terminal markers of L4? The former could be easily explained - Bsh simply kicks of Ap, Ap then autoregulates, but Bsh and Ap then continuously activate terminal effector genes. The second scenario would require a little more complex mechanism: Bsh binding of targets (with Notch) may open chromatin, but then once that's done, Bsh is no longer needed and Ap alone can continue to express genes. I feel that the authors should be at least discussing this. The postmitotic Bsh removal experiment in which they only checked Ap and depression of other markers is a little unsatisfying without further discussion (or experiments, such as testing terminal L4 markers). I hasten to add that this comment does not take away from my overall appreciation for the depth and quality of the data and the importance of their conclusions.

      Great suggestions, we will discuss these two hypotheses as requested.

      Bsh initiates Ap expression in L4 neurons which then maintain Ap expression independently of Bsh expression, likely through Ap autoregulation. During the synaptogenesis window, Ap expression becomes independent from Bsh expression, but Bsh and Ap are both still required to activate the synapse recognition molecule DIP-beta. Additionally, Bsh also shows putative binding to other L4 identity genes, e.g., those required for neurotransmitter choice, and electrophysiological properties, suggesting Bsh may initiate L4 identity genes as a suite of genes. The mechanism of maintaining identity features (e.g., morphology, synaptic connectivity, and functional properties) in the adult remains poorly understood. It is a great question whether primary HDTF Bsh maintains the expression of L4 identity genes in the adult. To test this, in our next project, we will specifically knock out Bsh in L4 neurons of the adult fly and examine the effect on L4 morphology, connectivity, and function properties.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, the authors explore the role of the Homeodomain Transcription Factor Bsh in the specification of Lamina neuronal types in the optic lobe of Drosophila. Using the framework of terminal selector genes and compelling data, they investigate whether the same factor that establishes early cell identity is responsible for the acquisition of terminal features of the neuron (i.e., cell connectivity and synaptogenesis).

      Thanks for the positive words!

      The authors convincingly describe the sequential expression and activity of Bsh, termed here as 'primary HDTF', and of Ap in L4 or Pdm3 in L5 as 'secondary HDTFs' during the specification of these two neurons. The study demonstrates the requirement of Bsh to activate either Ap and Pdm3, and therefore to generate the L4 and L5 fates. Moreover, the authors show that in the absence of Bsh, L4 and L5 fates are transformed into a L1 or L3-like fates.

      Thanks!

      Finally, the authors used DamID and Bsh:DamID to profile the open chromatin signature and the Bsh binding sites in L4 neurons at the synaptogenesis stage. This allows the identification of putative Bsh target genes in L4, many of which were also found to be upregulated in L4 in a previous single-cell transcriptomic analysis. Among these genes, the paper focuses on Dip-β, a known regulator of L4 connectivity. They demonstrate that both Bsh and Ap are required for Dip-β, forming a feed-forward loop. Indeed, the loss of Bsh causes abnormal L4 synaptogenesis and therefore defects in several visual behaviors. The authors also propose the intriguing hypothesis that the expression of Bsh expanded the diversity of Lamina neurons from a 3 cell-type state to the current 5 cell-type state in the optic lobe.

      Thanks for the excellent summary of our findings!

      Strengths:

      Overall, this work presents a beautiful practical example of the framework of terminal selectors: Bsh acts hierarchically with Ap or Pdm3 to establish the L4 or L5 cell fates and, at least in L4, participates in the expression of terminal features of the neuron (i.e., synaptogenesis through Dip-β regulation).

      Thanks!

      The hierarchical interactions among Bsh and the activation of Ap and Pdm3 expression in L4 and L5, respectively, are well established experimentally. Using different genetic drivers, the authors show a window of competence during L4 neuron specification during which Bsh activates Ap expression. Later, as the neuron matures, Ap becomes independent of Bsh. This allows the authors to propose a coherent and well-supported model in which Bsh acts as a 'primary' selector that activates the expression of L4specific (Ap) and L5-specific (Pdm3) 'secondary' selector genes, that together establish neuronal fate.

      Thanks again!

      Importantly, the authors describe a striking cell fate change when Bsh is knocked down from L4/L5 progenitor cells. In such cases, L1 and L3 neurons are generated at the expense of L4 and L5. The paper demonstrates that Bsh in L4/L5 represses Zfh1, which in turn acts as the primary selector for L1/L3 fates. These results point to a model where the acquisition of Bsh during evolution might have provided the grounds for the generation of new cell types, L4 and L5, expanding lamina neuronal diversity for a more refined visual behaviors in flies. This is an intriguing and novel hypothesis that should be tested from an evo-devo standpoint, for instance by identifying a species when L4 and L5 do not exist and/or Bsh is not expressed in L neurons.

      Thanks for the appreciation of our findings!

      To gain insight into how Bsh regulates neuronal fate and terminal features, the authors have profiled the open chromatin landscape and Bsh binding sites in L4 neurons at mid-pupation using the DamID technique. The paper describes a number of genes that have Bsh binding peaks in their regulatory regions and that are differentially expressed in L4 neurons, based on available scRNAseq data. Although the manuscript does not explore this candidate list in depth, many of these genes belong to classes that might explain terminal features of L4 neurons, such as neurotransmitter identity, neuropeptides or cytoskeletal regulators. Interestingly, one of these upregulated genes with a Bsh peak is Dip-β, an immunoglobulin superfamily protein that has been described by previous work from the author's lab to be relevant to establish L4 proper connectivity. This work proves that Bsh and Ap work in a feed-forward loop to regulate Dip-β expression, and therefore to establish normal L4 synapses. Furthermore, Bsh loss of function in L4 causes impairs visual behaviors.<br /> Thanks for the excellent summary of our findings.

      Weaknesses:

      ● The last paragraph of the introduction is written using rhetorical questions and does not read well. I suggest rewriting it in a more conventional direct style to improve readability.

      We agree and have updated the text as suggested.

      ● A significant concern is the way in which information is conveyed in the Figures. Throughout the paper, understanding of the experimental results is hindered by the lack of information in the Figure headers. Specifically, the genetic driver used for each panel should be adequately noted, together with the age of the brain and the experimental condition. For example, R27G05-Gal4 drives early expression in LPCs and L4/L5, while the 31C06-AD, 34G07-DBD Split-Gal4 combination drives expression in older L4 neurons, and the use of one or the other to drive Bsh-KD has dramatic differences in Ap expression. The indication of the driver used in each panel will facilitate the reader's grasp of the experimental results.

      We agree and have updated the figure annotation.

      ● Bsh role in L4/L5 cell fate: o It is not clear whether Tll+/Bsh+ LPCs are the precursors of L4/L5. Morphologically, these cells sit very close to L5, but are much more distant from L4.

      Our current data show L4 and L5 neurons are generated by different LPCs. However, currently, we don’t have tools to demonstrate which subset of LPCs generate which lamina neuron type. We are currently working on a follow-up manuscript on LPC heterogeneity, but those experiments have just barely been started.

      ● Somatic CRISPR knockout of Bsh seems to have a weaker phenotype than the knockdown using RNAi. However, in several experiments down the line, the authors use CRISPR-KO rather than RNAi to knock down Bsh activity: it should be explained why the authors made this decision. Alternatively, a null mutant could be used to consolidate the loss of function phenotype, although this is not strictly necessary given that the RNAi is highly efficient and almost completely abolishes Bsh protein.

      The reason we chose CRISPR-KO (L4-specific Gal4, uas-Cas9, and uas-Bsh-sgRNAs) is that it effectively removed Bsh expression from the majority of L4 neurons. However, it failed to knock down Bsh in L4 neurons using L4-split Gal4 and Bsh-RNAi because L4-split Gal4 expression depends on Bsh. We have updated this explanation in the text.

      ● Line 102: Rephrase "R27G05-Gal4 is expressed in all LPCs and turned off in lamina neurons" to "is turned off as lamina neurons mature", as it is kept on for a significant amount of time after the neurons have already been specified.

      Thanks; we have made that change.

      ● Line 121: "(a) that all known lamina neuron markers become independent of Bsh regulation in neurons" is not an accurate statement, as the markers tested were not shown to be dependent on Bsh in the first place.

      Good point. We have rephrased it as “that all known lamina neuron markers are independent of Bsh regulation in neurons”.

      ● Lines 129-134: Make explicit that the LPC-Gal4 was used in this experiment. This is especially important here, as these results are opposite to the Bsh Loss of Function in L4 neurons described in the previous section. This will help clarify the window of competence in which Bsh establishes L4/L5 neuronal identities through ap/pdm3 expression.

      Thanks! We have updated Gal4 information in the text for every manipulation.

      ● DamID and Bsh binding profile:

      ● Figure 5 - figure supplement 1C-E: The genotype of the Control in (C) has to be described within the panel. As it is, it can be confused with a wild type brain, when it is in fact a Bsh-KO mutant.

      Great point! Thank you for catching this and we have updated it.

      ● It Is not clear how L4-specific Differentially Expressed Genes were found. Are these genes DEG between Lamina neurons types, or are they upregulated genes with respect to all neuronal clusters? If the latter is the case, it could explain the discrepancy between scRNAseq DEGs and Bsh peaks in L4 neurons.

      We did not use “L4-specific Differentially Expressed Genes”. Instead, we used all genes that are significantly transcribed in L4 neurons (line 209-213).

      ● Dip-β regulation:

      ● Line 234: It is not clear why CRISPR KO is used in this case, when Bsh-RNAi presents a stronger phenotype.

      As we explained above, the reason we chose CRISPR-KO (L4-specific Gal4, uas-Cas9, and uas-BshsgRNAs) is that it effectively removed Bsh expression from the majority of L4 neurons. However, it failed to knock down Bsh in L4 neurons using L4-split Gal4 and Bsh-RNAi because L4-split Gal4 expression depends on Bsh. We have updated this explanation in the text.

      ● Figure 6N-R shows results using LPC-Gal4. It is not clear why this driver was used, as it makes a less accurate comparison with the other panels in the figure, which use L4-Split-Gal4. This discrepancy should be acknowledged and explained, or the experiment repeated with L4-Split-Gal4>Ap-RNAi.

      I think you mean 6J-M shows results using LPC-Gal4. We first tried L4-Split-Gal4>Ap-RNAi but it failed to knock down Ap because L4-Split-Gal4 expression depends on Ap. We have added this to the text.

      ● Line 271: It is also possible that L4 activity is dispensable for motion detection and only L5 is required.

      Thanks! Work from Tuthill et al, 2013 showed that L5 is not required for any motion detection. We have included this citation in the text.

      ● Discussion: It is necessary to de-emphasize the relevance of HDTFs, or at least acknowledge that other, non-homeodomain TFs, can act as selector genes to determine neuronal identity. By restricting the discussion to HDTFs, it is not mentioned that other classes of TFs could follow the same PrimarySecondary selector activation logic.

      That is a great point, thank you! We have included this in the discussion.

    1. Author Response:

      We thank all reviewers for their comments and effort to improve our paper. We appreciate that the writing can be clarified overall, and some sections need more elaboration. We will provide these in the next revision within the coming months. Particularly, we will focus on some common themes identified by all reviewers:

      1. We will clarify that the coarse-grained brain surfaces are an output of our algorithm alone and not to be directly/naively likened to actual brain surfaces, e.g. in terms of the location or shape of the folds. Our analysis purely focuses on the likeliness in terms of whole-brain morphometrics between actual brains and coarse-grained brains. Specifically on the point of “thickening” of the brain: this is anatomically well-founded, as less folded brains have a “thicker” cortex than more folded brains, when they are all normalised to the same size. This is fundamentally why the universal scaling law also applies to these coarse-grained brains. We will provide more detail to highlight this.

      2. We will clarify the motivation behind our coarse-graining procedure better: mathematically, this is directly inspired by box-counting algorithms in fractal geometry; but this algorithm also has elegant parallels with other algorithms which we will highlight.

      3. The age effects are demonstrated here in a small sample as a proof-of-principle, but we will update our latest results using ~100 subjects from the CamCAN data demonstrating the same effect. We have additionally described and verified these age effects in more detail in a separate preprint (https://arxiv.org/abs/2311.13501) with ~1500 subjects, and additionally showed that scale-dependent metrics substantially improve understanding and applications such as brain age prediction.

      4. We have independently also received the feedback that we need to clarify how our method interacts with different resolution of the original MRI. We will add this as a new set of results, demonstrating that the MRI acquisition resolution (within a reasonable range) has a very small effect, as our method takes the reconstructed surfaces as a starting point.

      5. We agree that it may be confusing to emphasise a constant K in the first set of results across species, and then later highlight a changing K in the human ageing results. We will clarify that in the first set of results, we find a “constant” K relative to a changing S: The range in K across melted primate brains is approx 0.1, whereas in S it is over 1.2. In other words, S changes are an order of magnitude higher than K changes. Hence, we described K as “constant” relative to S. Nevertheless, K shows subtle changes within individuals, which is what we are describing in the human ageing results. These changes are within the range of K values described in the across species results.

      6. Finally, we will also make sure to summarise our specific contributions beyond existing work:

        (i) Showing for the first time that representative primate species follow the exact same fractal scaling – as opposed to previous work showing that they have a similar fractal dimension, i.e. slope, but not necessarily the same offset, as previous methods had no consistent way of comparing offsets.

        (ii) Previous work could also not show direct agreement in morphometrics between the coarse-grained brains of primate species and other non-primate mammalian species.

        (iii) Demonstrating in proof-of-principle that multiscale morphometrics, in practice, can have much larger effect sizes for classification applications. This moves beyond our previous work where we only showed the scaling law across and within species, but all on one (native) scale with comparable effect sizes for classification applications.

    1. Author Response

      Reviewer #2 (Public Review):

      Weaknesses:

      The paper contains multiple instances of non-scientific language, as indicated below. It would also benefit from additional details on the cryo-EM structure determination in the Methods and inclusion of commonly accepted requirements for cryo-EM structures, like examples of 2D class averages, raw micrographs, and FSC curves (between half-maps as well as between rigid-body fitted (or refined) atomic models of the different polymorphs and their corresponding maps). In addition, cryo-EM maps for the control experiments F1 and F2 should be presented in Figure 9.

      We will include the suggested data on the Cryo-EM analyses in a revised version of the preprint. We did not collect data on the sample used for the seeds in the cross seeding experiments because we had already confirmed in multiple datasets that the conditions in F1 and F2 reproducibly produce fibrils of Type 1 and Type 3, respectively. In a revised version we will include the analyses of several more datasets at the F1 and F2 conditions to support this statement.

      Reviewer #3 (Public Review):

      Weaknesses:

      1. The authors reveal that both Type 1 monofilament fibril polymorph (reminiscent of JOS-like polymorph) and Type 5 polymorph (akin to tissue-amplified-like polymorph) can both form under the same condition. Additionally, this condition also fosters the formation of flat ribbon-like fibril across different batches. Notably, at pH 5.8, variations in experimental groups yield disparate abundance ratios between polymorph 3B and 3C, indicating a degree of instability in fibrillar formation. The variability would potentially pose challenges for replicability in subsequent research. In light of these situations, I propose the following recommendations:

      (1) An explicit elucidation of the factors contributing to these divergent outcomes under similar experimental conditions is warranted. This should include an exploration of whether variations in purified protein batches are contributing factors to the observed heterogeneity.

      We are in complete agreement that understanding the factors that lead to polymorph variability is of utmost importance (and was the impetus for the manuscript itself). However the number of variables to explore is overwhelming and we will continue to investigate this in our future research. Regarding the variability between batches of purified protein, we also think that this could be a factor in the polymorph variability observed for otherwise “identical” aggregation conditions, particularly at pH 7 where the largest variety of polymorphs have been observed. While our data still indicates that Type 1,2 and 3 polymorphs are strongly selected by pH, the selection between interface variants 3B vs. 3C and 2A vs. 2B might also be affected by protein purity. Our standard purification protocol produces a single band by coomassie-stained SDS-PAGE however minor truncations and other impurities below a few percent would go undetected and, given the proposed roles of the N and C-termini in secondary nucleation, could have a large effect on polymorph selection and seeding. In line with the reviewer’s comments we now include a batch number for each EM dataset. While no new conclusions can be drawn from the inclusion of this additional data, we feel that it is important to acknowledge the possible role of batch to batch variability.

      (2) To enhance the robustness of the conclusions, additional replicates of the experiments under the same condition should be conducted, ideally a minimum of three times.

      The pH 5.8 conditions that yield Type 3 fibrils has already been repeated several times in the original manuscript. The pH 7.4 conditions were only mentioned twice, once as an unseeded and once as a cross-seeded fibrilization. We solved a second Type 1 structure from a second dataset from the same protein batch fibrillized under similar conditions at pH 7.4 but with the addition of inositol trisphosphate in the hopes that we could replicate one of the in vivo polymorphs. However only the Type 1 polymorphs were observed and so we will add this data point to the revised manuscript. We are currently screening more fibrils produced at pH 7.0 and will include any replicates of Type 5 or the Type 1M polymorphs or of new structures that are obtained at these conditions… however, as noted in the original manuscript, reproducibility at this pH might be difficult because there appears to be a wider range of accessible polymorphs. As will be mentioned in the revised version, the Type 5 structure was solved from a manually picked set of fibers that represented 10-20% of the observed fibrils. The remaining fibers in the sample comprised polymorphs that could not be analyzed due to their inhomogeneity or lack of twist.

      (3) Further investigation into whether different polymorphs formed under the same buffer condition could lead to distinct toxicological and pathology effects would be a valuable addition to the study.

      The correlation of toxicity with structure would in principle be interesting. However the Type 1 and Type 3 polymorphs formed at pH 5.8 and 7.4 are not likely to be biologically relevant. The pH 7 polymorphs (Type 5 and 1M) would be more interesting because they form under the same conditions and might be related to some disease relevant structures. Still, it is rare that a single polymorph appears at 7.0 (the Type 5 represented only 10-20% of the fibrils in the sample and the Type 1M also had unidentified double-filament fibrils in the sample). We plan to pursue this line of research and hope to include it in a future publication.

      1. The cross-seeding study presented in the manuscript demonstrates the pivotal role of pH conditions in dictating conformation. However, an intriguing aspect that emerges is the potential role of seed concentration in determining the resultant product structure. This raises a critical question: at what specific seed concentration does the determining factor for polymorph selection shift from pH condition to seed concentration? A methodological robust approach to address this should be conducted through a series of experiments across a range of seed concentrations. Such an approach could delineate a clear boundary at which seed concentration begins to predominantly dictate the conformation, as opposed to pH conditions. Incorporating this aspect into the study would not only clarify the interplay between seed concentration and pH conditions, but also add a fascinating dimension to the understanding of polymorph selection mechanisms.

      A more complete analysis of the mechanisms of aggregation, including the effect of seed concentration and the resulting polymorph specificity of the process, are all very important for our understanding of the aggregation pathways of alpha-synuclein and are currently the topic of ongoing investigations in our lab.

      Furthermore, the study prompts additional queries regarding the behavior of cross-seeding production under the same pH conditions when employing seeds of distinct conformation. Evidence from various studies, such as those involving E46K and G51D cross-seeding, suggests that seed structure plays a crucial role in dictating polymorph selection. A key question is whether these products consistently mirror the structure of their respective seeds.

      We thank the reviewer for reminding us to include a reference to these studies as a clear example of polymorph selection by cross-seeding which we will do in the revised version. Unfortunately, it is not 100% clear from the G51D cross seeding manuscript (https://doi.org/10.1038/s41467-021-26433-2) what conditions were used in the cross-seeding since different conditions were used for the seedless wild-type and mutant aggregations… however it appears that the wild-type without seeds was Tris pH 7.5 (although at 37C the pH could have dropped to 7-ish) and the cross-seeded wild-type was in Phosphate buffer at pH 7.0. In the E46K cross-seeding manuscript, it appears that pH 7.5 Tris was used for all fibrilizations (https://doi.org/10.1073/pnas.2012435118). In any event, both results point to the fact that at pH 7.0-7.5 under low-seed conditions (0.5%) the Type 4 polymorph can propagate in a seed specific manner.

      1. In the Results section of "The buffer environment can dictate polymorph during seeded nucleation", the authors reference previous cell biological and biochemical assays to support the polymorph-specific seeding of MSA and PD patients under the same buffer conditions. This discussion is juxtaposed with recent research that compares the in vivo biological activities of hPFF, ampLB as well as LB, particularly in terms of seeding activity and pathology. Notably, this research suggests that ampLB, rather than hPFF, can accurately model the key aspects of Lewy Body Diseases (LBD) (refer to: https://doi.org/10.1038/s41467-023-42705-5). The critical issue here is the need to reconcile the phenomena observed in vitro with those in in-vivo or in-cell models. Given the low seed concentration reported in these studies, it is imperative for the authors to provide a more detailed explanation as to why the possible similar conformation could lead to divergent pathologies, including differences in cell-type preference and seeding capability.

      We thank the reviewer for bring this recent report to our attention. The findings that ampLB and hPFF have different PK digestion patterns and that only the former is able to model key aspects of Lewy Body disease are in support of the seed-specific nature of some types of alpha-synuclein aggregation. We will add more discussion regarding the significant role that seed type and seed conditions likely play in polymorph selection.

      1. In the Method section of "Image processing", the authors describe the helical reconstruction procedure, without mentioning much detail about the 3D reconstruction and refinement process. For the benefit of reproducibility and to facilitate a deeper understanding among readers, the authors should enrich this part to include more comprehensive information, akin to the level of detail found in similar studies (refer to: https://doi.org/10.1038/nature23002).

      As suggested by reviewer #2, we will add more comprehensive information on the 3D reconstruction and refinement process to a revised version.

      1. The abbreviation of amino acids should be unified. In the Results section "On the structural heterogeneity of Type 1 polymorphs", the amino acids are denoted using three-letter abbreviation. Conversely, in the same section under "On the structural heterogeneity of Type 2 and 3 structures", amino acids are abbreviated using the one-letter format. For clarity and consistency, it is essential that a standardized format for amino acid abbreviations be adopted throughout the manuscript.

      That makes perfect sense and will be corrected in a revised version.

      Reviewing Editor:

      After discussion among the reviewers, it was decided that point 2 in Reviewer #3's Public Review (about the experiments with different concentrations of seeds) would probably lie outside the scope of a reasonable revision for this work.

      We agree as stated above and will continue to work on this important point.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths

      This paper is well situated theoretically within the habit learning/OCD literature.

      Daily training in a motor-learning task, delivered via smartphone, was innovative, ecologically valid and more likely to assay habitual behaviors specifically. Daily training is also more similar to studies with non-humans, making a better link with that literature. The use of a sequential-learning task (cf. tasks that require a single response) is also more ecologically valid.

      The in-laboratory tests (after the 1 month of training) allowed the researchers to test if the OCD group preferred familiar, but more difficult, sequences over newer, simpler sequences.

      The authors achieved their aims in that two groups of participants (patients with OCD and controls) engaged with the task over the course of 30 days. The repeated nature of the task meant that 'overtraining' was almost certainly established, and automaticity was demonstrated. This allowed the authors to test their hypotheses about habit learning. The results are supportive of the authors' conclusions.

      Response: We truly appreciate the positive assessment of referee 1, particularly the consideration that our study is theoretically strong and that ‘the results are supportive of the authors' conclusions’. This is an important external endorsement of our conclusions, contrasting somewhat with the views of referee 2.

      Weaknesses

      The sample size was relatively small. Some potentially interesting individual differences within the OCD group could have been examined more thoroughly with a bigger sample (e.g., preference for familiar sequences). A larger sample may have allowed the statistical testing of any effects due to medication status. The authors were not able to test one criterion of habits, namely resistance to devaluation, due to the nature of the task

      Response: We agree with the reviewer that the proof of principle established in our study opens new avenues for research into the psychological and behavioral determinants of the heterogeneity of this clinical population. However, considering the study timeline and the pandemic constraints, a bigger sample was not possible. Our sample can indeed be considered small if one compares it with current online studies, which do not require in-person/laboratory testing, thus being much easier to recruit and conduct. However, given the nature of our protocol (with 2 demanding test phases, 1-month engagement per participant and the inclusion of OCD patients without comorbidities only) and the fact that this study also involved laboratory testing, we consider our sample size reasonable and comparable to other laboratory studies (typically comprising on average between 30-50 participants in each group).

      This article is likely to be impactful -- the delivery of a task across 30 days to a patient group is innovative and represents a new approach for the study of habit learning that is superior to an inlaboratory approach.

      An interesting aspect of this manuscript is that it prompts a comparison with previous studies of goal-directed/habitual responding in OCD that used devaluation protocols, and which may have had their effects due to deficits in goal-directed behavior and not enhanced habit learning per se.

      Response: Thank you for acknowledging the impact of our study, in particular the unique ability of our task to interrogate the habit system.

      Reviewer #2 (Public Review):

      In this study, the researchers employed a recently developed smartphone application to provide 30 days of training on action sequences to both OCD patients and healthy volunteers. The study tested learning and automaticity-related measures and investigated the effects of several factors on these measures. Upon training completion, the researchers conducted two preference tests comparing a learned and unlearned action sequences under different conditions. While the study provides some interesting findings, I have a few substantial concerns:

      1. Throughout the entire paper, the authors' interpretations and claims revolve around the domain of habits and goal-directed behavior, despite the methods and evidence clearly focusing on motor sequence learning/procedural learning/skill learning. There is no evidence to support this framing and interpretation and thus I find them overreaching and hyperbolic, and I think they should be avoided. Although skills and habits share many characteristics, they are meaningfully distinguishable and should not be conflated or mixed up. Furthermore, if anything, the evidence in this study suggests that participants attained procedural learning, but these actions did not become habitual, as they remained deliberate actions that were not chosen to be performed when they were not in line with participants' current goals.

      Response: We acknowledge that the research on habit learning is a topic of current controversy, especially when it comes to how to induce and measure habits in humans. Therefore, within this context referee’s 2 criticism could be expected. Across distinct fields of research, different methodologies have been used to measure habits, which represent relatively stereotyped and autonomous behavioral sequences enacted in response to a specific stimulus without consideration, at the time of initiation of the sequence, of the value of the outcome or any representation of the relationship that exists between the response and the outcome. Hence these are stimulus-bound responses which may or may not require the implementation of a skill during subsequent performance. Behavioral neuroscientists define habits similarly, as stimulus-response associations which are independent of reward or outcome, and use devaluation or contingency degradation strategies to probe habits (Dickinson and Weiskrantz, 1985; Tricomi et al., 2009). Others conceptualize habits as a form of procedural memory, along with skills, and use motor sequence learning paradigms to investigate and dissect different components of habit learning such as action selection, execution and consolidation (Abrahamse et al., 2013; Doyon et al., 2003; Squire et al., 1993). It is also generally agreed that the autonomous nature of habits and the fluid proficiency of skills are both usually achieved with many hours of training or practice, respectively (Haith and Krakauer, 2018).

      We consider that Balleine and Dezfouli (2019) made an excellent attempt to bring all these different criteria within a single framework, which we have followed. We also consider that our discussion in fact followed a rather cautious approach to interpretation solely in terms of goaldirected versus habitual control.

      Referee 2 does not actually specify criteria by which they define habits and skills, except for asserting that skilled behavior is goal-directed, without mentioning what the actual goal of the implantation of such skill is in the present study: the fulfillment of a habit? We assume that their definition of habit hinges on the effects of devaluation, as a single criterion of habit, but which according to Balleine and Dezfouli (2019) is only 1 of their 4 listed criteria. We carefully addressed this specific criterion in our manuscript: “We were not, however, able to test the fourth criterion, of resistance to devaluation. Therefore, we are unable to firmly conclude that the action sequences are habits rather than, for example, goal-directed skills. Regardless of whether the trained action sequences can be defined as habits or goal-directed motor skills, it has to be considered…”. Therefore, we took due care in our conclusions concerning habits and thus found the referee’s comment misleading and unfair.

      We note that our trained motor sequences did in fact fulfil the other 3 criteria listed by Balleine and Dezfouli (2019), unlike many studies employing only devaluation (e.g. Tricomi et al 2009; Gillan et al 2011). Moreover, we cited a recent study using very similar methodology where the devaluation test was applied and shown to support the habit hypothesis (Gera et al., 2022).

      Whether the initiation of the trained motor sequences in experiment 3 (arbitration) is underpinned by an action-outcome association (or not) has no bearing on whether those sequences were under stimulus-response control after training (experiment 1). Transitions between habitual and goal-directed control over behavior are quite well established in the experimental literature, especially when choice opportunities become available (Bouton et al (2021), Frölich et al (2023), or a new goal-directed schemata is recruited to fulfill a habit (Fouyssac et al, 2022). This switching between habits and goal-directed responding may reflect the coordination of these systems in producing effective behavior in the real world.

      • Fouyssac M, Peña-Oliver Y, Puaud M, Lim NTY, Giuliano C, Everitt BJ, Belin D. (2021).Negative Urgency Exacerbates Relapse to Cocaine Seeking After Abstinence. Biological Psychiatry. doi: 10.1016/j.biopsych.2021.10.009

      • Frölich S, Esmeyer M, Endrass T, Smolka MN and Kiebel SJ (2023) Interaction between habits as action sequences and goal-directed behavior under time pressure. Front. Neurosci. 16:996957. doi: 10.3389/fnins.2022.996957

      • Bouton ME. 2021. Context, attention, and the switch between habit and goal-direction in behavior. Learn Behav 49:349– 362. doi:10.3758/s13420-021-00488-z

      1. Some methodological aspects need more detail and clarification.

      2. There are concerns regarding some of the analyses, which require addressing.

      Response: We thank referee 2 for their detailed review of the methods and analyses of our study and for the helpful feedback, which clearly helps improve our manuscript. We will clarify the methodological aspects in detail and conduct the suggested analysis. Please see below our answers to the specific points raised.

      Introduction:

      1. It is stated that "extensive training of sequential actions would more rapidly engage the 'habit system' as compared to single-action instrumental learning". In an attempt to describe the rationale for this statement the authors describe the concept of action chunking, its benefits and relevance to habits but there is no explanation for why sequential actions would engage the habit system more rapidly than a single-action. Clarifying this would be helpful.

      Response: We agree that there is no evidence that action sequences become habitual more readily than single actions, although action sequences clearly allow ‘chunking’ and thus likely engage neural networks including the putamen which are implicated in habit learning as well as skill. In our revised manuscript we will instead state: “we have recently postulated that extensive training of sequential actions could be a means for rapidly engaging the ‘habit system’ (Robbins et al., 2019)]”

      DONE in page 2

      1. In the Hypothesis section the authors state: “we expected that OCD patients... show enhanced habit attainment through a greater preference for performing familiar app sequences when given the choice to select any other, easier sequence”. I find it particularly difficult to interpret preference for familiar sequences as enhanced habit attainment.

      Response: We agree that choice of the familiar response sequence should not be a necessary criterion for habitual control although choice for a familiar sequence is, in fact, not inconsistent with this hypothesis. In a recent study, Zmigrod et al (2022) found that 'aversion to novelty' was a relevant factor in the subjective measurement of habitual tendencies. It should also be noted that this preference was present in patients with OCD. If one assumes instead, like the referee, that the familiar sequence is goal-directed, then it contravenes the well-known 'egodystonia' of OCD which suggests that such tendencies are not goal-directed.

      To clarify our hypothesis, we will amend the sentence to the following: “Finally, we expected that OCD patients would generally report greater habits, as well as attribute higher intrinsic value to the familiar app sequences manifested by a greater preference for performing them when given the choice to select any other, easier sequence”.

      DONE in page 5. We have now rephrased it: “Additionally, we hypothesized that OCD patients would generally display stronger habits and assign greater intrinsic value to the familiar app sequences, evidenced by a marked preference for executing them even when presented with a simpler alternative sequence.”

      A few notes on the task description and other task components:

      1. It would be useful to give more details on the task. This includes more details on the time/condition of the gradual removal of visual and auditory stimuli and also on the within practice dynamic structure (i.e., different levels appear in the video).

      Response: These details will be included in the revised manuscript. Thank you for pointing out the need for further clarification of the task design.

      Done in page 7

      1. Some more information on engagement-related exclusion criteria would be useful (what happened if participants did not use the app for more than one day, how many times were allowed to skip a day etc.).

      Response: This additional information will be added to the revised manuscript. If participants omitted to train for more than 2 days, the researcher would send a reminder to the participant to request to catch up. If the participant would not react accordingly and a third day would be skipped, then the researcher would call to understand the reasons for the lack of engagement and gauge motivation. The participant would be excluded if more than 5 sequential days of training were missed. Only 2 participants were excluded given their lack of engagement.

      Done in page 8

      1. According to the (very useful) video demonstrating the task and the paper describing the task in detail (Banca et al., 2020), the task seems to include other relevant components that were not mentioned in this paper. I refer to the daily speed test, the daily random switch test, and daily ratings of each sequence's enjoyment and confidence of knowledge.

      If these components were not included in this procedure, then the deviations from the procedure described in the video and Banca al. (2020) should be explicitly mentioned. If these components were included, at least some of them may be relevant, at least in part, to automaticity, habitual action control, formulation of participants' enjoyment from the app etc. I think these components should be mentioned and analyzed (or at least provide an explanation for why it has been decided not to analyze them).

      This is also true for the reward removal (extinction) from the 21st day onwards which is potentially of particular relevance for the research questions.

      Response: The task procedure was indeed the same as detailed in Banca et al., 2020. We did not include these extra components in this current manuscript for reasons of succinctness and because the manuscript was already rather longer than a common research article, given that we present three different, though highly inter-dependent, experiments in order to answer key interrelated questions in an optimal manner. However, since referee 2 considers this additional analysis to be important, we will be happy to include it in the supplementary material of the revised manuscript.

      These additional components of the task as well as the respective analysis are now described in the Supplementary Materials.

      Training engagement analysis:

      1. I find referring to the number of trials including successful and unsuccessful trials as representing participants "commitment to training" (e.g. in Figure legend 2b) potentially inadequate. Given that participants need at least 20 successful trials to complete each practice, more errors would lead to more trials. Therefore, I think this measure may mostly represent weaker performance (of the OCD patients as shown in Figure 2b). Therefore, I find the number of performed practice runs, as used in Figure 2a (which should be perfectly aligned with the number of successful trials), a "clean" and proper measure of engagement/commitment to training.

      Response: We acknowledge referee’s concern on this matter and agree to replace the y-axis variable of Figure 2b to the number of performed practices (thus aligning with Figure 2a). This amendment will remove any potential effect of weaker performance on the engagement measurement and will provide clearer results.

      We have now decided to remove this figure as it does not add much to figure 2a. Instead, we replaced figure 2b and 2c for new plots, following new analysis linked to the next reviewer request (point 10)

      1. Also, to provide stronger support for the claim about different diurnal training patterns (as presented in Figure 2c and the text) between patients and healthy individuals, it would be beneficial to conduct a statistical test comparing the two distributions. If the results of this test are not significant, I suggest emphasizing that this is a descriptive finding.

      Response: Done, see revised Figure 2b and 2c. We have assessed the diurnal training patterns within each group using circular statistics, followed by independent-sample statistical testing of those circular distributions with the Watson’s U2 test ( Landler et al., 2021). While OCD participants have a group effect of practice with a significant peak at ~18:00, and HV participants have an earlier significant peak at ~15:00, the Watson’s U test did not find statistical betweengroup differences.

      • Landler L, Ruxton GD, Malkemper EP. Advice on comparing two independent samples of circular data in biology. Scientific reports. 2021 Oct 13;11(1):20337.

      Learning results:

      1. When describing the Learning results (p10) I think it would be useful to provide the descriptive stats for the MT0 parameter (as done above for the other two parameters).

      Response: Thank you for pointing this out. The descriptive stats for MT0 will be added to the revised version of the manuscript.

      Done page 11

      1. Sensitivity of sequence duration and IKI consistency (C) to reward:

      I think it is important to add details on how incorrect trials were handled when calculating ∆MT (or C) and ∆R, specifically in cases where the trial preceding a successful trial was unsuccessful. If incorrect trials were simply ignored, this may not adequately represent trial-by-trial changes, particularly when testing the effect of a trial's outcome on performance change in the next trial.

      Response: This is an important question. Our analysis protocol was designed to ensure that incorrect trials do not contaminate or confound the results. To estimate the trial-to-trial difference in ∆MT (or C) and ∆R, we exclusively included pairs of contiguous trials where participants achieved correct performance and received feedback scores for both trials. For example, if a participant made a performance error on trial 23, we did not include ∆R or ∆MT estimates for the pairs of trials 23-22 and 24-23. Instead of excluding incorrect trials from our analyses, we retained them in our time series but assigned them a NaN (not a number) value in Matlab. As a result, ∆R and ∆MT was not defined for those two pairs of trials. Similarly for C. This approach ensured that our analyses are not confounded by incremental or decremental feedback scores between noncontiguous trials. In the past, when assessing the timing of correct actions during skilled sequence performance, we also considered events that were preceded and followed by correct actions. This excluded effects such as post-error slowing from contaminating our results (Herrojo Ruiz et al., 2009, 2019). Therefore, we do not believe that any further reanalysis is required.

      • Ruiz MH, Jabusch HC, Altenmüller E. Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists. Cerebral cortex. 2009 Nov 1;19(11):2625-39.

      • Bury G, García-Huéscar M, Bhattacharya J, Ruiz MH. Cardiac afferent activity modulates early neural signature of error detection during skilled performance. NeuroImage. 2019 Oct 1;199:704-17.

      1. I have a serious concern with respect to how the sensitivity of sequence duration to reward is framed and analyzed. Since reward is proportional to performance, a reduction in reward essentially indicates a trial with poor performance, and thus even regression to the mean (along with a floor effect in performance [asymptote]) could explain the observed effects. It is possible that even occasional poor performance could lead to a participant demonstrating this effect, potentially regardless of the reward. Accordingly, the reduced improvement in performance following a reward decrease as a function of training length described in Figure 5b legend may reflect training-induced increased performance that leaves less room for improvement after poor trials, which are no longer as poor as before. To address this concern, controlling for performance (e.g., by taking into consideration the baseline MT for the previous trial) may be helpful. If the authors can conduct such an analysis and still show the observed effect, it would establish the validity of their findings."

      Response: Thank you for raising this point. This has been done, see updated Figures 5 and 6. After normalizing the ∆MT(n+1) := MT(n+1) – MT(n) difference values by dividing them with the baseline MT(n) at trial n, we obtain the same results. Similar results are also obtained for IKI consistency (C).

      See below our initial response from June 2023.

      Thank you for raising this point. Figure 5b illustrates two distinct effects of reward changes on behavioral adaptation, which are expected based on previous research.

      I. Practice effects: Firstly, we observe that as participants progress across bins of practice, the degree of improvement in behavior (reflected by faster movement time, MT) following a decrease in reward (∆R−) diminishes, consistent with our expectations based on previous work. Conversely, we found that ∆MT does not change across bins of practices following an increase in reward (∆R+).

      We appreciate the reviewer’s suggestion regarding controlling for the reference movement time (MT) in the previous trial when examining the practice effect in the p(∆T|∆R−) and p(∆T|∆R+) distributions. In the revised manuscript, we will conduct the proposed control analysis to better understand whether the sensitivity of MT to score decrements changes across practice when normalising MT to the reference level on each trial. But see below for a preliminary control analysis.

      II. Asymmetry of the effect of ∆R− and ∆R+ on performance: Figure 5b also depicts the distinct impact of score increments and decrements on behavioural changes. When aggregating data across practice bins, we consistently observed that the centre of the p(∆T|∆R−) distribution was smaller (more negative) than that of p(∆T|∆R+). This suggests that participants exhibited a greater acceleration following a drop in scores compared to a relative score increase, and this effect persisted throughout the practice sessions. Importantly, this enhanced sensitivity to losses or negative feedback (or relative drops in scores) aligns with previous research findings (Galea et al., 2015; Pekny et al., 2014; van Mastrigt et al., 2020).

      We have conducted a preliminary control analysis to exclude the potential impact that reference movement time (MT) values could have on our analysis. We have assessed the asymmetry between behavioural responses to ∆R− and ∆R+ using the following analysis: We estimated the proportion of trials in which participants exhibited speed-up (∆T < 0) or slow-down (∆T > 0) behaviour following ∆R− and ∆R+ across different practice bins (bins 1 to 4). By discretising the series of behavioural changes (∆T) into binary values (+1 for slowing down, -1 for speeding up), we can assess the type of changes (speed-up, slow-down) without the absolute ∆T or T values contributing to our results. We obtained several key findings:

      • Consistent with expectations (sanity check), participants exhibited more instances of speeding up than slowing down across all reward conditions.

      • Participants demonstrated a higher frequency of speeding up following ∆R− compared to ∆R+, and this asymmetry persisted throughout the practice sessions (greater proportion of -1 events than +1 events). 53% events were speed-up events in the in the p(∆T|∆R+) distribution for the first bin of practices, and 55% for the last bin. Regarding p(∆T|∆R-), there were 63% speed-up events throughout each bin of practices, with this proportion exhibiting no change over time.

      • Accordingly, the asymmetry of reward changes on behavioural adaptations, as revealed by this analysis, remained consistent across the practice bins.

      Thus, these preliminary findings provide an initial response to referee 2 and offer valuable insights into the asymmetrical effects of positive/negative reward changes on behavioural adaptations. We plan to include these results in the revised manuscript, as well as the full control analysis suggested by the referee. We will further expand upon their interpretation and implications.

      1. Another way to support the claim of reward change directionality effects on performance (rather than performance on performance), at least to some extent, would be to analyze the data from the last 10 days of the training, during which no rewards were given (pretending for analysis purposes that the reward was calculated and presented to participants). If the effect persists, it is less unlikely that the effect in question can be attributed to the reward dynamics.

      Response: The reviewer’s concern is addressed in the previous quesQon. Also, this analysis would not be possible because our Gaussian fit analyses use the Qme series of conQnuous reward scores, in which ∆R− or ∆R+ are embedded. These events cannot be analyzed once reward feedback is removed because we do not have behavioral events following ∆R− or ∆R+ anymore.

      Done

      1. This concern is also relevant and should be considered with respect to the sensitivity of IKI consistency (C) to reward. While the relationship between previous reward/performance and future performance in terms of C is of a different structure, the similar potential confounding effects could still be present.

      Response: We will conduct this analysis for the revised manuscript, similarly to the control analysis suggested by referee 2 on MT. Our preliminary control analysis, as explained above, suggests that the fundamental asymmetry in the effect of ∆R+ and ∆R+ on behavioral changes persists when excluding the impact of reference performance values in our Gaussian fit analysis.

      Done. See updated Figure 6. The results are very similar once we normalize the IKI consistency index C with the IKI of the baseline performance at trial n.

      1. Another related question (which is also of general interest) is whether the preferred app sequence (as indicated by the participants for Phase B) was consistently the one that yielded more reward? Was the continuous sequence the preferred one? This might tell something about the effectiveness of the reward in the task.

      Response: We have now conducted this analysis. There is in fact no evidence to conclude that the continuously rewarded sequence was the preferred one. The result shows that 54.5% of HV and 29% of the OCD sample considered the continuous sequence to be their preferred one, a nonstatistically significant difference. Note that this preference may not necessarily be linked simply to programmed reward. The overall preference may be influenced by many other factors, such as, for example, the aesthetic appeal of particular combinations of finger movements.

      Regarding both experiments 2 and 3:

      1. The change in context in experiment 2 and 3 is substantial and include many different components. These changes should be mentioned in more detail in the Results section before describing the results of experiments 2 and 3.

      Response: Following referee’s advice, we will move these details (currently written in the Methods section) to the Results section, when we introduce Phase B and before describing the results of experiments 2 and 3.

      Done in page 21

      Experiment 2:

      1. In Experiment 2, the authors sometimes refer to the "explicit preference task" as testing for habitual and goal-seeking sequences. However, I do not think there is any justification for interpreting it as such. The other framings used by the authors - testing whether trained action sequences gain intrinsic/rewarding properties or value, and preference for familiar versus novel action sequences - are more suitable and justified. In support of the point I raised here, assigning intrinsic rewarding properties to the learned sequences and thereby preferring these sequences can be conceptually aligned with goal-directed behavior just as much as it could be with habit.

      Response: We clearly defined the theoretical framing of experiment 2 as a test of whether trained action sequences gain intrinsic value and we are pleased to hear that the referee agrees with this framing. If the referee is referring to the paragraph below (in the Discussion), we actually do acknowledge within this paragraph that a preference for the trained sequences can either be conceptually aligned with a habit OR a goal-directed behavior.

      “On the other hand, we are describing here two potential sources of evidence in favor of enhanced habit formation in OCD. First, OCD patients show a bias towards the previously trained, apparently disadvantageous, action sequences. In terms of the discussion above, this could possibly be reinterpreted as a narrowing of goals in OCD (Robbins et al., 2019) underlying compulsive behavior, in favor of its intrinsic outcomes”

      This narrowing of goals model of OCD refers to a hypothetically transiQonal stage of compulsion development driven by behavior having an abnormally strong, goal-directed nature, typically linked to specific values and concerns.

      If the referee is referring to the penulQmate sentence of hypothesis secQon, this has been amended in response to Q5. We cannot find any other possible instances in this manuscript stating that experiment 2 is a test of habitual or goal-directed behavior.

      Experiment 3:

      1. Similar to Experiment 2, I find the framing of arbitration between goal-directed/habitual behavior in Experiment 3 inadequate and unjustified. The results of the experiment suggest that participants were primarily goal-directed and there is no evidence to support the idea that this reevaluation led participants to switch from habitual to goal-directed behavior.

      Also, given the explicit choice of the sequence to perform participants had to make prior to performing it, it is reasonable to assume that this experiment mainly tested bias towards familiar sequence/stimulus and/or towards intrinsic reward associated with the sequence in value-based decision making.

      Response: This comment is aligned with (and follows) the referee’s criticism of experiment 1 not achieving automatic and habitual actions. We have addressed this matter above, in response 1 to Referee 2.

      Mobile-app performance effect on symptomatology: exploratory analyses:

      1. Maybe it would be worth testing if the patients with improved symptomatology (that contribute some of their symptom improvement to the app) also chose to play more during the training stage.

      Response: We have conducted analysis to address this relevant question. There is no correlation between the YBOCS score change and the number of total practices, meaning that the patients who improved symptomatology post training did not necessarily chose to play the app more during the training stage (rs = 0.25, p = 0.15). Additionally, we have statistically compared the improvers (patients with reduced YBOCS scores post-training) and the non-improvers (patients with unchanged or increased YBOCS scores post-training) in their number of app completed practices during the training phase and no differences were observed (U = 169, p = 0.19).

      The result from the correlational analysis has been added to the revised manuscript (page 28).

      Discussion:

      1. Based on my earlier comments highlighting the inadequacy and mis-framing of the work in terms of habit and goal-directed behavior, I suggest that the discussion section be substantially revised to reflect these concerns.

      Response: We do not agree that the work is either "inadequate or mis-framed" and will not therefore be substantially revising the Discussion. We will however clarify further the interpretation we have made and make explicit the alternative viewpoint of the referee. For example, we will retitle experiment 3 as “Re-evaluation of the learned action sequence: possible test of goal/habit arbitration” to acknowledge the referee’s viewpoint as well as our own interpretation.

      Done

      1. In the sentence "Nevertheless, OCD patients disadvantageously preferred the previously trained/familiar action sequence under certain conditions" the term "disadvantageously" is not necessarily accurate. While there was potentially more effort required, considering the possible presence of intrinsic reward and chunking, this preference may not necessarily be disadvantageous. Therefore, a more cautious and accurate phrasing that better reflects the associated results would be useful.

      Response: We recognize that the term "disadvantageously" may be semantically ambiguous for some readers and therefore we will remove it.

      Done

      Materials and Methods:

      1. The authors mention: "The novel sequence (in condition 3) was a 6-move sequence of similar complexity and difficulty as the app sequences, but only learned on the day, before starting this task (therefore, not overtrained)." - for the sake of completeness, more details on the pre-training done on that day would be useful.

      Response: Details of the learning procedure of the novel sequence (in condition 3, experiment 3) will be provided in the methods of the revised version of the manuscript.

      Done in page 40

      Minor comments:

      1. In the section discussing the sensitivity of sequence duration to reward, the authors state that they only analyzed continuous reward trials because "a larger number of trials in each subsample were available to fit the Gaussian distributions, due to feedback being provided on all trials." However, feedback was also provided on all trials in the variable reward condition, even though the reward was not necessarily aligned with participants' performance. Therefore, it may be beneficial to rephrase this statement for clarity.

      Response: We will follow this referee’s advice and will rephrase the sentence for clarity.

      Done. See page 16.

      1. With regard to experiment 2 (Preference for familiar versus novel action sequences) in the following statement "A positive correlation between COHS and the app sequence choice (Pearson r = 0.36, p = 0.005) further showed that those participants with greater habitual tendencies had a greater propensity to prefer the trained app sequence under this condition." I find the use of the word "further" here potentially misleading.

      Response: The word "further" will be removed.

      Done

      Reviewer #1 (Recommendations For The Authors):

      This is a very interesting manuscript, which was a pleasure to review. I have some minor comments you may wish to consider.

      1. I believe that it is possible to include videos as elements in eLife articles - please consider if you can do this to demonstrate the action sequence on the smartphone. I followed the YouTube video, and it was very helpful to see exactly what participants did, but it would be better to attach the video directly, if possible.

      Response: This is a great idea and we will definitely attach our video demonstrating the task to the revised manuscript (Version of Record) if the eLife editors allow.

      We ask permission to the editor to add the video

      1. The abstract states that the study uses a "novel smartphone app" but is the same one as described in Banca et al. Suggest writing simply "smartphone app".

      Response: We will remove the word novel.

      Done

      1. Some of the hypotheses described in the second half of the Hypothesis section could be stated more explicitly. For example: "We also hypothesized that the acquisition of learning and automaticity would differ between the two action sequences based on their associated rewarded schedule (continuous versus variable) and reward valence (positive or negative)." The subsequent sentence explains the prediction for the schedule but what is the hypothesized direction for reward valence? More detail is subsequently given on p. 14, Results, but it would be better to bring these details up to the Introduction. "We additionally examined differential effects of positive and negative feedback changes on performance to build on previous work demonstrating enhanced sensitivity to negative feedback in patients with OCD (Apergis-Schoute et al 2023, Becker et al., 2014; Kanen et al., 2019)." In general, the second part of the Hypothesis section is a bit dense, sometimes with two predictions per sentence. It could be useful for the reader if hypotheses were enumerated and/or if a distinction was made among the hypotheses with respect to their importance.

      We fully revised the hypothesis section, on page 5, following this reviewer’s suggestion. We think this section is much clearer now, in our revised manuscript.

      Response: Thank you for pointing out the need for clarity in our hypothesis section. This is a very important point and we will carefully rewrite our hypothesis in the revised manuscript to make them as clear as possible.

      1. Did medication status correlate with symptom severity in the OCD group (e.g., higher symptoms for the 6 participants on SSRI+antipsychotics?). Could this, or SSRI-only status, have impacted results in any way? I appreciate that there is no way to test medication status statistically but readers may be interested in your thoughts on this aspect.

      Response: We have now conducted exploratory analysis to assess the potential effect of medication in the following output measures: app engagement (as measured by completed practices), explicit preference and YBOCS change post-training. The patients who were on combined therapy (SSRIs + antipsychotic) did not perform significantly different in these measures as compared to the remaining patients and no other effects of interest were observed. Their symptomatology was indeed slightly more severe but not statistically significant [Y-BOCS combined = 26.2 (6.5); Y-BOCS SSRI only = 23.8 (6.1); Y-BOCS No Med = 23.8 (2.2), mean(std)]. Only one patient showed symptom improvement after the app training, another became worse and the remaining patients on combined therapy remain stable during the month.

      Palminteri et al (2011) found that unmedicated OCD patients exhibited instrumental learning deficits, which were fully alleviated with SSRI treatment. Therefore, it is possible that the SSRI medication (present in our sample) may have reduced habit formation and facilitated behavioral arbitration. However, since the effect goes against the habit hypothesis, it has is unlikely that it has confounded our measure of automaticity. If anything, medication rendered experiment 2 and 3 more goal-oriented. We agree that further studies are warranted to address the effect of SSRIs on these measures.

      1. You could explain earlier why devaluation could not be tested here (it is only explained in the Limitations section near the end)

      Response: The revised manuscript will be amended to account for this note.

      Done in page 25.

      1. Capitalize 'makey-makey', I didn't realize there was a product called Makey Makey until I Googled it.

      Response: Sure. We will capitalize 'Makey-Makey'. Thank you for pointing this out!

      Done

      Reviewer #2 (Recommendations For The Authors):

      Recommendations for the authors (ordered by the paper sections):

      In the introduction

      1. regarding this part "We used a period of 1-month's training to enable effective consolidation, required for habitual action control or skill retention to occur. This acknowledged previous studies showing that practice alone is insufficient for habit development as it also requires off-line consolidation computations, through longer periods of time (de Wit et al., 2018) and sleep (Nusbaum et al., 2018; Walker et al., 2003)." I advise the authors to re-check whether what is attributed here to de Wit et al. (2018) is indeed justified (if I remember correctly they have not mentioned anything about off-line consolidation computations).

      Response: When we revise the manuscript, we will remove the de Wit et al. (2018) citation from this sentence.

      Done

      in the Outline paragraph

      1. it stated: "We continuously collected data online, in real time, thus enabling measurements of procedural learning as well as automaticity development." I think this wording implies that the fact that the data was collected online in real time was advantageous in that it enabled to assess measurements of procedural learning and automaticity development, which in my understanding is not the case.

      Response: To make this sentence clearer, we will change it to the following: ‘We continuously collected data online, to monitor engagement and performance in real time and to enable acquisition of sufficient data to analyze, à posteriori, procedural learning and automaticity development’.

      Done in page 4: ‘We collected data online continuously to monitor engagement and performance in real-time. This approach ensured we acquired sufficient data for subsequent analysis of procedural learning and automaticity development’.

      1. In the final sentence of this paragraph "or and" should be changed to "or/end".

      Response: This was a typo. The word ‘and’ will be removed.

      Done

      1. In Figure 1c - Note that in the figure legend it says "Each sequence comprises 3 single press moves, 2 two-finger moves..." whereas in the example shown in the figure it's the other way around (2 single press moves and 3 two-finger moves).

      Response: Thank you so much for spotting this! The example shown in the figure is incorrect. We apologize for the mistake. It should depict 3 single press moves, 2 two-finger moves and 1 three- finger move. The figure will be amended.

      Done

      In the results section:

      1. Regarding the "were followed by a positive ring tone and the unsuccessful ones by a negative ring tone", I suggest mentioning that there was also a positive visual (rewarding) effect.

      Response: Thank you. A mention to the visual effect will be added for both the positive (successful) and negative (unsuccessful) trials. Done in page 7

      1. p 10. - Note a typo in the following sentence where the word "which" appears twice consecutively:

      "Furthermore, both groups exhibited similar motor durations at asymptote which, which combined with the previous conclusion, indicates that OCD patients improved their motor learning more than controls, but to the same asymptote."

      Response: Thank you for spotting this typo. The second word will be removed. Done

      1. I have a few suggestions with respect to Figure 3:

      2. keeping the y-axes scale similar in all subplots would be more visually informative.

      Here we kept the y-axes scale similar in all subplots, except one of them, which was important to keep to capture all the data.

      1. For the subplots in 3b I would recommend for the transparent regions, instead of the IQR, to use the median +/- 1.57 * IQR/sqrt(n) which is equivalent to how the notches are calculated in a box-plot figure (It is referred to as an approximate 95% confidence interval for the median). This should make the transparent area narrower and thus better communicate the results.

      Done

      1. I think the significant levels mentioned in figure legend 3b (which are referring to the group effect measured for each reward schedule type separately) is not mentioned in the text. While not crucial, maybe consider adding it in the text.

      We don’t think this is necessary and may actually lead to confusion because in the text we report a Kruskal–Wallis H test (which is the most appropriate statistical test), including their H and p values for the group and reward effects. Since in the figure we separated the analysis and plots for variable and continuous reward schedules (for visual purposes) , we reported a U test separated for each reward schedule. Therefore, we consider that the correct statistics are reported in the appropriate places of the manuscript.

      Response: Thank you for this very helpful suggestion. We will amend figure 3 accordingly.

      1. In the Automaticity results (pp. 12 and 13) when describing the Descriptive stats the wrong parameter indicator are used (DL instead of CL and nD instead of nC.

      Response: Thank you for noticing it. We will amend.

      Done

      1. In Sensitivity of IKI consistency (C) to reward results:

      In Figure 6a legend: with respect to "... and for reward increments (∆R+, purple) and decrements (∆R-, green)" - note that there are also additional colors indicating these ∆Rs.

      Response: Done. We had used a 2 x 2 color scheme: green hues for ∆R-, and purple hues for ∆R+. Then, OCD is denoted by dark colors, and HV by light colors. This represents all four colors used in the figure. For instance, OCD and ∆R- is dark green, whereas OCD and ∆R+ is denoted by dark purple.

      1. p.21 - the YBOCS abbreviation appears before the full form is spelled out in the text.

      Response: In the revised version, we will make sure the YBOCS abbreviation will be spelled out the first time it is mentioned.

      Done in page 24

      Experiments 2 and 3:

      1. If there is a reason behind presenting the conditions sequentially rather than using intermixed trials in experiments 2 and 3, it would be useful to mention it in the text.

      Response: Experiment 2 could have used intermixed trials. However, we were concerned that the use of intermixed trials in experiment 3 would increase excessively the memory load of the task, which could then be a confound.

      Done in page 41

      1. I wonder whether the presentation order of the conditions in experiments 2 and 3 affected participants' results? Maybe it is worth adding this factor to the analysis.

      Response: As we mentioned both in the methods and results sections, we counterbalanced all the conditions across participants, in both experiments 2 and 3. This procedure ensures no order effects.

      Experiment 2:

      1. Regarding this sentence (pp. 21-22): "However, some participants still preferred the app sequence, specifically those with greater habitual tendencies, including patients who considered the app training beneficial." I think the part that mentions that there are "patients who considered the app training beneficial" appears below and it may confuse the reader. I suggest either providing a brief explanation or indicating that further details will be provided later in the text ("see below in...").

      Response: We will clarify this section.

      We added “see below exploratory analyses of “Mobile-app performance effect on symptomatology”” in the end of the sentence so that the reader knows this is further explained below. Page 25

      1. Finally, in addition to subgrouping maybe it is worth testing whether there is a correlation between the YBOCS score change and the app-sequences preference (as to learn if the more they change their YBOCS the more they prefer the learned sequences and vice versa?)

      Response: Thank you for suggesting this relevant correlational analysis, which we have now conducted. Indeed, there is a correlation between the YBOCS score change and the preference for the app-sequences, meaning that the higher the symptom improvement after the month training, the greater the preference for the familiar/learned sequence. This is particularly the case for the experimental condition 2, when subjects are required to choose between the trained app sequence and any 3-move sequence (rs = 0.35, p=0.04). A trend was observed for the correlation between the YBOCS score change and the preference for the app-sequences in experimental condition 1 (app preferred sequence versus any 6-move sequence): rs = 0.30, p=0.09.

      This finding represents an additional corroboration of our conclusion that the app seems to be more beneficial to patients more prone to routine habits, who are somewhat more averse to novelty.

      This analysis was added in page 24, 25 and page 35.

      Experiment 3:

      1. You mention "The task was conducted in a new context, which has been shown to promote reengagement of the goal system (Bouton, 2021)." In my understanding this observation is true also for experiment 2. In such case it should be stated earlier (probably under: "Phase B: Tests of actionsequence preference and goal/habit arbitration").

      Response: As answered above in (Q17), we will follow this referee 2’s suggestion and describe the contextual details of experiments 2 and 3 in the Results section, when we introduce Phase B.

      Done in page 21.

      1. w.r.t this sentence - "...that sequence (Figure 8b, no group effects (p = 0.210 and BF = 0.742, anecdotal evidence)" I would add what the anecdotal evidence refers (as done in other parts of the paper), to prevent potential confusion.

      Response: OK, this will be added.

      Added on page 27

      Discussion:

      1. w.r.t. "Here we have trained a clinical population with moderately high baseline levels of stress and anxiety, with training sessions of a higher order of magnitude than in previous studies (de Wit et al., 2018, 2018; Gera et al., 2022) (30 days instead of 3 days)." The Gera et al. 2022 (was more than 3 days), you probably meant Gera et al. 2023 ("Characterizing habit learning in the human brain at the individual and group levels: a multi-modal MRI study", for which 3 days is true).

      Response: Thank you for pointing this out. We will keep the citation to Gera et al 2022 given its relevance to the sentence but we will remove the information inside the parenthesis. This amendment will solve the issue raised here.

      Done in page 32

      1. w.r.t "to a simple 2-element sequence with less training (Gera et al., 2022)" - it's a 3-element sequence in practice.

      Response: Thank you for this correction. We will amend this sentence accordingly.

      Done in page 32

      1. (p.30) w.r.t "and enhanced error-related negativity amplitudes in OCD" - a bit more context of what the negative amplitudes refer to would be useful (So the reader understands it refers to electrophysiology).

      Response: We will add a sentence in our revised manuscript addressing this matter. This sentence has been removed in the revised manuscript

      Supplementary materials:

      1. under "Sample size for the reward sensitivity analysis":

      It is stated "One practice corresponded to 20 correctly performed sequences. We therefore split the total number of correct sequences into four bins." I was not able to follow this reasoning here (20 correct trials in practice => splitting the data the 4 bins). More clarity here would be useful.

      Response: We will clarify this procedure of our analysis in the revised version of the manuscript. Thanks.

      Done. See Supplementary materials.

      1. Also, maybe I am missing something, but I couldn't understand why the number of sequences available per bin is different for the calculation of ∆MT and C. Aren't any two consecutive sequences that are good for the calculation of one of these measures also good for the calculation of the other?

      Response: Thank you for pointing this out. Indeed, the number of trials was the same for both analyses, ∆MT and C. We had saved an incorrect variable as number of trials. We will amend the text.

      We have re-analyzed the trial number data. The average number of trials per bin both for the ∆MT and C analyses was 109 (9) in the HV and 127 (12) in OCD groups. Although the number was on average larger in the patient group, we did not find significant differences between groups (p = 0.47).

      When assessing the p(∆T|∆R+) and p(∆T|∆R-) separately, more trials were available for p(∆T|∆R+), 107 (10) , than for p(∆T|∆R-), and 98 (8). These trial numbers differed significantly (p = 0.0046), but were identical for ∆MT and C analyses.

      Done. Included in Supplementary materials.

      Minor comments:

      1. Not crucial, but maybe for the sake of consistency consider merging the "Self-reported habit tendencies" section and the "Other self-reported symptoms" section, preferably where the latter is currently placed.

      Response: We fully understand the referee’s rationale underlying this suggestion. We indeed considered initially presenting the self-reported questionnaires all together, in a last, single section of the results, as suggested by the referee. However, we decided to report the higher habitual tendencies of OCD as an initial set of results, not only because it is a novel and important finding (which justifies it to be highlighted) but also because it is essential to the understanding of some of the remaining results presented.

      1. In some figure legends the percentage of the interval of the mentioned confidence intervals (probably 95%) is missing. I suggest adding it.

      Response: OK, this will be added.

      Done

      1. The NHS abbreviation appears without spelling out the full form.

      Response: This will be amended accordingly.

      I removed NHS as it is not relevant.

      1. In p.38 the citation (Rouder et al., 2012) is duplicated (appears twice consecutively).

      Response: Thank you for pointing this out. We will amend accordingly.

      Done

      In the results section:

      1. The authors mention: "To promote motivation, the total points achieved on each daily training sessions were also shown, so participants could see how well they improved across days". Yet, if the score is based on the number of practices, it may not represent participants improvement in case in some days more practices are performed. I suggest to clarify this point.

      Response: The goal of providing the scoring feedback was, as explained in the sentence, to gauge motivation and inform the subject about their performance. Having this goal in mind, it does not really matter if one day their scoring would be higher simply because they would have done more practice on that day. Participants could easily understand that the scoring reflected their performance on each practice so they would realize that the more practice, the greater their improvement and that the scoring would increase across days of practice. We will amend the sentence to the following: "To promote motivation, the total points achieved on each training session (i.e. practice) was also shown, so participants could see how well they improved across practice and across days".

      Done in page 7 and 8.

    1. Author Response

      We thank the reviewers for their fair assessment of our work and will submit a revised version edited for clarity of presentation and precision of interpretations.

    1. Author Response

      Reviewer #3 (Public Review):

      [...] Weaknesses:

      The study produces a large amount of data that is in general cohesive and support the main conclusions, but more thorough considerations on some of their findings may be helpful, as exemplified by the following:

      1) the effect of microglial ablation on chloral hydrate-induced RORR in Fig. 1B appears to be not the same as other anesthetics. what does this mean?

      2) Macrophage ablation impedes anesthesia emergence from pentobarbital (Fig. 3C). how may this occur?

      3) examination of the potential effect of microglial depletion on dendritic spine density is interesting but the experimental design does not seem to align well with the PPR and eEPSC data, which indicate a reduction in presynaptic release (Fig.10E) and increase of postsynaptic function (Fig. 10H), respectively. The PPR data seems to suggest a presynaptic effect of microglia; ablation.

      This reviewer may confused the brain regions between our spine quantification (Figure 11) and patch-clamp recording (Figure 10). In our spine quantification, all evaluations were conducted in the mPFC. However, the patch-clamp recording were performed in SON (Figure 10 B-F) and LC (Figure 10 G-K), different brain regions from our spine quantification. As one of our conclusion, microglia differentially modulate the activity of neuronal network in a brain region-specific manner, neurons in different brain regions may exhibit different electrophysiological alterations upon microglial depletion. Therefore, this comment might be a factual error.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      This is an interesting, timely and informative article. The authors used publicly available data (made available by a funding agency) to examine some of the academic characteristics of the individuals recipients of the National Institutes of Health (NIH) k99/R00 award program during the entire history of this funding mechanism (17 years, total ~ 4 billion US dollars (annual investment of ~230 million USD)). The analysis focuses on the pedigree and the NIH funding portfolio of the institutions hosting the k99 awardees as postdoctoral researchers and the institutions hiring these individuals. The authors also analyze the data by gender, by whether the R00 portion of the awards eventually gets activated and based on whether the awardees stayed/were hired as faculty at their k99 (postdoctoral) host institution or moved elsewhere. The authors further sought to examine the rates of funding for those in systematically marginalized groups by analyzing the patterns of receiving k99 awards and hiring k99 awardees at historically black colleges and universities.

      The goals and analysis are reasonable and the limitations of the data are described adequately. It is worth noting that some of the observed funding and hiring traits are in line with the Matthew effect in science (https://www.science.org/doi/10.1126/science.159.3810.56) and in science funding (https://www.pnas.org/doi/10.1073/pnas.1719557115). Overall, the article is a valuable addition to the research culture literature examining the academic funding and hiring traits in the United States. The findings can provide further insights for the leadership at funding and hiring institutions and science policy makers for individual and large-scale improvements that can benefit the scientific community.

      Thank you for these comments. We have incorporated the articles referenced on the Matthew effect into the first paragraph of the Discussion our revised preprint.

      Reviewer #2 (Public Review):

      Early career funding success has an immense impact on later funding success and faculty persistence, as evidenced by well-documented "rich-get-richer" or "Matthew effect" phenomena in science (e.g., Bol et al. 2018, PNAS). Woitowich et al. examined publicly available data on the distribution of the National Institutes of Health's K99/R00 awards - an early career postdoc-to-faculty transition funding mechanism - and showed that although 85% of K99 awardees successfully transitioned into faculty, disparities in subsequent R01 grant obtainment emerged along three characteristics: researcher mobility, gender, and institution. Men who moved to a top-25 NIH funded institution in their postdoc-to-faculty transition experienced the shortest median time to receiving a R01 award, 4.6 years, in contrast to the median 7.4 years for women working at less well-funded schools who remained at their postdoc institutions. This result is consistent with prior evidence of funding disparities by gender and institution type. The finding that researcher mobility has the largest effect on subsequent funding success is key and novel, and enhances previous work showing the relationship between mobility and ones' access to resources, collaborators, or research objects (e.g., Sugimoto and Larivière, 2023, Equity for Women in Science (Harvard University Press)).

      These results empirically demonstrate that even after receiving a prestigious early career grant, researchers with less mobility belonging to disadvantaged groups at less-resourced institutions continue to experience barriers that delay them from receiving their next major grant. This result has important policy implications aimed at reducing funding disparities - mainly that interventions that focus solely on early career or early stage investigator funding alone will not achieve the desired outcome of improving faculty diversity.

      The authors also highlight two incredible facts: No postdoc at a historically Black college or university (HBCU) has been awarded a K99 since the program's launch. And out of all 2,847 R00 awards given thus far, only two have been made to faculty at HBCUs. Given the track record of HBCUs for improving diversity in STEM contexts, this distribution of awards is a massive oversight that demands attention.

      At no fault of the authors, the analysis is limited to only examining K99 awardees and not those who applied but did not receive the award. This limitation is solely due to the lack of data made publicly available by the NIH. If this data were available, this study would have been able to compare the trajectory of winners versus losers and therefore could potentially quantify the impact of the award itself on later funding success, much like the landmark Bol et al. (2018) paper that followed the careers of winners of an early career grant scheme in the Netherlands. Such an analysis would also provide new insights that would inform policy.

      Although data on applications versus awards for the K99/R00 mechanism are limited, there exists data for applicant race and ethnicity for the 2007-2017 period, which were made available by a Freedom of Information Act request through the now defunct Rescuing Biomedical Research Initiative: https://web.archive.org/web/20180723171128/http://rescuingbiomedicalresearch.org/blog/examining-distribution-k99r00-awards-race/. These results are not presently discussed in the paper, but are highly relevant given the discussion of K99 award impacts on the sociodemographic composition of U.S. biomedical faculty. From 2007 to 2017, the K99 award rate for white applicants was 31.0% compared to 26.7% for Asian applicants and 16.2% for Black applicants. In terms of award totals, these funding rates amount to 1,384 awards to white applicants, 610 to Asian applicants, and 25 to Black applicants for the entire 2007-2017 period. And in terms of R00 awards, or successful faculty transitions: whereas 77.0% of white K99 awardees received an R00 award, the conversion rate for Asian and Black K99 awardees was lower, at 76.1% and 60.0%, respectively. Regarding this K99-to-R00 transition rate, Woitowich et al. found no difference by gender (Table 2). These results are consistent with a growing body of literature that shows that while there have been improvements to equity in funding outcomes by gender, similar improvements for achieving racial equity are lagging.

      The conclusions are well-supported by the data, and limitations of the data and the name-gender matching algorithm are described satisfactorily.

      One aspect that the authors should expand or comment on is the change in the rate of K99 to R00 conversions. Since 2016, while the absolute number of K99 and R00 awards has been increasing, the percentage of R00 conversions appears to be decreasing, especially in 2020 and 2021. This observation is not clearly stated or shown in Figure 1 but is an important point - if the effectiveness of the K99/R00 mechanism for postdoc-to-faculty transitions has been decreasing lately, then something is undermining the purpose of this mechanism. This result bears emphasis and potentially discussion for possible reasons for why this is happening.

      Thank you for these insightful comments. We now calculate a rolling conversion rate for K99 to R00 awards which shows there is not as much of a decline in conversion from K99 to R00 (Fig 1B). We still see a slight decline in 2021 and 2022. 468 K99 awards are from 2020 or later so they may still convert to the R00 phase. Thus it is difficult to draw conclusions about 2021/2022 yet. As more time passes, we may better be able to determine whether or not significant alteration from normal occurred in these years, presumably due to pressures from the Covid-19 pandemic. We also thank you for providing the details of the FOIA request. We have included a discussion of these data in the discussion.

      Reviewer #3 (Public Review):

      The researchers aim add to the literature on faculty career pathways with particular attention to how gender disparities persist in the career and funding opportunities of researchers. The researchers also examine aspects of institutional prestige that can further amplify funding and career disparities. While some factors about individuals' pathways to faculty lines are known, including the prospects of certain K award recipients, the current study provides the only known examination of the K99/R00 awardees and their pathways.

      Strengths:

      The authors establish a clear overview of the institutional locations of K99 and R00 awardees and the pathways for K99-to-R00 researchers and the gendered and institutional patterns of such pathways. For example, there's a clear institutional hierarchy of hiring for K99/R00 researchers that echo previous research on the rigid faculty hiring networks across fields, and a pivotal difference in the time between awards that can impact faculty careers. Moreover, there's regional clusters of hiring in certain parts of the US where multiple research universities are located. Moreover, documenting the pathways of HBCU faculty is an important extension of the Wapman et al. study (among others from that research group), and provides a more nuanced look at the pathways of faculty beyond the oft-discussed high status institutions. (However, there is a need for more refinement in this segment of the analyses as discussed further below.). Also, the authors provide important caveats throughout the manuscript about the study's findings that show careful attention to the complexity of these patterns and attempting to limit misinterpretations of readers.

      Weaknesses:

      The authors reference institutional prestige in relation to some of the findings, but there's no specific measure of institutional prestige included in the analyses. If being identified as a top 25 NIH-funded institution is the proximate measure for prestige in the study, then more justification of how that relates to previous studies' measures of institutional prestige and status are needed to further clarify the interpretations offered in the manuscript.

      The identification of institutional funding disparities impacting HBCUs is an important finding and highlights another aspect of how faculty at these institutions are under resourced and arguably undervalued in their research contributions. However, a lingering question exists: why compare HBCUs with Harvard? What are the theoretical and/or methodological justifications for such comparisons? This comparison lends itself to reifying the status hierarchy of institutions that perpetuate funding and career inequalities at the heart of the current manuscript. If aggregating all HBCU faculty together, then a comparable grouping for comparison is needed, not just one institution. Perhaps looking at the top 25 NIH funded institutions could be one way of providing a clearer comparison. Related to this point is the confusing inclusion of Gallaudet in Figure 6 as it is not an officially identified HBCU. Was this institution also included in the HBCU-related calculations?

      Thank you for this comment. We agree this comparison perpetuates the perception of the prestige hierarchy and is problematic. We now compare all institutions in the top 25 NIH funding category to all HBCUs. Thank you also for identifying our error in mis-coding Gallaudet as an HBCU. We have corrected this in the current version.

      There is a clear connection that is missed in the current iteration of the manuscript derived from the work of Robert Merton and others about cumulative advantages in science and the "Matthew effect." While aspects of this connection are noted in the manuscript such as well-resourced institutions (those with the most NIH funding in this circumstance) hire each others' K99/R00 awardees, elaborating on these connections are important for readers to understand the central processes of how a rigid hierarchy of funding and career opportunities exist around these pathways. The work the authors build on from Daniel Larremore, Aaron Clauset, and their colleagues have also incorporated these important theoretical connections from the sociology of knowledge and science, and it would provide a more interdisciplinary lens and further depth to understanding the faculty career inequalities documented in the current study.

      Reviewer #1 (Recommendations For The Authors):

      Comments to authors:

      1. For the benefit of general reader, it would be informative to mention the amount of annual NIH investment in the k99 funding mechanism in the text (230 awards representing a ~ 230 million US dollars investment).

      Thank you for this suggestion. We have added that this is ~$25 million investment annually.

      1. It is worth noting that some of the observed funding and hiring traits resemble the Matthew effect, discussed in: The Matthew effect in science: https://www.science.org/doi/10.1126/science.159.3810.56

      The Matthew effect in science funding: https://www.pnas.org/doi/10.1073/pnas.1719557115

      It would be of value to cite these for further context for the readers.

      Thank you for this suggestion. We have included these references and briefly discussed the Matthew effect in the first paragraph of the Discussion.

      1. Figs 3, 6 and Fig S1 are hard to read without zooming in due to their format and don't work great within a letter size page but can work if they are also linked to a zoomable web version. It would make sense to have an online navigable/searchable/selectable version. But when the reader zooms out, there are patterns that reflect what points the authors are making (though those could be illustrated differently). These figures are really made for online webapp visualization (such as Shiny in R).

      We agree with this comment and have used the “googleVis()” package in R to put together interactive Sankey diagrams. These can be found at: https://dantyrr.github.io/K99-R00-analysis/ and they are referenced in the manuscript.

      1. The abstract states 85% of awardees get R00 awards. That appears to come from 198/234 (page 6) though it's not explicitly stated, and other ratios give different answers (e.g., 1-304/3475 = 91%) but the 85% seems to be the right one. That first paragraph of the results could be clearer. Also, in the middle of page three the number given is 90% so something is inconsistent. For Figure 1A, given the methodology it should be possible to calculate a rolling conversion rate as "R00(t) / K99(t-1)" (and a similarly-calculated cumulative rate).

      Thank you for catching these errors. These were introduced because there are R00 awardees that did not have extramural K99 awards. These are intramural NIH K99 awardees but there is no public data on these awardees. The correct number is 78% of K99 awardees that transitioned to the R00 phase. We have also calculated the rolling conversion rate which is 89% if you exclude the first 2 years of the program (when the first awardees were within the 2-yr K99 period) and final 2 years (when most recent K99 awardees were still within their first 2 years of the K99 period).

      1. Assuming that 85% is the correct number, is there any information/insight into why ~1/6 of awardees do not continue to R00, which seems high given that only two years passes - that's a lot of awardees not getting R00 positions.

      We are unsure of why these don’t convert. In the revised version of the manuscript, we speculate on this in the 4th paragraph of the discussion:

      The factors that prevented the other 302 K99 awardees from 2019 and earlier unable to convert their K99-R00 grants is cause for concern within our greater academic community. Possible explanations include leaving the biomedical workforce, accepting tenure-track positions or other positions abroad, or by simply not successfully securing a tenable tenure-track offer.

      1. It looks like perhaps a non-zero number of K99s are just one year and not two (e.g., see 2006 in Fig 1A, which should not appear if all 2006 awards were 2 years). What is the typical percentage of K99s not activated for a second year, and is this a sizable % of the 15% not converting to R00?

      This is an interesting question. We didn’t originally look into this and the dataset that we originally downloaded from NIH reporter included a significant number of duplicates for the grants because year 1 of the K99 was listed on its own line and year 2 was listed on a different line. The first step in curating the data was to delete the duplicate values so we only had one entry per person. Unfortunately based on sorting of the data tables, sometimes the year 1 appeared above year 2 and at other times year 2 appeared before year 1. Because none of the data we were interested in are benchmarked to K99 start date, we removed the duplicate values non-specifically. With the dataset we currently have, we would not be able to tell which individuals dropped out (didn’t convert to R00) during the first or second year of the K99. In order to do this we would have to download the raw data from NIH reporter again and curate it again. We may do this in the future but for the purpose of publishing the current manuscript we prefer to focus our efforts on other aspects of the revision.

      1. Further down page 3, the authors state that "men typically experience 2-3% greater funding success rates" is ambiguous, as rates are themselves a percentage. So, is it 2-3% greater as in 23% vs 20%, or is it 2-3% greater as in 20.6% vs 20%? Please clarify the language.

      Thank you for asking for this clarification. We have updated the text here to reflect that we mean “23% vs 20%”.

      1. Metrics such as time to first R01 are compared internally within the study set, which yields interesting insights, but more could be done to benchmark these metrics to non-K99 scientists.

      We agree with the reviewer that this would be ideal; however, we feel that it is out of the scope of this manuscript. We may examine this in the future.

      1. In the text, several times percentages are being referred to when the figures cited do not show percentages. For example (page 6) 'proportion of awardees that stayed at the same institution declined to about 20% where it has remained consistent (Fig 1B)' - Figure 1B does not show percentages, instead the reader would need to work out from the raw numbers what the pattern of percentages might look like. It's fine (great even) to provide the raw numbers, but would be great to show the percentages as well. This happened for multiple graphs.

      Thank you for this comment. We agree that showing the percentage would be beneficial so we have included the percentages in Figure 1 for the conversion rate. We also added a standalone figure panel for the rolling conversion rate for Figure 1. For Figure 4, we have also included a right Y-axis to better indicate the % women.

      1. Figure 4 - putting the %women on a 0-250 scale makes it difficult to see the changes in that curve. Please replot it as a separate graph with an appropriate scale (30-50%? 30-70%?)

      Thank you for this comment. We have made this edit.

      1. Figure 5 - The table appears inconsistent - the Moved/Stayed HR is 1.411 suggesting that moving is better for reducing time to R01, but then Woman/Man is 1.208, so one of these pairs needs to be written in the opposite order to have the table make sense (intended to be listed as 'better/worse'?)

      Thank you for noticing this. In the revised manuscript we have re-run the cox proportional hazard model using the R package “survival” and the function “coxph()”. There were minor differences in the hazard ratios using this package instead of Graphpad prism; however, the R package is much more widely used compared to prism for these types of analysis. We present the new data in the table in Figure 5B in the revised manuscript. We now present the “detrimental” cox hazard value for each variable (i.e. 0.7095 for the mobility [moved/stayed]). We also underlined the variable which was detrimental to receiving an R01 award earlier.

      1. Figure 5's graph appears strange. All the lines have an appearance of stochasticity but are actually multiples of each other, rising exactly in sync. Are these actually modeled lines? If so, why not instead actually draw the lines based on the real data from the real groups depicted, and give the n for each group?

      Thank you for picking this up. The software we originally used to plot the graphs did plot modeled lines instead of the actual data. We have re-run the cox proportional hazard model using the R “survival” package v3.5-5 and the coxph() and survfit() functions. The updated data are in Figure 5 of the revised manuscript.

      1. Table 1 should note that each column sums to 100%.

      This is a good suggestion. In the revised manuscript, we have added a row to the table to indicate the column total N and %.

      1. The authors discuss how k99/R00 grant reviewing process may have to change but the k99 awards also impact the faculty hiring ecosystem as well. There are faculty hiring job ads explicitly requesting or indicating preference towards k99 holders and the results described in this article show that k99 awarding is biased towards particular demographics at select wealthy institutions. Of course, collective/central action is almost always more effective/impactful (especially in shorter time line) than individual elective action. In other words, NIH changing granting patterns would likely work better than encouraging faculty searches to change the weight they give to K99s, because there are many searches and just one NIH. But these are not mutually exclusive and individual action can still help when central action isn't done (if the NIH does not change the k99/R00 grant review process for more inclusive funding and does not increase the number of annual k99 awards hence the annual budget for this award mechanism) and it would be good to have this discussed in the manuscript.

      Thank you for this comment and thoughtful insights. We have included additional discussion on this in the final paragraph of the discussion.

      Reviewer #2 (Recommendations For The Authors):

      Thank you for conducting this important work. On top of some thoughts I have described in the public review (in particular, Chris Pickett's FOIA data on K99/R00 outcomes by applicant race and ethnicity), I only have a few comments for potential improvements to this paper:

      1. The comparison of K99-R00 transition rates by gender was interesting. However, I missed the analysis on the K99-R00 transition rates by institution (by type or by top-25 NIH funded institution versus not). I think this analysis may be buried somewhere in the more nuanced descriptions about faculty flows from one institution type to another, but I was not able to locate it. I wonder if the authors could consider dedicating a subsection to specifically describing the transition rate by institution type, creating a table equivalent to Table 2. This section would probably fit best somewhere before the authors dive into the nuances of self-hires and faculty flows.

      Said another way: As I was reading, I felt I was missing an answer to a simple question - are there differences in conversion rates by institution type (however you define institution type, as an MSI or non MSI, or top-25 NIH funded versus not)?

      Thank you for this suggestion. We have created the table (Table 3 and Table 4) in the revised manuscript. We also made a new figure (now figure 5 in the revised manuscript). This was an interesting way to look at the data and it is very clear that the number of K99 and R00 awards is heavily concentrated within the institutions that have the highest NIH funding. We have added a paragraph in the results in a new section entitled “K99 and R00 awards are concentrated within the highest funded institutions”.

      1. Regarding the comparison of HBCUs and Harvard: this analysis was elucidating, but I am not sure if the framing of this analysis as pertaining to "systematically marginalized groups" - see second sentence in the section, "Faculty doctorates differ between Harvard and HBCUs" is appropriate. While it is true that proportionally more faculty at HBCUs are from marginalized groups, there are also many faculty at HBCUs who are from privileged or advantaged backgrounds (e.g., white, men, educated at elite institutions). It would be more accurate to rephrase the second sentence to say something along the lines of, "We sought to examine the rates of funding for those at historically under-funded institutions." I recommend that the authors comb the paper for any other potential places in the text that conflate systemic marginalization with institution type, and rephrase as needed for accuracy.

      Thank you for pointing this out. This is an extremely important point and we have removed any instances we could find where we conflate systemically marginalized groups with institution type.

      1. I strongly recommend Sugimoto and Larivière (2023)'s new book, Equity for Women in Science, which has an entire section dedicated to previous work investigating how researcher mobility impacts access to resources, collaborations, et cetera (Chapter 5 on Mobility; other chapters on Funding are also relevant but I hone in on Mobility since this is such a key result of this work). I think this chapter would provide significant food-for-thought and background that could strengthen the Discussion section of the paper.

      Thank you for this suggestion. We have added some discussion of mobility in the first paragraph of the Discussion.

      1. I appreciated the subsection headings that described key results (e.g., "Institutions with the most NIH funding tend to hire K99/R00 awardees from other institutions with the most funding"; "K99/R00 awardee self-hires are more common at institutions with the top NIH funding.") This paper structure made it easier for me to ensure that I was getting the intended takeaway from a figure or section. But partway through the paper, the subheadings changed to being less declarative and therefore less informative (e.g., "Gender of K99/R00 awardees"; "Factors influencing K99/R00 awardee future funding success"). It would be great to rephrase these boilerplate subsection headers to be more declarative, like earlier subsection headings. For example, maybe say "Men receive the majority of K99 awards" or "No gender difference in the rate of conversion from K99 to R00" or something to that effect, depending on what result the authors wish to emphasize.

      Thank you for this comment. This is a very good point. We have re-worded the more generic headings in the revised version.

      1. Lastly, I would like to share a question that came to my mind that involves an additional analysis, but is work that is (probably) out-of-the-scope of this paper, but could instead be a separate paper or product. Circling back to Chris Pickett's FOIA-ed data on K99/R00 funding outcomes by applicant race and ethnicity (https://web.archive.org/web/20180723171128/http://rescuingbiomedicalresearch.org/blog/examining-distribution-k99r00-awards-race/): Given that Pickett's numbers provide incontrovertible information on the number of awards to various racial and ethnic groups, I wonder if it is possible to use this information as an "answer key" to (1) check the accuracy of an algorithm that assigns race based on name for applications in your analysis but for 2007-2017 period, and, (2) if the results are reasonable, then examine the dataset with race and ethnicity information. Some recent papers performing large-scale bibliometric analyses have applied such algorithms (e.g., see Kozlowski et al. 2022 PNAS Intersectional inequalities in science) and I wonder if they could be useful, or at least tested, here. Again, Pickett's data would serve as the benchmark to see if the algorithm produces numbers that are consistent with the actual funding outcomes; if they're not wildly off, or perhaps accurate for some groups but not others, there might be something here.

      This is a really insightful comment. We have discussed whether we could assign ethnicity based on an algorithm and check based on Chris Pickett’s data. We agree that it is beyond the scope of this article, but has potential for future research.

      Reviewer #3 (Recommendations For The Authors):

      -In the methods section, it would be helpful to provide an overview of the number of universities, departments, and faculty represented in the data analyzed in the study.

      Thank you for this comment. We agree with the reviewer. We have added a section to the results discussing the distribution of different types of institutions. We also added Table 3 and Table 4 and a new Figure 5 describing these. Regarding the faculty, we have discussed the demographics of the K99 and R00 awardees as best as we could. We do not have data on which faculty laboratories the K99 awardees were in when they received their awards. This information is not available through NIH reporter.

      -I would consider incorporating, or at least citing, Jeff Lockhart and colleagues' recent paper Nature Human Behavior article "Name-based demographic inference and the unequal distribution of misrecognition" about to provide readers with an additional resource and more information about the likelihood of misattribution and general cautionary notes about using gender and race/ethnicity ascription/imputation approaches and tools for research.

      Thank you for bringing this reference to our attention. We have incorporated this into the methods section describing our name-based gender determination.

      -In the next to last sentence under the final paragraph of the methods section, there looks to be a typo as it should read "K99 or R00," not "K00" as currently written.

      Thank you for catching this. We have now corrected it.

      -Clarifying some of the data and measures used are necessary to limit confusion and misinterpretations of the study's findings.

      Thank you. We have significantly updated the revised manuscript and hope that it is more clear.

      -Elaborating more on the gender inequality notable in the Cox proportional hazard model would strengthen the authors' point about persistent gender inequalities within the K99/R00 funding mechanism and pathways. In its current iteration, the findings are somewhat buried by the discussion of institutional differences, but when we look at the findings and the plot associated with the model, we notice that men have more advantages than women in funding and institutional location.

      Thank you for highlighting this. This is true and we have elaborated on the gender inequality in the revised version of the manuscript.

      -Also for the Cox proportional hazard model, I would consider exploring the inclusion of data that can further clarify the biomedical research infrastructure of institutions. For example, in the conversation about the differences between Princeton and other universities including other Ivies, it's important to note that Princeton does not have a medical school. Moreover, other institutions do not operate or are affiliated with a hospital. Adding more data to the model that can better contextualize the research infrastructure around researchers with NIH awards beyond the size of the NIH portfolio can shed light on possibly other important institutional differences that undergird these inequalities.

      Thank you for this comment. We have added additional details about the institutional type; however, to examine whether institutions are attached to a hospital (or are themselves as hospital like MGH etc.) or whether institutions include a medical school may be difficult. We would have to manually code these and then determine whether or not the award recipient was affiliated with a department within that entity or not. We believe that this is a fascinating question but that it is out of the scope of the present manuscript. This is something that we will look into for potential future publications.

      -Throughout the manuscript there's usage of "elite" and "prestigious" that are somewhat ambiguous regarding what exactly they are referring to about institutional characteristics. This is a common issue in the literature, but trying to clarify what these terms specifically mean for the current study and checking for consistent usage with limited interchangeability that can add confusion for readers about what is being referred to would give added strength to the conversation provided by the authors.

      Thank you for this suggestion. Based on these comments and those by the other reviewers, in the revised version of the manuscript, we have limited the use of “elite” and “prestigious” to describe institutions in order not to perpetuate biases toward certain institutions.

      -In relation to the discussion at the end of the manuscript of the longer time to award noted for researchers who stay at the same institutions, another possibility for the disparity could be their reliance for service work (e.g., hiring committees, departmental committees, supporting graduate students through mentoring and/or dissertation committee work, etc.) in their institutions given their knowledge of and experience within it.

      Thank you for this suggestion. We have added 2 sentences to the discussion reflecting this possibility.

      -Engaging with how STEM professional cultures can perpetuate these funding disparities and related hiring and career outcomes could enhance the contributions of the study. In relation to STEM professional cultures, engaging with the work of Mary Blair-Loy and Erin Cech in their recent book, Misconceiving Merit, could help provide additional insights for readers.

      Thank you for these comments. We have incorporated edits to the revised manuscript reflecting the work of Erin Cech and Mary Blair-Loy.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors showed that activation of RelA and Stat3 in hepatocytes of DSS-treated mice induced CYPs and thereby produced primary bile acids, particularly CDCA, which exacerbated intestinal inflammation.

      Strengths:

      This study reveals the RelA/Stat3-dependent gene program in the liver influences intestinal homeostasis.

      Weaknesses:

      Additional evidence will strengthen the conclusion.

      1) In Fig. 1C, photos show that phosphorylation of RelA and Stat3 was induced in only a few hepatocytes. The authors conclude that activation of both RelA and Stat3 induces inflammatory pathways. Therefore, the authors should show that phosphorylation of RelA and Stat3 is induced in the same hepatocytes during DSS treatment.

      Experiments in progress and data will be submitted in the revised manuscript- Co-staining of pRela and pStat3(727) on treated liver sections.

      2) In Fig. 5, the authors treated mice with CDCA intraperitoneally. In this experiment, the concentration of CDCA in the colon of CDCA-treated mice should be shown.

      Experiments in progress and data will be submitted in the revised manuscript - Supplementation of CDCA to knockout animals and estimation of CDCA in the colon of DSS treated and untreated animals.

      Reviewer #2 (Public Review):

      Singh and colleagues employ a methodic approach to reveal the function of the transcription factors Rela and Stat3 in the regulation of the inflammatory response in the intestine.

      Strengths of the manuscript include the focus on the function of these transcription factors in hepatocytes and the discovery of their role in the systemic response to experimental colitis. While the systemic response to induce colitis is appreciated, the cellular and molecular mechanisms that drive such systemic response, especially those involving other organs beyond the intestine are an active area of research. As such, this study contributes to this conceptual advance. Additional strengths are the complementary biochemical and metabolomics approaches to describe the activation of these transcription factors in the liver and their requirement - specifically in hepatocytes - for the production of bile acids in response to colitis.

      Some weaknesses are noted in the presentation of the data, including a lack of comprehensive representation of findings in all conditions and genotypes tested.

      These will be incorporated in the revised version.

      Reviewer #3 (Public Review):

      Summary:

      The authors try to elucidate the molecular mechanisms underlying the intra-organ crosstalks that perpetuate intestinal permeability and inflammation.

      Strengths:

      This study identifies a hepatocyte-specific rela/stat3 network as a potential therapeutic target for intestinal diseases via the gut-liver axis using both murine models and human samples.

      Weaknesses:

      1) The mechanism by which DSS administration induces the activation of the Rela and Stat3 pathways and subsequent modification of the bile acid pathway remains clear. As the authors state, intestinal bacteria are one candidate, and this needs to be clarified. I recommend the authors investigate whether gut sterilization by administration of antibiotics or germ-free condition affects 1. the activation of the Rela and Stat3 pathway in the liver by DSS-treated WT mice and 2. the reduction of colitis in DSS-treated relaΔhepstat3Δhep mice.

      Experiments in progress and data will be submitted in the revised manuscript - Antibiotic treatment for 2/4 weeks, subsequently mice will be treated with DSS and the Rela and Stat3 phosphorylation will be tested using western blotting.

      2) It has not been shown whether DSS administration causes an increase in primary bile acids, represented by CDCA, in the colon of WT mice following activation of the Rela and Stat3 pathways, as demonstrated in Figure 6.

      We have demonstrated a enhanced level of CDCA in the colon following DSS treatment in the wild type animals in figure 4B.

      3) The implications of these results for IBD treatment, especially in what ways they may lead to therapeutic intervention, need to be discussed.

      These will be incorporated in the revised version.

    1. Author Response

      We decided to address the comments of the reviewers with additional experiments and modification of the text with the aim of submitting a new version of the report.

      We would like to underline that the current study is an extension of the work published in eLife (Atze et al., 2021). For this reason, and in agreement with eLife guidelines, we did not repeat all the background information on the method used to identify PG subunit isotopologues using mass spectrometry.

      Reviewer #1 (Public Review):

      Summary:

      Liang et. al., uses a previously devised full isotope labeling of peptidoglycan followed by mass spec to study the kinetics of Lpp tethering to PG and the hydrolysis of this bond by YafK.

      Strengths:

      -The labeling and mass spec analysis technique works very well to discern differentially labelled Tri-KR muropeptide containing new and old Lpp and PG.

      Weaknesses:

      -Only one line of experimentation using mass spec based analysis of labeled PG-Lpp is used to make all conclusions in the paper. The evidence is also not enough to fully deleanate the role of YafK.

      Our approach based on heavy isotope labelling and mass spectrometry has the power to identify and kinetically characterize the specific products of the reaction leading to the tethering of Lpp to PG and the hydrolysis of the corresponding bond. We therefore advocate that our experimentation is sufficient to obtain meaningful results without combining other lines of experimentation.

      -Only one mutant (YafK) is used to make the conclusion.

      The aim of the study is to determine the effect of the hydrolysis of the PG→Lpp bond on the dynamics of the tethering of Lpp to PG. Since YafK is the only enzyme catalyzing this reaction, it is appropriate to compare the wild-type strain to an isogenic yafK deletion mutant. Nonetheless, we carefully consider this comment and will investigate the dynamics of the tethering of Lpp to PG in mutants deficient in the production of the L,D-transpeptidases responsible for tethering Lpp to PG.

      -The paper makes a lot of 'implications' with minimal proof to support their hypothesis. Other lines of experimentations must be added to fully delineate their claims.

      See our answer to the first comment.

      -Time points to analyse Tri-KR isotopologues in Wt (0,10,20,40,60 min) and yafK mutant (0,15, 25, 40, 60 min) are not the same.

      The purpose of the experiments is to compare the kinetics of formation and hydrolysis of the PG→Lpp bond in the WT versus ΔyafK strains. Comparison of the kinetics is therefore possible even though the kinetics are not based on the exact same time points. Nonetheless, we will reproduce the kinetics experiment (see also answers to Reviewer 2) and use the same time points in these additional experiments.

      -Experiments to define physiological role of YafK are also missing

      We will investigate the effect of the yafK deletion on the formation of outer membrane vesicles.

      Reviewer #2 (Public Review):

      Summary:

      The authors of this study have sought to better understand the timing and location of the attachment of the lpp lipoprotein to the peptidoglycan in E. coli, and to determine whether YafK is the hydrolase that cleaves lpp from the peptidoglycan.

      Strengths:

      The method is relatively straightforward. The authors are able to draw some clear conclusions from their results, that lpp molecules get cleaved from the peptidoglycan and then re-attached, and that YafK is important for that cleavage.

      Weaknesses:

      However, the authors make a few other conclusions from their data which are harder to understand the logic of, or to feel confident in based on the existing data. They claim that their 5-time point kinetic data indicates that new lpp is not substantially added to lipidII before it is added to the peptidoglycan, and that instead lpp is attached primarily to old peptidoglycan. I believe that this conclusion comes from the comparison of Fig.s 3A and 3C, where it appears that new lpp is added to old peptidoglycan a few minutes before new lpp is added to new peptidoglycan. However, the very small difference in the timing of this result, the minimal number of time points and the complete lack of any presentation of calculated error in any of the data make this conclusion very tenuous. In addition, the authors conclude that lpp is not significantly attached to septal peptidoglycan. The logic behind this conclusion appears to be based on the same data, but the authors do not provide a quantitative model to support this idea.

      The reviewer is correct in stating that we claim that Lpp is not substantially added to lipid II before incorporation of the disaccharide-pentapeptide subunit into the expanding PG network. This conclusion is based on the paucity of PG-Lpp covalent adducts containing light PG and Lpp moieties at the earliest time points. To substantiate more thoroughly this finding, we will reproduce the kinetic experiments with more early time points. The paucity of the new→new PG-Lpp isotopologues also implies that Lpp might not be extensively tethered to septal peptidoglycan since the latter is assembled from newly synthesized PG (see our previous publication Atze et al. 2021 and references therein). Quantitatively, septal synthesis roughly accounts for one third of the total PG synthesis. It is therefore expected that tethering of Lpp to septal PG would represent one third of the total number of newly synthesized Lpp molecules tethered to PG. We therefore proposed that the paucity of new→new PG- Lpp isotopologues at early time points of the kinetics implies that Lpp is preferentially tethered to the side wall. This is only one of several conclusions that we reach in the present study and we were very careful in the wording of our results.

      -This work will have a moderate impact on the field of research in which the connections between the OM and are being studied in E. coli. Since lpp is not widely conserved in gram negatives, the impact across species is not clear. The authors do not discuss the impact of their work in depth.

      We respectfully disagree with this reviewer’s comment. The work reported in this article for E. coli opens the way to the analysis and comparison of the mechanisms of the tethering of proteins to PG in various bacteria. In addition, we would like to stress that the Gram-negative bacteria that produce Lpp-related proteins and tether them to the PG include other major pathogens such as Pseudomonas aeruginosa (DOI: 10.1128/spectrum.05217-22).

    1. Author Response

      eLife assessment

      The manuscript presents valuable evidence of temporal correlations during specific oscillatory activity between the prefrontal cortex, thalamic nucleus reuniens, and the hippocampus, in naturally sleeping animals. Such correlations represent solid evidence to support the notion that the thalamic nucleus reuniens participates in the hippocampal and prefrontal cortex dialogue subserving memory processes.

      Thank you for your assessment.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Basha and colleagues aim to test whether the thalamic nucleus reuniens can facilitate the hippocampus/prefrontal cortex coupling during sleep. Considering the importance of sleep in memory consolidation, this study is important to understand the functional interaction between these three majorly involved regions. This work suggests that the thalamic nucleus reuniens has a functional role in synchronizing the hippocampus and prefrontal cortex.

      Strengths:

      The authors performed recordings in naturally sleeping cats, and analysed the correlation between the main slow wave sleep oscillatory hallmarks: slow waves, spindles, and hippocampal ripples, and with reuniens' neurons firing. They also associated intracellular recordings to assess the reuniens-prefrontal connectivity, and computational models of large networks in which they determined that the coupling of oscillations is modulated by the strength of hippocampal-thalamic connections.

      Thank you for your positive evaluation.

      Weaknesses:

      The authors' main claim is made on slow waves and spindle coupling, which are recorded both in the prefrontal cortex and surprisingly in reuniens. Known to be generated in the cortex by cortico-thalamic mechanisms, the slow waves and spindles recorded in reuniens show no evidence of local generation in the reuniens, which is not anatomically equipped to generate such activities. Until shown differently, these oscillations recorded in reuniens are most likely volume-conducted from nearby cortices. Therefore, such a caveat is a major obstacle to analysing their correlation (in time or frequency domains) with oscillations in other regions.

      1. We fully agree with the reviewer that reuniens likely does not generate neither slow waves nor spindles. We do not make such claim, which we clearly stated in the discussion (lines 319-324). We propose that Reuniens neurons mediate different forms of activity. In the model, we introduced MD nucleus only because without MD we were unable to generate spindles. While the slow waves and spindles are generated in other thalamocortical regions, the REU neurons show these rhythms due to long-range projections from these regions to REU as has been shown in the model.

      2. Definitely, we cannot exclude some influence of volume conductance on obtained LFP recordings in REU nucleus. However, we show modulation of spiking activity within REU by spindles. Spike modulation cannot be explained by volume conductance but can be explained by either synaptic drive (likely the case here) or some intrinsic neuronal processes (like T-current).

      3. In our REU recordings for spike identification we used tetrode recordings. If slow waves and spindles are volume conducted, then slow waves and spindles recorded with tetrodes should have identical shape. Following reviewer comment, we took these recordings and subtracted one channel from another. The difference in signal during slow waves is in the order 0.1 mV. Considering that the distance between electrodes is in the order of 20 um, such a difference in voltage is major and can only be explained by local extracellular currents, likely due to synaptic activities originating in afferent structures.

      Finally, the choice of the animal model (cats) is the best suited one, as too few data, particularly anatomical ones regarding reuniens connectivity, are available to support functional results.

      1. Thalamus of majority of mammals (definitely primates and carnivores, including cats) contain local circuit interneurons (about 30 % of all neurons). A vast majority of studies in rodents (except LGN nucleus) report either absence or extremally low (i.e. Jager P, Moore G, Calpin P, et al. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife. 2021; 10: e59272.) number of thalamic interneurons. Therefore, studies on other species than rodents are necessary, and bring new information, which is impossible to obtain in rodents.

      2. Cats’ brain is much larger than the brain of mice or rats, therefore, the effects of volume conductance from cortex to REU are much smaller, if not negligible. The distance between REU and closest cortical structure (ectosylvian gyrus) in cats is about 15 mm.

      3. Indeed, there is much less anatomical data on cats as opposed to rodents. This is why, we performed experiments shown in the figure 1. This figure contains functional anatomy data. Antidromic responses show that recorded structure projects to stimulated structure. Orthodromic responses show that stimulated structure projects to recorded structure.

      Reviewer #2 (Public Review):

      Summary:

      The interplay between the medial prefrontal cortex and ventral hippocampal system is critical for many cognitive processes, including memory and its consolidation over time. A prominent idea in recent research is that this relationship is mediated at least in part by the midline nucleus reuniens with respect to consolidation in particular. Whereas the bulk of evidence has focused on neuroanatomy and the effects of temproary or permanent lesions of the nucleus reuniens, the current work examined the electrophysiology of these three structures and how they inter-relate, especially during sleep, which is anticipated to be critical for consolidation. They provide evidence from intercellular recordings of the bi-directional functional connectivity among these structures. There is an emphasis on the interactions between these regions during sleep, especially slow-wave sleep. They provide evidence, in cats, that cortical slow waves precede reuniens slow waves and hippocampal sharp-wave ripples, which may reflect prefrontal control of the timing of thalamic and hippocampal events, They also find evidence that hippocampal sharp wave ripples trigger thalamic firing and precede the onset of reuniens and medial prefrontal cortex spindles. The authors suggest that the effectiveness of bidirectional connections between the reuniens and the (ventral) CA1 is particularly strong during non-rapid eye movement sleep in the cat. This is a very interesting, complex study on a highly topical subject.

      Strengths:

      An excellent array of different electrophysiological techniques and analyses are conducted. The temporal relationships described are novel findings that suggest mechanisms behind the interactions between the key regions of interest. These may be of value for future experimental studies to test more directly their association with memory consolidation.

      We thank this reviewer for very positive evaluation of our study.

      Weaknesses:

      Given the complexity and number of findings provided, clearer explanation(s) and organisation that directed the specific value and importance of different findings would improve the paper. Most readers may then find it easier to follow the specific relevance of key approaches and findings and their emphasis. For example, the fact that bidirectional connections exist in the model system is not new per se. How and why the specific findings add to existing literature would have more impact if this information was addressed more directly in the written text and in the figure legends.

      Thank you for this comment. In the revised version, we will do our best to simplify presentation and more clearly explain our findings.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Activity has effects on the development of neural circuitry during almost any step of differentiation. In particular during specific time periods of circuit development, so-called critical periods (CP), altered neural activity can induce permanent changes in network excitability. In complex neural networks, it is often difficult to pinpoint the specific network components that are permanently altered by activity, and it often remains unclear how activity is integrated during the CP to set mature network excitability. This study combines electrophysiology with pharmacological and optogenetic manipulation in the Drosophila genetic model system to pinpoint the neural substrate that is influenced by altered activity during a critical period (CP) of larval locomotor circuit development. Moreover, it is then tested whether and how different manipulations of synaptic input are integrated during the CP to tune network excitability.

      Strengths:

      Based on previous work, during the CP, network activity is increased by feeding the GABA-AR antagonist PTX. This results in permanent network activity changes, as highly convincingly assayed by a prolonged recovery period following induced seizure and by altered intersegmental locomotor network coordination. This is then used to provide two important findings: First, compelling electro- and optophysiological experiments track the site of network change down to the level of single neurons and pre- versus postsynaptic specializations. In short, increased activity during the CP increases both the magnitude of excitatory and inhibitory synaptic transmission to the aCC motoneuron, but excitation is affected more strongly. This results in altered excitation inhibition ratios. Fine electrophysiology shows that excitatory synapse strengthening occurs postsynaptically. High-quality anatomy shows that dendrite size and numbers of synaptic contacts remain unaltered. It is a major accomplishment to track the tuning of network excitability during the CP down to the physiology of specific synapses to identified neurons.

      Second, additional experiments with single neuron resolution demonstrate that during the CP different forms of activity manipulation are integrated so that opposing manipulations can rescue altered setpoints. This provides novel insight into how developing neural network excitability is tuned, and it indicates that during the CP, training can rescue the effects of hyperactivity.

      Weaknesses:

      There are no major weaknesses to the findings presented, but the molecular cause that underlies increased motoneuron postsynaptic responsiveness as well as the mechanism that integrates different forms of activity during the CP remain unknown. It is clear that addressing these experimentally is beyond the scope of this study, but some discussion about different candidates would be helpful.

      We discuss likely mechanisms that underpin the increase in postsynaptic responsiveness below (Reviewer #1 (Recommendations For The Authors):, point 2). To address possible mechanisms that integrate different forms of activity we now include a new paragraph in the discussion.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors use the tractable Drosophila embryonic/larval motor circuit to determine how manipulations of activity during a critical period (CP) modify the circuit in ways that persist into later developmental stages. Previously, this group demonstrated that manipulations to the aCC/MN-Ib neuron in embryonic stages enhance (or can rescue) susceptibility to seizures at later larval stages. Here, the authors demonstrate that following enhanced excitatory drive (by PTX feeding), the aCC neuron acquires increased sensitivity to cholinergic excitatory transmission, presumably due to increased postsynaptic receptor abundance and/or sensitivity, although this is not clarified. Although locomotion is not altered at later developmental larval stages, the authors suggest there is reduced "robustness" to induced seizures. The second part of the study then goes on to enhance inhibition during the CP in an attempt to counteract the enhanced excitation, and show that many aspects of the CP plasticity are rescued. The authors conclude that "average" E/I activity is integrated during the CP to determine the excitability of the mature locomotor network.

      Overall, this study provides compelling mechanistic insight into how a final motor output neuron changes in response to enhanced excitatory drive during a CP to change the functionality of the circuit at later mature developmental stages. The first part of this study is strong, clearly showing the changes in the aCC neuron that result from enhanced excitatory input. This includes very nice electrophysiology and imaging data that assess synaptic function and structure onto aCC neurons from pre-motor inputs resulting from PTX exposure during development. However, the later experiments in Figures 6 and 7 designed to counteract the CP plasticity are somewhat difficult to interpret. In particular, the specificity of the manipulations of the ch neuron intended to counteract the CP plasticity is unclear, given the complexities of how these changes impact the excitability of all neurons during development. It is clear that CP plasticity is largely rescued in later stages, but it is hard to know if downstream or secondary adaptations may be masking the PTX-induced plasticity normally observed. Nonetheless, this study provides an important advance in our understanding of what parameters change during CPs to calibrate network dynamics at later developmental stages.

      Reviewer #3 (Public Review):

      Summary:

      In Hunter, Coulson et al, the authors seek to expand our understanding of how neural activity during developmental critical periods might control the function of the nervous system later in life. To achieve increased excitation, the authors build on their previous results and apply picrotoxin 17-19 hours after egg-laying, which is a critical period of nervous system development. This early enhancement of excitation leads to multiple effects in third-instar larvae, including prolonged recovery from electroshock, increased synchronization of motor neuron networks, and increased AP firing frequency. Using optogenetics and whole-cell patch clamp electrophysiology, the authors elegantly show that picrotoxin-induced over-excitation leads to increased strength of excitatory inputs and not loss of inhibitory inputs. To enhance inhibition, the authors chose an approach that involved the stimulation of mechanosensory neurons; this counteracts picrotoxin-induced signs of increased excitation. This approach to enhancing inhibition requires further control experiments and validation.

      Strengths:

      • The authors confirm their previous results and show that 17-19 hours after egg laying is a critical period of nervous system development.

      • Using Ca2+/Sr2+ substitutions, the authors demonstrate that synaptic connections between A18a  aCC show increased mEPSP amplitudes. The authors show that this aCC input is what is driving enhanced excitation.

      • The authors demonstrate that the effects of over-excitation attributed to picrotoxin exposure are generalizable and also occur in bss mutant flies.

      Weaknesses:

      • The authors build on their previous work and argue that the critical period (17-19h after egg-laying) is a uniquely sensitive period of development. Have the authors already demonstrated that exposure to picrotoxin at L1 or L2 (and even early L3 if experimentally possible) does not lead to changes in induced seizure at L3? This would further the authors' hypothesis of the uniqueness of the 17-19h AEL period. If this has already been established in prior publications, then this needs to be further explained. I do note in Gaicehllo and Baines (2015) that Fig 2E shows the identification of the 17-19h window.

      This is a pertinent comment. We now have evidence that activity manipulation (in this instance by increasing temperature, which recapitulates the effect of PTX) is not effective at larval stages (L1 to L3) but remains effective between 17-19hrs AEL. This observation forms part of a separate study where we explore the role of circadian activity on embryonic and larval neuronal development. We include a brief statement to address this comment in the revision (first paragraph of Results).

      • Regarding experiments in Fig 2, authors only report changes in AP firing frequency. Can the authors also report other metrics of excitability, including measures of intrinsic excitability with and without picrotoxin exposure (including RMP, Rm)? Was a different amount of current injection needed to evoke stable 5-10 Hz firing with and without picrotoxin? In the representative figure (Fig. 2A), it appears that the baseline firing frequencies are different prior to optogenetic stimulation.

      No differences in RM, Rin or capacitance were observed due to PTX. This is now included in the revision along with an explanation that different levels of current injection were used to measure effects to excitatory vs inhibitory synaptic drive. We did not specifically monitor the amount of current required to maintain stable firing.

      • The ch-related experiments require further controls and explanation. Regarding experiments in Fig 6, what is the effect of ch neuron stimulation alone on time lag and AP frequency? Can the authors further clarify what is known about connections between aCC and ch neurons? It is difficult for this reviewer to conceptualize how enhancing ch-mediated inhibition would worsen seizures. While the cited study (Carreira-Rosario et al 2021) convincingly shows that inhibition of mechanosensory input leads to excessive spontaneous network activity, has it been shown that the converse - stimulation of ch neurons - indeed enhances network inhibition?

      • The interpretation of ch-related experiments is further complicated by the explanation in the Discussion that ch neuron stimulation depolarizes aCC neurons; this seems to undercut the authors' previous explanation that the increased E:I ratio is corrected by enhanced inhibition from ch neurons. The idea that ch neurons are placing neurons in a depolarized refractory state is not substantiated by data in the paper or citations.

      To respond to these two points combined: The reviewer is correct in stating that additional experiments will be required to fully understand mechanism. We believe that cholinergic (excitatory) chordotonal input to aCC may be an important component for setting the rhythm of the locomotor CPG. Indeed, it may be that CPG rhythm is a key factor during the CP. Our observations suggest optogenetic stimulation of Ch neurons alone is sufficient to induce large, ~400-, currents that resemble endogenous spontaneous rhythmic currents (SRCs) associated with CPG activity. SRCs occur with a characteristic frequency of ~1Hz, and we have some unpublished data that suggests it is possible to change this frequency using ch stimulation. This data therefore unifies prior work (Carreira-Rosario et al., 2021 description of a brake) with our own (observation that ch depolarize aCC). However, we do not include this speculation in the Discussion because the experiments we have conducted were pilots. They may be expanded upon and included in future work.

      • In the Discussion, the authors suggest that enhanced proprioception leading to seizures is reminiscent of neurological conditions. This seems to be an oversimplification. Connecting abnormal proprioception to seizures is quite different from connecting abnormal proprioception to disorders of coordination. This should be revised.

      Because this is peripheral to our main study, we have deleted this from the revision.

      Reviewer #1 (Recommendations For The Authors):

      1. Although the authors have to be commended for the scrutiny with which they pinpoint a site of circuit change, it cannot be excluded that other parts of the circuit also undergo adjustments in response to activity manipulation during the CP, e.g. the membrane properties of the interneurons. This is not a problem but should be discussed.

      We agree with this comment and have added the following text to the discussion……’However, we recognise that other parts of the locomotor network may also undergo change due to CP manipulation. The advantage of this system is that most of these elements are now open to specific manipulation through cell-specific genetic drivers’. (Discussion paragraph 3)

      1. It is surprising that there is no discussion of the potential molecular cause for the observed increases in postsynaptic responses to SV release from cholinergic neurons. Given that there are no differences in postsynaptic structure, puncta number etc., the subunit composition of the nAChR seems an obvious guess. What is known about the nAChRs subunit composition on aCC, and when during development do the receptors/different subunits become expressed? A paragraph in the discussion on this issue would be highly relevant to the manuscript.

      Our own work (unpublished) together with a recent paper from the Littleton lab (https://www.sciencedirect.com/science/article/pii/S0896627323005810?via%3Dihub#mmc2) suggests that aCC expresses the majority, if not all, of the 7 alpha and 3 beta subunits that compromise nAChRs. The situation is further complicated by the fact that these receptors are pentameric and are composed of various subunits – the composition significantly altering channel kinetics. Less is known about expression timelines for each receptor subunit, and certainly not in aCC. We already include the following sentence in the results text……’ A change in the frequency of mini excitatory postsynaptic potentials (mEPSPs, a.k.a. minis) would suggest the adaptation is primarily presynaptic (e.g. increased probability of release), whilst a change in distribution and/or amplitude of minis is more consistent with a mechanism acting postsynaptically (e.g. increased or altered receptor subunits).’ Given that we know next to nothing about the nAChR subunit composition in aCC and how this might change due to CP manipulation, we feel it better not to speculate further. To help the reader, we include the following sentence in the discussion……’The precise mechanism contributing to increased mini amplitude remains to be determined, but a plausible scenario may involve change in cholinergic subunit composition.’ (Discussion paragraph 3)

      1. It would be important to provide the p-values for Figures 1B and C, especially because it seems that the inhibition also becomes stronger upon PTX treatment during the CP. There is no statistical testing mentioned, was no test done or was it not significant? It is agreed that the effect size is clearly stronger for the increased excitation than for the increased inhibition, but looking at the data suggests that the effect on excitation is not much more significant than the effect on inhibition.

      The reviewer is referring to Fig 2B&C. P values have been added to both main text and to the figure legend.

      1. Associated with the point above, in the discussion line 407 and below the authors come back to this point and reason that it is surprising that increased excitation is not compensated for by homeostatic mechanisms. It is concluded that homeostatic compensation brings the system back to a setpoint that is defined during the critical period, but the setpoint is set higher in this case. However, an alternative explanation is that GABA administration during the critical period causes the excitation set point to be too high, but this is then partially counteracted in a homeostatic manner by increasing inhibition. If the p-values in Figures 2B and C are rather similar, this might even be the favorable interpretation.

      We believe the reviewer means ‘PTX administration’ and not GABA. This is an interesting idea and one we had not really considered. We address this comment by adding the following text………. ‘Alternatively, whilst the increased inhibition we observe is not statistically significant (p = 0.15), it is close and has a medium effect size (Cohen’s d = 0.78), and thus may be indicative of an attempt by the locomotor network to rebalance activity back towards a genetically pre-determined level. In this regard, it may just not have sufficient range to be able to counter the increase in excitation due to CP manipulation.’ (Discussion paragraph 5)

      1. To asses the magnitudes of A18a-mediated excitation and A31k-mediated inhibition to aCC, changes in aCC firing frequency were measured. For this aCC was injected with current to fire at all. However, the current injections were chosen to cause firing at 5-10 Hz. During a crawling burst, aCC fires well above 100Hz (Kadas et al., 2017). Are the effects also visible at such firing frequencies, or at least across different firing frequencies? I am not asking for additional experiments, but maybe the data are there and can be referred to?

      Spiking in aCC occurs as burst firing, evoked by cholinergic synaptic drive, that lasts for ~300ms and achieving firing frequencies of between 50-100Hz (Kadas et al., 2017 and our own unpublished data). We did not test for effects to excitation or inhibition at these higher frequencies. We now make this explicit in the discussion by adding the following sentence……’The firing frequencies that we imposed (1-10Hz) are also lower than seen during fictive locomotion (Kadas et al., 2017), which shows burst firing lasting for ~300 ms and achieving spike frequencies of up to 100Hz.’ (Discussion paragraph 3)

      1. In Figure 3B some minis are demarked by green arrows and others are not. Were the non-marked ones not included in the analysis, and what were the criteria to mark some and others not? This is particularly important because the cumulative distribution of minis is analyzed in Figure 3D, and this depends crucially on what qualifies as mini and what does not.

      All mini’s are marked by green arrows. The events not marked are not mini’s. Drosophila neurons are small and have an unfavourable dendritic structure for recording minis. Thus, we carefully analyse traces by eye taking only events that show very rapid rise times and slower, exponential decay (the typical mini shape). There are, however, other events which are most likely single/multiple channel openings, which due to filtering are rounded. We now include this same trace, greatly expanded, as Fig S1D to show how we identified minis from non-minis.

      1. The asynchronous release experiment under Sr2+ seems an elegant way to analyze minis upon optogenetic stimulation of an identified presynaptic cholinergic neuron. I suggest being a little more conservative with the term asynchronous release (or replacing it), which is usually the release of many single vesicles that follow AP-mediated synaptic transmission and has nicely been demonstrated at the Drosophila NMJ (Besse et al., 2007). Also, please show the trace in Figure S2A under Sr2+ at a higher pA magnification, it is really hard to see the minis there.

      We have adopted a previously published technique that, in our view, correctly uses the term ‘asynchronous release’. This is not to say that all asynchronous release occurs via the same mechanism. Indeed, the papers that report the technique we use predate Besse 2007. We also expand the trace in Fig S1A (not S2A as wrongly indicated).

      Reviewer #2 (Recommendations For The Authors):

      1. Can the authors explain what they think is the parameter of "activity" being measured in the locomotor circuit (mainly aCC) during the CP? Is the aCC neuron simply summing (perhaps through a proxy like Ca2+) total excitation/inhibition over time during the CP?

      Reviewer #1 also requests that we discuss how activity is ‘measured’ and thus we now include a dedicated paragraph in the discussion to address this concern. Whether aCC sums ‘average’ activity or perhaps is influenced by activity extremes remains uncertain. Our data is consistent with the former but further work is required to validate our conclusion. This work will be published in due course.

      Related to understanding this concept, could the authors' silence activity (using Kir2.1, TNT, or BoNT) from each of the monosynaptic premotor inputs in otherwise wildtype and following PTX exposure to determine how the circuit responds when each of the monosynaptic inputs are silenced? This might inform the role they play in instructing how activity is measured over time during the CP.

      This is an excellent suggestion and, indeed, we have planned such experiments. Silencing specific neurons, whilst manipulating the CP, may well result in more significant network instability due to the setting of multiple (and physiologically inappropriate) homeostatic set points. Such studies go beyond the scope of the present study and thus we prefer not to speculate at this early stage, but to wait for experimental data.

      On a related note, the authors focus on just 2 premotor inputs, presumably due to the availability of specific drivers. But do the authors know how many other inputs (other ACh, Gaba, and glutamate) onto aCC there are, and to what extent do the authors think these are changed in similar or distinct ways? Is it implied that all neurons are similarly altered by the manipulations?

      The connectome details the number and types of neurons that directly contact the aCC motoneuron (Zarin et al., 2019). In terms of cholinergic excitors, the results present in Figure 3 suggest that most (all?) inputs are strengthened following embryonic PTX exposure. However, to conclude this would be highly speculative and thus we refrain from doing so in the manuscript. As other single-neuron driver lines become available, such expts will hopefully be possible.

      1. If PTX treatment does indeed increase CPG synchronicity, shouldn't there be a readout of this effect on larval locomotion? While the speed of locomotion wasn't significantly impacted, perhaps another parameter was altered.

      It is quite possible that other aspects of locomotion are being altered (turning, rearing, etc), but we have not analysed for these more subtle behaviours. Indeed, although not statistically significant, there is a modest reduction in average velocity in larvae derived from PTX-exposed embryos. We see similar reductions in characterised seizure mutants which also show increased synchronicity (Streit et al., 2016).

      1. In Figure 2 and elsewhere, what is the baseline level of AP firing rate in each aCC neuron, before optogenetic stimulation? Is this informative about how PTX exposure alters excitability to begin with, perhaps by changing intrinsic excitability.

      We now include this data in the relevant results section. Interestingly, following exposure to PTX, basal firing was significantly increased in A18a (excitatory premotor) but not in A31k (inhibitory premotor). This reflects our experiment in which we conclude that excitatory drive to aCC is increased relative to inhibitory synaptic drive. Thus, this measure seemingly validates our conclusion that E:I balance has been altered following activity-manipulation during the CP.

      1. Figure 3: The apparent increase in mini amplitude is very small (4.1 vs 4.5 pA); is this physiologically meaningful? Although the authors say the decrease in mini freq is not significant in Fig. 3B after PTX, it does appear rather large, a 40% reduction (5 vs 3 Hz).

      We must be guided by statistics in drawing conclusions, but the reader can interpret our data as they wish. Minis measure quantal release and thus to appreciate how small change can, when combined over the many receptors present, influence cell physiology, one needs to compare spiking activity. We show in Fig 2 that such change is sufficient to increase the excitatory synaptic drive provided by the A18a neuron. The seemingly larger reduction in mini frequency is intriguing and may reflect additional change, but without further experiments we cannot draw firm conclusions.

      1. The clever vibration assay is a good one to induce the activation of mechanosensory neurons, but the specificity of the changes induced by this is difficult to ascertain. One possibility would be to silence the output of the ch neurons (by expression to tetanus or botulinum toxin) and still put the larvae through the same vibration during the CP to see if the rescue is lost.

      We agree that further experiments are required to fully understand underlying mechanism(s). However, we will not be able to complete such follow-on expts in a timely manner and thus, these must wait and form the basis of future studies.

      Minor points 1. Typos - there are numerous areas where it seems a comma is used inappropriately (e.g. lines 28, 69, 77, 104, 348, 365, etc). Suggest line editing the final "version of record".

      Checked and corrected.

      1. It would be of benefit to show the genotypes of the larvae in the various experimental manipulations in the relevant figure legends. This reviewer could not follow exactly how each experiment was done as it was not always clear which driver was being used to express which transgene in what genetic background.

      Done

      Reviewer #3 (Recommendations For The Authors):

      • Please provide sample videos of electroshock-induced seizures (e.g. Fig 1B). Is it clear that the period of immobility after electroshock is a seizure (perhaps defined as hyperactivity originating from the brain)? I acknowledge the Baines group is quite skilled in this technique and perhaps there is a straightforward answer or citation to include.

      We refer the reader to Marley and Baines 2011 which contains videos of seizure activity (first paragraph of Results).

      • Seizures are generated in the brain and travel to the periphery. Do the authors think it is possible that the peripheral manipulations in this manuscript might be controlling the behavioral readout of seizures without affecting hypersynchronous activity in the brain?

      We include the following statement (in methods) to provide our best understanding for how peripheral electroshock induces seizure………. ‘Strong peripheral stimulation likely causes excessive and synchronous synaptic excitation within the CNS resulting in seizure. However, the precise mechanism of this effect remains to be determined.’ Moreover, we feel it unlikely that manipulation of Ch neurons, by vibration, would suppress the effects we observe via peripheral mechanisms. Indeed, the Ch manipulation is limited to the embryonic CP, whilst our seizure assays are recorded many days later at L3.

      • How might enhancement of inhibition lead to worsened seizures? Is the enhancement of ch-related inhibition selectively affecting inhibitory circuits, thereby leading to a net increase in excitation?

      This is a difficult point to respond to at present. Enhanced inhibition per se might similarly disturb the encoding of an appropriate homeostatic setpoint(s) thus leaving a network open to being destabilized by a strong stimulus. Indeed, we have previously shown that increased inhibition during the CP results in the same effect (seizure) as increasing excitation (Giachello and Baines, 2015). Thus, presuming activation of Ch neurons during the CP translates to increased inhibition, then worsened seizure behaviour is a predictable effect. How this is achieved remains unknown and we prefer not to speculate here.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We are pleased that Reviewers 1 and 3 have recommended that the revised paper be published.

      Reviewer #2

      For point A: Their preliminary simulation in 3D looks also nice, although it’s referenced in the discussion but not actually included in manuscript - I would advise adding it even under the mention of preliminary.

      We appreciate the reviewer for liking our 3D results and suggesting to include them in the manuscript. However, these are preliminary results of our ongoing work. We are yet to establish the corresponding viscosity results quantitatively in the 3D simulations. Because the relationship between viscosity and relaxation time is not (always) linear in glass forming systems, we hesitate to report our results for publication. We hope to report the new results as part of a separate work.

      For point B/C: I see some of the points of the authors - although not all of it made it in the main text. I still have some points that puzzle me. For instance, the authors mention that a single value of viscosity (from Green-Kubo) is ”valid for all time scales and amplitude”. This sounds very surprising to me for a complex fluid even at equilibrium: doesn’t it for instance assume linear response (hence small amplitudes)? Fast vs slow probing of a complex medium should also matter (see refs previously mentioned). Related to this, it’s not clear how can self-propulsion not matter if one would shear the system at a finite time scale, given past work on motility-driven unjamming and the mechanism of the authors from facilitation ( wouldn’t shearing at time scales larger vs smaller than the typical time for given cells to spontaneously rearrange from self-propulsion change drastically the effective complex modulus of the system?)

      There might be a slight misunderstanding between the reviewer and us when

      we say ‘single value of viscosity is valid for all time-scales and amplitude’. Let us explain this point more carefully. In our problem, we are studying the dynamics of a many body system which is undergoing Brownian dynamics where the fluctuation-dissipation theorem need not be valid (as the friction and the selfpropulsion noise strength are not related via Fluctuation-Dissipation Theorem). Now, for us to use the concepts of linear-response (which in the present study are the Green-Kubo relations for the transport coefficients in terms of timecorrelations functions), we need to show that the within the simulation time, the system has reached state that could be described using an “equilibrium” probability measure. This is the precise reason we calculated the ergodicity measure, which is a way to show that all the phase-space have been sampled uniformly under the given Brownian dynamics. This suggests (does not prove) that the system has attained a stationary probability measure (i.e, near equilibrium) for the value of self-propulsion used. Now for this value of self-propulsion, the Green-Kubo relations hold for ‘any time-scale of the simulations’ so that we can perform a time average over the trajectories of the particles (which is an alias of the stationary probability measure under the values of self-propulsion used). If we change the amplitude of the self-propulsion, we need to again compute the ergodicity measure and show the stationarity of the probability measure. If the system is ergodic with respect to the new self-propulsion, we can again use Green-Kubo for the simulations. Note that we will definitely get a different value of viscosity under the new self-propulsion as the shear-stresses generated will be different but the Green-Kubo holds. If the system is not ergodic, for the self-propulsion with the new amplitude, we cannot use Green-Kubo relations. Also a priori, one cannot say what is a large/small amplitude of self-propulsion because it has to be compared with the intrinsic energy scale, which is encoded in the energy function, which is difficult to say without explicit calculations.

      This is what we meant when we said, ‘single value of viscosity is valid for all time-scales and amplitude’. It is valid for time-scales of the simulations for a given amplitude of self-propulsion only if the system is ergodic. Note that if the system is not ergodic, then the results of Ref. [14] (in the main text) could be questioned on theoretical grounds, because they were analyzed using 3 the equilibrium rigidity percolation theory. Nevertheless, the authors of Ref. [14] showed that equilibrium phase transition theory works in tissues. For these reasons, we have been, just like the Reviewer, puzzled that equilibrium ideas appear to be valid in the cell system. Additional theoretical work has to be done to clarify these links in tissues. Although this is not the last word, we hope this clarifies our view point.

      For point D: I agree with the simplicity argument, although the added sentence from the discussion “Furthermore, the physics of the dynamics in glass forming materials does not change in systems with and without attractive forces” seems a bit strong given works like Lois et al., PRL, 2008 or Koeze et al, PRL, 2018 finding fundamentally different physics of jamming with or without adhesion. In the two cited papers the authors only consider equilibrium transitions in systems with attraction using computer simulations. Apparently, jamming properties depend on the strength of attraction. There are no attempts to characterize the dynamics, the focus of our work.

      What we meant is that any universal relations, such as the Vogel-FulcherTammann relation, would still be valid. Of course, non-universal quantities such as glass transition temperature Tg or fragility will change. In our case, changing the adhesion strength would change ϕS, and the parameters in the VFT. However, our contention is that the overall finding that increase in viscosity followed by saturation is unlikely to change. We have added some clarifying statements in the manuscript to make this clear.

    1. Author Response

      We would like to thank the reviewers for their encouraging comments and useful feedback, which will enable us to improve the manuscript. We would like to briefly comment on some of the points they raised.

      1. We agree this is a fairly specialized pipeline that has some requirements in terms of photographic setup. We are working hard to make these requirements as minimal as possible. However, given the huge variability in camera angles, backgrounds, arrangement of brain slices, etc., making the pipeline fully automated for unconstrained photos is extremely challenging.

      2. In principle, it should be possible to extend our method to sagittal slices of the cerebellum or axial slices f the brainstem, but this would require collecting and labeling additional training data and thus remains as future work.

      3. Producing accurate surfaces with sparse photographs is a very challenging problem and also remains as future work. We have a conference article producing surfaces on MRI scans with sparse slices (https://doi.org/10.1007/978-3-031-43993-3_4) but we haven’t gotten it to work well on photographs yet.

      4. Another challenging issue that remains as future work is getting the pipeline to work well with nonlinear deformations, e.g., slices of fresh tissue. While incorporating nonlinear deformation into the model is trivial from the coding perspective, we have not been able to make it work at the level of robustness that we achieve with affine transformations. This is because the nonlinear model introduces huge ambiguity in the space of solutions: for example, if one adds identical small nonlinear deformations to every slice, the objective function barely changes.

      5. As we acknowledge in the manuscript, the validation of the reconstruction error (in mm) with synthetic data is indeed optimistic, but informative in the sense that they reflect the trends of the error as a function of slice thickness and its variability (“jitter”).

      6. Since we use a single central coronal slice in the direct evaluation, SAMSEG yields very high Dice scores for large structures with strong contrast (e.g., the lateral ventricles). However, Photo-SynthSeg provides better average results across the board, particularly when considering 3D analysis out of the coronal plane (see qualitative results in Figure 2 and results on volume correlations).

    1. Author Response:

      We would like to thank the editor and the three reviewers for their time and effort taken in reviewing our manuscript and providing constructive feedback. Unfortunately, the first author of this manuscript is no longer involved in academia, and does not wish to further revise this manuscript. However, we agree with the entirety of the feedback and critiques provided by the referees, and feel these points should be taken into account when interpreting our results and conclusions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This work challenges previously published results regarding the presence and abundance of 6mA in the Drosophila genome, as well as the claim that the TET or DMAD enzyme serves as the "eraser" of this DNA methylation mark and its roles in development. This information is needed to clarify these questions in the field. I am less familiar with the biochemical approaches in this work, so my comments are mainly on the genetic analyses. Generally speaking, the methods for fly husbandry and treatment seem to be in accordance with those established in the field.

      Response : We thank the reviewer for his/her work and positive assessment of our manuscript.

      Reviewer #2 (Public Review):

      DNA adenine methylation (6mA) is a rediscovered modification that has been described in a wide range of eukaryotes. However, 6mA presence in eukaryote remains controversial due to the low abundance of its modification in eukaryotic genome. In this manuscript, Boulet et al. re-investigate 6mA presence in drosophila using axenic or conventional fly to avoid contaminants from feeding bacteria. By using these flies, they find that 6mA is rare but present in the drosophila genome by performing LC/MS/MS. They also find that the loss of TET (also known as DMAD) does not impact 6mA levels in drosophila, contrary to previous studies. In addition, the authors find that TET is required for fly development in its enzymatic activity-independent manner.

      The strength of this study is, that compared to previous studies of 6mA in drosophila, the authors employed axenic or conventional fly for 6mA analysis. These fly strains make it possible to analyze 6mA presence in drosophila without bacterial contaminant. Therefore, showing data of 6mA abundance in drosophila by performing LC-MS/MS in this manuscript is more convincing as compared with previous studies. Intriguingly, the authors find that the conserved iron-binding motif required for the catalytic activity of TET is dispensable for its function. This finding could be important to reveal TET function in organisms whose genomic 5mC levels are very low.

      The manuscript in this paper is well written but some aspects of data analysis and discussion need to be clarified and extended.

      1. It is convincing that an increase in 6mA levels is not observed in TETnull presented in Fig1. But it seems 6mA levels are altered in Ax.TET1/2 compared with Ax.TETwt and Ax.TETnull presented in Fig1f (and also WT vs TET1/2 presented in Fig1g). Is it sure that no statistically significant were not observed between Ax.TET1/2 and Ax.TETwt?

      2. The representing data of in vitro demethylation assay presented in Fig.3 is convincing, but it is not well discussed and analyzed why these results are contrary to previous reports (Yao et al., 2018 and Zhang et al., 2015).

      We thank the reviewer for his/her work and positive assessment of our manuscript.

      (1) We repeated our statistical analyses and confirmed that there is no significant difference between wildtype and tet1/2 mutant embryos in axenic conditions (Welch two sample t-test : p=0.075).

      (2) We added some elements in the revised manuscript to discuss the possible reasons for the discrepancies with previous reports. Notably both studies performed the in vitro demethylation assays over a much longer time course and with different sources of recombinant proteins. Zhang et al. purified TET catalytic domain from human cells (HEK293T) and observed around 2.5% of 6mA demethylation at 30 min and less than 25% after 10 hours of incubation as measured by HPLC-MS/MS analyses. Yao et al. incubated recombinant TET catalytic domain with 6mA DNA for 3h and observed a 25% decrease in 6mA levels as measured by dot blot. These results suggest that drosophila TET may oxidize 6mA, but with a much lower affinity than 5mC since with observed a near complete oxidation of 5mC after 1 minute and no decrease in 6mA levels after 30 minutes of reaction (for identical concentrations of substrate and enzyme). It is possible too that the preparation of TET catalytic domain in different systems changes its enzymatic activity, potentially in relation with distinct post-translational modifications. Still, as already mentioned in our manuscript, extensive biochemical analyses of the distant TET homolog from the fungus Coprinopsis cinerea (Mu et al., Nature Chem Biol 2022) strongly argue that TET enzymes do not harbor the residues required to serve as 6mA demethylase.

      Reviewer #1 (Recommendations For The Authors):

      Here are one comment (#1) and a couple of questions (#2-3) that could be addressed in the future, in order to understand the roles of 6mA and TET. Even though #2 and #3 are likely beyond the scope of this paper, #1 should be addressed within the scope of this work and compared with previous reports.

      1. The phenotypic analyses in Fig. 4 should use tet_null/Deficiency and tet_CD/Deficiency for their potential phenotypes. This needs to be addressed since both the tet_null and the tet_CD were generated using the same starting fly line (GFP knock-in). Using a deficiency chromosome and testing these alleles in hemizygotes would be helpful to eliminate any secondary effects due to genetic background issues.

      Thanks for this comment. Actually, tet_null and tet_CD were not generated using the same starting lines. Whereas tet_cd was generated (by CRISPR) using the tet-GFP knock-in line, tet_null was generated by FRT site recombination between two PBac insertions (Delatte et al. 2016). As for tet1 and tet2 (used in allelic combination in Fig 4 J-L), they correspond to two distinct mutant alleles generated by CRISPR (Zhang et al. 2015). We have clarified this in the M&M (page 9).

      1. Regarding the estimated "200 to 400 methylated adenines per haplogenome", is there any insight into where are they located in the genome?

      It is an interesting question and we initially used SMRT-seq sequencing to obtain this kind of information. As it turned out that this technique gives a high level of false positive, we should consider with caution the interpretation of these data and we decided not to include them in the manuscript. Still, we characterized the genomic features of the 6mA detected using stringent criteria (mQV>100, cov>25x in the fusion dataset and triplicated across samples of the same genotype). Both in wild type and tet_null, 6mA were dispersed along each chromosome although few of them were found on chromosome X. In both cases there appeared to be a higher accumulation of 6mAs on the histone locus and the transposon-rich tip of chromosome X, but 6mA density remained below 1.3/kb in other genomic regions. Comparisons with annotated genomic regions indicated that 6mA were enriched in long interspersed nuclear elements (LINEs) and satellite repeats, and depleted in 3’UTR and exons, but there was no significant difference in their repartition between the two genetic contexts. Besides, motif analyses showed similar enrichments in both conditions, with GAG triplet accounting for more than one quarter of all the sites. Whether this reflects the specificity of a putative adenine methylase or a technical bias associated the with SMTR-seq technology remains to be established.

      1. The TET-GFP and TET-CD-GFP knock-in lines give proper nuclear localization and could be used to identify genomic regions bound with full-length TET and TET-CD using anti-GFP for ChIP-seq or CUT&RUN (or CUT&TAG).

      Indeed, this is a line of research that we are following up and will be part of another study. Actually, our ChIP-seq experiments indicate that they bind on the same genomic regions.

      Reviewer #2 (Recommendations For The Authors):

      • I think the major findings of this paper are showing 6mA present in drosophila by using xenic or conventional breeding conditions and finding that TET function independently of its catalytic activity is essential for fly development. The authors could have been more precise in title and abstract to emphasize these findings.

      We have now modified the abstract to try to emphasize these findings.

      • The authors claim that any increase of 6mA levels was not observed in both TETnull and TET1/2, but it is not sufficiently convincing. Because it seems 6mA levels were increased in Ax. tet1/2 embryo as compared with in Ax.wt embryo (Fig.1). In this scenario, 6mA abundance in both TETnull and TET1/2 mutant are supposed to be the same. It would be better to re-analyze data carefully and discuss if 6mA levels were significantly increased in TET1/2, and why 6mA levels are different between TETnull and TET1/2. Additionally, the authors describe that the TET null mutant is pupal lethal, while the TET1/2 survivor is available. The text suggests that TET1/2 could have partial functionality on fly development (Fig.4). It would be better to check whether the N-terminus of TET is expressed in the TET1/2 mutant.

      Indeed, the increase in 6mA levels in Ax. tet1/2 embryo seems consequent (although it is not statistically significant) and no increase was observed in Ax tet_null embryos. Thus, the putative effect on 6mA levels in tet1/2 embryos may not be directly due to the absence of TET function. We now mention in the revised manuscript (page 6) that “the apparent increase in 6mA levels in tet1/2 axenic embryos was not reproduced in tet_null embryos, suggesting that it does not simply reflect the tet loss of function, and that it was not statistically significant”. Besides, we do not have an antibody to check whether the N-terminus of TET is expressed in the tet1/2 mutants, but the western blot published by Zhang et al 2015 shows that tet2 mutation leads to the expression of TET N-terminal domain. This N-terminal domain could have partial TET functionality and/or interfere with the function of other factors (notably those implicated in 6mA metabolism).

      • The authors show that SMRT-seq data did not reveal an increase in 6mA levels in loss of TET (Fig.2). It is convincing that total 6mA abundance was not altered by loss of TET. But were 6mA-accumulated locus/regions observed in WT not altered by loss of TET?

      Please refer to our answer to reviewer 1 on that point.

      • It remains unclear that the TET proteins the authors prepared do not exhibit 6mA demethylate activity in vitro, contrary to what was reported in previous papers (Fig.3). I think the preparation of recombinant proteins may make different results between this and previous papers. Yao et al., 2018 and Zhang et al., 2015 used recombinant proteins purified from Human cells or insect cells, while the author purified them from E.Coli. Additionally, it's mentioned that VK Rao et al., 2020 demonstrated cdk5-mediated phosphorylation of Tet3 increases its in catalytic activity in vitro. These previous reports suggest modification of TET could change demethylase activity. More analysis and discussion are needed to support the conclusion.

      Thanks for your insights. This in an important point and we added the following elements in the revised manuscript to discuss possible reasons for the discrepancies with previous reports (pages 7-8): “Our results contrast with previous reports showing that recombinant drosophila TET demethylates 6mA on dsDNA in vitro (Yao et al. 2018; Zhang et al., 2015a). However, both studies ran much longer reactions (up to 10 hours) and used different sources of recombinant protein (drosophila TET catalytic domain purified from human HEK293T cells). Notably, Zhang et al. (2015a) only found around 2.5% of 6mA demethylation at 30 min and less than 25% after 10 hours of incubation as measured by HPLC-MS/MS analyses. These results suggest that drosophila TET may oxidize 6mA, but with a much lower affinity than 5mC since with observed a near complete oxidation of 5mC after 1 min. and no significant decrease in 6mA levels after 30 min. of reaction (for identical concentrations of substrate and enzyme). It is possible too that the preparation of TET catalytic domain in different systems changes its enzymatic activity, potentially in relation to distinct post-translational modifications.”

    1. Author Response

      1. Reviewer 1 raised the concern that the images shown in the figures seem inconsistent with the quantitative data.

      Our provisional response: The quantitative data are based on many samples and the photographs are just supposed to show illustrations of example data. Because of the volume containing P1a cells, is impossible to present a single confocal image that covers all P1a neurons and would therefore correspond more closely to the quantitative data. We chose to illustrate the quantitative data using single confocal images which contain both Hr38+/GFP+ and Hr38-/GFP+ neurons, to demonstate that we can distinguish clearly which P1a neurons are positive or negative for for Hr38 expression. This can be clarified in the figure legends. If it is imperative to show images(s) to reflect the statistics, we can do that but will need to present multiple confocal images for each condition, which could be messy and confusing.

      1. Reviewer 2 states: "the major weakness is the calibration of the temporal resolution of HI-CatFISH in Figure 4 and Figure Supplement 4. According to Figure Supplement 4C, close to 100% of the Hr38-positive cells are already labeled with the exonic probe 30min post-stimulation, which is not reflected in Figure 4B (there, the expression level of the exonic probe peaks 60min post-induction)”.

      The confusion may arise because we drew the illustration diagram (Fig. 4B) based on the quantitative data in Fig.S4B, which plots the intensity of Hr38 exonic ISH signals, while the reviewer may be comparing the illustration to the time course based on Fig.S4C, which shows the % positive cells, a binary measure. In the illustration (fig.4B), we wrote 'Hr38 expression level', not '%Hr38 positive cells.’ We can clarify this in the figure legend. If the reviewers prefer, we can add a threshold line in the diagram corresponding to the % positive cells at maximum.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      The study provides a complete comparative interactome analysis of α-arrestin in both humans and drosophila. The authors have presented interactomes of six humans and twelve Drosophila α-arrestins using affinity purification/mass spectrometry (AP/MS). The constructed interactomes helped to find α-arrestins binding partners through common protein motifs. The authors have used bioinformatic tools and experimental data in human cells to identify the roles of TXNIP and ARRDC5: TXNIP-HADC2 interaction and ARRDC5-V-type ATPase interaction. The study reveals the PPI network for α-arrestins and examines the functions of α-arrestins in both humans and Drosophila.

      Comments

      I will like to congratulate the authors and the corresponding authors of this manuscript for bringing together such an elaborate study on α-arrestin and conducting a comparative study in drosophila and humans.

      Introduction:

      The introduction provides a rationale behind why the comparison between humans and Drosophila is carried out.

      • Even though this is a research manuscript, including existing literature on similar comparison of α-arrestin from other articles will invite a wide readership.

      Results:

      The results cover all the necessary points concluded from the experiments and computational analysis.

      1) The authors could point out the similarity of the α-arrestin in both humans and Drosophila. While comparing α-arrestin in both humans and Drosophila If percentage homology between α-arrestin of both Drosophila and humans needs to be calculated.

      Thank you for your insightful feedback. As suggested by reviewer, we determined percentage homology of α-arrestin protein sequences from human and Drosophila using Clustal Omega. This homology is now illustrated as a heatmap in revised Figure S5. Please note that only the values with percentage homology of 40% or higher are selectively labeled.

      • Citing the direct connecting genes from the network in the text will invite citations and a wider readership.

      Figures:

      The images are elaborate and well-made.

      2) The authors could use a direct connected gene-gene network that pointing interactions. This can be used by other readers working on the same topic and ensure reproducibility and citations.

      We appreciate your valuable comment. Based on the reviewer’s suggestion, we have developed a new website in which one can navigate the gene-gene networks of α-arrestins. These direct connected gene-gene networks are housed in the network data exchange (NDEx) project. Additionally, we have included gene ontology and protein class details for α-arrestins’ interactors in these set of networks, offering a more comprehensive view of α-arrestins’ interactomes.

      On page 24 lines 15-18, we have revised the manuscript to introduce the newly developed website, as follows.

      “Lastly, to assist the research community, we have made comprehensive α-arrestin interactome maps on our website (big.hanyang.ac.kr/alphaArrestin_PPIN). Researchers can search and download their interactomes of interest as well as access information on potential cellular functions and protein class associated with these interactomes.”  

      3-1) The co-expression interactions represented as figures should reveal interaction among the α-arrestin and other genes. Which are the sub-network genes does the α- arrestin interact to/ with from the sub-network? The arrows are only pointing at the sub-networks. The figures do not reveal their interaction. Kindly reveal the interaction in the figure with the proper nodes in the figure.

      3-2) Figure 2: the network attached in both human and drosophila is well represented. The green lines from α-arrestin indicate the strength of the interaction. Several smaller expression networks are seen. But "α-arrestin" in both organisms seems highly disconnected from all the genes. Connected genes have edges, not arrows. If α-arrestin can be shown connected to these gene-gene networks will help in identifying which genes connect with which gene through α-arrestin. This can be used by other readers working on the same topic and ensure reproducibility and citations.

      Thank you for your valuable comment. In response to the reviewer’s recommendation, we’ve added supplementary figure, Figure S4, which illustrates direct interaction between α-arrestin and protein components of clustered complexes (or sub-networks) in addition to the associations shown between α-arrestins and the clustered complexes in Figure 2. We believe that this newly incorporated information regarding direct protein interactions will invite citations and wider readership as the reviewer pointed out.

      On page 12 line 27 to page 13 line 5, we have revised the manuscript to cite the direction interactions between ARRDC3 and proteins involved in ubiquitination-dependent proteolysis, as follows.

      “While the association of ARRDC3 with these ubiquitination-dependent proteolysis complexes is statistically insignificant, ARRDC3 does interact with individual components of these complexes such as NEDD4, NEDD4L, WWP1, and ITCH (Figure S4A). This suggest their functional relevance in this context, as previously reported in both literatures and databases (Nabhan et al., 2010; Shea et al., 2012; Szklarczyk et al., 2015; Warde-Farley et al., 2010) (Puca & Brou, 2014; Xiao et al., 2018).”

      Direct interaction between α-arrestins and protein components of clustered complexes are illustrated in the newly added figure, Figure S4.

      4-1) Figure 4. The Protein blot image was blurred. Kindly provide a higher-resolution image.

      4-2) Figure 5. B. - The authors can provide images with higher resolution blot images. The bands were not visible.

      We appreciate for valuable comment. Unfortunately, the protein blot image was scanned from the original film and the images we provided in the figure represent the highest resolution that we have obtained to date. Raw, uncropped images are shown in Author response image 1 and 2.

      Author response image 1.

      Raw image of Figure 4B

      Author response image 2.

      Raw image of Figure 5B

      5) Figure: 5. A. - I see non-specific amplifications in the gel images. Are these blotting images? or the gel images that were changed to "Grayscale"? Non-specific amplification may imply that the experiment was not repeated and standardized. Was it gel images or blot images?

      We appreciate your insightful comment. The images in Figure 5A represent western blot bands from co-immunoprecipitation assay for analysis of the interaction between TXNIP and HDAC2 proteins. Since immunoblotting using immunoprecipitates can usually detect some non-specific bands from heavy (~ 50 kDa) and light (~25 kDa) chains of the target antibody or from multiple co-immunoprecipitated proteins, we assume that the vague non-specific bands in Figure 5A might be a heavy chain of TXNIP or HDAC2 antibody or an unclear non-specific band. Because target bands showed strong intensity and very clear pattern compared to the non-specific bands in the co-immunoprecipitation assay, we believe that this data is sufficient to support the interaction of TXNIP with HDAC2. Finally, In the revised Figure 5A, we’ve modified the labeling for different experimental conditions, namely siCon and siTXNIP treatments, and added expected size of proteins (kDa), as shown below.

      6) Figure 5. A. RT-PCR analysis: What was your expected size of the amplifications? the ladder indicated is in KDa. Is that right?

      We appreciate your insightful questions. As mentioned above, Figure 5A shows the blotting images of co-immunoprecipitation analysis, and the ladder indicates the molecular weight (kDa) of protein markers. For clearer interpretation, the expected size of target proteins has been added in Figure 5A in the revised manuscript.

      7) How were the band intensities determined?

      Thank you for your question. For quantification of immunoblot results, the densities of target protein bands were analyzed with Image J, as we described in the Materials and Methods.

      Discussion:

      The authors have utilized and discussed the conclusion they draw from their study. But could highlight more on ARRDCs and why it was selected out of the other arrestins. The authors have provided future work directions associated with their work.

      8) Why were only ARRDCs presented amongst all the arrestin in the main part of the manuscript?

      We’re grateful for your valuable feedback. The reason we focused on α-arrestins was that α-arrestins have been discovered relatively recently, especially when compared to more established visual/ β-arrestin proteins in the same arrestin family but the biological functions of many α-arrestins remain largely unexplored, with notable exceptions in the budding yeast model and a few α-arrestins in mammals and invertebrate species. Most importantly, comparative study highlighting the shared or unique features of α-arrestins is yet to be undertaken. To gain a more comprehensive understanding of these unexplored α-arrestins across multiple species, we’ve centered our research on the ARRDCs within the arrestin protein family.

      On page 21 lines 8-17, we’ve edited the manuscript to emphasize the importance of a comparative study on α-arrestins, as detailed below.

      “According to a phylogenetic analysis of arrestin family proteins, α-arrestins were shown to be ubiquitously conserved from yeast to human (Alvarez, 2008). However, compared to the more established visual/ β-arrestin proteins, α-arrestins have been discovered more recently and much of their molecular mechanisms and functions remain mostly unexplored except for budding yeast model (Zbieralski & Wawrzycka, 2022). Based on the high-confidence interactomes of α-arrestins from human and Drosophila, we identified conserved and specific functions of these α-arrestins. Furthermore, we uncovered molecular functions of newly discovered function of human specific α-arrestins, TXNIP and ARRDC5. We anticipate that the discovery made here will enhance current understanding of α-arrestins.”

      9) The discussion could be elaborated more by utilizing the data.

      We appreciate your insightful feedback. Based on the reviewer’s suggestion, we’ve enhanced the discussion in the manuscript to provide a clearer interpretation of our results. First, we’ve added description of conserved protein complexes significantly associated with α-arrestins, stated on page 22 lines 5-12 and lines 23-26.

      Page 22 lines 5-12: “The integrative map of protein complexes also highlighted both conserved and unique relationships between α-arrestins and diverse functional protein complexes. For instance, protein complexes involved in ubiquitination-dependent proteolysis, proteasome, RNA splicing, and intracellular transport (motor proteins) were prevalently linked with α-arrestins in both human and Drosophila. To more precisely identify conserved PPIs associated with α-arrestins, we undertook ortholog predictions within the α-arrestins’ interactomes. This revealed 58 orthologous interaction groups that were observed to be conserved between human and Drosophila (Figure 3).”

      Page 22 lines 23-26: “Additionally, interaction between α-arrestins and entities like motor proteins, small GTPase, ATP binding proteins, and endosomal trafficking components were identified to be conserved. Further validation of these interactions could unveil molecular mechanisms consistently associated with these cellular functions.”

      Secondly, we’ve added description of role of ARRDC5 in osteoclast maturation, as stated on page 23 lines 22-24.

      “Conversely, depletion of ARRDC5 reduces osteoclast maturation, underscoring the pivotal role of ARRDC5 in osteoclast development and function (Figure S9A and B).”

      Lastly, we examined the association between α-arrestins’ interactomes and human diseases, incorporating our findings into the discussion. The newly introduced figure based on the result is Figure S10.

      On page 24 lines 10-14, we’ve added discussion on Figure S10 as follows.

      “We further explored association between α-arrestins’ interactomes and disease pathways (Figure S10). Notably, the interactomes of α-arrestins in human showed clear links to specific diseases. For instance, ARRDC5 is closely associated with disease resulting from viral infection and cardiovascular conditions. ARRDC2, ARRDC4, and TXNIP share common association with certain neurodegenerative diseases, while ARRDC1 is implicated in cancer.”

      Supplementary figures:

      The authors have a rigorous amount of work added together for the success of this manuscript.

      10) The reference section needs editing before publication. Maybe the arrangement was disturbed during compiling.

      Thank you for your valuable comment. Based on the reviewer’s suggestion, we have rearranged the reference section to enhance its clarity. Below are excerpts from the update reference section in the manuscript.

      “Adenuga, D., & Rahman, I. (2010). Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys, 498(1), 62-73. doi:10.1016/j.abb.2010.04.002

      Adenuga, D., Yao, H., March, T. H., Seagrave, J., & Rahman, I. (2009). Histone Deacetylase 2 Is Phosphorylated, Ubiquitinated, and Degraded by Cigarette Smoke. American Journal of Respiratory Cell and Molecular Biology, 40(4), 464-473. doi:10.1165/rcmb.2008-0255OC

      Akalin, A., Franke, V., Vlahovicek, K., Mason, C. E., & Schubeler, D. (2015). Genomation: a toolkit to summarize, annotate and visualize genomic intervals. Bioinformatics, 31(7), 1127-1129. doi:10.1093/bioinformatics/btu775

      Alvarez, C. E. (2008). On the origins of arrestin and rhodopsin. BMC Evol Biol, 8, 222. doi:10.1186/1471-2148-8-222”

      11) many important references were missing.

      We appreciate and agree with the reviewer’s comment. In response to the reviewer’s recommendation, we’ve thoroughly reviewed the manuscript and below are sections of the manuscript where around 20 new references have been added.

      On page 8 lines 12-14:

      “Utilizing the known affinities between short linear motifs in α-arrestins and protein domains in interactomes(El-Gebali et al., 2019; UniProt Consortium, 2018) “

      On page 8 lines 19-22:

      “One of the most well-known short-linear motifs in α-arrestin is PPxY, which is reported to bind with high affinity to the WW domain found in various proteins, including ubiquitin ligases (Ingham, Gish, & Pawson, 2004; Macias et al., 1996; Sudol, Chen, Bougeret, Einbond, & Bork, 1995)”

      On page 9 lines 3-6:

      “Next, we conducted enrichment analyses of Pfam proteins domains (El-Gebali et al., 2019; Huang da, Sherman, & Lempicki, 2009b) among interactome of each α-arrestin to investigate known and novel protein domains commonly or specifically associated (Figure S3A; Table S5).”

      On page 9 lines 7-10:

      “HECT and C2 domains are well known to be embedded in the E3 ubiquitin ligases such as NEDD4, HECW2, and ITCH along with WW domains (Ingham et al., 2004; Melino et al., 2008; Rotin & Kumar, 2009; Scheffner, Nuber, & Huibregtse, 1995; Weber, Polo, & Maspero, 2019)”

      On page 10 lines 12-16:

      “In fact, the known binding partners, NEDD4, WWP2, WWP1, and ITCH in human and CG42797, Su(dx), Nedd4, Yki, Smurf, and HERC2 in Drosophila, that were detected in our data are related to ubiquitin ligases and protein degradation (C. Chen & Matesic, 2007; Ingham et al., 2004; Y. Kwon et al., 2013; Marin, 2010; Melino et al., 2008; Rotin & Kumar, 2009) (Figure 1E; Figure S2F).”

      On page 13 lines 20-21:

      “Given that α-arrestins are widely conserved in metazoans (Alvarez, 2008; DeWire, Ahn, Lefkowitz, & Shenoy, 2007), “

      On page 14 lines 12-17:

      “The most prominent functional modules shared across both species were the ubiquitin-dependent proteolysis, endosomal trafficking, and small GTPase binding modules, which are in agreement with the well-described functions of α-arrestins in membrane receptor degradation through ubiquitination and vesicle trafficking (Dores et al., 2015; S. O. Han et al., 2013; Y. Kwon et al., 2013; Nabhan et al., 2012; Puca & Brou, 2014; Puca et al., 2013; Shea et al., 2012; Xiao et al., 2018; Zbieralski & Wawrzycka, 2022) (Figure 3).”  

      Reviewer #2

      In this manuscript, the authors present a novel interactome focused on human and fly alpha-arrestin family proteins and demonstrate its application in understanding the functions of these proteins. Initially, the authors employed AP/MS analysis, a popular method for mapping protein-protein interactions (PPIs) by isolating protein complexes. Through rigorous statistical and manual quality control procedures, they established two robust interactomes, consisting of 6 baits and 307 prey proteins for humans, and 12 baits and 467 prey proteins for flies. To gain insights into the gene function, the authors investigated the interactors of alpha-arrestin proteins through various functional analyses, such as gene set enrichment. Furthermore, by comparing the interactors between humans and flies, the authors described both conserved and species-specific functions of the alpha-arrestin proteins. To validate their findings, the authors performed several experimental validations for TXNIP and ARRDC5 using ATAC-seq, siRNA knockdown, and tissue staining assays. The experimental results strongly support the predicted functions of the alpha-arrestin proteins and underscore their importance. `

      I would like to suggest the following analyses to further enhance the study:

      1) It would be valuable if the authors could present a side-by-side comparison of the interactomes of alpha-arrestin proteins, both before and after this study. This visual summary network would demonstrate the extent to which this work expanded the existing interactome, emphasizing the overall contribution of this study to the investigation of the alpha-arrestin protein family.

      We greatly appreciate your insightful feedback. In response to the reviewer’s suggestion, we’ve depicted a network of known PPIs associated with α-arrestins (Figure S2C and D). Furthermore, by comparing our high-confidence PPIs to these known sets, we found that the overlaps are statistically significant and the high-confidence PPIs of α-arrestins broaden the existing interactome (Figure S2E).

      From page 7 line 26 to page 8 line 8, we’ve detailed this side-by-side comparisons of existing interactome and newly discovered high-confidence PPIs of α-arrestins, as outline below.

      “As a result, we successfully identified many known interaction partners of α-arrestins such as NEDD4, WWP2, WWP1, ITCH and TSG101, previously documented in both literatures and PPI databases (Figure S2C-F) (Colland et al., 2004; Dotimas et al., 2016; Draheim et al., 2010; Mellacheruvu et al., 2013; Nabhan et al., 2012; Nishinaka et al., 2004; Puca & Brou, 2014; Szklarczyk et al., 2015; Warde-Farley et al., 2010; Wu et al., 2013). Additionally, we greatly expanded repertoire of PPIs associated with α-arrestins in human and Drosophila, resulting in 390 PPIs between six α-arrestins and 307 prey proteins in human, and 740 PPIs between twelve α-arrestins and 467 prey proteins in Drosophila (Figure S2E). These are subsequently referred to as ‘high-confidence PPIs’ (Table S3).”

      2) While the authors conducted several analyses exploring protein function, there is a need to further explore the implications of the interactome in human diseases. For instance, it would be beneficial to investigate the association of the newly identified interactome members with specific human diseases. Including such investigations would strengthen the link between the interactome and human disease contexts.

      Thank you for your valuable comment. As suggested by the reviewer, we examined the association between α-arrestins’ interactomes and human diseases, incorporating our findings into the discussion. The newly introduced figure based on the result is Figure S10.

      On page 24 lines 10-14, we’ve added discussion on Figure S10 as follows.

      “We further explored association between α-arrestins’ interactomes and disease pathways (Figure S10). Notably, the interactomes of α-arrestins in human showed clear links to specific diseases. For instance, ARRDC5 is closely associated with disease resulting from viral infection and cardiovascular conditions. ARRDC2, ARRDC4, and TXNIP share common association with certain neurodegenerative diseases, while ARRDC1 is implicated in cancer.”

      Reviewer #3:

      Lee, Kyungtae and colleagues have discovered and mapped out alpha-arrestin interactomes in both human and Drosophila through the affinity purification/mass spectrometry and the SAINTexpress method. They found the high confident interactomes, consisting of 390 protein-protein interactions (PPIs) between six human alpha-arrestins and 307 preproteins, as well as 740 PPIs between twelve Drosophila alpha-arrestins and 467 prey proteins. To define and characterize these identified alpha-arrestin interactomes, the team employed a variety of widely recognized bioinformatics tools. These included protein domain enrichment analysis, PANTHER for protein class enrichment, DAVID for subcellular localization analysis, COMPLEAT for the identification of functional complexes, and DIOPT to identify evolutionary conserved interactomes. Through these analyses, they confirmed known alpha-arrestin interactors' role and associated functions such as ubiquitin ligase and protease. Furthermore, they found unexpected biological functions in the newly discovered interactomes, including RNA splicing and helicase, GTPase-activating proteins, ATP synthase. The authors carried out further study into the role of human TXNIP in transcription and epigenetic regulation, as well as the role of ARRDC5 in osteoclast differentiation. This study holds important value as the newly identified alpha-arrestin interactomes are likely aiding functional studies of this group of proteins. Despite the overall support from data for the paper's conclusions, certain elements related to data quantification, interpretation, and presentation demand more detailed explanation and clarification.

      1) In Figure 1B, it is shown that human alpha-arrestins were N-GFP tagged (N-terminal) and Drosophila alpha-arrestins were C-GFP (C-terminal). However, the rationale of why the authors used different tags for human and fly proteins was not explained in the main text and methods.

      We appreciate your valuable comment. Both N- and C-terminally tagged α-arrestins have been used previously. Given that our study aims to increase the repertoire of α-arrestin interacting proteins, where GFP is added might not be a concern. We note that GFP is a relatively bulky tag, and tagging a protein with GFP can potentially abolish the interaction with some of the binding proteins. Follow-up studies utilizing different approaches for detecting protein-protein interactions, such as BioID and yeast two-hybrid, will allow us to build more comprehensive α-arrestin interactomes.

      2) In Figure 2A, there seems to be an error for labeling the GAL4p/GAL80p complex that includes NOTCH2, NOTCH1 and TSC2.

      Thank you for comment. We double-checked COMPLEAT (protein COMPLex Enrichment Analysis Tool) database for the name of protein complex consisting of NOTCH1, NOTCH2, AND TSC2. The database indeed labeled this complex as the “GAL4p/GAL80p complex”. However, given the potential for mis-annotation (since we could not ascertain the relevance of these proteins to the “GAL4p/GAL80p complex”), we chose to exclude this protein complex from the network. The update protein complex network is illustrated in the revised Figure 2A.

      3) In Figure 5, given that knockdown of TXNIP did not affect the levels and nuclear localization of HDAC2, the authors suggest that TXNIP might modulate HDAC2 activity. However, the ChiP assay suggest a different model - TXNIP-HDAC2 interaction might inhibit the chromatin occupancy of HDAC2, reducing histone deacetylation and increasing global chromatin accessibly. The authors need to propose a model consistent with these sets of all data.

      We greatly appreciate your detailed feedback. Our data indicates a global decrease in chromatin accessibility (Figure 4C-G) and a diminished interaction between TXNIP and HDAC2 under depletion of TXNIP (Figure 5A). Additionally, we observed an increased occupancy of HDAC2 and subsequent histone deacetylation at TXNIP-target promoter regions (Figure 5C) without any changes in the HDAC2 expression level (Figure 5A) in TXNIP- knockdown cells. From these observations, we infer that the interaction between TXNIP-HDAC2 might suppress the function of HDAC2, a major gene silencer affecting the formation of condensed or accessible chromatin by deacetylating activity. Although we checked whether TXNIP could induce cytosolic retention of HDAC2 to inhibit nuclear function of HDAC2, TNXIP knockdown did not alter its subcellular localization (Figure 5B).

      To elucidate the mechanism by which TXNIP inhibits the function of HDAC2, we further investigated the effect of TXNIP on the levels of HDAC2 phosphorylation, which is known to be crucial for its deacetylase activity and the formation of transcriptional repressive complex. However, as shown in the Figure S8C and D, the knockdown of TXNIP did not affect the HDAC2 phosphorylation status, as well as the interaction between HDAC2 and other components in NuRD complex in the immunoblotting and co-IP assays, respectively. The results suggest that TXNIP may inhibit the function of HDAC2 independently of these factors.

      Following the reviewer’s suggestion, we carefully provided a proposed model describing the possible role of TXNIP in transcriptional regulation through interaction with HDAC2 and co-repressor complex in Figure S8E.

      Description of these newly added figures can be found in the revised manuscript from page 18 line 7 to 27, as outlined below.

      “HDAC2 typically operates within the mammalian nucleus as part of co-repressor complexes as it lacks ability to bind to DNA directly (Hassig, Fleischer, Billin, Schreiber, & Ayer, 1997). The nucleosome remodeling and deacetylation (NuRD) complex is one of the well-recognized co-repressor complexes that contains HDAC2 (Kelly & Cowley, 2013; Seto & Yoshida, 2014) and we sought to determine if depletion of TXNIP affects interaction between HDAC2 and other components in this NuRD complex. While HDAC2 interacted with MBD3 and MTA1 under normal condition, the interaction between HDAC2 and MBD3 or MTA1 was not affected upon TXNIP depletion (Figure S8C). Next, given that HDAC2 phosphorylation is known to influence its enzymatic activity and stability (Adenuga & Rahman, 2010; Adenuga, Yao, March, Seagrave, & Rahman, 2009; Bahl & Seto, 2021; Tsai & Seto, 2002), we tested if TXNIP depletion alters phosphorylation status of HDAC2. The result indicated, however, that phosphorylation status of HDAC2 does not change upon TXNIP depletion (Figure S8D). In summary, our findings suggest a model where TXNIP plays a role in transcriptional regulation independent of these factors (Figure S8E). When TXNIP is present, it directly interacts with HDAC2, a key component of transcriptional co-repressor complex. This interaction suppresses the HDAC2 ‘s recruitment to target genomic regions, leading to the histone acetylation of target loci possibly through active complex including histone acetyltransferase (HAT). As a result, transcriptional activation of target gene occurs. In contrast, when TXNIP expression is diminished, the interaction between TXNIP and HDAC2 weakens. This restores histone deacetylating activity of HDAC2 in the co-repressor complex, leading to subsequent repression of target gene transcription.”

      4) The authors showed that ectopic expression of ARRDC5 increased osteoclast differentiation and function. Does loss of ARDDC5 lead to defects in osteoclast function and fate determination?

      We appreciate your valuable comment. We have confirmed the endogenous expression of ARRDC5 in osteoclasts and conducted a loss-of-function study using shARRDC5. As determined by qPCR, ARRDC5 was endogenously expressed very low in osteoclasts. Even during RANKL-induced osteoclast differentiation, the CT value (29-31) for ARRDC5 expression was high in osteoclasts compared to the CT value (17-24) for the expression of marker genes Cathepsin K, TRAP, and NFATc1. Even though its endogenous expression was very low, we generated ARRDC5 knockdown cells by infecting BMMs with lentivirus expressing shRNA of ARRDC5 and subsequently differentiated the cells into mature osteoclasts. After five days of differentiation, we observed a significant decrease in the total number of TRAP-positive multinucleated cells (No. of TRAP+ MNCs) in shARRDC5 cells compared to that in the control cells. This result indicates that the loss of ARRDC5 leads to defects in osteoclast differentiation. Result of this loss-of-function study using shARRDC5 is depicted in Figure S9A and B.

      In the revised manuscript, following sentence explaining Figure S9A and B was added on page 19 lines 15-17 as follows.

      “Depletion of ARRDC5 using short hairpin RNA (shRNA) impaired osteoclast differentiation, further affirming its crucial role in this differentiation process (Figure S9A and B).”

      5) From Figure 6D, the authors argued that ARRDC5 overexpression resulted in more V-ATPase signals: however, there is no quantification. Quantification of the confocal images will foster the conclusion. Also, western blots for V-ATPase proteins will provide an alternative way to determine the effects of ARRDC5.

      We appreciate your insightful feedback. As suggested by the reviewer, we quantified V-type ATPase signals using confocal images, which were shown in Figure 6D. The ImageJ program was employed for integrated density measurements, and the integrated density of GFP-GFP overexpressing osteoclasts was set to 1 for relative comparison. The result in the revised Figure 6D revealed a significant increase in V-type ATPase signals in GFP-ARRDC5 overexpressing osteoclasts compared to that in GFP-GFP overexpressing osteoclasts, as outlined below.

      We also agree with the reviewer’s comment that Western blot for V-ATPase proteins will be an alternative way to determine the effects of ARRDC5 in osteoclast differentiation. We have confirmed no different expression of V-type ATPase between GFP-GFP and GFP-ARRDC5 overexpressing osteoclasts using qPCR and western blot analysis. The corresponding western blot result is shown in the revised Figure S9C.

      In addition, the corresponding qPCR that measures the expression level of V-type ATPase between GFP-GFP and GFP-ARRDC5 overexpressing osteoclasts is shown in Author response image 3.

      Author response image 3.

      Moreover, based on the references, the V-type ATPase is localized at the plasma membrane during osteoclast differentiation (Toyomura et al., 2003). Although mRNA and protein expression levels were similar in both cells, localization of V-ATPase in plasma membrane was significantly increased in GFP-ARRDC5 overexpressing osteoclasts compared to that in GFP-GFP osteoclasts, as shown in the revised Figure 6D above.

      6) The results from Figure 6D did not support the authors' argument that ARRDC5 might control the membrane localization of the V-ATPase, as bafilomycin is the V-ATPase inhibitor. ARRDC5 knockdown experiments will help to determine whether ARRDC5 can control the membrane localization of the V-ATPase in osteoclast.

      Thank you for your insightful comment. V-type ATPase has been reported to play an important role in the differentiation and function of osteoclasts (Feng et al., 2009; Qin et al., 2012). Given that various subunits of the V-type ATPase interact with ARRDC5 (Figure 6A), we speculated that ARRDC5 might be involved in the function of this complex and play a role in osteoclast differentiation and function. As answered above, GFP-ARRDC5 overexpressing osteoclasts showed a similar expression level of V-type ATPase to GFP-GFP cells but exhibited increased V-type ATPase signals at the cell membrane compared to those in GFP-GFP cells (Figure 6D). Additionally, co-localization of ARRDC5 and V-type ATPase was observed in the osteoclast membrane (Figure 6D), as predicted by the human ARRDC5-centric PPI network. On the other side, bafilomycin A1, a V-type ATPase inhibitor, not only blocked localization of V-type ATPase to plasma membrane in GFP-ARRDC5 overexpressing osteoclasts, but also reduced ARRDC5 signals (Figure 6D). These results indicate that ARRDC5 plays a role in osteoclast differentiation and function by interacting with V-type ATPase and promoting the localization of V-type ATPase to plasma membrane in osteoclasts.

      V-type ATPase present in osteoclast membrane is important to cell fusion, maturation, and function during osteoclast differentiation (Feng et al., 2009; Qin et al., 2012). GFP-ARRDC5 overexpressing osteoclasts showed a significant increase of V-type ATPase signals in the cell membrane compared to GFP-GFP cells (Figure 6D), and also significantly increased cell fusion (No. of TRAP+ MNCs in Figure 6B) and resorption activity (resorption pit formation in Figure 6C). However, ARRDC5 knockdown in osteoclasts (shARRDC5 cells) showed a significant decrease in No. of TRAP+ MNCs compared to that in the control cells, indicating that the loss of ARRDC5 leads to defects in cell fusion during osteoclast differentiation (Figure S9A and B). As described above, the endogenous expression of ARRDC5 was very low in osteoclasts and could be specifically expressed in a certain timepoint during the differentiation. Therefore, to better understand the interaction with V-type ATPase of ARRDC5 in osteoclasts, ARRDC5 overexpression is more suitable than its knockdown.

      Part of the manuscript on page 19 line 21 to page 20 line 6 was edited to support our statement, as outlined below.

      “The V-type ATPase is localized at the osteoclast plasma membrane (Toyomura et al., 2003) and its localization is important for cell fusion, maturation, and function during osteoclast differentiation (Feng et al., 2009; Qin et al., 2012). Furthermore, its localization is disrupted by bafilomycin A1, which is shown to attenuate the transport of the V-type ATPase to the membrane (Matsumoto & Nakanishi-Matsui, 2019). We analyzed changes in the expression level and localization of V-type ATPase, especially V-type ATPase V1 domain subunit (ATP6V1), in GFP-GFP and GFP-ARRDC5 overexpressing osteoclasts. The level of V-type ATPase expression did not change in osteoclasts regardless of ARRDC5 expression levels (Figure S9C). GFP signals were detected at the cell membrane when GFP-ARRDC5 was overexpressed, indicating that ARRDC5 might also localize to the osteoclast plasma membrane (Figure 6D; Figure S9D). In addition, we detected more V-type ATPase signals at the cell membrane in the GFP-ARRDC5 overexpressing osteoclasts, and ARRDC5 and V-type ATPase were co-localized at the osteoclast membrane (Figure 6D; Figure S9D).”

      7) The tables (excel files) do not have proper names for each table S numbers. Please correct the name of excel files for readers.

      We appreciate your valuable comments. In response to the reviewer’s suggestion, we’ve renamed excel files to more appropriate titles for easier readability. List of renamed tables (excel files) are shown below.

      Table S1. List of α-arrestins from human and Drosophila Table S2. Evaluation sets of α-arrestins PPIs Table S3. Summary tables of SAINTexpress results Table S4. Protein domains and short linear motifs in the α-arrestin interactomes Table S5. Enriched Pfam domains in the α-arrestin interactomes Table S6. Subcellular localizations of α-arrestin interactomes Table S7. Summary of protein complexes and cellular components associated with α-arrestin Table S8. Orthologous relationship of α-arrestin interactomes between human and Drosophila Table S9. Summary of ATAC- and RNA-seq read counts before and after processing Table S10. Differential accessibility of ACRs and gene expression Table S11. Summary of ATAC-seq peaks located in promoters and gene expression level Table S12. List of primer sequences used in this study

      8) http://big.hanyang.ac.kr/alphaArrestin_Fly link does not work. Please fix the link.

      We appreciate your comment. In response to the reviewer’s comment, we have made comprehensive α-arrestin interactome maps on our new website (big.hanyang.ac.kr/alphaArrestin_PPIN) and confirmed that users can be re-directed to networks housed in NDEx.

      Author response image 4.

      Screen shot of the first page of the newly developed website.

      Website address: big.hanyang.ac.kr/‌‌‌‌‌‍‍‍‌‌alphaArrestin_PPIN

      Author response image 5.

      Screen shot of the gene-gene network involving α-arrestin in human.

    1. Author Response

      eLife assessment

      This study presents valuable insights into the epigenetic landscape in adult kidney podocytes. A series of solid experiments demonstrate that genes that are regulated by a key kidney transcription factor, Mafb, are essential for H3K4me3 methylation and recruitment of Wt1 to Nphs1 and Nphs2. This new information provides insights into the potential relationship and coordination of transcription factors in regulating target genes in podocytes in glomerular diseases, although the conclusion that MafB is generally required for Wt1 to bind to podocyte-specific promoters is incomplete and should be extended beyond two or three genes.

      We thank the reviewers and editors for critically reading our manuscript and their insightful comments. We will strive to revise

      Reviewer #1 (Public Review):

      Summary:

      In their manuscript, Massa and colleagues provide a map of the epigenetic landscape in podocytes and analyze the role of the transcription factor MafB in podocyte gene expression. They initially map the histone profile in adult podocytes of the mouse by assaying three different histone methylation marks, namely H3K4me3, H3K4me1, and H3K27me3 for active, primed, and repressed states. They then perform Wt1- and MafB-ChIP-Seq analysis to identify respective direct targets of those transcription factors. Subsequently, they employ an inducible MafB knockout model and show that homozygous knockout mice show proteinuria and FSGS, suggesting an important role for MafB in podocyte homeostasis. RNA-Seq analysis in mice two daysafter tamoxifen application identified direct and indirect MafB target genes. Finally, the authors turn to a constitutive MafB knockout model, carry out anti-H3K4me3 and anti-Wt1 ChIP experiments, and examine selected promoters. One main conclusion from this work is that MafB opens chromatin and thus facilitates the binding of other transcription factors like Wt1 to podocyte-specific genes.

      Strengths and weaknesses:

      The authors have performed an impressive number of experiments and generated very valuable data. They use state-of the-art technology and the data are presented well and are sound. This being said the manuscript contains significant novel data, but also experiments that are already available in some sort. The histone profile in adult mouse podocytes is novel and provides an interesting map of epigenetic marks in this particular cell type. It is maybe not too surprising that podocyte-differentiation genes have different chromatin accessibility than genes associated with general development. The Wt1-ChIP has been done before by several labs but is certainly an important control in this work. The MafB-ChIP is new. The inducible MafB knockout model including the identification of Tcf21 as a target gene has been published by others in 2020 (and is acknowledged by the authors). The experiments addressing the potential role of MafB in chromatin opening are new. I find that the data are certainly compatible with the model put forward by the authors, but they are not compelling.

      We agree that additional data on changes in chromatin accessibility in the absence of Mafb would help to support our model and we will be working towards this data for a revised version of the manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigate the role of MafB in regulating podocyte genes. Mafb is required for podocyte differentiation and maintenance. Mutations of this gene cause FSGS in mice and humans. They profiled MafB binding genome-wide in isolated glomeruli and defined overlap with Wt1. They provide evidence that Mafb is required for Wt1 binding and H3K4me3 methylation at the promoters of two essential podocyte genes, Nphs1 and Nphs2 Understanding how the action of different transcription factors is coordinated to control gene expression - the main goal of this paper - is an important line of investigation.

      While the main conclusion of the paper is supported by their data, the scope is limited. Additional ChIP-seq experiments and data analysis are needed to solidify and extend their conclusions.

      Strengths:

      1) Performing ChIP-seq for histone modifications on isolated podocytes provides valuable cell-type-specific information. Similarly, profiling Mafb and Wt1 in isolated glomeruli provides podocyte-specific binding patterns because these transcription factors (TFs) are not expressed in other cell types in glomeruli. The significant overlap of their Wt1 binding genome-wide withthat of prior published work is reassuring. RNA-seq on isolated podocytes provides the appropriate cell-type specific gene expression data to integrate with ChIP-seq data. Together, the RNA-seq and ChIP-seq data are valuable resources for other investigators examining gene regulation in mouse podocytes.

      2) The phenotype analysis of their FSGS model is convincing and well done.

      3) Testing how Wt1 binding is affected by loss of Mafb provides insight into how these key podocyte TFs may cooperate to regulate genes.

      Weaknesses:

      1) The conclusion that Mafb is required for Wt1 binding and H3K4me3 methylation is based solely on ChIP-PCR at two gene promoters (Nphs1, Nphs2). This result should be validated and extended by ChIP-seq. Mafb and Wt1 binding overlap at more than 200 sites. If their model is correct, it is likely that Wt1 binding would be affected at other genomic sites. This result would add strong support to their model of how Wt1 and Mafb cooperate to regulate genes in podocytes. Moreover, ChIP-seq would define whether the dependence of Wt1 on Mafb is also evident at distal regulatory regions (defined H3K4me1, which is typically found at predicted enhancers).

      We agree that a genome wide analysis of chromatin accessibility would help corroborating our model and will work towards this data for a revised version.

      2) The FSGS model generated by the authors involved conditional deletion of Mafb in podocytes at 8 weeks of age. They found that this resulted in reduced expression of Nphs1 and Nphs2 within 48 hours post-deletion. However, they investigated Wt1 binding and H3K4me3 genomic binding in Mafb homozygous null embryos. While this result provides information about podocyte differentiation, it does not address the maintenance of expression of these essential podocyte genes in the adult kidney. Because post-natal deletion of Mafb led to FSGS and reduced expression of Nphs1/2, ChIP-seq should be performed on the adult conditional mutants in order to provide mechanistic information about the disease.

      The fact that the phenotype in Mafb conditional mutant animals is progressive means that epigenetic changes are also likely to be quantitative. Indeed, Nphs1/Nphs2 are still expressed 6 weeks after Mafb deletion, albeit at lower levels. Since ChIP-seq experiments are not necessarily quantitative, we believe it may be difficult to detect statistically significant changes in this model. We will discuss this limitation of our study in a revised version of our manuscript.

      3) H3K4me1 binds enhancer regions. The authors performed ChIP-seq to profile H3K4me1 in isolated podocytes. However, there was no analysis reported of these results. It would be valuable to determine if Wt1 and Mafb co-localize at predicted enhancers in podocytes and if Wt1 binding is lost at these regions in Mafb mutant glomeruli.

      We well reanalyse the data taking the reviewer’s comments into account.

    1. Author Response

      The following is the authors’ response to the current reviews.

      For the final Version of Record the following changes will be included: 1. Figure 4: Example traces replaced with a more representative simulation run that is more similar to the mean. 2. Methods: Description of the alignment procedure expanded to explain the algorithm steps better.


      The following is the authors’ response to the previous reviews

      We are grateful for the positive and insightful feedback from the editors and reviewers. These constructive comments have contributed to the enhancement of our work. We have revised the manuscript, addressing each of the comments raised. In addition, based on the commentary provided, we have introduced two new figures that offer a deeper understanding of our research findings:

      In new Figure 7, we present the analysis of the difference in onset times between motion and flash responses. This figure also includes a simple illustration elucidating the origins of these differences, highlighting the varying engagement of receptive fields by these stimuli. The data presented in this figure were initially featured in the main text of the original manuscript. Figure 11 offers a detailed comparison of the temporal and spatial characteristics of the synthetic presynaptic signals driving optimal DS in SACs. We compare these characteristics with the properties extracted from recorded glutamate release. Our analysis suggests that the sluggish dynamics observed in biological signals impede effective directional integration. Below are the detailed point-by-point responses to reviewers comments.

      Reviewer #1 (Public Review):

      Summary:

      Direction selectivity (DS) in the visual system is first observed in the radiating dendrites of starburst amacrine cells (SACs). Studies over the last two decades have aimed to understand the mechanisms that underlie these unique properties. Most recently, a 'space-time' model has garnered special attention. This model is based on two fundamental features of the circuit. First, distinct anatomical types of bipolar cells (BCs) are connected to proximal/distal regions of each of the SAC dendritic sectors (Kim et al., 2014). Second, that input across the length of the starburst is kinetically diverse, a hypothesis that has been only recently demonstrated experimentally using iGluSnFR imaging (Srivastava et al., 2022). However, the stark kinetic distinctions, i.e., the sustained/transient nature of BC input to SACs dendrites appear to be present mainly in responses to stationary stimuli. When BC receptive field properties are probed using white noise stimuli, the kinetic differences between BCs are relatively subtle or nonexistent (Gaynes et al., 2022; Strauss et al., 2022, Srivastava et al., 2022). Thus, if and how BCs contribute to direction selectivity driven by moving spots that are commonly used to probe the circuit remains to be clarified. To address this issue, Gaynes et al., combine evolutionary computational modeling (Ankri et al., 2020) with two-photon iGluSnFR imaging to address to what degree BCs contribute to the generation of direction selectivity in the starburst dendrites in response to stimuli that are commonly used experimentally.

      Strengths:

      Combining theoretical models and iGluSnFR imaging is a powerful approach as it first provides a basic intuition on what is required for the generation of robust DS, and then tests the extent to which the experimentally measured BC output meets these requirements.

      The conclusion of this study builds on the previous literature and comprehensively considers the diverse BC receptive field properties that may contribute to DS (e.g. size, lag, rise time, decay time).

      By 'evolving' bipolar inputs to produce robust DS in a model network, these authors provide a sound framework for understanding which kinetic properties could potentially be important for driving downstream DS. They suggest that response delay/decay kinetics, rather than the center/surround dynamics are likely to be most relevant (albeit the latter could generate asymmetric responses to radiating/looming stimuli).

      Weaknesses:

      Finally, these authors report that the experimentally measured BC responses are far from optimal for generating DS. Thus, the BC-based DS mechanism does not appear to explain the robust DS observed experimentally (even with mutual inhibition blocked). Nevertheless, I feel the comprehensive description of BC kinetics and the solid assessment of the extent to which they may shape DS in SAC dendrites, is a significant advancement in the field.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors sought to understand how the receptive fields of bipolar cells contribute to direction selectivity in starburst amacrine cell (SAC) dendrites, their post synaptic partners. In previous literature, this contribution is primarily conceptualized as the 'space-time wiring model', whereby bipolar cells with slow-release kinetics synapse onto proximal dendrites while bipolar cells with faster kinetics synapse more distally, leading to maximal summation of the slow proximal and fast distal depolarizations in response to motion away from the soma. The space-time wiring contribution to SAC direction selectivity has been extensively tested in previous literature using connectomic, functional, and modeling approaches. However, the authors argue that previous functional studies of bipolar cell kinetics have focused on static stimuli, which may not accurately represent the spatiotemporal properties of the bipolar cell receptive field in response to movement. Moreover, this group and others have recently shown that bipolar cell signal processing can change directionally when visual stimuli starts within the receptive field rather than passing through it, complicating the interpretation of moving stimuli that start within a bipolar cell of interest's receptive field (e.g. stimulating only one branch of a SAC or expanding/contracting rings). Thus, the authors choose to focus on modeling and functionally mapping bipolar cell kinetics in response to moving stimuli across the entire SAC dendritic field.

      General Comments

      There have been several studies that have addressed the contribution of space-time wiring to SAC process direction selectivity. The impact of this project is to show that this contribution is limited. First, the optimal solution obtained by the evolutionary algorithm to generate DS processes is slow proximal and fast distal inputs - exactly what is predicted by space-time wiring, which is exactly what is required of the HRC model. Hence, this result seems expected and it's not clear what the alternative hypothesis is. Second, the experimental results based on glutamate imaging to assess the kinetics of glutamate release under conditions of visual stimulation across a large region of retina confirm previous observations but were important to test. Third, by combining their model model with this experiment data, they conclude that even the optimal space-time wiring is not sufficient to explain the SAC process DS. The results of this approach might be more impactful if the authors come to some conclusion as to what factors do determine the direction selectivity of the SAC process since they have argued that all the current models are not sufficient.

      Reviewer #3 (Public Review):

      Gaynes et al. investigated the presynaptic and postsynaptic mechanisms of starburst amacrine cell (SAC) direction selectivity in the mouse retina by computational modeling and glutamate sensitivity (iGluSnFR) imaging methods. Using the SAC computational simulation, the authors initially tested bipolar cell contributions (space-time wiring model, presynaptic effect) and SAC axial resistance contributions (postsynaptic effect) to the SAC DS. Then, the authors conducted two-photon iGluSnFR imaging from SACs to examine the presynaptic glutamate release, and found seven clusters of ON-responding and six clusters of OFF-responding bipolar cells. They were categorized based on their response kinetics: delay, onset phase, decay time, and others. Finally, the authors generated a model consisting of multiple clusters of bipolar cells on proximal and distal SAC dendrites. When the SAC DS was measured using this model, they found that the space-time wiring model accounted for only a fraction of SAC DS.

      The article has many interesting findings, and the data presentation is superb. Strengths and weaknesses are summarized below.

      Major Strengths:

      • The authors utilized solid technology to conduct computational modeling with Neuron software and a machine-learning approach based on evolutionary algorithms. Results are effectively and thoroughly presented.

      • The space-time wiring model was evaluated by changing bipolar cell response properties in the proximal and distal SAC dendrites. Many response parameters in bipolar cells are compared, and DSI was compared in Figure 3.

      • Two-photon microscopy was used to measure the bipolar cell glutamate outputs onto SACs by conducting iGluSnFR imaging. All the data sets, including images and transients, are elegantly presented. The authors analyzed the response based on various parameters, which generated more than several response clusters. The clustering is convincing.

      Major Weaknesses:

      • In Figure 9, the authors generated the bipolar cell cluster alignment based on the space-time wiring model. The space-time wiring model has been proposed based on the EM study that distinct types of bipolar cells synapse on distinct parts of SAC dendrites (Green et al 2016, Kim et al 2014). While this is one of the representative Reicardt models, it is not fully agreed upon in the field (see Stincic et al 2016). While the authors' approach of testing the space-time wiring model and conclusions is interesting and appreciated, the authors could address more issues: mainly two clusters were used to generate the model, but more numbers of clusters should be applied. Although the location of each cluster on the SAC dendrites is unknown, the authors should know the populations of clusters by iGluSnFR experiments. Furthermore, the authors could provide more suggestive mechanisms after declining postsynaptic factors and the space-time wiring model.

      The reviewer is correct that the proximal and more distal SAC dendrites sample from different IPL depths. It should be theoretically possible to match the functional clusters we measured with anatomical bipolar cell identities. However, the stratifications of these cells have significant overlaps (Figure 6-S2), and previous attempts to match iGluSnFR signals to anatomy proved to be challenging (Franke et al., 2017; Gaynes et al., 2022; Matsumoto et al., 2019; Srivastava et al., 2022; Strauss et al., 2022). In the revised version of the manuscript, we reorder the functional clusters based on their transiency, which has a higher correlation to stratification depth (Franke et al., 2017).

      We have examined a scenario in which the presynaptic population comprises more than two clusters. We constructed synthetic models whose input structure was as in Figure 10 (old Figure 9). The optimal configuration for the most proximal and distal inputs closely resembled the proximal-distal model reported in Figure 2. However, we observed a nearly linear variation in the shape of the optimal mid-range inputs, transitioning from proximal-like to distal-like responses as the distance increased. We consider this outcome to be expected based on the structure of the space-time wiring model (Kim et al., 2014). Interestingly, this was not the case with models incorporating physiologically recorded signals. As we show in Figure 10, the most common optimal directional tuning was seen when the bipolar drive consisted of two main populations, both in the ON and OFF SACs.

      Finally, we believe that uncovering additional mechanisms that underlie directional selectivity in SACs represents a crucial challenge for the field to tackle. It is highly probable that achieving directional selectivity involves a complex interplay of multiple factors. This includes the organization of the presynaptic circuit, which we have partially addressed in this study, as well as the influence of postsynaptic active conductances and feedback loops involving other SACs and presynaptic cells. We have expanded the discussion section to describe the possible mechanisms

      • The computational modeling demonstrates intriguing results: SAC dendritic morphology produces dendritic isolation, and a massive input overcomes the dendritic isolation (Figure 1). This modeling seems to be generated by basic dendritic cable properties. However, it has been reported that SAC dendrites express Kv3 and voltage-gated Ca channels. It seems to be that these channels are not incorporated in this model.

      The reviewer's observation is accurate; the model depicted in Figure 1 did not include voltage-gated channels. Our goal was to study electrotonic isolation, which is often measured in passive models. However, while we did not incorporate voltage-gated potassium channels implicitly in the models, our simulations are rooted in previous models that were fine-tuned using empirical data. As potassium channels are expected to influence the experimentally recorded input resistance, we have indirectly accounted for their impact on the interdendritic signal propagation.

      In subsequent model iterations, we have integrated voltage-gated calcium channels into our simulations to assess the signal responsible for driving synaptic release. We show that nonlinear voltage dependence of the calcium currents enhances compartmentalization of the local calcium levels (Figure 2), but did not significantly influence local voltages. Therefore, calcium channels do not appear to have a major impact on electrotonic distances.

      • In Figure 5B, representative traces are shown responding to moving bars in horizontal directions. These did not show different responses to two directional stimuli. It is unclear whether directional preference was not detected, which was shown by Yonehara's group recently (Matsumoto et al 2021). Or that was not investigated as described in the Discussion.

      Indeed, we observed no discernible directional differences in bipolar responses. This phenomenon can be primarily attributed to the fact that the signals originating from the limited number of directionally-tuned release sites are overshadowed by the release from non-directionally-tuned units (Matsumoto et al., 2021). In the revised discussion, we have acknowledged this limitation in our recorded data.

      • The authors found seven ON clusters and six OFF clusters, which are supposed to be bipolar cell terminals. However, bipolar cells reported to provide synaptic inputs are T-7, T-6, and multiple T-5s for ON SACs and T-1, T-2, and T-3s for OFF SACs. The number of types is less than the number of clusters. Potentially, clusters might belong to glutamatergic amacrine cells. These points are not fully discussed.

      We have expanded the discussion section to address these points.

      Reviewer #1 (Recommendations For The Authors):

      Major comments

      1. One of the main conclusions of this study is that diverse BC kinetics contribute to DS (Fig. 9). The authors nicely demonstrate using modeling that the experimentally measured BC kinetics are far from ideal. However, this conclusion is based on a model that almost exclusively relies on just two of the 7 putative BC types (e.g., C1 & C6 for On SACs) placed optimally along the dendrites, which raises two important caveats.

      First, given that other BC types are likely to contribute, the effects of two distinct types are likely to be diluted. Thus, the contribution of BCs to DS is likely to be significantly overestimated. Second, given that the dendrites of 10-30 SACs cross each point in the honeycomb, for the given model to work, each BC would need to connect extremely selectively to SACs. i.e., at a given point, a sustained input must only connect to the more proximal dendritic segments, while avoiding entirely the distal segments of overlapping SAC dendrites. Thus, their model requires extremely selective wiring for which there is no evidence. In fact, there is evidence to the contrary provided by Ding et al. 2016, which showed that the type 7 (proximally biased) and type 5 (distally biased) populations had a substantial overlap (assuming these BC types correspond to kinetically diverse clusters).

      We wholeheartedly concur with the reviewer's perspective that our findings have led to an overestimation of the space-time wiring mechanism's role in SAC directional selectivity (DS). We have adjusted our discussion to emphasize this point. In light of this, our assertion that, even with the most favorable distribution of synaptic inputs, the space-time wiring model still does not fully account for the experimentally-determined directional tuning in SAC, remains valid.

      With regard to the model, it would also be worth comparing results to previous starburst models (e.g., Tukker et al,. 2004), which demonstrated a robust DS in SAC dendrites in the absence of kinetically diverse BC input. Why is the cell-intrinsic DS so weak in the present model?

      We have directly explored this question in the synthetic model (Figures 2, 3). Despite variances in the anatomy of SACs and the distribution of bipolar inputs between our model and the study by (Tukker et al., 2004), we observed remarkably similar levels of directional selectivity index computed from the voltage response (approximately 10%, as shown in Figure 3, 'Identical BCs').

      The primary distinction emerged in the degree of DS amplification mediated by calcium currents. Tukker et al., 2004 reported considerably higher DS compared to our findings, despite employing similar formulations for voltage-gated calcium channel models. The key factor driving this difference lies in the fact that Tukker et al., 2004 measured amplification in proximity to the threshold of calcium channel activation. Even minor variations in membrane potentials near this threshold can lead to substantial differences in calcium influx, especially when outward stimulation results in a calcium spike. In fact, recently, Robert Smith’s group revisited the threshold-based mechanism and concluded that it often fails to produce robust DS due to the heterogeneity of membrane potentials among different terminal dendrites (Wu et al., 2023).

      Our models were trained on five different stimuli velocities whose synaptic integration produced substantially different peak amplitudes. Consequently, the spike threshold alone couldn't reliably distinguish between inward and outward directions across all five conditions, resulting in reduced directional performance in our simulations. In the revised Figure 2-S2 we directly explore the performance of the model with identical BC formulations, trained on a single velocity. We find a dramatic enhancement of calcium DS (DSI=66%) in this condition compared to an identical model trained on 5 velocities (DSI=17%). Thus, evolutionary search is capable of finding the threshold-based solution, but only when the training is performed on a single stimulus velocity (Figure 2-S2). This solution did not generalize to multiple stimuli speeds because, as mentioned above, they lead to different postsynaptic depolarization levels (Figure 2, 2-S1). Instead, the algorithm converged on a set of postsynaptic paraments leading to less nonlinear calcium channel activation over a broader voltage range, ensuring effective DS performance over multiple velocities and heterogenous local potentials (Wu et al., 2023).

      1. Functionally distinct responses across different regions of interest (ROIs) were used to classify BC input. ROIs were obtained from multiple scan fields and retinas and combined into a single dataset for functional clustering. However, the consistency of the cluster distribution across these replicates has not been addressed. As BCs can exhibit different functional properties dependant on the state/health of the retina, it is important to know whether certain functional clusters may originate disproportionately from a particular experiment, as it implies that each cluster does not represent a different stable functional/anatomical population.

      We acknowledge that the state of the preparation can significantly impact signal dynamics. In response to this important consideration, we have incorporated details about the distribution of functional clusters in various experiments in the revised version of the manuscript (Figure 6-S1, and discussion).

      Other comments:

      1. Interpreting iGluSnFR signals: Since the sensor is expressed uniformly across the SAC dendrite, it is important to clarify why the measured F signals are considered synaptic responses. Could spillover contribute to the generation of slower responses?

      We do not believe spillover can explain slower responses because the sluggish clusters often responded significantly (up to 500ms) sooner to moving bars (Figures 6, 6-S3). We acknowledge and discuss this possibility of spillover in the revised discussion.

      1. One striking finding is the diversity of BCs RF sizes (Fig. 7C). Some BCs have RF that are far larger than their dendritic fields. It will be useful to discuss the potential mechanisms that may underlie large BC RFs.

      We changed the discussion to address this question.

      1. SAC DS is independent of dendritic isolation: The authors claim that dendritic isolation does not significantly impact DS. However, while this might be true for a linear motion through the receptive field, dendritic isolation probably matters for more dynamic stimuli. For example, DSGCs can encode rapid changes in objection direction, as DS is computed over fine spatiotemporal scales relying on SACs (Murphy-Baum et al., 2022). This could not occur if SAC dendrites were not well electrically isolated from each other.

      We believe that this is an accurate interpretation of our findings. Our research suggests that dendritic isolation is likely not a critical factor in the space-time wiring mechanism. However, as we demonstrate that this particular mechanism cannot fully account for the observed levels of DS in SACs, other mechanisms must be important. As previous studies revealed that dendritic isolation enhances SAC DS (for example, Koren et al., 2017), dendritic independence likely contributes to directional performance within SACs by these additional mechanisms.

      1. Figure 4: From what I understand, the BC inputs for the electrotonic connectivity variations evolved much like they were for the original model without axial resistance constraints. This makes sense, since stronger/weaker inputs with different temporal kernels may be appropriate for each condition, hence why the axial resistance wasn't changed post-evolution, which would have likely caused the DS to drop. If that is the case, however, I wonder how the best DS attainable by the final model which is constrained to the radial arrangement of realistic BC inputs (without being able to fit much more optimal sustained-transient BCs to their circumstance) would be impacted. Is dendritic isolation similarly unimportant when the pre-synaptic story isn't ideal?

      We have explored this question directly by allowing the evolutionary algorithm to modify the passive and active characteristics of the postsynaptic SAC. Our findings are summarized in Figure 9-S1. We observed a correlation between DSI levels and membrane/axial resistance values in SACs in the evolved models. Better DS was seen with leaky membranes (higher isolation) and lower axial resistance (lower isolation). While it is clear that postsynaptic parameters can influence synaptic integration, they can not fully compensate for inadequate presynaptic dynamics.

      1. BC are shown to contribute to DS across velocities (Fig. 9), which contrasts with results from Srivastava et al., (2022) that showed BCs contribute to DS at lower velocities. However, this discrepancy can easily be explained by the choice of moving spots. In this study, the sweeping bars had dynamic width (targeting pixel dwell time of 2s), which means for higher velocities the bar is significantly wider. While in the previous study, the width of the stimulus was kept constant, and thus for higher velocities, the sustained/transient kinetic differences of BCs are less clear (Srivastava et al., 2021). The author's should discuss this explicitly, to avoid discrepancies between these two studies the reader might otherwise perceive.

      We value reveiwer’s feedback, and in response, we have included an additional paragraph in the manuscript addressing the distinctions in directional tuning that arise from the space-time model presented in this work, in comparison to earlier studies.

      1. Methods: It will be good to discuss how ROIs sizes and positions were selected (pixel correlations?)

      We have included a more detailed explanation of the clustering procedure

      • Lines 614 describe whole-cell patch clamp techniques, which are not used in this study.

      We used patch-clamp to record the waveforms shown in Figure 2-S2

      1. Figure 6: Diversity of Glut responses to motion in ON and OFF SACs, caption typos?

      2. "Left:" without "Right:" to describe the population (I presume) viewed as an image

      3. If there should still be A,C and B,D to group the ON and OFF halves, maybe it should be mentioned in the caption

      Thank you for bringing this to our attention, the legends were fixed.

      References:

      Kim, J. S., Greene, M. J., Zlateski, A., Lee, K., Richardson, M., Turaga, S. C., Purcaro, M., Balkam, M., Robinson, A., Behabadi, B. F., Campos, M., Denk, W., Seung, H. S., & EyeWirers (2014). Space-time wiring specificity supports direction selectivity in the retina. Nature, 509(7500), 331-336. https://doi.org/10.1038/nature13240

      Gaynes, J. A., Budoff, S. A., Grybko, M. J., Hunt, J. B., & Poleg-Polsky, A. (2022). Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells. Nature communications, 13(1), 5575. https://doi.org/10.1038/s41467-022-32761-8

      Murphy-Baum B. and Awatramani GB (2022). Parallel processing in active dendrites during periods of intense spiking activity, Cell Reports, Volume 38, Issue 8,

      Srivastava P, de Rosenroll G., MatsumotoA., Michaels T., Turple Z., Jain V, Sethuramanujam S, Murphy-Baum B, Yonehara K., Awatramani, G.B. (2022) Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells eLife 11:e81533

      Strauss, S., Korympidou, M. M., Ran, Y., Franke, K., Schubert, T., Baden, T., Berens, P., Euler, T., & Vlasits, A. L. (2022). Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nature communications, 13(1), 5574. https://doi.org/10.1038/s41467-022-32762-7

      Tukker, J. J., Taylor, W. R., & Smith, R. G. (2004). Direction selectivity in a model of the starburst amacrine cell. Visual neuroscience, 21(4), 611-625. https://doi.org/10.1017/S0952523804214109

      Reviewer #2 (Recommendations For The Authors):

      Specific comments

      1. Line 223. The statement a model trained on only optimal DSI would produce "negligible absolute differences in calcium levels." is unclear. This needs to be better explained.

      We have modified and expanded this paragraph to make it more clear

      1. Figure 4. The authors use this model to test the hypothesis that space time wiring contribution to SAC process DS requires dendritic isolation. They do this by increasing axial resistance around the soma of their model neuron to isolate each dendrite. They found comparable DS was achieved in both conditions, indicating that the space-time wiring model works in two cases of high and low dendritic isolation. However, to test the claim that "specific details of postsynaptic integration appear to play a lesser role" (line 274) the authors may consider allowing the axial resistance to change as a part of the model rather than testing two extreme states.

      Membrane and axial resistances (and active parameters) were allowed to change as part of model evolution in most simulations presented in this manuscript. We have added the information on the final resistance values reached in the evolved models in Figure 9-S1

      1. Figure 6: To study glutamatergic input onto SACs, the authors expressed iGLuSnFR in ChAT-Cre mice and grouped similarly responding pixels into ROIs and separated these responses into functional groups based on cluster analysis (Figure 5). The alignment of the responses in Figure 6A was confusing. It appears that average responses for each cluster are aligned based on the peak observed during the stimulus in each direction, but it is unclear how they are aligned relative to each other or what this timing is relative to location of the stimulus (i.e. what is time 0 in 6A?).

      The displayed traces represent the average responses to horizontally moving bars (speed = 0.5mm/s), either moving to the left or right. To achieve this alignment, we employed a procedure consistent with our recent publication (Gaynes et al., 2022), which we have now detailed more comprehensively. Here's the step-by-step process we followed:

      1. Determination of half-maximum rise times: Initially, we calculated the half-maximum rise times for glutamate signals recorded in response to left and right-moving stimuli.

      2. Calculation of mean rise time: We then computed the mean of these rise times, which served as a reference point for alignment.

      3. Alignment procedure: To illustrate the alignment process, consider an example. Suppose the 50% rise time for responses to left-moving stimuli occurs at 3 seconds, while responses to right-moving stimuli occur 4 seconds after stimulation onset. This discrepancy suggests that the RF of the cell is shifted to the right from the center of the display (assuming a stimulation speed of 0.5mm/s on the retina, the RF's position would be approximately 250μm from the midline). To align these responses, we shifted both waveforms by 500ms so that their 50% rise times coincided at 3.5 seconds. Importantly, 3.5 seconds would represent the 50% rise time of the ROI if it were precisely centered on the display. This alignment effectively removed any spatial position dependence from the ROIs.

      4. Comparative analysis and clustering: With the responses now aligned, we were able to compare their shapes and subsequently cluster the ROIs into distinct functional clusters. For clarity, we opted to highlight the time of response peak for cluster 1. Although this peak closely aligned with the calculated time of stimulus motion over the center of the 'shifted RF' in the adjusted time frame, it provided a more straightforward comparison between response dynamics.

      1. The authors need to do a better job explaining how their results differ from Ezra-Tsur et al 2021, which uses the same sort of model to address the same question. The discussion about this study (lines 425-435) are based on how a more constrained version of these models work better but they do not directly address the difference in conclusion with regards to mechanisms that contribute to SAC process direction selectivity.

      We have expanded the discussion related to mechanisms that contribute to DS in SACs and discuss the differences between our studies.

      Minor point: The authors use the word "probe" to refer to visual stimulus. This is confusing because "probe" is also used to refer to sensors.

      In the revised manuscript, we minimized the usage of ‘probe’ to reference visual stimuli

      Reviewer #3 (Recommendations For The Authors):

      Writing and figure presentations are excellent.

      Thank you!

      References:

      Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T., & Baden, T. (2017). Inhibition decorrelates visual feature representations in the inner retina. Nature, 542(7642), 439-444. https://doi.org/10.1038/nature21394

      Gaynes, J. A., Budoff, S. A., Grybko, M. J., Hunt, J. B., & Poleg-Polsky, A. (2022). Classical Center-Surround Receptive Fields Facilitate Novel Object Detection in Retinal Bipolar Cells. Nat Commun, 13(1), 5575. https://doi.org/https://doi.org/10.1038/s41467-022-32761-8

      Kim, J. S., Greene, M. J., Zlateski, A., Lee, K., Richardson, M., Turaga, S. C., Purcaro, M., Balkam, M., Robinson, A., Behabadi, B. F., Campos, M., Denk, W., Seung, H. S., & EyeWirers. (2014). Space-time wiring specificity supports direction selectivity in the retina. Nature, 509(7500), 331-336. https://doi.org/10.1038/nature13240

      Matsumoto, A., Agbariah, W., Nolte, S. S., Andrawos, R., Levi, H., Sabbah, S., & Yonehara, K. (2021). Direction selectivity in retinal bipolar cell axon terminals. Neuron. https://doi.org/10.1016/j.neuron.2021.07.008

      Matsumoto, A., Briggman, K. L., & Yonehara, K. (2019). Spatiotemporally Asymmetric Excitation Supports Mammalian Retinal Motion Sensitivity. Curr Biol. https://doi.org/10.1016/j.cub.2019.08.048

      Srivastava, P., de Rosenroll, G., Matsumoto, A., Michaels, T., Turple, Z., Jain, V., Sethuramanujam, S., Murphy-Baum, B. L., Yonehara, K., & Awatramani, G. B. (2022). Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells. Elife, 11. https://doi.org/10.7554/eLife.81533

      Strauss, S., Korympidou, M. M., Ran, Y., Franke, K., Schubert, T., Baden, T., Berens, P., Euler, T., & Vlasits, A. L. (2022). Center-surround interactions underlie bipolar cell motion sensing in the mouse retina. Nat Commun, 13(1), 5574. https://doi.org/https://doi.org/10.1038/s41467-022-32762-7

      Tukker, J. J., Taylor, W. R., & Smith, R. G. (2004). Direction selectivity in a model of the starburst amacrine cell. Vis Neurosci, 21(4), 611-625. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15579224

      Wu, J., Kim, Y. J., Dacey, D. M., Troy, J. B., & Smith, R. G. (2023). Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell. Vis Neurosci, 40, E003. https://doi.org/10.1017/S0952523823000019

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors sought to understand the neurocomputational mechanisms of how acute stress impacts human effortful prosocial behavior. Functional neuroimaging during an effort-based decision task and computational modeling were employed. Two major results are reported: 1) Compared to controls, participants who experienced acute stress were less willing to exert effort for others, with a more prominent effect for those who were more selfish; 2) More stressed participants exhibited an increase in activation in the dorsal anterior cingulate cortex and anterior insula that are critical for self-benefiting behaviour. The authors conclude that their findings have important insights into how acute stress affects prosociality and its associated neural mechanisms.

      Overall, there are several strengths in this well-written manuscript. The experimental design along with acute stress induction procedures were well controlled, the data analyses were reasonable and informative, and the results from the computational modeling provide important insights (e.g., subjective values). Despite these strengths, there were some weaknesses regarding potential confounding factors in both the experimental design and methodological approach, including selective reporting of only some aspects of this complex dataset, and the interpretation of the observations. These detract from from the overall impact of the manuscript. In particular, the stress manipulation and pro-social task are both effortful, raising the possibility that stressed participants were more fatigued. Other concerns include the opportunity for social dynamics or cues during task administration, the baseline social value orientation (SVO) in each group, and the possibility of a different SVO in individuals with selfish tendencies. Finally, Figure 4 should specify whether the depicted prosocial choices include all five levels of effort.

      We thank the reviewer for their comments and suggestions. In our response to the recommendations for the author below, we have dealt with the reviewer’s concerns: - we added additional analysis on the role of fatigue and block effects to the supplementary materials. - we provided further information about the role of social cues and dynamics during task administration. - we showed there were no baseline group differences in SVO angle. - we clarified that Figure 4 refers to the proportion of prosocial choices across all effort levels.

      Reviewer #2 (Public Review):

      This manuscript describes an interesting study assessing the impact of acute stress on neural activity and helping behavior in young, healthy men. Strengths of the study include a combination of neuroimaging and psychoneuroendocrine measures, as well as computational modeling of prosocial behavior. Weaknesses include complex, difficult to understand 3-way interactions that the sample size may not be large enough to reliably test. Nonetheless, the study and results provide useful information for researchers seeking to better understand the influence of stress on the neural bases of complex behavior.

      The stressor was effective at eliciting physiological and psychological stress responses as shown in Figure 2.

      Higher perceived stress in more selfish participants (lower social value orientation (SVO) angle) was associated with lower prosocial responding (Figure 4). How can we reconcile this finding with the finding (presented on page 15) that those with a more prosocial SVO showed a significant decline in dACC activation to subjective value at increasing levels of perceived stress? This seems contrary to the behavioral response.

      A larger issue with the study is that the power analysis presented on page 23 is based on a 2 (between: stress v. control) by 2 (within: self v. other) design. Most of the reported findings come from analyses of 3-way interactions. How can the readers have confidence in the reliability of results from 3-way interaction analyses, which were not powered to detect such effects?

      We thank the reviewer for their comments and suggestions. When considering the influence of dACC activation on the behavioural response (i.e., proportion of prosocial choices), it is important to consider the difference in activation to SVself relative to SVother: - The difference in activation to SVself relative to SVother negatively predicted the proportion of prosocial choices, so more activation to SVself relative to SVother predicted a lower proportion of prosocial choices. - Similarly, SVO angle negatively predicted the difference in activation to SVself relative to SVother, so more activation to SVself relative to SVother was related to a lower (more individualistic) SVO angle (this is shown by the interaction between Recipient and SVO angle in Figure 4; right panel). In both cases, differences in prosociality (i.e. SVO angle or the proportion of prosocial choices) were related to differences in dACC activation to SVself relative to SVother.

      Thus, we agree the finding that those participants with a more prosocial SVO showed a significant decline in dACC activation to SV overall (across SVself and SVother) at increasing levels of perceived stress is difficult to interpret. We expected a three-way interaction between Recipient, SVO angle and Perceived Stress to mirror the behavioural results, rather than a two-way interaction between SVO angle and Perceived Stress. We have now acknowledged this in the Discussion, whilst also highlighting the work of Schulreich et al. (2022) who report a related finding.

      We have now added the following section to the results:

      “When linking activation difference in dACC and AI to behaviour, we found that – independent of the stress manipulation – the difference in activation between SVself and SVother in the dACC predicted the proportion of prosocial choices. Thus, greater activation to SVself relative to SVother predicted a lower proportion of prosocial choices (B=-0.704, SE=0.339, P=0.041). This relationship was not present in the AI (B=-0.423, SE=0.332, P=0.205).”

      And we have added the following to the discussion:

      “Additionally, participants with a more prosocial SVO showed reduced responses in the dACC to SV (across both self and other trials) at greater levels of perceived stress (Figure 4; middle panel). This suggests that more prosocial individuals may become less sensitive to SV overall following stress, whilst the responses of more individualistic participants to SV do not change under stress. Trying to link these activation differences to changes in effortful prosocial behaviour is difficult given the absence of the three-way interaction between SVO angle, Perceived Stress and Recipient, which would have mirrored the behavioural results. Overall, differences in activation between SVself and SVother in the dACC predicted the proportion of prosocial choices, so greater activation to SVself relative to SVother predicted a lower proportion of prosocial choices. Thus, it remains unclear how activation differences to SV across both self trials and other trials relates to changes in prosocial behaviour under stress. Schulreich et al. (2022) found that a decline in charitable donations following increases in cortisol in high mentalisers was related to a reduced representation of value for donations in the right dlPFC. Whilst there are important differences between the present study and Schulriech et al. (2022), such as the way in which prosocial behaviour was measured, both studies suggest that existing differences in social preferences and abilities (i.e., mentalising, SVO) can have a detrimental effect on the neural representations of value following acute stress. Establishing how these changes in neural representations of value impact behaviour following acute stress is a challenge for future work.”

      Concerning the power calculation, we have acknowledged this as a limitation in the discussion.

      “Our power calculation was based on a 2 x 2 design (Group x Recipient), however, several of our key findings involved three-way interactions (e.g. between Group, Recipient and Effort). Thus, future studies should aim to replicate our effects with larger sample sizes to ensure the robustness of these effects.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      1. The authors employed an integrative approach on inducing acute stress by combining the strengths of MIST and TSST, as shown by a robust stress response in cortisol. However, some concerns regarding the stress manipulation and the effort-based task need to be addressed. The authors justified the order of deployment as necessary to maintain stress responses throughout the scanning period. It is unclear whether and how potential order effects were controlled, and whether the effort-task performance in the front and back of the line might have different effects in a 90-minute experiment.

      Moreover, the stress manipulation itself involved a complex mental arithmetic task, which might have influenced participants' willingness to exert effort for others in the prosocial task. As shown in Figure 3, the proportion of participants working decreases as the effort levels increase for both self and other conditions in the stress and control groups. It is thus possible that participants could consider the prosocial task as an opportunity to take a break from the demanding arithmetic task. It would be helpful to present results from the different runs, particularly for the pre and post three runs.

      We thank the reviewer for highlighting this potential issue. We have added several analyses to the supplementary analysis to explore potential block effects and fatigue effects. Here we provide a summary of the key findings.

      Firstly, we investigated participants’ ratings of the effort levels, which they experienced immediately before and after the study, to investigate potential fatigue effects. We found that following the experiment compared to the before, participants in the stress group rated squeezing to the required effort levels as more physically demanding compared to the control group (p=.037). There were no group differences in how much more effort they reported exerting (p=.824) or how uncomfortable it was (p=.351) compared to before the experiment. Thus, overall the stress group found it more physically demanding to squeeze to the effort levels following the experiment. Crucially, however, increases in how physically demanding participants found it to squeeze to the required effort levels were not correlated with the number of effortful choices in the Self and Other condition in either group (all Ps >0.4). This suggests that whilst stressed participants rated squeezing to the required effort level as more physically demanding following the task relative to before, this was not related to how often participants exerted effort for self or other rewards.

      Secondly, we investigated potential block effects. We repeated the mixed effects logistic regression reported in the manuscript but included the interaction between the factors Group, Recipient and Block (1:6) in the model. Although both groups showed a decline in the number of effortful choices during the experiment, the two-way interaction between Group and Block (p=.188) nor the three-way interaction between Group, Recipient and Block were significant (p=.138). This shows that whilst there was a decline in the number of effortful choices throughout the experiment, this was not more pronounced in the stress group, nor was it more pronounced in the stress group for self relative to other effortful choices compared to the control group. Additionally, the key three-way interaction between Group, Recipient and Block was unaffected when controlling for potential block effects. We now also plot the data by block in the supplementary materials (Figure S3).

      Please see the section in the Supplementary Material and a summary of these analyses also appears in the manuscript in the Results section

      “We conducted additional analyses to rule out the influence of potential fatigue and block effects (see Fatigue and block effects in the Supplementary Materials). In short, the stress group rated squeezing to the required effort level as more physically demanding immediately after the experiment compared to before, which was not seen in the control group (Figure S2). However, this was not related to the number of effortful choices for self or other rewards (Table S2). Moreover, when we conducted the same mixed effects logistic regression on participants’ choices but also included the interaction between Group, Recipient and Block, there was no significant three-way interaction between these factors, nor a significant two-way interaction between Group and Block (Figure S3). Additionally, the three-way interaction between Group, Recipient and Effort was unaffected when controlling for potential block effects (Type III Wald test χ2[4]=22.06, P<0.001). Thus, whilst the stress group rated squeezing to the required effort level as more physically demanding following the experiment, this was not related to the number of effortful choices (for self or other) and the effects of Block on effortful choices (for self or other) did not differ between the group. Thus, changes in how physically demanding participants rated squeezing to the effort levels did not influence decisions to exert effort.”

      1. It would be useful to know whether the authors controlled for factors such as familiarity or gender among participants that might influence their choices on the task. If participants were able to interact or observe each other, it is possible that social dynamics played a role in their behavior, which could confound the interpretation of their results. It would be beneficial if the authors could provide further information on how the task was administered and whether any social cues were present.

      For the experimental design, although salivary samples and subjective pressure were measured, did the authors measure participants' subjective ratings of other negative emotions?

      Participants did not have the chance to see or interact with the participants in the “other” condition. Participants were told at the start of the experiment that they would be earning money for the next participant in the study, called Thomas. Thus, as all participants were men, the name of the participants was gender matched. Moreover, as they did not see or interact with the next participant, familiarity was controlled across participants.

      We have now added a section p. 8 to clarify this:

      “As all participants were men, the name of the next participant was gender matched (all participants were told he was called Thomas; see Methods). Moreover, as participants did not see or interact with the next participant, familiarity was controlled across participants.”

      We have now added a plot to the supplementary materials (Figure S4) showing the changes in the ratings of the emotions. Apart from the emotions anxious and disgusted, all other emotions (calm, happy, bad, sad, surprised, angry) showed a significant sample timepoint (1:8) by group (stress, control) interaction, thus mirroring the results for the perceived stress ratings. We now refer to this figure in the manuscript on p. 8:

      “for changes in other emotions during the experiment please see Figure S4”

      1. Regarding the data analysis section, the authors' analysis is careful overall and the results about SVO are interesting. It would be interesting to know if baseline SVO was similar across both stress and control groups, and if there were any differences in SVO among participants with more individualistic or selfish tendencies. Regarding Figure 4, it would be helpful if the authors clarified whether the vertical coordinate "prosocial choices" is a combination of the five levels of effort or if it is specific to one level. Additionally, it would be useful to explore whether there is a correlation between SVO and prosocial choices and whether effort level could be used as a covariate to control for potential confounding effects. These suggestions could improve the clarity and strength of their contributions.

      There were no differences in SVO angle between the control group and stress group (p=.956). There was also a significant correlation between SVO angle and the proportion of prosocial choices across the whole sample. This has now been reported in the manuscript on p. 13:

      “There were no existing differences in SVO angle between the groups (control group mean = 19.33, SD = 8.67; stress group mean = 19.23, SD=8.14; p=0.956). We found that across the whole sample – independent of the stress manipulation – there was a significant correlation between SVO angle and the proportion of prosocial choices (r=0.225, P=0.032). So, as expected, those with a more prosocial SVO angle showed a higher proportion of prosocial choices in the task.

      To clarify, the variable “% prosocial choices” is a combination of all the five effort levels. In other words, we took the total number of prosocial choices (‘work’ for other) across all effort levels relative to the total number of effortful choices. We have now clarified this in the manuscript on p. 13. As this was a combination of all effort levels (and reward levels), it was not possible to include effort level as a covariate.

      “This measure combined all reward and effort levels.”

      1. It is noteworthy that in the dACC, an effect was observed with regard to the interaction between perceived stress and SVO angle. Considering this observation, another suggestion would be for the authors to include visualization in Figure 4 to present the results of this interaction. This could help readers better comprehend the findings and provide a clearer representation of the results.

      We have now updated Figure 4 so that it has three panels showing the behavioural and neural results concerning SVO angle as well as the relationship between SVO angle and activation to SVself and SVother in the dACC.

      1. It would be helpful for readers if the authors could label all statistical plots with appropriate statistical values, effect sizes, and their respective significance levels. By doing so, readers would be able to quickly identify major findings of this study and gauge the degree of significance associated with each plot. The authors should consider including such information in their statistical plots to enhance the comprehensibility of the study results.

      We have added statistical values (e.g., beta estimates), including indicators of significance to the plots.

      1. The authors selected ROIs based on previous work on stress-related and effort-based decision making (i.e., AI and dACC). While other brain regions may also play a role in decision making and social cognition, the authors could choose to focus on these specific ROIs due to their relevance to the experimental question and hypotheses of this study such as prosocial, mentalizing and subjective values.

      We agree that several other ROIs may have also been of interest. However, we decided to restrict our analysis to the dACC and the AI as these two ROIs were the focus of a previous study using the same prosocial effort paradigm (Lockwood et al. 2022) and multiple studies suggest these regions are sensitive to stress effects.

      1. The authors chose to use one sample t-test with AUC as a covariate to examine brain activations across all participants regardless of their stress or control condition. This approach could identify brain regions that are associated with perceived stress. However, the authors didn't conduct a simple two sample t-test between stress and control groups since their research question and hypotheses focused on the neurocomputational mechanisms underlying prosocial decision-making during stress. Regarding the different stages of decision-making, such as offer, force, and outcome, the authors did not conduct specific analyses for each stage. Instead, they used the computational model to estimate the subjective value of each option at each stage, which allowed them to examine the neural correlates of different value-related parameters across the entire decision-making process. However, it would be interesting to examine the role of different stages as well.

      Our design matrix modelled three events during each trial: the offer, force, and outcome phase (as per Lockwood et al. 2022). However, our hypotheses and research question for the effects of acute stress concerned the offer phase, i.e. when participants were deciding whether to exert effort or not (work vs. rest). Therefore, we decided to limit our reporting to this event. We have clarified this on p. 32 in the Methods:

      “Our hypotheses and research questions concerning the effects of acute stress concerned the offer phase, i.e., when participants were deciding whether to exert effort or not (work vs. rest). Therefore, we limited our reporting to this event.”

      1. The authors' findings pertaining to individual differences are intriguing, particularly for individuals with selfish tendencies to exhibit lower pro-social tendencies under stress. Additionally, group variations in effortful behavior related to benfitting others, relative to oneself, are more evident at lower effort levels rather than higher ones. The authors could dedicate more space in the discussion section to discuss the potential mechanisms involved and address the absence of pertinent theoretical support.

      We have now extended the discussion to further outline potential mechanisms. Broadly, we interpret our findings in terms of compromised executive functioning under acute stress: “downregulation of the brain’s ‘executive control network’ (Hermans et al., 2014)”. In the original submission, we focused on changes in inhibition and shifts to habitual/automatic processing. We have now expanded this to include a section on cognitive flexibility (see below). Note that changes in executive functioning have been widely reported following stress (see Shields et al., 2016 for a meta-analyses). However, which specific executive functions influenced our observed changes in prosocial behaviour is an exciting avenue for future work.

      We have added this section on p. 20-21 concerning cognitive flexibility:

      “The dlPFC has also been implicated in cognitive flexibility under acute stress. For example, Kalia et al. (2018) used functional near infrared spectroscopy to show that reduced cognitive flexibility under stress was related to changes in activation in the dlPFC in men. In our study, participants in the control group were more likely to exert effort for self rewards compared to other rewards at higher, but not at lower, levels of effort. Whilst participants in the stress group favoured exerting effort for self rewards at every effort level (Figure 3). This consistent preference for self rewards compared to other rewards at all effort level suggests that stressed participants did not adapt their social behaviour in response to changing contextual information. This supports multiple studies showing reduced cognitive flexibility under stress (Goldfarb et al., 2017; Kalia et al., 2018; Raio et al., 2017; Shields et al., 2016). An exciting avenue for future work is to test whether individual differences in executive functions, such as inhibition and cognitive flexibility, predict changes in social behaviour following acute stress. This would be analogous to the finding in non-social domains, where greater working memory capacity protects against stress-induced changes in learning (Otto et al., 2013).

      Reviewer #2 (Recommendations For The Authors):

      The manuscript suggests that the stress group made more selfish responses than the control group at lower, but not higher, levels of effort (as shown in Figure 3). I recommend that Figure 3, showing these data, be modified for clarity. Currently, data for the between-subjects comparison (Control and Stress groups) are linked by a dashed line. This linkage (at least in my mind) connotes that these data points are from the same people at different times. In fact, the within-subjects data are not linked by a line, but are noted by different colored symbols. Please reconsider how these data are presented.

      We have redrawn Figure 3. For each effort level, the self vs. other manipulation is shown on the x axis and the two groups (Control vs. Stress) are shown by black and grey lines. For each group, the lines are connected to show that the Self vs. Other manipulation is a within-subject manipulation.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for the response and reviews of our manuscript eLife-RP-RA-2023-86638 “Energetics of the Microsporidian Polar Tube Invasion Machinery”. We are grateful for the comments and constructive criticism from all three reviewers, which have helped us to improve our manuscript.

      As a summary to the editor, we here provide a list of the major revisions we have implemented to address all the comments provided by the referees.

      1. We added Supplementary Section A.9 and Figure S4 to explain the details of calculation and have magnified sketches of flow fields.

      2. We clarified the term "required pressure" to "required pressure differences", and explained that the same pressure differences can be achieved by either positive or negative pressure. We invoke the fact that the spore wall buckled inward to deduce that germination is a negative pressure process.

      3. We only rank the hypotheses based on calculation of total energy requirement. The peak pressure and peak power requirement calculations are now just for quantitative reference. The ranking of hypotheses does not change.

      4. We clarified the definition of topological connections in Section "Systematic evaluation of possible topological configurations of a spore," making it explicit that the topological questions listed only involved the "original PT content" (not PT space at all time).

      Thank you again for the opportunity to revise our work. We attach a point-by-point response to the referees below.

      Public Reviews:

      Reviewer #1 (Public Review):

      1. The authors used mathematical models to explore the mechanism(s) underlying the process of polar tube extrusion and the transport of the sporoplasm and nucleus through this structure. They combined this with experimental observations of the structure of the tube during extrusion using serial block face EM providing 3 dimensional data on this process. They also examined the effect of hyperosmolar media on this process to evaluate which model fit the predicted observed behavior of the polar tube in these various media solutions.

      We thank the reviewer for their accurate summary of our work. One subtle point, however, is that we examine the effect of hyperviscous media on the polar tube extrusion process, rather than hyperosmolar media. In Supplementary Section A.6 of our updated manuscript, we have shown that the changes in osmolarity due to methylcellulose is negligible.

      1. Overall, this work resulted in the authors arriving at a model of this process that fit the data (model 5, E-OE-PTPV-ExP). This model is consistent with other data in the literature and provides support for the concept that the polar tube functions by eversion (unfolding like a finger of a glove) and that the expanding polar vacuole is part of this process. Finally, the authors provide important new insights into the buckling of the spore wall (and possible cavitation) as providing force for the nucleus to be transported via the polar tube. This is an important observation that has not been in previous models of this process.

      We thank the reviewer for acknowledging the novelty and importance of our study.

      Reviewer #2 (Public Review):

      1. Microsporidia has a special invasion mechanism, which the polar tube (PT) ejects from mature spores at ultra-fast speeds, to penetrate the host and transfer the cargo to host. This work generated models for the physical basis of polar tube firing and cargo transport through the polar tube. They also use a combination of experiments and theory to elucidate possible biophysical mechanisms of microsporidia. Moreover, their approach also provided the potential applications of such biophysical approaches to other cellular architecture.

      We thank the reviewer for their accurate summary and acknowledging the potential applications on other organisms.

      1. The conclusions of this paper are mostly well supported by data, but some analyses need to be clarified. According to the model 5 (E-OE-PTPV-ExP) in P42 Fig. 6, is the posterior vacuole connected with the polar tube? If yes, how does the nucleus unconnected with the posterior vacuole enter the polar tube?

      As we mentioned in our glossary and detailed in Section "Systematic evaluation of possible topological configurations of a spore", Model 5 requires the "original PT content" (any material inside the PT prior to cargo entering the tube) to permit fluid flow to posterior vacuole and external environment post anchoring disc rupture, but cannot permit fluid flow to the sporoplasm that is transported through the tube. As the the germination process progresses, our model does not require the connection between PT and posterior vacuole to be maintained afterwards, and that creates space allowing sporoplasm (including nucleus) sporoplasm (including nucleus) to enter PT space through fluid entrainment. We have clarified the definitions in Section "Systematic evaluation of possible topological configurations of a spore" and have additional clarification in the caption of Fig. 6 in the updated manuscript.

      1. In Fig. 6, would the posterior vacuole become two parts after spore germination? One part is transported via the polar tube, and the other is still in the spore. I recommend this process requires more experiments to prove.

      According to our Model 5, the membrane connection between PT and posterior vacuole must be broken for the infectious cargo to extrude. However, our current data does not allow us to prove nor disprove the membrane fission event. In theory, the membrane content in PT can potentially be severed into multiple parts by Plateau-Rayleigh instability, an interfacial-tension-driven fluid thread breakup mechanism. Note that it is possible to have membrane fission at the time scale of germination process, as when the time scale of shearing is faster than the viscoelastic time of lipid membranes (roughly 10 msec), membrane fission can happen (Morlot & Roux 2013). For time scale longer than viscoelastic time of lipid membrane, protein complexes like dynamin would be required for membrane fission. Future cryo-EM study of the vacuole-PT connection at the anterior tip (and in the spore as a whole) is needed to clarify the physical process. We added this discussion in Section "Predictions and proposed future experiments".

      Reviewer #3 (Public Review):

      Abstract:

      The paper follows a recent study by the same team (Jaroenlak et al Plos Pathogens 2020), which documented the dramatic ejection dynamics of the polar tube (PT) in microsporidia using live-imaging and scanning electron microscopy. Although several key observations were reported in this paper (the 3D architecture of the PT within the spore, the speed and extent of the ejection process, the translocation dynamics of the nucleus during germination), the precise geometry of the PT during ejection remain inaccessible to imaging, making it difficult to physically understand the phenomenon.

      This paper aims to fill this gap with an indirect "data-driven" approach. By modeling the hydrodynamic dissipation for different unfolding mechanisms identified in the literature and by comparing the predictions with experiments of ejection in media of various viscosities, authors shows that data are compatible with an eversion (caterpillar-like) mechanism but not compatible with a "jack-in-the-box" scenario. In addition, the authors observe that most germinated spores exhibit an inward bulge, which they attribute to buckling due to internal negative pressure and which they suggest may be a mean of pushing the nucleus out of the PT during the final stage of ejection.

      We thank the reviewer for their accurate summary of our work.

      Major strengths:

      Probably the most impressive aspect of the study is the experimental analysis of the ejection dynamics (velocity, ejection length) in medium of various viscosities over 3 orders of magnitudes, which, combined with a modeling of the viscous drag of the PT tube, provides very convincing evidence that the unfolding mechanism is not a global displacement of the tube but rather an apical extension mechanism, where the motion is localized at the end of the tube. The systematic classification of the different unfolding scenarios, consistent with the previous literature, and their confrontation with data in terms of energy, pressure and velocity also constitute an original approach in microbiology where in-situ and real time geometry is often difficult to access.

      We thank the reviewer for acknowledging the novelty and importance of our study.

      Major weaknesses:

      1a. While the experimental part of the paper is clear, I had (and still have) a hard time understanding the modeling part. Overall, the different unfolding mechanisms should be much better explained, with much more informative sketches to justify the dissipation and pressure terms, magnifying the different areas where dissipation occurs, showing the velocity field and pressure field, etc.

      We thank the reviewer for their comments and suggestions. In the Figure S4 and SI Section A.9 of the updated manuscript, we have magnified the sketches with flow field, and added a detailed explanation of the derivations of dissipation terms.

      1b. In particular, a key parameter of eversion models is the geometry of the lubrication layers inside and outside the spore (h_sheath, h_slip). Where do the values of h_sheath and h_slip come from? What is the physical process that selects these parameters?

      As we described in SI Section A.9, h_sheath was set to be 25 nm based on the observed translucent space around PT in activated spores (Lom 1972), and h_slip was set to be 6 nm based on the observed gap thickness between PT and cargo (Takovarian et al. 2020). Although we don't expect these numbers to be the same for each spore, the uncertainty in these two parameters are much less than the uncertainty in cytoplasmic viscosity (which varies several orders of magnitude) and boundary slip length. Our sensitivity testing on cytoplasmic viscosity and boundary slip length thus covers any uncertainty in h_sheath or h_slip already.

      1c. For clarity, the figures showing the unfolding mechanics in the different scenarios should be in the main text, not in the supplemental materials.

      We have added Figure S4 and SI Section A.9 to explain the details of our sketches. We believe, however, putting all the details of the mechanics and how each term is derived in the main text may detract from the flow of the manuscript, and result in it being less accessible to readers who are not as familiar with the physics. We therefore decided to keep this information in supplemental materials.

      2a. The authors compute and discuss in several places "the pressure" required for ejection, but no pressure is indicated in the various sketches and no general "ejection mechanism" involving this pressure is mentioned in the paper.

      In the updated manuscript, we have changed the term “pressure” to “pressure difference” or “required pressure difference”. We did not calculate the detailed pressure field around each structure, but only estimated the required pressure difference to overcome the drag force and drive fluid flow in various spaces. We also clarified this point in Section "Developing a mathematical model for PT energetics".

      Also, as we mentioned in Section “Posterior vacuole expansion and the role of osmotic pressure”, we made no assumptions on how the pressure difference is generated in this paper. The unfolding mechanism of polar tube, how eversion is sustained, and the driving mechanism are ongoing research projects, and we decided not to make premature comments on that without strong support from experiments or simulation results.

      2b. What is this "required pressure" and to what element does it apply?

      The “required pressure” in the manuscript indicates the required pressure difference between the spore and the tip of the polar tube for it to push the tip forward and sustain the fluid flow within the polar tube. In the updated manuscript, we thus changed the term “required pressure” to “required pressure difference”. We also added this clarification to Section "Developing a mathematical model for PT energetics".

      2c. I understand that the article focuses on the dissipation required to the deployment of the PT but I find it difficult to discuss the unfolding mechanism without having any idea on the driving mechanism of the movement. How could eversion be initiated and sustained?

      As we mentioned in Section “Posterior vacuole expansion and the role of osmotic pressure”, we made no assumptions on how the energy, pressure or power is generated in this paper. We agree that the unfolding mechanism of the polar tube, how eversion is sustained, and the driving mechanism are important questions, and these are ongoing research projects. As no assumptions about this are required for our models, we decided not to comment on these aspects without strong support from experiments or simulation results. We have clarified this in Section “Posterior vacuole expansion and the role of osmotic pressure” of the updated manuscript.

      1. Finally, the authors do not explain how pressure, which appears to be a positive, driving quantity at the beginning of the process, can become negative to induce buckling at the end of ejection. Although the hypothesis of rapid translocation induced by buckling is interesting, a much better mechanistic description of the process is needed to support it.

      As discussed in Point 2-b above, the “required pressure” actually means “required pressure difference”. The same pressure difference can possibly be achieved by either positive pressure (the spore has a higher pressure than the ambient, pushing the fluid into PT) or negative pressure (the PT tip has a lower pressure than the ambient, sucking the fluid from the spore). Hydrodynamic dissipation analysis alone cannot tell the differences between positive or negative pressure, as it only tells you the required pressure differences between the spore and the polar tube tip. It will have to be inferred from the implied mechanisms or other evidence. We added these discussions in the 4th paragraph of Section "Developing a mathematical model for PT energetics" in the updated manuscript.

      That being said, from our observations of buckled spore walls, it is still sufficient to deduce that the polar tube ejection process is a negative pressure driven process. For the spore wall to buckle inwards, the ambient pressure has to be higher than the pressure within the spore, but that would contradict with the positive pressure hypothesis as elaborated above. We added these clarifications in the 2nd paragraph of Section "Models for the driving force behind cargo expulsion".

      References:

      Lom, J. (1972). On the structure of the extruded microsporidian polar filament. Zeitschrift Für Parasitenkunde, 38(3), 200–213.

      Takvorian, P. M., Han, B., Cali, A., Rice, W. J., Gunther, L., Macaluso, F., & Weiss, L. M. (2020). An Ultrastructural Study of the Extruded Polar Tube of Anncaliia algerae (Microsporidia). The Journal of Eukaryotic Microbiology, 67(1), 28–44.

      Morlot, S., & Roux, A. (2013). Mechanics of dynamin-mediated membrane fission. Annual Review of Biophysics, 42, 629–649.

      Reviewer #1 (Recommendations For The Authors):

      The work is solid and supported by the experimental data presented, the literature and the biophysical modeling.

      1. The model (Model 5) indicates that the polar tube is connected to the posterior vacuole and that the contents of this vacuole may be transported by the polar tube before the sporoplasm. This needs experimental validation in the future, which will require the identification of posterior vacuole markers (i.e. proteins specific to this structure). I find the topology of this idea difficult to understand. If the polar tube is outside of the sporoplasm membrane then how does it connect to the posterior vacuole? If the expanded posterior vacuole is still in the spore at the end of germination then how does the sporoplasm get out?

      Model 5 requires the "original PT content" (any material inside the PT prior to cargo entering the tube) to permit fluid flow to posterior vacuole and external environment post anchoring disc rupture, but cannot permit fluid flow to sporoplasm. As the germination process progresses, our model does not require the connection between PT and posterior vacuole to be maintained afterwards, and that creates space allowing sporoplasm (including nucleus) to enter PT space through fluid entrainment.

      We agree with the reviewer that the specific predictions from Model 5 need to be experimentally validated in the future, and identification of posterior vacuole markers is a good direction. We have mentioned this in Section "Predictions and proposed future experiments".

      1. I have always thought that the polaroplast was the initial cargo in the polar tube and that this formed the limiting membrane of the sporoplasm and nucleus after passage through the polar tube (i.e., the limiting membrane of the sporont).

      In this manuscript, we only analyze the possible topology of the organelles that are relevant for energy dissipation calculations. Our final hypothesis (E-OE-PTPV-ExP) indicates that there is a limiting membrane of the infectious cargo as they pass through PT, but the energy calculation cannot tell you where this membrane comes from. That being said, our final hypothesis is consistent with the common belief that polaroplast provides the limiting membrane of the sporoplasm, even though our analysis neither proved nor disproved it.

      1. I understand that the model indicates that during eversion the end of the PT moves away from the posterior vacuole allowing the sporoplasm access to the PT lumen, however, I am not clear how this process occurs (although I understand the reason that this model was the best fit for the available data). Does the model distinguish between connected (as in the PV is in the polar tube lumen) to the idea of it being in proximity (i.e. the PT is at the PV at the start of eversion)?

      As we mentioned in our reply to Point 1 of the same reviewer above, "connectivity" simply means whether fluid flow is permitted across the end connections among organelles and sub-spaces within the spores. For Model 5, the content of posterior vacuole can pass to the original PT content and to the external environment post anchoring disc disruption through fluid flow, but not to sporoplasm. However, as the germination progresses, the PT does not have to maintain its spatial proximity or membrane connection to posterior vacuole, as the topological connectivity questions are pertaining to the "original PT content". We clarified this point in Section "Systematic evaluation of possible topological configurations of a spore" in the updated manuscript.

      Reviewer #2 (Recommendations For The Authors):

      1. The connection of polar tube and posterior vacuole need to be analyzed by Cryo -EM.

      We thank the reviewer for their comments. This work is underway.

      Reviewer #3 (Recommendations For The Authors):

      1a. As stated in the public review, the explanation and description of the unfolding mechanism should be much better described and associated with clear sketches, magnifying all the areas where the flow shear rate is concentrated (surrounding zone, lubrication inside and outside the spore, etc) and drawing the velocity field, the boundary solid motion and pressure distribution in order to clearly understand, for each model, the dissipation and pressure terms given in figs. S2 and S3.

      In the updated manuscript, we added Figure S4 to enlarge all the regions where fluid shear is considered, with sketches of velocity fields.

      1b. This is particularly important for explaining the eversion models (see comment in the Public Review) but even the "jack-in-the-box" model sketched in Fig. S2 is confusing: Why does the blue tube disappear outside the spore? What happens to the tube in this case?

      The blue tube in the sketch of Model 1 in Fig. S2 is the fluid between the two outermost layers of PT, not the PT itself. We have clarified that in the newly added Fig. S4.

      1. Many ejection mechanisms based on the deployment of invaginated appendages have been described in the literature (e.g. Zuckerkandl Biol. Bull. 1950, Karabulut et al Nat. Com. 2022) and also mimicked for robotic applications (e.g. Hawkes et al Science Robotics 2017). Although this is not the main topic of the paper, it would be very useful if the authors could discuss in the introduction the most acceptable theory for motion generation (eversion driven by an overpressure in the spore?). In the current version, this comes too late in the discussion.

      As we discussed in Section “Lack of biophysical models explaining the microsporidian infection process”, PT eversion is the most widely accepted hypothesis because of experimental evidence (e.g. microscopic observations of PT extrusions, and pulse-labeling of half-ejected tubes). However, whether or not it is driven by an overpressure in the spore remains controversial. In fact, our observations of inwardly buckled spores indicates that the ejection process likely involves negative pressure.

      In our work, we thus take a data-driven approach to generate models for the physical basis of PT extrusion process, without immediately assuming that eversion is the correct hypothesis. It would therefore not make sense to have elaborated discussion on other eversion mechanisms in Introduction.

      1. About the physical constraints, I understand that the stored energy must be the same when the viscosity is changed (by conservation of energy), but what physical basis do you have for requiring that the power and pressure also be the same (lines 295-298)? For e.g. when a spring is stretched and released in a very viscous fluid without inertia, the total energy dissipated is the same whatever the viscosity but the power is not the same. The formulation of the chosen physical constraints should be better justified.

      We thank the reviewer for their feedback. In our updated manuscript, we only use total energy requirement for the ranking, and the peak pressure difference requirement and peak power requirements are calculated just for quantitative reference. The ranking of the 5 hypotheses does not change.

      1. About the mechanism for cargo translocation, authors should explain the physical origin of the hypothetical negative pressure. How could the initial positive pressure become negative?

      As we mentioned in our reply to Point 3 of the same reviewer in the public review, the “required pressure” actually means “required pressure difference”. The same pressure difference can possibly be achieved by either positive pressure (the spore has a higher pressure than the ambient, pushing the fluid into PT) or negative pressure (the PT tip has a lower pressure than the ambient, sucking the fluid from the spore). Hydrodynamic dissipation analysis alone cannot tell the differences between positive or negative pressure, as it only tells you the required pressure differences between the spore and the polar tube tip. It will have to be inferred from the implied mechanisms or other evidence. We added these discussions in the 4th paragraph of Section "Developing a mathematical model for PT energetics" in the updated manuscript.

      That being said, from our observations of buckled spore walls, it is still sufficient to deduce that the polar tube ejection process is a negative pressure driven process. For the spore wall to buckle inwards, the ambient pressure has to be higher than the pressure within the spore, but that would contradict with the positive pressure hypothesis as elaborated above. We added these clarifications in the 2nd paragraph of Section "Models for the driving force behind cargo expulsion".

      More minor comments:

      1. The videos are amazing but it is not clear if the PT is ejected through a bulk fluid or if the spores (and ejected PT) are in contact with a solid.

      As described in Supplementary Section A.6, purified spores were spotted on a coverslip and let water evaporate. 2.0 μL of germination buffer (10 mM Glycine-NaOH buffer pH 9.0 and 100 mM KCl) with different concentration (0%, 0.5%, 1%, 2%, 3%, 4%) of methylcellulose was added to the slide and place the coverslip on top. So the spore is attached to the coverslip and ejected through a bulk liquid of germination buffer.

      1. S2 caption: please be precise that H is the Heaviside step function.

      We have updated the captions for both Figure S2 and S3 to make it explicit.

      1. Line 233 a pi is missing, no?

      We thank the reviewer for their careful read. We have corrected that.

      1. The notations are quite unfortunate and confusing. In fluid mechanics capital D usually refers to the dissipation, capital C to the drag coefficient. It would be much clearer to call D the dissipation power (in Watt) and P the pressure requirement (in Pa), whatever the mechanism and put the different contribution (drag, lubrication, cytoplasm flow) in subscript.

      We thank the reviewer for their feedback. The notation of this paper is challenging as there are many symbols while keeping everything relatively intuitive to both people with biology background and physics background. We will keep these feedback in mind in our future work.

      1. Fig S2: what is D (in the formula of the total dissipation power)? Why not use R instead?

      D is the PT diameter, as we mentioned in the caption. We keep that as it is used in the definition of the shape factor.

      1. Fig S3 why the pressure requirement for the "jack-in-the-box" hypothesis is 2\mu (vLf(epsilon)/R^2)?

      We have now elaborated the calculation in SI Section A.9.

      1. Lines 486-497: Although shear thinning fluids have their viscosity that decreases with the shear rate, in most cases the resistance (stress) still increases with speed with these fluids. Is mucin a "velocity-weakening" fluid, i.e. a fluid in which stress decreases when shear rate increases.

      We agree that stress still increases with speed for most shear thinning fluids. The mechanical properties of mucin solution strongly depend on its compositions and buffers. In our discussion, we thus simply mention this possibility without claiming whether mucin (or other biopolymer environment that microsporidia species actually experience in vivo) is a velocity-weakening fluid or not.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, the authors investigated the role of MAM and the Notch signaling pathway in the onset of the atrophic phenotype in both in vivo and in vitro models. The rationale used to obtain the data is one of the main strengths of the study. Already from the reading, the reasoning scheme used by the authors in setting up the study and evaluating the data obtained is clear. Using both cellular and mouse models in vivo consolidates the data obtained. The authors also methodologically described all the choices made in the supplementary section. A weakness, on the other hand, is the failure to include averages and statistical data in the results that would give a quantifiable idea of the data obtained. To complete the picture, the authors could also investigate the possible involvement of the intrinsic apoptosis pathway as well as describe probable metabolic shifts to muscle cells in atrophic conditions. The rationale used by the authors to obtain the result is linear. The data obtained are useful for understanding the onset and characterization of the atrophic phenotype under disuse and microgravity conditions. The methods used are in line with those used in the field and can be a starting point for other studies. The cellular models are well described in the Materials and methods section. The selected mouse models followed a logical rationale and were in line with the intended aim.

      We thank this reviewer for comments that have led us to clarify several points.

      Reviewer #1 (Recommendations For The Authors):

      • In order to reinforce and justify the results obtained, I would suggest that the authors include numerical and statistical data in the results obtained.

      Answer) As the reviewer suggested, we have incorporated actual numerical and statistical data into each graph in all figures.

      • With the aim of better framing the picture of an atrophic muscle phenotype caused by microgravity or disuse, I would advise the authors to also focus on the possible involvement of the intrinsic apoptosis pathway. To this end, it would be interesting to assess a possible relationship between MAM and apoptosis. It would be useful to integrate this part into the discussion.

      Answer) It has been shown that suppression of Mfn2 expression attenuates calcium influx into mitochondria during apoptosis-inducing stimuli, thereby inhibiting apoptosis (Martins de Brito & Scorrano, Nature 2008), however, in our study, we found that apoptotic pathways, including Caspase3 or p-AKT were not significantly altered in differentiated human myocytes by microgravity for 7 days in culture, suggesting that microgravity-induced apoptosis is not an initial pathway to MAM. We have added these data in the new supplementary file 3 and mentioned it in the results.

      • In addition to TA, did the authors investigate what was seen in other muscles impacted by microgravity? If so, I would recommend supplementing what is available or, on the contrary, justifying the exclusivity of the choice of TA.

      Answer) It has been reported that the soleus, a slow-type muscle is more susceptible than the fast-type tibialis anterior muscle during gravity changes, so it makes more sense for the content of this study to analyze the soleus muscle. However, we chose the tibialis anterior muscle as our target because it provides the most stable results as a site for stem cell transplantation to observe muscle regeneration.

      • The authors affirm that there is an altered distribution and morphology of mitochondria under microgravity conditions. To corroborate this assertion, I would recommend including a morphological image that confirms it.

      Answer) The morphology of mitochondria in cultured myotubes, as observed by mitotracker staining in Figure 4G, varied widely, from finely divided to fused even within a single fiber compared to MFN2-mutated human iPS cells, making it difficult to conclude whether these changes were brought about by microgravity. Therefore, in this study, we have shown that they are reduced in microgravity by the difference in fluorescence intensity of mitotracker, which is directly proportional to mitochondrial activity.

      • It would be interesting if the authors would show whether there are changes in myosin expression or metabolic changes in cells subjected to microgravity and in the cell model with Mnf2 deletion. It would also be interesting to evaluate this in the presence of DAPT.

      Answer) As the reviewer’s suggestion, we have checked MYH1, MYH3, and MYH7 transcripts in differentiated myotubes under microgravity, with or without DAPT in the new supplementary file 12. We have added the data showing that not MYH1 but MYH7 transcript was partially recovered in the Results.

      A detailed description of the metabolic analyses with myogenic cells cultured in microgravity conditions will be published elsewhere (Sugiura et al., “Mitochondria aconitase is a main target for unloading-mediated mitochondria dysfunction toward muscle atrophy”, in preparation). We have described it in the Materials and methods of the manuscript.  

      Reviewer #2 (Public Review):

      In this study, the authors examined how the maintenance of mitochondrial-associated endoplasmic reticulum membranes (MAM) is critical for the prevention of muscle atrophy under microgravity conditions. They observed, a reduction in MAM in myotubes placed in a microgravity condition; in addition, MFN2-deficient human iPS cells showed a decrease in the number of MAM, similar to in myotubes differentiated under microgravity conditions, in addition to the activation of the Notch signaling pathway. The authors, moreover, observed that treatment with the gamma-secretase inhibitor with DAPT preserved the atrophic phenotype of differentiated myotubes in microgravity and improve the regenerative capacity of Mfn2-deficient muscle stem cells in dystrophic mice. The entire study was well conducted, bringing an interesting analysis in vitro and in vivo of aging conditions. In my opinion, it is necessary to improve the analysis of both genes and proteins to better support the conclusions

      The study can contribute to a better understanding of one of the major problems of aging, such as muscle atrophy and inhibition of muscle regeneration, emphasizing the importance of the NOTCH pathway in these pathological situations. The work will be of interest to all scientists working on aging

      We thank this reviewer for the positive comments and remarks that we have attempted to address.

      Reviewer #2 (Recommendations For The Authors):

      Results:

      In Figure 1b authors observed an increase in the transcripts of MuRF1 and FBXO32 after 7 days of microgravity condition. I suggest to investigate the protein expression of these genes to give more validation to this data.

      Answer) As the reviewer’s suggestion, we have investigated the western blotting with atrophic markers in microgravity samples. These data have been added in Figure 1D.

      Moreover, I suggest investigating not only Myogenin as an earlier gene of myotubes formation but also MRF4.

      Methods:

      I suggest when doing real-time PCR not to use a single gene as housekeeping but the average of three genes, to avoid the influence of a single housekeeping gene affecting the results.

      Answer) As the reviewer’s suggestion, we have investigated MRF4 expression by qPCR experiments with 3 different housekeeping genes (RPL13a, GAPDH, and ACTB). Our experiments showed no significant differences among these three housekeeping genes. We have added these data to Figure 1C and Methods in the manuscript.

    1. Author Response

      We thank the reviewers and editor for their careful evaluation of our manuscript, and we appreciate their favorable assessment of our work. Below, we clarify a few points concerning the relationship between our study and previous studies evaluating ligand docking to protein models.

      As reviewer 2 correctly notes, several previous assessments of AF2 models have simply excluded templates above a sequence identity cutoff when using AF2 to predict structures. Such AF2 predictions are still informed by all structures in the PDB before April 30, 2018, because these structures were used to train AF2—that is, to determine the tens of millions of parameters (“weights”) in the AF2 neural network. Machine learning methods nearly always perform better when evaluated on the data used to train them than when evaluated on other data. For this reason, we consider AF2 models only for proteins whose structures were not used to train AF2—that is, for proteins whose structures were not available in the PDB before April 30, 2018.

      Previous papers (including Beuming and Sherman, 2012, https://doi.org/10.1021/ci300411b) have shown a clear correlation between the binding pocket RMSD of a protein model and pose prediction accuracy based on that model. Our main findings are unexpected in light of these previous reports: we find that AF2 models yield pose prediction accuracy similar to that of traditional homology models despite having much better binding pocket RMSDs, and that AF2 models yield substantially worse pose prediction accuracy than experimentally determined structures with different ligands bound despite having similar binding pocket RMSDs.

      Reviewer 2 also correctly notes that previous papers have described AF2 models as “apo models,” because these models do not include coordinates for bound ligands. As noted by the AF2 developers (e.g., https://alphafold.ebi.ac.uk/faq), however, AF2 is designed to predict coordinates of protein atoms as they might appear in the PDB, and AF2 models are thus frequently consistent with structures in the presence of ligands even though those ligands are not included in the models. GPCR structures in the PDB, including those used to train AF2, nearly always contain a ligand in the orthosteric binding pocket. An AF2 model of a GPCR should thus not be viewed as an attempt to predict the GPCR’s structure in the unliganded (apo) state.

      Finally, we did not apply flexible docking in this study because previous work has found that standard flexible docking protocols typically improve pose prediction performance only when given prior information on which amino acid residues to treat as flexible. For example, previous studies that performed successful flexible docking to AF2 models generally used prior knowledge of the ligand’s experimentally determined binding pose to identify the residues to treat as flexible.

    1. Author Response

      Reviewer #3 (Public Review):

      Summary:

      The manuscript from Tariq and Maurici et al. presents important biochemical and biophysical data linking protein phosphorylation to phase separation behavior in the repressive arm of the Neurospora circadian clock. This is an important topic that contributes to what is likely a conceptual shift in the field. While I find the connection to the in vivo physiology of the clock to be still unclear, this can be a topic handled in future studies.

      Strengths: The ability to prepare purified versions of unphosphorylated FRQ and P-FRQ phosphorylated by CK-1 is a major advance that allowed the authors to characterize the role of phosphorylation in structural changes in FRQ and its impact on phase separation in vitro.

      Weaknesses: The major question that remains unanswered from my perspective is whether phase separation plays a key role in the feedback loop that sustains oscillation (for example by creating a nonlinear dependence on overall FRQ phosphorylation) or whether it has a distinct physiological role that is not required for sustained oscillation.

      The reviewer raises the key question regarding data suggesting LLPS and phase separated regions in circadian systems. To date condensates have been seen in cyanobacteria (Cohen et al, 2014, Pattanayak et al, 2020) where there are foci containing KaiA/C during the night, in Drosophila (Xiao et al, 2021) where PER and dCLK colocalize in nuclear foci near the periphery during the repressive phase, and in Neurospora (Bartholomai et al, 2022) where the RNA binding protein PRD-2 sequesters frq and ck1a transcripts in perinuclear phase separated regions. Because the proteins responsible for the phase separation in cyanobacteria and Drosophila are not known, it is not possible to seamlessly disrupt the separation to test its biological significance (Yuan et al, 2022), so only in Neurospora has it been possible to associate loss of phase separation with clock effects. There, loss of PRD-2, or mutation of its RNA-binding domains, results in a ~3 hr period lengthening as well as loss of perinuclear localization of frq transcripts. A very recent manuscript (Xie et al., 2024) calls into question both the importance and very existence of LLPS of clock proteins at least as regards to mammalian cells, noting that it may be an artefact of overexpression in some places where it is seen, and that at normal levels of expression there is no evidence for elevated levels at the nuclear periphery. Artefacts resulting from overexpression plainly cannot be a problem for our study nor for Xiao et al. 2021 as in both cases the relevant clock protein, FRQ or PER, was labeled at the endogenous locus and expressed under its native promoter. Also, it may be worth noting that although we called attention to enrichment of FRQ[NeonGreen] at the nuclear periphery, there remained abundant FRQ within the core of the nucleus in our live-cell imaging.

      Cohen SE, et al.: Dynamic localization of the cyanobacterial circadian clock proteins. Curr Biol 2014, 24:1836–1844, https://doi.org/10.1016/j.cub.2014.07.036.

      Pattanayak GK, et al.: Daily cycles of reversible protein condensation in cyanobacteria. Cell Rep 2020, 32:108032, https://doi.org/10.1016/j.celrep.2020.108032.

      Xiao Y, Yuan Y, Jimenez M, Soni N, Yadlapalli S: Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. Proc Natl Acad Sci U S A 2021, 118, https://doi.org/10.1073/pnas.2019756118.

      Bartholomai BM, Gladfelter AS, Loros JJ, Dunlap JC. 2022 PRD-2 mediates clock-regulated perinuclear localization of clock gene RNAs within the circadian cycle of Neurospora. Proc Natl Acad Sci U S A. 119(31):e2203078119. doi: 10.1073/pnas.2203078119.

      Yuan et al., Curr Biol 78: 102129, 2022. https://doi.org/10.1016/j.ceb.2022.102129

      Pancheng Xie, Xiaowen Xie, Congrong Ye, Kevin M. Dean, Isara Laothamatas , S K Tahajjul Taufique, Joseph Takahashi, Shin Yamazaki, Ying Xu, and Yi Liu (2024). Mammalian circadian clock proteins form dynamic interacting microbodies distinct from phase separation. Proc. Nat. Acad. Sci. USA. In press.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and editors for their time and careful consideration of this study. Nearly every comment proved to be highly constructive and thoughtful, and as a result, the manuscript has undergone major revisions including the title, all figures, associated conclusions and web app. We feel that the revised resource provides a more systematic and comprehensive approach to correlating inter-individual transcript patterns across tissues for analysis of organ cross-talk. Moreover, the manuscript has been restructured to highlight utility of the web tool for queries of genes and pathways, as opposed to focused discrete examples of cherry-picked mechanisms. A few key revisions include:

      • Manuscript: All figures have been revised to place to explore broad pathway representation. These analyses have replaced the previous circadian and muscle-hippocampal figures to emphasize ability to recapitulate known physiology and remove the discovery portion which has not been validate experimentally.

      • Manuscript: The term “genetic correlation” or “genetically-derived” has been replaced throughout with “transcriptional”, “inter-individual”, or mostly just “correlations”.

      • Manuscript: A new figure (revised fig 2) has been added to evaluate the innate correlation structure of data used for common metabolic pathways, in addition an exploration of which tissues generally show more co-correlation and centrality among correlations.

      • Manuscript: A new figure (revised fig 4) has been added to highlight the utility of exploring gene ~ trait correlations in mouse populations, where controlled diets can be compared directly. These highlight sex hormone receptor correlations with the large amount of available clinical traits, which differ entirely depending on the tissue of expression and/or diet in mouse populations.

      • Web tool: Addition of a mouse section to query expression correlations among diverse inbred strains and associated traits from chow or HFHS diet within the hybrid mouse diversity panel.

      • Web tool: Overrepresentation analysis for pathway enrichments have been replaced with score-based gene set enrichment analyses and including network topology views for GSEA outputs.

      • Web tool: Associated github repository containing scripts for apps now include a detailed walk-through of the interface and definitions for each query and term.

      Public Reviews:

      Reviewer #1 (Public Review):

      Zhou et al. have set up a study to examine how metabolism is regulated across the organism by taking a combined approach looking at gene expression in multiple tissues, as well as analysis of the blood. Specifically, they have created a tool for easily analyzing data from GTEx across 18 tissues in 310 people. In principle, this approach should be expandable to any dataset where multiple tissues of data were collected from the same individuals. While not necessary, it would also raise my interest to see the "Mouse(coming soon)" selection functional, given that the authors have good access to multi-tissue transcriptomics done in similarly large mouse cohorts.

      Summary

      The authors have assembled a web tool that helps analyze multiple tissues' datasets together, with the aim of identifying how metabolic pathways and gene regulation are connected across tissues. This makes sense conceptually and the web tool is easy to use and runs reasonably quickly, considering the size of the data. I like the tool and I think the approach is necessary and surprisingly under-served; there is a lot of focus on multi-omics recently, but much less on doing a good job of integrating multi-tissue datasets even within a single omics layer.

      What I am less convinced about is the "Research Article" aspect of this paper. Studying circadian rhythm in GTEx data seems risky to me, given the huge range in circadian clock in the sample collection. I also wonder (although this is not even remotely in my expertise) whether the circadian rhythm also gets rather desynchronized in people dying of natural causes - although I suppose this could be said for any gene expression pathway. Similarly for looking at secreted proteins in Figure 4 looking at muscle-hippocampus transcript levels for ADAMTS17 doesn't make sense to me - of all tissue pairs to make a vignette about to demonstrate the method, this is not an intuitive choice to me. The "within muscle" results look fine but panels C-E-G look like noise to me...especially panel C and G are almost certainly noise, since those are pathways with gene counts of 2 and 1 respectively.

      I think this is an important effort and a good basis but a significant revision is necessary. This can devote more time and space to explaining the methodology and for ensuring that the results shown are actually significant. This could be done by checking a mix of negative controls (e.g. by shuffling gene labels and data) and a more comprehensive look at "positive" genes, so that it can be clearly shown that the genes shown in Fig 1 and 2 are not cherry-picked. For Figure 3, I suspect you would get almost an identical figure if instead of showing pan-tissue circadian clock correlations, you instead selected the electron transport chain, or the ribosome, or any other pathway that has genes that are expressed across all tissues. You show that colon and heart have relatively high connectivity to other tissues, but this may be common to other pathways as well.

      Response: We are thankful to the reviewer in their detailed assessment of the manuscript. The comments raised in both the public and suggested reviews clearly improved the revised study and helped to identify limitations. In general, we have removed data suggesting “discovery” using these generalized analyses, such as removing figures evaluating circadian rhythm genes and muscle-hippocampus correlations. These have been replaced with more thorough investigations of tissue correlation structure and potentially identified regions of data sparsity which are important for users to consider. Also, we have added a similar full detailed pipeline of mouse (HMDP) data and highlighted in the manuscript by showing transcript ~ trait correlations of sex hormone receptor genes which differ between organs and diets. Further responses to individual points are also provided below.

      Reviewer #2 (Public Review):

      Summary:

      Zhou et al. use publicly available GTEx data of 18 metabolic tissues from 310 individuals to explore gene expression correlation patterns within-tissue and across-tissues. They detect signatures of known metabolic signaling biology, such as ADIPOQ's role in fatty acid metabolism in adipose tissue. They also emphasize that their approach can help generate new hypotheses, such as the colon playing an important role in circadian clock maintenance. To aid researchers in querying their own genes of interest in metabolic tissues, they have developed an easy-to-use webtool (GD-CAT).

      This study makes reasonable conclusions from its data, and the webtool would be useful to researchers focused on metabolic signaling. However, some misconceptions need to be corrected, as well as greater clarification of the methodology used.

      Strengths:

      GTEx is a very powerful resource for many areas of biomedicine, and this study represents a valid use of gene co-expression network methodology. The authors do a good job of providing examples confirming known signaling biology as well as the potential to discover promising signatures of novel biology for follow-up and future studies. The webtool, GD-CAT, is easy to use and allows researchers with genes and tissues of interest to perform the same analyses in the same GTEx data.

      Weaknesses:

      A key weakness of the paper is that this study does not involve genetic correlations, which is used in the title and throughout the manuscript, but rather gene co-expression networks. The authors do mention the classic limitation that correlation does not imply causation, but this caveat is even more important given that these are not genetic correlations. Given that the goal of their study aligns closely with multi-tissue WGCNA, which is not a new idea (e.g., Talukdar et al. 2016; https://doi.org/10.1016/j.cels.2016.02.002), it is surprising that the authors only use WGCNA for its robust correlation estimation (bicor), but not its latent factor/module estimation, which could potentially capture cross-tissue signaling patterns. It is possible that the biological signals of interest would be drowned out by all the other variation in the data but given that this is a conventional step in WGCNA, it is a weakness that the authors do not use it or discuss it.

      Response: Thank you for the helpful and detailed suggestions regarding the study. The review raised some important points regarding methodological interpretations (ex. bicor-exclusive application as opposed to module-based approaches), as well as clarification of “genetic” inferences throughout the study. The comparison to module-based approaches has also now been discussed directly, pointing our considerations and advantages to each. We hope that the reviewer with our corrections to the misconceptions posed, many of which we feel were due to our insufficient description of methodological details and underlying interpretations. The revised manuscript, web portal and associated github provide much more detail and many more responses to specific points are provided below.

      Reviewer #3 (Public Review):

      Summary: A useful and potentially powerful analysis of gene expression correlations across major organ and tissue systems that exploits a subset of 310 humans from the GTEx collection (subjects for whom there are uniformly processed postmortem RNA-seq data for 18 tissues or organs). The analysis is complemented by a Shiny R application web service.

      The need for more multisystems analysis of transcript correlation is very well motivated by the authors. Their work should be contrasted with more simple comparisons of correlation structure within different organs and tissues, rather than actual correlations across organs and tissues.

      Strengths and Weaknesses: The strengths and limitations of this work trace back to the nature of the GTEx data set itself. The authors refer to the correlations of transcripts as "gene" and "genetic" correlations throughout. In fact, they name their web service "Genetically-Derived Correlations Across Tissues". But all GTEx subjects had strong exposure to unique environments and all correlations will be driven by developmental and environmental factors, age, sex differences, and shared and unshared pre- and postmortem technical artifacts. In fact we know that the heritability of transcript levels is generally low, often well under 25%, even studies of animals with tight environmental control.

      This criticism does not comment materially detract for the importance and utility of the correlations-whether genetic, GXE, or purely environmental-but it does mean that the authors should ideally restructure and reword text so as to NOT claim so much for "genetics". It may be possible to incorporate estimates of chip heritability of transcripts into this work if the genetic component of correlations is regarded as critical (all GTEx cases have genotypes).

      Appraisal of Work on the Field: There are two parts to this paper: 1. "case studies" of cross-tissue/organ correlations and 2. the creation of an R/Shiny application to make this type of analysis much more practical for any biologist. Both parts of the work are of high potential value, but neither is fully developed. My own opinion is that the R/Shiny component is the more important immediate contribution and that the "case studies" could be placed in the context of a more complete primer. Or Alternatively, the case studies could be their own independent contributions with more validation.

      Response: We thank the reviewer for their supportive and helpful comments. The discussion of usage of the term “genetic” has been removed entirely from the manuscript as this point was made by all reviewers. Further, we have revised the previous study to focus on more detailed investigations of why transcript isoforms seemed correlated between tissues and areas where datasets are insufficient to provide sufficient information (ex. Kidney in GTEx). As the reviewer points out, the previous “case studies” were unvalidated and incomplete and as a result, have been replaced. Additional points below have been revised to present a more comprehensive analyses of transcript correlations across tissues and improved web tool.

      (Recommendations For The Authors):

      As this manuscript is focused on the analytical process rather than the biological findings, the reviewer concerns are not a fundamental issue to subsequent acceptance of the paper, but some of the examples will need to be replaced or double-checked to ensure their biological and statistical relevance. To raise the scope and interest of the method developed, it would be seen very positively to include additional datasets, as the authors seem to have intended to have done, with a non-functional (and highlighted as such) selection for mouse data. Establishing that the authors can easily - and will easily - add additional datasets into their tool would greatly raise the reviewers' confidence in the methodology/resource aspect of this paper. This may also help address the significant concerns that all three reviewers raised with the biological examples, e.g. that GTEx data is so uncontrolled that studying environmentally-influenced traits such as circadian rhythm may be challenging or even impossible to do properly. Adding in a more highly controlled set of cross-tissue mouse data may be able to address both these concerns at once, i.e. the resource concern (can the website easily be updated with new data) and the biological concern (are the results from these vignettes actually statistically significant).

      Reviewer #1 (Recommendations For The Authors):

      Comments, in approximately reverse order of importance

      1. Some figure panels are not referenced in the text, e.g. Fig 1B and Figure 2E. Response: Thank you for pointing this out. We have revised every figure in the manuscript and additionally gone through to make sure every panel is referenced in the text.

      2. The authors mention "genetic data" several times but I don't see anything about DNA. By "genetic data" do you mean "transcriptome expression data," or something else?

      Response: This is an important point, also raised by all 3 reviewers. We have clarified in the abstract, results and discussion that correlations are between transcripts. As a result, all mentions of “genetics” or “genetic data” has been removed, with the exception of introducing mouse genetic reference panels.

      1. For Figure 3, the authors look at circadian clock data, but the GTEx data is from all sorts of different times of day from across the patient cohort depending on when the donor died, and I don't see this metadata actually mentioned anywhere. I see Arntl Clock and all the other circadian genes are highly coexpressed in each tissue (except not so strong in liver) but correlation across tissue seems more random. Also hypothalamus seems to be very strongly negatively correlated with spleen, but this large green block doesn't have significance? That is surprising to me, since the sample sizes are all equivalent I would expect any correlation remotely close to -1.0 to be highly significant.

      Response: The reviewer raises several important points with regard to the source of data and underlying interpretations. We have added a revised Fig 2, suggesting that representation of gene expression between tissues can be strongly biased by nature of samples (ex. differences in data that is available for each tissue) and also discussed considerations of the nature of sample origin in the limitations section. We have also used some of these points when introducing rationale for using mouse population data. As a result of comments from this reviewer and others, we have removed the circadian rhythm analysis and muscle-hippocampal figures from the revised study; however, specifically mentioned these cohort differences in the discussion section (lines 294-298). Circadian rhythm terms are also evaluated in Fig 2 and consistent with the reviewers concerns, less overall correlations are observed between transcripts across tissues when compared to other common GO terms assessed.

      1. Figure 4, this is all transcript-level data, so it is confusing to see protein nomenclature used, e.g. "expression of muscle ADAMTS17" should be "expression of muscle ADAMTS17" (ADAMTS17 the transcript should be in italics, in case the formatting is removed by the eLife portal). Same for FNDC5. In the figures you do have those in italics, so it is just an issue in the manuscript text. In general please look through the text and make sure whether you are referring really to a "gene," "transcript," or "protein." For instance, Figure 1 legend I think should be "A, All transcripts across the ... with local subcutaneous and muscle transcript expression." I know people still sometimes use "gene expression" to refer to transcripts, but now that proteomics is pretty mainstream, I would push for more careful vocabulary here.

      Response: Thank you for pointing these out. While we have replaced Fig 4 entirely as to limit the unvalidated discovery or research aspects of the paper, we have gone through the text and figures to check that the correct formatting is used for references to human genes (capitalized italics) or the newly-included mouse genes (lower-case italics).

      1. "Briefly, these data were filtered to retain genes which were detected across individuals where individuals were required to show counts > 0 in 1.2e6 gene-tissue combinations across all data." I don't quite understand the filtering metric here - what is 1.2 million gene-tissue combinations referring to? 20k genes times 18 tissues times 310 people is ~100 million measurements, but for a given gene across 310 people * 18 tissues that is only ~6000 quantifications per gene.

      Response: We apologize for this oversight, as the numbers were derived from the whole GTEx dataset in total and not the tissues used for the current study. We have clarified this point in the revised manuscript (methods section in Datasets used) and also removed confusing references to specific numbers of transcripts and tissues unless made clear.

      1. Generally I think your approach makes sense conceptually but... for the specific example used in e.g. figure 4, this only makes sense to me if applied to proteins and not to transcripts. Looking at the transcript levels per tissue for genes which are secreted could be interesting but this specific example is confusing, as is the tissue selected. I would not really expect much crosstalk between the hippocampus and the muscle, especially not in terms of secreted proteins.

      Response: This is a valid point, also raised by other reviewers. While we wanted to highlight the one potentially-new (ADAMTS7) and two established proteins (FNDC5 and ERFE) and their correlations, the fact that this direct circuit remains to be validated led us to replace the figure entirely. The point raised about inference of protein secretion compared to action; however, has been expanded upon in the results and discussion. We now show that complexities arise when using this approach to infer mechanisms of proteins which are primarily regulated post-transcriptionally. We provide a revised Supplemental Fig 4 showing that this general framework, when applied to expression of INS (insulin), almost exclusively captured pathways leading to its secretion and not action.

      1. It's not clear to me how correction for multiple testing is working in the analyses used in this manuscript. You mention q-values so I am sure it was done, I just don't see the precise method mentioned in the Methods section.

      Response: We apologize for this oversight and have included a specific mention of qvalue adjustment using BH methods, where our reasoning was the efficiency in run-time (compared to other qvalue methods). In addition, we provide a revised Fig 2 which suggests that innate correlation structure exists between tissues for a variety of pathways which should be considered. We also compare several empirical bicor pvalues and qvalue adjustments directly between these large pathways where much of the innate tissue correlation structure does appear present when BH qvalue adjustments are applied (revised Fig 2A).

      1. The piecharts in Figure 1 are interesting - I would actually be curious which tissues generally have closer coexpression. This would be an absolutely massive number of pairwise correlations to test, but maybe there is a smarter way to do it? For instance, for ADIPOQ, skeletal muscle has the best typical correlation, but would that be generally true just that many adipose genes have closer relationship between the two tissues?

      Response: This comment inspired us to perform a more systematic query of global gene-gene correlation structures, which is now shown as the revised Fig 2A. With respect to ADIPOQ, the reviewer is correct in that there does appear to be a general pattern of muscle genes showing stronger correlation with adipose genes. We emphasize and discuss there in the revised manuscript to point out that global trends of tissue correlation structure should be taken into account when looking at specific genes. Much of this innate co-correlation structure could be normalized by the BH qvalue adjustment (above); however, strongly correlated pathways like mitochondria showed selective patterns throughout thresholds (revised Fig 2A). Further, we analyze KEGG terms and general correlation structures (revised Fig 2B) to point out the converse, that some tissues are just poorly represented. Interpretation of correlated genes from these organ and pathway combinations should be especially considered in the framework that their poor representation in the dataset clearly impacted the global correlation structures. We have added these points to both results and discussion. In sum, we feel that this was a critical point to explore and attempted to provide a framework to identify/consider in the revised manuscript.

      1. The pathway enrichments in Figure 1 are more difficult for me to interpret, e.g. for ADIPOQ, the scWAT pathways make sense, but the enriched skeletal muscle pathways are less clearly relevant (rRNA processing?? Not impossible but no clear relevance either). What are the significances for these pathway enrichments? Is it even possible to select a gene that has no peripheral pathway enrichment, e.g. if you take some random Gm#### or olfactory receptor gene and run the analysis, are you also going to see significant pathways selected, as pathway enrichment often has a trend to overfit? The "within organ" does seem to make sense, but I am also just looking at 4 anecdotes here and it is unclear whether they are cherry picked because they did make sense. That is, it's unclear why you selected ADIPOQ and not APOE or HMGCR or etc. I also don't figure out how I can make these pathway enrichment plots using your website. I do get the pie chart but when I try the enrichment analysis block (NB: typo on your website, it says "Enrich-E-ment Analysis" with an extra E) I always get that "the selected tissue do not contain enough genes to generate positive the enrichment." (Also two typos in that phrase; authors should check and review extensively for improvements to the use of English.) After trying several genes I eventually got it to work. I think there is some significant overfitting here, as I am pretty sure that XIST expression in the white adipose tissue has nothing to do with olfactory signalling pathways, which are the top positive network (but with an n = 4 genes).

      Response: Several good points within this comment. 1) the pathway enrichments have been revised completely. The reviewer provided a helpful suggestion of a rank-based approach to query pathways, as opposed to the previous over-representation tests. After evaluating several different pathway enrichment tools based on correlated tissue expression transcripts, a rank- and weight-based test (GSEA) captured the most physiologic pathways observed from known actions of select secreted proteins. Therefore, revised pathway enrichments and web-tool queries unitize a GSEA approach which accounts for the rank and weight determined by correlation coefficient. In implementing these new pathway approaches, we feel that pathway terms perform significantly better at capturing mechanisms. 2) With respect to the selection genes, we wanted to provide a framework for investigating genes which encode secreted proteins that signal as a result of the abundance of the protein alone. This is a group-bias; however, and not necessarily reflective of trying to tackle the most important physiologic mechanisms underlying human disease. We agree with the reviewer in those evaluating genes such as APOE and cholesterol synthesis enzymes present an exciting opportunity, our expertise in interpretation and mechanistic confirmation is limited. 3) We have gone through the revised manuscript and attempted to correct all grammatical and/or spelling mistakes.

      1. The network figures I get on your website look actually more interesting than the ones you have in Figure 2, which only stay within a tissue. Making networks within a tissue is pretty easy I think for any biologist today, but the cross-tissue analysis is still fairly hard due to the size of the datasets and correlation matrices.

      Response: We greatly appreciate the reviewer’s enthusiasm for the network model generation aspect. We have tried to improve the figure generation and expanded the gene size selection for network generation in the web tool, both within and across tissues. We are working toward allowing users to select specific pathway terms and/or tissue genes to include in these networks as well, but will need more time to implement.

      1. I get a bug with making networks for certain genes, e.g. XIST - Liver does not work for plotting network graphs. Maybe XIST is a suppressed gene because it has zero expression in males? It is an interesting gene to look at as a "positive control" for many analyses, since it shows that sample sexing is done correctly for all samples.

      Response: The reviewer recognized a key consideration in underlying data structure for GTEx. In the revised manuscript, we evaluated tissue representation (or lack thereof) being a crucial factor in driving where significant relationships cannot be observed in tissues such as kidney, liver and spleen (Fig 2). Moreover, the representation of females (self-reported) in GTEx is less-than half of males (100 compared to 210 individuals). We have emphasized this point in the discussion where we specifically pointed out the lack of XIST Liver correlation being a product of data structure/availability and not reflecting real biologic mechanisms. We expanded on this point by highlighting the clear sex-bias in terms of representation.

      1. On the network diagram on your website, there doesn't seem to be any way to zoom in on the website itself? You can make a PDF which is nice but the text is often very small and hard to read.

      Response: We have revised the web interface plot parameters to create a more uniform graph.

      1. On a related note, is it possible to output the raw data and gene lists for the network graph? I would want to know what are those genes and their correlation coefficient.

      Response: We have enabled explore as .pdf or .svg graphics for the network and all plots. In addition, following pie chart generation at the top of the web app, users now have the ability to download a .csv file containing the bicor coefficients, regression pvalues and adjusted qvalues for all other gene-tissue combinations.

      1. Some functionality issues, e.g. on the "Scatter plot" block, I input a gene name again here. Shouldn't this use the same gene selected already at the top of the page? It seems confusing to again select the gene and tissue here, but maybe there is a reason for that.

      Response: It would be more intuitive to only display genes from a given selected tissue for scatterplots; however, we chose to keep all possible combinations with the [perhaps unnecessary] option of reselecting a tissue to allow users to query any specific gene without having to wait to run the pathways for all that correspond to a given tissues.

      1. Figure 4H should also probably be Figure 1A.

      Response: Good point, the revised Fig 1A is now a summary of the web tool

      I realize I have written a fairly critical review that will require most of the figures to be redone, but I think the underlying method is sound and the implementation by and end-user is quite simple, so I think your group should have no trouble addressing these points.

      Response: Your comments were really helpful and we feel that the tool has significantly improved as a result. So, we are thankful to the time and effort put toward helping here.

      Reviewer #2 (Recommendations For The Authors)

      Comments on the use of "genetic correlation"

      • The use of "genetic correlation" in title and throughout the manuscript is misleading. Should broadly be replaced with "gene expression correlation". Within genetics, "genetic correlation" generally refers to the correlation between traits due to genetic variation, as would be expected under pleiotropy (genetic variation that affects multiple traits). Here, I think the authors are somewhat conflating "genetic" (normally referring to genetic variation) with "gene" (because the data are gene expression phenotypes). I don't think they perform any genetic analysis in the manuscript. I hope I don't sound too harsh. I think the paper still has merit and value, but it is important to correct the terminology.

      Response: This was an important clarification raised by all reviewers. We apologize for the oversight. As a result, all mentions of “genetics” or “genetic data” has been removed, with the exception of introducing mouse genetic reference panels. These have generally been replaced with “transcript correlations”, “correlations” or “correlations across individuals” to avoid confusion.

      • The authors note an important limitation in the Discussion that correlations don't imply a specific causal model between two genes, and furthermore note that statistical procedures (mediation and Mendelian randomization) are dependent on assumptions and really only a well-designed experiment can completely determine the relationship. This is a very important point that I greatly appreciate. I think they could even further expand this discussion. The potential relationships between gene A and gene B are more complex than causal and reactive. For example, a genetic variant or environmental exposure could regulate a gene that then has a cascade of effects on other genes, including A and B. They belong to a shared causal pathway (and are potentially biologically interesting), but it's good to emphasize that correlations can reflect many underlying causal relationships, some more or less interesting biologically.

      Response: We thank the reviewer for pointing this out. We have expanded both the results and discussion sections to mention specifically how correlation between two genes can be due to a variety of parameters, often and not just encompassing their relationship. We mention the importance of considering genetic and environmental variables in these relationships as well which we feel will be an important “take-home message” for the reader. These points were also explored in the revised Fig 2 in terms of investigating broad pathway gene-gene correlation structures. As noted by the reviewer, contexts such as circadian rhythm or other variables in the data which are not fixed show much less overall significance in terms of broad relationships across organs.

      • It would be good for the authors to provide more context for the methods they use, even when they are fully published. For example, stating that biweight midcorrelation (bicor) is an approach for comparing to variables that is more robust to outliers than traditional correlations and is commonly used with gene co-expression correlation.

      Response: Thank you for pointing this out. A lack of method description was also an important reason for lack of clarity on other aspects so we have done our best to detail what exact approaches are being implemented and why. In the revised manuscript, we mention the usage if bicor values to limit influence of outlier individuals in driving regressions, but also point out that it is still a generalized linear model to assess relationships. We hope that the revised methods and expanded git repositories which detail each analysis provide much more transparency on what is being implemented.

      • Performing a similar analysis based on genetic correlation is an interesting idea, as it would potentially simplify the underlying causal models (removing variation that doesn't stem from genetic variants). I don't expect the authors to do this for this paper because it would be a significant amount of work (fitting and testing genetic correlations are not as straightforward). But still, an interesting idea to think about, and individuals in GTEx are genotyped I believe. Could be mentioned in the Discussion.

      Response: Absolutely. While we did not implement and models of genetic correlation (despite misusing the term) in this analysis. We have added to the discussion on how when genetic data is available, these approaches offer another way to tease out potentially causal interactions among the large amount of correlated data occurring for a variety of reasons.

      Comments on use of the term "local" and "regression"

      • "Local" is largely used to mean within-tissue, so how correlated gene X in tissue Y is with other genes in tissue Y. I think this needs to be defined explicitly early in the manuscript or possibly replaced with something like "within-tissue".

      Response: We have replaced al “local” mentions with “within-tissue” or simply name the tissue that the gene is expressed to avoid confusion with other terms of local (ex a transcript in proximity to where it is encoded on the genome).

      • "Regression" is also used frequently throughout, often when I think "correlation" would be more accurate. It's true that the regression coefficient is a function of the correlation between X and Y, but I don't think actual regression (the procedure) applies here. The coefficients being used are bicor, which I don't think relates as cleanly to linear regression.

      Response: Thank you for pointing this out. A lack of method description was also an important reason for lack of clarity on other aspects so we have done our best to detail what exact approaches are being implemented and why. In the revised manuscript, we mention the usage if bicor values to limit influence of outlier individuals in driving correlations, but also point out that it is still a generalized linear model to assess relationships. Further, we have removed usage of “regression” when referencing bicor values. We hope that the revised methods and expanded git repositories which detail each analysis provide much more transparency on what is being implemented.

      • "Further, pan-tissue correlations tend to be dominated by local regressions where a given gene is expressed. This is due to the fact that within-tissue correlations could capture both the regulatory and putative consequences of gene regulation, and distinguishing between the two presents a significant challenge" (lines 219-223). This sentence includes both "local" and "regressions" (and would be improved by my suggested changes I think), but I also don't fully understand the argument of "regulatory and putative consequences". I think the authors should elaborate further. In the examples, the within-tissue correlations do look stronger, suggesting within-tissue regulation that is quite strong and potentially secondary inter-tissue regulation. If that's the idea, I think it can be stated more clearly.

      Response: Thank you for pointing this out. We have revised the sentence to state the following:

      Further, many correlations tend to be dominated by genes expressed within the same organ. This could be due to the fact that, within-tissue correlations could capture both the pathways regulating expression of a gene, as well as potential consequences of changes in expression/function, and distinguishing between the two presents a significant challenge. For example, a GD-CAT query of insulin (INS) expression in pancreas shows exclusive enrichments in pancreas and corresponding pathway terms reflect regulatory mechanisms such as secretion and ion transport (Supplemental Fig 4).

      We feel that this point might not be intuitive, so have included a new figure (Supplemental Fig 4) which contains the tissue correlations and pathways for INS expression in pancreas. These analyses show an example where co-correlation structure seems almost entirely dominated by genes within the same organ (pancreas) and GSEA enrichments highlight many known pathways which are involved in regulating the expression/secretion of the gene/protein. We hope that this makes the point more clearly to the reader.

      Additional comments on Results:

      • I would break the titled Results sections into multiple paragraphs. For example, the first section (lines 84-129) has a few natural breakpoints that I noticed that would potentially make it feel less over-whelming to the reader.

      Response: We have broken up the results section into separate paragraphs in the revised manuscript. In addition, we have gone through to try and make sure that the amount of information per block/sentence focuses on key points.

      • "Expression of a gene and its corresponding protein can show substantial discordances depending on the dataset used" (line 224 of Results). This is a good point, and the authors could include citations here of studies that show discordance between transcripts and proteins, of which there are a good number. They could also add some biological context, such as saying differences could reflect post-translational regulation, etc.

      Response: Thank you for the supportive comment. We have referenced several comprehensive reviews of the topic, each of which contain tables summarizing details of mRNA-protein correlation. The revised discussion sentence is as follows:

      Expression of a gene and its corresponding protein can show substantial discordances depending on the dataset used. These have been discussed in detail39–41, but ranges of co-correlation can vary widely depending on the datasets used and approaches taken. We note that for genes encoding proteins where actions from acute secretion grossly outweigh patterns of gene expression, such as insulin, caution should be taken when interpreting results. As the depth and availability of tissue-specific proteomic levels across diverse individuals continues to increase, an exciting opportunity is presented to explore the applicability of these analyses and identify areas when gene expression is not a sufficient measure.

      1. Liu, Y., Beyer, A. & Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 165, 535–550 (2016).

      2. Maier, T., Güell, M. & Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Letters 583, 3966–3973 (2009).

      3. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet 21, 630–644 (2020).

      • In many ways, this work has similar goals to many studies that have performed multi-tissue WGCNA (e.g., Talukdar et al. 2016; https://doi.org/10.1016/j.cels.2016.02.002). In this manuscript, WGCNA's conventional approach to estimating robust correlations (bicor) is used, but they do not use WGCNA's data reduction/clustering functionality to estimate modules. Perhaps the modules would miss the signaling relationships of interest, being sort of lost in the presence of stronger signals that aren't relevant to the biological questions here. But I think it would be good for the authors to explain why they didn't use the full WGCNA approach.

      Response: This is an important point and we also feel that the previous lack of methodological details and discussion did a poor job at distinguishing why module-based approaches were not used. We wanted to be careful not to emphasize one approach being superior/inferior to another, rather point out the different considerations and when a direct correlation might inform a given question. As the reviewer points out, our general feeling is that adopting a simple gene-focused correlation approach allows users to view mechanisms through the lens of a single gene; however, this is limited in that these could be influenced by cumulative patterns of correlation structure (for example mitochondria in revised Fig 2A) which would be much more apparent in a module-based approach. This comment, in combination with the other listed above, was our motivation in exploring cumulative patterns of gene-gene correlations in the revised Fig 2. In the revised manuscript, we expanded on the results and discussion section to highlight utility of these types of approaches compared to module-based methods:

      The queries provided in GD-CAT use fairly simple linear models to infer organ-organ signaling; however, more sophisticated methods can also be applied in an informative fashion. For example, Koplev et al generated co-expression modules from 9 tissues in the STARNET dataset, where construction of a massive Bayesian network uncovered interactions between correlated modules6. These approaches expanded on analysis of STAGE data to construct network models using WGCNA across tissues and relating these resulting eigenvectors to outcomes42. The generalized approach of constructing cross-tissue gene regulatory modules presents appeal in that genes are able to be viewed in the context of a network with respect to all other gene-tissue combinations. In searching through these types of expanded networks, individuals can identify where the most compelling global relationships occur. One challenge with this type of approach; however, is that coregulated pathways and module members are highly subjective to parameters used to construct GRNs (for example reassignment threshold in WGCNA) and can be difficult in arriving at a “ground truth” for parameter selection. We note that the WGCNA package is also implemented in these analyses, but solely to perform gene-focused correlations using biweight midcorrelation to limit outlier inflation. While the midweight bicorrelation approach to calculate correlations could also be replaced with more sophisticated models, one consideration would be a concern of overfitting models and thus, biasing outcomes.

      Additional comments on Discussion:

      • In the second paragraph of the Discussion (lines 231-244), the authors mention that GD-CAT uses linear models to compare data between organs and point to other methods that use more complex or elaborate models. It's good to cite these methods, but I think they could more directly state that there are limitations to high complexity models, such as over-fitting.

      Response: Thank you for this suggestion. We have added a line (above) mentioning the overfitting concern.

      Comments on Methods:

      • The described gene filtration in the Methods of including genes with non-zero expression for 1.2e6 gene-tissue combinations is confusing. If there are 310 individuals and 18 tissues, for a given gene, aren't there only 5,580 possible data points? Might be helpful to contextualize the cut-off in terms of like the average number of individuals with non-zero expression within a tissue.

      Response: We apologize for this error. This number was pasted from a previous dataset used and not appropriate for this manuscript. In general, we have removed specific mentions of total number of gene_tissue correlation combinations, as these numbers reflect large but almost meaningless quantifications. Instead, we expanded the methods in terms of how individuals and genes filtered.

      • More details should be given about the gene ontology/pathway enrichment analysis. I suspect that a set-based approach (e.g., hypergeometric test) was used, rather than a score-based approach. The authors don't state what universe of genes were used, i.e., the overall set of genes that the reduced set of interest is compared to. Seems like this could or should vary with the tissues that are being compared. A score-based approach could be interesting to consider (https://www.biorxiv.org/content/10.1101/060012v3), using the genetic correlations as the score, as this would remove the unappealing feature of sets being dependent on correlation thresholds. This isn't something that I would demand of the published paper, but it could be an appealing approach for the authors to consider and confirm similar results to the set-based analysis.

      Response: This is an important point. Following this suggestion, we evaluated several different rank- and weight-based pathway enrichment tools, including FGSEA and others. Ultimately, we concluded that GSEA performed significantly better at 1) recapitulating known biology of select secreted protein genes and 2) leveraging the large numbers of genes occurring at qvalue cutoffs without having to further refine (ex. in the previous overrepresentation tests). For this reason, all pathway enrichments in the web tools and manuscripts not contain GSEA outputs and corresponding pathway enrichments or network graph visualizations. Thank you for this suggestion.

      Comments on figures:

      • I think there is a bit of a missed opportunity to use the figures to introduce and build up the story for readers. For example, in Figure 1, plotting ADIPOQ expression against a correlated gene in adipose (local) as well as peripheral tissues. This doesn't need to be done for every example, but I think it would help readers understand what the data are, and what's being detected before jumping into higher level summaries.

      Response: Thank you, this point also builds on others which recommended to restructure the manuscript and figures. In the revised manuscript, we first introduce the web tool (which was last previously), and immediately highlight comparisons of within- and across-organ correlations, such as ADIPOQ. We feel that the revised manuscript presents a superior structure in terms of demonstrating the key points and utility of looking at gene-gene correlations across tissues.

      • Figures 1 and 4 are missing the color scale legend for the bar plots, so it's impossible to tell how significant the enrichments are.

      Response: We apologize for the oversight. The pathways in the revised Fig 1 detail pathway network graphs among the top pathways which should make interpretation more intuitive. We have also gone through and made sure that GSEA enrichment pvalues are now present for all figures including pathways (revised Fig 1, Fig 3 and supplemental Fig 4).

      • The Figure 2 caption says that edges are colored based on correlation sign? Are there any negative correlations (red)? They all look blue to me. The caption could also state that edge weight reflects correlation magnitude (I assume). It would be ideal to include a legend that links a range of the depicted edge weights to their genetic correlation, though I don't know how feasible that may be depending on the package being used to plot the networks.

      Response: Good catch. We included in the revised manuscript the network edge parameters: Network edges represent positive (blue) and negative (red) correlations and the thicknesses are determined by coefficients. They are set for a range of bicor=0.6 (minimum to include) to bicor=0.99

      Related to seeing a dominant pattern of positive correlations, we agree that this observation is fascinating and gene-gene correlations being dominated by positive coefficients will be the topic of a closely-following manuscript from the lab

      • Figure 4A would be more informative as boxplots, which could still include Ssec score. This would allow the reader to get a sense of the variation in correlation p-value across all hippocampus transcripts.

      Response: Related to comments from this reviewer and others, we have removed the previous Fig 4 entirely from the manuscript to emphasize the ability of these gene-gene correlations to capture known biology and limit the extend of unvalidated “suggested” new mechanisms.

      Comments on GD-CAT

      • The online webtool worked nicely for me. It was easy to use and produce figures like in the manuscript. One suggestion is show data points in the scatter plot rather than just the regression line (if that's possible currently, I didn't figure it out). A regression line isn't that interesting to look at, but seeing how noisy the data look around it is something humans can usually interpret intuitively.

      Response: Thank you so much. We are excited that the web tool works sufficiently. We have also revised the individual gene-gene correlation tab to show individual data points instead of simple regression lines.

      Minor comments:

      Response: Thank you for these detailed improvements

      • This sentence is awkwardly constructed: "Here, we surveyed gene-gene genetic correlation structure for ~6.1x10^12 gene pairs across 18 metabolic tissues in 310 individuals where variation of genes such as FGF21, ADIPOQ, GCG and IL6 showed enrichments which recapitulate experimental observations" (lines 68-70). It's an important sentence because it's where in the Abstract/Introduction the authors succinctly state what they did, thus I would re-work it to something like: "Here, we surveyed gene expression correlation structure..., identifying genes, such as FGF21, ADIPOQ, GCG and IL6, that possess correlation networks that recapitulate known biological pathways."

      Response: The numbers of pairs examined and dataset size have been removed for clarity and we have revised this statement and results as a whole

      • Prefer swapping "signal" for "signaling" in line 53 of Abstract/Introduction.

      Response: Done

      • Remove extra period in line 208 of Results.

      Response: Removed

      • Change "well-establish" to "well-established" in line 247 of Discussion.

      Response: Replaced

      • Missing commas in line 302 of Methods.

      Response: added

      • Missing comma in line 485 of Figure 3 caption.

      Response: The previous Fig 3 has been removed

      • Typo in title of Figure 3E (change "Perihperal" to "Peripheral")

      Response: Thank you, changed

      • Add y-axis label to y-axis labels (relative cell proportions) to Supplemental Figures 1-3.

      Response: These labels have been added

      Reviewer #3 (Recommendations For The Authors):

      Minor technical comment: The authors refer to correlations between genes when they actually mean correlations between GTEX transcript isoform models. It is exceedingly important to keep this distinction clear in the reader's mind, a fact that is emphasized by the authors themselves when they comment on the potential value of similar proteomic assays to evaluate multiorgan system communication. GTEx has tried to do proteomics but I do not know of any open data yet.

      Response: Thank you for this point. We have gone through the manuscript and replaced “gene correlations” with “transcript” or other similar mentions. Related to the comment on GTEx proteomics, this is an important point as well. As the reviewer mentions, proteomics has been performed on GTEx data; however, given that this dataset contains only 6 sparsely-represented individuals, analyses such as the ones highlighted in our study remain highly limited. We have added the following to the discussion: As the depth and availability of tissue-specific proteomic levels across diverse individuals continues to increase, an exciting opportunity is presented to explore the applicability of these analyses and identify areas when gene expression is not a sufficient measure. For example, mass-spec proteomics was recently performed on GTEx42; however, given that these data represent 6 individuals, analyses utilizing well-powered inter-individual correlations such as ours which contain 310 individuals remain limited n applications.

      The R/Shiny companion application: The community utility of this application would be greatly improved by a link to a primer and more basic functionality. The Github site is a "work in progress" and does not include a readme file or explanation (that I could find) on the license.

      Response: Thank you, we are excited that the apps operate sufficiently. We have revised the github repository entirely to contain a full walk-through of app details and parameter selections. These are meant to walk users through each step of the pipeline and discuss what is being done at each step. We agree that this updated github repository allows users to understand the details of the R/Shiny app in much more detail. We also made all the app scripts, datasets, markdown/walkthrough files and docker image fully available to enhance accessibility.

    1. Author Response

      We appreciate the reviewers’ and editors’ advice on further improving this manuscript. We have provided point by point responses to the reviewers’ comments mentioned below. A revised version of this manuscript will be uploaded within a few weeks.

      Authors’ response to Reviewer 1 comments:

      • We appreciate the reviewer’s time in highlighting the strengths and weaknesses of this manuscript.

      • Per the reviewer’s advice, we will provide further description of the methods in a revised version of this manuscript.

      • The interpretation about the biological threat in response to elevated glycosuria in renal Glut2 KO mice is based on our observation that these mice exhibit changes in acute phase proteins measured using plasma proteomics. We will further discuss this in a revised version of this manuscript.

      • We acknowledge that this manuscript provides a resource for future mechanistic studies. Because multiple secreted proteins are changed between the control and experimental groups, some of them could be causal and others corelative in the context of enhancing compensatory glucose production in response to elevated glycosuria. Through future studies we will determine the causal proteins that trigger the increase in glucose production and identify the tissues that secrete these proteins.

      • We have shown previously (Cordeiro et al., Diabetologia 2022) that renal Glut2 deficiency doesn’t change insulin sensitivity (i.e. renal Glut2 KO mice don’t exhibit insulin resistance despite the activation of the HPA axis). It is likely that the massive glycosuria in renal Glut2 KO mice may overcome or mask the phenotype of insulin resistance potentially induced by an increase in the stress hormones.

      • In this manuscript, our major goal was to determine how elevated glycosuria leads to an increase in compensatory glucose production. We are not suggesting renal Glut2 as a therapeutic in this manuscript (that was already demonstrated in our previously published manuscript, Cordeiro et al., Diabetologia 2022).

      Authors’ response to Reviewer 2 comments:

      1) Renal Glut2 KO mice didn’t exhibit sex differences for the variables reported in our previous manuscript (Cordeiro et al., Diabetologia 2022). Therefore, in the present manuscript we decided to use male or female mice depending on their availability for each reported experiment. Per the reviewer’s advice, we will describe these details including age and sexes in each figure legend.

      2) For the method description, we have cited previous publications and mentioned ‘as described previously’. Based on the reviewer’s suggestion we will further describe the methods in detail to clarify the reviewer’s concerns. In addition, we will include age and sexes in the legends of each figure.

      3) For littermate controls, we had used Glut2loxp/loxp mice (which are like WT controls as described in Cordeiro et al., Diabetologia 2022) that were injected with tamoxifen exactly in the same way as the experimental mice. Het mice for Cre were not used as controls because they would have confounded the results as pointed out by the reviewer.

      4) Because elevated HPA activity is known to increase blood glucose levels, we suggested ‘the HPA axis may…..’. Given the nature of this manuscript, we agree the secreted proteins identified using plasma proteomics could contribute to enhanced glucose production directly or through secondary mechanisms. Afferent renal denervation using capsaicin reduced blood glucose levels concomitant with the suppression of the HPA axis in renal Glut2 KO mice. Based on these findings we speculated that the HPA axis may be partly responsible for increasing glucose production in renal Glut2 KO mice.

      We had considered using CRF antagonist and glucocorticoid receptor antagonists to determine the causal role of the HPA axis in contributing to the increase in glucose production in renal Glut2 KO mice. However, these drugs activate compensatory mechanisms including changes in insulin sensitivity. Therefore, use of these drugs would further confound the results instead of providing a clarity on the causal role of the HPA axis in enhancing glucose production in renal Glut2 KO mice.

      5) We understand the reviewer’s concerns whether the results reported here are translatable to humans. Please note that expression of SGLT2 is not kidney-specific; therefore, pleiotropic effects of SGLT2 inhibition in tissues other than the kidney cannot be excluded in animal models and humans. In contrast, the mouse model reported in this manuscript is kidney-specific Glut2 KO mice. Therefore, phenotype produced in renal Glut2 KO mice cannot be directly compared with that produced after SGLT2 inhibition. It may be too early to speculate whether the results reported in this manuscript are translatable to humans.

      In the referred research papers by the reviewer, the authors have used either models of different types of diabetes or included individuals with diabetes in their study. Notedly, diabetes itself affects the HPA axis independently of SGLT2 or GLUT2 inhibition. Therefore, it may not be appropriate to compare results obtained from animals or individuals with diabetes with that reported in this manuscript from renal Glut2 KO mice.

      6) Yes, we are currently performing mechanistic studies including assessment of mitochondrial function in renal Glut2 KO mice to determine whether and how the kidneys sense loss of glucose in urine.

      7) We apologize for the lack of methods description. We will provide additional method details in a revised version of this manuscript. All the assays were performed as per manufacturer’s instructions. Aliquots of the same samples were used for analyses of the hormones and for consistency across different assays.

    1. Author Response

      We highly appreciate the constructive feedback provided by the reviewers, which we believe will greatly improve the quality of our work. We were encouraged to see that our manuscript was considered to be “important”, of “great interest” as well as to “yield valuable results”.

      We also highly appreciate the overall positive eLife assessment. However, we were surprised to read that our “results range from solid from inadequate”. This especially applies given the positive and engaging nature of the reviews which seem to mainly concern the results interpretation being “inadequate” rather than the results themselves. Hence, we kindly request a reconsideration of this aspect of the assessment.

      Moreover, there is one Reviewer comment we would like to address directly. Reviewer #3 pointed out that “this study did not conduct a direct association analysis between MetS and cognitive levels without considering subgroup comparisons.” and that “After a thor-ough review of the methods and results sections” she/he “found no direct or strong evidence supporting the authors' claim that the identified latent variables were related to more severe MetS to worse cognitive performance. While a sub-group comparison was conducted, it did not adequately account for confounding factors such as educational level.”.

      We appreciate the observations of Reviewer #3 regarding the absence of a direct association analysis between Metabolic Syndrome (MetS) and cognitive levels without subgroup comparisons, and the lack of evidence linking latent variables to MetS severity and cognitive performance. Our apologies for any confusion caused by unclear presentation. Our study incorporated association analyses between MetS, brain structure, and cognition using MetS components, regional cortical thickness, and cognitive performance data in a PLS. These analyses were separately performed on the UK Biobank and HCHS datasets, due to their distinct cognitive assessments. We adjusted for age, sex, and education in the subgroup analyses by removing their effects from the input variables. The primary latent variables demonstrated significant associations with MetS components, cortical thickness, and cognitive scores, indicating that higher obesity, blood pressure, lipidemia, and glycemia levels correlate with lower cognitive performance. These relationships are detailed in supplementary figures S15b and S16b, with negligible loadings for age, sex, and education, confirming effective deconfounding. We acknowledge the reviewer's constructive feedback and will enhance the clarity of the Methods and Results sections, including conducting a mediation analysis.

      Furthermore, we strive to incorporate the Reviewers’ other suggestions into the analysis. The revision will include major changes to the manuscript.

      In response to Reviewer #1:

      • We will revise considering non-fasting plasma glucose as a surrogate marker of insuline resistance.

      • We will report Field IDs of the used UK Biobank variables.

      • We aim to moderate causal interpretations and reword the indicated passages for clarity.

      In response to Reviewer #2:

      • We will reconsider claims of binarizing vascular dementia and Alzheimer’s dementia pathophysiology.

      • We will further explore the cell type associations of the other latent variables.

      • We will expand the discussion regarding conclusions from our results and the future outlook.

      In response to Reviewer #3.

      • We will add an additional flowchart to detail the virtual histology analysis.

      • We will add a discussion of the second latent variable.

      • We will conduct a mediation analysis to statistically assess the mediation effect of brain structure on the relationship between MetS and cognitive performance.

      We are convinced that with these revisions, our manuscript will align even more closely with the high standards of eLife and make a strong contribution to its distinguished portfolio. We thank you for your consideration.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful to the reviewers for their remarks, which significantly improved the paper. We repeated the biochemical assay concerning SIRT6 activity on H3-K27Ac and quantified the results as requested. Please find our detailed answers bellow each recommendation of the reviewers.

      Major recommendations:

      1. Grammatical errors are still common; the authors may need to consider an external editing service if they intend to fix the problems as they indicate that they believe the errors have been removed. The Results section is relatively clean, but parts of the Abstract, Introduction, and Discussion are more difficult to understand, and errors are especially common in the Methods section and those parts of the manuscript that are new in this revision.

      We corrected the grammatical errors.

      1. The introduction doesn't mention the other structures published; this is considered to be a serious deficiency as it prevents the reader from understanding the context for the contributions described here. Withholding the comparison with (or mention of) the previously published work to the last sentence of the Discussion seems misleading and does not give the reader adequate ability to judge the novelty of the results presented in this manuscript.

      A paragraph comparing our paper to the other structures published appear at the end of the discussion. We feel this is still the right place for such a paragraph.

      1. The addition of the assay for deacetylation is a significant improvement over the initial submission. This is important both for validating the importance of the acidic patch contacts and for helping to resolve the conflicting reports regarding activity on H3-K27Ac. Given the importance of this assay for the impact of the manuscript, it is not clear why the authors chose to 1) put the data in the supplement instead of in the main manuscript, and 2) provide only single samples without quantitation. These both seem to be significant limitations.

      We repeated the experiment and provided quantification of the results. We placed the figure in the main manuscript.

      1. The authors should add text or a table to the Methods section explaining which maps were used for each figure. By our count, there are 8 maps and 5 models (plus MD models) based on two datasets, but the relationships among them are not clearly stated, and the names of the maps (such as "Zn-finger focused" and "Rossman-Fold-Focused") might be changed to be more helpful to the reader (for example, the latter includes more than the Rossman fold and might be renamed "Sirt6-focused"). The authors should also explain how the maps were validated, which data were deposited in public repositories, and why some data were not deposited. For example, no statistics or methods regarding how particles were separated into integrated vs. non-integrated motion are provided for the CryoDRGN models. Further, the "two principle movements" described are depicted in 4 maps from two CryoDRGN runs using two separate sets of particles, but the relationships among them are not defined clearly. Finally, the connectivity of densities in Fig 8 are not obvious in the submitted maps. Until these points are addressed, the work is considered incomplete.

      AND

      1. The PDB model provided for review and submitted to the PDB database shows loosely bound DNA at the nucleosomal entry/exit points near the binding site of SIRT6, but the maps provided for review and submitted to the EMDB show stronger density for the canonical location of the DNA expected at these sites. The CryoDRGN maps support a more extended conformation, but these maps were not deposited or provided for review so their validity cannot be assessed.

      We added a section to the methods listing the different maps used for the figures. We deposited the map we used to trance the H2A N-terminal tail (EMD-18497). Unfortunately, we couldn’t deposit the cryoDRGN maps as the deposition system either accepts composite maps, where the consensus should be deposited too or experimental maps, where the deposition of half maps are mandatory. Nevertheless, the cryoDRGN maps are available upon request. We also added a supplementary figure (Supplementary Fig 6) to show how the cryoDRGN analyses were performed.

      1. The orientation, angle and threshold used in Fig 1 make it difficult to see the multiple DNA orientations that are visible in the deposited consensus map. Examination of the map suggests that the DNA model submitted to PDB corresponds to a weaker DNA conformation than is present in the map where both DNA conformations are visible. The authors should consider modeling both conformations in their deposited model to provide a more complete, accurate representation of the data. It is concerning that a key conclusion of the manuscript is that the DNA conformation changes upon SIRT6 binding, but density for the canonical position is observable in Fig 8a.

      Figure 1 is showing the overall representation of the SIRT6 bound nucleosome structure. We show the DNA linker orientations in the subsequent figure. Figure 8 (now Figure 9) shows the rearrangement of the SIRT6 Rossmann fold domain not the DNA linker.

      1. Figure 4 needs a more complete legend, indicating that it is a hybrid of the consensus structure (one color) and the MD simulations (another color). In general, the colors used in the figure should be changed to make the main points more accessible.

      As there is a color code for the histones, changing colors might be confusing. The figure legend mentions that panels c, d and e are from MD simulations.

      Minor recommendations:

      1. Figures 2c, e, and f are not referenced in the text.

      We now referenced all figure panels in the text.

      1. Consider moving Supp. 5C to Fig. 2 as the models in that figure come from the CryoDRGN maps and not the consensus map.

      Supplemental Figure 5c show the DNA linker deviation upon SIRT6 binding from another angle. We prefer to keep it there.

      1.) Supp Fig 3 is labeled "ZnF-nucleosome" refinement, but this appears to come from Data Set #2 processing. The map might be labeled ZnF-nucleosome but then a mask should be shown that excludes the Rossman Fold. It is not clear if this is a focused refinement or just a 2.9 A map that was merged with the "Rossman-fold" map.

      We changed both supplemental figures accordingly.

      1. The orientation of Fig 2 b and e do not show the differences in these models as well as panels c and f. Panels b and e could be replaced with the 4 CryoDRGN maps.

      The models reflect the cryoDRGN maps and panels c and f were added to clarify the movement.

      1. The MD description should emphasize that the H3 tails are moving with respect to the active site, as it currently suggests the active site is moving.

      In the results and in the discussion section we mention that we observe new conformations of the H3 tail, not of the active site.

      1. The authors refer to the "flexibility of the Rossmann fold domain," but the Rossman Fold domain isn't flexible, the linkage to the ZnF is flexible. Perhaps "observed conformational space" or "dynamic Rossman-fold domain position" are meant.

      The text was changed accordingly.

      1. The H2A C-terminal tail present in Fig 1 (bottom right) and Figure 3e is not present in the model in Fig 4a,b.

      The H2A tails conformation was not resolved in the cryoDRGN maps so we didn’t model it.

      1. The crosslinking agent used is not specified.

      The crosslinking agent used is specified more clearly in the methods.

      1. Supp Table 1 and EM methods do not agree on the magnification for Dataset #1. Verify nominal versus binned magnification and reported pixel size.<br /> The magnification in the methods was changed.

      2. Fig 3F showing the difference between affinity for H2A and H2A.Z-containing nucleosomes would be more convincing with a titration rather than the current comparison of a single concentration.

      We agree with this remark however, we find single concentration comparison is convincing enough for the purposes of this paper as it is not a central finding.

      1. Fig S1 legend; both the Zn-finger and helix bundle are stated to be shown in green.

      Figure S1 legend was changed.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to Reviewers:

      Thank you for taking the time to review our manuscript and provide us with helpful comments. Your comments enabled us to improve the clarity of the manuscript, in particular:

      1. We improved the organization of the figures by associating each supplemental figure with a main-text figure using the eLife “figure supplements” format.

      2. We reduced the length of figure captions where possible.

      3. We improved organizational clarity by adding a brief organizational summary statement at the beginning of the results section which outlines the contents of the results subsections in the context of the introduction. We took particular care to use the same language, so the parallelism is clearer.

      4. In addition, we made various modifications to the main text to improve clarity for the reader. For this we asked specific help of our biologist co-authors to indicate which aspects would benefit from further clarification to enable the broad biology readership of eLife to comprehend our research better.

      Reviewer #1 (Public Review):

      The authors sought to resolve the coordinated functions of the two muscles that primarily power flight in birds (supracoracoideus and pectoralis), with particular focus on the pectoralis. Technology has limited the ability to resolve some details of pectoralis function, so the authors developed a model that can make accurate predictions about this muscle's function during flight. The authors first measured aerodynamic forces, wing shape changes, and pectoralis muscle activity in flying doves. They used cutting-edge techniques for the aerodynamic and wing shape measurements and they used well-established methods to measure activity and length of the pectoralis muscle. The authors then developed two mathematical models to estimate the instantaneous force vector produced by the pectoralis throughout the wing stroke. Finally, the authors applied their mathematical models to other-sized birds in order to compare muscle physiology across species.

      The strength of the methods is that they smoothly incorporate techniques from many complementary fields to generate a comprehensive model of pectoralis muscle function during flight. The high-speed structured-light technique for quantifying surface area during flight is novel and cutting-edge, as is the aerodynamic force platform used. These methods push the boundaries of what has historically been used to quantify their respective aspects of bird flight and their use here is exciting. The methods used for measuring muscle activation and length are standard in the field. Together, these provide both a strong conceptual foundation for the model and highlight its novelty. This model allows for estimations of muscle function that are not feasible to measure in live birds during flight at present. The weakness of this approach is that it relies heavily on a series of assumptions. While the research presented in this paper makes use of powerful methods from multiple fields, those methods each have assumptions inherent to them that simplify the biological system of study. This reduction in the complexity of phenomena allows the specific measurements to be made. In joining the techniques of multiple fields to study the greater complexity of the phenomenon of interest, the assumptions are all incorporated also. Furthermore, assumptions are inherent to mathematical modeling of biological phenomena. That being said, the authors acknowledge and justify their assumptions at each step and their model seems to be quite good at predicting muscle function.

      Indeed, the authors achieve their aims. They effectively integrate methods from multiple disciplines to explore the coordination and function of the pectoralis and supracoracoideus muscles during flight. The conclusions that the authors derive from their model address the intended research aim.

      The authors demonstrate the value of such interdisciplinary research, especially in studying complex behaviors that are difficult or infeasible to measure in living animals. Additionally, this work provides predictions for muscle function that can be tested empirically. These methods are certainly valuable for understanding flight but also have implications for biologists studying movement and muscle function more generally.

      Thank you for your thorough and positive review. We appreciate that you read our manuscript carefully and gave detailed feedback.

      Recommendations For The Authors:

      I thought that your manuscript was very interesting and your integration of techniques from multiple fields was effective. You address the weaknesses I highlighted in the public review well throughout the manuscript.

      Thank you for your well-measured feedback on this weakness and how we addressed it.

      I sometimes found that the manuscript was difficult to follow. With the interdisciplinary nature of your work, your manuscript has a lot of complexity. Your introduction is clear and I think that the last paragraph outlines your study very well. In the subsequent sections, the sub-headings are helpful, but I think your manuscript could be improved by indicating where those subsections fit into the phases you outline in your introduction (namely, muscle function, kinematics and aerodynamics, and mathematical modeling).

      Complied: throughout the manuscript we made modifications to improve the clarity. We also added a brief organizational summary statement at the beginning of the results section which outlines the contents of the results section in the context of the language introduced in the introduction. Finally, we reorganized the supplemental figures into eLife’s favored format of “figure supplements”, so that each extra figure is now associated with a figure in the main text. This should help the reader access information in an easier, hierarchical manner.

      Reviewer #2 (Public Review):

      In this work, the authors investigated the pectoralis work loop and the function of the supracoracoideus muscle in the down stroke during slow flight in doves. The aim of this study was to determine how aerodynamic force is generated, using simultaneous high-speed measurements of the wings' kinematics, aerodynamics, and activation and strain of pectoralis muscles during slow flight. The measurements show a reduction in the angle of attack during mid-downstroke, which induces a peak power factor and facilitates the tensioning of the supracoracoideus tendon with pectoralis power, which then can be released in the up-stroke. By combining the data with a muscle mechanics model, the timely tuning of elastic storage in the supracoracoideus tendon was examined and showed an improvement of the pectoralis work loop shape factor. Finally, other bird species were integrated into the model for a comparative investigation.

      The major strength of the methods is the simultaneous application of four high-speed techniques - to quantify kinematics, aerodynamics and muscle activation and strain - as well as the implementation of the time-resolved data into a muscle mechanics model. With a thorough analysis which supports the conclusions convincingly, the authors achieved their goal of reaching an improved understanding of the interplay of the pectoralis and supracoracoideus muscles during slow flight and the resulting energetic benefits.

      Thank you for your helpful and positive review. We appreciate that you summarized our manuscript accurately in a way that can help the reader.

      Recommendations For The Authors:

      The manuscript is very detailed and appears a bit long, including all the supplementary materials. It seems that the manuscript could easily have been separated into several publications, especially the comparative investigation including other extant bird species into the new model could have been a separate publication. This would have reduced the length of the supplements.

      Thank you for your feedback on our manuscript; we made numerous improvements to improve the readability. Hence, we decided to not cut the supplement short or split it into more papers. We chose eLife because we wanted to publish this study in one complete manuscript. This has three benefits: (1) The reader can find all information in one well-edited paper at one publisher that is open-access and high-quality. (2) The first author works in industry and gets no benefits from publishing multiple papers, and hence he opted to publish one with support of the author team. (3) The senior author is not interested in fragmented publishing. Rather, he writes fewer, more comprehensive integrative papers because that is ultimately more informative for the reader: one trusted published source has all that is important to know based on this completed research project. Overall, we weren’t able to find technical information that shouldn't go in the paper using the lens of reproducibility, so the supplement is relatively long. Combining three methods (kinematics, forces, muscles), of which two are only available in the senior author’s lab, and extensive math (two new integrative models plus scaling laws) requires sharing the information needed for replication for all approaches we combine.

      Also, some figure captions are very long and some of the content might have been included in the main text.

      Complied: thank you for helping us streamline the captions. We reviewed all the figure captions and removed material that is repeated in the main text, but not essential to understanding the figures. However, because of the length of the manuscript and our desire to make the manuscript readable and clear, we left all other text in the captions intact so they remain readable independently of the main text. This way, the reader does not have to go searching for information in the main text just to make sense of the figures. This is especially important because readers often read the figures first before deciding if they want to read the main text completely. In addition, we moved two panels from Figure 2 into its associated figure supplement, because it was not a main point in the text, and hence this helped reduce the length of the caption in figure 2.

    1. Author Response

      The authors wish to thank the Reviewers for valuable and constructive comments that will help up improve the paper’s quality.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript builds upon the authors' previous work on the cross-talk between transcription initiation and post-transcriptional events in yeast gene expression. These prior studies identified an mRNA 'imprinting' phenomenon linked to genes activated by the Rap1 transcription factor (TF), a surprising role for the Sfp1 TF in promoting RNA polymerase II (RNAPII) backtracking, and a role for the non-essential RNAPII subunits Rpb4/7 in the regulation of mRNA decay and translation. Here the authors aimed to extend these observations to provide a more coherent picture of the role of Sfp1 in transcription initiation and subsequent steps in gene expression. They provide evidence for (1) a physical interaction between Sfp1 and Rpb4, (2) Sfp1 binding and stabilization of mRNAs derived from genes whose promoters are bound by both Rap1 and Sfp1 and (3) an effect of Sfp1 on Rpb4 binding or conformation during transcription elongation.

      Strengths:

      This study provides evidence that a TF (yeast Sfp1), in addition to stimulating transcription initiation, can at some target genes interact with their mRNA transcripts and promote their stability. Sfp1 thus has a positive effect on two distinct regulatory steps. Furthermore, evidence is presented indicating that strong Sfp1 mRNA association requires both Rap1 and Sfp1 promoter binding and is increased at a sequence motif near the polyA track of many target mRNAs. Finally, they provide compelling evidence that Sfp1-bound mRNAs have higher levels of RNAPII backtracking and altered Rpb4 association or conformation compared to those not bound by Sfp1.

      Weaknesses:

      The Sfp1-Rpb4 association is supported only by a two-hybrid assay that is poorly described and lacks an important control. Furthermore, there is no evidence that this interaction is direct, nor are the interaction domains on either protein identified (or mutated to address function).

      Indeed, our two hybrid, immunoprecipitation and imaging results do not allow us to conclusively discern whether the interaction between Rpb4 and Sfp1 is direct or indirect. While the interaction holds significance, we consider the direct versus indirect distinction to be of secondary importance in the context of this paper. We intend to give more attention to this matter in our revised paper. In addition, we will make an effort to investigate an in vitro interaction between Sfp1 and Rpb4 by employing purified Sfp1 and Rpb4 proteins.

      The contention that Sfp1 nuclear export to the cytoplasm is transcription-dependent is not well supported by the experiments shown, which are not properly described in the text and are not accompanied by any primary data.

      We note that this assay has been developed and published in prior research by Lee, M. S., M. Henry, and P. A. Silver. (G&D, 1996) and was reported in a number of subsequent papers. Reassuringly, our conclusion is supported by the observation that Sfp1 binds to Pol II transcripts co-transcriptionally suggesting that Sfp1 is exported in the context of the mRNA.

      The presence of Sfp1 in P-bodies is of unclear relevance and the authors do not ask whether Sfp1-bound mRNAs are also present in these condensates.

      In the revised paper, we will indicate that we do not know whether RP mRNAs are present in the actual foci shown in Fig. 1B.

      Further analysis of Sfp1-bound mRNAs would be of interest, particularly to address the question of whether those from ribosomal protein genes and other growth-related genes that are known to display Sfp1 binding in their promoters are regulated (either stabilized or destabilized) by Sfp1.

      Fig. 4A, C and D show that RP mRNAs become destabilized in sfp1Δ cells.

      The authors need to discuss, and ideally address, the apparent paradox that their previous findings showed that Rap1 acts to destabilize its downstream transcripts, i.e. that it has the opposite effect of Sfp1 shown here.

      We would like to thank Reviewer 1 for this valuable comment. In the revised paper, we will delve into our hypothesis suggesting that Rap1 is likely responsible for regulating the imprinting of other proteins, that, in turn, lead to the destabilization of mRNAs, such as Rpb4.

      Finally, recent studies indicate that the drugs used here to measure mRNA stability induce a strong stress response accompanied by rapid and complex effects on transcription. Their relevance to mRNA stability in unstressed cells is questionable.

      Half-lives were determined mainly by the GRO analysis of optimally proliferating cells. This method does not requires any drug or stressful treatment. The results obtained by this method were consistent with the those obtained after thiolutin addition. Nevertheless, in our revised manuscript, we plan to supplement the half-life data with results obtained by subjecting cells to a temperature shift to 42°C, a natural method to block transcription in wild-type (WT) cells. This approach to determine half-lives has been previously reported in our publications, such as Lotan et al. (2005, 2007) and Goler Baron et al. (2008). This may rule out effects of the drug on halfe-life.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Kelbert et al. presents results on the involvement of the yeast transcription factor Sfp1 in the stabilisation of transcripts whose synthesis it stimulates. Sfp1 is known to affect the synthesis of a number of important cellular transcripts, such as many of those that code for ribosomal proteins. The hypothesis that a transcription factor can remain bound to the nascent transcript and affect its cytoplasmic half-life is attractive, but the methods used to demonstrate the half-life effects and the association of Sfp1 with cytoplasmic transcripts remain to be fully validated, as explained in my comments on the results below:

      Comments on methodology and results:

      1. A two-hybrid-based assay for protein-protein interactions identified Sfp1, a transcription factor known for its effects on ribosomal protein gene expression, as interacting with Rpb4, a subunit of RNA polymerase II. Classical two-hybrid experiments depend on the presence of the tested proteins in the nucleus of yeast cells, suggesting that the observed interaction occurs in the nucleus. Unfortunately, the two-hybrid method cannot determine whether the interaction is direct or mediated by nucleic acids.

      Please see our response to comment 1 of Reviewer 1.

      1. Inactivation of nup49, a component of the nuclear pore complex, resulted in the redistribution of GFP-Sfp1 into the cytoplasm at the temperature non-permissive for the nup49-313 strain, suggesting that GFP-Sfp1 is a nucleo-cytoplasmic shuttling protein. This observation confirmed the dynamic nature of the nucleo-cytoplasmic distribution of Sfp1. For example, a similar redistribution to the cytoplasm was previously reported following rapamycin treatment and under starvation (Marion et al., PNAS 2004). In conjunction with the observation of an interaction with Rpb4, the authors observed slower nuclear import kinetics for GFP-Sfp1 in the absence of Rpb4 when cells were transferred to a glucose-containing medium after a period of starvation. Since the redistribution of GFP-Sfp1 was abolished in an rpb1-1/nup49-313 double mutant, the authors concluded that Sfp1 localisation to the cytoplasm depends on transcription. The double mutant yeast cells may show a variety of non-specific effects at the restrictive temperature, and whether transcription is required for Sfp1 cytoplasmic localisation remains incompletely demonstrated.

      We concur with Reviewer 2 that any heat inactivation of a temperature-sensitive (ts) protein can result in non-specific effects. In the instance of rpb1-1, these non-specific effects are anticipated because of the transcriptional arrest, which can eventually lead to a reduction in protein content. However, it is worth noting that this process takes some time, whereas the impact on export is more rapid. We note that that this assay has been developed and published in prior research by Pam Silver (op. cit.) and was reported in a number of subsequent papers. Reassuringly, our conclusion is supported by the observation that Sfp1 binds to Pol II transcripts co-transcriptionally.

      1. Under starvation conditions, which led to the presence of Sfp1 in the cytoplasm and have previously been correlated with a decrease in the transcription of Sfp1 target genes, the authors observed that a plasmid-based expressed GFP-Sfp1 accumulated in cytoplasmic foci. These foci were also labelled by P-body markers such as Dcp2 and Lsm1. The quality of the microscopic images provided does not allow to determine whether Rpb4-RFP colocalises with GFP-Sfp1.

      The submitted PDF figure is of low quality. We believe that high quality figure will be convincing.

      1. To understand to which RNA Sfp1 might bind, the authors used an N-terminally tagged fusion protein in a cross-linking and purification experiment. This method identified 264 transcripts for which the CRAC signal was considered positive and which mostly correspond to abundant mRNAs, including 74 ribosomal protein mRNAs or metabolic enzyme-abundant mRNAs such as PGK1. The authors did not provide evidence for the specificity of the observed CRAC signal, in particular, what would be the background of a similar experiment performed without UV cross-linking. In a validation experiment, the presence of several mRNAs in a purified SFP1 fraction was measured at levels that reflect the relative levels of RNA in a total RNA extract. Negative controls showing that abundant mRNAs not found in the CRAC experiment were clearly depleted from the purified fraction with Sfp1 would be crucial to assessing the specificity of the observed protein-RNA interactions. The CRAC-selected mRNAs were enriched for genes whose expression was previously shown to be upregulated upon Sfp1 overexpression (Albert et al., 2019). The presence of unspliced RPL30 pre-mRNA in the Sfp1 purification was interpreted as a sign of co-transcriptional assembly of Sfp1 into mRNA, but in the absence of valid negative controls, this hypothesis would require further experimental validation.

      We argue that the 264 CRAC+ genes represent a distinct group with many unique features. Moreover, many CRAC+ genes do not fall into the category of highly transcribed genes.

      The biological significance of the 264 CRAC+ mRNAs was demonstrated by various experiments; all are inconsistent with technical flaws. Some examples are:

      1. Fig. 2a and B show that most reads of CRAC+ mRNA were mapped to specific location – close the pA sites.
      2. Fig. 2C shows that most reads of CRAC+ mRNA were mapped to specific RNA motif.

      3. Most RiBi CRAC+ promoter contain Rap1 binding sites (p= 1.9x10-22), whereas the vast majority of RiBi CRAC- promoters do not contain Rap1 binding site. (Fig. 3C).

      4. Fig. 4A shows that RiBi CRAC+ mRNAs become destabilized due to Sfp1 deletion, whereas RiBi CRAC- mRNAs do not. Fig. 4B shows similar results due to

      5. Fig. 6B shows that the impact of Sfp1 on backtracking is substantially higher for CRAC+ than for CRAC- genes. This is most clearly visible in RiBi genes.

      6. Fig. 7A shows that the Sfp1-dependent changes along the transcription units is substantially more rigorous for CRAC+ than for CRAC-.

      7. Fig. S4B Shows that chromatin binding profile of Sfp1 is different for CRAC+ and CRAC- genes

      Moreover, only a portion of the RiBi mRNAs binds Sfp1, despite similar expression of all RiBi.

      Most importantly, these genes do not all fall into the category of highly transcribed genes. On the contrary, as depicted in Figure 6A (green dots), it is evident that CRAC+ genes exhibit a diverse range of Rpb3 ChIP and GRO signals. Furthermore, as illustrated in Figure 7A, when comparing CRAC+ to Q1 (the most highly transcribed genes), it becomes evident that the Rpb4/Rpb3 profile of CRAC+ genes is not a result of high transcription levels. In our revised paper, we will give increased attention to this matter in the Discussion section.

      1. To address the important question of whether co-transcriptional assembly of Spf1 with transcripts could alter their stability, the authors first used a reporter system in which the RPL30 transcription unit is transferred to vectors under different transcriptional contexts, as previously described by the Choder laboratory (Bregman et al. 2011). While RPL30 expressed under an ACT1 promoter was barely detectable, the highest levels of RNA were observed in the context of the native upstream RPL30 sequence when Rap1 binding sites were also present. Sfp1 showed better association with reporter mRNAs containing Rap1 binding sites in the promoter region. However, removal of the Rap1 binding sites from the reporter vector also led to a drastic decrease in reporter mRNA levels. Whether the fraction of co-purified RNA is nuclear and co-transcriptional or not cannot be inferred from these results.

      The proposed co-transcriptional binding of Sfp1 is based on the findings presented in Figure 5C and Figure S2D, as well as the observed binding of Sfp1 to transcripts containing introns, as shown in Figures 2D and 3B. Our conclusion, which we still uphold, was drawn from the results presented in Figure 3. These results led us to the assertion that the "RNA-binding capacity of Sfp1 is regulated by Rap1-binding sites located at the promoter." We maintain our stance on this conclusion. Indeed, the Rap1 binding site does impact mRNA levels, as highlighted by Reviewer 2. However, "construct E," which possesses a promoter with a Rap1 binding site, exhibits lower transcript levels compared to "construct F," which lacks such a binding site in its promoter. Despite this difference in transcript levels, Sfp1 was able to pull down the former transcript but not the latter, even though expression of the former gene is relatively low. Thus, the results appear to be more reliant on the specific capacity of Sfp1 to interact with the transcript rather than on the transcript's expression level.

      1. To complement the biochemical data presented in the first part of the manuscript, the authors turned to the deletion or rapid depletion of SFP1 and used labelling experiments to assess changes in the rate of synthesis, abundance, and decay of mRNAs under these conditions. An important observation was that in the absence of Sfp1, mRNAs encoding ribosomal protein genes not only had a reduced synthesis rate but also an increased degradation rate. This important observation needs careful validation, as genomic run-on experiments were used to measure half-lives, and this particular method was found to give results that correlated poorly with other measures of half-life in yeast (e.g. Chappelboim et al., 2022 for a comparison). Similarly, the use of thiolutin to block transcription as a method of assessing mRNA half-life has been reported to be problematic, as thiolutin can specifically inhibit the degradation of ribosomal protein mRNA (Pelechano & Perez-Ortin, 2008). Specific repressible reporters, such as those used by Baudrimont et al. (2017), would need to be tested to validate the effect of Sfp1 on the half-life of specific mRNAs. Also, it would be very difficult to infer from the images presented whether the rate of deadenylation is altered by Sfp1.

      Various methods exist for assessing mRNA half-lives (HLs), and each of them carries its own set of challenges and biases. Consequently, it becomes problematic to directly compare HL values of a specific mRNA when different methods are employed. The superiority of one particular method over others remains unclear. However, they all exhibit a high degree of reliability when it comes to comparing different strains under the identical conditions using a single method.

      Estimating half-lives through the GRO approach is a non-invasive method, applied on optimally proliferating cells, which has been employed in numerous publications. While no method is without its limitations, we consider this approach to be among the most dependable. Our HL determination using thiolutin to block transcription provided results that were consistent with the values obtained by the GRO approach.

      Nevertheless, in our revised manuscript, we plan to supplement the HL data, obtain by thiolutin, with results obtained by subjecting cells to a temperature shift to 42°C, a natural method to block transcription in wild-type (WT) cells. This approach to determine HLs has been previously reported in our publications, such as Lotan et al. (2005, 2007) and Goler Baron et al. (2008).

      1. The effects of SFP1 on transcription were investigated by chromatin purification with Rpb3, a subunit of RNA polymerase, and the results were compared with synthesis rates determined by genomic run-on experiments. The decrease in polII presence on transcripts in the absence of SFP1 was not accompanied by a marked decrease in transcript output, suggesting an effect of Sfp1 in ensuring robust transcription and avoiding RNA polymerase backtracking. To further investigate the phenotypes associated with the depletion or absence of Sfp1, the authors examined the presence of Rpb4 along transcription units compared to Rpb3. One effect of spf1 deficiency was that this ratio, which decreased from the start of transcription towards the end of transcripts, increased slightly. The results presented are largely correlative and could arise from the focus on very specific types of mRNAs, such as those of ribosomal protein genes, which are sensitive to stress and are targeted by very active RNA degradation mechanisms activated, for example, under heat stress (Bresson et al., 2020).

      Figure 7A illustrates a significant reduction in Rpb4/Rpb3 ratios along the transcription unit in WT cells. This reduction is notably more pronounced in CRAC+ genes compared to the highly transcribed quartile (Q1), which includes all ribosomal protein (RP) genes, and it is completely absent in sfp1∆ cells. Furthermore, it's important to highlight that the CRAC+ gene group displays a wide range of transcription rates, as measured by either Rpb3 ChIP or GRO (Figure 6A). Given these observations, it is challenging to reconcile how the heightened sensitivity of RP mRNA degradation in response to stress could account for the more pronounced differences in the configuration of the Pol II elongation complex that are detected in CRAC+ genes under standard culture conditions in wt cells.

      Correlative studies are particularly informative when a gene mutation eliminates a correlation, and this is precisely the type of study depicted in Figure 7B-C. The configuration of elongating Pol II (as reflected by Rpb4/Rpb3 ratios) and the backtracking index are both transcriptional outputs. It is difficult to envision how stress-induced destabilization of RP mRNAs could explain the twofold higher correlation between these two parameters observed in CRAC+ genes under non-stressful conditions in WT cells (Figure 7B).

      Furthermore, it's worth noting that in WT cells, CRAC+ genes did not display any apparent unusual destabilization, but rather exhibited higher (not lower) mRNA stability compared to CRAC- genes (Figure 7C).

      Strengths: - Diversity of experimental approaches used - Validation of large-scale results with appropriate reporters

      Weaknesses: - Choice of evaluation method to test mRNA half-life - Lack of controls for the CRAC results

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Weaknesses: One minor weakness in this study is the conclusion that the guide RNAs didn't seem to have unique effects on GnRH cFos expression or the reproductive phenotypes. Though the data indicate a 60-70% knockdown for both gRNA2 and gRNA3, 3 of the 4 gRNA2 mice had no cFos expression in GnRH neurons during the time of the LH surge, whereas all mice receiving gRNA3 had at least some cFos/GnRH co-expression. In addition, when mice were re-categorized based on reduction (>75%) in kisspeptin expression, most of the mice in the unilateral or bilateral groups received gRNA2, whereas many of the mice that received gRNA3 were in the "normal" group with no disruption in kisspeptin expression. Thus, additional experiments with increased sample sizes are needed, even if the efficacy of the ESR1 knockdown was comparable before concluding these 2 gRNAs don't result in unique reproductive effects.

      Response: A draw back of the CRISPR approach is the substantial mosaicism in gene knockdown that is unavoidable due to the nature of DNA repair in each cell relying on several competing pathways. As such, variable knockdown occurs in each mouse as shown in Fig.1C. In the case of the correlation between RP3V ESR1 knockdown and cFos in GnRH neurons (Fig.4C), three gRNA3 and four 4 gRNA2 mice look to be very similar with two gRNA3 mice having knockdown but normal cFos activation. The reasons for this are not known and it is very likely chance that these two (of nine) mice happened to have received gRNA3. This issue becomes exacerbated when animal group numbers unintentionally become smaller with the re-grouping on the basis of kisspeptin expression. The key point here is that each “kisspeptin grouping” remains mixed in terms of gRNA2 and gRNA3 mice so that gRNA3 mice did contribute to the “bilateral group” even if it was only one of four mice. The practicalities of repeating this work are substantial and we do not think justified. We would note that we have previously used Kiss-Cre mice to undertake CRISPR knockdown of ESR1 in RP3V kisspeptin neurons but this failed to target sufficient cells with Cas9 to be experimentally useful.

      In Figure 2B (gRNA2), there appear to be 4 mice (4 lines) that have a normal cycle length and then drop to 0 for the cycle length. However, in the Figure legend, it states that there were 3 gRNA2 mice that had a cycle length of 0. Can the authors clarify if it was 4 mice (as indicated in Figure 2B) or 3 mice (as indicated in the legend) that received gRNA2 and exhibited constant estrus?

      Response: We have now clarified in the text that 3 gRNA2 mice went into constant estrus, the other mouse was in constant diestrus, also scored as “0” cycles.

      In Figure 3H, there is one green data point that has an LH level of around 0.15 and % VGAT with ESR1 around 10%. However, that data point does not appear in Figures 3I and 3J, when you would expect it to be in a similar place (~10%) on the x-axis in those Figures. Was it excluded? If so, please elaborate on the justification for excluding that data point. Response: This was one of the three mice that exhibited no LH pulses so we were only able to report on mean LH levels.

      Similarly, in Figure 3K, there is a blue data point that is almost at 0 for both the x-axis and the y-axis. However, that data point does not show up in Figures 3L and 3M around 0 on the x-axis as you would expect. Can the authors clarify where this data point went in Figures 3L and 3M?

      Response: This was one of the three mice that exhibited no LH pulses so we were only able to report on mean LH levels.

      Reviewer #2 (Recommendations For The Authors):

      Finally, the study leaves unanswered the role of GABA itself. As there was no evident phenotype for the ESR1 knockdown in GABA neurons that do not coexpress kisspeptin, this suggests that GABA neurotransmission in the preoptic area is not involved in the estrogen regulation of LH secretion.

      Response: The current evidence for no substantial role of GABA from RP3V neurons in the LH surge agrees with our prior in vivo work showing that low frequency optogenetic stimulation of RP3V kisspeptin neurons (only GABA release) has no impact on LH secretion (doi: 10.1523/JNEUROSCI.0658-18.2018).

      1. Title. The present data do not clearly demonstrate the blockade of the LH surge. Thus, the statement that "abolishes the preovulatory surge" is an overinterpretation of the findings.

      Response: We agree and now use “suppresses the preovulatory surge”.

      1. Fig. 3. The numbers of individual data points per group change for the different LH pulse parameters, but they should not (Fig. 3 E-G).

      Response: This occurs because one mouse in each group had no LH pulses so that only a mean value was available for these mice.

      1. Fig. 4. (4B) The use of only one terminal blood collection (4B) is insufficient to comprehensively characterize the LH surge. It is not possible to conclude what was the actual effect on the LH surge, whether a blockade or altered amplitude or timing. Serial blood samples at 30- or 60-minute intervals should be used. For comparative purposes, the pulsatile LH secretion, which does not seem to be a major outcome in the study, was fully characterized (Fig. 3). (4C) The linear correlation between c-Fos/GnRH and RP3V/ESR1 appears to be well-fitted for gRNA2 (blue) but not gRNA3 (green). Although this is interpreted as an important result of the study, its description and consistency are not so clear. Authors should perform an Anova/ Kruskal-Wallis analysis of these data as a column graph (as in Fig. 4A, B) and discuss the discrepancies between gRNA2 and gRNA3.

      Response: As noted in the manuscript, we agree that a single point LH measurement is a relatively inaccurate assessment of the LH surge and very likely underlies much of the substantial variability between mice. However, the extended duration of cFos expression in GnRH neurons at the time of the surge is a much more accurate “single point” indicator and we feel that these results better reflect the state of surge activation. This was noted in the original manuscript.

      The linear correlations for the different preoptic regions are undertaken on the complete data set not on individual gRNA groups due to low N numbers in the sub-divided groups. However, column graphs of the RP3V and MPN look the same as Fig.4A and would not change the current interpretation. Please see comments to Reviewer 1 on discrepancies between gRNA2 and 3.

      1. Table. It is unclear why the % VGAT with ESR1 was not statistically reduced in the "bilateral" animals. Would this mean that the ESR1 knockdown was not effective in this subgroup with the more consistent effects?

      Response: Yes, this would be a reasonable interpretation suggesting that mice with kisspeptin ablation may have had a slightly different overall impact on ESR1 in VGAT neurons. However, this was not discernable from examining the anatomical distribution of AAV.

      1. Discussion 1st paragraph. It is interpreted that mice lacking kisspeptin expression "failed to exhibit an LH surge". This should be revised.

      Response: We believe that this is a correct statement. Mice lacking kisspeptin had LH surge values between 0.8 and 2.1 ng/ml that we would not consider consistent with being a surge.

      1. Immunohistochemistry. It is not clear in the text how a cross-reaction between goat antirabbit 568 (ERa) and goat antirabbit/streptavidin 647 (mChery) was avoided when used in the same reaction.

      Response: We were forced into this option due to the lack of different primary antisera to ESR1 and mCherry. We first stained for rabbit ESR1 detected by biotin anti-rabbit/ strep647 which resulted in confined nuclear staining (pseudo-blue; far red). The subsequent staining for rabbit mCherry was detected by goat anti-rabbit 568 that will indeed cross-react by binding to any free epitopes on the rabbit ESR1 primary antibody. However, this would not compromise interpretation as additional 568 labelling to the nucleus is essentially irrelevant when examining far red 647 nm emission and only mCherry cytoplasmic immunoreactivity was used to define the anatomical locations of the AAV spread. This is now clearly explained in the Methods section.

      1. Statistical analysis. It is unclear when repeated measures Wilcoxon tests were used in the manuscript.

      Response: Thank you for pointing this out. Only Wilcoxon paired test were used. Amended.

      1. Data Availability. Further reference to supplementary information files was not found in the manuscript.

      Response: A supplementary file with individual data for each mouse is now attached.

      Reviewer #3 (Recommendations For The Authors):

      Weaknesses:

      One aspect for which I have ambiguous feelings is the minimal level of detail regarding the HPG axis and its regulation by estrogens. This limited amount of detail allows for an easy read with the well-articulated introduction quickly presenting the framework of the study. Although not presenting the axis itself nor mentioning the position of GnRH neurons in this axis or its lack of ERα expression is not detrimental to the understanding of the study, presenting at least the position of GnRH neurons in the axis and their critical role for fertility would likely broaden the impact of this work beyond a rather specialist audience.

      Response: We agree that this would provide a more complete picture and have modified the Introduction.

      The expression of kisspeptin constitutes a key element for the analysis and conclusion of the present work. However, the quality of the kisspeptin immunostaining seems suboptimal based on the representative images. The staining primarily consists of light punctuated structures and it is very difficult to delineate cytoplasmic immunoreactive material defining the shape of neurons in LacZ animals. For some of the cells marked by an arrow, it is also sometimes difficult to determine whether the staining for ESR1 and Kp are in the same focal plane and thus belong to the same neurons. Although this co-expression is not critical for the conclusions of the study, this begs the question of whether Kp expression was determined directly at the microscope (where the focal plan can be adjusted) or on the picture (without possible focal adjustment). Moreover, in the representative image of Kp loss, several nuclei stained for fos (black) show superimposed brown staining looking like a dense nucleus (but smaller than an actual nucleus). This suggests some sort of condensed accumulation of Kp immunoproduct in the nucleus which is not commented. Given the critical importance of this reported change in Kp expression for the interpretation of the present results, it is important to provide strong evidence of the quality/nature of this staining and its analysis which may help interpret the observed functional phenotype.

      Response: The kisspeptin immunoreactivity represents both fiber and cytoplasmic staining that can be difficult to discern in some cases. The reviewer can be assured that all counts were undertaken “live” on the microscope so that the plane of focus was adjusted to establish co-labelling. Please note that the nuclear immunoreactivity is for ESR1 and not cFos. Regardless, we struggle to see condensed brown staining over the black nuclei as suggested by the Reviewer. The kisspeptin staining is light brown and confined to just a few fibers in Fig.5B.

      As acknowledged in the introduction, this study is not the first to use in vivo Crisp-Cas editing to demonstrate the role of kisspeptin neurons in the control of positive feedback. Although the present work achieved this indirectly by targeting VGAT neurons, I was surprised that the paper did not include more comparison of their results with those of Wang et al., 2019. In particular, why was the present approach more successful in achieving both lack of surge and complete acyclicity?

      Response: Wang et al., reported an ~60% reduction in ESR1 expression in Kiss1-Cre (Elias) driven Cas9-expressing cells in the AVPV. As they did not examine kisspeptin expression itself it is unknown to what degree their editing impacted upon kisspeptin neurons. The other differentiating factor was that Wang focussed on the AVPV that only contains a minority of the preoptic kisspeptin population whereas we targeted the AVPV and PeN together. Thus, we suspect that the Wang phenotype arises from insufficient ESR1 knockdown in just the AVPV sub-population of preoptic kisspeptin neurons. We have added a comment to the Discussion as requested.

      Moreover, why is it that targeting ESR1 in a selected fraction of GABAergic neurons can lead to a near-complete absence of Kp expression in this region? This is briefly discussed in the penultimate paragraph but mostly focuses on the non-kisspeptinergic GABA neurons rather than those co-expressing the two markers.

      Response: We have modified this section to try and make it clear that it is very likely that all RP3V kisspeptin neurons would have been targeted to express Cas9 in this mouse model. Our very recent unpublished RNA scope data show that >80% of RP3V kisspeptin neurons express Vgat mRNA in adult mice.

      • Unless I have missed it, the target sequence of the guide RNAs is not mentioned. For reproducibility purposes and to allow comparison with Wang et al., 2019, this information should be provided.

      Response: The target sequences for gRNA2 and gRNA3 were around exon 3 and are provided in the Supplementary files of McQuillan et al., 2022 (https://doi.org/10.1038/s41467-022-35243-z). The Wang et al study used the unusual strategy of designing sense and antisense gRNAs against the same sequence in Exon1.

      • The first result section is devoted to the design and validation of the guide RNA reports data that were recently published (McQuillan et al., 2022). It is actually acknowledged that the design was reported previously but as written it is not clear whether the actual validation was already reported. This should be said more clearly.

      Response: Clarified as requested.

      • What was the rationale for choosing gRNA 2 and 3 and not 3 and 6 like in the McQuillan study?

      Response: As all three gRNAs worked equally well, the choice of 2 and 3 was entirely pragmatic and only based upon quantities of packaged AAVs that we had produced and were available at the time.

      • Introduction, 4th paragraph: It would be clearer if GABAa receptor dynamics was replaced by GABAa receptors mediated neurotransmission or any other verbiage avoiding possible confusion with receptor mobility.

      Response: Clarified as requested.

      • The section reporting the location of ESR1 knockdown is really clear about the number of animals included in the functional analyses. This is less clear for the number of mice involved in the evaluation of the extent of ESR1 knockdown in the previous section. Specifically, the text reports that 8 and 9 mice received gRNA3 in PVpo and MPN respectively, but the figure shows 7 and 8. This is likely explained by the mouse that was excluded due to normal ESR1 despite the correct positioning of the injection site. It is thus unclear whether this mouse was included in the calculation of the mean percentage of neurons reported in the previous page. Logically, this mouse should have been removed from this analysis and it is assumed that the sample size reported in the text is incorrect.

      Response: thank you for picking this up - you are correct. In reviewing this point we realized that the gRNA-lacZ RP3V N numbers also were incorrect and have re-analyzed the data set completely resulting in even stronger significance levels.

      • In the section « CRISPR knockdown ESR1 in RP3V GABA-kisspeptin neurons », the extent of ESR1 knockdown is expressed in a counterintuitive manner as « <20% » which is thought to represent the percentage of cells expressing ESR1 rather than the actual knockdown (>80%). This should be clarified.

      Response: Corrected as noted.

      • Page 6, 3rd line before the last paragraph, there is a mismatch between the highest p value reported in the text (0.242) and the value reported in the table (0.0242).

      Response: Corrected thank you.

      • Similar to presenting F values for ANOVAs, H values should also be presented for Kruskal Wallis tests.

      Response: Values have been added.

      • Immunohistochemistry : Origin and reference numbers of all primary antibodies should be reported as well as citation of studies where they have been validated. Although these protocols are standard, information regarding the duration of incubation is necessary to allow replication or for comparison purposes.

      Response: We have included the RRID numbers for each of these antisera and added information on incubation times.

      • The section on data availability mentions the existence of supplementary files, but I see none.

      Response: These have now been attached.

      • There are several typos or redundancies to be corrected. Here are a few examples but the manuscript should be carefully double-checked.

      Introduction, 3rd paragraph, line 4: upregulated

      Introduction, 4th paragraph, 4th line: « to » or « through » not both.

      Page 7, line 11 : Kruskal

      Page 7, 6th line to the end: does this indicate 'the' general utility?

      Page 8, 2nd paragraph, line 13: Crispr

      Response: Thank you for these edits.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the Authors):

      The authors provide their data and code via Github, and that shiny apps allow easy access to their data. However, spending a few minutes with the snRNAseq app I could not figure out how to search for individual genes (e.g. DBH) on their web interface. Some changes could help to make this app more user-friendly.

      While it was not possible to easily modify the user interface of the snRNA-seq app itself, we have instead added two additional supplementary figures displaying screenshots and schematics with sequential instructions that provide a short tutorial showing how to search for individual genes and display either spatial gene expression (for the Visium SRT data) or gene expression by cluster or population (for the snRNA-seq data) in each interactive web app (Figure 3-figure supplement 20-21). We hope this makes the apps more accessible and assists users to more easily query specific genes that they are interested in.

      The first sentence of the abstract and line 70 on page 2 need to be revised for language / grammar / clarity.

      We have revised these two sentences. Line 70 on page 2 contained a typo / copy-paste error. Thank you for pointing this out.

      Reviewer #2 (Recommendations For The Authors):

      While the efforts of the authors to identify NE neurons in the LC is appreciated, the data fall a little short of conclusively calling these neurons solely noradrenergic as there is an apparent lack of overlap between TH and SLC6A2 in the spots. Undoubtedly, some spots contain both which is consistent with the RNA scope results, but there is clearly a pattern that shows spots that don't contain both. It would be worth testing the presence of other catecholamines in some of these certain spots particularly dopamine (Kempadoo et al. 2016, Takeuchi et al., 2016, Devoto et al. 2005).

      We agree this is an important point. To more rigorously investigate whether TH is co-expressed within cells that produce other catecholamines, particularly dopamine (DA) in addition to norepinephrine (NE), we have included additional analyses of the snRNA-seq and Visium data, as well as generated additional RNAscope data in the revised manuscript, as follows.

      (i) We investigated the spatial expression of DA neuron marker genes besides TH, including SLC6A3 (encoding the dopamine transporter), ALDH1A1, and SLC26A7 in the Visium samples (Figure 3-figure supplement 15), which shows that these genes are not strongly expressed within the manually annotated LC regions in the Visium samples (see Figure 2-figure supplement 1).

      (ii) We investigated expression of DA neuron marker genes SLC6A3, ALDH1A1, and SLC26A7 in the snRNA-seq clustering (updated heatmap in Figure 3-figure supplement 8), which shows minimal expression of these genes within the NE neuron cluster (cluster 6).

      (iii) Despite the data above suggesting little expression of markers for DA neurons within the human LC, we wanted to investigate this question more thoroughly with an orthogonal method given that relatively lower coverage in the sequencing approaches may miss expression, particularly for more lowly expressed transcripts. We generated new high-resolution RNAscope smFISH images at 40x magnification for samples from 3 additional donors (Br8689, Br5529, and Br5426) showing expression of NE neuron marker genes (DBH and TH), a 5-HT neuron marker gene (TPH2), and a DA neuron marker gene (SLC6A3) within individual cells within the LC regions in these samples. Expression of SLC6A3 within individual NE neurons (identified by co-expression of DBH and TH) was not apparent in these RNAscope images (Figure 3-figure supplement 16).

      Together with the previous high-magnification RNAscope images showing co-expression of NE neuron marker genes (DBH, TH, and SLC6A2) within individual NE neurons (Figure 3-figure supplement 4), these new results further strengthen the conclusion that the observed TH+ cells we profiled in the LC are NE-producing neurons. In our view, the lack of observed co-expression of TH and SLC6A2 within some individual Visium spots is likely due to sampling variability and relatively lower sequencing coverage in the Visium data, rather than a true lack of co-expression. We have included additional text in the Results and Discussion further discussing this issue.

      Likewise, given the low throughput of RNA scope, and the fact that it was not done in a systematic manner, it does not conclusively identify the cell types in the region. It might be worth a systematic survey of the cells in the region with both NE and DA markers. Otherwise, it is suggested that the authors be more conservative with their annotations.

      As discussed above, we have now generated additional high-magnification RNAscope images for 3 independent donors (Br8689, Br5529, and Br5426), visualizing expression of two NE neuron marker genes (DBH and TH), one 5-HT neuron marker gene (TPH2), and one DA neuron marker gene (SLC6A3, encoding the dopamine transporter) within individual cells within the LC region in each sample (Figure 3-figure supplement 16). Expression of the DA neuron marker gene (SLC6A3) within individual NE neuron cell bodies (identified by co-expression of DBH and TH) was not apparent in these RNAscope images. Together with our previous RNAscope images showing co-expression of DBH, TH, and SLC6A2 within individual cells (Figure 3-figure supplement 4), in our view, these results provide strong evidence that the observed TH+ cells in the LC are NE-producing neurons, and the data do not provide supporting evidence for the existence of DA-synthesizing neurons in the human LC.

      For the manual annotation, it would be useful to include HE tissue images to better understand how the annotations were derived especially because the annotations are not well corroborated by the clustering.

      We have now included the H&E stained histology images for the Visium samples in Figure 2-figure supplement 2A, which can be compared with the previous figures showing the manual annotations for the LC regions (Figure 2-figure supplement 1). The histology images can also be viewed at higher resolution through the Shiny web app (https://libd.shinyapps.io/locus-c_Visium/).

      The unsupervised clustering is certainly contingent on the number of genes detected, which is in turn dependent on the quality of the material and the success of the experiment. It is unclear from the methods whether the samples were pooled for clustering. If they were pooled, the author might consider using only the samples with UMIs > 500. The low UMI may represent free-floating RNA, suggesting issues with tissue permeabilization in turn influencing the ability to confidently associate genes with spots. Sticking with the higher quality sample may improve the ability to perform unsupervised clustering.

      For the spot-level unsupervised clustering using BayesSpace, our aim was to demonstrate whether it is feasible to segment the LC and non-LC regions in the Visium samples in a data-driven manner using a spatial clustering algorithm, instead of relying on manual annotations. We performed clustering across samples (i.e. pooled) -- we have included additional wording in the text and figure caption to clarify this. We agree with the reviewer there may be further optimizations possible, such as filtering out spots or samples with low UMI counts. However, filtering out low-UMI spots may also confound the clustering if low-UMI spots are associated with biological signal (e.g. preferentially located in white matter regions).

      Overall, we found that applying data-driven methods such as BayesSpace to segment the LC and non-LC regions did not perform sufficiently to rely on for our downstream analyses (Figure 2-figure supplement 6), and, in our view, further incremental optimizations were unlikely to reach sufficient performance and robustness, so we chose to rely on the manual annotations instead. In addition, as noted in the Results, this avoids potentially inflated false discoveries due to issues of circularity when performing differential gene expression testing between regions defined by unsupervised clustering on the same sets of genes (Gao et al. 2022). We included the BayesSpace results (Figure 2-figure supplement 6) to provide information and ideas to method developers interested in using this dataset as a test case for further development of spatial clustering algorithms. However, further adapting or optimizing these spatial clustering algorithms ourselves was not within the scope of our current work.

      It is not entirely clear why the authors used FANS, especially with the scored tissue. Do the authors think this could have negatively influenced the capture of the desired cell type since FANS can compromise the integrity of the nuclei? In other words, have the authors considered that this may have resulted in a loss rather than enrichment? The proportion of "NE" neurons in the snRNA-Seq data is less than 2% in all cases and at its lowest in sample 6522 which does not correspond well with the proportion of tissue that was manually annotated as containing NE cells, even when taken into consideration the potential size difference of cells. In the same vein, in some samples, there are more "5-HT" neurons in the region than "NE" according to the numbers.

      As noted in our initial response to reviewers (“Response to Public Review Comments”), we used FANS to enrich for neurons based on our previous success with this approach to identify relatively rare neuronal populations in other brain regions (e.g. nucleus accumbens and amygdala; Tran and Maynard et al. 2021). Based on this previous work, our rationale was that without neuronal enrichment, we could potentially miss the LC-NE population, given the relative scarcity and low absolute number of this neuronal population (e.g. estimates of ~50K total in the entire human LC).

      We do not have a definitive answer to the question of whether our use of FANS to enrich for neurons may have led to damage and contributed to the low recovery rate of LC-NE neurons (as well as the relatively increased levels of mitochondrial contamination compared to other brain regions / preparations in the human brain in our hands). Due to our limited tissue resources for this study, we did not have sufficient tissue to perform a direct comparison with non-sorted data. However, we agree with the reviewer that this is plausible, and warrants further investigation in future work. In particular, the relatively large size and fragility of LC-NE neurons, as well as our use of a standard cell straining approach (70 µm, which may not be ideal for this population), may also be contributing factors.

      Systematically optimizing the preparation to attempt to increase recovery rate (and decrease mitochondrial contamination) are important avenues for future work, and we have decided to share our data and experiences now to assist other groups performing related work. We have included additional wording in the Discussion to further highlight these issues.

      The majority of the snRNA-seq remained unannotated "ambiguous" neurons. It would be highly advantageous to include an annotation for these numerous cells.

      These nuclei were unidentifiable due to ambiguous marker gene expression profiles, i.e. expression of pan-neuronal marker genes without clear expression of either excitatory or inhibitory neuronal marker genes (see Figure 3A and Figure 3-figure supplement 8). Since we were not able to clearly identify these clusters, and due to our additional concerns regarding the data quality (e.g. low recovery rate of the NE neuron population of interest, potential cell damage, and mitochondrial contamination), we decided to label these neuronal clusters as “ambiguous” instead of assigning low-confidence cluster labels. We have included additional wording in the Results section to explain this issue.

      The most likely explanation for identifying serotonergic neurons in these samples is the inclusion of the Raphe Nucleus within the dissection, especially since these cells do not map to the LC per se. As such, is there a way to neuroanatomically define the potential inclusion of this region from these tissue blocks used? Or to the contrary, definitively demonstrate the exclusion of the Raphe?

      As noted in our initial response to reviewers (“Response to Public Review Comments”), our dissection strategy in this initial study precluded the ability to keep track of the exact orientation of the tissue sections on the Visium arrays with respect to their location within the brainstem. Therefore, it is not possible to definitively answer the question of whether the dissections included the raphe nucleus, and if so, which portion of it, based on neuroanatomy from the tissue blocks.

      However, during the course of this study and in parallel, ongoing work for other small, challenging brain regions, we developed a number of specialized technical and logistical strategies for keeping track of orientation and mounting serial sections from the same tissue block onto a single spatial array, which is extremely technically challenging. We are now well-prepared for addressing these issues in future studies, e.g. keeping track of the orientation of the dissections and potential inclusion of adjacent neuroanatomical structures. We have included additional details on this issue in the Discussion.

      Given that one sample (Visium capture area) was excluded as it did not seem to contain a representation of the LC for the profiling of "NE" cells, does it make sense to include this sample in the analysis of 5HT cells given the authors are trying to make claims about the cell composition in and around the LC? Since there appears to be little 5HT contribution from this sample and its inclusion results in inconsistency across experiments and not any notable advantages, the authors might want to reconsider its inclusion in the results.

      We identified a cluster of 5-HT neurons in the snRNA-seq data (Figure 3) and used the Visium samples to further investigate the spatial distribution of this population (Figure 3-figure supplement 9). For the enrichment analyses in the Visium data (Figure 3-figure supplement 9C), we used only the 8 Visium samples that passed quality control (QC). We included the 9th sample (which did not pass QC) in the spot plot visualizations (Figure 3-figure supplement 9A-B) for completeness, but did not base our main conclusions on this sample (in this sample, the tissue resource was likely depleted during earlier sections, so the section for the Visium sample was taken slightly past the extent of the LC within this tissue block). We have included additional wording in the Results section and figure captions to clarify this issue.

      For the RNAscope images, it would be useful to include (draw) the manual annotation of the LC to facilitate interpretation. This is especially useful for demonstrating the separate populations of 5HT and "NE" cells. In general, it would be useful to keep a hashed line perimeter for all sections processed by Visium.

      We have now added a dashed outline indicating the manually annotated LC region in the RNAscope image showing the full tissue section (Figure 3-figure supplement 11). The high-magnification RNAscope images (Figure 3-figure supplement 4, 16, and 17) show regions entirely within the LC regions -- we have included additional wording to note this in the figure captions. For the Visium spot

      plots, we either labeled spots within the annotated regions within the figures or included additional wording in the figure captions to refer to the figures showing the annotations (Figure 2-figure supplement 1).

      The authors state that they successfully mapped the NE neuron population from snRNA-seq to the manually annotated regions on the Visium slides. Based on the color-coded map, these results are not very convincing since the abundance of the given transcript profile is extremely low. Here again, it would help to draw a hashed line perimeter on the slide to denote the manually annotated region. Perhaps the authors could try a different strategy for mapping snRNA signal to the slide? However, it appears that the mapping worked better for the capture areas with higher UMI/genes counts. Perhaps the authors should consider using only the slides with high gene/UMI counts.

      We agree that the performance of these analyses (Figure 3-figure supplement 14) was not clearly described in the previous version of the manuscript. We have rewritten the corresponding paragraph in the Results section to make it more clear that the mapping (spot-level deconvolution) performance was relatively poor overall, and that we did not use these results for further downstream analyses. We did however want to include these results from the cell2location algorithm to provide information and data for method developers on the challenges of these types of analyses in our dataset (e.g. due to the presence of rare populations, relatively subtle differences in expression profiles between neuronal subpopulations, and potential issues due to large nuclei size and high transcriptional activity for NE neurons). While further approaches for these types of analyses exist, and additional optimizations such as subsetting samples or spots with high UMI counts could also be investigated, in our view, these further optimizations lie outside the scope of our current work. We have also added wording in the figure caption to refer to Figure 2-figure supplement 1, which displays the corresponding annotated LC regions per sample.

      It is hard to see if the RNA scope image Supplementary Figure 11 shows co-localization of SLC6A2, TH, and DBH. Having the individual image from each microscope filter along with the merged image is required to properly assess the colocalization of the signals.

      We updated the multi-channel RNAscope images to show both the merged channels and individual channels in separate panels (Figure 3-figure supplement 4, 16, and 17), which makes the visualization more clear. Thank you for this suggestion. (Note that the previous Supplementary Figure 11 has been re-numbered to Figure 3-figure supplement 4.)

      The heatmap showing the level of marker transcripts shows a much lower expression of specific markers, TH, DBH, SLC6A2 in NE vs other clusters looks surprisingly low (particularly TH), while the much broader marker SLC18A2 (monoamine transporter) is considerably more differential. What do the authors make of this finding?

      This is correct. In the snRNA-seq data, we observed that SLC18A2 is one of the most highly differentially expressed (DE) genes in the NE neuron cluster vs. other neuronal clusters, with a high level of expression in the NE neuron cluster (Figure 3C). Note that this heatmap shows the top 70 DE genes (excluding mitochondrial genes) out of the full list of 327 statistically significant DE genes with elevated expression in the NE neuron cluster (the full list of 327 genes is provided in Supplementary File 2C). While all four of these genes (DBH, TH, SLC6A2, and SLC18A2) are identified as statistically significant DE genes, SLC18A2 is the most highly DE out of these and has an especially high level of expression in the NE neuron cluster, as noted by the reviewer (Figure 3C). This could be due to the fact that SLC18A2 transcripts are expressed at higher absolute levels in these neurons than the transcripts that are more specific to LC-NE neurons. While it is true that SLC18A2 is a “broader” marker in the sense that it is found in more cell types -- e.g. cell types within brain nuclei that contain monoaminergic as well as brain nuclei that contain catecholaminergic cells -- expression of SLC18A2 within the LC is highly specific to the catecholaminergic LC-NE neurons given its specialized functional role within monoamine and catecholamine neurons in packaging amine neurotransmitters into synaptic vesicles. We note that SLC18A2 plays a specialized role that is critical to the core function of LC-NE neurons, and hence we are not particularly surprised with this finding and think that one possibility is that this differential expression appears more robustly due to higher absolute levels of the marker.

      While it is understandable that the authors decided to include cells/nuclei with high mitochondrial reads, further work is needed to ensure these cells are of sufficient quality to use in an unbiased way knowing that a high percentage of mitochondrial reads in nuclei sequencing is usually indicative of low-quality nuclei. This can be assessed by evaluating the quality of the nuclei with GWA, which stains an intact nuclear membrane acting as a measure of the integrity of the nuclei.

      To further investigate these results, we added additional analyses evaluating quality control (QC) metrics for the NE neuron cluster in the snRNA-seq data, which had an unusually high proportion of mitochondrial reads (Figure 3-figure supplement 2, shown also below in comments for Reviewer 3) (see also related Figure 3-figure supplement 1, 3, which were included in the manuscript previously). These additional QC analyses do not show any other problematic values for this cluster, other than the high mitochondrial proportion, so we do not believe this is purely a data quality issue. We are aware that this is an unexpected result -- in most cell populations, a high proportion of mitochondrial reads would be indicative of cell damage and poor data quality. However, we have recently also observed high mitochondrial proportions in other relatively rare neuronal populations characterized by large size and high metabolic demand. As discussed below for Reviewer 3, we believe that this is mitochondrial “contamination”, as there should be no mitochondrial reads per se within the nuclear compartment.

      However, it may be possible that in cell populations that have abundant levels of mitochondria and high transcript expression of mitochondrial transcripts in the cell body, that the likelihood of ambient RNA capture of mitochondrial transcripts during nuclear preparation may be higher than for other cell types that have lower expression of mitochondrial transcripts. Hence, we believe that our interpretation is likely correct, i.e. that a combination of technical and biological factors contributes to the inclusion of a relatively high amount of mitochondrial RNA within the droplets for these nuclei. We agree with the reviewer that this finding warrants further investigation in future work. However, in our current study, the tissue resource is depleted for any further experimental validation of this question, so we preferred to provide our data to the community in its current form, while transparently noting this unexpected finding in our results. We have included additional text in the Results section describing the new QC analyses shown in Figure 3-figure supplement 2.

      Minor comments:

      Line 319-321 could be written more clearly to indicate that due to the lack of resolution in a given spot, there are "contaminating reads" that reduce the precision of the cell profile. This reduced precision is likely what results in the "lack of conservation" across species.

      We have added additional wording to this sentence to clarify this point.

      In the discussion, the authors write that the analyses "unbiasedly identified a number of genes enriched in human LC", however, given the manual annotation of the region for each capture area, this resulted in a biased assessment of the spots.

      We have replaced this wording to refer to “untargeted, transcriptome-wide” analyses (i.e. analyses that are not based on a targeted panel of genes) instead of “unbiased”. We agree that the meaning of “unbiased” is ambiguous in this context.

      Reviewer #3 (Recommendations For The Authors):

      Major points:

      Overall, the discovery of some cells in the LC region that express serotonergic markers is intriguing. However, no evidence is presented that these neurons actually produce 5-HT. Perhaps more conservative language would be appropriate (i.e. "cells that possess mRNA signatures of serotonergic neurons" or something like that). Did these cells co-express other markers one would expect in 5-HT neurons like 5-HT autoreceptors and SLC6A18? Also would be useful to compare expression profiles of these putative 5-HT neurons with any published material on bona fide dorsal raphe 5-HT neurons. For the RNAscope confirmation in the supplementary material, it would be helpful to show each marker separately as well as the overlay, and to include representative higher magnification images like were provided for the ACH markers.

      Thank you for this comment. In order to further investigate the identity of these cells, we have investigated the expression of several additional genes including SLC6A18, 5-HT autoreceptor genes (HTR1A, HTR1B), marker genes for 5-HT neurons (SLC18A2, FEV), and marker genes for 5-HT neuronal subpopulations within the dorsal and median raphe nuclei from the literature (Ren et al. 2019), in both the Visium and the snRNA-seq data.

      We observed some expression of SLC18A2 and FEV within the same areas as SLC6A4 and TPH2 in the Visium samples (Figure 3-figure supplement 10A-B, reproduced below; note that SLC18A2 is also a marker gene for NE neurons located within the LC regions), consistent with Ren et al. (2019). However, we did not observe a strong or consistent expression signal for the 5-HT autoreceptors (HTR1A, HTR1B) (Figure 3-figure supplement 10C-D, reproduced below), and we observed zero expression of SLC6A18 in the Visium samples. In the snRNA-seq data, within the cluster identified as 5-HT neurons, we observed some expression of SLC18A2, low expression of FEV, and almost zero expression of SLC6A18 (Figure 3-figure supplement 8, reproduced below; note that SLC6A18 is not shown since it was removed during filtering for low-expressed genes). Similarly, we observed very low expression of the 5-HT autoreceptors (HTR1A, HTR1B) and the additional marker genes for 5-HT neuronal subpopulations from Ren et al. (2019) -- with the possible exception of the neuropeptide receptor gene HCRTR2, which was identified by Ren et al. (2019) within several clusters in both the dorsal and median raphe in mice (Figure 3-figure supplement 8, reproduced below).

      Overall, these additional results give us some further confidence that these are likely 5-HT neurons (due to expression of SLC18A2 and FEV), while also raising further questions (due to the absence of 5-HT autoreceptor genes HTR1A, HTR1B and 5-HT neuronal subpopulation marker genes). While we believe that the most likely explanation is the inclusion of 5-HT neurons from the edges of the adjacent dorsal raphe nuclei in our samples, we acknowledge that the evidence presented is not fully conclusive and does not identify specific subpopulations of 5-HT neurons. In addition, the limited size of our dataset (number of samples and cells) and the lack of information on sample orientation precludes any definitive identification of subpopulations based on their association with specific anatomical regions within the dorsal raphe nuclei. We have updated the manuscript by (i) adjusting our language in the Results and Discussion, (ii) including the additional analyses, supplementary figures, and reference to the literature (Ren et al. 2019) discussed above, and (iii) including additional wording in the Discussion on improvements to the dissection strategy that would allow these questions to be addressed in future studies via a focused molecular profiling of the dorsal raphe nuclei across the rostral-caudal axis.

      Regarding the RNAscope images, we have included additional images showing channels side-by-side and higher magnification, as suggested (and also discussed above for Reviewers 1 and 2). In addition, we have added an outline highlighting the LC region in Figure 3-figure supplement 11 (as suggested above by Reviewer 2), and included an additional high-magnification RNAscope image demonstrating co-expression of 5-HT neuron marker genes (TPH2 and SLC6A4) within individual cells (Figure 3-figure supplement 12).

      Concerning the snRNA-seq experiments, why were only 3 of the 5 donors used, particularly given the low number of LC-NE nuclear transcriptomes obtained? How were the 3 donors chosen from the 5 total donors and how many 100 um sections were used from each donor? Are the 295 nuclei obtained truly representative of the LC population or are they just the most resilient LC nuclei? How many LC nuclei would be estimated to be captured from staining the 100 um tissue sections?

      As discussed in our previous response to reviewers (“Response to Public Review Comments”), the reason we included only 3 of the 5 donors for the snRNA-seq assays was due to tissue availability on the tissue blocks. In this study, we were working with a finite tissue resource. Due to the logistics and thickness of the required tissue sections for Visium (10 μm) and snRNA-seq (100 μm), running Visium first allowed us to ensure that we could collect data from both assays -- if we ran snRNA-seq first and captured no neurons, the tissue block would be depleted. Due to resource depletion, we did not have sufficient available tissue remaining on all tissue blocks to run the snRNA-seq assay for all donors. We have conducted extensive piloting in other brain regions on the amount (mg) of tissue that is needed from various sized cryosections, and the LC is particularly difficult since these are small tissue blocks and the extent of the structure is small. Hence, in some of the subjects, we did not have sufficient tissue available for the snRNA-seq assay.

      We have included details on the number of 100 μm sections used for each donor in Methods -- this varied between 10-15 sections per donor, approximating 50-80 mg of tissue per donor.

      Regarding the question about the representativeness / resilience of the LC nuclei -- as discussed in our previous response to reviewers (“Response to Public Review Comments”) and above for Reviewer 2, we agree that this is a concern. As discussed above for Reviewer 2, it is plausible that our use of FANS may have contributed to cell damage and the low recovery rate of LC-NE neurons. The relatively large size and fragility of LC-NE neurons, as well as our use of a standard cell straining approach (70 µm, which may not be ideal for this population), may also be contributing factors. Due to our limited tissue resource, we did not have sufficient tissue to perform a direct comparison with non-sorted data.

      Systematically optimizing the preparation to attempt to increase recovery rate is an important avenue for future work. We have included additional discussion of this issue in the Discussion.

      Regarding the question about the number of expected nuclei, we have now included estimates of the number of cells per spot within the LC regions in the Visium data (see also related point below, and Figure 2-figure supplement 2B reproduced below), based on the H&E stained histology images and use of cell segmentation software (VistoSeg; Tippani et al. 2022). While we do not have any confident estimates of the number of expected nuclei in the snRNA-seq data, these estimates of cell density from the Visium data could, together with information on additional factors such as the accuracy of the tissue scoring and the effectiveness of FANS, be used to help derive an an expected number of nuclei in future studies. We have included additional wording in the Discussion to note that these estimates could be used in this manner during future studies.

      The LC displays rostral/caudal and dorsal/ventral differences, including where they project, which functions they regulate, and which parts are vulnerable in neurodegenerative disease (e.g. Loughlin et al., Neuroscience 18:291-306, 1986; Dahl et al., Nat Hum Behav 3:1203-14, 2019; Beardmore et al., J Alzheimer's Dis 83:5-22, 2021; Gilvesy et al., Acta Neuropathol 144:651-76, 2022; Madelung et al., Mov Disord 37:479-89, 2022). Which part(s) of the LC was captured for the SRT and snRNAseq experiments?

      As discussed in our previous response to reviewers (“Response to Public Review Comments”), a limitation of this study was that we did not record the orientation of the anatomy of the tissue sections, precluding our ability to annotate the tissue sections with the rostral/caudal and dorsal/ventral axis labels. We agree with the reviewer that additional spatial studies, in future work, could offer needed and important information about expression profiles across the spatial axes (rostral/caudal, ventral/dorsal) of the LC. Our study provides us with insight about optimizing the dissections for spatial assays, as well as bringing to light a number of technical and logistical issues that we had not initially foreseen. For example, during the course of this study and parallel, ongoing work in other, small, challenging regions, we have now developed a number of specialized technical and logistical strategies for keeping track of orientation and mounting serial sections from the same tissue block onto a single spatial array, which is extremely technically challenging. We are now well-prepared for addressing these issues in future studies with larger numbers of donors and samples in order to make these types of insights. We have included additional details in the Discussion to further discuss this point.

      The authors mention that in other human SRT studies, there are typically between 1-10 cells per expression spot. I imagine that this depends heavily on the part of the brain being studied and neuronal density. In this specific case, can the authors estimate how many LC cells were contained in each expression spot?

      We have now performed additional analyses to provide an estimate of the number of cells per spot in the Visium data (Figure 2-figure supplement 2B), based on the application of cell segmentation software (VistoSeg; Tippani et al. 2022) to identify cell bodies in the H&E stained histology images. We applied this methodology and calculated summary statistics within the annotated LC regions for 6 samples (see Methods), and found that the median number of cells per spot within the LC regions ranged from 2 to 5 per sample. We note that these estimates include both NE neurons and other cell types within the LC regions, and that applying cell segmentation software in this brain region is particularly challenging due to the wide range in cell body sizes, with NE neurons being especially large. We have included these updated estimates in the Results and Discussion, and additional details in Methods.

      Regarding comparison of human LC-associated genes with rat or mouse LC-associated genes (Fig. 2D-F), the authors speculate that the modest degree of overlap may be due to species differences between rodent and human and/or methodological differences (SRT vs microarray vs TRAP). Was there greater overlap between mouse and rat than between mouse/rat and human? If so, that is evidence for the former. If not, that is evidence for the latter. Also would be useful for more in-depth comparison with snRNA-seq data from mouse LC. https://www.biorxiv.org/content/10.1101/2022.06.30.498327v1

      Our comparisons with the mouse (Mulvey et al. 2018) and rat (Grimm et al. 2004) data showed that we observed a relatively higher overlap between the human vs. mouse data than the human vs. rat data (Figures 2F-G and 3D-E). However, we note that the substantially different technologies used (TRAP-seq in mouse vs. laser capture microdissection and microarrays in rat) make it difficult to confidently interpret the degree of overlap between the two studies, and a direct comparison of these alternative platforms (TRAP-seq vs. LCM / microarray) or species (mouse vs. rat) lies outside the scope of our study. We have included updated wording in the Results and Discussion to explain this issue and help interpret these results.

      Regarding the newer mouse study using snRNA-seq (Luskin and Li et al. 2022), we have extended our analyses to perform a more in-depth comparison with this study. Specifically, we have evaluated the expression of an additional set of GABAergic neuron marker genes from this study within our secondary clustering of inhibitory neurons in the snRNA-seq data (Figure 3-figure supplement 13B). We observe some evidence of cluster-specific expression of several genes, including CCK, PCSK1, PCSK2, PCSK1N, PENK, PNOC, SST, and TAC1. We have also included additional text describing these results in the Results section.

      The finding of ACHE expression in LC neurons is intriguing. Susan Greenfield has published a series of papers suggesting that ACHE has functions independent of ACH metabolism that contributes to cellular vulnerability in neurodegenerative disease. This might be worth mentioning.

      We thank the reviewer for pointing this out. We were very surprised too by the observed expression of SLC5A7 and ACHE in the LC regions (Visium data) and within the LC-NE neuron cluster (snRNA-seq data), coupled with absence of other typical cholinergic marker genes (e.g. CHAT, SLC18A3), and we do not have a compelling explanation or theory for this. Hence, the work of Susan Greenfield and colleagues suggesting non-cholinergic actions of ACHE, particularly in other catecholaminergic neuron populations (e.g. dopaminergic neurons in the substantia nigra) is very interesting. We have included references to this work and how it could inform interpretation of this expression (Greenfield 1991; Halliday and Greenfield 2012) in the Discussion.

      High mitochondrial reads from snRNA-seq can indicate lower quality. Can the authors comment on this and explain why they are confident in the snRNA-seq data from presumptive LC-NE neurons?

      As mentioned above for Reviewer 2, we have included additional analyses to further compare quality control (QC) metrics for the NE neuron cluster (which had an unusually high proportion of mitochondrial reads) against other neuronal and non-neuronal clusters and nuclei in the snRNA-seq data (Figure 3-figure supplement 2). These additional QC analyses do not show any other problematic values for this cluster. Specifically, we show that the QC metric values for sum UMIs and detected genes per droplet for the NE neuron cluster fall within the range for (A) other neurons and (B) all other nuclei (excluding droplets with ambiguous / unidentifiable neuronal signatures). In addition, we observe that the droplets with the highest mitochondrial percentages (>75%) (C-D), which also have unusually low number of detected genes (D), tend to be from the ambiguous category (droplets with ambiguous / unidentifiable neuronal signatures), suggesting that true low-quality droplets are correctly identified and included within the ambiguous category (e.g. consisting of a mixture of debris from partial damaged nuclei) instead of as NE neurons. Since our QC analyses for the NE neuron cluster do not show any problems other than the high mitochondrial percentage, we do not believe these are simply mis-classified low-quality droplets. We also note that we have recently observed high mitochondrial proportions in other relatively rare neuronal populations characterized by large size and high metabolic demand in human data. We believe that our interpretation is correct -- i.e. that a combination of technical and biological factors has led to the inclusion of a relatively high amount of mitochondrial RNA within the droplets for these nuclei. We have included these additional QC analyses (Figure 3-figure supplement 2) and further discussion of this issue in the Results section.

      The Discussion could be expanded. Because there is a lot known and/or assumed about the LC, discussing all of it is certainly beyond the scope of this manuscript. However, perhaps the authors could pick a few more for confirmation and hypothesis generation. For example, one of the most well studied and important aspects of the LC is its regulation by neuromodulatory inputs. It would be interesting for the authors to discuss the expression of receptors for CRF, cannabinoids, orexin, galanin, 5-HT, etc, particularly when compared with the available rodent TRAP and snRNA-seq data (https://www.biorxiv.org/content/10.1101/2022.06.30.498327v1) contained some surprises, such as very low expression of CRF1 in LC-NE neurons, suggesting that the powerful activation of LC cells by CRF is indirect. Does this hold up in humans?

      We have expanded the Discussion to include additional discussion and references on several points, as discussed also above. Indeed these are interesting questions and these neuromodulatory systems are all of interest in the context of signaling within the LC in terms of function of the LC-NE system. We note that the manuscript serves primarily as a data resource and will be useful in many different ways depending on the different goals and interests of the readers. This is precisely why we wanted to take the time to make accessible and easy to use tools to interrogate and visualize the data. We have provided screenshots in Author response image 1-4 from the Shiny visualization app for the Visium data (https://libd.shinyapps.io/locus-c_Visium/) querying several main receptors of the neuromodulatory systems that this reviewer is particularly interested in to illustrate how the visualization apps can readily be used to query specific genes and systems of interest.

      Author response image 1.

      CRHR1:

      Author response image 2.

      CNR1:

      Author response image 3.

      OXR1:

      Author response image 4.

      GALR1:

      Minor points:

      Line 46 add stress responses to the key functions of LC neurons

      We have added this point and included additional references to support the findings.

      Line 47 add that the LC was so named "blue spot" because of its signature production of neuromelanin pigment

      We have added this point.

      Line 49 LC's capacity to synthesize NE is not "unique" - several other brainstem/medullary nuclei also synthesize NE (e.g. A1-A7; LC is A6)

      We have updated this wording.

      Line 54 Although prior evidence indicated age-related LC cell loss in people without frank neurodegenerative disease, recent studies that are better powered and used unbiased stereological methods have refuted the idea that LC neurons die during normal aging (reviewed in Matchett et al., Acta Neuropathologica 141:631-50, 2021)

      We have updated this part of the Introduction to focus on cell loss in the LC in neurodegenerative disease and removed the older references describing studies that suggested LC neurons die in normal aging.

      Line 62 Would also be worth mentioning the role of the LC in other mood disorders where adrenergic drugs are often prescribed, such as PTSD (e.g. prazosin), opioid withdrawal (e.g. lofexidine), anxiety and depression (e.g. NE reuptake inhibitors).

      We have added additional references to these disorders and their treatment with noradrenergic drugs in the Introduction.

      Additional updates from Public Review Comments:

      We have also included the following updates, in response to additional reviewer comments received during the initial round of “Public Review Comments” and which are not already described in the responses to the “Recommendations for the Authors” above.

      ● We included updated wording in the Results section and Figure 1C caption to more clearly describe the number of donors included in the final SRT and snRNA-seq data used for analyses after all quality control (QC) steps (4 donors for SRT data, 3 donors for snRNA-seq data).

      ● Figure 3-figure supplement 1D (number of nuclei per cluster in unsupervised clustering of snRNA-seq data) has been updated to show percentages of nuclei per cluster.

      ● We have added comparisons between the lists of differentially expressed (DE) genes identified in the Visium and snRNA-seq data. To make these sets comparable, we have added (i) snRNA-seq DE testing results between the NE neuron cluster and all other clusters (instead of other neuronal clusters only, as shown in the main results in Figure 3) (excluding ambiguous neuronal) (Figure 3-figure supplement 6 and Supplementary File 2D), and (ii) calculated overlaps and comparisons between the sets of DE genes between the Visium data (pseudobulked LC vs. non-LC regions) and the snRNA-seq data (NE neuron cluster vs. all other clusters excluding ambiguous neuronal). This comparison generated a list of 51 genes that were identified as statistically significant DE genes (FDR < 0.05 and FC > 2) in both the Visium and the snRNA-seq data (Figure 3-figure supplement 7 and Supplementary File 2E).

      Other additional updates:

      We have added an additional data repository (Globus). Raw data files (FASTQ sequencing data files and high-resolution TIF image files) are now available via Globus from the WeberDivecha2023_locus_coeruleus data collection from the jhpce#globus01 Globus endpoint, which is also listed at http://research.libd.org/globus/. The Globus repository is not publicly accessible due to individually identifiable donor genetic variants in the FASTQ files. Approved users may request access from the corresponding authors. This data repository is listed in the Data Availability section.

    1. Author Response

      We thank the editors and reviewers for their supportive comments onto our manuscript. We will revise the manuscript according to their helpful recommendations.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      It is not clear if the cost-effectiveness cited refers exactly to the PAVE protocol. No line item costings are given. As far as I know, the AmpFire test is very expensive (some 6 USD) and AI-assisted colposcopy has at least formerly been very expensive.

      Response: As mentioned in the section on "Cost-effectiveness analysis," the cost-effectiveness results refer to "an early exercise to approximate the potential costs and benefits of a highly effective screening campaign delivered to women aged 30-49 years in the ~65 highest burden LMIC (Figure 1; Suppl Materials) and an HPV vaccination program delivered to girls aged 9-14 years". Because this modeling was intended to be a high-level approximation prior to the availability of micro-costing and use of a new microsimulation model reflecting the epidemiology of HPV in PAVE study sites, we used a bundled cost of US$15 per woman screened and managed appropriately, including the ~$6 cost of the ScreenFire test, triage with AVE for women with HPV positivity, and treatment based on risk stratification. Micro-costing and microsimulation model development for PAVE sites are ongoing alongside the study and will have the capability to reflect setting-specific differences in delivery costs, as well as different burdens of HPV and precancer. These refinements of costing and cost-effectiveness estimates are a high priority of the PAVE consortium

      Reviewer #2 (Recommendations For The Authors):

      As mentioned above, the description of phase 2 could be improved. I suggest that the inclusion of Implementation Science frameworks and tools could contribute to strengthening methods to measure implementation outcomes. Perhaps if the protocol and scope of the study allows it, I suggest that the authors evaluate the incorporation of the assessment of barriers and facilitators of implementation to inform future scaling up of the PAVE strategy. To do this, for example, some Implementation Science Frameworks, such as Conceptual Framework of Implementation Research (CFIR)1-2 could be useful. In addition, as the authors mentioned, future dissemination will need an effective communication strategy and to design it they will carry out a pilot study. The inclusion of CFIR framework or other similar framework, could contribute to identifying contextual factors that might affect implementation and contribute to designing an accurate implementation and dissemination strategy.

      The authors also mentioned that if the PAVE strategy is effective, it could replace the current standard of care. This fact would lead to the need to carry out a des-implementation process. This process needs stakeholders' engagement and political will, among other contextual factors (e.g., human resources, organizational changes, etc.). Implementation of new strategies needs that implementers perceive it as acceptable, adaptable, compatible and with greater advantages than the usual practice. In this sense, the analysis of implementation outcomes guided by CFIR framework could play an important role in this future des-implementation process.

      1. Damschroder, et al. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implementation Sci 4, 50 (2009) https://doi.org/10.1186/1748-5908-4-50.

      2. Damschroder, L.J., Reardon, C.M., Widerquist, M.A.O. et al. The updated Consolidated Framework for Implementation Research based on user feedback. Implementation Sci 17, 75 (2022). https://doi.org/10.1186/s13012-022-01245-0

      Response: Phase 2 refers to limited aspects of PAVE implementation, mainly introducing the management algorithms and evaluating the acceptability by providers and patients. Based on preliminary results of PAVE in the efficacy analysis a more comprehensive implementation intervention is being planned.

      Reviewer #3 (Recommendations For The Authors):

      This is a very strong protocol and obviously the synthesis of many years' of work. I have some minor suggestions only.

      The issue raised as a weakness could be addressed by specifying that biopsy adequacy is evaluated by the local histopathologist. Those cases that don't contain at least some stroma and only superficial strips of epithelium should probably be assessed as "unsatisfactory" and excluded from triage performance calculations.

      While endocervical curettage is commonly performed in North America, resulting in good quality samples, there is considerable global variation in this practice. The procedure yielding high quality samples is usually somewhat painful due to the cervical dilation and may in fact be more painful than small biopsies.

      Response: We are undertaking a thorough evaluation of histology assessment together with the on-site pathologists and an external expert reviewer. It is critical that the study material be of good quality and that the diagnosis be highly accurate as these elements are critical for patient management but also for an adequate training of the AI algorithm. We are recommending to use for endocervical sampling a soft tissue by Histologics that provides excellent material and it is reported to be less painful than regular curette. Pathologists are requested to verify the quality of the sampling of this approach.

      The sentence starting at line 311 could add that, clinicians also record transformation type and/ or colposcopy adequacy.

      Response: Added

      The clinicians are reporting the VIA or the colposcopy impression and also the visibility of the SCJ.

      The manuscript could be strengthened by specifying what will happen to people who have HPV detected and are triage negative. Will they be recalled for follow-up HPV test at around 12 months or some other interval?

      Finally, will those who have been treated be recalled for a follow-up HPV test at around 12 months, particularly those treated with thermal ablation? Follow-up of people in whom HPV is detected, whether triage negative or positive (and treated) would strengthen the study and enhance participant safety. If this is already planned it would strengthen the manuscript to cover these aspects.

      Response: The PAVE strategy runs under a Consortium agreement and thus we cannot dictate specific protocols for follow-up. We are very eager to promote an adequate follow-up for those with a triage test negative, but the monitoring of its implementation is beyond PAVE. All settings have under their guidelines a yearly follow-up for any woman receiving thermal ablation and shorter intervals for those getting LEEP (LLETZ).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study offers an inventory of proteins and their phosphorylated sites that are up- and down-regulated in the adipose tissue and skeletal muscle of women with PCOS. The data were collected and analyzed using rigorous and validated methodology, making it a useful resource for identifying targets and strategies for future PCOS treatments. However, even though some of the predicted targets are compelling, further functional validation is required to ensure the accuracy of these identified targets. If confirmed, the findings of this study would be of significant interest to a wide range of readers.

      Thank you very much for the opportunity to carry out some final revisions to our manuscript and for the invitation to submit a revised version of our work for further consideration in eLife. We are grateful for the very constructive and thorough feedback provided. Consequently, our manuscript has undergone revisions to address the issues raised, providing additional data from mouse models showing that androgen receptor signaling has a direct effect on muscle fiber type.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the manuscript, the authors tried to explore the molecular alterations of adipose tissue and skeletal muscle in PCOS by global proteomic and phosphorylation site analysis. In the study, the samples are valuable, while there are no repeats for MS and there are no functional studies for the indicted proteins, phosphorylation sites. The authors achieved their aims to some extent, but not enough.

      Response: Indeed, the samples are valuable but given the relatively high sensitivity and specificity of the method we don’t see why repeats for MS would increase the power of the study. The number of tissue samples analyzed would however do so. Although no functional studies have been done, we do show that hyperandrogenism is associated with a shift towards fewer type I fibers in skeletal muscle. In the revised manuscript we have added data showing that androgens (dihydrotestosterone, DHT) have a direct effect on reducing the number of type I muscle fibers in a PCOS-like mouse model. Prepubertal DHT exposure led to a dramatic decrease in type I fibers, and this effect was partly prevented by the androgen receptor antagonist flutamide (Fig. 4A). Moreover, while skeletal muscle specific AR knockout mice presented with fewer type I muscle fibers, they were protected against the DHT-induced type I muscle fiber loss (Fig. 4B).

      Reviewer #2 (Public Review):

      This study provides the proteomic and phosphoproteomics data for our understanding of the molecular alterations in adipose tissue and skeletal muscle from women with PCOS. This work is useful for understanding of the characteristics of PCOS, as it may provide potential targets and strategies for the future treatment of PCOS. While the manuscript presents interesting findings on omics and phenotypic research, the lack of in-depth mechanistic exploration limits its potential impact.

      The study primarily presents findings from omics and phenotypic research, but fails to provide a thorough investigation into the underlying mechanisms driving the observed results. Without a thorough elucidation of the mechanistic underpinnings, the significance and novelty of the study are compromised.

      Response: We do provide solid evidence that women with PCOS have a lower expression of proteins specific for type I muscle fibers. A comprehensive exploration of the mechanism driving the observed results is not within the scope of this paper. However, we have included experimental data from a PCOS-like mouse model to strengthen our results that hyperandrogenism has a direct effect on lowering the number of type I fibers. Prepubertal dihydrotestosterone (DHT) exposure led to a dramatic decrease in type I fibers, and this effect was abolished in DHT-exposed mice with skeletal muscle-specific deletion of the androgen receptor (Fig. 4B). Moreover, the decrease in type I fibers was partly prevented by the androgen receptor antagonist flutamide in wild-type mice (Fig. 4A). Notably, unchallenged skeletal muscle specific AR knockout mice had fewer type I muscle fiber. These data indicate that muscle AR signaling is important for normal muscle development, but that exaggerated muscle AR signaling leads to decreased abundance of type I muscle fibers in adult females.

      Reviewer #1 (Recommendations For The Authors):

      1. For participant recruitment the age should be considered.

      Response: The age of the women is shown in Table 1, the mean age was around 30 years. Cases and controls were matched for age, weight, and BMI at recruitment.

      1. The current method is that biopsies from 10 participants are collected as a sample, biopsy from 1 participant for MS and comprehensive analysis in the group may be better.

      Response: The skeletal muscle biopsies from the 10 controls and 10 women with PCOS at baseline and after 5 weeks of treatment were collected and analyzed as individual samples. For MS each sample was handled as individual samples with subsequent comprehensive analysis of each group. This has now been further clarified in the methods; paragraph Proteomic sample preparation and LC-MS/MS analysis.

      1. Figure 2C, it is not convincing that "The increased expression of perilipin-1 was confirmed by immunofluorescence staining of muscle biopsies".

      Response: we have quantified perilipin-1 staining in skeletal muscle cells from control and PCOS using ImageJ software (National Institutes of Health, Bethesda, MD, USA). The channels of the images were split and converted into 8-bit. The minimum and maximum thresholds were adjusted and kept constant for all the images. Regions of interest were drawn around the cells and empty space for background intensity measurement. The mean perilipin-1 intensity was measured and corrected by deducting the background. A total of 28 PCOS and 33 control cells were quantified. The quantification of perilipin-1 staining is included in Fig. 2D. Perilipin-1 staining was more abundant in skeletal muscle cells from women with PCOS.

      1. Figs.3F,4C,5C,6B, methods for the quantification are needed respectively.

      Response: For each of the graphs, a detailed description of how the stainings were quantified has been included in the Methods section; Histological analyses and immunofluorescence.

      Fig.3F; Fiber cross-sectional area was automatically determined using MyoVision v1.0 and the proportion of type I fibers was manually counted on ImageJ. A total of 579 fibers from seven controls (60-150 fibers per muscle section) and 177 fibers (15-80 fibers per muscle section) from women with PCOS were quantified. Data are expressed as mean ± SD and graphically depicted with each individual fiber quantified.

      Fig. 4C and 6B; Quantification of picrosirius red staining of adipose tissue before and after treatment with electrical stimulation was performed using a semi-automatic macro in ImageJ software. This macro allows for calculation of the total area (m2) and the % of collagen staining from each area adjusting the minimum and maximum thresholds.. Three different random pictures per section (4-5 sections/subject) were taken at 10x or 20x magnification using a regular bright field microscope (Olympus BX60 & PlanApo, 20x/0.7, Olympus, Japan). All images were analyzed on ImageJ software v1.47 (National Institutes of Health, Bethesda, MD, USA) using this protocol https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html with the following modification; threshold min 0, max 2.

      Fig. 5C; Quantification of picrosirius red staining of skeletal muscle before and after treatment with electrical stimulation was performed using a semi-automatic macro in ImageJ software v1.47 (National Institutes of Health, Bethesda, MD, USA) using the same protocol as for adipose tissue described above. % of collagen staining was calculated on 8 – 10 images of different microscopic fields from each muscle sample.

      Reviewer #2 (Recommendations For The Authors):

      While the study presents some valuable research findings, it falls short in terms of providing a comprehensive understanding of the mechanistic basis of the observed outcomes. Further exploration and elucidation of the mechanisms involved would greatly enhance the quality and impact of the study. For example, the authors need to provide sufficient evidence to elucidate why PCOS patients exhibit changes in these proteins and phosphorylation sites, as well as how these changes may impact PCOS patients, such as whether they are related to fertility. It would be valuable to provide further mechanistic insights to enhance the scientific rigor of the study.

      I encourage the authors to further refine their research and resubmit the manuscript with a more robust and comprehensive exploration of the mechanistic aspects to strengthen its scientific merit.

      Response: PCOS is characterized by reproductive and metabolic features. Changes in protein expression and phosphorylation sites in skeletal muscle and adipose tissue likely impact metabolic function to a larger degree than fertility. With that said, altered muscle function may affect insulin resistance and inflammation, thereby potentially aggravating reproductive status including ovulatory cyclicity and fertility potential. We found that aldo-keto reductase family 1 members C1 (AKR1C1) and C3 (AKR1C3), which for example can convert androstenedione to testosterone, had a higher expression in skeletal muscle. Expression of AKR1C1 was strongly correlated to higher circulating testosterone levels (Spearman rho=0.65, P=0.002), suggesting that muscle may produce testosterone via the backdoor pathway (added to the second paragraph of the results section). Moreover, a lower expression of the mitochondrial acetyl-CoA synthetase 2 correlated with a higher HOMA-IR (Spearman rho=-0.46, P=0.04), suggesting that an impaired mitochondrial fatty acid beta-oxidation contributes to insulin resistance. There was indeed a lower expression of various mitochondrial matrix proteins, some involved in mitochondrial fatty acid beta-oxidation; enoyl acyl carrier protein reductase; enoyl-CoA delta isomerase 1, and acyl-CoA thioesterase 11 (R-HSA-77289, q=0.0008) in PCOS muscle (this has been added to the discussion).

      A comprehensive exploration of the mechanism driving these changes is not within the scope of this paper. However, we have added data from PCOS-like mice to strengthen the paper. This mouse model supports our hypothesis that androgens drive the shift towards less type I muscle fibers, an effect that can be partly reversed by blocking the androgen receptor with the antagonist flutamide (Fig. 4A). Prepubertal DHT exposure led to a dramatic decrease in type I fibers but this effect was not observed in DHT-exposed mice with skeletal muscle-specific deletion of the androgen receptor (Fig. 4B). These data strongly indicate that AR signaling is driving the decrease in type I muscle fibers in females.

  3. Nov 2023
    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to Editor and Reviewers

      Terzioglu et al, Mitochondrial temperature homeostasis resists external metabolic stresses

      Editor:

      We greatly appreciate the specific direction of the editors in guiding us as to what experiments are needed to strengthen the manuscript for publication. We here summarize how we have handled this advice (please refer to response to specific reviewer points, below, for the details). Changes to the text are indicated by red text and marginal red boxes numbered as per the responses below.

      Benchmarking: we now include a direct calibration of MTY against temperature. Performing experiments on temperature probes localized to different subcellular and submitochondrial compartments would be interesting and potentially informative, but is a whole new study that would require a great deal of validation. Hopefully it will be implemented, but it would not change the basic conclusions from the current study.

      Probe localization: In addition to referring to previously published literature, and the existing Figures 3B, 4 and S4 indicating that both MTY and mito-gTEMP are localized in mitochondria (the latter in the matrix), we have conducted some simple experiments to determine the intramitochondrial localization of MTY, applying standard subfractionation protocols. The findings confirm our previous assumption that MTY is inner membrane-associated.

      Expected outcomes: Since, in most cases, it is not possible to do this simultaneously with fluorescence measurements, we rely mostly on previous literature which is fully cited, or on measurements conducted in parallel (e.g. respirometry, Fig. S5) or previously in our own laboratories (e.g. flow cytometry on TMRM-stained cells). We accept that specific inferences on causality, e.g. that the effect of anisomycin is mediated by decreased ATP usage, or that the effects of Gal medium are to enforce dependence on OXPHOS, are arguably an over-reach. We have therefore toned down these statements so as to focus on the mt temperature response to the treatments, rather than to the imputed downstream physiological effects thereof.

      Confounding factors: We tested (and excluded) possible confounding factors affecting MTY and report the findings in an expanded supplementary figure.

      Discussion of the model(s) proposed by Matta: We have now included this, as far as we considered appropriate for the eLife readership. However, not being theoretical physicists, we would greatly welcome a careful scrutiny of what we have written, by both the reviewer and handling editor.

      Reviewer #1:

      A1. Causality: We agree with the reviewer in that we cannot formally distinguish, in this study, whether metabolism is adjusted to maintain mitochondrial temperature, or whether mitochondrial temperature maintenance is a secondary consequence of metabolic changes induced by stress. We have added a note to the Discussion to this effect. On balance, we would argue that the many cases that we have documented here tend to favour the former assertion, although this does not constitute proof. Identification of a sensor of mitochondrial temperature changes and an associated signal transduction machinery to orchestrate responses to it would be needed to settle this, but we are obviously very far from this at present. We have added this point to the Discussion, as well.

      A2. Metabolic correlates: We concede that the reviewer has a valid point, although exploring its ramifications in detail is not straightforward. The effects of AOX on respiration and resistance to OXPHOS inhibitors are documented previously and are also included in the paper as a check (Fig. S5). Our starting assumptions were that cells grown in low glucose/galactose would depend more upon mitochondrial as opposed to glycolytic ATP production, whilst net ATP production in anisomycin-treated cells should be attenuated, due to decreased ATP demand. Nevertheless, there are a number of ways this could be achieved, especially if our suggestion that altered ATP production is balanced by decreased or increased futile ATP turnover geared to maintenance of mitochondrial temperature. For example, measuring total oxygen consumption, P to O ratio or steady-state levels of ATP (or any other metabolite) would not be definitive. To accommodate the reviewer’s point, we have made clear that the various treatments we applied are predicted to alter metabolism in the specified ways, based upon theoretical arguments and previous data. To establish the exact details of the metabolic changes that accompany these treatments would require tracer-based metabolomics over time (see Jang 2018, 10.1016/j.cell.2018.03.055), followed up by measurements of specified enzyme activities. Whilst this would be very useful data that may illuminate our observations, it is obviously beyond the scope of the present paper. We hope that future studies will eventually unravel the relationship between metabolic adaptation and mitochondrial temperature.

      A3. Combinations of inhibitors: We were (and remain) reluctant to cram the paper too full of unsubstantiated speculations. Most, though not all, of the combinations of OXPHOS inhibitors that failed to give a stable reading of MTY fluorescence involved oligomycin plus an inhibitor of respiration. Since we already know that a complete loss of membrane potential leads to leakage of the dye, we surmise that this is the most likely reason for the fluorescence instability. In the presence of oligomycin alone, the minimal respiratory electron flow sustained should suffice to maintain a membrane potential if balanced against proton leakage. Conversely, even when respiration is inhibited, ATP synthase alone should be able to generate a membrane potential. However, the membrane potential may collapse when both oligomycin and a respiratory chain inhibitor are simultaneously applied. We expanded our comment on this issue in the Discussion and referred to it, briefly, in the legend of Fig. S3A.

      A4. Figure 4A: We added the panel indicators to the figure.

      A5. Fig.7C: We have tried to tighten up the wording, for clarity. Yes, the blue trace was the relevant data, but we were comparing the effect of rotenone on cells treated with anisomycin for 1, 2….18 hours with cells not treated with anisomycin at all (i.e. blue trace, zero h time-point).

      A6. Meaning of ‘control iMEFS’ (Fig. 7C): We meant iMEFs not expressing AOX. We have made the statement more precise, accordingly.

      A7. Supplementary Movie S1: The movie was sent, to accompany the submission. If it is not accessible for review, please contact the handling editor.

      Reviewer #2:

      B1. Theoretical considerations (‘mitochondrial paradox’): Since we are not theoretical physicists, we have deferred to the reviewer’s expertise in these matters and quoted the suggested literature as succinctly as possible for the largely biological audience of eLife, sticking closely to the reviewer’s own words. In this light, we would invite the reviewer to scrutinize our added text (in a short additional section of the Discussion, for both this and point B3, below), and suggest any rewording that they consider appropriate.

      B2. Biological implications: We appreciate the point, but since the Discussion section is already long, we have just referred the reader to the treatment of Fahimi et al. We hope to expand on these issues in a separate paper, to be published elsewhere.

      B3. Theoretical considerations (Landauer’s principle and ATP synthase electrostatics): Once again, we have mentioned the issue as suggested, but would ask the reviewer to check the exact language we have used and propose any amendments they consider necessary.

      Reviewer #3:

      C1. Benchmark comparisons: We acknowledge that there are limitations to the use of each method of mitochondrial temperature assessment, and we now explain them more thoroughly in a new section of the Discussion. However, the fact that the two methods give approximately the same result constitutes a crucial validation. In addition, we verified the temperature-responsiveness of MTY fluorescence in free solution at physiological pH (see new supplementary figure panel, Fig. S2D), showing that the response is almost linear over the temperature range inferred in the experiments (35-65 ºC). Note, however, that the response curve generated cannot be used directly for calibration, due to the unknown contributions in vivo from cellular autofluorescence and quenching under OXPHOS-inhibited conditions, which may modify the signal, and will vary according to the amount of dye taken up in a given experiment. Because of this, the internal calibration used in each experiment is a far more reliable way of relating observed fluorescence changes to temperature. Note, however, that if the slight deviation from linearity seen at higher temperatures in the MTY fluorescence temperature-response curve (dotted line in Fig. S2D) reflects how the dye responds in vivo, MTY-based estimations of mitochondrial temperature may be over-estimated by ~2 ºC. This is now made clear in the text.

      C2. Basal temperature: The basal mitochondrial temperature (no inhibitors) as inferred from the mitogTEMP calibration curve was already in the paper (zero time points for iMEF(P) and iMEF(AOX) cells, Fig. 7A, 7B.

      C3. Other organelles: In principle, gTEMP could be targeted to other organelles, such as the nucleus, peroxisomes, ER, plasma membrane and so on, which would be highly informative in profiling intracellular temperature heterogeneities. However, this would require further rounds of recloning and expression, followed in each case by verification of intracellular targeting; obviously quite a large study beyond the scope of our present work. In any case, it would now best be undertaken using the improved, next-generation ratiometric probes (B-gTEMP), which is under way. We agree that this is an important question for future experimentation and have added a short extra section to the Discussion, accordingly.

      C4. Variation with external temperature: We implemented additional experiments to test this, subjecting cells to a mild heat- or cold-shock, and tracking MTY fluorescence both before and after the subsequent addition of oligomycin, with final internal calibration as before. The results were again qualitatively reproducible, but suggested that the combination of external temperature shock and bioenergetic stress. We show the details of the results of these experiments here, for the reviewer and others to inspect and consider. However, since they are not straightforwardly interpretable, we feel that they should be reserved for a future study which investigates the effects of external temperature changes on intramitochondrial temperature and bioenergetics in much greater detail. For these reasons we show the data here only, and not in the revised paper.

      Both cold shock (38→32 ºC) and heat shock (38→41 ºC) produced immediate shifts of mt temperature, but by lesser amounts than the external stresses applied, i.e. a cooling of 2-4 ºC in the first case and a warming of 0-2 ºC in the second. Over the following 10 min the mt temperature of the temperature-shocked cells held steady or drifted only slightly. These observations are broadly consistent with the general conclusions of the paper that mitochondrial temperature resists external stresses. However, the effect of then adding oligomycin was intriguingly different from that seen in control cells. In cold-shocked cells the mt temperature shift produced by oligomycin was several degrees less than in control cells and mitochondrial temperature then gradually readjusted upwards to near the starting value, suggesting the induction of thermogenic pathways to compensate for the decreased external temperature. In heat-shocked cells, the response to oligomycin was reproducibly triphasic: the initial cooling effect was less pronounced than in control cells, but was followed by rewarming and then by a prolonged and progressive cooling. This is obviously much harder to interpret, and will require substantial further studies to parse.

      C5. Other factors: Although this point is addressed in previous literature, we measured effects directly in solution (for MTY). Note, however, that it is not feasible to measure membrane potential simultaneously, due to the spectral overlap between e.g. TMRM and MTY. Nevertheless we were able to test the effects on MTY fluorescence of incremental changes in Ca2+, pH and ROS within the physiological range (see doi: 10.1073/pnas.95.12.6803, doi: 10.1074/jbc.M610491200 and doi: 10.3390/antiox10050731). The results clearly indicate that changes in any of these parameters has no effect on MTY fluorescence (new supplementary figure panels S3E, S3F and S3G).

      C6. Localization of probes: The existing Figures 3B, 4 and S4, as well as previous literature, indicate a mitochondrial localization both for MTY and mito-gTEMP. The matrix localization of proteins of the GFP reporter family tagged with the COX8 matrix-directed targeting signal used here is well established (e.g. see doi: 10.1016/S0076-6879(09)05016-2). To investigate the sub-mitochondrial localization of MTY we conducted a standard series of fractionation steps, using detergents, centrifugation and sonication. Whilst these do not provide absolute purity, they clearly indicate that MTY in energized mitochondria resides in or closely associated with the inner mitochondrial membrane. In two trials, in which mitochondria were fractionated into mitoplasts versus outer membrane/inter-membrane space fractions, an average 92% of the MTY fluorescence was retained in the mitoplast fraction (after subtracting autofluorescence from control samples not treated with MTY). After sonication, which should render most of the inner membrane pelletable as ‘inside out’ submitochondrial particles (SMPs), leaving most of the matrix contents in solution, 90% of the MTY fluorescence signal (again based on two trials, with background subtracted) was recovered in the SMP fraction, supporting the proposition that the dye is inner-membrane associated. These findings are now reported in the Results section and commented on in the appropriate section of the Discussion. We agree with the reviewer that it would be useful to target temperature probes, e.g. B-gTEMP, to specific sub- and extra-mitochondrial compartments (cytosol, MAMs, outer membrane, IMS, inner membrane or even specific protein complexes therein), so as to gauge the nature of intramitochondrial heat conduction between compartments and its radiation to the extramitochondrial environment. However, because it would be an extensive study in its own right, requiring careful validation of targeting, we feel this should be attempted as a follow-up study.

      C7. Use of probes in isolated mitochondria: In principle we see no reason why this should not work, but any result would be non-physiological, since the external environment of isolated mitochondria is not the complex protein- and organelle-rich environment of the cytoplasm, which must play a crucial role in modulating heat diffusion from the organelle. Such an experiment may be useful to assess how much temperature buffering is provided by the rest of the cytoplasm, even though it does not directly address the internal temperature of mitochondria in vivo. Accordingly, we added a sentence to the Discussion foreshadowing such an experiment.

      C8. Other probes and methods: See points C1 and C3 above. The reviewer’s suggestion could best be addressed using the superior B-gTEMP reporters engineered for specific expression in the nucleus and cytosol. This would be part of an extensive new study beyond the scope of the present work, but would of course be a further validation of its conclusions. We agree that multiple approaches are needed to address the issue of temperature differences within cells, in light of the surprising findings both of ourselves and of others, such as the study of Okabe et al (2012) to which the reviewer refers. This point too is now added to the Discussion.

      C9. Theoretical considerations: The critiques referred to are now briefly addressed in the revised Discussion, along with those raised by Reviewer 2. However, since we are not theoretical physicists we do not feel qualified to enter the debate further. As Baffou and colleagues point out, in https://doi.org/10.1038/nmeth.3552, “In order for the community to come to a consensus, we believe some effort will be required to identify the actual origin of the signal measured in these studies, both theoretically and experimentally“. Our experimental findings provide source data for this debate but do not resolve it.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study reports important findings regarding the systemic function of hemocytes controlling whole-body responses to oxidative stress. The evidence in support of the requirement for hemocytes in oxidative stress responses as well as the hemocyte single-nuclei analyses in the presence or absence of oxidative stress are convincing. In contrast, the genetic and physiological analyses that link the non-canonical DDR pathway to upd3/JNK expression and high susceptibility, and the inferences regarding the function of hemocytes in systemic metabolic control are incomplete and would benefit from more rigorous approaches. The work will be of interest to cell and developmental biologists working on animal metabolism, immunity, or stress responses.

      We would like to thank the editorial team for these positive comments on our manuscript and the constructive suggestions to improve our manuscript. We are now happy to send you our revised manuscript, which we improved according to the suggestions and valuable comments of the referees.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study examines how hemocytes control whole-body responses to oxidative stress. Using single cell sequencing they identify several transcriptionally distinct populations of hemocytes, including one subset that show altered immune and stress gene expression. They also find that knockdown of DNA Damage Response (DDR) genes in hemocytes increases expression of the immune cytokine, upd3, and that both upd3 overexpression in hemocytes and hemocyte knockdown of DDR genes leads to increased lethality upon oxidative stress.

      Strengths

      1. The single cell analyses provide a clear description of how oxidative stress can cause distinct transcriptional changes in different populations of hemocytes. These results add to the emerging them in the field that there functionally different subpopulations of hemocytes that can control organismal responses to stress.

      2. The discovery that DDR genes are required upon oxidative stress to limit cytokine production and lethality provides interesting new insight into the DDR may play non-canonical roles in controlling organismal responses to stress.

      We are grateful to referee 1 to point out the importance and novelty of our snRNA-seq data and our findings on the role of DNA damage-modulated cytokine release by hemocytes during oxidative stress. We further extended these analyses in the revised manuscript by looking deeper into the transcriptomic alterations in fat body cells upon oxidative stress (Figure 4, Figure S4). We further provide additional data to support the connection of DNA damage signaling and regulation of upd3 release from hemocytes (Figure 6F). Here we show that upd3-deficiency can abrogate the increased susceptibility of flies with mei41 and tefu knockdown in hemocytes. In line with this finding, we also show that upd3null mutants show a reduced but not abolished susceptibility to oxidative stress overall (Figure 6F), underlining the role of upd3 as a mediator of oxidative stress response.

      Weaknesses

      1. In some ways the authors interpretation of the data - as indicated, for example, in the title, summary and model figure - don't quite match their data. From the title and model figure, it seems that the authors suggest that the DDR pathway induces JNK and Upd3 and that the upd3 leads to tissue wasting. However, the data suggest that the DDR actually limits upd3 production and susceptibility to death as suggested by several results:

      According to the referee’s suggestion, we revised the manuscript and adjusted our title, abstract and graphical summary to be more precise that DNA damage signaling seem to have a modulatory or regulatory effect on upd3 release. Furthermore, we provide now additional data to support the connection between DNA damage signaling and upd3 release. For example, we added several genetic “rescue” experiments to strengthen the epistasis that modulation of DNA damage signaling and the higher susceptibility of the fly is connected to altered upd3 levels (Figure 6F). We now provide additional data showing that the loss of upd3 rescues the susceptibility to oxidative stress in flies, which are deficient for DDR components in hemocytes.

      a. PQ normally doesn't induce upd3 but does lead to glycogen and TAG loss, suggesting that upd3 isn't connected to the PQ-induced wasting.

      Even though in our systemic gene expression analysis of upd3 expression, we could not detect a significant induction of upd3 upon PQ feeding. However, we found upd3 expression within our snRNAseq data in a distinct cluster of immune-activated hemocytes (Figure 3B, Cluster 6). Upon knockdown of the DNA damage signaling in hemocytes, the levels then increase to a detectable level in the whole fly. This supports our assumption that upd3 is needed upon oxidative stress to induce energy mobilization from the fat body, but needs to be tightly controlled to balance tissue wasting for energy mobilization. Furthermore, we found evidence in our new analysis of the snRNA-seq data of the fat body cells, that indeed we can find Jak/STAT activation in one cell cluster here, which could speak for an interaction of Cluster 6 hemocytes with cluster 6 fat body cells. A hypothesis we aim to explore in future studies.

      b. knockdown of DDR upregulates upd3 and leads to increased PQ-induced death. This would suggest that activation of DDR is normally required to limit, rather than serve as the trigger for upd3 production and death.

      Our data support the hypothesis that DDR signaling in hemocytes “modulates” upd3 levels upon oxidative stress. We now carefully revised the text and the graphical summary of the manuscript to emphasize that oxidative stress causes DNA damage, which subsequently induces the DNA damage signaling machinery. If this machinery is not sufficiently induced, for example by knockdown of tefu and mei-41, non-canonical DNA damage signaling is altered which induces JNK signaling and induces release of pro-inflammatory cytokines, including upd3. Whereas DNA damage itself is only slightly increase in the used DDR deficient lines (Figure 5C) and hemocytes do not undergo apoptosis (unaltered cell number on PQ (Figure 5B)), we conclude that loss of tefu, mei-41, or nbs1 causes dysregulation of inflammatory signaling cascades via non-canonical DNA damage signaling. However, oxidative stress itself seems to also induce upd3 release and DNA damage signaling in the same cell cluster, as shown by our snRNA-seq data (Figure 3B). Hence, we think that DNA damage signaling is needed as a rate-limiting step for upd3 release.

      c. hemocyte knockdown of either JNK activity or upd3 doesn't affect PQ-induced death, suggesting that they don't contribute to oxidative stress-induced death. It’s only when DDR is impaired (with DDR gene knockdown) that an increase in upd3 is seen (although no experiments addressed whether JNK was activated or involved in this induction of upd3), suggesting that DDR activation prevents upd3 induction upon oxidative stress.

      Whereas the double knockdown of upd3 or bsk and DDR genes was resulting in insufficient knockdown efficiencies, we added a rescue experiment where we combined upd3null mutants with knockdown of tefu and mei-41 in hemocytes and found a reduced susceptibility of DDR-deficient flies to oxidative stress.

      1. The connections between DDR, JNK and upd3 aren't fully developed. The experiments show that susceptibility to oxidative stress-induced death can be caused by a) knockdown of DDR genes, b) genetic overexpression of upd3, c) genetic activation of JNK. But whether these effects are all related and reflect a linear pathway requires a little more work. For example, one prediction of the proposed model is that the increased susceptibility to oxidative stress-induced death in the hemocyte DDR gene knockdowns would be suppressed (perhaps partially) by simultaneous knockdown of upd3 and/or JNK. These types of epistasis experiments would strengthen the model and the paper.

      As mentioned before, we had some technical difficulties combining the knockdown of bsk or upd3 with DDR genes. However, we added a new experiment in which we show that upd3null mutation can rescue the higher susceptibility of hemocytes with tefu and mei41 knockdown.

      1. The (potential) connections between DDR/JNK/UPD3 and the oxidative stress effects on depletion of nutrient (lipids and glycogen) stores was also not fully developed. However, it may be the case that, in this paper, the authors just want to speculate that the effects of hemocyte DDR/upd3 manipulation on viability upon oxidative stress involve changes in nutrient stores.

      In the revised version of the manuscript, we now provide a more thorough snRNA-seq analysis in the fat body upon PQ treatment to give more insights on the changes in the fat body upon PQ treatment. We added additional histological images of the abdominal fat body on control food and PQ food, to demonstrate the elimination of triglycerides from fat body with Oil-Red-O staining (Figure S1). We also analyzed now hemocyte-deficient (crq-Gal80ts>reaper) flies for their levels of triglycerides and carbohydrates during oxidative stress, to support our hypothesis that hemocytes are key players in the regulation of energy mobilization during oxidative stress. Loss of hemocytes (and therefore also their regulatory input on energy mobilization from the fat body) results in increased triglyceride storage in the fat body during steady state with a decreased consumption of these triglycerides on PQ food compared to control flies (Figure 1J). In contrast, glycogen storage and mobilization, which is mostly done in muscle, is not altered in these flies during oxidative stress (Figure 1L). Interestingly, free glucose levels are drastically reduced in hemocyte-deficient flies, which could be due to insufficient energy mobilization from the fat body and subsequently results in a higher susceptibility of these flies on oxidative stress (Figure 1K). Additionally, we aim to point out here that “functional” hemocytes are needed for effective response to oxidative stress, but this response has to be tightly balanced (see also new graphical abstract).

      Reviewer #2 (Public Review):

      Hersperger et al. investigated the importance of Drosophila immune cells, called hemocytes, in the response to oxidative stress in adult flies. They found that hemocytes are essential in this response, and using state-of-the-art single-cell transcriptomics, they identified expression changes at the level of individual hemocytes. This allowed them to cluster hemocytes into subgroups with different responses, which certainly represents very valuable work. One of the clusters appears to respond directly to oxidative stress and shows a very specific expression response that could be related to the observed systemic metabolic changes and energy mobilization. However, the association of these transcriptional changes in hemocytes with metabolic changes is not well established in this work. Using hemocyte-specific genetic manipulation, the authors convincingly show that the DNA damage response in hemocytes regulates JNK activity and subsequent expression of the JAK/STAT ligand Upd3. Silencing of the DNA damage response or excessive activation of JNK and Upd3 leads to increased susceptibility to oxidative stress. This nicely demonstrates the importance of tight control of JNK-Upd3 signaling in hemocytes during oxidative stress. However, it would have been nice to show here a link to systemic metabolic changes, as the authors conclude that it is tissue wasting caused by excessive Upd3 activation that leads to increased susceptibility, but metabolic changes were not analyzed in the manipulated flies.

      We thank the referee for the suggestion to better connect upd3 cytokine levels to energy mobilization from the fat body. We agree that this is an important point to support our hypothesis. First, we added now a detailed analysis of fat body cells in our snRNA-seq data to evaluate the changes induced in the fat body upon oxidative stress. We further added additional metabolic analyses of hemocyte-deficient flies (crq-Gal80ts>reaper) to support our hypothesis that hemocytes are key players in the regulation of energy mobilization during oxidative stress (see also answer to referee 1). Loss of the regulatory role of hemocytes in the energy mobilization and redistribution leads to a decreased consumption of these triglycerides on PQ food compared to control flies (Figure 1J). In contrast, glycogen storage and mobilization from muscle, is not affected in hemocyte-deficient flies during oxidative stress (Figure 1L). Interestingly, free glucose levels are drastically reduced in hemocyte-deficient flies compared to controls, which could be due to insufficient energy mobilization from the fat body resulting in a higher susceptibility to oxidative stress (Figure 1K). This data supports our assumption that “functional” hemocytes are needed for effective response to oxidative stress, but this response has to be tightly balanced (see also new graphical summary).

      The overall conclusion of this work, as presented by the authors, is that Upd3 expression in hemocytes under oxidative stress leads to tissue wasting, whereas in fact it has been shown that excessive hemocyte-specific Upd3 activation leads to increased susceptibility to oxidative stress (whether due to increased tissue wasting remains a question). The DNA damage response ensures tight control of JNK-Upd3, which is important. However, what role naturally occurring Upd3 expression plays in a single hemocyte cluster during oxidative stress has not been tested. What if the energy mobilization induced by this naturally occurring Upd3 expression during oxidative stress is actually beneficial, as the authors themselves state in the abstract - for potential tissue repair? It would have been useful to clarify in the manuscript that the observed pathological effects are due to overactivation of Upd3 (an important finding), but this does not necessarily mean that the observed expression of Upd3 in one cluster of hemocytes causes the pathology.

      We agree with the referee that the pathological effects and increased susceptibility to oxidative stress are mediated by over-activated hemocytes and enhanced cytokine release, including upd3 during oxidative stress. We edited the revised manuscript accordingly to imply a “regulatory” role of upd3, which we suspect and suggest as an important mediator for inter-organ communication between hemocytes and fat body. Whereas our used model for oxidative stress (15mM Paraquat feeding) is a severe insult from which most of the flies will not recover, we could not account and test how upd3 might influence tissue repair after injury, insults and infection. We believe that this is an important factor, we aim to explore in future studies.

      Reviewer #3 (Public Review):

      In this study, Kierdorf and colleagues investigated the function of hemocytes in oxidative stress response and found that non-canonical DNA damage response (DDR) is critical for controlling JNK activity and the expression of cytokine unpaired3. Hemocyte-mediated expression of upd3 and JNK determines the susceptibility to oxidative stress and systemic energy metabolism required for animal survival, suggesting a new role for hemocytes in the direct mediation of stress response and animal survival.

      Strength of the study:

      1. This study demonstrates the role of hemocytes in oxidative stress response in adults and provides novel insights into hemocytes in systemic stress response and animal homeostasis.

      2. The single-cell transcriptome profiling of adult hemocytes during Paraquat treatment, compared to controls, would be of broad interest to scientists in the field.

      We are grateful to these positive comments on our data and are excited that the referee pointed out the importance of our provided snRNA-seq analysis of hemocytes and other cell types during oxidative stress. In the revised, version we now extended this analysis and looked not only into hemocytes but also highlighted induced changes in the fat body (Figure 4).

      Weakness of the study:

      1. The authors claim that the non-canonical DNA damage response mechanism in hemocytes controls the susceptibility of animals through JNK and upd3 expression. However, the link between DDR-JNK/upd3 in oxidative stress response is incomplete and some of the descriptions do not match their data.

      In the revised manuscript, we aimed to strengthen the weaknesses pointed out by the referee. We now included additional genetic crosses to validate the connection of DDR signaling in hemocytes with upd3 release. For example, we added now survival studies where we show that upd3null mutation can rescue the higher susceptibility of flies with tefu and mei41 knockdown in hemocytes during oxidative stress. Furthermore, we added additional data to highlight the importance of hemocytes themselves as essential regulators of susceptibility to oxidative stress. We analyzed the hemocyte-deficient flies (crq-Gal80ts>reaper) for their triglyceride content and carbohydrate levels during oxidative stress (Figure 1 I-L). As outlined above, loss of hemocytes leads to a decreased consumption of these triglycerides on PQ food compared to control flies (Figure 1J). In contrast, glycogen storage and mobilization from muscle, is not affected in hemocyte-deficient flies during oxidative stress (Figure 1L). Interestingly, free glucose levels are drastically reduced in hemocyte-deficient flies, which could be due to insufficient energy mobilization from the fat body resulting in a higher susceptibility to oxidative stress (Figure 1K).

      1. The schematic diagram does not accurately represent the authors' findings and requires further modifications.

      We carefully revised the text throughout the manuscript describing our results and edited the graphical abstract to display that upd3 levels and hemocytes are essential to balance and modulate response to oxidative stress.

      Reviewer #1 (Recommendations For The Authors):

      The summary doesn't say too much about what the specific discoveries and results of the study are. The description is limited to just one sentence saying, "Here we describe the responses of hemocytes in adult Drosophila to oxidative stress and the essential role of non-canonical DNA damage repair activity in direct "responder" hemocytes to control JNK-mediated stress signaling, systemic levels of the cytokine upd3 and subsequently susceptibility to oxidative stress" which doesn't provide sufficient explanation of what the results were.

      In the revised version of our manuscript, we now provide further information for the reader to outline the findings of our study in a concise way in the summary.

      Reviewer #2 (Recommendations For The Authors):

      1. To strengthen the conclusion that the DDR response suppresses JNK, and thus Upd3, rescue of DDR by upd3 null mutation would help (knockdown by Hml>upd3IR might not work, RNAi seems problematic).

      We would like to thank the referee for this suggestion and included now a genetic experiment where we combined upd3null mutants with hemocyte-specific knockdown of mei-41 and tefu to test their susceptibility to oxidative stress. Our data indeed provide evidence that loss of upd3 rescues the higher susceptibility of flies with hemocyte-specific knockdown for tefu and mei-41 (Figure 6F). Furthermore, we see that upd3null mutants show a diminished susceptibility to oxidative stress compared to control flies (Figure 6F).

      1. To link the observed effects to systemic metabolic changes, it would be useful to measure glycogen and triglycerides in these flies as well:
      2. crq-Gal80ts>reaper to see what role hemocytes play in the observed metabolic changes.

      3. Hml-Upd3 overexpression and Upd3 null mutant (Upd3 RNAi seems to be problematic, we have similar experiences) to see if Upd3 overexpression leads to even more profound changes as suggested, and if Upd3 mutation at least partially suppresses the observed changes.

      We agree with the referee that analyzing the connection of hemocyte activation to metabolic changes should be demonstrated in our manuscript to support our claim that hemocytes are important regulators of energy mobilization during oxidative stress. Hence, we analyzed triglycerides and carbohydrate levels in hemocyte-deficient flies (crq-Gal80ts>reaper) during oxidative stress. Indeed, we found substantial differences in energy mobilization in these flies supporting the assumption that the higher susceptibility of hemocyte-deficient flies could be caused by substantial decrease in free glucose and inefficient lysis of triglycerides from the fat body (Figure 1I-K).

      1. To test whether the cause of the increased susceptibility to oxidative stress is due to Upd3 overactivation induced by DDR silencing, the authors should attempt to rescue DDR silencing with an Upd3 null mutation.

      The suggestion of the reviewer was included in the revised manuscript and as outlined above we now added this data set to our manuscript (Figure 6F). Indeed, we can now provide evidence that upd3null mutation rescues the higher susceptibility of flies with DDR knockdown in hemocytes.

      1. Lethality after PQ treatment varies widely (sometimes from 10 to 90%! as in Figure 5D) - is this normal? In some experiments the variability was much lower. In particular, Figure 5D is very problematic and for example the result with upd3 null mutant compared to control is not very convincing. This could be an important result to test whether Upd3, with normal expression likely coming from cluster 6, actually plays a beneficial role, whereas overexpression with Hml leads to pathology.

      We agree with the referee that it would be more convincing if the variation cross of survival experiments would be less. However, we included a lot of flies and vials in many individual experiments to test our hypothesis and variation in these survivals was always the case. These effects can be caused by many factors for example the amount of food intake by the flies, genetic background or inserted transgenes. The n-number is quite high across our survivals; so that we are convinced, the seen effects are valid. This reflects also the power of using Drosophila melanogaster as a model organism for such survivals. The high n-number in our data falls into a normal Gauss distribution with a distinct mean susceptibility between the genotypes analyzed.

      1. I like the conclusion at the end of the results: line 413: "We show that this oxidative stressmediated immune activation seems to be controlled by non-canonical DNA damage signaling resulting in JNK activation and subsequent upd3 expression, which can render the adult fly more susceptible to oxidative stress when it is over-activated." This is actually a more appropriate conclusion, but in the summary, introduction and discussion along with the overall schematic illustration, this is not actually stated as such, but rather as Upd3 released from cluster 6 causes the pathology. For example: line 435 "Hence, we postulate that hemocyte-derived upd3, most likely released by the activated plasmatocyte cluster C6 during oxidative stress in vivo and subsequently controlling energy mobilization and subsequent tissue wasting upon oxidative stress."

      We thank the referee for this suggestion and edited our manuscript and conclusions accordingly.

      Reviewer #3 (Recommendations For The Authors):

      1. In Figure 2, the authors claim showed that PQ treatment changes the hemocyte clusters in a way that suppresses the conventional Hml+ or Pxn+ hemocytes (cluster1) while expanding hemocyte clusters enriched with metabolic genes such as Lpin, bmm etc. It is not clear whether these cells are comparable to the fat body and if these clusters express any of previously known hemocyte marker genes to claim that these are bona fide hemocytes.

      We now included a new analysis of our snRNA-seq data in Figure S4, where we clearly show that all identified hemocyte clusters do not have a fat body signature and are hemocytes, which seem to undergo metabolic adaptations (Figure S4A). Furthermore, we show that the identified fat body cells have a clear fat body signature (Figure S4B) and do not express specific hemocyte markers (Figure S4C).

      1. In Figure 4C, the authors showed that comet assays of isolated hemocytes result in a statistically significant increase in DNA damage in DDR-deficient flies before and after PQ treatment. However, the authors conclude that, in lines 324-328, the higher susceptibility of DDR-deficient flies is not due to an increase in DNA damage. To explicitly conclude that "non-canonical" DNA damage response, without any DNA damage, is specifically upregulated during PQ treatment, the authors require further support to exclude the potential activation of canonical DDR.

      The referee is correct that we do not provide direct evidence for non-canonical DNA damage signaling. Therefore, we also decided to tune down our statement here a bit and removed that claim from the title. Increase in DNA damage can of course also increase the non-canonical DNA damage signaling pathway, loss of DNA damage signaling genes such as tefu and mei-41 seem to only have minor impacts on the overall amount of DNA damage acquired in hemocytes by oxidative stress. We therefore concluded that the induction in immune activation is most unlikely only caused by increased DNA damage but might be connected to dysregulation in non-canonical DNA damage signaling. Canonical DNA damage signaling leads essentially to DDR, which could be slow in adult hemocytes because they post-mitotic, or to apoptosis, which we could not observe in the analyzed time window in our experiments. Hemocyte number remained stable over the 24h PQ treatment without reduction in cell number (Figure 1H).

      1. From Figure 4D-F, the authors showed that loss of DDR in hemocytes induces the expression of unpaired 2 and 3, Socs36E, which represent the JAK/STAT pathway, and thor, InR, Pepck in the InR pathway, and a JNK readout, puc. These results indicate that the DDR pathway normally inhibits the upd-mediated JAK/STAT activation upon PQ treatment, compared to wild-type animals during PQ treatment in Figure 1B-C, which in turn protects the animal during oxidative stress responses. However, the authors claim that "enhanced DNA damage boosts immune activation and therefore susceptibility to oxidative stress (lines 365-366); we show that this oxidative stress-mediated immune activation seems to be controlled by non-canonical DNA damage signaling resulting in JNK activation and subsequent upd3 expression (line 413-416)". These conclusions are not compatible with the authors' data and may require additional data to support or can be modified.

      In the revised manuscript, we carefully revised now the text and our statements that it seems that DNA damage signaling in hemocytes has regulatory or modulatory effect on the immune response during oxidative stress. Accordingly, we also adjusted our graphical summary. We agree with the referee and used the term “non-canonical” DNA damage signaling more carefully throughout the manuscript. The slight increase in DNA damage seen after PQ treatment can contribute to immune activation but seems to be not correlative to the induced cytokine levels or the susceptibility of the flies to oxidative stress.

      1. In Fig 1I, the authors showed that genetic ablation of hemocytes using UAS-repear induces susceptibility to PQ treatment. It is possible that inducing cell death in hemocytes itself causes the expression of cytokine upd3 or activates the JNK pathway to enhance the basal level of upd3/JNK even without PQ treatment. If this phenotype is solely mediated by the loss of hemocytes, the results should be repeated by reducing the number of hemocytes with alternative genetic backgrounds.

      In the different genotypes analyzed across our manuscript we did not detect cell death of hemocytes or a dramatic reduction in hemocytes number (see Figure 1H, Figure 5B, Figure 6C). The higher susceptibility if hemocyte-deficient flies during oxidative stress is most likely caused by the loss of their regulatory role during energy mobilization. We tested triglyceride levels in hemocyte-deficient flies and found a decreased triglyceride consumption (lipolysis), with reduced levels of circulating glucose levels. This findings support our hypothesis that hemocytes are needed to balance the response to oxidative stress. In contrast, the flies with DDR-deficient hemocytes show higher systemic cytokine levels, which most likely enhance energy mobilization from the fat body and therefore result in a higher susceptibility of the fly to oxidative stress. Hence, we claim that hemocytes and their regulation of systemic cytokine levels are important to balance the response to oxidative stress and guarantee the survival of the organism.

      1. Lethality of control animals in PQ treatment is variable and it is hard to estimate the effect of animal susceptibility during 15mM PQ feeding. For example, Fig1A shows that control animals exhibit ~10% death during 15mM PQ which is further enhanced by crq-Gal80>reaper expression to 40% (Fig 1I). However, in Fig 5D-E, the basal lethality of wild-type controls already reaches 40~50%, which makes them hard to compare with other genetic manipulations. Related to this, the authors demonstrated that the expression of upd3 in hemocytes is sufficient to aggravate animal survival upon PQ treatment; however, upd3 null mutants do not rescue the lethality, which indicates that upd3 is not required for hampering animal mortality. These data need to be revisited and analyzed.

      As outlined above, we find the variability of susceptibility to oxidative stress across all of our experiments. This could be due to different effects such as food intake but also transgene insertion and genetic background. Crq-gal80ts>reaper flies are healthy, but show a shortened life span on normal food (Kierdorf et al., 2020) due to enhanced loss of proteostasis in muscles. We show in the revised manuscript that these flies have a higher susceptibility to oxidative stress and that this effect could be mediated by defects in energy mobilization and redistribution as shown by less triglyceride lysis from the fat body and decreasing levels in free glucose. This would explain the high mortality rate of these flies at 7 days after eclosion. Paraquat treatment (15mM) is a severe inducer of oxidative stress, which results in death of most flies when they are maintained for longer time windows on PQ food. Hence, it is a model, which is not suitable to examine and monitor recovery from this detrimental insult. upd3null mutants were extensively reexamined in this manuscript, and even though we could not see a full protection of these flies from oxidative stress induced death, we found a reduced susceptibility compared to control flies (Figure 6F). Furthermore, when we combined upd3null mutants with flies deficient for tefu and mei-41 in hemocytes, the increased susceptibility to oxidative stress was rescued.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      1) IR reduced mature spines (mushroom) but not immature spines (filopodia) in vitro at 14 days post-2 Gy IR. Please check previous reports by C. Limoli and J. Fike groups (in vivo dendritic spine characterization following proton or photon irradiation).

      We appreciate the reviewer's comments. Although IR did not reduce filopodia in the previous study, there are no prior studies using the same time points as ours, 4 days post-2 Gy IR. Additionally, according to other previous studies, PAK3 inhibition led to an increase in filopodia (J Neurosci. 2004 Dec 1;24(48):10816-25), and IR increased thin-type spines and decreased mushroom-type spines at the 7 days after 2 Gy IR (PLoS One. 2012;7(7):e40844). Considering these findings, we believe that the increase in filopodia observed in our study is due to the short-term effects of IR and the consequent PAK3 downregulation. We added the description regarding time point in “Materials and Methods”.

      Page 20, line 439-440; "In the analysis of molecular alterations, cultured neurons were sampled 4 days after irradiation."

      2) Does IR (2 Gy or 5 x 2 Gy) affect the viability in vitro? This could be linked with reduced dendritic structure and F/G-actin ratios.

      As the reviewer mentioned, we evaluated neuronal viability following 2 Gy IR exposure. Consequently, approximately 80% of the cells survived after the IR exposure (Fig. 4A). Although we agree that cognitive abilities may decrease due to the neuron death after IR, we identified that PAK3 overexpression restores the F/G-actin ratio in surviving neurons after IR, suggesting the IR-induced alterations at least in neuronal plasticity are mainly regulated by PAK3 rather than IR itself. Additionally, neurons that survive after IR maintain similar levels of NeuN, a mature neuron marker (Fig. S5A). We added the description regarding additional experiments in “Results”.

      Page 10, line 206-209; "IR decreased neuronal viability in human differentiated neurons, with approximately 80% survival (Fig 4A). However, IR did not alter the mature neuronal marker, NeuN (Fig S5A). These results indicate that IR-induced disruption of PAK3 signaling occurs in surviving neurons following irradiation. Consistent with previous murine neuron data, IR reduced the F/G-actin ratio (Fig. 4B)."

      3) The authors state, "Overall, these results indicated that IR could induce cognitive impairment by disrupting dendritic spine maturation." Dendritic spine damage may not be the only factor contributing to cognitive dysfunction (neural circuit function, neuroinflammation, astrogliosis, etc., needs to be discussed).

      We agree with the reviewer's comment that dendritic spine damage may not be the only factor contributing to cognitive impairment. Since our study has only confirmed the effects on dendritic spines as part of the complex impact of radiation, we added the description of the necessity for further research on various factors related to IR-induced cognitive dysfunction in “Discussion”.

      Page 15, line 317-324; >The dendritic spine is one of the major factors influencing cognitive function. In our study, we observed changes in dendritic spines due to radiation exposure, followed by subsequent cognitive impairment. Additionally, we established that regulating PAK3, which affects dendritic spine maturation, can modulate radiation-induced cognitive dysfunction. However, considering that radiation can impact the entire nervous system and that neural circuit function, neuroinflammation, and astrogliosis can also influence cognitive function (Makale et al., 2017), future studies is needed to investigate the mechanisms of factors beyond dendritic spine changes caused by radiation.>

      4) Fig 2 and Suppl Fig S2. The in vivo results should be placed in the manuscript Fig 2 as this would provide relevant physiological information on PAK3 downregulation and reduced dendritic spines and cognition.

      We appreciated the reviewer's comment. As the reviewer mentioned, we rearranged Fig S2C to Fig 2H.

      Page 33, line 825-827; "(H) Left: the protein levels of phosphorylated LIMK1, LIMK1, phosphorylated cofilin, and cofilin after IR in frontal cortex and hippocampus. Right: each western blot bands are quantified by ImageJ."

      5) miR-206-3p expression was found to be elevated post-IR in the human and mouse neurons in vitro. This was correlated with IR-induced downregulation of PAK3 using an antagonist miR experiment, wherein PAK3, LIMK1, and downstream makers were restored in the irradiated neurons. MiR-206-3p upregulation data should also be confirmed in vivo using an irradiated mouse brain to correlate the cognitive dysfunction timepoint.

      We observed IR-induced miR-206-3p upregulation (Fig 6D) and consequent PAK3 downregulation (Fig 6G) in vivo at 4 days after IR. Considering that the antagomiR significantly restores cognitive dysfunction (Fig 6E) at 1-3 days after IR, we suppose the expression of miR-206-3p would be consistently increased by IR, suppressing the PAK3 signaling pathway and leading to cognitive dysfunction.

      Page 33, line 825-827; "(H) Left: the protein levels of phosphorylated LIMK1, LIMK1, phosphorylated cofilin, and cofilin after IR in frontal cortex and hippocampus. Right: each western blot bands are quantified by ImageJ."

      6) Fig 5 shows that in vivo administration of antago-miR-206 reversed IR-induced upregulation of miR-206, reductions in PAK3 and downstream markers, and, importantly, reversed cognitive deficits induced by IR. This data should be supported by in vivo staining for important dendritic markers, including cofillin/p-cofilin, PSD-95, F- and G-actin within the hippocampal and PFC regions.

      We appreciated the reviewer's comment. Based on previous studies on intranasal administration, the substance is delivered to the PFC and hippocampus through the olfactory pathway in both humans and mice (Exp Neurobiol. 2020 Dec 31;29(6):453-469, Stem Cells. 2021 Dec;39(12):1589-1600). Even though we did not show direct evidence that antagomiR-206 is delivered to both regions, we confirmed its actual delivery to the brain using Cy5 fluorescence and examined PAK3 signaling (Fig. 6G) and the F/G-actin ratio (Fig. 6H) in both regions. To show the reliability of the tissue separation, we added a detailed description of the tissue separation method in “Materials and Methods”.

      Page 19, line 410-423; "Dissection of prefrontal cortex and hippocampus. The dissection of mouse brain regions was performed following a previous study (Spijker, 2011). First, to obtain the hippocampal region, we gently held the brain and opened the forceps, slowly separating the cortical halves. Once an opening had been created along the midline for approximately 60%, we directed the forceps (in the closed position) counterclockwise by 30–40° to expose the left cortex from the hippocampus, repeatedly opening the forceps as necessary. We then repeated the same procedure for the right cortex by pointing the forceps in a 30–40° clockwise direction until the upper part of the hippocampus became visible. At the most caudal part of the hippocampus/cortex boundary, we moved the small forceps through the cortex and used them to separate the hippocampus from the fornix. After removing the hippocampus, we used the large forceps to fold the cortex back into its original position. Subsequently, we placed the brain with the dorsal side and cut coronal sections to reveal the prefrontal cortex and striatum at different levels. Using a sharp razor blade, we made the first cut to remove the olfactory bulb and cut the section containing the prefrontal cortex."

      7) Does this change in the F/G actin ratios, Cofillin, and/or p-Cofillin impact any particular neuronal subtypes, including excitatory, inhibitory or any particular layers of major neurons? This point can't be appreciated from the WB data.

      The excitatory and inhibitory neurons do play crucial roles in cognitive function. In terms of response to radiation, excitatory neurons are more likely to be responsive. A previous study showed that spike firing and excitatory synaptic input were reduced by cranial irradiation, while inhibitory input was increased (Neural Regen Res. 2022 Oct;17(10):2253-2259). Additionally, PSD-95 is localized to dense specialized regions within the dendritic spines of excitatory synapses and is associated with synaptic plasticity (Neuron. 2001 Aug 2;31(2):289-303). Indeed, IR decreases the mRNA level of PSD-95 in differentiated human neurons (Fig S5A). Considering the previous research and our data, IR-induced PAK3 downregulation may occur primarily in excitatory neurons.

      8) Discussion: "In this study, we investigated the effect of cranial irradiation on cognitive function and the underlying mechanisms in a mouse model." Please change this statement to "....underlying neuronal mechanisms using in vivo and in vitro models."

      We appreciate the reviewer’s comment. We replaced ‘mechanisms in a mouse model’ with ‘neuronal mechanisms using in vivo and in vitro models.’ in the manuscript.

      Page 14, line 283; "In this study, we investigated the effect of cranial irradiation on cognitive function and the underlying neuronal mechanisms using in vivo and in vitro models."

      9) Discussion: "Furthermore, our study identifies a potential mechanism underlying the cognitive impairment associated with cranial irradiation, which downregulates PAK3 expression." This statement should be supported by the in vivo immunofluorescence data for the synaptic markers, including cofilin, p-cofillin, PSD-95, and F/G-actin staining.

      Even though we did not show the in vivo immunofluorescence data for the synaptic markers, we examined PAK3 signaling (Fig. 6G) and the F/G-actin ratio (Fig. 6H) in the hippocampal and PFC regions. Additionally, according to The Allen Mouse Brain Atlas, PAK3 is mainly expressed in the PFC and hippocampus regions (Fig S2A), suggesting that IR-induced PAK3 downregulation in both regions may have a significant impact on the cognitive impairment. Considering these data, we strongly believe that cranial irradiation downregulates PAK3 levels in the PFC and hippocampus, thus inducing cognitive impairment.

      10) miR modulate function by affecting multiple targets. The other potential neuronal and non-neuronal targets for miR-206-3p were not discussed. This possibility should be confirmed using relevant markers.

      According to the reviewer’s comment, we performed real-time PCR to examine whether miR-206-3p affects the expressions of neuronal and non-neuronal markers (Fig S5A and S5B). As a result, the post-synaptic marker, PSD-95, was reduced by miR-206-3p treatment. However, a mature neuronal marker (NeuN) and non-neuronal markers (GFAP and IBA-1) did not change upon miR-206-3p treatment. We added the related description in “Results”.

      Page 12, line 240-243; "Additionally, the post-synaptic marker, PSD-95, was decreased by miR-206-3p treatment. However, a mature neuronal marker (NeuN) and non-neuronal markers (GFAP and IBA-1) were not alterd upon miR-206-3p treatment (Fig. S5A and S5B)."

      11) Irradiation procedure: Please confirm that sham (0 Gy)-irradiated mice were also anesthetized for a similar procedure carried out for the 2 Gy or fractionated irradiation.

      According to the reviewer's comment, we added a description of sham (0 Gy)-irradiated mice in “Materials and Methods”.

      Page 17, line 359-360; "All mice, including those in the sham (0 Gy) group, were anesthetized with an intraperitoneal (i.p.) injection of zoletil (5 mg/10 g) daily for five days."

      12) 24 mL volume (antagomir treatment) via intra-nasal delivery is a rather unusually high volume. Please clarify if such a procedure was approved by the regulatory committee and if 24 mL volume led to any hemodilution.

      We appreciate the reviewer's comment. We referred to the protocol of intranasal administration from a previous study (Mol Ther. 2021 Dec 1;29(12):3465-3483), and made an error in specifying the miRNA unit. We corrected it from mL to μL.

      Page 19, line 399-402; "According to the manufacturer’s instructions and previous study (Zhou et al., 2021), 40 nmol of antagomiR-206-3p (sequence: 5’-CCACACACUUCCUUACAUUCCA -3’) or antagomiR-NC (the antagomiR negative control, its antisense chain sequence: 5’-UCUACUCUUUCUAGGAGGUUGUGA-3’) was dissolved in 1 mL of RNase-free water."

      Page 19, line 402-403; "A total of 24 μL of the solution (1 nmol per one mouse) was instilled with a pipette, alternately into the left and right nostrils (1 μL/time), with an interval of 3–5 min."

      Reviewer #2

      1) To show the relevance of PAK3 in Radiation-induced neurocognitive decrements, I suggest using 10 Gy WBI, group of 15-16 animals and long-term follow up >2 months post-RT.

      We appreciate the reviewer's comment. Biologically Effective Dose (BED) represents the most accurate quantitative prediction of biological effects of radiation. However, our study aimed to analyze the mechanisms underlying cognitive dysfunction induced not by a total dose of 10 Gy but rather by repeating 2 Gy fractions, which is used in clinical practice such as prophylactic cranial irradiation. In this regard, the administration of 2 Gy fractions holds significant relevance in our research.

      In statistical analysis, a larger sample size tends to be more accurate. However, we determined the sample size based on ethical considerations in animal research, taking into account the parameter (Effect size: 1.2 / alpha value: 0.05 / Group: 3 groups), resulting in a total sample size of 15, five mice per group (G Power 3.1 software). Despite the relatively small sample size, radiation exposure significantly reduced PAK3 expression with marginal variance, thereby inducing cognitive impairment.

      As the reviewer mentioned, the long-term effect (>2 months) of WBI may show more severe cognitive impairment, considering results from the previous studies. Nevertheless, previous research has revealed a correlation between mouse age and human age, suggesting that 2 months in mice is roughly equivalent to 5 years in humans (Life Sci. 2020 Feb 1;242:117242). Due to the substantial difference in biological time between humans and mice, 2 months in mice might be an excessive long-term period. Additionally, our study aims to investigate short-term changes rather than long-term effects. It is clear that IR-induced PAK3 downregulation induces cognitive impairment at least in the short-term period, and we believe that our findings may contribute to preventing serious neuronal dysfunction as the long-term side effects of PCI.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      “Peng et al develop a computational method to predict/rank transcription factors (TFs) according to their likelihood of being pioneer transcription factors--factors that are capable of binding nucleosomes--using ChIP-seq for 225 human transcription factors, MNase-seq and DNase-seq data from five cell lines. The authors developed relatively straightforward, easy to interpret computational methods that leverage the potential for MNase-seq to enable relatively precise identification of the nucleosome dyad. Using an established smoothing approach and local peak identification methods to estimate positions together with identification of ChIP-seq peaks and motifs within those peaks which they referred to as "ChIP-seq motifs", they were able to quantify "motif profiles" and their density in nucleosome regions (NRs) and nucleosome free regions (NFRs) relative to their estimated nucleosome dyad positions. Using these profiles, they arrived at an odd-ratio based motif enrichment score along with a Fisher's exact test to assess the odds and significance that a given transcription factor's ChIP-seq motifs are enriched in NRs compared to NFRs, hence, its potential to be a pioneer transcription factor. They showed that known pioneer transcription factors had among the highest enrichment scores, and they could identify 32 relatively novel pioneer TFs with high enrichment scores and relatively high expression in their corresponding cell line. They used multiple validation approaches including (1) calculating the ROC-AUC associated with their enrichment score based on 16 known pioneer TFs among their 225 TFs which they used as positives and the remaining TFs (among the 225) as negatives; (2) use of the literature to note that known pioneer TFs that acted as key regulators of embryonic stem cell differentiation had a highest enrichment scores; (3) comparison of their enrichments scores to three classes of TFs defined by protein microarray and electromobility shift assays (1. strong binder to free and nucleosomal DNA, 2. weak binder to free and nucleosomal DNA, 3. strong binding to free but not nucleosomal DNA); and (4) correlation between their calculated TF motif nucleosome end/dyad binding ratio and relevant data from an NCAP-SELEX experiment. They also characterize the spatial distribution of TF motif binding relative to the dyad by (1) correlating TF motif density and nucleosome occupancy and (2) clustering TF motif binding profiles relative to their distance from the dyad and identifying 6 clusters.

      The strengths of this paper are the use of MNase-seq data to define relatively precise dyad positions and ChIP-seq data together with motif analysis to arrive at relatively accurate TF binding profiles relative to dyad positions in NRs as well as in NFRs. This allowed them to use a relatively simple odds ratio based enrichment score which performs well in identifying known pioneer TFs. Moreover, their validation approaches either produced highly significant or reasonable, trending results.

      The weaknesses of the paper are relatively minor. The most significant one is that they used ROC-AUC to assess the prediction accuracy of their enrichment score on a highly imbalanced dataset with 16 positives and 209 negatives. ROC-AUC is known to be a misleading prediction measure on highly imbalanced data. This is mitigated by the fact that they find an AUC = 0.94 for their best case. Thus, they're likely to find good results using a more appropriate performance measure for imbalanced data. Another minor point is that they did not associate their enrichment score (focus of Figure 2) with their correlation coefficients of TF motif density and nucleosome occupancy (focus of Figure 3). Finally, while the manuscript was clearly written, some parts of the Methods section could have been made more clear so that their approaches could be reproduced. The description of the NCAP-SELEX method could have also been more clear for a reader not familiar with this approach.”

      Reviewer #2 (Public Review):

      “In this study, the authors utilize a compendium of public genomic data to identify transcription factors (TF) that can identify their DNA binding motifs in the presence of nuclosome-wrapped chromatin and convert the chromatin to open chromatin. This class of TFs are termed Pioneer TFs (PTFs). A major strength of the study is the concept, whose premise is that motifs bound by PTFs (assessed by ChIP-seq for the respective TFs) should be present in both "closed" nucleosome wrapped DNA regions (measured by MNase-seq) as well as open regions (measured by DNAseI-seq) because the PTFs are able to open the chromatin. Use of multiple ENCODE cell lines, including the H1 stem cell line, enabled the authors to assess if binding at motifs changes from closed to open. Typical, non-PTF TFs are expected to only bind motifs in open chromatin regions (measured by DNaseI-seq) and not in regions closed in any cell type. This study contributes to the field a validation of PTFs that are already known to have pioneering activity and presents an interesting approach to quantify PTF activity.

      For this reviewer, there were a few notable limitations. One was the uncertainty regarding whether expression of the respective TFs across cell types was taken into account. This would help inform if a TF would be able to open chromatin. Another limitation was the cell types used. While understandable that these cell types were used, because of their deep epigenetic phenotyping and public availability, they are mostly transformed and do not bear close similarity to lineages in a healthy organism. Next, the methods used to identify PTFs were not made available in an easy-to-use tool for other researchers who may seek to identify PTFs in their cell type(s) of interest. Lastly, some terms used were not defined explicitly (e.g., meaning of dyads) and the language in the manuscript was often difficult to follow and contained improper English grammar.”

      Reviewer #3 (Public Review):

      Peng et al. designed a computational framework for identifying pioneer factors using epigenomic data from five cell types. The identification of pioneer factors is important for our understanding of the epigenetic and transcriptional regulation of cells. A computational approach toward this goal can significantly reduce the burden of labor-intensive experimental validation. Nevertheless, there are several caveats in the current analysis which may require some modification of the computational methods and additional analysis to maximize the confidence of the pioneer factor prediction results.

      A key consideration that arises during this review is that the current analysis anchors on H1 ESC and therefore may have biased the results toward the identification of pioneer factors that are relevant to the four other differentiated cell types. The low ranking of Yamanaka factors and known pioneer factors of NFYs and ESRRB may be due to the setup of the computational framework. Analysis should be repeated by using each of every cell type as an anchor for validating the reproducibility of the pioneer factors found so far and also to investigate whether TFs related to ESC identity (e.g. Yamanaka factors, NFYs and ESRRB) would show significant changes in their ranking. Given the potential cell type specificity of the pioneer factors, the extension to more cell types appears to be important for further demonstrating the utility of the computational framework.

      Author Response: We thank all reviewers for their thoughtful and constructive comments and suggestions, which helped us to strengthen our paper. Following the suggestions, we have performed additional analysis to address the reviewer’s comments and the detailed responses are itemized below.

      Reviewer #1 (Recommendations For The Authors):

      1. The authors should generate precision-recall curves in addition to (or replacing) the ROC-AUC curves shown Figure 2c. They should also calculate the precision-recall AUC and use that as their measure of enrichment score predication accuracy. Precision-recall curves and AUC are more appropriate for imbalanced positive-negative data as is the case in this study.

      Response: Following the reviewer’s suggestion, we have performed precision-recall analysis and calculated Matthews correlation coefficients (MCC) (Figure 2). We have further expanded our validation set to 32 known pioneer transcription factors (Supplementary Table 5) and compared the performance of enrichment score using different test sets (Supplementary Table 10). We have attained the highest ROC = 0.71, pr-ROC-AUC = 0.37 and MCC = 0.31 for Test set1 and ROC = 0.92, pr-ROC-AUC = 0.45 and MCC=0.49 for Test set2 (Supplementary Table 11).

      1. The authors should generate scatter plots of their TF enrichment scores (focus of Figure 2) and motif-density nucleosome occupancy Pearson correlation coefficients (focus of Figure 3) and calculate the corresponding correlation coefficient and p-value.

      Response: We observed a weak but statistically significant correlation between the enrichment scores and the correlation coefficient values (R=0.32 and p-value=1e-9)).

      1. The authors should write their computational methods in the Methods section in such a way that a skilled bioinformatician could reproduce their results. This does not require a major rewrite. They are very close. One example of this is that a minimum distance between neighboring local maxima of the smoothed dyad counts was set to 150 bps. How was this algorithmically done? Suppress/ignore weaker local maxima that are within 150bp of other stronger local maxima?

      Response: We have revised the Methods section to make it easier to follow and to reproduce the results. For identifying the local maxima, we have used the bwtool with the parameters ‘‘find local-extrema -maxima -min-sep=150’’ so that local maxima located within 150 bp of another neighboring maxima was ignored to avoid local clusters of extrema.

      1. Describe the NCAP-SELEX method more clearly so that a reader not familiar with this approach doesn't have to look it up. This can be brief.

      Response: Following the reviewer’s suggestion, we have added a detailed description of the NCAP-SELEX method.

      Reviewer #2 (Recommendations For The Authors):

      To improve the manuscript:

      1. The grammar in the manuscript should be read for accuracy to improve readability and clarify the exact meaning.

      Response: We have improved the grammar and have clarified the meaning of terms.

      1. The exact meaning of dyads needs to be defined up front. In some places seems to mean pairs of reads and others seems to refer to nucleosome positioning.

      Response: The meaning of “dyads” has been clarified. The dyad positions were determined by the midpoints of the mapped reads in MNase-seq data and refer to the center of the nucleosomal DNA.

      1. Meaning of NCAP-SELEX needs to be defined before use of acronym.

      Response: We have defined it in the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      1. The authors found that Yamanaka factors and several other known pioneer factors (e.g. NFY-A, NFY-B, and ESRRB) are lowly ranked in their pioneer factor analysis. Since the analysis was performed by anchoring on H1 ESCs and comparing them to the other four cell lines, the results may only be relevant to differentiated cell types. It is therefore not unexpected that the Yamanaka factors which are important for iPSC reprogramming and the NFYs which have been experimentally shown to replace nucleosomes for maintaining ESC identity from differentiation (PMID: 25132174; PMID: 31296853) would not be enriched in the analysis. I suggest the authors repeat their analysis by anchoring on differentiated cell types and validate the reproducibility of the pioneer factors found so far and also investigate whether TFs related to ESC identity (e.g. Yamanaka factors, NFYs, and ESRRB) would show significant changes in their ranking as pioneer factors.

      Response: Following reviewer’s suggestions, we have repeated the enrichment analysis by redefining differentially open regions as those closed in differentiated cell lines (HepG2, HeLa-S3, MCF-7 and K562) and open in H1 embryonic cell line (Supplementary Figure 6). The results indicate that most known PTFs still showed significantly higher enrichment scores compared with other TFs especially for FOXA, GATA and CEBPB families. Interestingly, ESSRB and Yamanaka pioneer factor POU5F1 (OCT4) have also shown significantly high enrichment scores in this analysis (Supplementary Figure 6). This could be explained by the roles of Yamanaka factors in cellular reprogramming – they reprogram somatic differentiated cells into induced pluripotent stem cells.

      1. The authors mentioned the cell-type-specificity of TFs been pioneer factors and the example of CTCF was given. This point relates closely to above point 1 and, in particular, the correlation analysis of Yamanaka factors and NFYs supports their binding to nucleosomes. Together, these results highlight potential caveats of the current analysis in that the analysis is likely to be limited to the available cell types and may be affected by which cell type was used as the anchor cell type.

      Response: Differentiated and embryonic cell lines were used to ask specific question about the functional roles of PTFs for cell differentiation and stem cell reprogramming. In the revised manuscript, we have clarified this point and separated our data set into three different sets of PTFs with different functions (Supplementary table 10). We agree with the reviewer, it would be nice to have more data from other cell lines but unfortunately the matching between different Chip-seq, DNAase-seq and Mnase-seq data sets imposes strict limitations.

      1. The differential and conserved open chromatin regions are defined based on overlaps found between five cell types using their DNase-seq mapping profiles. The limitation of this definition is its lack of quantitativeness. For example, a chromatin region can have more than 80% overlaps between H1 and another cell type but the level of accessibility (e.g. number of reads mapped to this region) can be quite different between cell types. In such a case, I think it is still more appropriate to define such a region as a differential open chromatin region. The author should explore whether using a more quantitative definition would improve the identification and categorization of differential and conserved open chromatin regions.

      Response: we thank the reviewer for these suggestions. In the revised version, we have clarified the definition and further explored different thresholds in defining the differentially and conserved open chromatin regions in enrichment analysis (Supplementary Figure 8). Our results were not significantly affected when different thresholds are applied.

      1. While it is mentioned that H3K27ac and H3K4me1 ChIP-seq data from the five human cell lines were used in the study, the information on how enhancers are mapped/defined in these cell types is lacking.

      Response: We have clarified the definition in the text. The enhancer regions were identified as the open chromatin regions overlapped with both H3K27ac and H3K4me1 ChIP-seq narrow peaks. We have elucidated the how enhancers are defined in the methods sections. In addition, we have performed additional enrichment analysis using NRs located on differentially active enhancer regions and NDRs located on conserved active enhancer regions (Supplementary Figure 7) between H1 embryonic cell line and any other differentiated cell lines and the performance of enrichment scores in PTF classification was slightly worse compared with those calculated from differentially and conserved open chromatin regions

      1. The description of "genome-wide mapping of transcription factor binding sites" is unclear. For example, what does it mean by "In total, ChIP-seq data for 225 transcription factors could be matched with MNase-seq data" and why is this step needed? I would assume that a typical approach for mapping TF binding sites in the five cell types is to obtain the ChIP-seq data for each TF in each cell type and perform sequence alignment to the reference genome. The procedure described by the authors needs a clearer motivation and justification.

      Responses: This sentence refers to matching between the ChIP-seq and MNase-seq data from the same cell type. We explain in detail how ChIP-seq data is processed. We have clarified this in the paper.

      1. I also suggest the authors clearly justify the use of ROC analyses given that only a ground truth of positive (e.g. 16 known pioneer factors) is available and the "other transcription factors" considered as negative in the analysis in fact are expected to contain unknown pioneer factors and their identification should not be minimized (which lead to the maximization of ROC) by the analysis procedure.

      Responses: (This is also pointed by review 1). The fact that unknown transcription factors are treated as negatives actually leads to the lower reported ROC scores (more hits considered to be false positives), not to their maximization. That is the reason we mentioned in the paper that the obtained ROC scores can be considered as lower bound estimates. In addition, we have expanded our validation sets to 32 known pioneer factors and compiled three sets of PTFs for validations. Following the reviewers’ suggestions, we have further performed precision-recall (PR) analysis and calculated the Matthews correlation coefficient (MCC) using three sets of PTFs for validation (Supplementary Table 11 and Supplementary Figure 2).

      1. The analysis of pioneer transcription factor binding sites lacks insight. What can we learn these this analysis other than TFs from the same families are likely to be clustered in the same group?

      Responses: We thank the review for pointing out it and have added a more detailed discussion of these results in the revised manuscript. Very few PTF-nucleosome structural complexes have currently been solved so far and the binding modes of majority of PTFs with nucleosomes still remain unknow. Our analysis has identified six distinctive clusters of TF binding profiles with nucleosomal DNA, which could provide insight into the binding modes of PTFs with nucleosome. These clusters point to the diversity of binding motifs where transcription factors belonging to the same cluster may also exhibit potential competitive binding.

    1. Author Response

      The following is the authors’ response to the original reviews.

      The co-authors and I would like to thank you for overseeing the review, and to thank you and the reviewers for your constructive feedback about the manuscript. Below, we have summarized each suggestion for improving the manuscript and provided our response. In addition, the abstract was revised to include findings from physiological studies of mice with a single Numb cKO and to provide a more concise and conservative concluding statement.

      Reviewer #1 (Recommendations for The Authors):

      1. While the specificity of the observed muscle phenotypes seems clear, the subsequent molecular analysis of Numb protein interactors does not seem to consider the potential involvement of Numb-like. The authors should demonstrate the relative expression levels of Numb and Numb-like in the models used, and establish the specificity of the antibodies used in IP, western and staining experiments.

      Response: Perhaps the most convincing evidence that the anti-Numb antibody did not pull down Numb-like is that this protein was not detected among immunoprecipitated protein complexes pulled down by the anti-Numb antibody used. The antibody used in the immunoprecipitation was validated by the supplier and was previously reported to immunoprecipitate Numb [1, 2]. We previously demonstrated that a morpholino against Numb mRNA almost completely eliminated the band detected by this antibody and that this band was at the expected molecular weight [ref]. In our hands, mRNA levels for Numb-like in skeletal muscle are 5-10-fold lower than those for Numb [3]. We have been unable to detect Numb-like protein in healthy adult skeletal muscle by immunoblotting or immunofluorescence staining. Taking all of these findings together, it seems unlikely that the antibodies used for immunoprecipitating Numb-protein complexes pulls down Numb-like.

      1. The authors use PCR to investigate Numb isoform expression and conclude that p65 is likely the dominant protein isoform expressed. While this agrees with the single band observed in Supp Figure 4A, a positive control for exon 9 excluded and included isoforms in the PCR reactions would strengthen this conclusion.

      Response: The amplicons shown in Supplemental 4 were sequenced. The clones corresponded to the isoforms with the exon 3 present or removed. No amplicons containing exon 9 were detected. The following sentence was added to the Analysis of Splice Variants section of Methods to address this point: “PCR products were cloned using the TOPO TA cloning system (ThermoFisher) and multiple resulting clones were sequenced to confirm that the expected products were generated.”

      1. PCR analysis of total Numb and Numb-like expression levels are not shown. This is important given the specificity of the Numb antibodies used for AP-MS experiments are not described and some Numb antibodies are well known to also recognize Numb-like. Two different Numb antibodies were used for Western and immunoprecipitation but the specificity for Numb and Numb-like is not described. In particular, does the antibody used in the AP-MS experiment recognize both Numb and Numb-like? Supplementary Table 1 does not list Numb or Numb-like, but presumably peptides were identified?

      Response: As noted above, the specificity of anti-Numb antibodies was confirmed in previous studies [3]. Importantly, Numb-like mRNA levels are 5-10-fold lower than Numb mRNA, and NumbL protein is undetectable in healthy adult skeletal muscle by Western. The physiology data reported in this manuscript supports the conclusion that a single KO of Numb is sufficient to recapitulate the physiological phenotype of Numb/Numb-like KO . We therefore reason that the majority, if not all, of the physiological contribution of these proteins to muscle contractility due to Numb (Fig. 1).

      1. The validation experiment used the same Numb antibody for immunoprecipitation, immunoblotted with Septin 7. A reciprocal IP of Septin 7 and blotted with Numb should be performed. In addition, a Numb-like IP or immunoblot would also be useful to demonstrate the specificity of the interaction. Efforts to map the interaction between Numb and Septin 7 would be useful to demonstrate specificity of the interaction and strategies to establish the biological relevance of the interaction.

      Response: We agree with the reviewer and attempted several IPs with anti-Septin7 antibodies. These were unsuccessful. In a new collaboration, Dr. Italo Cavini (University of Sao Paulo) has used machine-learning-based approaches to model binding between Numb and several septins, including Septin 7. The analysis suggests that binding of Numb with septins involves a domain of Numb that has not yet been ascribed a function in protein-protein interactions. These computational predictions require experimental validation but provide rational starting point for experiments to define the domains responsible for these interactions. Such experiments were included in our recent NIH R01 renewal application. We hope to be able to report on results of confirmatory experiments of these computational models in the future.

      1. Other septins were identified in the AP-MS experiment and might have been anticipated to also be disrupted by Numb/Numb-like deletion. Are these septins known to interact in a complex?

      Response: This is an excellent question. Septins have conserved motifs providing a clear reason to imagine that many different mammalian septins could directly interact with Numb. Septins form heterooligomers consisting of complexes formed by 3, 6 or 8 septins [4]. It is likely that when Numb binds to one septin, antibodies against Numb pull down other septins present in the septin oligomer to which Numb is bound. The following paragraph was added to the discussion: “Our findings suggest that Numb may also interact with other septins such as septins 2, 9 and 10, which were also identified with a high level of confidence as Numb interacting proteins by our LC/MS/MS analysis. Our data to not allow us to determine if Numb binds directly to these septins. Septins contain highly conserved regions, and, consequently, if one such region of septin 7 interacts with Numb, then many septins would be expected to directly bind Numb through the same domain. However, because septins self-oligomerize, is possible that when Numb binds to one septin, antibodies against Numb could also pull down other septins present in the septin oligomer to which Numb is bound regardless of whether or not they are also bound by Numb. “

      1. The text for Figure 5 describes analysis of Septin localization in inducible Numb/Numb-like cKO muscle, but the figure indicates only Numb is knocked out. Please clarify.

      Response: We apologize for this oversight on our part. The Legend to Figure 5 has been corrected.

      1. Supplementary Figure 2 seems to show that TAM treatment increases Numb expression. Please clarify. Also, please correct reference 9.

      Response: The figure was incorrectly labeled. We apologize for this oversight and have corrected the figure in the revised manuscript.

      Reviewer #2 (Recommendations for The Authors):

      Overall, the manuscript is well written. I do have a few minor issues/concerns, which are detailed below.

      Abstract: Please be a little more specific regarding which where the tissue came from (i.e. humans, mice, cell) when referring to your previous studies.

      Response: The abstract has been revised as requested.

      Introduction: Please be more specific regarding the technique used for detecting ultrastructural changes. I assume it was done with TEM, but the reference is listed as an "invalid citation" in your reference list.

      Response: The introduction was revised as requested and the citation was updated to reference a valid citation.

      Methods / Numb Co-Immunoprecipitation: Please indicated the level of confluency of the C2C12 cells as this will alter gene expression.

      Response: As indicated in the updated Methods section, confluent C2C12 cells were switched to differentiation media (low serum) for seven days. When harvested, the cells had differentiated and fused into myotubes.

      Methods / Immunohistochemical Staining: The first sentence needs to be edited regarding plurality and grammar.

      Response: Thank you for this comment. The text was revised accordingly.

      Results / GWAS and WGS Identify...: Please spell out phosphodiesterase (I assume) for PDE4D

      Response: This change was incorporated in the text.

      References cited:

      1. Wu, M., et al., Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell, 2010. 19(1): p. 114-25.

      2. Garcia-Heredia, J.M. and A. Carnero, The cargo protein MAP17 (PDZK1IP1) regulates the immune microenvironment. Oncotarget, 2017. 8(58): p. 98580-98597.

      3. De Gasperi, R., et al., Numb is required for optimal contraction of skeletal muscle. J Cachexia Sarcopenia Muscle, 2022.

      4. Neubauer, K. and B. Zieger, The Mammalian Septin Interactome. Front Cell Dev Biol, 2017. 5: p. 3.

    1. Author Response

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      In countries endemic for P vivax the need to administer a primaquine (PQ) course adequate to prevent relapse in G6PD deficient persons poses a real dilemma. On one hand PQ will cause haemolysis; on the other hand, without PQ the chance of relapse is very high. As a result, out of fear of severe haemolysis, PQ has been under-used.

      In view of the above, the Authors have investigated in well-informed volunteers, who were kept under close medical supervision in hospital throughout the study, two different schedules of PQ administration: (1) escalating doses (to a total of 5-7 mg/kg); (2) single 45 mg dose (0.75 mg/kg).

      It is shown convincingly that regimen (1) can be used successfully to deliver within 3 weeks, under hospital conditions, the dose of PQ required to prevent P vivax relapse.

      As expected, with both regimens acute haemolytic anaemia (AHA) developed in all cases. With regimen (2), not surprisingly, the fall in Hb was less, although it was abrupt. With regimen (1) the average fall in Hb was about 4 G. Only in one subject the fall in Hb mandated termination of the study.

      Since the data from the Chicago group some sixty years ago, there has been no paper reporting a systematic daily analysis of AHA in so many closely monitored subjects with G6PD deficiency. The individual patient data in the Supplementary material are most informative and more than precious.

      Having said this, I do have some general comments.

      1. Through their remarkable Part 1 study, the Authors clearly wish to set the stage for a revision of the currently recommended PQ regimen for G6PD deficient patients. They have shown that 5-7 mg/kg can be administered within 3 weeks, whereas the currently recommended regimen provides 6 mg/kg over no less than 8 weeks.

      We state in the abstract: “The aim was to explore shorter and safer primaquine radical cure regimens compared to the currently recommended 8-weekly regimen (0.75 mg/kg once weekly), potentially obviating the need for G6PD testing”. This is the primary goal of the study.

      1. Part 2 aims to show that, as was known already, even a single PQ dose of 0.75 mg/kg causes a significant degree of haemolysis: G6PD deficiency-related haemolysis is characteristically markedly dose-dependent. Although they do not state it explicitly in these words (I think they should), the Authors want to make it clear that the currently recommended regimen does cause AHA.

      We also wanted to compare the extent of haemolysis following single dose with the extent of haemolysis following the ascending dose regimens, in the same patients.

      1. Regulatory agencies like to classify a drug regimen as either SAFE or NOT-SAFE; they also like to decide who is 'at risk' and who is 'not at risk'. A wealth of data, including those in this manuscript, show that it is not correct to say that a G6PD deficient person when taking PQ is at risk of haemolysis: he or she will definitely have haemolysis. As for SAFETY, it will depend on the clinical situation when PQ is started and on the severity of the AHA that will develop.

      We agree completely. Haemolysis following primaquine is inevitable. What matters is the rate and extent of haemolysis, and the compensatory response. Importantly the extent of the haemolysis, even within a specific genotype and for a given drug dose, appears to be highly variable.

      The above three issues are all present in the discussion, but I think they ought to be stated more clearly.

      We have tried to clarify these points in a revised discussion.

      Finally, by the Authors' own statement on page 15, the main limitation is the complexity of this approach. The authors suggest that blister packed PQ may help; but to me the real complexity is managing patients in the field versus the painstaking hospital care in the hands of experts, of which volunteers in this study have had the benefit. It is not surprising that a fall in Hb of 4 g/dl is well tolerated by most non-anaemic men; but patients with P vivax in the field may often have mild to moderate to severe anaemia; and certainly they will not have their Hb, retics and bilirubin checked every day. In crude approximation, we are talking of a fall in Hb of 4 G with regimen (1), as against a fall in Hb of 2 G with regimen (2), that is part of the currently recommended regimen: it stands to reason that, in terms of safety, the latter is generally preferable (even though some degree of fall in Hb will recur with each weekly dose). In my view, these difficult points should be discussed deliberately.

      As above we have tried to clarify these important points in a revised discussion

      Reviewer #1 (Recommendations For The Authors):

      Page 2 para 3. The decreased haemolysis upon continued PQ administration (that originally was named the 'resistance phase' is explained by two additive factors. First, the reticulocytosis (cells with higher G6PD activity pour into circulation from the bone marrow); second, the early doses of PQ has caused selective haemolysis of the oldest red cells, that had the lowest G6PD activity. This dual phenomenon is hinted at, but I think it should be stated clearly.

      Thank you. We have added to the Introduction (fourth paragraph in revised version):

      “Continued primaquine administration to G6PD deficient subjects resulted in "resistance" to the haemolytic effect. The selective haemolysis of the older red cells resulted in a compensatory increase in the number of reticulocytes. Thus, the red cell population became progressively younger and increasing resistant to oxidant stress, so overall haemolysis decreased and a steady state was reached.”

      Page 4 and elsewhere. In the 'Hillmen scale' for haemoglobinuria a value >6 was named a 'paroxysm'; but any value of 2 and above is already frank haemoglobinuria. Incidentally, the chart was published not in ref 17, but in NEJM 350:552, 2004.

      We have changed the reference (now ref 19) to the 2004 paper by Hillmen. We used the value of 6 as clinical criterion for stopping primaquine. While >2 is detectable in dilute urine, >6 refers to clearly red/black urine.

      In Table 1 and throughout the paper I am surprised that retics are given as %: absolute retic counts are more informative.

      We showed these as % counts as the majority of measurements were taken from blood slide readings where it is not possible to get an absolute count.

      Page 10, Attenuated hemolysis with continued or recurrent doses of PQ was shown convincingly for G6PD A-. There is also one report in which the time course of AHA was extensively investigated upon deliberate administration of PQ to a subject with G6PD Mediterranean (Blood 25: 92, 1965): there was little or no evidence for a 'resistance phase'.

      We agree that this suggests it might not be possible to attenuate haemolysis with the Mediterranean variant (or variants of similar severity) as even the youngest circulating red cells may be susceptible to haemolysis. More evidence is needed.

      S6, S7. Reticulocytes remain high until PQ is stopped; they return to normal some 17 days after stopping PQ. This should be stated in the main text.

      This has been added to the main text (section “Haemolysis and reticulocyte response”):

      “It took around 2 weeks for the reticulocyte counts to re-normalise.”

      In subject 11 haemoglobinuria was slight on day 12; what was it before?

      We have changed the caption of this Figure (Appendix 5) to:

      “Day 10 urine sample from subject 11 showing slight haemoglobinuria (Hillmen score of 4). The subject had a maximum Hillmen score varying between 2 and 3 on days 4 to 9.”

      I found individual patient data in S5 and S6 most interesting, especially since the G6PD variant was identified in each case. It would be helpful if in each case the total PQ dose were also shown, and in the interest of visual comparability the abscissa scale ought to be the same for all cases.

      We have amended Figures S5 and S6 to make them consistent with each other (now Appendix 5). We also amended the figures showing the individual subject data for consistency.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, the authors identified compound heterozygous mutations in CFAP52 recessively cosegregating with male infertility status in a non-consanguineous family. The Cfap52-mutant patient exhibits a mixed acephalic spermatozoa syndrome (ASS) and multiple morphological abnormalities of the sperm flagella (MMAF) phenotype. The influence of mutations on CFAP52 protein function is well validated by in vitro cell experiments and immunofluorescence staining. Cfap52-KO mice are further constructed and perfectly resemble the Cfap52-mutant patient's infertile phenotype, also showing a mixed ASS and MMAF phenotype. The phenotype and underlying mechanisms of the disruption of sperm head-tail connection and flagella development are carefully analyzed by TEM, Western blotting, and immunofluorescence staining. The data presented revealed a prominent role for CFAP52 in sperm development, suggesting that CFAP52 is a novel diagnostic target for male infertility with defects of sperm head-tail connection and flagella development.

      Thank you for your positive comments.

      Reviewer #2 (Public Review):

      Summary:

      The authors tried to identify the genetic factors for asthenoteratozoospermia. Using whole-exome sequencing, they analyzed a family with an infertile male and identified CFAP52 variants. They further knockout mouse Cfap52 gene and the homozygous mice phenocopied the patient. CFAP52 interacts with several other sperm proteins to maintain normal sperm morphology. Finally, CFAP52-associated male infertility in humans and mice could be overcome by using intracytoplasmic sperm injections (ICSI).

      Strengths:

      The major strength of this study is to identify genetic factors contributing to asthenoteratozoospermia, and to generate a mouse knockout model to validate the factor.

      Thank you for your positive comments.

      Weaknesses:

      The authors did not use the OMICS to dissect the potential mechanisms. Instead, they took the advantage of direct co-IP experiment to fish the binding partners. They also did not discuss in detail why other motile cilia have different behavior.

      Dear reviewer, thank you for your comments and we tried to answer your two questions as follows.

      In this study, we did not choose omics technologies to explore the binding partners for CFAP52 (e.g., IP-MS) and differentially expressed proteins after the loss of CFAP52 (e.g., proteomics). For IP-MS, we feel sorry that all available antibodies of CFAP52 could not be used to perform protein immunoprecipitation experiments. Another reason is that there are only dozens of proteins that have been reported to regulate the head-tail coupling apparatus (HTCA) of sperm. Accordingly, we used Western blotting to examine the expression of ten acephalic sperm syndrome (ASS)-associated proteins and found that only SPATA6 expression was significantly reduced in the testis protein lysates of Cfap52-KO mice (Fig. 6A). We further carefully examined the regulation of the stability of SPATA6 by its binding partner CFAP52 (Fig. 6 and Figure 6—figure supplement 2).

      In addition to male infertility, Cfap52-KO mice suffered from hydrocephalus; the ependymal cilia was sparse under SEM observation and disrupted axonemal structures were identified by TEM analysis (Figure 4—figure supplement 2). However, no obvious abnormalities of tracheal cilia were identified by SEM and TEM analyses (Figure 4—figure supplement 2). Although flagella and motile cilia exhibit quite similar “9+2” axoneme structure, they have some their unique proteins and the requirement of some axonemal proteins may be different. For example, IQUB expression is detected in tissues other than the testis, such as the lung and brain; however, IQUB deletion only affects beating of sperm flagella but not respiratory cilia (Cell Rep, 2022). Cfap43-KO mice exhibited both sperm flagella disordor and early-onset hydrocephalus (Dev Biol, 2020), and CFAP206 is required for sperm motility, mucociliary clearance of the airways and brain development (Development, 2020).

      Reviewer #3 (Public Review):

      Summary:

      In this study, Jin et al. report the first evidence of CFAP52 mutations in human male infertility by identifying deleterious compound heterozygous mutations of CFAP52 in infertile human patients with acephalic and multiple morphological abnormalities in flagella (MMAF) phenotypes but without other abnormalities in motile cilia. They validated the pathogenicity of the mutations by an in vitro minigene assay and the absence of proteins in the patient's spermatozoa. Using a Cfap52 knockout mouse model they generated, the authors showed that the animals are hydrocephalic and the sperm have coupling defects, head decapitation, and axonemal structure disruption, supporting what was observed in human patients.

      Strengths:

      The major strengths of the study are the rigorous phenotypic and molecular analysis of normal and patient spermatozoa and the demonstration of infertility treatment by ICSI. The authors demonstrated the interaction between CFAP52 and SPATA6, a head-tail coupling regulator and structural protein, and showed that CFAP52 can interact with components of the microtubule inner protein (MIP), radial spoke, and outer dynein arm proteins.

      Thank you for your positive comments.

      Weaknesses:

      The weakness of the study is some inconsistency in the localization of the CFAP52 protein in human spermatozoa in the figures and the lack of such localization information completely missing in mouse spermatozoa. Putting their findings in the context of the newly available structural information from the recent series of unambiguous and unequivocal identification of CFAP52 as an MIP in the B tubule will not only greatly benefit the interpretation of the study, but also resolve the inconsistent sperm phenotypes reported by an independent study. Since the mouse model is not designed to exactly recapitulate the human mutations but a complete knockout and the knockout mice show hydrocephaly phenotype as well, some of the claims of causality and ICSI as a treatment need to be tempered. Discussing the frequency of acephaly and MMAF in primary male infertility will be beneficial to justify CFAP52 as a practical diagnostic tool.

      Dear reviewer, thank you for your comments and we tried to answer your questions as follows.

      By immunofluorescence staining, we showed that CFAP52 was localized at both HTCA and full-length flagella from the normal control; in contrast, CFAP52 signals were barely detected in the patient’s spermatozoa (Figure 3F). Given that CFAP52 staining did not occur in other figures, no inconsistency exists in the localization of the CFAP52 protein in human spermatozoa in the figures. We did not perform the CFAP52 staining in mouse spermatozoa; however, we have shown that CFAP52 protein was completely absent in the Cfap52-KO testes compared with the WT testes (Figure 4C).

      We appreciate the reviewer’s suggestion to put our findings of CFAP52 in the context of the newly available axoneme architecture. Given that these cryo-EM studies focus on doublet microtubules (DMTs), a broader expression pattern of CFAP52 in cilia/flagella could not be excluded. In mammals, CFAP52 seems to interact with a broad range of axonemal proteins, including MIP (CFAP45), ODAs (DNAI1 and DNAH11), and DRC (DRC10) (Dougherty et al., 2020). We have mentioned that ‘a lack of FAP52 in Chlamydomonas causes an instability of microtubules and detachment of the B-tubule from the A-tubule and shortened flagella are observed in Chlamydomonas when both FAP52 and FAP20 are absent (Owa et al., 2019). Unlike a specific regulation of the stability of B-tubules by FAP52 in Chlamydomonas (Owa et al., 2019), Cfap52-KO mice and CFAP52-mutant patient showed a serious disorder of the axoneme and its accessory structures.’

      Before our study, Cfap52-KO mice have not yet been generated. To explore the physiological roles of CFAP52, we decided to construct Cfap52-KO mice. During our manuscript is under preparation, an independent group also generated the Cfap52-KO mice and explored their phenotype (Wu et al., 2023). We quite agree with this reviewer that Cfap52-mutant mice will be exact models to recapitulate the human variants. Cfap52-mutant mice were not included in our current manuscript due to i) the two identified variants were ‘nonsense’ variant and ‘frameshift’ variants, respectively, which are expected to damage the CFAP52 expression and function; ii) the influence of two variants on CFAP52 protein function has been well validated by in vitro cell experiments and iii) research funding is limited for us. The assisted reproductive technology (ART) outcomes were also reported for the CFAP52-mutant patient and Cfap52-KO mice, which will be potential useful for further clinical studies. However, it is not suggested to be over-interpreted because it is only a case study.

      Quantitative analyses showed that the decapitated spermatozoa, abnormal head-tail connecting spermatozoa, and spermatozoa with deformed flagella accounted for approximately 40%, 25%, and 30% of the total spermatozoa in Cfap52-KO mice, respectively (Figure 4I). Regarding the CFAP52-mutant patient, the frequency of acephaly and MMAF were not counted and now we feel sorry that we don’t have enough samples (repeats) to perform quantitative analyses.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Major concerns:

      1. In lines 41-43, there seems to be some confusion about the terminology regarding "sporadic ALS". ALS is subdivided into familial and sporadic forms. Familial ALS simply indicates that the patient has a family history of ALS and presumably has a genetic predisposition for developing this disease. In many families, the identity of the mutation remains unknown. Sporadic ALS patients do not have a family history of this disease. However, this does not imply that they lack mutations that caused disease. In fact, 5-10% of these patients have the hexanucleotide repeat expansion in C9orf72. This mutation is also found in about 40% of familial ALS cases.

      We have now amended the manuscript to be more accurate in our description of underlying genetics of ALS. This changes to this section are as follows:

      Lines 39-47:

      "...The median survival time in ALS, from initial onset of symptoms to death, typically as a result of respiratory complications, is only 20-48 months Chiò et al. (2009) and ALS has an estimated global mortality of 30,000 patients per year Mathis et al. (2019).

      ALS is typically classified into either familial (fALS) or sporadic (sALS) forms of the disease, based on whether or not patients have an identified family history of the disease; between 5-10% of total ALS cases fall into the former category, fALS, with the remaining 90-95% consisting of sALS cases Mathis et al. (2019). To date, over 20 monogenic mutations that cause ALS have been identified, however these still only account for 45% of fALS cases and only 7% of sALS cases Mejzini et al. (2019)..."

      1. In Fig. 4-supplement 1, 7DD and 5DD are not defined. I assume one is the fast-firing and one is the slow-firing motor neurons. I am also a bit confused as to why the 5DD neurons produce greater muscle force than the 7DD neurons when electrically stimulated. It seems to suggest that there is some difference between the two types of neurons or the groups of mice used to test them.

      We have now defined these terms and the amended figure legend now reads as follows:

      "(A) Fast-firing motor neurons (produced using a 7-day differentiation protocol thus labelled as “7DD”) or slow-firing ChR2+ motor neurons (produced using a 5-day differentiation protocol thus labelled as “5DD”) were engrafted in age matched SOD1G93A mice… Our expectation was that fast-firing motor neurons, which normally innervate larger numbers (>100) of stronger fast-twitch muscle fibres per motor unit would elicit significantly greater contractile force when optically stimulated, compared to slow-firing motor neurons that innervate small numbers (<10) of weaker, slow-twitch muscle fibres per motor unit. Surprisingly, our data did not show any difference when using grafts consisting of fast-firing motor neurons, versus slow-firing motor neurons, at least in response to optical stimulation. The factors underlying this surprising result, and the apparent discrepancy between electrically-evoked muscle contractions in nerves that had bene engrafted with either fast or slow firing motor neurons, are likely to be highly complex; we hope to further explore this as part of a separate follow up study."

      1. Along those lines, do these two subpopulations of motor neurons innervate the same set of muscle fibers? More generally, are certain types of muscle fibers preferentially innervated by this approach? Answering these questions could point to additional ways to enhance the effectiveness of this treatment approach. This should be discussed.

      This point is partially addressed in our response to Point 2 above, but to further extrapolate: certainly, the phenotype of individual muscle fibres is largely dictated by the firing properties of the motor neuron that innervates it. Slow-twitch muscle fibres tend to produce less contractile force but are more fatigue resistant, whereas fast-twitch muscle fibres produce more force but fatigue rapidly. There is evidence that expression of the chemorepellent molecule ephrin-A3 prevents the inappropriate innervation of slow-twitch muscle fibres by fast-firing motor neurons, which express the cognate receptor EphA8 [PMID: 26644518]. Importantly, fast-firing motor neurons are preferentially susceptible to disease mechanisms in ALS and the fast-twitch muscle fibres that they innervate are therefore more likely to undergo denervation and atrophy. Surprisingly, in this study we clearly show that grafts consisting of slow-firing motor neurons are able to innervate all regions of the triceps surae muscle group, including the normally exclusively fast-twitch superficial regions of the gastrocnemius and the exclusively slow-twitch soleus muscle. This finding strongly suggests that the normal developmental pairing of motor neuron and muscle fibre properties is not essential in this therapeutic context. Indeed, the use of more disease-resistant slow-firing motor neurons may provide some advantages. Again, we hope to be able to further explore this relationship in forthcoming follow-up studies.

      1. The authors state that exercise programs are likely to accelerate disease progression. This is not supported by the current body of clinical data. In fact, current guidelines are for moderate (not strenuous) exercise, and mouse studies have demonstrated a protective effect of moderate exercise on disease progression.

      We apologise for the lack of clarity on this point, as it was not our intention to imply that voluntary exercise accelerates disease progression. We have now amended the manuscript to specify “ENS-based exercise programs” to avoid any confusion.

      1. It is unclear what the experimental endpoint is. Page 25 defines it as 135 days of age, but ranges are given the figure legends, suggesting that some other criteria were used. It also seems unclear at what determined the age at which each animal was treated since they were also not treated at the same age.

      We hope that our response in the Public Reviews section above has fully addressed this point.

      1. I am a little confused by Figure 5 - figure supplement 5, panel D. Why do the authors give specific p-values here but not in the other panels? The sample sizes in D are very low, in some cases with only 1 animal in a group, and performing statistical tests under these conditions seems futile. The statistical power is nearly zero.

      For the purposes of consistency, we have now replaced the specific p-values in panel D with “ns”. The low n-values for the MUNE analysis data is due to the extremely difficult nature of identifying the contribution of individual motor units to the total muscle contractile response, when the maximal muscle force is extremely weak. In the absence of optical stimulation training, the extremely weak force elicited by acute optical stimulation precluded our ability to separate out the contribution of individual motor units and, often, in animals where this was not possible, we did not always perform electrically-evoked MUNE analysis. Unfortunately, we are not currently in a position to increase the n-values for this component of the study. Our ongoing research to enhance the amplitude of the muscle response to optical stimulation will hopefully help to more clearly address this in the future.

      1. One concern about this approach is that the procedure could accelerate the denervation of the target muscle. Figure 5 - figure supplement 6, panel B, indicates a significant reduction in force on the ipsilateral side relative to the contralateral side, at least under electrical stimulation of the nerve. This would be consistent with the hypothesis that the procedure does enhance disease progression in the treated limb. Is there a reduction in voluntary motor activity in these animals, such as in grip strength or the position of the foot while walking?

      We hope that this important point has been satisfactorily addressed in the Public Reviews section. Unfortunately, we did not undertake any behavioural analysis relating to voluntary motor function of the engrafted (or contralateral) hindlimbs, which may have provided useful data to address this point. As described above, the most likely explanation for this finding is due to physical nerve damage caused by the intraneural injection procedure; in our efforts to refine our strategy and move it towards clinical translation, we will take this into consideration in our future research.

      1. Based on Fig. 6D, it seems that the vast majority of innervated NMJs at endpoint are innervated by cells from the graft. And yet, electrical stimulation evokes substantially greater muscle force. This may suggest that optical control of engrafted motor neurons will not yield enough force for routine tasks or that the few remaining endogenous motor neurons are much more effective at generating force. These potential limitations and ways to overcome them should be discussed.

      There appears to be a slight misunderstanding, since our aim here was to sample a sufficiently powered number of motor end-plates innervated by YFP+ for statistical analysis. To do this we specifically chose regions of interest containing at least 1 YFP+ NMJ and the adjacent muscle fibres were included at random, whatever their innervation status. Had we sampled regions of interest at random, we would have been likely to capture only a very few YFP+ terminal as they occupy a very small volume of the total muscle section and the maximum scanning area for each high-resolution z-confocal stack is relatively small, so we feel that this selection was warranted.

      Minor comments:

      1. The donor mouse strain should be described as 129S1/SvImJ.

      We have now corrected this.

      1. The first time the supplementary figures show up in the manuscript, they seem to have two titles each, such as "Figure 1-figure supplement 1. (Figure 4 - figure supplement 1)". The second seems to be the correct one.

      This was caused by an issue with the Latex template, which has now been resolved.

      1. PCB is not defined the first time it is used (page 8, line 332).

      We have now defined this term on first use: printed circuit board (PCB)

      1. CNI is not defined in the text (page 12, line 432).

      We have now defined this abbreviation at the first usage on Page 4, Line 158

      1. Some of the fonts on the graphs are very small, such as Fig. 5J.

      We have increased the font size as much as possible for Fig. 5.

      1. Figure 6 - figure supplement 1 does not include a key to indicate which antigens are stains and which color refers to which antigen. This is also needed for the videos.

      We have now included a key on this figure supplement to indicate the relevant antigens and stain and we have also done the same for the videos.

      1. Video 5 seems to indicate that there is a dead zone in the back of the chamber. Does this raise any concerns about the consistency of training from animal to animal?

      This is an extremely astute observation. However, the intermittent activation of the implantable LED devices is not due to a dead zone; rather, it is due to the orientation of the power receiving coil within the device and it’s alignment with the resonance frequency chamber that transmits the power to the device. As the animals move around, and particularly when they rear up, the power receiving coil occasionally becomes misaligned and fails to receive sufficient power to activate the LED. Since the pulses are delivered every 2 seconds, for 1 hour per day, we feel that the animals, on average, receive sufficient numbers of pulses to implement the training regimen. Indeed, we feel that the results speak for themselves.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We appreciate the reviewers’ detailed corrections and insightful comments. We have revised our manuscript per reviewers’ recommendations by including new data and clarifications/expansion of the discussion on our findings. Please see below for details.

      Reviewer #1 (Recommendations For The Authors):

      1. The introduction notes that CD1d KO mice show reduced levels of Va3.2 T cells (Ruscher et al.), which is interesting because innate memory T cell development in the thymus often requires IL-4 production by NKT cells. Have the authors explored QFL T cells in CD1d KO and/or IL-4 KO mice? Since their QFL TCR Tg mice still develop QFL T cells (and these animals likely have very few thymic NKT cells), NKT cells may not be required for the intrathymic development of QFL T cells?

      Answer: We agree that investigation on the role of NKT cells or IL-4 in QFL T cell development will greatly further our understanding of these cells.

      We validated the finding that expression of the QFL TCR transgene largely repressed the expression of endogenous TCRα, as indicated by the low levels of endogenous Vα2 on mature CD8SP T cells in both thymus and spleen. However, the frequencies of Vα2 usage in CD4 SP thymocytes and splenocytes from QFL transgenic mice were similar to non-transgenic mice, confirming that they underwent positive selection using endogenous TCR rather than the QFL TCR. We thus do not exclude the possible presence of NKT cells in QFLTg mouse and their potential involvement in the QFL T cells development. Our manuscript here is mainly focused on investigating the peripheral phenotype of QFL T cells and their association with the gut microbiota environment. Investigations into the role of CD1d/IL-4 will be best addressed in our future studies.

      1. The finding that Qa-1 expression is not required for the development of QFL T cells raises questions about other MHC products that may be involved. In this context, it is interesting that TAP-deficient mice develop few QFL T cells, for reasons that are unclear, but the authors may speculate a bit. In this context, it may be helpful for the authors to note whether TAP is required for QFL presentation to QFL T cells. Since Qa-1 is not required, and CD1d is still expressed in TAP KO mice, what then could be responsible for their defect in QFL T cell development?

      Answer: This is a great point. Figure 2 (from (Valerio et al., 2023) on the development of QFL T cells) tested whether QFL TCR cross-react with other MHC I molecules.

      We assessed the activation of pre-selection QFLTg thymocytes in response to various MHC I deficient DC2.4 cell lines. While the QFL thymocytes showed partially reduced activation when stimulated with Qa-1b deficient APCs, triple knock-out (KO) of Qa-1b, Kb, and Db in DC2.4 cells reduced activation close to background levels. However, double knock-out of Qa-1b with either Kb, or Db led to stimulation that was intermediate between the triple KO and Qa-1b-KO cell lines. These data suggest that Kb and Db may contribute to the positive selection of QFL T cells in Qa-1b-KO mice.

      TAP is required for FL9 peptide presentation and is very likely needed for presentation of the yet unidentified MHC Ia presented peptide(s) that are essential to QFL T positive selection. While CD1d/NKT cells/IL-4 may be involved in supporting the maturation of QFL T cells, we think in the TAP-KO mice the absence of TAP led to deletion/altered selection of the QFL T population at early developmental stage. We have added clarification on this point in the revised manuscript (line 412~418).

      1. It may be worthwhile for the authors to note that Qa-1 was also dispensable for the intrathymic selection of another Qa-1-restricted TCR (Doorduijn et al. 2018. Frontiers Immunol.), although this is presumably not the case for others (Sullivan et al. 2002. Immunity 17, 95).

      Answer: We appreciate this recommendation. We have noted this point in the resubmitted manuscript (line 412~418).

      1. Lines 122-124: The sentence "Interesting ..." seemed confusing to me; are the numbers (60 and 30%) correct?

      Answer: The numbers 60% and 30% were referring to the largest number we have detected for percentages of Va3.2 QFL T cells and Va3.2 CD8 T cell respectively. Here in the revised version, we replaced these numbers with average percentages (20.1% and <10%) to avoid confusion (line 134).

      1. Qa-1/peptide complexes may also be recognized by CD94/NKG2 receptors, which may complicate the interpretation of the data (e.g., staining of the dextramers). From their previous work, it appears that Qa-1/QFL does not bind CD94/NKG2, which would be helpful to note in the text.

      Answer: We have noted this point in the revised manuscript (line 117~121).

      1. It would be helpful to add a few comments about the potential relevance to HLA-E.

      Answer: We have included discussion on this point (line 391~401).

      1. Figure legends: Most legends note the total number of replicates, which is usually quite high. It would also be helpful to indicate the total number of independent experiments performed and, when relevant, that the data are pooled from multiple independent experiments.

      Answer: Thank you for raising the concern. We have clarified the experimental repeats in figure legends.

      Reviewer #2 (Recommendations For The Authors):

      1. The work of Nilabh Shastri was the foundation of the present study. Unfortunately, he passed away in 2021. Since he can no longer assume the responsibilities of a senior author, I wonder if it would be more appropriate to dedicate this paper to him than to list him as a co-author.

      Answer: We have removed Dr. Shastri’s name as a co-senior author and have dedicated this work to his memory.

      1. The official symbol for ERAAP is Erap1.

      Answer: We have replaced ERAAP with ERAP1.

      1. Please refrain from editorializing. For example, "strikingly" appears eight times and "interestingly" 9 times in the manuscript. Most readers believe they do not need to be said when something is striking or interesting.

      Answer: We appreciate the Reviewer’s suggestion and have removed ‘strikingly’ and ‘interestingly’ from the manuscript.

      1. In WT mice, are there some cell types that express Qa-1b but not Erap1 and could therefore present the FL9 peptide?

      Answer: This is a great question. Using our highly sensitive QFL T cell hybridoma line BEko8Z (sensitivity shown in Fig. 6b), we have so far not been able to detect steady-state FL9 presentation by cells isolated from the spleen, lymph nodes, various gut associated lymphoid tissues or intestinal epithelial cells (Supplementary Fig. 8 a left panel). However, we do not exclude the possibility of FL9 peptide being transiently presented under certain conditions (i.e. ER stress/transformed cells) at particular locations or within certain time windows, which is of great importance for understanding the function of these cells but is beyond the scope of this study.

      1. Since you have not tested substitutions at other positions, could you explain your reasoning that P4 and P6 are the critical residues (lines 271-272)?

      Answer: Thank you for raising the concern. We have expanded on explanation of our strategy for determining peptide homology (line 272~313) in the revised manuscript. We have also included data on the structure the QFL TCR: FL9-Qa-1b complex predicted by Alphafold2, conformation alignment of FL9 and Qdm (Figure 6. a, b) and the NetMHCpan prediction of Qa1b binding of Qdm, FL9 and various FL9 mutant peptides (Supplementary Fig. 8 c) to help readers visualize the reasoning behind our strategy.

      1. Readers might appreciate having a Figure summarizing the differences between spleen and gut QFL T cells.

      Answer: This is a great suggestion. We have added a table summarizing the characteristic features of the splenic and IEL QFL T cells (Table 1).

      1. In the discussion, readers would like to know what plan you might have to elucidate the function of QFL T cells.

      Answer: We appreciate the recommendation. We have elaborated on our opinions and future directions in the resubmitted manuscript (line 393~401, 446~455).  

      Reviewer #3 (Public Review):

      1. For most of the report, the authors use a set of phenotypic traits to highlight the unique features of QFL-specific CD8+ T cells - specifically, CD44high, CD8aa+ve, CD8ab-ve. In Supp. Fig. 4, however, completely distinct phenotypic characteristics are presented, indicating that IEL QFL-specific T cells are CD5low, Thy-1low. No explanation is provided in the text about whether this is a previously reported phenotype, whether any elements of this phenotype are shared with splenic QFL T cells, what significance the authors ascribe to this phenotype (and to the fact that Qa1-deficiency leads to a more conventional Thy-1+ve, CD5+ve phenotype), and whether this altered phenotype is also seen in ERAAP-deficient mice. At least some explanation for this abrupt shift in focus and integration with prior published work is needed. On a related note, CD5 expression is measured in splenic QFL-specific CD8+ T cells from GF vs SPF mice (Supp. Fig. 9), to indicate that there is no phenotypic impact in the GF mice - but from Supp. Fig. 4, it would seem more appropriate to report CD5 expression in QFL-specific cells from the IEL, not the spleen.

      Answer: Expression of CD8αα and lack of CD4, CD8αβ, CD5 and CD90 expression was indeed reported as the characteristic phenotype of natIELs. We have clarified this point in the resubmitted manuscript (line 80). The CD8αα+ IEL QFL T cells have consistently showed CD5CD90- phenotype. While CD8αα expression was sufficient to describe their natIEL phenotype, we showed the CD5-CD90- data in Supplementary figures only to provide additional evidence.

      The CD5 molecule by itself reflects the TCR signaling strength and high CD5 level is associated with self-reactivity of T cells (Azzam et al., 2001; Fulton et al., 2015). The implication of CD5 expression on QFLTg cells is discussed in our other manuscript where we investigate the development of these cells (Valerio et al., 2023). In Supplementary Fig. 9, because the donor splenic QFLTg cell have consistently showed comparable CD5 level between the GF and SPF group, we reasoned that it would not interfere with our interpretation of the CD44 expression.

      1. The authors suggest the finding that QFL-specific cells from ERAAP-deficient mice have a more "conventional" phenotype indicates some form of negative selection of high-affinity clones (this result being somewhat unexpected since ERAAP loss was previously shown to increase the presentation of Qa-1b loaded with FL9, confirmed in this report). It is not clear how this argument aligns with the data presented, however, since the authors convincingly show no significant reduction in the number of QFL-specific cells in ERAAP-knockout mice (Fig. 3a), and their own data (e.g. Fig. 2a) do not suggest that CD44 expression correlates with QFL-multimer staining (as a surrogate for TCR affinity/avidity). Is there some experimental basis for suggesting that ERAAP-deficient lacks a subset of high affinity QFL-specific cells?

      Answer: We think the presence of QFL T cells in ERAAP-KO mice is a result of the unconventional developmental mechanism of these cells which is better addressed in our complementary manuscript on the development of QFL T cells(Valerio et al., 2023). Valerio et al. found that the most predominant QFL T clone which expresses Vα3.2Jα21, Vβ1Dβ1Jβ2-7 received relatively strong TCR signaling and underwent agonist selection during thymic development, indicating that the QFL ligand is involved in selection of the innate-like QFL T population.

      We agree that there is so far no direct evidence showing the QFL T cells that were absent in the ERAAP-KO mice were high-affinity clones. We have removed ‘high-affinity’ from the manuscript (line 180). While CD44 expression has been associated the antigen-experiences phenotype of T cells, it is yet unclear whether expression level of this molecule directly reflects TCR affinity/avidity. identification of clones of different affinities/avidities require high precision technologies that are not currently available to the research community. While we do have zMovi, a newly developed (developing) technology, in the lab claimed to measure relative avidity/affinity of different cell types for ligands, during the past two years working with this instrument has taught us that the technology is not yet advanced enough; it can only produce reliable data on extreme differences of single clones, i.e., high numbers of homogeneous cell types expressing very high affinity receptors.

      1. The rationale for designing FL9 mutants, and for using these data to screen the proteomes of various commensal bacteria needs further explanation. The authors propose P4 and P6 of FL9 are likely to be "critical" but do not explain whether they predict these to be TCR or Qa-1b contact sites. Published data (e.g., PMID: 10974028) suggest that multiple residues contribute to Qa-1b binding, so while the authors find that P4A completely lost the ability to stimulate a QFL-specific hybridoma, it is unclear whether this is due to the loss of a TCR- or a Qa-1-contact site (or, possibly, both). This could easily be tested - e.g., by determining whether P4A can act as a competitive inhibitor for FL9-induced stimulation of BEko8Z (and, ideally, other Qa-1b-restricted cells, specific for distinct peptides). Without such information, it is unclear exactly what is being selected in the authors' screening strategy of commensal bacterial proteomes. This, of course, does not lessen the importance of finding the peptide from P. pentosaceus that can (albeit weakly) stimulate QFL-specific cells, and the finding that association with this microbe can sustain IEL QFL cells.

      Answer: Thank you for raising the concern. We have expanded on explanation of our strategy for determining peptide homology (line 272~313) in the revised manuscript. We have also included data on the structure the QFL TCR: FL9-Qa-1b complex predicted by Alphafold2, conformation alignment of FL9 and Qdm (Figure 6. a, b) and the NetMHCpan prediction of Qa1b binding of Qdm, FL9 and various FL9 mutant peptides (Supplementary Fig. 8 c) to help readers visualize the reasoning behind our strategy.

      References

      Azzam, H.S., DeJarnette, J.B., Huang, K., Emmons, R., Park, C.S., Sommers, C.L., El-Khoury, D., Shores, E.W., and Love, P.E. (2001). Fine tuning of TCR signaling by CD5. J Immunol 166, 5464- 5472.10.4049/jimmunol.166.9.5464, PMID:11313384

      Fulton, R.B., Hamilton, S.E., Xing, Y., Best, J.A., Goldrath, A.W., Hogquist, K.A., and Jameson, S.C. (2015). The TCR's sensitivity to self peptide-MHC dictates the ability of naive CD8(+) T cells to respond to foreign antigens. Nat Immunol 16, 107-117.10.1038/ni.3043, PMID:25419629

      Valerio, M.M., Arana, K., Guan, J., Chan, S.W., Yang, X., Kurd, N., Lee, A., Shastri, N., Coscoy, L., and Robey, E.A. (2023). The promiscuous development of an unconventional Qa1b-restricted T cell population. bioRxiv, 2022.2009.2026.509583.10.1101/2022.09.26.509583,

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Public Review

      R1.1) Randomized clinical trials use experimental blinding and compare active and placebo conditions in their analyses. In this study, Fassi and colleagues explore how individual differences in subjective treatment (i.e., did the participant think they received the active or placebo treatment) influence symptoms and how this is related to objective treatment. The authors address this highly relevant and interesting question using a powerful method by (re-)analyzing data from four published neurostimulation studies and including subjective treatment in statistical models explaining treatment response. The major strengths include the innovative and important research question, the inclusion of four different studies with different techniques and populations to address this question, sound statistical analyses, and findings that are of high interest and relevance to the field.

      We thank the reviewer for this summary and the overall appreciation for our work.

      R1.2) My main suggestion is that authors reconsider the description of the main conclusion to better integrate and balance all findings. Specifically, the authors conclude that (e.g., in the abstract) "individual differences in subjective treatment can explain variability in outcomes better than the actual treatment", which I believe is not a consistent conclusion across all four studies as it does not appropriately consider important interactions with objective treatment observed in study 2 and 3. In study 2, the greatest improvement was observed in the group that received TMS but believed they received sham. While subjective treatment was associated with improvement regardless of objective active or sham treatment, improvement in the objective active TMS group who believed they received sham suggests the importance of objective treatment regardless of subjective treatment. In Study 3, including objective treatment in the model predicted more treatment variance, further suggesting the predictive value of objective treatment.

      We thank the reviewer for this comment and agree that the interpretation of findings requires a more nuanced and balanced description. We, therefore, implemented changes in both the abstract and discussion of the manuscript, as reported below (additions are highlighted in grey and deletions are shown in strikethrough):

      Abstract

      “Our findings consistently show that the inclusion of subjective treatment can provide a better model fit when accounted for alone or in an interaction term with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive and behavioural outcomes. Based on these findings, We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.” (p. 3)

      Discussion

      “We demonstrate that participants’ subjective beliefs about receiving the active vs control (sham) treatment are an important factor that can explain variability in the primary outcome and, in some cases, fits the observed data better than the actual treatment participants received during the experiment.” (p. 21)

      “We demonstrate that participants’ subjective beliefs about receiving the active vs control (sham) treatment are an important factor that can explain variability in the primary outcome and, in some cases, fits the observed data better than the actual treatment participants received during the experiment. Specifically, in Studies 1, 2 and 4, the fact that participants thought to be in the active or control condition explained variability in clinical and cognitive scores to a more considerable extent than the objective treatment alone. Notably, the same pattern of results emerged when we replaced subjective treatment with subjective dosage in the fourth experiment, showing that subjective beliefs about treatment intensity also explained variability in research results better than objective treatment. In contrast to Studies 1 and 4, Studies 2 and 3 showed a more complex pattern of results. Specifically, in Study 2 we observed an interaction effect, whereby the greatest improvement in depressive symptoms was observed in the group that received the active objective treatment but believed they received sham. Differently, in Study 3, the inclusion of both subjective and objective treatment as main effects explained variability in symptoms of inattention. Overall, these findings suggest the complex interplay of objective and subjective treatment. The variability in the observed results could be explained by factors such as participants’ personality, type and severity of the disorder, prior treatments, knowledge base, experimental procedures, and views of the research team, all of which could be interesting avenues for future studies to explore.” (p. 22)

      R1.3) In addition to updating the conclusions to better reflect this interaction, I suggest authors include the proportion of participants in each subjective treatment group that actually received active or sham treatment to better understand how much of the subjective treatment is explained by objective treatment. I think it is particularly important to better integrate and more precisely communicate this finding, because the conclusions may otherwise be erroneously interpreted as improvements after treatment only being an effect of subjective treatment or sham.

      We thank the reviewer for this comment. The information about how many participants are included in each group is provided in the every each codebooks under the section “Count of Participants by Treatment Condition and Their Subjective Guess” which is in the project’s OSF link (https://osf.io/rztxu/). Additionally, we added these tables to the supplementary material in tables S1, S8, S15, and S18, and we referred to these tables throughout the Methods section. Further, we added this information to the manuscript results, as follows:

      • “Further details on participant groupings based on objective treatment and their subjective treatment can be found in the codebook corresponding to each of the four studies as well as S1.” (p. 8).

      • “The breakdown of participants to objective treatment and subjective treatment in the sample can be found in S8.” (p. 13).

      • “The breakdown of participants to objective treatment and subjective treatment in the sample can be found in S15.” (p. 17).

      • “The breakdown of participants to objective treatment and subjective treatment in the sample can be found in S18.” (p. 19).

      R1.4) The paper will have significant impact on the field. It will promote further investigation of the effects of sham vs active treatment by the introduction of the terms subjective treatment vs objective treatment and subjective dosage that can be used consistently in the future. The suggestions to assess the expectation of sham vs active earlier on in clinical trials will advance the understanding of subjective treatment in future studies. Overall, I believe the data will substantially contribute to the design and interpretation of future clinical trials by underscoring the importance of subjective treatment.

      We thank the reviewer for this positive comment.

      Review for authors

      R1.4) Abstract

      "Here we show that individual differences in subjective treatment.. can explain variability in outcomes better than the actual treatment". "Our findings consistently show that the inclusion of subjective treatment provides a better model fit than objective treatment alone" - these two statements could be interpreted as two different conclusions, authors should be more consistent.

      We thank the reviewer for this comment and have now changed the abstract to be consistent, as also highlighted in R1.1:

      Abstract

      “Our findings consistently show that the inclusion of subjective treatment can provides a better model fit when accounted for alone or in an interaction term with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive and behavioural outcomes. Based on these findings, We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.” (p. 3)

      R1.5) Introduction

      This is an odd sentence given it is 2023: "As a result, the global neuromodulation device industry is expected to grow to $13.3 billion in 2022 (Colangelo, 2020)."

      We have now removed this sentence as indeed not applicable and instead added a reference for the previous sentence:

      “In recent years, neuromodulation has been studied as one of the most promising treatment methods (De Ridder et al., 2021).”

      Reference

      De Ridder, D., Maciaczyk, J., & Vanneste, S. (2021). The future of neuromodulation: Smart neuromodulation. Expert Review of Medical Devices, 18(4), 307–317. https://doi.org/10.1080/17434440.2021.1909470

      R1.6) Figures

      • Lines of Figure 1 are vague.

      • Figure 5 color scheme is confusing. It would be better to use green/blue colors for one, (e.g.) sham in both subjective and objective treatment and orange/red colors for active treatment.

      • For Figure 6 it would be better to use the same color for sham as subjective dosage none.

      • Relatedly, it would be easier to keep color scheme consistent across the paper and for example use green/blue colors for sham throughout.

      We thank the reviewer for this comment. Following these comments, all the figures of the paper has remade for better clarity.

      • Figure 1, the individual lines are now shown stronger, there is also a connecting line between the averages.

      • Figure 5, sham is now on cold colours (blue and green), and active treatment on warm colours (red and orange)

      • Figure 6, the same colour for sham as subjective dosage none is now applied.

      Further, we also edited Figures 2 and 4 by removing the percentages between 0% and 100% on the y-axis. Given that the outcome variable was binary coded, we implemented this change to avoid confusion.

      Reviewer 2

      Public Review

      R2.1) This manuscript focuses on the clinical impact of subjective experience or treatment with transcranial magnetic stimulation and transcranial direct current stimulation studies with retrospective analyses of 4 datasets. Subjective experience or treatment refers to the patient level thought of receiving active or sham treatments. The analyses suggest that subjective treatment effects are an important and under appreciated factor in randomized controlled trials. The authors present compelling evidence that has significance in the context of other modalities of treatment, treatment for other diseases, and plans for future randomized controlled trials. Other strengths included a rigorous approach and analyses. Some aspects of the manuscript are underdeveloped and the findings are over interpreted. Thank you for your efforts and the opportunity to review your work.

      We thank the reviewer for their overall appreciation of this work. We address the comment on the overinterpretation of findings in response to reviewer 1 (see R1.2) above, and we expand on the underdeveloped explanation of sham procedures (see R2.2) below.

      Review for authors

      R2.2) One concern is that the findings are consistently over interpreted and presented with a polarizing framework. This is a complicated area of study with many variables that are not understood or captured. For example, subjective experience effects likely varies with personality dimensions, disease, prior treatments, knowledge base, view of the research team, and disease severity. Framing subjective experience with a more balanced tone, as an important consideration for future trial design and study execution would enhance the impact of the paper.

      We thank the reviewer for this comment. We reframed our interpretation of results in both the manuscript abstract and discussion, as highlighted in response to reviewer 1 (see R1.2) above.

      R2.3) The discussion of sham approaches for transcranial magnetic stimulation and transcranial direct current stimulation is underdeveloped. There are approaches that are not discussed. The tilt method is seldom used for modern studies for example.

      We thank the reviewer for this comment, and we now rewrote a paragraph elaborating more on different practices to apply sham procedures in the introduction section:

      “Participants that take part in TMS and tES studies consistently report various perceptual sensations, such as audible clicks, visual disturbances, and cutaneous sensations (Davis et al., 2013) Consequently, they can discern when they have received the active treatment, making subjective beliefs and demand characteristics potentially influencing performance (Polanía et al., 2018). To account for such non-specific effects, sham (placebo) protocols have been employed. For transcranial direct current stimulation (tDCS), the most common form of tES, various sham protocols exist. A review by Fonteneau et al., 2019 shows 84% of 173 studies used similar sham approaches to an early method by Gandiga et al., 2005. This initial protocol had a 10s ramp-up followed by 30s of active stimulation at 1mA before cessation, differently from active stimulation that typically lasts up to 20 minutes.. However, this has been adapted in terms of intensity and duration of current, ramp-in/out phases, and the number of ramps during stimulation. Similarly, in sham TMS, the TMS coil may be tilted or replaced with purpose-built sham coils equipped with magnetic shields, which produce auditory effects but ensure no brain stimulation (Duecker & Sack, 2015). By using surface electrodes, the somatosensory effects of actual TMS are also mimicked. Overall, these types of sham stimulation aim to mimic the perceptual sensations associated with active stimulation without substantially affecting cortical excitability (Fritsch et al., 2010; Nitsche & Paulus, 2000). As a result, sham treatments should allow controlling for participants’ specific beliefs about the type of stimulation received.” (p.6)

      References

      Fonteneau, C., Mondino, M., Arns, M., Baeken, C., Bikson, M., Brunoni, A. R., Burke, M. J., Neuvonen, T., Padberg, F., Pascual-Leone, A., Poulet, E., Ruffini, G., Santarnecchi, E., Sauvaget, A., Schellhorn, K., Suaud-Chagny, M.-F., Palm, U., & Brunelin, J. (2019). Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimulation, 12(3), 668–673. https://doi.org/10.1016/j.brs.2018.12.977

      Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845–850. https://doi.org/10.1016/j.clinph.2005.12.003

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This study reports a meta-analysis of published data to address an issue that is topical and potentially useful for understanding how the sites of initiation of DNA replication are specified in human chromosomes. The work focuses on the role of the Origin Recognition Complex (ORC) and the Mini-Chromosome Maintenance (MCM2-7) complex in localizing origins of DNA replication in human cells. While some aspects of the paper are of interest, the analysis of published data is in parts inadequate to allow for the broad conclusion that, in contrast to multiple observations with other species, sites in the human genome for binding sites for ORC and MCM2-7 do not have extensive overlap with the location of origins of DNA replication.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the best genetically and biochemically understood model of eukaryotic DNA replication, the budding yeast, Saccharomyces cerevisiae, the genomic locations at which DNA replication initiates are determined by a specific sequence motif. These motifs, or ARS elements, are bound by the origin recognition complex (ORC). ORC is required for loading of the initially inactive MCM helicase during origin licensing in G1. In human cells, ORC does not have a specific sequence binding domain and origin specification is not specified by a defined motif. There have thus been great efforts over many years to try to understand the determinants of DNA replication initiation in human cells using a variety of approaches, which have gradually become more refined over time.

      In this manuscript Tian et al. combine data from multiple previous studies using a range of techniques for identifying sites of replication initiation to identify conserved features of replication origins and to examine the relationship between origins and sites of ORC binding in the human genome. The authors identify a) conserved features of replication origins e.g. association with GC-rich sequences, open chromatin, promoters and CTCF binding sites. These associations have already been described in multiple earlier studies. They also examine the relationship of their determined origins and ORC binding sites and conclude that there is no relationship between sites of ORC binding and DNA replication initiation. While the conclusions concerning genomic features of origins are not novel, if true, a clear lack of colocalization of ORC and origins would be a striking finding.

      Response: Thank you. That is where the novelty of the paper lies.

      However, the majority of the datasets used do not report replication origins, but rather broad zones in which replication origins fire. Rather than refining the localisation of origins, the approach of combining diverse methods that monitor different objects related to DNA replication leads to a base dataset that is highly flawed and cannot support the conclusions that are drawn, as explained in more detail below.

      Response: We are using the narrowly defined SNS-seq peaks as the gold standard origins and making sure to focus in on those that fall within the initiation zones defined by other methods. The objective is to make a list of the most reproducible origins. Unlike what the reviewer states, this actually refines the dataset to focus on the SNS origins that have also been reproduced by the other methods in multiple cell lines. We have changed the last box of Fig. 1A to make this clearer: Shared origins = reproducible SNS-seq origins that are contained in initiation zones defined by Repli-seq, OK-seq and Bubble-seq. This and the Fig. 2B (as it is) will make our strategy clearer.

      Methods to determine sites at which DNA replication is initiated can be divided into two groups based on the genomic resolution at which they operate. Techniques such as bubble-seq, ok-seq can localise zones of replication initiation in the range ~50kb. Such zones may contain many replication origins. Conversely, techniques such as SNS-seq and ini-seq can localise replication origins down to less than 1kb. Indeed, the application of these different approaches has led to a degree of controversy in the field about whether human replication does indeed initiate at discrete sites (origins), or whether it initiates randomly in large zones with no recurrent sites being used. However, more recent work has shown that elements of both models are correct i.e. there are recurrent and efficient sites of replication initiation in the human genome, but these tend to be clustered and correspond to the demonstrated initiation zones (Guilbaud et al., 2022).

      These different scales and methodologies are important when considering the approach of Tian et al. The premise that combining all available data from five techniques will increase accuracy and confidence in identifying the most important origins is flawed for two principal reasons. First, as noted above, of the different techniques combined in this manuscript, only SNS-seq can actually identify origins rather than initiation zones. It is the former that matters when comparing sites of ORC binding with replication origin sites if a conclusion is to be drawn that the two do not co-localise.

      Response: We agree. So the reviewer should agree that our method of finding SNS-seq peaks that fall within initiation zones actually refines the origins to find the most reproducible origins. We are not losing the spatial precision of the SNS-seq peaks.

      Second, the authors give equal weight to all datasets. Certainly, in the case of SNS-seq, this is not appropriate. The technique has evolved over the years and some earlier versions have significantly different technical designs that may impact the reliability and/or resolution of the results e.g. in Foulk et al. (Foulk et al., 2015), lambda exonuclease was added to single stranded DNA from a total genomic preparation rather than purified nascent strands), which may lead to significantly different digestion patterns (ie underdigestion). Curiously, the authors do not make the best use of the largest SNS-seq dataset (Akerman et al., 2020) by ignoring these authors separation of core and stochastic origins. By blending all data together any separation of signal and noise is lost. Further, I am surprised that the authors have chosen not to use data and analysis from a recent study that provides subsets of the most highly used and efficient origins in the human genome, at high resolution (Guilbaud et al., 2022).

      Response: 1) We are using the data from Akerman et al., 2020: Dataset GSE128477 in Supplemental Table 1. We have now separately examined the core origins defined by the authors to check its overlap with ORC binding (Supplementary Fig. S8b).

      2) To take into account the refinement of the SNS-seq methods through the years, we actually included in our study only those SNS-seq studies after 2018, well after the lambda exonuclease method was introduced. Indeed, all 66 of SNS-seq datasets we used were obtained after the lambda exonuclease digestion step. To reiterate, we recognize that there may be many false positives in the individual origin mapping datasets. Our focus is on the True positives, the SNS-seq peaks that have some support from multiple SNS-seq studies AND fall within the initiation zones defined by the independent means of origin mapping (described in Fig. 1A and 2B). These True positives are most likely to be real and reproducible origins and should be expected to be near ORC binding sites.

      We have changed the last box of Fig. 1A to make this clearer: Shared origins = reproducible SNS-seq origins that are contained in initiation zones defined by Repli-seq, OK-seq or Bubble-seq.

      Ini-seq by Torsten Krude and co-workers (Guillbaud, 2022) does NOT use Lambda exonuclease digestion. So using Ini-seq defined origins is at odds with the suggestion above that we focus only on SNS-seq datasets that use Lambda exonuclease. However, Ini-seq identifies a much smaller subset of SNS-seq origins, so, as requested, we have also done the analysis with just that smaller set of origins, and it does show a better proximity to ORC binding sites, though even then the ORC proximate origins account for only 30% of the Ini-seq2 origins (Supplementary Fig. S8d). Note Ini-seq2 identifies DNA replication initiation sites seen in vitro on isolated nuclei.

      References:

      Akerman I, Kasaai B, Bazarova A, Sang PB, Peiffer I, Artufel M, Derelle R, Smith G, Rodriguez-Martinez M, Romano M, Kinet S, Tino P, Theillet C, Taylor N, Ballester B, Méchali M (2020) A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun, 11: 4826

      Foulk MS, Urban JM, Casella C, Gerbi SA (2015) Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res, 25: 725-735

      Guilbaud G, Murat P, Wilkes HS, Lerner LK, Sale JE, Krude T (2022) Determination of human DNA replication origin position and efficiency reveals principles of initiation zone organisation. Nucleic Acids Res, 50: 7436-7450

      Reviewer #2 (Public Review):

      Tian et al. perform a meta-analysis of 113 genome-wide origin profile datasets in humans to assess the reproducibility of experimental techniques and shared genomics features of origins. Techniques to map DNA replication sites have quickly evolved over the last decade, yet little is known about how these methods fare against each other (pros and cons), nor how consistent their maps are. The authors show that high-confidence origins recapitulate several known features of origins (e.g., correspondence with open chromatin, overlap with transcriptional promoters, CTCF binding sites). However, surprisingly, they find little overlap between ORC/MCM binding sites and origin locations.

      Overall, this meta-analysis provides the field with a good assessment of the current state of experimental techniques and their reproducibility, but I am worried about: (a) whether we've learned any new biology from this analysis; (b) how binding sites and origin locations can be so mismatched, in light of numerous studies that suggest otherwise; and (c) some methodological details described below.

      Major comments:

      • Line 26: "0.27% were reproducibly detected by four techniques" -- what does this mean? Does the fragment need to be detected by ALL FOUR techniques to be deemed reproducible?

      Response: If the reproducible SNS-seq peaks are included in the reproducible initiation zones found by the other methods, then we consider it reproducible across datasets. The strategy is to focus our analysis on the most reproducible SNS-seq peaks that happen to be in reproducible initiation zones. It is the best way to confidently identify a very small set of true positive origins. We have re-stated this in the abstract: “only 0.27% were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques (20,250 shared origins),...”

      And what if the technique detected the fragment is only 1 of N experiments conducted; does that count as "detected"?

      Response: A reproducible SNS-seq origin has been reproduced above a statistical threshold of 20 reproductions of SNS-seq datasets. A threshold of reproduction in 20 datasets out of 66 SNS-seq datasets gives an FDR of <0.1. This is explained in Fig. 2a and Supplementary Fig. S2. For the initiation zones, we considered a Zone even if it appears in only 1 of N experiments, because N is usually small. This relaxed method for selecting the initiation zones gives the best chance of finding SNS-seq peaks that are reproduced by the other methods.

      Later in Methods, the authors (line 512) say, "shared origins ... occur in sufficient number of samples" but what does sufficient mean?

      Response: “Sufficient” means that SNS-seq origin was reproducibly detected in ≥ 20 datasets and was included in any initiation zone defined by three other techniques.

      Then on line 522, they use a threshold of "20" samples, which seems arbitrary to me. How are these parameters set, and how robust are the conclusions to these settings? An alternative to setting these (arbitrary) thresholds and discretizing the data is to analyze the data continuously; i.e., associate with each fragment a continuous confidence score.

      Response: We explained Fig. 2a and Supplementary Fig. S2 on line 192 as follows: The occupancy score of each origin defined by SNS-seq (Supplementary Fig. 2a) counts the frequency at which a given origin is detected in the datasets under consideration. For the random background, we assumed that the number of origins confirmed by increasing occupancy scores decreases exponentially (see Methods and Supplementary Table 2). Plotting the number of origins with various occupancy scores when all SNS-seq datasets published after 2018 are considered together (the union origins) shows that the experimental curve deviates from the random background at a given occupancy score (Fig. 2a). The threshold occupancy score of 20 is the point where the observed number of origins deviates from the expected background number (with an FDR < 0.1) (Fig. 2a).

      In the Methods: We have revised the section, “Identification of shared origins” to better describe our strategy. The number of observed origins with occupancy score greater than 20 (out of 66 measures) is 10 times more than expected from the background model. This approach is statistically sound and described by us in (Fang et al. 2020).

      • Line 20: "50,000 origins" vs "7.5M 300bp chromosomal fragments" -- how do these two numbers relate? How many 300bp fragments would be expected given that there are ~50,000 origins? (i.e., how many fragments are there per origin, on average)? This is an important number to report because it gives some sense of how many of these fragments are likely nonsense/noise. The authors might consider eliminating those fragments significantly above the expected number, since their inclusion may muddle biological interpretation.

      Response: We confused the reviewer by the way we wrote the abstract. The 50,000 origins that are mentioned in the abstract is the hypothetical expected number of origins that have to fire to replicate the whole 6x10^9 nt diploid genome based on the average inter-origin distance of 100 kb (as determined by molecular combing). The 7.5M 300 bp fragments are the genomic regions where the 7.5M union SNS-seq-defined origins are located. Clearly, that is a lot of noise, some because of technical noise and some due to the fact that origins fire stochastically. Which is why our paper focuses on a smaller number of reproducible origins, the 20,250 shared origins. Our analysis is on the 20,250 shared origins, and not on all 7.5M union origins. Thus, we are not including the excess of non-reproducible (stochastic?) origins in our analysis.

      The revised abstract in the revised paper will say: “Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell-cycle. The origins are believed to be specified by binding of factors like the Origin Recognition Complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and 5 ORC-binding site datasets to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all the SNS-seq datasets, only 0.27% were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by any of three other techniques (20,250 shared origins), suggesting extensive variability in origin usage and identification in different circumstances.”

      • Line 143: I'm not terribly convinced by the PCA clustering analysis, since the variance explained by the first 2 PCs is only ~25%. A more robust analysis of whether origins cluster by cell type, year etc is to simply compute the distribution of pairwise correlations of origin profiles within the same group (cell type, year) vs the correlation distribution between groups. Relatedly, the authors should explain what an "origin profile" is (line 141). Is the matrix (to which PCA is applied) of size 7.5M x 113, with a "1" in the (i,j) position if the ith fragment was detected in the jth dataset?

      Response: The reviewer is correct about how we did the PCA and have now included the description in the Methods. We have now done the pairwise correlations the way the reviewer suggests, and it is clear that each technique correlates best with itself (though there are some datasets that do not correlate as well as the others even with the same technique) (Supp. Fig. S3). We have also done the PCA by techniques (Fig. 1c), by cell types for all techniques (Supp. Fig. S1c), by cell-types for SNS-seq only (Supp. Fig. S1d), and by year of publication of SNS-seq data (Supp. Fig. S1e). Our conclusions remain the same: in general, origins defined from the same cell lineage are more similar to each other than across lineages, though this similarity within a lineage is more pronounced when we focus on SNS-seq alone. However, even when we look at SNS-seq alone, there is not a perfect overlap of origins determined by different studies on the same lineage. Finally, although we looked only at SNS-seq data after 2018, by which time lamda exonuclease had become the accepted way of defining SNS-seq, there is surprising clustering around each year.

      • It's not clear to me what new biology (genomic features) has been learned from this meta-analysis. All the major genomic features analyzed have already been found to be associated with origin sites. For example, the correspondence with TSS has been reported before:

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320713/

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547456/

      So what new biology has been discovered from this meta-analysis?

      Response: The new biology can be summarized as: (a) We can identify a set of reproducible (in multiple datasets and in multiple cell lines) SNS-seq origins that also fall within initiation zones identified by completely independent methods. These may be the best origins to study in the midst of the noise created by stochastic origin firing. (b) The overlap of these Shared origins (True Positive Origins) with known ORC binding sites is tenuous. So either all the origin mapping data, or all the ORC binding data has to be discarded, or this is the new biological reality in mammalian cancer cells: on a genome-wide scale the most reproduced origins are not in close proximity to ORC binding sites, in contrast to the situation in yeast. (c) Several of the features reported to define origins (CTCF binding sites, G quadruplexes etc.) could simply be from the fact that those features also define transcription start sites (TSS), and the origins may prefer to locate to these parts of the genome because of the favorable chromatin state, instead of the sequence or the structural features of CTCF binding sites or G quadruplexes specifically locating the origins.

      • Line 250: The most surprising finding is that there is little overlap between ORC/MCM binding sites and origin locations. The authors speculate that the overlap between ORC1 and ORC2 could be low because they come from different cell types. Equally concerning is the lack of overlap with MCM. If true, these are potentially major discoveries that butts heads with numerous other studies that have suggested otherwise. More needs to be done to convince the reader that such a mis-match is true. Some ideas are below:

      Idea 1) One explanation given is that the ORC1 and ORC2 data come from different cell types. But there must be a dataset where both are mapped in the same cell type. Can the authors check the overlap here? In Fig S4A, I would expect the circles to not only strongly overlap but to also be of roughly the same size, since both ORC's are required in the complex. So something seems off here.

      Response: We agree with the reviewer that there is something “off here”. Either the techniques that report these sites are all wrong, or the biology does not fit into the prevailing hypothesis. As shown in Supplementary Fig. S6C, we do not have ORC1 and ORC2 ChIP-seq data from the same cell-type. We have ORC1 ChIP-seq and SNS-seq data from HeLa cells and ORC2 ChIP seq and origins from K562 cells, and so have now done the overlap of the binding sites to the shared origins in the same cell-type in the new Figure S5e and S5f. Out of 9605 shared origins in K562 cells, 12.8% overlap with ORC2 and 5.4% overlap with MCM3-7 binding sites also defined in K562 cells. Out of 8305 shared origins in HeLa cells, 4.4% overlap with ORC1 binding sites defined in HeLa cells.

      There is nothing in the Literature that shows that various ORC subunits ChiP-seq to the same sites, and we have unpublished data that shows very poor overlap in the CHiP binding sites of different ORC subunits. The poor overlap between the binding sites of subunits of the same complex either suggests that the subunits do not always bind to the chromatin as a six-subunit complex or that all the ORC subunit ChIP-seq data in the Literature is suspect. We provide in the supplementary figure S6A examples of true positive complexes (SMARCA4/ARID1A, SMC1A/SMC3, EZH2/SUZ12), whose subunits ChIP-seq to a large fraction of common sites.

      Idea 2) Another explanation given is that origins fire stochastically. One way to quantify the role of stochasticity is to quantify the overlap of origin locations performed by the same lab, in the same year, in the same experiment, in the same cell type -- i.e., across replicates -- and then compute the overlap of mapped origins. This would quantify how much mis-match is truly due to stochasticity, and how much may be due to other factors.

      Response: A given lab may have superior reproducibility with its own results compared to the entire field, and the finding that origins published in the same year tend to be clustered together could be because a given lab publishes a number of origin sets in a single paper in a given year. But the notion of stochasticity is well accepted in the field because of this observation: the average inter-origin distance measured by single molecule techniques like molecular combing is ~100 kb, but the average inter-origin distance measure on a population of cells (same cell line) is ~30 kb. The only explanation is that in a population of cells many origins can fire, but in a given cell on a given allele, only one-third of those possible origins fire. This is why we did not worry about the lack of reproducibility between cell-lines, labs etc, but instead focused on those SNS-seq origins that are reproducible over multiple techniques and cell lines.

      Idea 3) A third explanation is that MCMs are loaded further from origin sites in human than in yeast. Is there any evidence of this? How far away does the evidence suggest, and what if this distance is used to define proximity?

      Response: MCMs, of course, have to be loaded at an origin at the time the origin fires because MCMs provide the core of the helicase that starts unwinding the DNA at the origin. Thus, the lack of proximity of MCM binding sites with origins can be because the most detected MCM sites (where MCM spends the most time in a cell-population) does not correspond to where it is first active to initiate origin firing. This has been discussed. MCMs may be loaded far from origin site, but because of their ability to move along the chromatin, they have to move to the origin-site at some point to fire the origin.

      Idea 4) How many individual datasets (i.e., those collected and published together) also demonstrate the feature that ORC/MCM binding locations do not correlate with origins? If there are few, then indeed, the integrative analysis performed here is consistent. But if there are many, then why would individual datasets reveal one thing, but integrative analysis reveal something else?

      Response: In the revised manuscript we have now discussed Dellino, 2013; Kirstein, 2021; Wang, 2017; Mas, 2023. None of them have addressed what we are addressing, which is whether the small subset of the most reproducible origins proximal to ORC or MCM binding sites, but the discussion is essential.

      Idea 5) What if you were much more restrictive when defining "high-confidence" origins / binding sites. Does the overlap between origins and binding sites go up with increasing restriction?

      Response: We have made SNS-seq origins more restrictive by selecting those reproduced by 30, 40, or 50 datasets, in addition to the FDR-determined cutoff of 20. The number of origins fall, but when we do not see any significant increase in the % of origins that overlap with or are proximal to with all ORC or MCM binding sites or Shared ORC or MCM binding sites. This analysis is now included in Supp. Fig. S9 and discussed.

      Overall, I have the sense that these experimental techniques may be producing a lot of junk. If true, this would be useful for the field to know! But if not, and there are indeed "unexplored mechanisms of origin specification" that would be exciting. But I'm not convinced yet.

      • It would be nice in the Discussion for the authors to comment about the trade-offs of different techniques; what are their pros and cons, which should be used when, which should be avoided altogether, and why? This would be a valuable prescription for the field.

      Response: Thanks for the suggestion. We have done what the reviewer suggested in the new Supp. Fig. S4.

      Among the 20,250 high-confidence shared origins, 9,901 (48.9%) overlapped with SNS-seq origins in K562; 3,872 (19.1%) overlapped with OK-seq IZs; 1,163 (5.7%) overlapped with Repli-seq IZs.

      In the reciprocal direction, we asked which method best picks out the highly reproducible shared origins. 2.7% of SNS-seq origins, 17.2% of OK-seq initiation zones and 7.7% of Repli-seq initiation zones overlapped with the 20,250 shared origins

      Thus SNS-seq identifies more of the reproducible origins, but it comes with a high false positive rate.

      ORC ChIP-seq and MCM ChIP-seq data do not define origins: they define the binding sites of these proteins. Thus we have discussed why the ChIP-seq sites of these protein complexes should not be used to define origins.

      Reviewer #3 (Public Review):

      Summary: The authors present a thought-provoking and comprehensive re-analysis of previously published human cell genomics data that seeks to understand the relationship between the sites where the Origin Recognition Complex (ORC) binds chromatin, where the replicative helicase (Mcm2-7) is situated on chromatin, and where DNA replication actually beings (origins). The view that these should coincide is influenced by studies in yeast where ORC binds site-specifically to dedicated nucleosome-free origins where Mcm2-7 can be loaded and remains stably positioned for subsequent replication initiation. However, this is most certainly not the case in metazoans where it has already been reported that chromatin bindings sites of ORC, Mcm2-7, and origins do not necessarily overlap, likely because ORC loads the helicase in transcriptionally active regions of the genome and, since Mcm2-7 retains linear mobility (i.e., it can slide), it is displaced from its original position by other chromatin-contextualized processes (for example, see Gros et al., 2015 Mol Cell, Powell et al., 2015 EMBO J, Miotto et al., 2016 PNAS, and Prioleau et al., 2016 G&D amongst others). This study reaches a very similar conclusion: in short, they find a high degree of discordance between ORC, Mcm2-7, and origin positions in human cells.

      Strengths: The strength of this work is its comprehensive and unbiased analysis of all relevant genomics datasets. To my knowledge, this is the first attempt to integrate these observations and the analyses employed were suited for the questions under consideration.

      Response: Thank you for recognizing the comprehensive and unbiased nature of our analysis. The fact that the major weakness is that the comprehensive view fails to move the field forward, is actually a strength. It should be viewed in the light that we cannot find evidence to support the primary hypothesis: that the most reproducible origins must be near ORC and MCM binding sites. This finding will prevent the unwise adoption of ORC or MCM binding sites as surrogate markers of origins and will stimulate the field to try and improve methods of identifying ORC or MCM binding until the binding sites are found to be proximal to the most reproducible origins. The last possibility is that there are ORC- or MCM-independent modes of defining origins, but we have no evidence of that.

      Weaknesses: The major weakness of this paper is that this comprehensive view failed to move the field forward from what was already known. Further, a substantial body of relevant prior genomics literature on the subject was neither cited nor discussed. This omission is important given that this group reaches very similar conclusions as studies published a number of years ago. Further, their study seems to present a unique opportunity to evaluate and shape our confidence in the different genomics techniques compared in this study. This, however, was also not discussed.

      Response: We have done what the reviewer suggested: use K562 cell type-specific data where origins have been defined by three methods and reporting the percent of shared origins identified by each method (Supp. Fig. S4). Thanks for the suggestion. We have discussed now that SNS-seq identifies more of the reproducible origins, but it comes with a high false positive rate. ORC ChIP-seq and MCM ChIP-seq data do not define origins: they define the binding sites of these proteins. Thus, we have discussed that the ChIP-seq sites of these protein complexes as we now have them should not be used to define origins.

      We do not cite the SNS-seq data before 2018 because of the concerns discussed above about the earlier techniques needing improvement. We have discussed other genomics data that we failed to discuss.

      We have cited the papers the reviewer names:

      Gros, Mol Cell 2015 and Powell, EMBO J. 2015 discuss the movement of MCM2-7 away from ORC in yeast and flies and will be cited. MCM2-7 binding to sites away from ORC and being loaded in vast excess of ORC was reported earlier on Xenopus chromatin in PMC193934, and will also be cited.

      Miotto, PNAS, 2016: publishes ORC2 ChIP-seq sites in HeLa (data we have used in our analysis), but do not measure ORC1 ChIP-seq sites. They say: “ORC1 and ORC2 recognize similar chromatin states and hence are likely to have similar binding profiles.” This is a conclusion based on the fact that the ChIP seq sites in the two studies are in areas with open chromatin, it is not a direct comparison of binding sites of the two proteins.

      Prioleau, G&D, 2016: This is a review that compared different techniques of origin identification but has no primary data to say that ORC and MCM binding sites overlap with the most reproducible origins. It has now been referenced in the context of epigenetic marks and origins.

      Reviewing Editor:

      While there is some disagreement between the reviewers about the analysis performed, there are relevant concerns about the data analyzed (reviewers 1 and 2) and the biological significance of the observation (all three reviewers). There is also concern raised about the ORC ChIP-Seq data and the lack of overlap between published data for ORC1 and ORC2, which, if they were in a complex, the overlap in binding sites should be much better that reported.

      Given the high overlap of ChIP-seq data for subunits of three other complexes shown in Supp. Fig. S6A, the most likely explanation is that ORC1 and ORC2 do not necessarily bind to DNA only as part of a complex. In other words, other protein complexes that contain one subunit or the other also bind DNA. This is not entirely unexpected. Biochemically the ORC2-3-4-5 complex is more stable and more abundant than the six subunit ORC.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments:

      • Line 44, missing spaces near references: "origins(Hu". Repeated issue throughout the manuscript.

      • Line 82: "Notably any technical biases are uniquely associated with each assay" -- how do you know the biases are unique to each assay and orthogonal to each other?

      • Line 135: typo: "using pipeline"

      • Line 136: "All the 113 datasets" -> "Each of the 113 datasets"?

      • Line 156: "differences among different techniques" -> "different" can be removed.

      • Figure 4F: I don't see any difference in 4F amongst shared *. What is the y-axis anyways?

      We have addressed these issues in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      The most significant omission is a contextualization of the results in the discussion and an explanation of why these results matter for the biology of replication, disease, and/or our confidence in the genomic techniques reported on in this study. As written, the discussion simply restates the results without any interpretation towards novel insight. I suggest that the authors revise their discussion to fill this important gap.

      A second important, unresolved point is whether replication origins identified by the various methods differ due to technical reasons or because different cell types were analyzed. Given the correlation between TSS and origins (reported in this study but many others too), it is somewhat expected that origins will differ between cell types as each will have a distinct transcriptional program. This critique is partly addressed in Figure S1C. However, given the conclusion that the techniques are only rarely in agreement (only 0.27% origins reproducibly detected by the four techniques), a more in-depth analysis of cell type specific data is warranted. Specifically, I would suggest that cell type-specific data be reported wherever origins have been defined by at least two methods in the same cell type, specifically reporting the percent of shared origins amongst the datasets. This type of analysis may also inform on whether one or more techniques produces the highest (or lowest) quality list of true origins.

      We have done what has been suggested: used K562 cell type-specific data because here the origins have been defined by at least two methods in the same cell type, and reported the percent of shared origins amongst the datasets (Supp. Fig. S4).

      Other MINOR comments include:

      • Line 215: the authors show that shared origins overlap with TF binding hotspots more often than union origins, which they claim suggests "that they are more likely to interact with transcription factors." As written, it sounds like the authors are proposing that ORC may have some direct physical interaction with transcription factors. Is this intended? If so, what support is there for this claim?

      The reviewer is correct. We have rephrased because we have no experimental support for this claim.

      • In the text, Figure 3G is discussed before Figure 3F. I suggest switching the order of these panels in Figure 3.

      Done.

      • It's not clear what Figure 5H to Figure 6 accomplishes. What specifically is added to the story by including these data? Is there something unique about the high confidence origins? If there is nothing noteworthy, I would suggest removing these data.

      We want to keep them to highlight the small number of origins that meet the hypothesis that ORC and MCM must bind at or near reproducible origins. These would be the origins that the field can focus in on for testing the hypothesis rigorously. They also show the danger of evaluating proximity between ORC or MCM binding sites with origins based on a few browser shots. If we only showed this figure we could conclude that ORC and MCM binding sites are very close to reproducible origins.

      • Line 394: "Since ORC is an early factor for initiating DNA replication, we expected that shared human origins will be proximate to the reproducible ORC binding sites." This is only expected if one disbelieves the prior literature that shows that ORC and origins are not, in many cases, proximal. This statement should be revised, or the previous literature should be cited, and an explanation provided about why this prior work may have missed the mark.

      We do not know of any genome-wide study in mammalian cell lines where ORC binding sites and MCM binding have been compared to highly reproducible origins, or that show that these binding sites and highly reproducible origins are mostly not proximal to each other. Most studies cherry pick a few origins and show by ChIP-PCR that ORC and/or MCM bind near those sites. Alternatively, studies sometimes show a selected browser shot, without a quantitative measure of the overlap genome wide and without doing a permutation test to determine if the observed overlap or proximity is higher than what would be expected at random with similar numbers of sites of similar lengths. In the revised manuscript we have discussed Dellino, 2013; Kirstein, 2021; Wang, 2017; Mas, 2023. None of them have addressed what we are addressing, is the small subset of the most reproducible origins proximal to ORC or MCM binding sites?

      • Line 402-404: given the lack of agreement between ORC binding sites and origins the authors suggest as an explanation that "MCM2-7 loaded at the ORC binding sites move much further away to initiate origins far from the ORC binding sites, or that there are as yet unexplored mechanisms of origin specification in human cancer cells". The first part of this statement has been shown to be true (Mcm2-7 movement) and should be cited. But what do the authors mean by the second suggestion of "unexplored mechanisms"? Please expand.

      We have addressed this point in the revised manuscript.

      • The authors should better reference and discuss the previous literature that relates to their work, some of these include Gros et al., 2015 Mol Cell, Powell et al., 2015 EMBO J, Miotto et al., 2016 PNAS, but likely there are many others.

      We have addressed this point in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are very grateful for your time and efforts spent on our manuscript. Your feedback has been very valuable. Please see below a point-by-point response to each suggestion and actions taken to address each point in the manuscript.

      eLife assessment

      In this fundamental study, the authors propose analytical methods for inferring evolutionary parameters of interest from sequencing data in healthy tissue relevant to hematopoiesis. By combining analyses of single cell and bulk sequencing data, the authors can use a stochastic process to inform different aspects of genetic heterogeneity. The strength of evidence in support of the authors' claim is thus compelling. The work will be of broad interest to cell biologists and theoretical biologists.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Authors propose mathematical methods for inferring evolutionary parameters of interest from bulk/single cell sequencing data in healthy tissue and hematopoiesis. In general, the introduction is well-written and adequately references the relevant and important previous literature and findings in this field (e.g. the power laws for well-mixed exponentially growing populations). The authors consider 3 phases of human development: early development, growth and maintenance, and mature phase. In particular, time-dependent mutation rates in Figure 2d is an intriguing and strong result, and the process underlying Figures 3 and 4 are generally wellexplained and convincing.

      Thank you for your positive comments.

      Notes & suggestions:

      1. The explanation of Figure 2 in Lines 101 - 111 should be expanded for clarity. First, is Figure 2a derived from stochastic simulation (line 101 suggests) or some theoretical analysis? Second, the gradual transition from f-2 to f-1 is appreciated, but the shape of the intermediates is not addressed in detail. The power laws are straight lines, and the simulations provide curved lines -- please expand in what range (low or high frequency variants) the power law approximations apply.

      Figure 2a was obtained from a numerical solution of equation 1, which describes the time dynamics of the expected VAF distribution. This is indeed unclear from the text, and we thank the reviewer for pointing out this discrepancy.

      We thank the reviewer for this suggestion and have now adjusted this in the text (102-110):

      “Numerical solutions of Eq.(1) show that the expected VAF distribution exhibits a gradual transition from the f-2 (growing population) to the f-1 (constant population) power law (Fig.2). These transitional states themselves do not adhere to some intermediate power-law (e.g. f for 1<<2), but instead present a sigmoidal shape, with the low frequency portion following f-1 and the high frequencies f-2 . Over time the shape changes as a wavelike front traveling from low to high frequency, with the constant-size equilibrium establishing earliest at the lowest frequencies and moving to higher frequency over time. Interestingly, the convergence towards equilibrium slows down over time -- for evenly-spaced observation times the solutions lie increasingly closer together -- further decreasing the speed at which the high frequency portion of the spectrum approaches equilibrium.”

      We also changed the caption of Figure 2 to make this clearer as

      “(a) Expected VAF distributions from evolving Eq1 to different time points for a population with an initial exponential growth phase and subsequent constant population phase (mature size N=103). Once the population reaches the maximum carrying capacity, the distribution moves from a 1/f2 growing population shape (purple) to a 1/f constant population shape (green). Note that the shift slows considerably at older age.”

      In addition, we have also added annotations to Figure 2a and 2b to further clarify which line (green or purple) is f-1 and f-2.

      Additionally, I do not understand the claim in line 108, that the transition is fast for low frequency variants, as the low frequency (on the left of the graph) lines are all close together, whereas the high frequency lines are far apart.

      The lines are closer together in the low frequency portion (left of the plot) because they are already very close to the constant-size equilibrium (f-1/green line) and these frequencies approached equilibrium very fast. On the contrary, in the high frequency portion (right side of plot) they are still very far from equilibrium and approached equilibrium much slower.

      It would be helpful to reiterate in this paragraph that these power laws are derived based on exponentially growing populations and are expected to break down under homeostatic conditions.

      We have adjusted the relevant paragraph in the text to make the validity of the power laws clearer (90-94):

      “For a well-mixed exponentially growing population without cell death the VAF spectrum 𝑣(𝑓) is given by 2𝜇/(𝑓 + 𝑓2 )$ (a 𝑓−2 power law) and is independent of time. In contrast, for a population of constant size – i.e. where birth and death rates are equal – the spectrum obeys 𝑣(𝑓) ∝ 2𝜇/ 𝑓 (a 𝑓−1 power law; see also SI), though this solution is only valid at sufficiently long times.”

      1. The sample vs population (blue vs orange) in Figure 3 is under-explained. How is it that the mutational burden and inferred mutation rate in A and B roughly match, but the VAF distributions in C are so different? How was the sampled set chosen? Perhaps this is an unimportant distinction based on the particular sample set, but the divergence of the two in C may serve as a distraction, here.

      This is an important question, and the answer was perhaps underemphasized in the caption. The sampling was performed as a uniform random sampling with replacement, and the same sample set was used for both the mutational burden and the VAF distribution. The reason for this stark contrast is that while the expectation of the burden distribution is not affected by sampling (i.e. sampling only affects the resolution/amount of stochasticity), the expectation of the VAF distribution changes due to sampling. While this was discussed in the section "Sparse sampling, single cell derived VAF spectra and evolutionary inferences", we have added note of this (indeed surprising) effect in the caption as well:

      “(b) Distribution of estimated mutation rates from 10'000 individual simulations, obtained from burden distributions of the complete populations (blue) as well as sampled sets of cells (orange). Because the expected mutational burden distribution is unaltered by sampling, the expected estimate of the mutation rate from (5) remains unchanged: 𝐸(𝜇̃𝑝𝑜𝑝) = 𝐸(𝜇̃𝑠𝑎𝑚𝑝𝑙𝑒). However, sampling increases the noise on the observed burden distribution, which results in a higher errormargin of the estimate: 𝜎(𝜇̃𝑝𝑜𝑝) < 𝜎(𝜇̃𝑠𝑎𝑚𝑝𝑙𝑒).”

      “(c) VAF spectra measured in the complete population (blue) and a sampled set of cells (orange). In contrast with the mutational burden distribution, strong sampling changes the shape of the expected distribution. A single simulation result is shown (diamonds) alongside the theoretically predicted expected values for both the total and sampled populations (Eqs. (1) and (6))(dashed line) and the average across 100 simulations (solid line).”

      1. The comparison of results herein to claims by Mitchell (ref. 12) are quite important results within the paper. I appreciate the note in the final paragraph of the discussion, and I suggest adding a sentence referencing the result noted in line 248-249 to the abstract, as well.

      We agree with the reviewer. We have extended the abstract now to reference the result in more detail:

      “However, the single cell mutational burden distribution is over-dispersed compared to a model of Poisson distributed random mutations suggesting. A time-associated model of mutation accumulation with a constant rate alone cannot generate such a pattern. At least one additional source of stochasticity would be needed. Possible candidates for these processes may be occasional bursts of stem cell divisions, potentially in response to injury, or non-constant mutation rates either through environmental exposures or cell intrinsic variation.”

      Reviewer #2 (Public Review):

      Summary: The authors provide a nice summary on the possibility to study genetic heterogeneity and how to measure the dynamics of stem cells. By combining single cell and bulk sequencing analyses, they aim to use a stochastic process and inform on different aspects of genetic heterogeneity.

      Strengths: Well designed study and strong methods

      Thank you for your positive comments.

      Weaknesses: Minor

      Further clarification to Figure 3 legend would be good to explain the 'no association' of number of samples and mutational burden estimate as per line 180-182 p.8.

      We have added a note to the caption of Figure 3b to explain more clearly how sampling affects the burden distribution and the mutation rate inferred from it (see also previous response to Reviewer 1):

      “Because the expected mutational burden distribution is unaltered by sampling, the expected estimate of the mutation rate from (5) remains unchanged: 𝐸(𝜇̃𝑝𝑜𝑝) = 𝐸(𝜇̃𝑠𝑎𝑚𝑝𝑙𝑒). However, sampling increases the noise on the observed burden distribution, which results in a higher errormargin of the estimate: 𝜎(𝜇̃𝑝𝑜𝑝) < 𝜎(𝜇̃𝑠𝑎𝑚𝑝𝑙𝑒).”

      Reviewer #1 (Recommendations For The Authors):

      Minor/editorial suggestions:

      1. Equation 1, please define \partial_t and \partial_K, for clarity.

      These have now been defined in the text (between line 85-86): “where 𝜅 = 𝑓𝑁(𝑡) denotes the number of cells sharing a variant (the variant frequency f times the total population size N), 𝛿(x) is the Dirac impulse function, 𝜕𝑡 and 𝜕𝜅 are the partial derivatives with respect to time and variant size.”

      1. Figure 2: It would be helpful to label the green and purple lines with the corresponding 1/f and 1/f^2 rule, in addition to the growing/fixed label, for clarity.

      We agree and have now added the corresponding labels to each line.

      Reviewer #2 (Recommendations For The Authors):

      Minor suggestions are given below:

      It would be nice for the authors to comment on whether the results could be extended/modified to account for possible fitness advantage of mutations which would be clinically relevant, for instance in the case of CHIP mutations and difference in time to myeloid malignancies transformation between CHIP/No CHIP individuals.

      This is an important point. We agree with the reviewer that CHIP mutations play an important role in shaping mutational diversity especially in older individuals. Evidence is now emerging that CHIP mutations are almost universally present in individuals 60+. Interestingly, in individuals younger than 60, a neutral model (as presented here), does capture the observed effective dynamics well. For the purpose of the analysis underlying this manuscript, a neutral model seems reasonable.

      The techniques we use here can be adjusted to include selection. How the results extend or modify will critically depend on the actual model of selection (rare or frequent CHIP mutations, strong vs weak selection etc.) that is realized in human hematopoiesis. Here we would say, the underlying biology currently is mostly unknown and is subject to (by others and in part by us) ongoing investigations, which extend beyond the scope of this manuscript.

      We now make note of this point in the manuscript and added a small paragraph in page 11 to the discussion:

      “Another open question is the role of selection and how it shapes intra-tissue genetic heterogeneity. Evidence is emerging that positively selected variants in blood are almost universally present in individuals above 60, while the effective observable dynamics in younger individuals is well described by neutral dynamics. How results presented here generalize or modify will critically depend on the model of selection realized in human hematopoiesis, e.g. a models of rare or frequent driver events. Details of the underlying biology are currently unknown.”

      It would be nice to see if any significant differences in parameter estimates occur between loci with/without linkage disequilibrium, for instance HLA region. Could the number of single-cell samples be 'more' relevant when studying the VAF distribution in HLA region?

      This is a good suggestion. We might be wrong or missing an important point, but somatic evolution as we use it in our modeling here is solely driven by asexual reproduction of cells. As such the entire genome of the cell is in linkage disequilibrium, independent of the precise genomic region (somatic evolution is in first approximation blind to germline mutations, as they are present in every single cell of the organism and therefore do not carry any information on the somatic evolutionary dynamics).

      We thank all editors and reviewers again for your constructive comments.

    1. Author Response

      I would like to express my thorough gratitude to the editors and reviewers, for the helpful comments and valuable suggestions, which provided us an opportunity to further address our research. Prior to submitting our final revision, here we provide our preliminary responses for the comments. Please find our detailed responses to the reviewers’ recommendations below.

      Reviewer #1 (Public Review):

      Summary:

      The authors were trying to understand the relationship between the development of large trunks and longirrostrine mandibles in bunodont proboscideans of Miocene, and how it reflects the variation in diet patterns.

      Strengths:

      The study is very well supported, written, and illustrated, with plenty of supplementary material. The findings are highly significant for the understanding of the diversification of bunodont proboscideans in Asia during Miocene, as well as explaining the cranial/jaw disparity of fossil lineages. This work elucidates the diversification of paleobiological aspects of fossil proboscideans and their evolutionary response to open environments in the Neogene using several methods. The authors included all Asian bunodont proboscideans with long mandibles and I suggest that they should use the expression "bunodont proboscideans" instead of gomphotheres.

      Weaknesses:

      I believe that the only weakness is the lack of discussion comparing their results with the development of gigantism and long limbs in proboscideans from the same epoch.

      Response: Thank you for your comprehensive review and positive feedback on our study regarding the co-evolution of feeding organs in bunodont proboscideans during the Miocene. We appreciate your suggestion, and have decided to use the term "bunodont elephantiforms" (for more explicit clarification, we use elephantiforms to exclude some early proboscideans, like Moeritherium, ect.) instead of "gomphotheres," and we will make this change in our revised manuscript. We also appreciate the potential weakness you mentioned regarding the lack of discussion comparing our results with the development of gigantism and long limbs in proboscideans from the same epoch. We agree with the reviewer’s suggestion, and we are aware that gigantism and long limbs are potential factors for trunk development. Gigantism resulted in the loss of flexibility in elephantiforms, and long limbs made it more challenging for them to reach the ground. A long trunk serves as compensation for these limitations. limb bones were rare to find in our material, especially those preserved in association with the skull.

      Reviewer #2 (Public Review):

      This study focuses on the eco-morphology, the feeding behaviors, and the co-evolution of feeding organs of longirostrine gomphotheres (Amebelodontidae, Choerolophodontidae, and Gomphotheriidae) which are characterised by their distinctive mandible and mandible tusk morphologies. They also have different evolutionary stages of food acquisition organs which may have co-evolve with extremely elongated mandibular symphysis and tusks. Although these three longirostrine gomphothere families were widely distributed in Northern China in the Early-Middle Miocene, the relative abundances and the distribution of these groups were different through time as a result of the climatic changes and ecosysytems.

      These three groups have different feeding behaviors indicated by different mandibular symphysis and tusk morphologies. Additionally, they have different evolutionary stages of trunks which are reflected by the narial region morphology. To be able to construct the feeding behavior and the relation between the mandible and the trunk of early elephantiformes, the authors examined the crania and mandibles of these three groups from the Early and Middle Miocene of northern China from three different museums and also made different analyses.

      The analyses made in the study are:

      1. Finite Element (FE) analysis: They conducted two kinds of tests: the distal forces test, and the twig-cutting test. With the distal forces test, advantageous and disadvantageous mechanical performances under distal vertical and horizontal external forces of each group are established. With the twig-cutting test, a cylindrical twig model of orthotropic elastoplasity was posed in three directions to the distal end of the mandibular task to calculate the sum of the equivalent plastic strain (SEPS). It is indicated that all three groups have different mandible specializations for cutting plants.

      2. Phylogenetic reconstruction: These groups have different narial region morphology, and in connection with this, have different stages of trunk evolution. The phylogenetic tree shows the degree of specialization of the narial morphology. And narial region evolutionary level is correlated with that of character-combine in relation to horizontal cutting. In the trilophodont longirostrine gomphotheres, co-evolution between the narial region and horizontal cutting behaviour is strongly suggested.

      3. Enamel isotopes analysis: The results of stable isotope analysis indicate an open environment with a diverse range of habitats and that the niches of these groups overlapped without obvious differentiation.

      The analysis shows that different eco-adaptations have led to the diverse mandibular morphology and open-land grazing has driven the development of trunk-specific functions and loss of the long mandible. This conclusion has been achieved with evidence on palaecological reconstruction, the reconstruction of feeding behaviors, and the examination of mandibular and narial region morphology from the detailed analysis during the study.

      All of the analyses are explained in detail in the supplementary files. The 3D models and movies in the supplementary files are detailed and understandable and explain the conclusion. The conclusions of the study are well supported by data.

      Response: We appreciate your detailed and insightful review of our study. Your summary accurately captures the essence of our research, and we are pleased to note that multiple research methods were used to demonstrate our conclusions. Your recognition of the evidence-based conclusions from palaeoecological, feeding behavior reconstruction, and morphological analyses reinforces the validity of our findings. Once again, we appreciate your time and thoughtful reviews.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      This study presents careful biochemical experiments to understand the relationship between LRRK2 GTP hydrolysis parameters and LRRK2 kinase activity. The authors report that incubation of LRRK2 with ATP increases the KM for GTP and decreases the kcat. From this, they suppose an autophosphorylation process is responsible for enzyme inhibition. LRRK2 T1343A showed no change, consistent with it needing to be phosphorylated to explain the changes in G-domain properties. The authors propose that phosphorylation of T1343 inhibits kinase activity and influences monomer-dimer transitions.

      Strengths: The strengths of the work are the very careful biochemical analyses and the interesting result for wild-type LRRK2.

      Weaknesses:

      A major unexplained weakness is why the mutant T1343A starts out with so much lower activity--it should be the same as wild-type, non-phosphorylated protein. Also, if a monomer-dimer transition is involved, it should be either all or nothing. Other approaches would add confidence to the findings.

      We thank the reviewer for these suggestions. We are aware that the T1343A has generally a lower activity compared to the wild type. Therefore, we would like to emphasize that this mutant is the only one not showing an increase in Km values after ATP treatment. Other mutants, also having lower kcat values like T1503A, still show this characteristic change in Km. Our favored explanation for the lower kcat of T1343A is that this mutation lays within a critical region, the so-called ploop, of the Roc domain and is very likely structurally not neutral. Concerning the dimer-monomer transition, we are convinced that there is more than one factor involved in this equilibrium. Most likely, including, but not limited to other LRRK2 domains (e.g. the WD40 domain), binding of co-factors (e.g. Rab29/Rab32 or 14-3-3) and membrane binding. Consistently, also n with stapled peptides targeting the Roc or Cor domains we were not able to shift the equilibrium completely to the monomer (Helton et al., ACS Chem Biol. 2021, 16:2326-2338; Pathak et al. ACS Chem Neurosci. 2023, 14(11):1971-1980) We will address these points in a revised version of the manuscript.

      Reviewer #2 (Public Review):

      This study addresses the catalytic activity of a Ras-like ROC GTPase domain of LRRK2 kinase, a Ser/Thr kinase linked to Parkinson's disease (PD). The enzyme is associated with gain-of-function variants that hyper-phosphorylate substrate Rab GTPases. However, the link between the regulatory ROC domain and activation of the kinase domain is not well understood. It is within this context that the authors detail the kinetics of the ROC GTPase domain of pathogenic variants of LRRK2, in comparison to the WT enzyme. Their data suggest that LRRK2 kinase activity negatively regulates the ROC GTPase activity and that PD variants of LRRK2 have differential effects on the Km and catalytic efficiency of GTP hydrolysis. Based on mutagenesis, kinetics, and biophysical experiments, the authors suggest a model in which autophosphorylation shifts the equilibrium toward monomeric LRRK2 (locked GTP state of ROC). The authors further conclude that T1343 is a crucial regulatory site, located in the P-loop of the ROC domain, which is necessary for the negative feedback mechanism. Unfortunately, the data do not support this hypothesis, and further experiments are required to confirm this model for the regulation of LRRK2 activity.

      Specific comments are below:

      • Although a couple of papers are cited, the rationale for focusing on the T1343 site is not evident to readers. It should be clarified that this locus, and perhaps other similar loci in the wider ROCO family, are likely important for direct interactions with the GTP molecule.

      To clarify this point: We, have not only have focused on this specific locus, but instead systematically mutated all known auto-phosphorylation sites with the RocCOR domain (see. supplemental information). Furthermore, it has been shown that this site, at least in the RCKW (Roc to WD40) construct, is quantitatively phosphorylated (Deniston et al., Nature 2020, 588:344-349). We are aware that the T1343 residue is located within the p-loop and that this can impact nucleotide binding capacities (see response to reviewer 1). We will clarify and address these points in a revised version of the manuscript.

      • Similar to the above, readers are kept in the dark about auto-phosphorylation and its effects on the monomer/dimer equilibrium. This is a critical aspect of this manuscript and a major conceptual finding that the authors are making from their data. However, the idea that auto-phosphorylation is (likely) to shift the monomer/dimer equilibrium toward monomer, thereby inactivating the enzyme, is not presented until page 6, AFTER describing much of their kinetics data. This is very confusing to readers, as it is difficult to understand the meaning of the data without a conceptual framework. If the model for the LRRK2 function is that dimerization is necessary for the phosphorylation of substrates, then this idea should be presented early in the introduction, and perhaps also in the abstract. If there are caveats, then they should be discussed before data are presented. A clear literature trail and the current accepted (or consensus) mechanism for LRRK2 activity is necessary to better understand the context for these data.

      We agree on the reviewer’s opinion. We will address this point in a revised version of the manuscript.

      • Following on the above concepts, I find it interesting that the authors mention monomeric cytosolic states, and kinase-active oligomers (dimers??), with citations. Again here, it would be useful to be more precise. Are dimers (oligomers?) only formed at the membrane? That would suggest mechanisms involving lipid or membrane-attached protein interactions. Also, what do the authors mean by oligomers? Are there more than dimers found localized to the membrane?

      There are multiple studies that have shown that LRRK2 is mainly monomeric in the cytosol while it forms mainly dimeric or higher oligomeric states at membrane (James et al., Biophys. J. 2012, 102, L41–L43; Berger et al., Biochemistry, 2010, 49, 5511–5523). However, we agree with the reviewer that it remains to be determined if the dimeric form is the most active state at the membrane, or a higher oligomeric state. Especially since a recent study shows that LRRK2 can form active tetramers only when bound to Rab29 (Zhu et al., bioRxiv, 2022, DOI: 10.1101/2022.04.26.489605). We will clarify and address these points in the introduction of a revised version of the manuscript.

      • Fig 5 is a key part of their findings, regarding the auto-phosphorylation induced monomer formation of LRRK2. From these two bar graphs, the authors state unequivocally that the 'monomer/dimer equilibrium is abolished', and therefore, that the underlying mechanism might be increased monomerization (through maintenance of a GTP-locked state). My view is that the authors should temper these conclusions with caveats. One is that there are still plenty of dimers in the auto-phosphorylated WT, and also in the T1343A mutant. Why is that the case? Can the authors explain why only perhaps a 10% shift is sufficient? Secondly, the T1343A mutant appears to have fewer overall dimers to begin with, so it appears to readers that 'abolition' is mainly due to different levels prior to ATP treatment at 30 deg. I feel these various issues need to be clarified in a revised manuscript, with additional supporting data. Finally, on a minor note, I presume that there are no statistically significant differences between the two sets of bar graphs on the right panel. It would be wise to place 'n.s.' above the graphs for readers, and in the figure legend, so readers are not confused.

      Starting with the monomer-dimer equilibrium we are convinced that there is more than the phosphorylation of T1343 (see response to reviewer 1). Therefore a 10% shift in our assay most likely underestimate the effect seen in cells.

      Consistently, the T1343A mutants show a similar increase in Rab10 phosphorylation assay as the G2019S mutant. This thus shows that the identified feedback mechanism plays an important role in a cellular context. We will explain this in more detail in a revised version of the manuscript. Concerning the bar diagram, we will add the “n.s.” indication in a future version of the manuscript.

      • Figure 6B, Westerns of phosphorylation, the lanes are not identified and it is unclear what these data mean.

      We apologize for this mistake and will add the correct labeling in a revised version of the manuscript.

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] Major concerns/weakness:

      1) All the results in Fig. 2 utilized two glioma lines SF188 and Res259. The authors should repeat all these experiments in a couple of H3.3K27M DMG lines by deleting the H3.3K27M mutation first.

      We thank the referee for his/her comments that will help us to strengthen our conclusions.

      The reviewer's proposal is interesting, but this approach to deletion of the K27M mutation rather answers the question of the role of the BMP pathway in maintaining the phenotype of DMG cells. Our aim in the first part of this article (with Res and SF188) is rather to study how the BMP pathway can participate in installing a particular cellular state at the time of expression of the K27M mutation. In other words, the underlying idea is to define the phenotypic changes specifically associated with activation of the BMP pathway when epigenetic modifications are induced by expression of the K27M mutation. We have chosen the SF188 and Res259 models to remain in a glial context, but it would indeed be interesting to test the effect of this synergy in other models, closer to the cells of origin of DMG. In any case, these models should make it possible to answer the question of the cellular state transition at the moment of K27M expression, even if the reciprocal question of the reversibility of this state proposed by the reviewer is also of interest for understanding the oncogenic synergy between BMP/K27M.

      2) Fig. 3. The experiments of BMP2 treatment should be repeated in other H3.3K27M DMG lines using H3.1K27M ACVR1 mutant tumor lines as controls.

      We will provide the results of these experiments in a revised version. The use of mutant ACVR1 lines is interesting, but their control status seems questionable, as the addition of BMPs could have a cumulative effect on the effect of the mutation, notably by activating other receptors in the pathway.

      Minor concerns:

      Fig.2A. BMP2 expression increased in H3.3K27M SF188 cells. Therefore, the statement "whereas BMP2 and BMP4 expressions are not significantly modified (Figure 2A and Figure 2-figure supplement A-B)" is not accurate.

      The referee is absolutely right and we will correct this statement in the revised version.

      Reviewer #2 (Public Review):

      [...] The paper is well-written and easy to follow with a robust experimental plan and datasets supporting the claims. While previous work (acknowledged by the authors) indicated activation of BMP in H3K27M tumors, wild type for the ACVR1 mutation this paper is a nice addition and provides further mechanistic cues as to the importance of the BMP pathway and specific members in these deadly brain cancers. The effect of these BMPs in quiescence and invasion is of particular interest.

      We thank the referee for his/her supportive comments.

      A few suggestions to clarify the message are provided below:

      1- In thalamic diffuse midline gliomas, the BMP pathway should not be activated as it is in the pons. The authors should identify thalamic tumors in the datasets they explored and patients-derived cell lines from thalamic tumors available to investigate whether this pathway is active across all H3.3K27M mutants in the brain midline or specifically in tumors from the pons.

      The referee's question is an interesting one, and we will try to see if we can determine tumor’s location from the public data we've used. We will nevertheless try to determine whether the inter-patient variability observed in the level of activation of the BMP pathway may be due, in particular, to different tumor locations.

      2 - There are ~20% H3.3K27M tumors that carry an ACVR1 mutation and similar numbers of H3.1K27M that are wild type for this gene. Can the authors identify these outliers in their datasets and assess the activation of BMP2 and 7 or other BMP pathway members in this context?

      Indeed, defining the level of activation of the pathway in this type of H3.3K27M ACVR1 mutant or H3.1K27M ACVR1 wt tumors would be extremely interesting, but no samples of this type are a priori included in the datasets analyzed. Instead, we will try to define the phenotype of cell lines of this type in response to BMP.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      1. The manuscript study would be improved by further discussion of the mechanistic relationship between this class of sex-biased DHS and the other 2/3 of liver DHS that also show male-biased accessibility but whose chromatin does not respond directly to GH-stimulated STAT5.

      Response: We added a new paragraph to the Discussion (lines 608-618) discussing our novel finding that sex-biased H3K36me3 marks uniquely distinguish Static sex-biased DHS from Dynamic sex-biased DHS (see Fig. 6C) in light of a recent study in a different biological system showing that H3K36me3 marks comprise an important mechanism for maintaining cell type-specific identity by inhibiting the spread of H3K27me3 repressive marks at cell type-specific enhancers [Nat Cell Biol, 25 (2023) 1121-1134]. Further, we now discuss the potential mechanistic significance of this mark in insuring the sex-biased chromatin accessibility at Static sex-biased DHS:

      “Finally, we discovered that sex-biased H3K36me3 marks are a unique distinguishing feature of static sex-biased DHS, with male-biased H3K36me3 marks being highly enriched at static male-biased DHS but not at dynamic male-biased DHS, and female-biased H3K36me3 marks highly enriched at static female-biased DHS (Fig. 6C). H3K36me3 marks are classically associated with the demarcation of actively transcribed genes [50] but are also used to maintain cell type identity by inhibiting the spread of H3K27me3 repressive marks at cell type-specific enhancers [35, 51]. The enrichment of H3K36me3 marks at static male-biased DHS described here could thus be an important mechanism to maintain sex-dependent hepatocyte identity by keeping static male-biased enhancers constitutively open and free of H3K27me3 repressive marks in male liver, and similarly for H3K36me3 marks enriched at static female-biased DHS in female liver. Further study is needed to elucidate the underlying mechanisms whereby these and the other sex-specific histone marks discussed above are deposited on chromatin in a sex-dependent and site-specific manner and the roles that GH plays in regulating these epigenetic events”.

      1. Previous studies, including those in the Waxman lab (PMIDs: 26959237, 18974276, 35396276) suggest castration of males or gonadectomy of both sexes eliminates most sex differences in mRNA expression in mouse liver, and/or that androgens such as DHT or testosterone administered in adulthood potentially reverses the effects of gonadectomy and/or masculinizes liver gene expression. It is not clear from the present discussion whether the GH/STAT5 cyclic effects to masculinize chromatin status require the presence of androgens in adulthood to masculinize pituitary GH secretion. Are there analyses of the present (or past) data that might provide evidence about a dual role for GH and androgen acting on the same genes? For example, are sex-biased DHS bound by androgen-dependent factors or show other signs of androgen sensitivity? Are histone marks associated with DHS regulated by androgens? Moreover, it would help if the authors indicate whether they believe that the "constitutive" static sex differences in the larger 2/3 set of male-biased DHS are the result of "constitutive" (but variable) action of testicular androgens in adulthood. Although the present study is nicely focused on the GH pulse-sensitive DHS, is there mechanistic overlap in sex-biasing mechanisms with the larger static class of sex-biased liver DHS?

      Response: The Reviewer poses an intriguing set of question regarding the potential role of androgens in directly regulating, perhaps by working together with GH or GH-activated STAT5 at the level of chromatin, to co-regulate the set of Static male-biased DHS. We have now addressed these questions in full in a new Discussion paragraph, entitled, “Pituitary GH secretory patterns vs. gonadal steroids as regulators of sex-biased liver chromatin accessibility and gene expression” (lines 640-661), as follows:

      “While testosterone has a well-established role in programming hypothalamic control of pituitary GH secretory patterns [9-11], it is also possible that androgens and estrogens could regulate sex differences in hepatocytes directly at the epigenetic or transcriptional level. However, our findings support the proposal that plasma GH patterns, and not gonadal steroids, dominate epigenetic control of liver sex differences. First, the ability of a single exogenous plasma GH pulse to rapidly reopen dynamic male-biased DHS closed by hypophysectomy – in the face of ongoing ablation of pituitary stimulated gonadal steroid production and secretion – implicates GH signaling per se in the direct regulation of chromatin accessibility for this class of male-biased DHS. Second, GH regulates the sex bias of static male-biased DHS as well, as evidenced by their widespread closure in male liver following continuous GH infusion (Table S2E). It is important to note, however, that hepatocyte-specific knockout of androgen receptor (AR) does, in fact, dysregulate ~15% of sex-biased genes, albeit with a much lower effect size than global AR knockout [52] due to the systemic disruption of the somatotropic axis and circulating GH secretory profiles [53, 54]. Conceivably, AR could regulate these genes by a direct binding mechanism, acting either alone or in concert with GH-activated STAT5 to keep chromatin open constitutively at a subset of static male-biased DHS, of which 32% undergo at least partial closure in male liver following hypophysectomy (Fig. 4C). Estrogen receptor (ERa) likely plays only a minor role in regulating sex-biased liver DHS enhancers, given the lack of effect of hepatocyte-specific ERa knockout on sex-biased liver gene expression [22] and our finding that only 12% of static female-biased DHS close in female liver following hypophysectomy, which decreases circulating estradiol levels [55].”.

      Reviewer #2 (Public Review):

      The Reviewer did not raise any points of criticism.

      Reviewer #2 Recommendations:

      Line 121. "highly enriched for genes of the corresponding sex bias" is unclear. Does this mean that the genes near the DHS have the same bias in level of transcription as the bias in open chromatin? Please clarify.

      Response: Text was changed to: “were highly enriched for mapping to genes showing the corresponding sex bias in the level transcription, but not for genes whose expression shows the opposite sex bias”.

      Line 161. "STAT5 activity-dependent patterns" seems not to be supported by the data. The patterns correlate with STAT5 activity, but the authors can't conclude that they depend on STAT5 activity based on these data alone.

      Response: Text was changed to: “patterns of DNase-released fragments that correlate with STAT5 activity”

      Line 171. "identify genomic regions where chromatin dynamically opens or closes in male mouse liver in response to GH pulse activation of STAT5" This statement assumes a causal relationship between STAT5 and the status of differential sites. The data do not support this assumption of causality, because the data correlate STAT5 with status of the differential sites.

      Response: Text was changed to: “identify genomic regions where chromatin dynamically opens or closes in male mouse liver in close association with GH pulse activation of STAT5”.

      Line 176. The "binary pattern" in figure 2D seems not to be as binary as the authors suggest. The blue and red samples overlap in their distribution, and the lower green samples are intermediate between most of the blue and red samples. The "arbitrary" dotted line suggests the binary status, but this line is less convincing because it is arbitrary and drawn by eye; some samples don't obey the binary dichotomy.

      Response: Text was changed to: “This pattern, where individual male mouse livers largely show either high or low DNase-seq read count distributions at the top differential genomic sites, was also seen…”.

      Line 224 "independent" also implies causality.

      Response: No changes were made.

      Line 284. The effects of hypophysectomy on liver chromatin accessibility is attributed here to the loss of GH secretions. Hypophysectomy will also reduce testicular androgen secretion. To what extent can the results of Hypox be attributed to STAT5-dependent mechanisms as opposed to the loss of androgens?

      Response: This question is now discussed in full in the new Discussion section, entitled, “Pituitary GH secretory patterns vs. gonadal steroids as regulators of sex-biased liver chromatin accessibility and gene expression” (lines 640-661), as noted above.

      Line 505. "euthanized between plasma GH pulses". The authors are making an inference here because I do not think they measured GH levels. It would be more accurate to say that the time of euthanasia is inferred to be between GH pulses based on the measurement of STAT5 which is GH-dependent.

      Response: Text was changed to: “a time inferred to be between plasma GH pulses”.

      Reviewer #3 Recommendations:

      In Figure 1A the differences between female-biased enhancers and sex-independent enhancers seem greater than those comparing female-biased insulators and sex-independent insulators, and yet only the latter are significant. Please could you clarify?

      Response: Figure legend was corrected to indicate that Enhancers + Weak Enhancers were analyzed as a single group. Furthermore, the location of the Enhancer asterisks above the bars on the figure was adjusted to reflect this.

      Line 257, I could not find Table S1B.

      Response: Text in Figure legend was corrected to specify Table S7A as the source of this data.

      Line 265 "BCL6 binding was also enriched at dynamic sex-independent DHS (Table S7B)." The p-value of this enrichment was particularly high. Could this have a biological correlation?

      Response: We cannot rule out that possibility.

      Line 277 "identified a Fox family factor as a close match for one of the top enriched motifs in the set of 278 static but not in the set of dynamic male-biased DHS", Maybe authors could add that this holds true for FOXI1 and not for FOXD1.

      Response: Text was changed to specify FOXI1 as the factor.

      Line 368, please clarify the affirmation because in Table 1A we do not see the data of dynamic and static male-biased DHS, but only male-biased, female-biased, and sex-independent DHS subsets.

      Response: Text was corrected to read: “Our initial analyses revealed no major differences between dynamic and static male-biased DHS regarding the distribution of enhancer vs insulator vs promoter classifications (Fig. S7A) or their overall chromatin state distributions (Fig. S7B)”.

      Figure 7A and 7B. It would visually help the reader if in E1, E2, etc. you could include the short definitions (as in Figure 1B: Inactive, Inactive, Low signal, etc.)

      Response: We thank the reviewer for this suggestion, and have now added the X-axis labels suggested by the Reviewer.

      Line 570 The sentence was difficult to read "similar to E6, but unlike E6," Maybe removing the comma after "unlike E6" would help.

      Response: Text has been edited to avoid this cumbersome construct. It now reads: “…characterized by a high frequency of same activating chromatin marks as chromatin state E6, i.e., H3K27ac and H3K4me1 (E9) or H3K27ac alone (E10), but unlike E6 they are both deficient in…”.

      Other changes include revisions to the Abstract to take into account the new discussion concerning the impact of sex-biased H3K36me3 marks along with related and other revisions to the Discussion, and a revision to the manuscript Title to better capture its main message.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their time and effort to review our manuscript. We have provided a response to their thoughtful questions below. In our revised manuscript, we have expanded the Discussion to comment on the significance of reversible modification of APC with polyubiquitin, and how the APC transport defect might be rescued (lines 335 to 346). A new Supplementary Figure 3 has been added to show a replicate DUB assay and the uncropped gel of Figure 1C in the main text.

      Reviewer #1 (Recommendations For The Authors):

      To address the weaknesses outlined below, I have the following comments and suggestions for experiments:

      1) Functional link between mouse phenotypes and proposed mechanism: could the authors rescue neuron/glia cell density or motor defects by restoring axonal trafficking of APC?

      We have shown that inhibition of glycogen synthase kinase 3 (GSK3) abolished APC ubiquitylation (PMID 22761442). Etienne-Manneville and Hall have reported that GSK3 inactivation promotes APC association with microtubule plus ends to drive polarised astrocyte migration (PMID 12610628). It is therefore conceivable that treating Trabid mutant neurons with a GSK3 inhibitor could suppress APC ubiquitylation, restore APC transport, and rescue the defective axon growth. GSK3 has multiple targets so there are caveats to using potent inhibitors of this kinase. But such an experiment is integral to a future study aimed at rescuing Trabid mutant mouse phenotypes by GSK3 inhibition.

      Does perturbation of APC trafficking phenocopy the defects of TRABID p.R438W and p.A451V knock in mice during neurodevelopment? I appreciate that these experiments might not be easily feasible.

      Presently we do not know how to directly perturb APC transport (besides generating a Trabid mutation). Speculatively, APC phosphosite mutants which mimic constitutive phosphorylation by GSK3 might accumulate polyubiquitin, aggregate, and exhibit disrupted axonal transport. We predict that such APC mutants will cause neurodevelopmental abnormalities in mouse models.

      Thus, alternatively, could the authors provide evidence from unbiased proteomic approaches that APC is a major substrate of TRABID- and STRIPAK-dependent deubiquitylation during neurodevelopment? E.g., what are the changes in the ubiquitylome of neural progenitor cells isolated from mouse embryos with TRABID mutant alleles and is APC amongst the top dysregulated hits? What are the changes in the interactome of TRABID p.A451V and is the STRIPAK complex a major interactor that is lost?

      We are generating antibodies capable of immunoprecipitating endogenous Trabid from mouse cells. This antibody tool will allow us to characterise the Trabid-STRIPAK complex using advanced ubiquitin proteomic approaches to determine interactors and changes to the ubiquitylome of Trabid mutant cells.

      2) Related to the point 1, given that TRABID has been reported to be a regulator of immune signaling pathways (PMID: 26808229, 37237031), can the authors exclude a contribution of this function to the observed phenotypes during neurodevelopment?

      We have not observed any cellular or tissue phenotypes in young or aged Trabid mutant mice indicative of immune system dysregulation. We and others have shown that Trabid deficiency has no impact on the transcription of interferon and NF-B-stimulated genes or cytokine production in mouse and human cells (PMID 18281465; 17991829; unpublished). Nevertheless, a formal investigation is required to determine any changes to immune signalling pathways in our Trabid mutant mice.

      3) Based on previously published interactions, the authors propose that TRABID uses the STRIPAK complex to recruit its substrate APC. Could the authors provide experimental evidence for this by using their cellular model in Figure 4? Would depleting components of the STRIPAK complex in HEK 293T cells stably transfected with DOX-inducible WT-TRABID stabilize APC ubiquitylation upon dox induction?

      We have demonstrated that RNAi-mediated depletion of all 3 striatin proteins in HEK293T cells increased the levels of ubiquitin-modified APC (PMID 23277359). Moreover, depleting Trabid and the 3 Striatins together strongly increased the ubiquitin-modified APC pool, consistent with our model that Trabid and STRIPAK function together to deubiquitylate APC. In our inducible system, we would likely need to eliminate the expression of the STRIPAK component that directly recruits Trabid to achieve a null effect of Trabid overexpression on APC deubiquitylation. Experiments are in progress to determine which STRIPAK component binds directly to Trabid.

      4) Related to point 3, given that A451, the residue that mediates STRIPAK binding is in close proximity to the catalytic cysteine residue, how do the authors envision STRIPAK binding and OTU-dependent cleavage activity to work together at a structural level?

      A451 resides at the back of the active site in a pocket hypothesised to accommodate a short peptide from an interacting protein. The A451V mutant AnkOTU domain purified from bacteria retained full DUB activity, suggesting that Trabid’s ability to cleave polyubiquitin is independent of its ability to bind STRIPAK. Striatin proteins contain WD40 repeats which is a protein fold that binds ubiquitin (PMID 21070969). While the DUB- and STRIPAK-binding activities of Trabid might not be coupled structurally, it is plausible that Striatin could modulate Trabid’s ubiquitin linkage specificity in cells through allosteric interactions with the ubiquitin chain on the substrate.

      5) Is it known why APC needs to be reversibly modified with ubiquitin to be transported in axons and how increased APC ubiquitylation leads to impaired transport or could the authors speculate on this?

      We have shown that APC ubiquitin modification correlated with its binding to Axin in the -catenin destruction complex (PMID 22761442). Conversely, non-ubiquitin-modified APC accumulates in membrane protrusions (PMID 23277359). From this we have proposed that ubiquitin regulates the distribution of APC between its two major functional pools in cells. Chronic APC ubiquitylation in Trabid deficient/mutant neurons might result in increased APC sequestration into Axin destruction complexes and/or promote spurious interactions with ubiquitin binding proteins that cause APC to aggregate, and therefore retard its transport in axons.

      Additional minor comments to consider:

      • Figure 1C: What are the protein smears in the in vitro assays of A541V 15min and CS 120min? I would assume that contaminants from the protein preparations should be the same across different conditions and in particular across different time points of the same Trabid mutant.

      In replicate DUB assays using the same AnkOTU protein preparations we did not detect any smears (Supplementary Figure 3A). It is unclear what caused the smears in Figure 1C, but it is plausible that contaminants in specific tubes/assays are contributing factors.

      • Figure 1D: why is the amount of AnkOTU protein reduced for WT, R438W, and A541 in a time-dependent manner?

      With increasing incubation time in DUB assays, adducts of various molecular weights may form between ubiquitin and the AnkOTU domain. It is plausible that some of these adducts are non-gel-resolved high molecular weight aggregates that sequester some of the AnkOTU proteins. These aggregates, which could have been retained in the loading wells, were presumably washed away during our silver staining procedure hence we do not see them in the full-length gel (Supplementary Figure 3B).

      Reviewer #2 (Recommendations For The Authors):

      • The partial penetrance of the mouse knockin phenotype is confusing, especially as this is evident on an apparently inbred background. Can authors explain the factors that contribute to these differences?

      Low mutant Trabid protein expression in distinct neural crest or progenitor populations could contribute to the reduced penetrance of the cell number phenotype. APC dysfunction in Trabid mutant cells might also impact its role as a negative regulator of the Wnt signalling pathway which regulates neuronal and glial cell fates in the developing brain (PMID 9845073). It is conceivable that in some Trabid mutant mice where APC dysfunction is mild (due to low levels of mutant Trabid protein expression), compensatory mechanisms overcome APC’s reduced function in Wnt signalling and cytoskeleton organization to permit normal brain development. A future study to investigate perturbations of Wnt signalling pathways in Trabid mutant mice is warranted.

      • The use of the term 'hemizygous' is confusing, as it typically refers to when one copy of a gene is present as in X-linked conditions. Might the authors mean 'heterozygous'?

      All instances of ‘hemizygous’ in the manuscript have been amended to ‘heterozygous’.

      • Fig. 3A y-axis units is confusing. Do the authors mean number of TH+ SNc neurons evident per section?

      We have amended the y-axis in Fig. 3A to indicate number of TH+ neurons evident per section.

      • Since the TH phenotype is one of the phenotypes that is partially penetrant, did authors include both penetrant and non-penetrant mice in Fig. 3 and other figures? Shouldn't there be error bars in Fig. 3A, since multiple mice were presumably used for analysis for each condition?

      Each data point in Fig. 3A represents one mouse in a set of littermate mice with the indicated age, sex, and genotype. Generating midbrain SNc sections at similar bregma positions across wild-type and mutant littermate brains for accurate IHC comparison proved challenging. Unanticipated technical issues limited the quantification of equivalent midbrain sections to 3 sets of littermate mice from each respective R438W or A451V mutant colony. The cell number reduction is more obvious in some mutants than others, but the effect is observed across all ages and gender, providing confidence that the phenotype is robust. In Fig. 2 we have included only mutant mice with clearly fewer brain cells than wild-type littermates. We have not performed comprehensive IHC analysis of brains from all the mice used for the rotarod assay in Fig. 3E, but predict that mutant mice have a spectrum of neural/glial cell deficits in one or more brain areas that adversely impacted the motor circuitry causing their impaired motor function.

    1. Author Response

      We thank the Editors and the Reviewers for their comments on the importance of our work “showing a new role of caveolin-1 as an individual protein instead of the main molecular component of caveolae” in building membrane rigidity and also for constructive and thoughtful remarks that shall allow to improve the manuscript.

      Indeed, we here establish the contributing role of caveolin-1 to membrane mechanics by a molecular mechanism that needs to be further addressed. To that respect, we thank the reviewers for suggesting avenues to improve the presentation and discussion of our hypotheses based on results of theoretical model and independent biophysical measurements in tube pulling from plasma membrane spheres, which concur to support the key role of caveolin-1 in building membrane rigidity.

      To fulfill the recommendations of the reviewers we will amend the manuscript as discussed below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Because of the role of membrane tension in the process, and that caveloae regulate membrane tension, the authors looked at the formation of TEMs in cells depleted of Caveolin1 and Cavin1 (PTRF): They found a higher propensity to form TEMs, spontaneously (a rare event) and after toxin treatment, in both Caveolin 1 and Cavin 1. They show that in both siRNA-Caveolin1 and siRNA-Cavin1 cells, the cytoplasm is thinner. They show that in siCaveolin1 only, the dynamics of opening are different, with notably much larger TEMs. From the dynamic model of opening, they predict that this should be due to a lower bending rigidity of the membrane. They measure the bending rigidity from Cell-generated Giant liposomes and find that the bending rigidity is reduced by approx. 50%.

      Strengths:

      They also nicely show that caveolin1 KO mice are more susceptible to death from infections with pathogens that create TEMs.

      Overall, the paper is well-conducted and nicely written. There are however a few details that should be addressed.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Morel et al. aims to identify some potential mechano-regulators of transendothelial cell macro-aperture (TEM). Guided by the recognized role of caveolar invaginations in buffering the membrane tension of cells, the authors focused on caveolin-1 and associated regulator PTRF. They report a comprehensive in vitro work based on siRNA knockdown and optical imaging approach complemented with an in vivo work on mice, a biophysical assay allowing measurement of the mechanical properties of membranes, and a theoretical analysis inspired by soft matter physics.

      Strengths:

      The authors should be complimented for this multi-faceted and rigorous work. The accumulation of pieces of evidence collected from each type of approach makes the conclusion drawn by the authors very convincing, regarding the new role of cavolin-1 as an individual protein instead of the main molecular component of caveolae. On a personal note, I was very impressed by the quality of STORM images (Fig. 2) which are very illuminating and useful, in particular for validating some hypotheses of the theoretical analysis.

      Weaknesses:

      While this work pins down the key role of caveolin-1, its mechanism remains to be further investigated. The hypotheses proposed by the authors in the discussions about the link between caveolin and lipids/cholesterol are very plausible though challenging. Even though we may feel slightly frustrated by the absence of data in this direction, the quality and merit of this paper remain.

      In the current study, we did not find the technical conditions allowing us to properly address the role of cholesterol in the dynamics of TEM due to adverse effects of cholesterol depletion with methyl-beta-cyclodextrin on the morphology of HUVEC. To answer the Reviewer remark, we will mention our attempts to address a role of cholesterol in the dynamics of TEM in the results section. Moreover, we will thoroughly discuss in the section related to data of tube pulling experiments from PMS that caveolin-1 by controlling membrane lipid composition, may indirectly affect membrane rigidity (see comments below about the presence or absence of caveolin-1 in the tubes pulled from PMS and our hypotheses about a direct or indirect role of caveolin-1 in the control of membrane rigidity).

      The analogy with dewetting processes drawn to derive the theoretical model is very attractive. However, although part of the model has already been published several times by the same group of authors, the definition of the effective membrane rigidity of a plasma membrane including the underlying actin cortex, was very vague and confusing.

      In the revised manuscript, we will clearly define the membrane bending rigidity parameter, which was missing in the current version. The membrane bending rigidity is defined as the energy required to locally bend the membrane surface. In a liposome, a rigorous derivation leads to a relationship between the membrane tension relation and the variation of the projected area, which are related by the bending rigidity: this relationship is known as the Helfrich law. This statistical physics approach is only rigorously valid for a liposome, whereas its application to a cell is questionable due to the presence of cytoskeletal forces acting on the membrane. Nevertheless, application of the Helfrich law to cell membranes may be granted on short time scales, before active cell tension regulation takes place (Sens P and Plastino J, 2015 J Phys Condens Matter), especially in cases where cytoskeletal forces play a modest role, such as red blood cells (Helfrich W 1973 Z Naturforsch C). The fact that the cytoskeletal structure and actomyosin contraction are significantly disrupted upon cell intoxication-driven inhibition of the small GTPase RhoA supports the applicability of Helfrich law to describe TEM opening. Because of the presence of proteins, carbohydrates, and the adhesion of the remaining actin meshwork after toxin treatment, we expect the Helfrich relationship to somewhat differ from the case of a pure lipidic membrane. We account for these effects via an “effective bending rigidity”, a term used in the detailed discussion of the model hypotheses, which corresponds to an effective value describing the relationship between membrane tension and projected area variation in our cells. These considerations will be included in the revised manuscript.

      Here, for the first time, thanks to the STORM analysis, the authors show that HUVECs intoxicated by ExoC3 exhibit a loose and defective cortex with a significantly increased mesh size. This argues in favor of the validity of Helfrich formalism in this context. Nonetheless, there remains a puzzle. Experimentally, several TEMs are visible within one cell. Theoretically, the authors consider a simultaneous opening of several pores and treat them in an additive manner. However, when one pore opens, the tension relaxes and should prevent the opening of subsequent pores. Yet, experimentally, as seen from the beautiful supplementary videos, several pores open one after the other. This would suggest that the tension is not homogeneous within an intoxicated cell or that equilibration times are long. One possibility is that some undegraded actin pieces of the actin cortex may form a barrier that somehow isolates one TEM from a neighboring one.

      As pointed by the Reviewer, we expect that membrane tension is neither a purely global nor a purely local parameter. Opening of a TEM will relax membrane tension over a certain distance, not over the whole cell. Moreover, once the TEM closes back, membrane tension will increase again. This spatial and temporal localization of membrane tension relaxation explains that the opening of a first TEM does not preclude the opening of a second one. On the other hand, membrane tension is not a purely local property. Indeed, we observe that when two TEMs enlarge next to each other, their shape becomes anisotropic, as their enlargement is mutually hampered in the region separating them. We account for this interaction by treating TEM membrane relaxation in an additive fashion. We emphasize that this simplified description is used to predict maximum TEM size, corresponding to the time at which TEM interaction is strongest. As the reviewer points out, it would be more questionable to use this additive treatment to predict the likelihood of nucleation of a new TEM, which is not done here.

      Could the authors look back at their STORM data and check whether intoxicated cells do not exhibit a bimodal population of mesh sizes and possibly provide a mapping of mesh size at the scale of a cell?

      To address the question raised by the Reviewer we decided to plot the whole distribution of mesh sizes in addition to the average value per cell. We did not observe a bimodal distribution but rather a very heterogeneous distribution of mesh size going up to a few microns square in all conditions of siRNA treatments. Moreover, we did not observe a specific pattern in the distribution of mesh size at the scale of the cell, with very large mesh sizes being surrounded by small ones. We also did not observe any specific pattern for the localization of TEM opening, as described in the paper, making the correlation between mesh size and TEM opening difficult.

      In particular, it is quite striking that while bending rigidity of the lipid membrane is expected to set the maximal size of the aperture, most TEMs are well delimited with actin rings before closing. Is it because the surrounding loose actin is pushed back by the rim of the aperture? Could the authors better explain why they do not consider actin as a player in TEM opening?

      Actin ring assembly and stiffening is indeed a player in TEM opening, and it is included in our differential equation describing TEM opening dynamics (second term on the left-hand side of Eq. 3). In some cases, actin ring assembly is the dominant player, such as in TEM opening after laser ablation (ex novo TEM opening), as we previously reported (Stefani et al. 2017 Nat comm). In contrast, here we investigate de novo TEM opening, for which we expect that bending rigidity can be estimated without accounting for actin assembly, as we previously reported (Gonzalez-Rodriguez et al. 2012 Phys Rev Lett). Such a bending rigidity estimate (Eq. 5) is obtained by considering two different time scales: the time scale of membrane tension relaxation, governed by bending rigidity, and the time scale of cable assembly, governed by actin dynamics. We expect the first-time scale to be shorter, and thus the maximum size of de novo TEMs to be mainly constrained by membrane tension relaxation. The discussion of these two different time scales will be added to the revised manuscript.

      Instead of delegating to the discussion the possible link between caveolin and lipids as a mechanism for the enhanced bending rigidity provided by caveolin-1, it could be of interest for the readership to insert the attempted (and failed) experiments in the result section. For instance, did the authors try treatment with methyl-beta-cyclodextrin that extracts cholesterol (and disrupts caveolar and clathrin pits) but supposedly keeps the majority of the pool of individual caveolins at the membrane?

      We will state in the results section that we could not find appropriate experimental conditions allowing us to deplete cholesterol with methyl-beta cyclodextrin without interfering with the shape of HUVECs, thereby preventing the proper analysis of TEM dynamics.

      Tether pulling experiments on Plasma membrane spheres (PMS) are real tours de force and the results are quite convincing: a clear difference in bending rigidity is observed in controlled and caveolin knock-out PMS. However, one recurrent concern in these tether-pulling experiments is to be sure that the membrane pulled in the tether has the same composition as the one in the PMS body. The presence of the highly curved neck may impede or slow down membrane proteins from reaching the tether by convective or diffusive motion. Could the authors propose an experiment to demonstrate that caveolin-1 proteins are not restricted to the body of the PMS and can access to the nanometric tether?

      As pointed out by the reviewer, a concern with tube pulling experiments is related to the dynamics of equilibration of membrane composition between the nanotube and the rest of the membrane. In our experiments, we have waited about 30 seconds after tube pulling and after changing membrane tension. We have checked that after this time, the force remained constant, implying that we have performed experiments of tube pulling from PMS in technical conditions of equilibrium that ensure that lipids and membrane proteins had enough time to reach the tether by convective or diffusive motion. We will add a representative example of force vs time plot in our revision. In principle, this could be further checked using cells expressing GFP-caveolin-1 to generate PMS as done in Sinha et al., 2011: a steady protein signal in the tube will further confirm the equilibration, provided that caveolin is recruited in the nanotube due to mechanical reasons. Indeed, since caveolin-1 is inserted in the cytosolic leaflet of the plasma membrane, when a nanotube is pulled towards the exterior of the cell as in our experiments, we can expect 2 situations depending on the ability of caveolin-1 to deform membranes, which is not clear, in particular after the paper of Porta et al, Sci. Adv., 2022. i) If caveolin-1 (Cav1) does not bend membranes, it could be recruited in the nanotubes, at a density similar to the PMS body. The tube force measurement in this case would reflect the bending rigidity of the PMS membrane. Then, Cav1 could stiffen membrane either as a stiff inclusion at high density or/and by affecting lipid composition, as suggested in our text. ii) If Cav1 bends the membrane (i.e. it has a non-zero spontaneous curvature), it should create a positive curvature considering the geometry of the caveolae, opposite to the curvature of the nanotubes that we pull, and thus be excluded of the nanotubes. In this case, the force would reflect the bending rigidity of the membrane depleted of Cav1 and should be the same in both types of experiments (WT and Cav1 depleted conditions) if the lipid composition remains unchanged upon Cav1 depletion. Our measurements suggest again that Cav1 depletion affects the plasma membrane composition, probably by reducing the quantity of sphingomyelin and cholesterol. Note that the presence of a very reduced concentration of Cav1 as compared to the plasma membrane has been reported in tunneling nanotubes (TNT) connecting two neighboring cells (A. Li et al., Front. Cell Dev. Biol., 2022). These TNTs have typical diameters of similar scale than diameters of tubes pulled from PMS. Some of us have addressed these specific questions related to Cav-1 spontaneous curvature and its effect on the lipid composition of the plasma membrane in two separate manuscripts (in preparation). They represent comprehensive studies by themselves that clarify these points. We propose to add this discussion in the manuscript, with perspectives on future studies, but stressing the point that the presence of Cav1 stiffens plasma membranes, and that the exact origin of this effect must be further investigated.

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors characterize S. enterica WbaP biochemically and structurally. The enzyme catalyzes the initial step in O antigen biosynthesis by transferring a phospho-galactosyl unit from UDP-galactose to undecaprenyl-phosphate. This initial primer is then extended by other glycosyltransferases to form the O antigen repeat unit.

      To preserve the biologically functional unit of WbaP, the authors chose a 'detergent-free' purification method based on membrane extraction using SMALP polymers. The obtained material was characterized biochemically and by single-particle cryo-electron microscopy.

      Strengths:

      The authors were able to isolate WbaP in a catalytically active and oligomeric form and determined a low-resolution cryo-EM structure of the dimeric complex. Using a disulfide cross-linking approach and other biophysical methods, the authors validated an AlphaFold predicted WbaP model used to interpret the experimental cryo-EM map.

      Weaknesses:

      The rationale for using SMALP to extract WbaP from the membrane was to 'preserve' the native lipid bilayer surrounding the protein. However, the physical properties of the lipids co-purifying with the protein are unclear. The volume of the EM map assigned to the SMALP polymers suggests a more micellar character.

      Overall, the obtained cryo-EM map appears to be at fairly low resolution. Based on Figure 6, individual helices are not resolved, suggesting an overall resolution significantly below the stated 4.1 Å. Thus, the presented structure is the one of an AlphaFold WbaP model.

      I believe the UMP titration analysis could be improved. The authors assume that a 'domain of unknown function (DUF)' binds UMP and regulates the enzyme's activity. UMP, a reaction product of WbaP, may also inhibit the enzyme competitively. Therefore, deleting the DUF for the UMP inhibition studies could help with data interpretation.

      We appreciate the reviewer’s careful analysis of our manuscript, and their attention to detail regarding the structural data. In a revised version of this manuscript, we will modify the discussion section to include a brief section focused on the liponanoparticle itself, comparing to other experimental structures in SMALP. Investigating the lipid microenvironment in SMALPs around both Lg- and Sm-PGTs is of great interest to our group. We have published initial data related to PglC from Campylobacter, but a systematic analysis of co-purified lipids from the growing number of SMALP-solubilized PGTs is an exciting future direction for this project. Expression and analysis of truncated constructs containing the catalytic domain of Lg-PGTs (including WbaP) has been attempted in our laboratory, with no success. This limits our ability to decouple DUF-mediated modulation of activity from interactions in the catalytic domain. Efforts to address this challenge are underway but will be the focus of future publications. Regarding the overall resolution – for transparency - we will add a new figure that shows the local resolution throughout the experimental map.

      Reviewer #2 (Public Review):

      Summary:

      The authors focused on delivering a comprehensive structural characterization of WbaP, a membrane-bound phosphoglycosyl transferase from Salmonella that is instrumental in bacterial glycoconjugate synthesis. Notably, the authors employed SMALP-200, an amphipathic copolymer, to extract WbaP in the form of native lipid bilayer nanodiscs. They then determined its oligomerization state through cross-linking and procured higher-resolution structural data via cryo-electron microscopy (cryo-EM). While the authors successfully characterized WbaP in a native-like lipid bilayer setting, and their findings support this, the paper's claim of introducing a novel methodology is not robust. The real contribution of this work lies in the newfound insights about WbaP's structure.

      Strengths:

      The manuscript provides novel insights into WbaP's structure and oligomerization state, highlighting potentially significant interactions. The methodologies employed represent state-of-the-art practices in the field. Most of the drawn conclusions are well-supported by either experimental or computational data, with a few exceptions noted below.

      Weaknesses:

      • Organization: The manuscript's organization lacks clarity. The authors seem to describe their processes in the sequence they occurred rather than a logical flow, leading to potential confusion. For instance, the authors delve into a series of inconclusive experiments to determine the oligomerization state of WbaP, utilizing techniques like SEC, SEC-MALS, mass photometry, and mass spectrometry. They then transition to cryo-EM but subsequently return to address the oligomerization issue, which they conclusively resolve using cross-linking experiments. Following this, they shift their focus to interpreting and discussing the structural features obtained from the cryo-EM data.

      • Ambiguous and incorrect statements: There are instances of vague and at times inaccurate statements. Using more precise terminology like "native nanodiscs" or "lipid bilayer nanodiscs" would enhance clarity compared to the term "liponanoparticles." The claim on page 8 concerning the refractive index increment of SMA polymers needs rectification. The real reason why SEC-MALS cannot provide absolute particle masses in this case is that using two independent concentration detectors (typically, absorbance and refractive index), the decomposition of elution profiles is necessarily limited to two chemical species of a known molar or specific absorbance and refractive index. Thus, it is clear that nanodiscs containing a protein, a polymer, and a chemically undefined mixture of native lipids cannot be analyzed by this technique.

      • Overstating of technical aspects: The technical aspects seem overstated. While the extraction of membrane proteins into native lipid bilayer nanodiscs and their characterization by cross-linking and cryo-EM are standard (and were published before by the same authors in ref. 29), the authors appear to promote them as groundbreaking. The statement that this study presents a novel, universal strategy and toolkit for examining small membrane proteins within liponanoparticles seems overstated, especially given the previous existence of similar methods.

      We appreciate the reviewer’s careful consideration of the steps that were taken and how they were presented. However, we need to reinforce that although the initial biophysical experiments do not provide the exact oligomeric state of the WbaP, they provide important new data. Together these data support that the intact liponanoparticle is large enough to accommodate a higher order oligomerization state along with native lipids and stabilizing SMA polymer – this was not known at the outset and led to Fig 2D showing the first demonstration of dimer that was then validated via XLMS and disulfide crosslinking. The process was logical and essential to this work. We recognize the reviewer’s point on the SEC-MALs experiment and will adjust the text accordingly.

      We sought to distinguish the stabilization method used here from canonical MSP nanodiscs by using the term styrene maleic acid liponanoparticle (SMALP). The term SMALP is widely used in literature utilizing this technology, thus the use of other terms may lead to confusion.

      Our manuscript in PExpPur was focused on enabling expression of sufficient quality and quantity for sophisticated downstream biophysical applications – that MS was intended to be enabling to the greater membrane protein community and is highly recognized and appreciated in “its own right.” This work presents the first in class structure of the large monoPGTs. Further only a single structure of the PGT domain itself has been solved and appears as an experimental structure in the PDB (also from our group) addressing the enigmatic additional domains and potential physiological relevance. It is also noteworthy that the Lg-monoPGTs dominate the superfamily. This is also the first time that any protein in SMALP has been characterized using direct mass technology, which provided the most accurate mass determination of the intact liponanoparticle/protein complex.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors present a detailed analysis of a set of molecular dynamics computer simulations of several variants of a T-cell receptor (TCR) in isolation and bound to a Major Histocompatibility Complex with peptide (pMHC), with the aim of improving our understanding of the mechanism T cell activation in immunity. By analyzing simulations of peptide mutants and partially truncated TCRs, the authors find that native peptide agonists lead to a so-called catch-bond response, whereby tensile force applied in the direction of separation between TCR/pMHC appears to strengthen the TCR/pMHC interface, whereas mutated peptides exhibit the more common slip-bond response, in which applied force destabilizes the binding interface. Using various computational metrics and simulation statistics, the authors propose a model in which tensile force preferentially suppresses thermal fluctuations in the variable α domain of the TCR (vs the β domain) in a peptide-dependent manner, which orders and strengthens the binding interface by bringing together the complementarity-determining regions (CDRs) in the TCR variable chains, but only if the peptide is correctly matched to the TCR.

      R1-0. The study is detailed and written clearly, and conclusions appear convincing and are supported by the simulation data. However, the actual motions at the molecular or amino-acid level of how the catch-bond vs slip bond response originates remain somewhat unclear, and will probably warrant further investigations. Specific hypotheses that could be testable in experiments, such as predictions of which peptide (or TCR) mutations or which peptides could generate a catch-vs-slip response or activation, would have especially strengthened this study.

      Catch bonds have been observed in different αβ TCRs that differ in sequence when paired with their matching pMHC. Thus, there should be a general principle that apply irrespective of particular TCR sequences, as summarized in Fig. 8. The predictive capacity of this model in terms of understanding experiments is explained in our reply R0-3. Here, we discuss about designing specific point mutations to TCR that have not been studied previously. In our simulations, we can identify high-occupancy contacts that are present mainly in the high-load case as target for altering the catch bond behavior. An example is V7-G100 between the peptide and Vβ (Fig. 2C, bottom panel). The V7R mutant peptide is a modified agonist that we have already studied, where R7 forms hydrogen bonds and nonpolar contacts with residues other than βG100, albeit with lower occupancy (page 11, lines 280–282 and page 32, Fig. 5–figure supplement 2B). Instead of the V7R mutation to the peptide, mutating βG100 to other residues may lead to different effects. For example, compared to G100A, mutation to a bulkier residue such as G100F may cause opposing effects: It may induce steric mismatch that destabilizes the interface. Conversely, a stronger hydrophobic effect might increase the baseline bond lifetime. Also, mutating G100 to a polar residue may have even greater effect, leading to a slip bond or absence of measurable binding.

      As the reviewer suggested in R1-5, it will also be interesting to crosslink Vα and Cα by a disulfide bond to suppress its motion. Again, there are different possible outcomes. The lack of Vα-Cα motion could stabilize the interface with pMHC, resulting in a longer bond lifetime. Conversely, if the disulfide bond alters the V-C angle, it would have an opposite effect of destabilizing the interface by tilting it relative to the loading direction, similar to the dFG mutant in Appendix 1 (page 24).

      To make better predictions, simulations of such mutants should to be performed under different conditions and analyzed, which would be beyond the scope of the present study.

      Change made:

      • Page 14, Concluding Discussion, lines 395–402: We added a discussion about using simulations for designing and testing point mutants.

      Reviewer #2 (Public Review):

      In this work, Chang-Gonzalez and co-workers investigate the role of force in peptide recognition by T-cells using a model T-cell/peptide recognition complex. By applying forces through a harmonic restraint on distances, the authors probe the role of mechanical pulling on peptide binding specificity. They point to a role for force in distinguishing the different roles played by agonist and antagonist peptides for which the bound configuration is not clearly distinguishable. Overall, I would consider this work to be extensive and carefully done, and noteworthy for the number of mutant peptides and conditions probed. From the text, I’m not sure how specific these conclusions are to this particular complex, but I do not think this diminishes the specific studies.

      I have a couple of specific comments on the methodology and analysis that the authors could consider:

      R2-1. 1) It is not explained what is the origin of force on the peptide-MHC complex. Although I do know a bit about this, it’s not clear to me how the force ends up applied across the complex (e.g. is it directional in any way, on what subdomains/residues do we expect it to be applied), and is it constant or stochastic. I think it would be important to add some discussion of this and how it translates into the way the force is applied here (on terminal residues of the complex).

      As explained in our reply R0-1, force on the TCRαβ-pMHC complex arises during immune surveillance where the T-cell moves over APC. Generated by the cellular machinery such as actin retrograde flow and actomyosin motility, the applied force fluctuates, which would be on top of spontaneous fluctuation in force by thermal motion. This has been directly measured for the T-cell using a pMHC-coated bead via optical tweezers (see Feng et al., 2017, Fig. 1) and by DNA tension sensors (Liu, et al., 2016, Fig. 4; already cited in the manuscript). The direction of force also fluctuates that is longitudinal on average (see R1-6). How force distributes across the molecule is a great question, for which we plan to develop a computational method to quantify.

      Changes made.

      • Pages 3–4, newly added Results section ‘Applying loads to TCRαβ-pMHC complexes:’ We included the origin of force and its fluctuating nature, and the question of how loads are distributed across the molecule.

      • The reference (Feng et al., 2017) has been added in the above section.

      R2-2. 2) In terms of application of the force, I find the use of a harmonic restraint and then determining a distance at which the force has a certain value to be indirect and a bit unphysical. As just mentioned, since the origin of the force is not a harmonic trap, it would be more straightforward to apply a pulling force which has the form -F*d, which would correspond to a constant force (see for example comment articles 10.1021/acs.jpcb.1c10715,10.1021/acs.jpcb.1c06330). While application of a constant force will result in a new average distance, for small forces it does so in a way that does not change the variance of the distance whereas a harmonic force pollutes the variance (see e.g. 10.1021/ct300112v in a different context). A constant force could also shift the system into a different state not commensurate with the original distance, so by applying a harmonic trap, one could be keeping ones’ self from exploring this, which could be important, as in the case of certain catch bond mechanisms. While I certainly wouldn’t expect the authors to redo these extensive simulations, I think they could at least acknowledge this caveat, and they may be interested in considering a comparison of the two ways of applying a force in the future.

      Thanks for the suggestions and references. The paper by Stirnemann (2022) is a review including different computational methods of applying forces, mainly constant force and constant pulling velocity (steered molecular dynamics; SMD). The second one by Gomez et al., (2021) is a rather broad review of mechanosensing where discussion about computer simulation was mainly on SMD. In the third one by Pitera and Chodera (2012), potential limitations of using harmonic potentials in sampling nonlinear potential of mean force (PMF) are discussed.

      In the above references, loads or restraints are used to study conformational transitions or to sample the PMF, which are different from the use of positional restraints in our work. As explained in R0-1, positional restraint better mimics reality where the terminal ends of TCR and pMHC are anchored on the membranes of respective cells. Also, the concern raised by the reviewer about ruling out different states would be applicable to the case when there are multiple conformational states with local free energy minima at different extensions. Here, we are probing changes in the conformational dynamics (deformation and conformational fluctuation), rather than transitions between well-defined states.

      In Pitera and Chodera (2012) and also in other approaches such as umbrella sampling, the spring constant of the harmonic potential should be chosen sufficiently soft so that sampling around the neighborhood of the center of the potential can be made. On the other hand, if the harmonic potential is much stiffer than the local curvature of the PMF, although sampling may suffer, local gradient of the PMF, i.e, the force about the center of the potential, can be made. This has been studied earlier by one of us in Hwang (2007), which forms the basis for using a stiff harmonic potential for measuring the load on the TCRαβ-pMHC complex. The 1-kcal/(mol·˚A2) spring constant used in our study (page 17, line 540) was selected such that the thermally driven positional fluctuation is on the order of 0.8 ˚A. Hence, it is sufficiently stiff considering the much larger size of the TCRαβ-pMHC complex and the flexible added strands.

      Changes made:

      • Page 4, lines 117–119, newly added Results section ‘Applying loads to TCRαβ-pMHC complexes:’ The above explanation about the use of stiff harmonic restraint for measuring forces is added.

      • The 4 references mentioned above have been added to the above section.

      R2-3. 3) For the PCA analysis, I believe the authors learn separate PC vectors from different simulations and then take the dot product of those two vectors. Although this might be justified based on the simplified coordinate upon which the PCA is applied, in general, I am not a big fan of running PCA on separate data sets and then comparing the outputs, as the meaning seems opaque to me. To compare the biggest differences between many simulations, it would make more sense to me to perform PCA on all of the data combined, and see if there are certain combinations of quantities that distinguish the different simulations. Alternatively and probably better, one could perform linear discriminant analysis, which is appropriate in this case because one already knows that different simulations are in different states, and hence the LDA will directly give the linear coordinate that best distinguishes classes.

      As explained in R0-2, triads and BOC models are assigned to the same TCR across different simulations in identical ways. For the purpose of examining the relative Vα-Vβ and V-C motions, we believe comparing them across different simulations is a valid approach. When the motions are very distinct, it would be possible to combine all data and perform PCA or LDA to classify them. However, when behaviors differ subtly, analysis on the combined data may not capture individual behaviors. By analogy, consider two sets of 2-dimensional data obtained for the same system under different conditions. If each set forms an elliptical shape with the major axis differing slightly in direction, performing PCA separately on the two sets and comparing the angle between the major axes informs the difference between the two sets. If PCA were performed on the combined data (superposition of two ellipses forming an angle), it will be difficult to find the difference. LDA would likewise be difficult to apply without a very clear separation of behaviors.

      As also explained in R0-2, PCA is just one of multiple analyses we carried out to establish a coherent picture. The main use of PCA to this end was to compare directions of motion and relative amplitude of the motion among the subdomains.

      Changes made:

      • Page 6, lines 171–175 and page 8, lines 226–227: The rationale for applying PCA on triads and BOC models in different simulations are explained.

    1. Author Response

      Reviewer #1 (Public Review):

      This work introduces a novel framework for evaluating the performance of statistical methods that identify replay events. This is challenging because hippocampal replay is a latent cognitive process, where the ground truth is inaccessible, so methods cannot be evaluated against a known answer. The framework consists of two elements:

      1) A replay sequence p-value, evaluated against shuffled permutations of the data, such as radon line fitting, rank-order correlation, or weighted correlation. This element determines how trajectory-like the spiking representation is. The p-value threshold for all accepted replay events is adjusted based on an empirical shuffled distribution to control for the false discovery rate.

      2) A trajectory discriminability score, also evaluated against shuffled permutations of the data. In this case, there are two different possible spatial environments that can be replayed, so the method compares the log odds of track 1 vs. track 2.

      The authors then use this framework (accepted number of replay events and trajectory discriminability) to study the performance of replay identification methods. They conclude that sharp wave ripple power is not a necessary criterion for identifying replay event candidates during awake run behavior if you have high multiunit activity, a higher number of permutations is better for identifying replay events, linear Bayesian decoding methods outperform rank-order correlation, and there is no evidence for pre-play.

      The authors tackle a difficult and important problem for those studying hippocampal replay (and indeed all latent cognitive processes in the brain) with spiking data: how do we understand how well our methods are doing when the ground truth is inaccessible? Additionally, systematically studying how the variety of methods for identifying replay perform, is important for understanding the sometimes contradictory conclusions from replay papers. It helps consolidate the field around particular methods, leading to better reproducibility in the future. The authors' framework is also simple to implement and understand and the code has been provided, making it accessible to other neuroscientists. Testing for track discriminability, as well as the sequentiality of the replay event, is a sensible additional data point to eliminate "spurious" replay events.

      However, there are some concerns with the framework as well. The novelty of the framework is questionable as it consists of a log odds measure previously used in two prior papers (Carey et al. 2019 and the authors' own Tirole & Huelin Gorriz, et al., 2022) and a multiple comparisons correction, albeit a unique empirical multiple comparisons correction based on shuffled data.

      With respect to the log odds measure itself, as presented, it is reliant on having only two options to test between, limiting its general applicability. Even in the data used for the paper, there are sometimes three tracks, which could influence the conclusions of the paper about the validity of replay methods. This also highlights a weakness of the method in that it assumes that the true model (spatial track environment) is present in the set of options being tested. Furthermore, the log odds measure itself is sensitive to the defined ripple or multiunit start and end times, because it marginalizes over both position and time, so any inclusion of place cells that fire for the animal's stationary position could influence the discriminability of the track. Multiple track representations during a candidate replay event would also limit track discriminability. Finally, the authors call this measure "trajectory discriminability", which seems a misnomer as the time and position information are integrated out, so there is no notion of trajectory.

      The authors also fail to make the connection with the control of the false discovery rate via false positives on empirical shuffles with existing multiple comparison corrections that control for false discovery rates (such as the Benjamini and Hochberg procedure or Storey's q-value). Additionally, the particular type of shuffle used will influence the empirically determined p-value, making the procedure dependent on the defined null distribution. Shuffling the data is also considerably more computationally intensive than the existing multiple comparison corrections.

      Overall, the authors make interesting conclusions with respect to hippocampal replay methods, but the utility of the method is limited in scope because of its reliance on having exactly two comparisons and having to specify the null distribution to control for the false discovery rate. This work will be of interest to electrophysiologists studying hippocampal replay in spiking data.

      We would like to thank the reviewer for the feedback.

      Firstly, we would like to clarify that it is not our intention to present this tool as a novel replay detection approach. It is indeed merely a novel tool for evaluating different replay detection methods. Also, while we previously used log odds metrics to quantify contextual discriminability within replay events (Tirole et al., 2021), this framework is novel in how it is used (to compare replay detection methods), and the use of empirically determined FPR-matched alpha levels. We have now modified the manuscript to make this point more explicit.

      Our use of the term trajectory-discriminability is now changed to track-discriminability in the revised manuscript, given we are summing over time and space, as correctly pointed out by the reviewer.

      While this approach requires two tracks in its current implementation, we have also been able to apply this approach to three tracks, with a minor variation in the method, however this is beyond the scope of our current manuscript. Prior experience on other tracks not analysed in the log odds calculation should not pose any issue, given that the animal likely replays many experiences of the day (e.g. the homecage). These “other” replay events likely contribute to candidate replay events that fail to have a statistically significant replay score on either track.

      With regard to using a cell-id randomized dataset to empirically estimate false-positive rates, we have provided a detailed explanation behind our choice of using an alpha level correction in our response to the essential revisions above. This approach is not used to examine the effect of multiple comparisons, but rather to measure the replay detection error due to non-independence and a non-uniform p value distribution. Therefore we do not believe that existing multiple comparison corrections such as Benjamini and Hochberg procedure are applicable here (Author response image 1-3). Given the potential issues raised with a session-based cell-id randomization, we demonstrate above that the null distribution is sufficiently independent from the four shuffle-types used for replay detection (the same was not true for a place field randomized dataset) (Author response image 4).

      Author response image 1.

      Distribution of Spearman’s rank order correlation score and p value for false events with random sequence where each neuron fires one (left), two (middle) or three (right) spikes.

      Author response image 2.

      Distribution of Spearman’s rank order correlation score and p value for mixture of 20% true events and 80% false events where each neuron fires one (left), two (middle) or three (right) spikes.

      Author response image 3.

      Number of true events (blue) and false events (yellow) detected based on alpha level 0.05 (upper left), empirical false positive rate 5% (upper right) and false discovery rate 5% (lower left, based on BH method)

      Author response image 4.

      Proportion of false events detected when using dataset with within and cross experiment cell-id randomization and place field randomization. The detection was based on single shuffle including time bin permutation shuffle, spike train circular shift shuffle, place field circular shift shuffle, and place bin circular shift shuffle.

      Reviewer #2 (Public Review):

      This study proposes to evaluate and compare different replay methods in the absence of "ground truth" using data from hippocampal recordings of rodents that were exposed to two different tracks on the same day. The study proposes to leverage the potential of Bayesian methods to decode replay and reactivation in the same events. They find that events that pass a higher threshold for replay typically yield a higher measure of reactivation. On the other hand, events from the shuffled data that pass thresholds for replay typically don't show any reactivation. While well-intentioned, I think the result is highly problematic and poorly conceived.

      The work presents a lot of confusion about the nature of null hypothesis testing and the meaning of p-values. The prescription arrived at, to correct p-values by putting animals on two separate tracks and calculating a "sequence-less" measure of reactivation are impractical from an experimental point of view, and unsupportable from a statistical point of view. Much of the observations are presented as solutions for the field, but are in fact highly dependent on distinct features of the dataset at hand. The most interesting observation is that despite the existence of apparent sequences in the PRE-RUN data, no reactivation is detectable in those events, suggesting that in fact they represent spurious events. I would recommend the authors focus on this important observation and abandon the rest of the work, as it has the potential to further befuddle and promote poor statistical practices in the field.

      The major issue is that the manuscript conveys much confusion about the nature of hypothesis testing and the meaning of p-values. It's worth stating here the definition of a p-value: the conditional probability of rejecting the null hypothesis given that the null hypothesis is true. Unfortunately, in places, this study appears to confound the meaning of the p-value with the probability of rejecting the null hypothesis given that the null hypothesis is NOT true-i.e. in their recordings from awake replay on different mazes. Most of their analysis is based on the observation that events that have higher reactivation scores, as reflected in the mean log odds differences, have lower p-values resulting from their replay analyses. Shuffled data, in contrast, does not show any reactivation but can still show spurious replays depending on the shuffle procedure used to create the surrogate dataset. The authors suggest using this to test different practices in replay detection. However, another important point that seems lost in this study is that the surrogate dataset that is contrasted with the actual data depends very specifically on the null hypothesis that is being tested. That is to say, each different shuffle procedure is in fact testing a different null hypothesis. Unfortunately, most studies, including this one, are not very explicit about which null hypothesis is being tested with a given resampling method, but the p-value obtained is only meaningful insofar as the null that is being tested and related assumptions are clearly understood. From a statistical point of view, it makes no sense to adjust the p-value obtained by one shuffle procedure according to the p-value obtained by a different shuffle procedure, which is what this study inappropriately proposes. Other prescriptions offered by the study are highly dataset and method dependent and discuss minutiae of event detection, such as whether or not to require power in the ripple frequency band.

      We would like to thank the reviewer for their feedback. The purpose of this paper is to present a novel tool for evaluating replay sequence detection using an independent measure that does not depend on the sequence score. As the reviewer stated, in this study, we are detecting replay events based on a set alpha threshold (0.05), based on the conditional probability of rejecting the null hypothesis given that the null hypothesis is true. For all replay events detected during PRE, RUN or POST, they are classified as track 1 or track 2 replay events by comparing each event’s sequence score relative to the shuffled distribution. Then, the log odds measure was only applied to track 1 and track 2 replay events selected using sequence-based detection. Its important to clarify that we never use log odds to select events to examine their sequenceness p value. Therefore, we disagree with the reviewer’s claim that for awake replay events detected on different tracks, we are quantifying the probability of rejecting the null hypothesis given that the null hypothesis is not true.

      However, we fully understand the reviewer’s concerns with a cell-id randomization, and the potential caveats associated with using this approach for quantifying the false positive rate. First of all, we would like to clarify that the purpose of alpha level adjustment was to facilitate comparison across methods by finding the alpha level with matching false-positive rates determined empirically. Without doing this, it is impossible to compare two methods that differ in strictness (e.g. is using two different shuffles needed compared to using a single shuffle procedure). This means we are interested in comparing the performance of different methods at the equivalent alpha level where each method detects 5% spurious events per track rather than an arbitrary alpha level of 0.05 (which is difficult to interpret if statistical tests are run on non-independent samples). Once the false positive rate is matched, it is possible to compare two methods to see which one yields more events and/or has better track discriminability.

      We agree with the reviewer that the choice of data randomization is crucial. When a null distribution of a randomized dataset is very similar to the null distribution used for detection, this should lead to a 5% false positive rate (as a consequence of circular reasoning). In our response to the essential revisions, we have discussed about the effect of data randomization on replay detection. We observed that while place field circularly shifted dataset and cell-id randomized dataset led to similar false-positive rates when shuffles that disrupt temporal information were used for detection, a place field circularly shifted dataset but not a cell-id randomized dataset was sensitive to shuffle methods that disrupted place information (Author response image 4). We would also like to highlight one of our findings from the manuscript that the discrepancy between different methods can be substantially reduced when alpha level was adjusted to match false-positive rates (Figure 6B). This result directly supports the utility of a cell-id randomized dataset in finding the alpha level with equivalent false positive rates across methods. Hence, while imperfect, we argue cell-id randomization remains an acceptable method as it is sufficiently different from the four shuffles we used for replay detection compared to place field randomized dataset (Author response image 4).

      While the use of two linear tracks was crucial for our current framework to calculate log odds for evaluating replay detection, we acknowledge that it limits the applicability of this framework. At the same time, the conclusions of the manuscript with regard to ripples, replay methods, and preplay should remain valid on a single track. A second track just provides a useful control for how place cells can realistically remap within another environment. However, with modification, it may be applied to a maze with different arms or subregions, although this is beyond the scope of our current study.

      Last of not least, we partly agree with the reviewer that the result can be dataset-specific such that the result may vary depending on animal’s behavioural state and experimental design. However, our results highlight the fact that there is a very wide distribution of both the track discriminability and the proportion of significant events detected across methods that are currently used in the field. And while we see several methods that appear comparable in their effectiveness in replay detection, there are also other methods that are deeply flawed (that have been previously been used in peer-reviewed publications) if the alpha level is not sufficiently strict. Regardless of the method used, most methods can be corrected with an appropriate alpha level (e.g. using all spikes for a rank order correlation). Therefore, while the exact result may be dataset-specific, we feel that this is most likely due to the number of cells and properties of the track more than the use of two tracks. Reporting of the empirically determined false-positive rate and use of alpha level with matching false-positive rate (such as 0.05) for detection does not require a second track, and the adoption of this approach by other labs would help to improve the interpretability and generalizability of their replay data.

      Reviewer #3 (Public Review):

      This study tackles a major problem with replay detection, which is that different methods can produce vastly different results. It provides compelling evidence that the source of this inconsistency is that biological data often violates assumptions of independent samples. This results in false positive rates that can vary greatly with the precise statistical assumptions of the chosen replay measure, the detection parameters, and the dataset itself. To address this issue, the authors propose to empirically estimate the false positive rate and control for it by adjusting the significance threshold. Remarkably, this reconciles the differences in replay detection methods, as the results of all the replay methods tested converge quite well (see Figure 6B). This suggests that by controlling for the false positive rate, one can get an accurate estimate of replay with any of the standard methods.

      When comparing different replay detection methods, the authors use a sequence-independent log-odds difference score as a validation tool and an indirect measure of replay quality. This takes advantage of the two-track design of the experimental data, and its use here relies on the assumption that a true replay event would be associated with good (discriminable) reactivation of the environment that is being replayed. The other way replay "quality" is estimated is by the number of replay events detected once the false positive rate is taken into account. In this scheme, "better" replay is in the top right corner of Figure 6B: many detected events associated with congruent reactivation.

      There are two possible ways the results from this study can be integrated into future replay research. The first, simpler, way is to take note of the empirically estimated false positive rates reported here and simply avoid the methods that result in high false positive rates (weighted correlation with a place bin shuffle or all-spike Spearman correlation with a spike-id shuffle). The second, perhaps more desirable, way is to integrate the practice of estimating the false positive rate when scoring replay and to take it into account. This is very powerful as it can be applied to any replay method with any choice of parameters and get an accurate estimate of replay.

      How does one estimate the false positive rate in their dataset? The authors propose to use a cell-ID shuffle, which preserves all the firing statistics of replay events (bursts of spikes by the same cell, multi-unit fluctuations, etc.) but randomly swaps the cells' place fields, and to repeat the replay detection on this surrogate randomized dataset. Of course, there is no perfect shuffle, and it is possible that a surrogate dataset based on this particular shuffle may result in one underestimating the true false positive rate if different cell types are present (e.g. place field statistics may differ between CA1 and CA3 cells, or deep vs. superficial CA1 cells, or place cells vs. non-place cells if inclusion criteria are not strict). Moreover, it is crucial that this validation shuffle be independent of any shuffling procedure used to determine replay itself (which may not always be the case, particularly for the pre-decoding place field circular shuffle used by some of the methods here) lest the true false-positive rate be underestimated. Once the false positive rate is estimated, there are different ways one may choose to control for it: adjusting the significance threshold as the current study proposes, or directly comparing the number of events detected in the original vs surrogate data. Either way, with these caveats in mind, controlling for the false positive rate to the best of our ability is a powerful approach that the field should integrate.

      Which replay detection method performed the best? If one does not control for varying false positive rates, there are two methods that resulted in strikingly high (>15%) false positive rates: these were weighted correlation with a place bin shuffle and Spearman correlation (using all spikes) with a spike-id shuffle. However, after controlling for the false positive rate (Figure 6B) all methods largely agree, including those with initially high false positive rates. There is no clear "winner" method, because there is a lot of overlap in the confidence intervals, and there also are some additional reasons for not overly interpreting small differences in the observed results between methods. The confidence intervals are likely to underestimate the true variance in the data because the resampling procedure does not involve hierarchical statistics and thus fails to account for statistical dependencies on the session and animal level. Moreover, it is possible that methods that involve shuffles similar to the cross-validation shuffle ("wcorr 2 shuffles", "wcorr 3 shuffles" both use a pre-decoding place field circular shuffle, which is very similar to the pre-decoding place field swap used in the cross-validation procedure to estimate the false positive rate) may underestimate the false positive rate and therefore inflate adjusted p-value and the proportion of significant events. We should therefore not interpret small differences in the measured values between methods, and the only clear winner and the best way to score replay is using any method after taking the empirically estimated false positive rate into account.

      The authors recommend excluding low-ripple power events in sleep, because no replay was observed in events with low (0-3 z-units) ripple power specifically in sleep, but that no ripple restriction is necessary for awake events. There are problems with this conclusion. First, ripple power is not the only way to detect sharp-wave ripples (the sharp wave is very informative in detecting awake events). Second, when talking about sequence quality in awake non-ripple data, it is imperative for one to exclude theta sequences. The authors' speed threshold of 5 cm/s is not sufficient to guarantee that no theta cycles contaminate the awake replay events. Third, a direct comparison of the results with and without exclusion is lacking (selecting for the lower ripple power events is not the same as not having a threshold), so it is unclear how crucial it is to exclude the minority of the sleep events outside of ripples. The decision of whether or not to select for ripples should depend on the particular study and experimental conditions that can affect this measure (electrode placement, brain state prevalence, noise levels, etc.).

      Finally, the authors address a controversial topic of de-novo preplay. With replay detection corrected for the false positive rate, none of the detection methods produce evidence of preplay sequences nor sequenceless reactivation in the tested dataset. This presents compelling evidence in favour of the view that the sequence of place fields formed on a novel track cannot be predicted by the sequential structure found in pre-task sleep.

      We would like to thank the reviewer for the positive and constructive feedback.

      We agree with the reviewer that the conclusion about the effect of ripple power is dataset-specific and is not intended to be a one-size-fit-all recommendation for wider application. But it does raise a concern that individual studies should address. The criteria used for selecting candidate events will impact the overall fraction of detected events, and makes the comparison between studies using different methods more difficult. We have updated the manuscript to emphasize this point.

      “These results emphasize that a ripple power threshold is not necessary for RUN replay events in our dataset but may still be beneficial, as long as it does not excessively eliminate too many good replay events with low ripple power. In other words, depending on the experimental design, it is possible that a stricter p-value with no ripple threshold can be used to detect more replay events than using a less strict p-value combined with a strict ripple power threshold. However, for POST replay events, a threshold at least in the range of a z-score of 3-5 is recommended based on our dataset, to reduce inclusion of false-positives within the pool of detected replay events.”

      “We make six key observations: 1) A ripple power threshold may be more important for replay events during POST compared to RUN. For our dataset, the POST replay events with ripple power below a z-score of 3-5 were indistinguishable from spurious events. While the exact ripple z-score threshold to implement may differ depending on the experimental condition (e.g. electrode placement, behavioural paradigm, noise level and etc) and experimental aim, our findings highlight the benefit of using ripple power threshold for detecting replay during POST. 2) ”

    1. Author Response

      Reviewer #1 (Public Review):

      In this exciting and well-written manuscript, Alvarez-Buylla and colleagues report a fascinating discovery of an alkaloid-binding protein in the plasma of poison frogs, which may help explain how these animals are able to sequester a diversity of alkaloids with different target sites. This work is a major advance in our knowledge of how poison frogs are able to sequester and even resist such a panoply of alkaloids. Their study also adds to our understanding of how toxic animals resist the effects of their own defenses. Although target site insensitivity and other mechanisms acting to prevent the binding of alkaloids to their targets (often ion channels) are well characterized now in poison frogs, less is known regarding how they regulate the movement of toxins throughout the animal and in blood in particular. In the fugu (pufferfish) a protein binds saxitoxin and tetrodotoxin and in some amphibians possibly the protein saxiphilin has been proposed to be a toxin sponge for saxitoxin. However, little is known about poison frogs in particular and if toxin-binding proteins are involved in their sequestration and auto-resistance mechanisms.

      The authors use a clever approach wherein a fluorescently labeled probe of a pumiliotoxin analog (an alkaloid toxin sequestered by some poison frogs) is able to be crosslinked to proteins to which it binds. The authors then use sophisticated mass spectroscopy to identify the proteins and find an outlier 'hit' that is a serpin protein. A competition assay, as well as mutagenesis studies, revealed that this ~50-60 kDa plasma protein is responsible for binding much of the pumiliotoxin and a few other alkaloids known to be sequestered in the in vivo assay, but not nicotine, an alkaloid not sequestered by these frogs.

      In general, their results are convincing, their methods and analyses robust and the writing excellent. Their findings represent a major breakthrough in the study of toxin sequestration in poison frogs. Below, a more detailed summary and both major and minor constructive comments are given on the nature of the discoveries and some ways that the manuscript could be improved.

      Many thanks for this positive summary of our work! We greatly appreciate your time and thoroughness in giving us feedback.

      Detailed Summary

      The authors functionally characterize a serine-protease inhibitor protein in Oophaga sylvatica frog plasma, which they name O. sylvatica alkaloid-binding globulin (OsABG), that can bind toxic alkaloids. They show that OsABG is the most highly expressed serpin in O. sylvatica liver and that its expression is higher than that of albumin, a major small molecule carrier in vertebrates. Using a toxin photoprobe combined with competitive protein binding assays, their data suggest that OsABG is able to bind specific poison frog toxins including the two most abundant alkaloids in O. sylvatica skin. Their in vitro isolation of toxin-bound OsABG shows that the protein binds most free pumiliotoxin in solution and suggests that OsABG may play an important role in its sequestration. The authors further show that mutations in the binding pocket of OsABG remove its ability to bind toxins and that the binding pocket is structurally similar to that of other vertebrate serpins.

      These results are an exciting advance in understanding how poison frogs, which make and use alkaloids as chemical defenses, prevent self-intoxication. The authors provide convincing evidence that OsABG can function as a toxin sponge in O. sylvatica which sets a compelling precedent for future work needed to test the role of OsABG in vivo.

      The study could be improved by shifting the focus to O. sylvatica specifically rather than the convergent evolution of sequestration among different dendrobatid species. The reason for this is that most of the results (aside from some of the photoprobe binding results presented in Fig. 1 and Fig. 4) and the proteomics identification of OsABG itself are based on O. sylvatica. It's unclear whether ABG proteins are major toxin sponges in D. tinctorius or E. tricolor since these frogs may contain different toxin cocktails. The competitive binding results suggest that putative ABG proteins in D. tinctorius and E. tricolor have reduced binding affinity at higher toxin concentrations than ABG proteins in O. sylvatica. Although molecular convergence in toxin sponges may be at play in the dendrobatid poison frogs, more work is needed in non-O. sylvatica species to determine the extent of convergence.

      We understand and appreciate you raising this concern. As is partially described in the “essential revisions” section above, we have been more cautious throughout the results and discussion to not describe the plasma binding in E. tricolor and D. tinctorius as definitively due to ABG proteins, and to shift the overall focus to O. sylvatica.

      Major constructive comments:

      Although the protein gels in Fig.1-2 show clearly the role of ABG, a ~50 kDa protein, it's unclear whether transferrin-like proteins, which are ~80 kDa, may also play a role because the gels show proteins between 39-64 kDa (Fig.1). The gel in Fig.2A is specific to one O. sylvatica and extends this range, but the gel does not appear to be labeled accordingly, making it unclear whether other larger proteins could have been detected in addition to ABG. Clarifying this issue would facilitate the interpretation of the results.

      Thank you for this suggestion, please see our response above in the “essential revisions” section.

      There is what seems to be a significant size difference between the O. sylvatica bands and bands from the other toxic frog species, namely D. tinctorius and E. tricolor. Could the photoprobe be binding to other non-ABG proteins of different sizes in different frog species? Given that O. sylvatica bands are bright and this species was the only one subject to proteomics quantification, a possible conclusion may be that the ABG toxin sponge is a lineage-specific adaptation of O. sylvatica rather than a common mechanism of toxin sequestration among multiple independent lineages of poison frogs. It would be helpful if the authors could address this observation of their binding data and the hypothesis flowing from that in the manuscript.

      Thank you for this suggestion, please see our response above in the “essential revisions” section.

      Figure 1B: The species names should be labeled alongside the images in the phylogeny. In addition, please include symbols indicating the number of times toxicity has evolved (for example, once in the ancestors of O. sylvatica and D. tinctorius frogs and once in the ancestors of E. tricolor frogs).

      These suggested changes have been added to Figure 1B. We were not able to fit the full species names into the figure, instead we added an abbreviated version that is spelled out completely in the figure caption.

      Figure 4B-C: Photoprobe binding results in the presence of epi and nicotine appear to be missing for D. tinctorius and those in the presence of PTX and nicotine are missing for D. tricolor. Adding these results would make for a more complete picture of alkaloid binding by ABG in non-O. sylvatica species.

      Thank you for this suggestion, please see our response above in the “essential revisions” section.

      Using recombinant proteins with mutations at residues forming the binding pocket of O. sylvatica ABG (as inferred from docking simulations), the authors found that all binding pocket mutations disrupted photoprobe binding completely in vitro (L221-222, Fig. 4E). However, there is no information presented on non-binding pocket mutations. Mutations outside of the binding pocket would presumably maintain photoprobe binding - barring any indirect structural changes that might disrupt binding pocket interactions with the photoprobe. This result is important for the conclusion that the binding pocket itself is the sole mediator of toxin interactions. The authors do show that one binding pocket mutation (D383A) results in some degree of photoprobe binding (Fig. 4E) but more detail on the mutations in the binding pocket per se being causal would be helpful.

      Thank you for this suggestion, please see our response above in the “essential revisions” section.

      Please include concentrations in the descriptions of gel lanes in the main figures. The relative concentrations of the photoprobe and other toxins (eg., PTX, DHQ, epi, and nic) are essential for interpreting the competitive binding images. For example, this was done in Fig. S1 (e.g., PB + 10x PTX).

      The photoprobe and competitor concentrations have been added beneath the gels in Figures 1, 4, and 6 as suggested. Additionally, in the crosslinking experiments involving purified protein the amount of protein per well has been added to the top of the TAMRA gel.

      For clarity, the section "OsABG sequesters free PTX in solution with high affinity" could be presented directly after the section titled "Proteomic analysis identifies an alkaloid-binding globulin". The former highlights in vitro experiments confirming the binding affinity of the ABG protein identified in the latter.

      While we see how this rearrangement might work, we think that the current order of figures creates a more compelling story and provides the evidence in a more intuitive manner. For instance, it is necessary to show that recombinant protein recapitulates the plasma photoprobe results and that binding pocket mutants disrupt photoprobe binding (Figure 4), prior to showing the direct binding assays with the recombinant wild type and mutant proteins. For this reason, we believe that this rearrangement might cause confusion, and are leaving it as is.

      Fig. 6E-F should be included as part of Fig. 1 or 2. Although complementary to the RNA sequencing data, these protein results are more closely related to the results in the first two figures which show the degree of competitive binding affinity of PB in the presence of different toxins. The expanded competitive binding results for total skin alkaloids and the two most abundant skin alkaloids from wild samples are most appropriate here.

      We understand the reasoning behind this, however we feel that including these results in Figure 6 is more appropriate and that moving it would disrupt the flow of the story. The identification of ABG and its binding activity happened before we fully understood the alkaloid profiles of wild-collected O. sylvatica, therefore we did not think to test additional alkaloids like histrionicotoxin and indolizidines till we saw that these were very abundant on the skin of field collected poison frogs. Furthermore, we would like to leave this section at the end because we feel it contributes important ecological relevance that we want to leave readers with.

    1. Author Response

      Reviewer #1 (Public Review):

      This work aims to evaluate the use of pressure insoles for measurements that are traditionally done using force platforms in the assessment of people with knee osteoarthritis and other arthropathies. This is vital for providing an affordable assessment that does not require a fully equipped gait lab as well as utilizing wearable technology for personalized healthcare.

      Towards these aims, the authors were able to demonstrate that individual subjects can be identified with high precision using raw sensor data from the insoles and a convolutional neural network model. The authors have done a great job creating the models and combining an already available public dataset of force platform signals and utilizing them for training models with transferable ability to be used with data from pressure insoles. However, there are a few concerns, regarding substantiating some of the goals that this manuscript is trying to achieve.

      In addressing these concerns, if the results are further corroborated using the suggestions provided to the authors, this provides an exciting tool for identifying an individual's gait patterns out of a cluster of data, which is extremely useful for providing identifiable labels for personalized healthcare using wearable technologies.

      Thank you for this enthusiasm for our work, and we hope that our responses are adequate to address what we can of these comments. Please note that we have made every effort to address comments that we can and appreciated the detailed feedback you provided.

      Reviewer #2 (Public Review):

      The authors aimed to investigate whether digital insoles are an appropriate alternative to laboratory assessment with force plates when attempting to identify the knee injury status. The methods are rigorous and appropriate in the context of this research area. The results are impressive, and the figures are exceptional. The findings of this study can have a great impact on the field, showing that digital insoles can be accurately used for clinical purposes. The authors successfully achieved their aims.

      We thank the reviewer for this enthusiasm and hope our edits adequately address the points the reviewer made to strengthen the manuscript.

      Reviewer #3 (Public Review):

      In this manuscript, the authors describe the development of a machine-learning model to be used for gait assessment using insole data. They first developed a machine learning model using an existing, large data set of ground reaction forces collected during walking with force plates in a lab, from healthy adults and a group of people with knee injuries. Subsequently, they tested this model on ground reaction forces derived from insoles worn by a group of 19 healthy adults and a group of n=44 people with knee osteoarthritis (OA). The model was able to accurately identify individuals belonging to the knee OA group or the healthy group using the ground reaction forces during walking. Note: I do not have expertise on machine learning and will therefore refrain from reviewing the ML methods that were applied in this paper.

      Strengths: The authors successfully externally validated the trained model for GRF on insole data. Insole data carries potentially rich information, including the path of the CoP during the stance phase. The additional value of insoles over force plates in itself is clear, as insoles can be used independently of laboratory facilities. Moreover, insoles provide information on the COP path, which can have added value over other mobile assessment methods such as inertial sensors.

      Limitations: The second ML model, using only insole data to identify knee arthropathy from healthy subjects, was trained on a small sample of subjects. Although I have no background in ML, I can imagine that external validation in an independent and larger sample is needed to support the current findings.

      Gait speed has a major influence on the majority of gait-related outcomes. Slow or more cautious gait, due to pain or other causes, is reflected in vertical GRF's with less pronounced peaks. A difference in gait speed between people with pain in their knee (due to injury) and healthy subjects can be expected. This raises the question of what the added value of a model to estimate vertical GRF is over a simpler output (e.g. gait speed itself). Moreover, the paper does not elucidate what the added value of machine learning is over a simpler statistical model.

      This is a good point, however, clinically we are interested in weight bearing and difference in pressure related metrics in this musculoskeletal group, which speed will simply not provide. So we are looking at additional metrics.

      There are numerous publications suggesting that non-speed related metrics are important to predict disease progression in a variety of conditions (e.g., D’Lima DD, Fregly BJ, Pail S, Steklov N, Colwell CW. Knee joint forces: prediction, measurement and significance. Proc Inst Mech Eng H. 2012:226:95–102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324308/). In OA, the vector on ground force in medial knee OA (not vertical) creates torque and that is correlated with disease progression. We have modified the text throughout to address these points.

      In line with this issue, the current analyses are not strongly convincing me that the model described resulted in an identification of knee arthropathy-specific signature. Only knee arthropathy vs healthy (relatively young) subjects was compared, and we cannot rule out that this group only reflects general cautious, slow, or antalgic gait. As such, the data does not provide any evidence that the tool might be valuable to identify people with more or less severity of symptoms, or that the tool can be used to discriminate knee osteoarthritis from hip, or ankle osteoarthritis, or even to discriminate between people with musculoskeletal diseases and people with neurological gait disorders. This substantially limits the relevance for clinical (research) practice. In short, the output of the model seems to be restricted to "something is going on here", without further specification. Further development towards more specific aims using the insole data may substantially amplify clinical relevance.

      While no dataset (or model) is perfect, we feel that this is the first time that this model has been developed and applied in this cohort/clinical context, and of course acknowledge that future work is needed to further validate and examine how clinically meaningful this model is.

      We have broken out and added to a Study limitations section within the manuscript to reflect these caveats more clearly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important paper exploits new cryo-EM tomography tools to examine the state of chromatin in situ. The experimental work is meticulously performed and convincing, with a vast amount of data collected. The main findings are interpreted by the authors to suggest that the majority of yeast nucleosomes lack a stable octameric conformation. Despite the possibly controversial nature of this report, it is our hope that such work will spark thought-provoking debate, and further the development of exciting new tools that can interrogate native chromatin shape and associated function in vivo.

      We thank the Editors and Reviewers for their thoughtful and helpful comments. We also appreciate the extraordinary amount of effort needed to assess both the lengthy manuscript and the previous reviews. Below, we provide our point-by-point response in bold blue font. Nearly all comments have been addressed in the revised manuscript. For a subset of comments that would require us to speculate, we have taken a conservative approach because we either lack key information or technical expertise: Instead of adding the speculative replies to the main text, we think it is better to leave them in the rebuttal for posterity. Readers will thereby have access to our speculation and know that we did not feel confident enough to include these thoughts in the Version of Record.

      Reviewer #1 (Public Review):

      This manuscript by Tan et al is using cryo-electron tomography to investigate the structure of yeast nucleosomes both ex vivo (nuclear lysates) and in situ (lamellae and cryosections). The sheer number of experiments and results are astounding and comparable with an entire PhD thesis. However, as is always the case, it is hard to prove that something is not there. In this case, canonical nucleosomes. In their path to find the nucleosomes, the authors also stumble over new insights into nucleosome arrangement that indicates that the positions of the histones is more flexible than previously believed.

      Please note that canonical nucleosomes are there in wild-type cells in situ, albeit rarer than what’s expected based on our HeLa cell analysis and especially the total number of yeast nucleosomes (canonical plus non-canonical). The negative result (absence of any canonical nucleosome classes in situ) was found in the histone-GFP mutants.

      Major strengths and weaknesses:

      Personally, I am not ready to agree with their conclusion that heterogenous non-canonical nucleosomes predominate in yeast cells, but this reviewer is not an expert in the field of nucleosomes and can't judge how well these results fit into previous results in the field. As a technological expert though, I think the authors have done everything possible to test that hypothesis with today's available methods. One can debate whether it is necessary to have 35 supplementary figures, but after working through them all, I see that the nature of the argument needs all that support, precisely because it is so hard to show what is not there. The massive amount of work that has gone into this manuscript and the state-of-the art nature of the technology should be warmly commended. I also think the authors have done a really great job with including all their results to the benefit of the scientific community. Yet, I am left with some questions and comments:

      Could the nucleosomes change into other shapes that were predetermined in situ? Could the authors expand on if there was a structure or two that was more common than the others of the classes they found? Or would this not have been found because of the template matching and later reference particle used?

      Our best guess (speculation) is that one of the class averages that is smaller than the canonical nucleosome contains one or more non-canonical nucleosome classes. However, we do not feel confident enough to single out any of these classes precisely because we do not yet know if they arise from one non-canonical nucleosome structure or from multiple – and therefore mis-classified – non-canonical nucleosome structures (potentially with other non-nucleosome complexes mixed in). We feel it is better to leave this discussion out of the manuscript, or risk sending the community on wild goose chases.

      Our template-matching workflow uses a low-enough cross-correlation threshold that any nucleosome-sized particle (plus minus a few nanometers) would be picked, which is why the number of hits is so large. So unless the noncanonical nucleosomes quadrupled in size or lost most of their histones, they should be grouped with one or more of the other 99 class averages (WT cells) or any of the 100 class averages (cells with GFP-tagged histones). As to whether the later reference particle could have prevented us from detecting one of the non-canonical nucleosome structures, we are unable to tell because we’d really have to know what an in situ non-canonical nucleosome looks like first.

      Could it simply be that the yeast nucleoplasm is differently structured than that of HeLa cells and it was harder to find nucleosomes by template matching in these cells? The authors argue against crowding in the discussion, but maybe it is just a nucleoplasm texture that side-tracks the programs?

      Presumably, the nucleoplasmic “side-tracking” texture would come from some molecules in the yeast nucleus. These molecules would be too small to visualize as discrete particles in the tomographic slices, but they would contribute textures that can be “seen” by the programs – in particular RELION, which does the discrimination between structural states. We are not sure what types of density textures would side-track RELION’s classification routines.

      The title of the paper is not well reflected in the main figures. The title of Figure 2 says "Canonical nucleosomes are rare in wild-type cells", but that is not shown/quantified in that figure. Rare is comparison to what? I suggest adding a comparative view from the HeLa cells, like the text does in lines 195-199. A measure of nucleosomes detected per volume nucleoplasm would also facilitate a comparison.

      Figure 2’s title is indeed unclear and does not align with the paper’s title and key conclusion. The rarity here is relative to the expected number of nucleosomes (canonical plus non-canonical). We have changed the title to:

      “Canonical nucleosomes are a minority of the expected total in wild-type cells”.

      We would prefer to leave the reference to HeLa cells to the main text instead of as a figure panel because the comparison is not straightforward for a graphical presentation. Instead, we now report the total number of nucleosomes estimated for this particular yeast tomogram (~7,600) versus the number of canonical nucleosomes classified (297; 594 if we assume we missed half of them). This information is in the revised figure legend:

      “In this tomogram, we estimate there are ~7,600 nucleosomes (see Methods on how the calculation is done), of which 297 are canonical structures. Accounting for the missing disc views, we estimate there are ~594 canonical nucleosomes in this cryolamella (< 8% the expected number of nucleosomes).”

      If the cell contains mostly non-canonical nucleosomes, are they really non-canonical? Maybe a change of language is required once this is somewhat sure (say, after line 303).

      This is an interesting semantic and philosophical point. From the yeast cell’s “perspective”, the canonical nucleosome structure would be the form that is in the majority. That being said, we do not know if there is one structure that is the majority. From the chromatin field’s point of view, the canonical nucleosome is the form that is most commonly seen in all the historical – and most contemporary – literature, namely something that resembles the crystal structure of Luger et al, 1997. Given these two lines of thinking, we added the following clarification as lines 312 – 316:

      “At present, we do not know what the non-canonical nucleosome structures are, meaning that we cannot even determine if one non-canonical structure is the majority. Until we know the non-canonical nucleosomes’ structures, we will use the term non-canonical to describe all the nucleosomes that do not have the canonical (crystal) structure.”

      The authors could explain more why they sometimes use conventional the 2D followed by 3D classification approach and sometimes "direct 3-D classification". Why, for example, do they do 2D followed by 3D in Figure S5A? This Figure could be considered a regular figure since it shows the main message of the paper.

      Since the classification of subtomograms in situ is still a work in progress, we felt it would be better to show one instance of 2-D classification for lysates and one for lamellae. While it is true that we could have presented direct 3-D classification for the entire paper, we anticipate that readers will be interested to see what the in situ 2-D class averages look like.

      The main message is that there are canonical nucleosomes in situ (at least in wild-type cells), but they are a minority. Therefore, the conventional classification for Figure S5A should not be a main figure because it does not show any canonical nucleosome class averages in situ.

      Figure 1: Why is there a gap in the middle of the nucleosome in panel B? The authors write that this is a higher resolution structure (18Å), but in the even higher resolution crystallography structure (3Å resolution), there is no gap in the middle.

      There is a lower concentration of amino acids at the middle in the disc view; unfortunately, the space-filling model in Figure 1A hides this feature. The gap exists in experimental cryo-EM density maps. See Author response image 1 for an example (pubmed.ncbi.nlm.nih.gov/29626188). The size of the gap depends on the contour level and probably the contrast mechanism, as the gap is less visible in the VPP subtomogram averages. To clarify this confusing phenomenon, we added the following lines to the figure legend:

      “The gap in the disc view of the nuclear-lysate-based average is due to the lower concentration of amino acids there, which is not visible in panel A due to space-filling rendering. This gap’s visibility may also depend on the contrast mechanism because it is not visible in the VPP averages.”

      Author response image 1.

      Reviewer #2 (Public Review):

      Nucleosome structures inside cells remain unclear. Tan et al. tackled this problem using cryo-ET and 3-D classification analysis of yeast cells. The authors found that the fraction of canonical nucleosomes in the cell could be less than 10% of total nucleosomes. The finding is consistent with the unstable property of yeast nucleosomes and the high proportion of the actively transcribed yeast genome. The authors made an important point in understanding chromatin structure in situ. Overall, the paper is well-written and informative to the chromatin/chromosome field.

      We thank Reviewer 2 for their positive assessment.

      Reviewer #3 (Public Review):

      Several labs in the 1970s published fundamental work revealing that almost all eukaryotes organize their DNA into repeating units called nucleosomes, which form the chromatin fiber. Decades of elegant biochemical and structural work indicated a primarily octameric organization of the nucleosome with 2 copies of each histone H2A, H2B, H3 and H4, wrapping 147bp of DNA in a left handed toroid, to which linker histone would bind.

      This was true for most species studied (except, yeast lack linker histone) and was recapitulated in stunning detail by in vitro reconstitutions by salt dialysis or chaperone-mediated assembly of nucleosomes. Thus, these landmark studies set the stage for an exploding number of papers on the topic of chromatin in the past 45 years.

      An emerging counterpoint to the prevailing idea of static particles is that nucleosomes are much more dynamic and can undergo spontaneous transformation. Such dynamics could arise from intrinsic instability due to DNA structural deformation, specific histone variants or their mutations, post-translational histone modifications which weaken the main contacts, protein partners, and predominantly, from active processes like ATP-dependent chromatin remodeling, transcription, repair and replication.

      This paper is important because it tests this idea whole-scale, applying novel cryo-EM tomography tools to examine the state of chromatin in yeast lysates or cryo-sections. The experimental work is meticulously performed, with vast amount of data collected. The main findings are interpreted by the authors to suggest that majority of yeast nucleosomes lack a stable octameric conformation. The findings are not surprising in that alternative conformations of nucleosomes might exist in vivo, but rather in the sheer scale of such particles reported, relative to the traditional form expected from decades of biochemical, biophysical and structural data. Thus, it is likely that this work will be perceived as controversial. Nonetheless, we believe these kinds of tools represent an important advance for in situ analysis of chromatin. We also think the field should have the opportunity to carefully evaluate the data and assess whether the claims are supported, or consider what additional experiments could be done to further test the conceptual claims made. It is our hope that such work will spark thought-provoking debate in a collegial fashion, and lead to the development of exciting new tools which can interrogate native chromatin shape in vivo. Most importantly, it will be critical to assess biological implications associated with more dynamic - or static forms- of nucleosomes, the associated chromatin fiber, and its three-dimensional organization, for nuclear or mitotic function.

      Thank you for putting our work in the context of the field’s trajectory. We hope our EMPIAR entry, which includes all the raw data used in this paper, will be useful for the community. As more labs (hopefully) upload their raw data and as image-processing continues to advance, the field will be able to revisit the question of non-canonical nucleosomes in budding yeast and other organisms. 

      Reviewer #1 (Recommendations For The Authors):

      The manuscript sometimes reads like a part of a series rather than a stand-alone paper. Be sure to spell out what needs to be known from previous work to read this article. The introduction is very EM-technique focused but could do with more nucleosome information.

      We have added a new paragraph that discusses the sources of structural variability to better prepare readers, as lines 50 – 59:

      “In the context of chromatin, nucleosomes are not discrete particles because sequential nucleosomes are connected by short stretches of linker DNA. Variation in linker DNA structure is a source of chromatin conformational heterogeneity (Collepardo-Guevara and Schlick, 2014). Recent cryo-EM studies show that nucleosomes can deviate from the canonical form in vitro, primarily in the structure of DNA near the entry/exit site (Bilokapic et al., 2018; Fukushima et al., 2022; Sato et al., 2021; Zhou et al., 2021). In addition to DNA structural variability, nucleosomes in vitro have small changes in histone conformations (Bilokapic et al., 2018). Larger-scale variations of DNA and histone structure are not compatible with high-resolution analysis and may have been missed in single-particle cryo-EM studies.”

      Line 165-6 "did not reveal a nucleosome class average in..". Add "canonical", since it otherwise suggests there were no nucleosomes.

      Thank you for catching this error. Corrected.

      Lines 177-182: Why are the disc views missed by the classification analysis? They should be there in the sample, as you say.

      We suspect that RELION 3 is misclassifying the disc-view canonical nucleosomes into the other classes. The RELION developers suspect that view-dependent misclassification arises from RELION 3’s 3-D CTF model. RELION 4 is reported to be less biased by the particles’ views. We have started testing RELION 4 but do not have anything concrete to report yet.

      Line 222: a GFP tag.

      Fixed.

      Line 382: "Note that the percentage .." I can't follow this sentence. Why would you need to know how many chromosome's worth of nucleosomes you are looking at to say the percentage of non-canonical nucleosomes?

      Thank you for noticing this confusing wording. The sentence has been both simplified and clarified as follows in lines 396 – 398:

      “Note that the percentage of canonical nucleosomes in lysates cannot be accurately estimated because we cannot determine how many nucleosomes in total are in each field of view.”

      Line 397: "We're not implying that..." Please add a sentence clearly stating what you DO mean with mobility for H2A/H2B.

      We have added the following clarifying sentence in lines 412 – 413:

      “We mean that H2A-H2B is attached to the rest of the nucleosome and can have small differences in orientation.”

      Line 428: repeated message from line 424. "in this figure, the blurring implies.."

      Redundant phrase removed.

      Line 439: "on a HeLa cell" - a single cell in the whole study?

      Yes, that study was done on a single cell.

      A general comment is that the authors could help the reader more by developing the figures and making them more pedagogical, a list of suggestions can be found below.

      Thank you for the suggestions. We have applied all of them to the specific figure callouts and to the other figures that could use similar clarification.

      Figure 2: Help the reader by avoiding abbreviations in the figure legend. VPP tomographic slice - spell out "Volta Phase Plate". Same with the term "remapped" (panel B) what does that mean?

      We spelled out Volta phase plate in full and explained “remapped” the additional figure legend text:

      “the class averages were oriented and positioned in the locations of their contributing subtomograms”.

      Supplementary figures:

      Figure S3: It is unclear what you mean with "two types of BY4741 nucleosomes". You then say that the canonical nucleosomes are shaded blue. So what color is then the non-canonical? All the greys? Some of them look just like random stuff, not nucleosomes.

      “Two types” is a typo and has been removed and “nucleosomes” has been replaced with “candidate nucleosome template-matching hits” to accurately reflect the particles used in classification.

      Figure S6: Top left says "3 tomograms (defocus)". I wonder if you meant to add the defocus range here. I have understood it like this is the same data as shown in Figure S5, which makes me wonder if this top cartoon should not be on top of that figure too (or exclusively there).

      To make Figures S6 (and S5) clearer, we have copied the top cartoon from Figure S6 to S5.

      Note that we corrected a typo for these figures (and the Table S7): the number of template-matched candidate nucleosomes should be 93,204, not 62,428.

      The description in the parentheses (defocus) is shorthand for defocus phase contrast and was not intended to also display a defocus range. All of the revised figure legends now report the meaning of both this shorthand and of the Volta phase plate (VPP).

      To help readers see the relationship between these two figures, we added the following clarifying text to the Figure S5 and S6 legends, respectively:

      “This workflow uses the same template-matched candidate nucleosomes as in Figure S6; see below.”

      “This workflow uses the same template-matched candidate nucleosomes as in Figure S5.”

      Figure S7: In the first panel, it is unclear why the featureless cylinder is shown as it is not used as a reference here. Rather, it could be put throughout where it was used and then put the simulated EM-map alone here. If left in, it should be stated in the legend that it was not used here.

      It would indeed be much clearer to show the featureless cylinder in all the other figures and leave the simulated nucleosome in this control figure. All figures are now updated. The figure legend was also updated as follows:

      “(A) A simulated EM map from a crystal structure of the nucleosome was used as the template-matching and 3-D classification reference.”

      Figure S18: Why are there classes where the GFP density is missing? Mention something about this in the figure legend.

      We have appended the following speculations to explain the “missing” GFP densities:

      “Some of the class averages are “missing” one or both expected GFP densities. The possible explanations include mobility of a subpopulation of GFPs or H2A-GFPs, incorrectly folded GFPs, or substitution of H2A for the variant histone H2A.Z.”

      Reviewer #2 (Recommendations For The Authors):

      My specific (rather minor) comments are the following:

      1) Abstract:

      yeast -> budding yeast.

      All three instances in the abstract have been replaced with “budding yeast”.

      It would be better to clarify what ex vivo means here.

      We have appended “(in nuclear lysates)” to explain the meaning of ex vivo.

      2) Some subtitles are unclear.

      e.g., "in wild-type lysates" -> "wild-type yeast lysates"

      Thank you for this suggestion. All unclear instances of subtitles and sample descriptions throughout the text have been corrected.

      3) Page 6, Line 113. "...which detects more canonical nucleosomes." A similar thing was already mentioned in the same paragraph and seems redundant.

      Thank you for noticing this redundant statement, which is now deleted.

      4) Page 25, Line 525. "However, crowding is an unlikely explanation..." Please note that many macromolecules (proteins, RNAs, polysaccharides, etc.) were lost during the nuclei isolation process.

      This is a good point. We have rewritten this paragraph to separate the discussion on technical versus biological effects of crowding, in lines 538 – 546:

      “Another hypothesis for the low numbers of detected canonical nucleosomes is that the nucleoplasm is too crowded, making the image processing infeasible. However, crowding is an unlikely technical limitation because we were able to detect canonical nucleosome class averages in our most-crowded nuclear lysates, which are so crowded that most nucleosomes are butted against others (Figures S15 and S16). Crowding may instead have biological contributions to the different subtomogram-analysis outcomes in cell nuclei and nuclear lysates. For example, the crowding from other nuclear constituents (proteins, RNAs, polysaccharides, etc.) may contribute to in situ nucleosome structure, but is lost during nucleus isolation.”

      5) Page 7, Line 126. "The subtomogram average..." Is there any explanation for this?

      Presumably, the longer linker DNA length corresponds to the ordered portion of the ~22 bp linker between consecutive nucleosomes, given the ~168 bp nucleosome repeat length. We have appended the following explanation as the concluding sentence, lines 137 – 140:

      “Because the nucleosome-repeat length of budding yeast chromatin is ~168 bp (Brogaard et al., 2012), this extra length of DNA may come from an ordered portion of the ~22 bp linker between adjacent nucleosomes.”

      6) "Histone GFP-tagging strategy" subsection:

      Since this subsection is a bit off the mainstream of the paper, it can be shortened and merged into the next one.

      We have merged the “Histone GFP-tagging strategy” and “GFP is detectable on nucleosome subtomogram averages ex vivo” subsections and shortened the text as much as possible. The new subsection is entitled “Histone GFP-tagging and visualization ex vivo”

      7) Page 16, Line 329. "Because all attempts to make H3- or H4-GFP "sole source" strains failed..." Is there a possible explanation here? Cytotoxic effect because of steric hindrance of nucleosomes?

      Yes, it is possible that the GFP tag is interfering with the nucleosomes interactions with its numerous partners. It is also possible that the histone-GFP fusions do not import and/or assemble efficiently enough to support a bare-minimum number of functional nucleosomes. Given that the phenotypic consequences of fusion tags is an underexplored topic and that we don’t have any data on the (dead) transformants, we would prefer to leave out the speculation about the cause of death in the attempted creation of “sole source” strains.

    2. Author Response

      eLife assessment

      This important paper exploits new cryo-EM tomography tools to examine the state of chromatin in situ. The experimental work is meticulously performed and convincing, with a vast amount of data collected. The main findings are interpreted by the authors to suggest that the majority of yeast nucleosomes lack a stable octameric conformation. Despite the possibly controversial nature of this report, it is our hope that such work will spark thought-provoking debate, and further the development of exciting new tools that can interrogate native chromatin shape and associated function in vivo.

      We thank the Editors and Reviewers for their thoughtful and helpful comments. We also appreciate the extraordinary amount of effort needed to assess both the lengthy manuscript and the previous reviews. Below, we provide our provisional responses in bold blue font. The majority of the comments are straightforward to address. We have taken a more conservative approach with the subset of comments that would require us to speculate because we either lack key information or we lack technical expertise. Instead of adding the speculative replies to the main text, we think it will be better to leave them in the rebuttal for posterity. Readers will therefore have access to our speculation and know that we did not feel confident enough to include these thoughts in the Version of Record.

      Reviewer #1 (Public Review):

      This manuscript by Tan et al is using cryo-electron tomography to investigate the structure of yeast nucleosomes both ex vivo (nuclear lysates) and in situ (lamellae and cryosections). The sheer number of experiments and results are astounding and comparable with an entire PhD thesis. However, as is always the case, it is hard to prove that something is not there. In this case, canonical nucleosomes. In their path to find the nucleosomes, the authors also stumble over new insights into nucleosome arrangement that indicates that the positions of the histones is more flexible than previously believed.

      We want to point out that canonical nucleosomes are there in wild-type cells in situ, albeit rarer than what’s expected based on our HeLa cell analysis. The negative result (absence of any canonical nucleosome classes in situ) was found in the histone-GFP mutants.

      Major strengths and weaknesses:

      Personally, I am not ready to agree with their conclusion that heterogenous non-canonical nucleosomes predominate in yeast cells, but this reviewer is not an expert in the field of nucleosomes and can't judge how well these results fit into previous results in the field. As a technological expert though, I think the authors have done everything possible to test that hypothesis with today's available methods. One can debate whether it is necessary to have 35 supplementary figures, but after working through them all, I see that the nature of the argument needs all that support, precisely because it is so hard to show what is not there. The massive amount of work that has gone into this manuscript and the state-of-the art nature of the technology should be warmly commended. I also think the authors have done a really great job with including all their results to the benefit of the scientific community. Yet, I am left with some questions and comments:

      Could the nucleosomes change into other shapes that were predetermined in situ? Could the authors expand on if there was a structure or two that was more common than the others of the classes they found? Or would this not have been found because of the template matching and later reference particle used?

      Our best guess (speculation) is that one of the class averages that is smaller than the canonical nucleosome contains one or more non-canonical nucleosome classes. We do not feel confident enough to single out any of these classes precisely because we do not yet know if they arise from one non-canonical nucleosome structure or from multiple – and therefore mis-classified – non-canonical nucleosome structures (potentially with other non-nucleosome complexes mixed in). We feel it is better to leave this discussion out of the manuscript, or risk sending the community on wild goose chases.

      Our template-matching workflow uses a low-enough cross-correlation threshold that any nucleosome-sized particle (plus minus a few nanometers) would be picked, which is why the number of hits is so large. So unless the noncanonical nucleosomes quadrupled in size or lost most of their histones, they should be grouped with one or more of the other 99 class averages (WT cells) or any of the 100 class averages (cells with GFP-tagged histones). As to whether the later reference particle could have prevented us from detecting one of the non-canonical nucleosome structures, we are unable to tell because we’d really have to know what an in situ non-canonical nucleosome looks like first.

      Could it simply be that the yeast nucleoplasm is differently structured than that of HeLa cells and it was harder to find nucleosomes by template matching in these cells? The authors argue against crowding in the discussion, but maybe it is just a nucleoplasm texture that side-tracks the programs?

      Presumably, the nucleoplasmic “side-tracking” texture would come from some molecules in the yeast nucleus. These molecules would be too small to visualize as discrete particles in the tomographic slices, but they would contribute textures that can be “seen” by the programs – in particular RELION, which does the discrimination between structural states. We do not know the inner-workings of RELION well enough to say what kinds of density textures would side-track its classification routines.

      The title of the paper is not well reflected in the main figures. The title of Figure 2 says "Canonical nucleosomes are rare in wild-type cells", but that is not shown/quantified in that figure. Rare is comparison to what? I suggest adding a comparative view from the HeLa cells, like the text does in lines 195-199. A measure of nucleosomes detected per volume nucleoplasm would also facilitate a comparison.

      Figure 2’s title is indeed unclear and does not align with the paper’s title and key conclusion. The rarity here is relative to the expected number of nucleosomes (canonical plus non-canonical). We have changed the title to “Canonical nucleosomes are a minority of the expected total in wild-type cells”. We would prefer to leave the reference to HeLa cells to the main text instead of as a figure panel because the comparison is not straightforward for a graphical presentation. Instead, we will report the total number of nucleosomes estimated for this particular tomogram (~7,600) versus the number of canonical nucleosomes classified (297; 594 if we assume we missed half of them).

      If the cell contains mostly non-canonical nucleosomes, are they really non-canonical? Maybe a change of language is required once this is somewhat sure (say, after line 303).

      This is an interesting semantic and philosophical point. From the yeast cell’s “perspective”, the canonical nucleosome structure would be the form that is in the majority. That being said, we do not know if there is one structure that is the majority. From the chromatin field’s point of view, the canonical nucleosome is the form that is most commonly seen in all the historical – and most contemporary – literature, namely something that resembles the crystal structure of Luger et al, 1997. Given these two lines of thinking, we will add the following clarification after line 303:

      “At present, we do not know what the non-canonical nucleosome structures are, meaning that we cannot even determine if one non-canonical structure is the majority. Until we know what the family of non-canonical nucleosome structures are, we will use the term non-canonical to describe the nucleosomes that do not have the canonical (crystal) structure”.

      The authors could explain more why they sometimes use conventional the 2D followed by 3D classification approach and sometimes "direct 3-D classification". Why, for example, do they do 2D followed by 3D in Figure S5A? This Figure could be considered a regular figure since it shows the main message of the paper.

      Because the classification of subtomograms in situ is still a work in progress, we felt it would be better to show one instance of 2-D classification for lysates and one for lamellae. While it is true that we could have presented direct 3-D classification for the entire paper, we anticipate that readers will be interested to see what the in situ 2-D class averages look like.

      The main message is that there are canonical nucleosomes in situ (at least in wild-type cells), but they are a minority. Therefore, the conventional classification for Figure S5A should not be a main figure because it does not show any canonical nucleosome class averages in situ.

      Figure 1: Why is there a gap in the middle of the nucleosome in panel B? The authors write that this is a higher resolution structure (18Å), but in the even higher resolution crystallography structure (3Å resolution), there is no gap in the middle.

      There is a lower concentration of amino acids at the middle in the disc view; unfortunately, the space-filling model in Figure 1A hides this feature. The gap exists in experimental cryo-EM density maps. See below for an example. The size of the gap depends on the contour level and probably the contrast mechanism, as the gap is less visible in the VPP subtomogram averages. To clarify this confusing phenomenon, we will add the following lines to the figure legend:

      “The gap in the disc view of the nuclear-lysate-based average is due to the lower concentration of amino acids there, which is not visible in panel A due to space-filling rendering. This gap’s size may depend on the contrast mechanism because it is not visible in the VPP averages.”

      Reviewer #2 (Public Review):

      Nucleosome structures inside cells remain unclear. Tan et al. tackled this problem using cryo-ET and 3-D classification analysis of yeast cells. The authors found that the fraction of canonical nucleosomes in the cell could be less than 10% of total nucleosomes. The finding is consistent with the unstable property of yeast nucleosomes and the high proportion of the actively transcribed yeast genome. The authors made an important point in understanding chromatin structure in situ. Overall, the paper is well-written and informative to the chromatin/chromosome field.

      We thank Reviewer 2 for their positive assessment.

      Reviewer #3 (Public Review):

      Several labs in the 1970s published fundamental work revealing that almost all eukaryotes organize their DNA into repeating units called nucleosomes, which form the chromatin fiber. Decades of elegant biochemical and structural work indicated a primarily octameric organization of the nucleosome with 2 copies of each histone H2A, H2B, H3 and H4, wrapping 147bp of DNA in a left handed toroid, to which linker histone would bind.

      This was true for most species studied (except, yeast lack linker histone) and was recapitulated in stunning detail by in vitro reconstitutions by salt dialysis or chaperone-mediated assembly of nucleosomes. Thus, these landmark studies set the stage for an exploding number of papers on the topic of chromatin in the past 45 years.

      An emerging counterpoint to the prevailing idea of static particles is that nucleosomes are much more dynamic and can undergo spontaneous transformation. Such dynamics could arise from intrinsic instability due to DNA structural deformation, specific histone variants or their mutations, post-translational histone modifications which weaken the main contacts, protein partners, and predominantly, from active processes like ATP-dependent chromatin remodeling, transcription, repair and replication.

      This paper is important because it tests this idea whole-scale, applying novel cryo-EM tomography tools to examine the state of chromatin in yeast lysates or cryo-sections. The experimental work is meticulously performed, with vast amount of data collected. The main findings are interpreted by the authors to suggest that majority of yeast nucleosomes lack a stable octameric conformation. The findings are not surprising in that alternative conformations of nucleosomes might exist in vivo, but rather in the sheer scale of such particles reported, relative to the traditional form expected from decades of biochemical, biophysical and structural data. Thus, it is likely that this work will be perceived as controversial. Nonetheless, we believe these kinds of tools represent an important advance for in situ analysis of chromatin. We also think the field should have the opportunity to carefully evaluate the data and assess whether the claims are supported, or consider what additional experiments could be done to further test the conceptual claims made. It is our hope that such work will spark thought-provoking debate in a collegial fashion, and lead to the development of exciting new tools which can interrogate native chromatin shape in vivo. Most importantly, it will be critical to assess biological implications associated with more dynamic - or static forms- of nucleosomes, the associated chromatin fiber, and its three-dimensional organization, for nuclear or mitotic function.

      Thank you for putting our work in the context of the field’s trajectory. We hope our EMPIAR entry, which includes all the raw data used in this paper, will be useful for the community. As more labs (hopefully) upload their raw data and as image-processing continues to advance, the field will be able to revisit the question of non-canonical nucleosomes in budding yeast and other organisms.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Trebino et al. investigated the BRAF activation process by analysing the interactions of BRAF N-terminal regulatory regions (CRD, RBD, and BSR) with the C-terminal kinase domain and with the upstream regulators HRAS and KRAS. To this end, they generated four constructs comprising different combinations of N-terminal domains of BRAF and analysed their interaction with HRAS as well as conformational changes that occur. By HDX-MS they confirmed that the RBD is indeed the main mediator of interaction with HRAS. Moreover, they observed that HRAS binding leads to conformational changes exposing the BSR to the environment. Next, the authors used OpenSPR to determine the binding affinities of HRAS to the different BRAF constructs. While BSR+RBD, RBD+CRD, and RBD bound HRAS with nanomolar affinity, no binding was observed with the construct comprising all three domains. Based on these experiments, the authors concluded that BSR and CRD negatively regulate binding to HRAS and hypothesised that BSR may confer some RAS isoform specificity. They corroborated this notion by showing that KRAS bound to BRAF-NT1 (BSR+RBD+CRD) while HRAS did not. Next, the authors analysed the autoinhibitory interaction occurring between the N-terminal regions and the kinase domain. Through pulldown and OpenSPR experiments, they confirm that it is mainly the CRD that makes the necessary contacts with the kinase domain. In addition, they show that the BSR stabilizes these interactions and that the addition of HRAS abolishes them. Finally, the D594G mutation within the KD of BRAF is shown to destabilise these autoinhibitory interactions, which could explain its oncogenic potential.

      Overall, the in vitro study provides new insights into the regulation of BRAF and its interactions with HRAS and KRAS through a comprehensive in vitro analysis of the BRAF N-terminal region. Also, the authors report the first KD values for the N- and C-terminal interactions of BRAF and show that the BSR might provide isoform specificity towards KRAS. While these findings could be useful for the development of a new generation of inhibitors, the overall impact of the manuscript could probably be enhanced if the authors were to investigate in more detail how the BSR-mediated specificity of BRAF towards certain RAS isoforms is achieved. Moreover, though the very "clean" in vitro approach is appreciated, it also seems useful to examine whether the observed interactions and conformational changes occur in the full-length BRAF molecule and in more physiological contexts. Some of the results could be compared with studies including full-length constructs.

      Public Response: We would like to express our gratitude for your valuable feedback on our manuscript. Your insightful suggestions have significantly improved the quality and completeness of our research. In response to your comments, we have conducted additional experiments and incorporated new data into the revised manuscript.

      To gain a deeper understanding of how the BSR-mediated specificity of BRAF towards certain RAS isoforms is achieved, we performed HDX-MS to investigate the impact of KRAS interactions on the BSR. Our findings indicate that when KRAS is bound to BRAF NT2, there is no significant difference in hydrogen-deuterium exchange rates in the BSR compared to the apo-NT2 state (Figure 4). This observation contrasts with the effect of HRAS binding, where peptides from the BRAF-BSR exhibit an increased rate change, suggesting that HRAS induces a conformationally more dynamic state (Figure 2).

      Our results align with the conclusions of Terrell et al. in their 2019 publication, which propose that isoform preferences in the RAS-RAF interaction are driven by opposite charge attractions between BRAF-BSR and KRAS-HVR, promoting the interaction.1 Our data offers a potential mechanistic explanation, suggesting that HRAS disrupts the conformational stability of the BSR provided by the RBD, while KRAS-HVR restores stability and enhances interaction favorability. It is important to note that our results do not directly confirm a long-lasting interaction between the BRAF-BSR and KRAS-HVR, but they do not rule out the possibility of a transient, low-affinity interaction or close proximity between the two.

      Furthermore, our binding kinetics measurements conducted using OpenSPR support these findings. Particularly, in the case of NT1, when the CRD accompanies the BSR and RBD, no interactions with HRAS were observed. Additionally, we quantified the binding affinities between NT3:KRAS and NT4:KRAS, demonstrating that they are equally strong and that the presence of the BSR or CRD does not singularly affect the primary RBD interaction, consistent with HRAS. The BSR appears to exert an inhibitory effect on HRAS when the entire N-terminal region (BSR+RBD+CRD) is present. The BSR-mediated specificity is achieved through a coordinated interplay with the CRD.

      Moreover, we have addressed your concern regarding the physiological relevance of our conclusions. In response, we utilized active, full-length (FL) BRAF purified from HEK293F cells in OpenSPR experiments. Our findings indicate that FL-BRAF behaves similarly to BRAF-NT1, as it does not bind to HRAS but binds to KRAS with a deviation comparable to NT1. We have demonstrated that post-translational modifications or native intramolecular interactions do not alter our initial results. Several literature sources, employing cell systems or expressing proteins from insect or mammalian cells, further support the findings presented in our study.2–5

      Thank you once again for your constructive feedback, which has contributed significantly to the refinement of our work.

      For the author:

      Major points:

      1. Figure 1D: Negative control is missing.

      Response: We have incorporated the negative control into this figure as suggested.

      1. Figure 3F and G: negative controls (GST only) are missing.

      Response: We have incorporated the negative control into this figure as suggested.

      1. The authors demonstrate that BRAF NT1 (BSR+RBD+CRD) interacts with KRAS but not HRAS in SPR experiments (Figure 4). What about the conformational change that affects the positioning of BSR when NT2 (BSR+RBD) binds to HRAS (Figure 2)? Does it also occur with KRAS or not? When a rate change is observed between free protein and bound protein in HDX, particularly when this rate change results in a sigmoidal curve that closely parallels the reference curve, it signifies that all residues within the peptide share a uniform protection factor. This suggests that they collectively undergo conformational changes at the same rate, likely due to a concerted opening as a cohesive unit. In the context of our time plots, we observe this distinctive characteristic in the curves derived from the BSR peptides, indicating that HRAS binding perturbs this region, alters its flexibility, and induces a coordinated conformational shift. This compelling evidence strongly supports our assertion that HRAS instigates a reorientation of the BSR.

      Response: In response to the reviewer's comments, we conducted additional experiments to explore whether KRAS elicits any comparable alterations in the H-D exchange of the BSR within BRAF-NT2. Our findings indicate that KRAS does not induce a similar conformational change in the BSR. We have detailed these results in the Results section under the heading "BSR Differentiates the BRAF-KRAS Interaction from the BRAF-HRAS Interaction" and have included corresponding panels in Figure 4 to visually illustrate these observations.

      1. Related to point 3: The authors mention that the HVR domain is responsible for isoform-specific differences. Does the BSR interact with the HVR domain of KRAS (but not HRAS)?

      Response: It has been suggested by Terrell and colleagues1 that the BRAF-BSR and KRASHVR are directly responsible for the isoform specific interactions. We have no direct evidence confirming an interaction between the HVR and BSR. However, we deduce the possibility of such interaction based on previous research findings. Our HDX-MS experiments have demonstrated that the BRAF-BSR does not engage with HRAS. In our new HDX-MS experiments involving KRAS, we observed that the presence of KRAS does not lead to any discernible increase or decrease in the rate of deuterium exchange within the BRAF-BSR. It is important to emphasize that the absence of a rate change does not necessarily negate the occurrence of binding; rather, it might indicate a transient interaction with an affinity level below the detection threshold of HDX-MS.

      Given that the only major difference between H- and K-RAS isoforms is the HVR, we hypothesize that binding differences between BRAF and RAS isoforms can be attributed to the HVR. Notably, BRAF-NT3 resembles CRAF, which also behaves in line with the findings from Terrell et al. in which the BSR is not present to impact RAS-RAF association. We have updated some of the discussion section to include the new results and draw relevant conclusion.

      We mention in the text in the results section, “The HVR is an important region for regulating RAS isoform differences, like membrane anchoring, localization, RAS dimerization, and RAF interactions6… These results, combined with HDX-MS results, which showed that the BSR is exposed when bound to HRAS, suggest that the electrostatic forces surrounding the BSR promote BRAF autoinhibition and the specificity of RAF-RAS interactions.”

      We also write in the discussion, “However, BRET assays suggest that CRAF does not show preference for either H- or KRAS, while BRAF appears to prefer KRAS.1 This preference is suggested to result from the potential favorable interactions between the negatively charged BSR of BRAF and the positively charged, poly-lysine region of the HVR of KRAS1… Our binding data provide additional examples of isoform-specific activity. We speculate that diminished BRAF-NT1 binding to HRAS and increased BSR exposure upon HRAS binding may be due to electrostatic repulsion between HRAS and the BSR. Our full-length KRAS and its interaction with NT1 support the hypothesis that the BSR attenuates fast binding to HRAS but not to KRAS.”

      1. The authors might consider including NRAS in their study to give more weight to this interesting aspect.

      Response: While this suggestion is intriguing and could contribute to the expanding body of literature on RAS signaling, particularly in the context of NRAS-mutant tumors, we believe that delving into this topic would be beyond the scope of the present manuscript.

      1. Figure 6A: In this pulldown experiment the authors wish to demonstrate that binding of HRAS abolishes the autoinhibitory binding between NT1 and the kinase domain. However, the experimental design (i.e., pulldown of RAS) does not allow us to assess whether NT1 and KD are bound to each other in these conditions at all. The authors should rather pull down the KD and show that the interaction with NT1 is abolished when RAS is added.

      Response: We appreciate your suggestion. The experimental design for this study was intentionally structured to focus on the specific subset of NT1 that interacts with HRAS. The BRAF N-terminal region has the capacity to bind both HRAS and KD, resulting in two distinct populations within BRAF-NT1: NT1:KD and NT1:HRAS, although we believe the ratio between those two populations is not 1:1. If we were to design the experiment by isolating either the KD or NT1, it would lead to the observation of both populations simultaneously, making it challenging to distinguish between them. Our pulldown experiments are performed under the same conditions (i.e. all the proteins were maintained in a molar ratio of 1:1 and exposed to the same buffer components), and we rely on pulldown assays, such as those depicted in Figure 5, to clearly demonstrate the binding interactions between NT1 and KD.

      1. The authors have chosen a purely in vitro approach for their interaction studies, which initially makes sense for the addressed questions. However, since the BRAF constructs studied are only fragments and neither BRAF nor K/HRAS has any posttranslational modifications, the question arises to what extent the findings obtained hold up in vivo. Therefore, the manuscript would greatly benefit from monitoring the described interactions in full-length proteins and in cells or at least with proteins purified from cells.

      Response: Thank you for your valuable suggestion, which we take very seriously to enhance the quality of our manuscript. Upon carefully reviewing your comments, we conducted additional experiments involving full-length, wild-type BRAF (FL-BRAF) that was purified from mammalian cells, encompassing the post-translational modifications and scaffolding proteins such as 14-3-3 (Supplementary Fig 8A). We have incorporated the findings from these OpenSPR experiments into the revised manuscript within the Results Section titled "BSR Differentiates the BRAF-KRAS Interaction from the BRAFHRAS Interaction" and Figure 4. In summary, our results with FL-BRAF affirm the extension of our initial observations. Both NT1 and FL-BRAF interact with KRAS with comparable affinities, and neither NT1 nor FL-BRAF demonstrates an interaction with HRAS using OpenSPR. These results underscore that BRAF fragments accurately represent active, fully processed BRAF, lending support to our in vitro approach.

      Moreover, the conserved interactions we report in this manuscript are supported by literature. The interaction between RAF-RBD and RAS has been extensively documented, spanning investigations conducted in both insect and mammalian cell lines. For instance, Tran et al. (2021) utilized mammalian expression systems to explore the role of RBD in mediating BRAF activation through RAS interaction, identifying the same binding surfaces that we highlighted using HDX-MS.2 They quantified the KRAS-CRAF interaction yielding binding affinities in the low nanomolar range, similar to our findings for BRAF-NT:KRAS OpenSPR.2 In the manuscript text, we compared the binding affinity of BRAF residues 1245 purified from insect cells3 to our BRAF 1-227 (NT2 from E. coli), noting that the published value falls within the standard deviation of our experimental value. Additionally, our results align with the autoinhibited FL-BRAF:MEK:14-3-3 structure, which was expressed in Sf9 insect cells and reveals the central role of the CRD in maintaining autoinhibition through interactions with KD.4 In 2005, Tran and colleagues revealed specific domains within the BRAF N-terminal region are involved in binding to KD through Co-IP experiments conducted in mammalian cells.5

      While we are fully aware of the limitations of taking a purely in vitro approach to study the role of BRAF regulatory domains in RAS-RAF interactions and autoinhibition, as well as to quantify the affinity of these interactions, we emphasize that this approach enables us to dissect and examine the specific regions of RAF that are under investigation. As we write in the manuscript: “Our in vitro studies were conducted using proteins purified from E. coli, which lack the membrane, post-translational modifications, and regulatory, scaffolding, or chaperone proteins that are involved in BRAF regulation. Nonetheless, our study provides a direct characterization of the intra- and inter-molecular protein-protein interactions involved in BRAF regulation, without the complications that arise in cell-based assays.” We have added the following comment to clarify the advantages of our in vitro approach and the challenges associated with cell-based assays: “… without the complications and false-positives that can arise in cell-based assays, which often cannot distinguish between proximity and biochemical interactions.”

      Once again, we appreciate your insight feedback, which has contributed significantly to the improvement of our manuscript.

      Minor:

      1. Page 7, paragraph 2, line 6: It should probably read "BRAF autoinhibition" not "BRAF autoinhibitory".

      Response: Thank you for bringing this to our attention. We have fixed this typo.

      1. Figure 3G: In the first lane (time point 0 min) there is no input band for His/MBP-NT1. Probably a mistake when cropping the image from the original photo.

      Response: We sincerely appreciate your diligence in identifying cropping errors, and we have taken comprehensive measures to review the manuscript and correct any such errors. Regarding this specific figure, it is important to note that NT1 was not added at the "0" minute time point, which explains the absence of an input band at that stage. To avoid any confusion, we have revised the notation from "0" to "-" for clarity.

      Reviewer #2 (Public Review):

      In the manuscript entitled 'Unveiling the Domain-Specific and RAS Isoform-Specific Details of BRAF Regulation', the authors conduct a series of in vitro experiments using Nterminal and C-terminal BRAF fragments (SPR, HDX-MS, pull-down assays) to interrogate BRAF domain-specific autoinhibitory interactions and engagement by H- and KRAS GTPases. Of the three RAF isoforms, BRAF contains an extended N-terminal domain that has yet to be detected in X-ray and cryoEM reconstructions but has been proposed to interact with the KRAS hypervariable region. The investigators probe binding interactions between 4 N-terminal (NT) BRAF fragments (containing one more NT domain (BRS, RBD, and CRD)), with full-length bacterial expressed HRAS, KRAS as well as two BRAF C-terminal kinase fragments to tease out the underlying contribution of domainspecific binding events. They find, consistent with previous studies, that the BRAF BSR domain may negatively regulate RAS binding and propose that the presence of the BSR domain in BRAF provides an additional layer of autoinhibitory constraints that mediate BRAF activity in a RAS-isoform-specific manner. One of the fragments studied contains an oncogenic mutation in the kinase domain (BRAF-KDD594G). The investigators find that this mutant shows reduced interactions with an N-terminal regulatory fragment and postulate that this oncogenic BRAF mutant may promote BRAF activation by weakening autoinhibitory interactions between the N- and C-terminus.

      While this manuscript sheds light on B-RAF specific autoinhibitory interactions and the identification and partial characterization of an oncogenic kinase domain (KD) mutant, several concerns exist with the vitro binding studies as they are performed using taggedisolated bacterial expressed fragments, 'dimerized' RAS constructs, lack of relevant citations, controls, comparisons and data/error analysis. Detailed concerns are listed below.

      1. Bacterial-expressed truncated BRAF constructs are used to dissect the role of individual domains in BRAF autoinhibition. Concerns exist regarding the possibility that bacterial expression of isolated domains or regions of BRAF could miss important posttranslational modifications, intra-molecular interactions, or conformational changes that may occur in the context of the full-length protein in mammalian cells. This concern is not addressed in the manuscript.

      Response: Reviewer 1 raised a similar concern, and we have duplicated our response below for your reference:

      Thank you for your valuable suggestion, which we take very seriously to enhance the quality of our manuscript. Upon carefully reviewing your comments, we conducted additional experiments involving full-length, wild-type BRAF (FL-BRAF) that was purified from mammalian cells, encompassing the post-translational modifications and scaffolding proteins such as 14-3-3 (Supplementary Fig 8A). We have incorporated the findings from these OpenSPR experiments into the revised manuscript within the Results Section titled "BSR Differentiates the BRAF-KRAS Interaction from the BRAF-HRAS Interaction" and Figure 4. In summary, our results with FL-BRAF affirm the extension of our initial observations. Both NT1 and FL-BRAF interact with KRAS with comparable affinities, and neither NT1 nor FL-BRAF demonstrates an interaction with HRAS using OpenSPR. These results underscore that BRAF fragments accurately represent active, fully processed BRAF, lending support to our in vitro approach.

      Moreover, the conserved interactions we report in this manuscript are supported by literature. The interaction between RAF-RBD and RAS has been extensively documented, spanning investigations conducted in both insect and mammalian cell lines. For instance, Tran et al. (2021) utilized mammalian expression systems to explore the role of RBD in mediating BRAF activation through RAS interaction, identifying the same binding surfaces that we highlighted using HDX-MS.2 They quantified the KRAS-CRAF interaction yielding binding affinities in the low nanomolar range, similar to our findings for BRAF-NT:KRAS OpenSPR.2 In the manuscript text, we compared the binding affinity of BRAF residues 1245 purified from insect cells3 to our BRAF 1-227 (NT2 from E. coli), noting that the published value falls within the standard deviation of our experimental value. Additionally, our results align with the autoinhibited FL-BRAF:MEK:14-3-3 structure, which was expressed in Sf9 insect cells and reveals the central role of the CRD in maintaining autoinhibition through interactions with KD.4 In 2005, Tran and colleagues revealed specific domains within the BRAF N-terminal region are involved in binding to KD through Co-IP experiments conducted in mammalian cells.5

      While we are fully aware of the limitations of taking a purely in vitro approach to study the role of BRAF regulatory domains in RAS-RAF interactions and autoinhibition, as well as to quantify the affinity of these interactions, we emphasize that this approach enables us to dissect and examine the specific regions of RAF that are under investigation. As we write in the manuscript: “Our in vitro studies were conducted using proteins purified from E. coli, which lack the membrane, post-translational modifications, and regulatory, scaffolding, or chaperone proteins that are involved in BRAF regulation. Nonetheless, our study provides a direct characterization of the intra- and inter-molecular protein-protein interactions involved in BRAF regulation, without the complications that arise in cell-based assays.” We have added the following comment to clarify the advantages of our in vitro approach and the challenges associated with cell-based assays: “… without the complications and false-positives that can arise in cell-based assays, which often cannot distinguish between proximity and biochemical interactions.”

      Once again, we appreciate your insight feedback, which has contributed significantly to the improvement of our manuscript.

      1. The experiments employ BRAF NT constructs that retain an MBP tag and RAS proteins with a GST tag. Have the investigators conducted control experiments to verify that the tags do not induce or perturb native interactions?

      Response: Thank you for highlighting this important issue. We have conducted control experiments whenever feasible, particularly in cases where tags were not required for visualization, immobilization, or where cleave sites were present. We have subsequently included these control experiments in the supplementary figures and accompanying text within the manuscript.

      It is essential to note that many of the techniques employed in this manuscript rely on tags, such as immobilizing proteins onto NTA OpenSPR sensors and employing various resins/beads for pulldown assays. Utilizing tags for protein immobilization in OpenSPR applications offers distinct advantages, including homogeneous and site-specific immobilization of the protein, ensuring that binding sites remain accessible for the study of protein-protein interactions (PPIs) of interest. Furthermore, in all BRAF-RAS SPR experiments, the MBP protein serves as the reference channel "blocking" protein. This reference channel is instrumental in mitigating any potential false-positive signals resulting from binding interactions with the MBP protein. Any such signal is subsequently subtracted out during data analysis.

      To provide a comprehensive understanding of these aspects, we have incorporated these details into the manuscript text for clarity:

      “Maltose bind protein (MBP) is immobilized on the OpenSPR reference channel, which accounts for any non-specific binding or impacts to the native PPIs that may result from the presence of tags. Kinetic analysis is performed on the corrected binding curves, which subtracts any response in the reference channel.”

      We describe the control experiment to examine whether His/MBP-tag affects NT1 binding with BRAF-KD: “Similarly, we removed the His/MBP-tag from BRAF-NT1 through a TEV protease cleavage reaction and flowed over untagged NT1. Kinetic analysis confirmed that the interaction is preserved with the KD=13 nM (Supplemental Figure 6F).”

      We show that the GST-tag does not affect KRAS interactions with NTs in supplemental figure 6. We purified full-length, His/MBP-KRAS and subsequently removed the tag through TEV cleavage. BRAF-NT interactions are preserved with untagged KRAS. GST alone, also does not interact with BRAF-NTs. We updated the text in the results section “BSR differentiates the BRAF-KRAS interaction from the BRAF-HRAS interaction.”

      Additionally, Vojtek and colleagues used the same fusion-protein combinations (GSTRAS and MBP-RAF) in pulldown experiments and also found no perturbations from these tags.8

      1. The investigators state that the GST tag on the RAS constructs was used to promote RAS dimerization, as RAS dimerization is proposed to be key for RAF activation. However, recent findings argue against the role of RAS dimers in RAF dimerization and activation (Simanshu et al, Mol. Cell 2023). Moreover, while GST can dimerize, it is unclear whether this promotes RAS dimerization as suggested. In methods for the OpenSPR experiments probing NT BRAF:RAS interactions, it is stated that "monomeric KRAS was flowed...". This terminology is a bit confusing. How was the monomeric state of KRAS determined and what was the rationale behind the experiment? Is there a difference in binding interactions between "monomeric vs dimeric KRAS"?

      Response: Thank you for conducting such a comprehensive review of our manuscript and for identifying the mention of "monomeric KRAS" in the experimental section, which was inadvertently included and should not have been present. This terminology originally referred to a series of experiments involving "monomeric" KRAS that were initially considered for inclusion in the main body of the manuscript but were subsequently removed before submission. Furthermore, we adjusted the terminology to prevent any confusion or unwarranted implications.

      To clarify, this "monomeric" construct refers to the tagless, full-length KRAS variant that was confirmed to exist in a monomeric state through Size Exclusion Chromatography, eluting at a volume equivalent to 21 kDa. We have incorporated the findings from experiments involving this untagged KRAS variant into the supplementary figures to provide supporting evidence, particularly in response to comment #2, that the GST-tag does not interfere with native interactions. Supplementary Figure 1 illustrates that both GST-HRAS (45 kDa) and GST-KRAS (45 kDa) elute as dimers in solution, at approximately 90 kDa. It is important to note that the main text figures primarily feature the GST-tagged, "dimeric" RAS constructs. Our research results do not suggest any significant differences between "monomeric," untagged KRAS and "dimeric" GST-tagged KRAS, indicating that the binding kinetics between RAS and RAF are not influenced by oligomerization state (Supplementary Fig 6). To mitigate any potential confusion, we have made the necessary distinctions in the text and have revised the methods description to accurately reflect these aspects.

      While the recent findings summarized by Simanshu and colleagues were published concurrently with our manuscript submission, we would like to address this comment in the following manner. The authors assert that RAS does not engage in dimerization through the G domain, a hypothesis that contrasts with certain prior research findings. Instead, they propose that the plasma membrane plays a pivotal role in the clustering of RAS. Furthermore, the authors mention the involvement of RAS "dimerization" in RAF dimerization and activation in the subsequent statements:

      “Recruitment of two RAF proteins by RAS proteins in close proximity facilitate RAF activation but are not required for RAF dimerization.”

      “However, the PM recruitment of two RAF proteins by two non-dimerized but co- localized RAS proteins would serve equally well to promote RAF dimerization. Moreover, recent work on the activation cycle of RAF dimers (ref 20–23) argues strongly against a role for RAS dimers while revealing regulation by the 14-3-3 and SHOC2-MRAS- PP1C complexes. (Ref 24)”

      The primary focus of our study centers on elucidating the intricate details of the RAS-RAF interaction and the mechanisms underlying RAF autoinhibition, rather than emphasizing RAF dimerization as the sole pathway to RAF activation. It is important to recognize that RAF activation encompasses multiple steps, including RAS-mediated relief of RAF autoinhibition.

      To mimic physiological conditions as closely as possible, we employed a GST-tag on RAS in our experiments. It's worth noting that GST has a dimerization property,9 which brings RAS molecules into close proximity to one another, effectively emulating conditions akin to the plasma membrane. Our primary objective is not solely to facilitate interactions by bringing RAS into close proximity. Instead, our aim is to replicate cellular conditions to the greatest extent feasible, especially within the predominantly in vitro framework of our studies. Furthermore, we have revised the sentence pertaining to HRAS as follows: “As verified by size exclusion chromatography (Supplementary Fig 1A), the GST-tag dimerizes and forces HRAS into close proximity to recapitulate physiological conditions. (ref. 35)”

      1. The investigators determine binding affinities between GST-HRAS and NT BRAF domains (NT2 7.5 {plus minus} 3.5; NT3 22 {plus minus} 11 nM) by SPR, and propose that the BRS domain has an inhibitory role HRAS interactions with the RAF NT. However, it is unclear whether these differences are statistically meaningful given the error.

      Response: Thank you for bringing up this matter for further discussion. We are fully aware that these distinctions (NT2 and NT3), considering the overlapping error, lack statistical significance. Our conclusion points toward the most notable differences occurring when comparing NT1 to either NT2 or NT3, highlighting that the presence of the BSR has an inhibitory effect, particularly when the CRD is also present. It's important to note that we did not directly compare NT2 and NT3 to each other. Our comparison primarily elucidates that BSR without the CRD, and conversely, CRD without the BSR, do not exhibit the inhibitory effect. This collective evidence leads to the conclusion that all three domains collaboratively play a role in negatively regulating BRAF against HRAS.

      1. It is unclear why NT1 (BSR+RBD+CRD) was not included in the HDX experiments, which makes it challenging to directly compare and determine specific contributions of each domain in the presence of HRAS. Including NT1 in the experimental design could provide a more comprehensive understanding of the interplay between the domains and their respective roles in the HRAS-BRAF interaction. Further, excluding certain domains from the constructs, such as the BSR or CRD, may overlook potential domain-domain interactions and their influence on the conformational changes induced by HRAS binding.

      Response: We acknowledge that incorporating NT1 into the HDX experiments would have provided clearer insights into the specific contributions of each domain. Originally, it was our intention to include NT1 in these experiments. Unfortunately, we encountered challenges with the HDX experiments when it came to BRAF-NT1, as it yielded a significantly low sequence coverage after MS/MS analysis. We made multiple attempts to address this issue, which included additional protein purifications involving reducing agents, increasing the concentration of reaction buffer components, and extending the incubation time with reducing agents before injection. Despite these efforts, we were unable to obtain the desired sequence coverage for NT1. Consequently, we switched our approach to analyze NT2 and NT3 as the next best alternative.

      1. The authors perform pulldown experiments with BRAF constructs (NT1: BSR+RBD+CRD, NT2: BSR+RBD, NT3: RBD+CRD, NT4: RBD alone), in which biotinylated BRAF-KD was captured on streptavidin beads and probed for bound His/MBP-tagged BRAF NTs. Western blot results suggest that only NT1 and NT3 bind to the KD (Figure 5). However, performing a pulldown experiment with an additional construct, CRD alone, it would help to determine whether the CRD alone is sufficient for the interaction or if the presence of the RBD is required for higher affinity binding. This additional experiment would strengthen the authors' arguments and provide further insights into the mechanism of BRAF autoinhibition.

      Response: We are grateful for this valuable suggestion, and in response, we have taken the initiative to clone and purify a CRD-only construct (NT5) to strengthen our arguments. Subsequently, we conducted OpenSPR experiments to measure the binding affinity between NT5 and KD. Our findings clearly indicate that the CRD alone is not sufficient to mediate the autoinhibitory interactions and that the presence of the RBD is indeed necessary. These results have been incorporated into Figure 5 and are described within the Results Section for enhanced clarity and support.

      1. While the investigators state that their findings indicate that H- and KRAS differentially interact with BRAF, most of the experiments are focused on HRAS, with only a subset on KRAS. As SPR & pull-down experiments are only conducted on NT1 and NT2, evidence for RAS isoform-specific interactions is weak. It is unclear why parallel experiments were not conducted with KRAS using BRAF NT3 & NT4 constructs.

      Response: We sincerely appreciate your suggestion, which has contributed to enhancing the overall robustness of the evidence regarding isoform-specific differences between H- and K-RAS. In response, we performed additional experiments involving NT3 and NT4. The outcomes of these experiments have been integrated into Figure 4, and we have provided a comprehensive description of these results within the Results section “BSR differentiates the BRAF-KRAS interaction from the BRAF-HRAS interaction” of the manuscript.

      1. The investigators do not cite the AlphaFold prediction of full-length BRAF (AFP15056-F1) or the known X-ray structure of the BRAF BRS domain. Hence, it is unclear how Alpha-Fold is used to gain new structural information, and whether it was used to predict the structure of the N-terminal regulatory or the full-length protein.

      Response: We greatly appreciate the reviewer’s commitment to upholding good scientific practices and ensuring the inclusion of relevant citations in publications. In our original manuscript, we employed the UniProt ID P15056 to reference the specific AlphaFold structure used in our study. This was clarified as follows: "Since the full-length structure of BRAF is still unresolved, we applied the AlphaFold Protein Structure Database for a model of BRAF to display the conformation of the N-terminal domains and the HDX-MS results.40,41” Additionally, we referenced AlphaFold using the two citations recommended on their website (references 35 and 36 in the original manuscript). To prevent any potential confusion in the future, we have incorporated "AF-P15056-F1," as suggested.

      We are sorry for any misunderstanding that may have arisen regarding the use of AlphaFold for gaining new structural insights. Our sole intention was to utilize AlphaFold as a tool for modeling HDX, as a full-length structure of BRAF, encompassing the entire N-terminal domain, remains unavailable. We have taken steps to clarify our objectives in the manuscript to ensure the purpose of our AlphaFold utilization is unambiguous.

      Furthermore, we wish to emphasize that our utilization of AlphaFold was never intended to exclude the known X-ray structure of the BRAF-BSR domain. In our revised text, we have added clarity to our purposes and cited the Lavoie et al. Nature publication from 2018, which provides alignment between the X-ray structure and the AlphaFold model, thereby enhancing the confidence in the latter.

      1. In HDX-MS experiments, it is unclear how the authors determine whether small differences in deuterium uptake observed for some of the peptide fragments are statistically significant, and why for some of the labeling reaction times the investigators state " {plus minus} HRAS only" for only 3 time points?

      Response: First, in reference to the question about " ‘{plus minus} HRAS only’ for only 3 time points,” we write:

      “Both constructs were incubated with and without GMPPNP-HRAS in D2O buffer for set labeling reaction times (NT3: 2 sec [NT3 ± HRAS only], 6 sec [NT3 ± HRAS only], 20 sec, 30 sec [NT3 ± HRAS only], 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, and 24 h)...”

      We realize how this can be confusing. To avoid such confusion, we fixed the text to read instead:<br /> “Both constructs were incubated with and without GMPPNP-HRAS in D2O buffer for set labeling reaction times (NT3: 2 sec, 6 sec, 20 sec, 30 sec, 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, 45 h and 24 h at RT; NT2: 20 sec, 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, and 24 h at RT)...”

      Next, with regard to assessing significance, we determine it by closely examining a consistent trend in smooth time course plots. To establish this trend, we rely on the presence of more than four overlapping peptides, each with multiple charge states, within a specific sequence range. When we observe multiple peptides showing even a small difference in rate exchange, we can confidently infer that structural changes have taken place. This confidence stems from the inherent reliability and redundancy in the data analysis approach we have employed.11,12 It is noteworthy that our focus is primarily on reporting the binding or no binding, rather than quantifying the magnitude of exchange. As such, conducting multiple replicates or statistical testing is not deemed necessary.13,14 This is true for multiple reasons:

      1) Instead of small deuterium changes (y-axis), we are focusing on the x-axis changes, which provides a slowing factor and how much that H-D exchange rate has changed.

      • In a publication investigating the ideal HDX-MS data set, the author explains, “with the availability of high resolution HDX-MS raw data, it may be the time to shift the data analysis paradigm from determination of centroid values and presentation of deuteration levels to deconvolution of isotope envelopes and presentation of exchange rates.” 15

      • Presentation of data through rate changes provides a physical chemistry measurement, as opposed to a relative measurement with percent deuteration. For example, slowing with a factor of 10 equates to the energy in 1 kCal. By quick visual estimation, we see a slowing factor of about 2 when RAS is bound to the BRAF-RBD.

      • We made some changes to the text to clear up any confusion about measuring D uptake vs rate.

      2) Looking at sigmoidal curves only—the “smooth time course” shows that the timedependent deuterium changes are not random, artifacts, or false positives/negatives. When parallel sigmoidal curves are present, any x-axis change is a measure of H-D exchange. Only plots with a smooth time course are used to make conclusions about BRAF’s conformational changes or binding interfaces.

      3) Wide time range- the extended time also confirms that any observed difference is reliable and accurate. This extended time frame provides coverage for deuteration levels from 0 to 100% for peptides. A smooth time course is present in complete coverage.

      • A narrow time window is a common flaw in HDX-MS studies14,15

      4) The rate change is observed at multiple time points (at least 4 for each peptide), which are all independent reactions, and show reproducibility of change

      5) Many overlapping peptides show the same pattern- the exchange rate difference is observed in at least 4 peptide time plots without contradictory evidence within the sequence range.

      • We included the complete set of peptide time plots in the supplemental materials.

      6) The many other peptide time plots that do not show any difference with and without RAS is a form of reproducibility, that no difference means no difference.

      1. The investigators find that KRAS binds NT1 in SPR experiments, whereas HRAS does not. However, the pull-down assays show NT1 binding to both KRAS and HRAS. SI Fig 5 attributes this to slow association, yet both SPR (on/off rates) and equilibrium binding measurements are conducted. This data should be able to 'tease' out differences in association.

      Response: Thank you for bringing up this important point. It's crucial to note that the experiments conducted at slow flow rates generated low responses, making it challenging to perform kinetic analyses effectively. Consequently, we are unable to provide accurate equilibrium binding measurements (on/off rates) for NT1 and HRAS. Regrettably, comparing the association rates between KRAS and HRAS is not feasible due to the differing flow rates employed. We have addressed this limitation in the manuscript as follows:

      “We therefore immobilized NT1 and flowed over HRAS at a much slower flow rate (5 µL/min), during which we saw minimal but consistent binding (Supplementary Fig 5A). The low response and long timeframe of each injection, however, makes the dissociation constant (KD) unmeasurable and incomparable to our other NT-HRAS OpenSPR results.”

      1. The model in Figure 7B highlights BSR interactions with KRAS, however, BSR interactions with the KRAS HVR (proximal to the membrane) are not shown, as supported by Terrell et al. (2019).

      Response: Thank you for the suggestion. We reoriented the BSR closer to HVR of KRAS rather than G-domain.

      1. The investigators state that 'These findings demonstrate that HRAS binding to BRAF directly relieves BRAF autoinhibition by disrupting the NT1-KD interaction, providing the first in vitro evidence of RAS-mediated relief of RAF autoinhibition, the central dogma of RAS-RAF regulation. However, in Tran et al (2005) JBC, they report pulldown experiments using N-and C-terminal fragments of BRAF and state that 'BRAF also contains an N-terminal autoinhibitory domain and that the interaction of this domain with the catalytic domain was inhibited by binding to active HRAS'. This reference is not cited.

      Response: We appreciate the concern raised regarding our statement. We want to clarify that it was never our intention to disregard this JBC publication, and we apologize for any misunderstanding caused by our phrasing. We recognize that our initial statement was contentious, and we have removed the word "first" from the phrase "first in vitro evidence." In the section of the discussion where we originally cited the Tran et al. (2005) publication, we have revised the language to eliminate "first" and have rephrased the sentence, as provided below:

      “Our in vitro binding studies align with previous implications that RAS relieves RAF autoinhibition shown through cell-based coIP’s.5”

      1. In Fig 2, panels A and C, it is unclear what the grey dotted line in is each plot.

      Response: Thank you for drawing our attention to the additional explanation needed here. The gray dotted lines represent the maximum deuterium exchange. We added the following description to the figure 2 legend:

      “Gray dotted lines represent the theoretical exchange behavior for specified peptide that is fully unstructured (top) or for specified peptide with a uniform protection factor (fraction of time the residue is involved in protecting the H-bond) of 100 (lower).”

      1. In Fig 3, error analysis is not provided for panel E.

      Response: We added the standard deviation values to this panel. We additionally added these for Fig 4C and Fig 5B.

      1. How was RAS GMPPNP loading verified?

      Response: Ras loading is a well-established protocol with a solid foundation in the literature.16– 21 We followed this accepted method for nucleotide exchange. Our controls, as evident in pulldown and OpenSPR experiments (fig 1C, 4E), unequivocally demonstrate that GMPPNPloaded RAS is active, while unloaded RAS is inactive, as evidenced by the absence of no binding. We also added supplemental figure 6E to show that inactive (unloaded) GST-KRAS does not bind to BRAF during OpenSPR analysis. To exemplify this, we included binding curves of 1 µM GST-KRAS- GMPPNP and -GDP flowed over NTA-immobilized BRAF-NT2 at a flow rate of 30 µl/min.

      References

      (1) Terrell, E. M.; Durrant, D. E.; Ritt, D. A.; Sealover, N. E.; Sheffels, E.; Spencer-Smith, R.; Esposito, D.; Zhou, Y.; Hancock, J. F.; Kortum, R. L.; Morrison, D. K. Distinct Binding Preferences between Ras and Raf Family Members and the Impact on Oncogenic Ras Signaling. Mol. Cell 2019, 76 (6), 872-884.e5. https://doi.org/10.1016/j.molcel.2019.09.004.

      (2) Tran, T. H.; Chan, A. H.; Young, L. C.; Bindu, L.; Neale, C.; Messing, S.; Dharmaiah, S.; Taylor, T.; Denson, J. P.; Esposito, D.; Nissley, D. V.; Stephen, A. G.; McCormick, F.; Simanshu, D. K. KRAS Interaction with RAF1 RAS-Binding Domain and Cysteine-Rich Domain Provides Insights into RAS-Mediated RAF Activation. Nat. Commun. 2021, 12 (1176), 1–16. https://doi.org/10.1038/s41467-021-21422-x.

      (3) Fischer, A.; Hekman, M.; Kuhlmann, J.; Rubio, I.; Wiese, S.; Rapp, U. R. B- and C-RAF Display Essential Differences in Their Binding to Ras: The Isotype-Specific N Terminus of B-RAF Facilitates Ras Binding. J. Biol. Chem. 2007, 282 (36), 26503–26516. https://doi.org/10.1074/jbc.M607458200.

      (4) Park, E.; Rawson, S.; Li, K.; Kim, B. W.; Ficarro, S. B.; Pino, G. G. Del; Sharif, H.; Marto, J. A.; Jeon, H.; Eck, M. J. Architecture of Autoinhibited and Active BRAF–MEK1–14-3-3 Complexes. Nature 2019, 575 (7783), 545–550. https://doi.org/10.1038/s41586-0191660-y.

      (5) Tran, N. H.; Wu, X.; Frost, J. A. B-Raf and Raf-1 Are Regulated by Distinct Autoregulatory Mechanisms. J. Biol. Chem. 2005, 280 (16), 16244–16253. https://doi.org/10.1074/jbc.M501185200.

      (6) Prior, I. A.; Hancock, J. F. Ras Trafficking, Localization and Compartmentalized Signalling. Semin. Cell Dev. Biol. 2012, 23 (2), 145–153.

      (7) Herrmann, C.; Martin, G. A.; Wittinghofer, A. Quantitative Analysis of the Complex between P21 and the Ras-Binding Domain of the Human Raf-1 Protein Kinase. J. Biol. Chem. 1995, 270 (7), 2901–2905. https://doi.org/10.1074/jbc.270.7.2901.

      (8) Vojtek, A. B.; Hollenberg, S. M.; Cooper, J. A. Mammalian Ras Interacts Directly with the Serine/Threonine Kinase Raf. Cell 1993, 74 (1), 205–214. https://doi.org/10.1016/00928674(93)90307-C.

      (9) Parker, M. W.; Bello, M. Lo; Federici, G. Crystallization of Glutathione S-Transferase from Human Placenta. J. Mol. Biol. 1990, 213 (2), 221–222. https://doi.org/10.1016/S00222836(05)80183-4.

      (10) Inouye, K.; Mizutani, S.; Koide, H.; Kaziro, Y. Formation of the Ras Dimer Is Essential for Raf-1 Activation. J. Biol. Chem. 2000, 275 (6), 3737–3740. https://doi.org/10.1074/JBC.275.6.3737.

      (11) Z. Y. Kan, X. Ye, J. J. Skinner, L. Mayne, S. W. E. ExMS2: An Integrated Solution for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Anal Chem 2019, 91 (11), 7474–7481.

      (12) Mayne, L.; Kan, Z. Y.; Sevugan Chetty, P.; Ricciuti, A.; Walters, B. T.; Englander, S. W. Many Overlapping Peptides for Protein Hydrogen Exchange Experiments by the Fragment Separation-Mass Spectrometry Method. J. Am. Soc. Mass Spectrom. 2011, 22 (11), 1898–1905. https://doi.org/10.1007/S13361-011-0235-4.

      (13) Ye, X.; Lin, J.; Mayne, L.; Shorter, J.; Englander, S. W. Hydrogen Exchange Reveals Hsp104 Architecture, Structural Dynamics, and Energetics in Physiological Solution. Proc. Natl. Acad. Sci. 2019, 116 (15), 7333–7342. https://doi.org/10.1073/pnas.1816184116.

      (14) Ye, X.; Lin, J.; Mayne, L.; Shorter, J.; Englander, S. W. Structural and Kinetic Basis for the Regulation and Potentiation of Hsp104 Function. Proc. Natl. Acad. Sci. 2020, 117 (17), 9384–9392. https://doi.org/10.1073/pnas.1921968117.

      (15) Hamuro, Y. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope. J. Am. Soc. Mass Spectrom. 2017, 28 (3), 486–497. https://doi.org/10.1007/s13361-016-1571-1.

      (16) Herrmann, C.; Horn, G.; Spaargaren, M.; Wittinghofer, A. Differential Interaction of the Ras Family GTP-Binding Proteins H-Ras, Rap1A, and R-Ras with the Putative Effector Molecules Raf Kinase and Ral-Guanine Nucleotide Exchange Factor. J. Biol. Chem. 1996, 271 (12), 6794–6800. https://doi.org/10.1074/jbc.271.12.6794.

      (17) Miller, A. F.; Halkides, C. J.; Redfield, A. G. An NMR Comparison of the Changes Produced by Different Guanosine 5’-Triphosphate Analogs in Wild-Type and Oncogenic Mutant P21ras. Biochemistry 1993, 32 (29), 7367–7376. https://doi.org/10.1021/bi00080a006.

      (18) Amendola, C. R.; Mahaffey, J. P.; Parker, S. J.; Ahearn, I. M.; Chen, W. C.; Zhou, M.; Court, H.; Shi, J.; Mendoza, S. L.; Morten, M. J.; Rothenberg, E.; Gottlieb, E.; Wadghiri, Y. Z.; Possemato, R.; Hubbard, S. R.; Balmain, A.; Kimmelman, A. C.; Philips, M. R. KRAS4A Directly Regulates Hexokinase 1. Nature 2019. https://doi.org/10.1038/s41586019-1832-9.

      (19) John, J.; Sohmen, R.; Feuerstein, J.; Linke, R.; Wittinghofer, A.; Goody, R. S. Kinetics of Interaction of Nucleotides with Nucleotide-Free H-Ras P21. Biochemistry 1990, 29 (25), 6058–6065. https://doi.org/10.1021/bi00477a025.

      (20) Dharmaiah, S.; Tran, T. H.; Messing, S.; Agamasu, C.; Gillette, W. K.; Yan, W.; Waybright, T.; Alexander, P.; Esposito, D.; Nissley, D. V.; McCormick, F.; Stephen, A. G.; Simanshu, D. K. Structures of N-Terminally Processed KRAS Provide Insight into the Role of N-Acetylation. Sci. Reports 2019 91 2019, 9 (1), 1–15. https://doi.org/10.1038/s41598-019-46846-w.

      (21) Rathinaswamy, M. K.; Gaieb, Z.; Fleming, K. D.; Borsari, C.; Harris, N. J.; Moeller, B. E.; Wymann, M. P.; Amaro, R. E.; Burke, J. E. Disease-Related Mutations in PI3Kγ Disrupt Regulatory C-Terminal Dynamics and Reveal a Path to Selective Inhibitors. Elife 2021, 10. https://doi.org/10.7554/eLife.64691.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you again to the reviewers and editors for all constructive feedback. We have made several edits to the manuscript and data to address concerns raised during the initial review and strengthen the completeness of this study. Please find below our response to each, with referee comments in black and our responses in blue.

      eLIFE Assessment:

      The authors report that Dbp5 functions in parallel with Los1 in tRNA export, in a manner dependent on Gle1 and requiring the ATPase cycle of Dbp5, but independent of Mex67, Dbp5's partner in mRNA export. The evidence for this conclusion is still incomplete, as is the biochemical evidence that Dbp5 interacts directly with tRNA in vitro with Gle1 and co-factor InsP6 triggering Dbp5 ATPase activity in the Dbp5-tRNA complex. The evidence that Dbp5 interacts with tRNA in cells independently of Los1, Msn5 and Mex67 is, however, solid.”

      Thank you for the constructive feedback and assessment of our article. We have made several improvements to the quality of data (Figure 1E, Figure 3C, Figure 4), added additional tRNA Northern Blot/FISH targets to further generalize observed phenotypes beyond pre-tRNAIleUAU (Supplement 1C/D/E/F), provided growth assays for los1Δ/msn5 Δ/dbp5R423A (Supplement 1B), add added data showing gle1-4/los1Δ double mutants phenocopy los1Δ/dbp5R423A to further support the involvement of Gle1 and the Dbp5 ATPase cycle in tRNA export (Figure 5D).

      Additionally, we added quantification to assess the extent of overexpression of Dbp5 mutants in Figure 3 and a discussion of how these mutants alter the localization of the protein to better assess how they may impact tRNA export (lines 211-226). Furthermore, several minor edits to the text/figures have been made to remove typos and improve readability (e.g., labels of FISH/Northern data in Figure 1). Additional edits include adjusting the text and the model presented in Figure 6 to improve conclusions drawn from our data. This includes lines 106-107 and lines 366-371 which clarifies that the Dbp5 mediated tRNA export pathway may not be entirely independent of Mex67.

      Reviewer #1 (Public Review):

      "At least one result suggests that the idea of these pathways in parallel may be too simplistic as deletion of the LOS1 gene, which is not essential decreases the interaction of tRNA export substrate with Dbp5 (Figure 2A). If the two pathways were working in parallel, one might have expected removing one pathway to lead to an increase in the use of the other pathway and hence the interaction with a receptor in that pathway…. The obvious missing experiment here with respect to genetics is the test of whether deletion of the MSN5 gene in the cells, which combines deletion of LOS1 and the dbp5_R423A allele, shown in Figure 1D would be lethal…. The authors provide evidence of a model where the helicase Dbp5 plays a role in tRNA export from the nucleus. Further evidence is required to determine whether Dbp5 could function in the same pathway as the previously defined tRNA export receptors, Los1 and Msn5. There are genetic tests that could be performed to explore this question. Some of the biochemistry presented would show when Los1 is absent that the interaction of Dbp5 with tRNA decreases, which could support a model where Dbp5 plays a role in coordination with Los1”

      Author Response: We thank the reviewers for this suggestion and consideration. We have added data showing growth phenotypes for the los1Δ/msn5Δ/dbp5R423A triple mutants. We discuss possible explanations and alternative hypothesis for why these triple mutants are viable and the observed reduction in Dbp5-pre-tRNA interaction in the context of los1Δ (lines 128131; lines 172-174).

      Reviewer #1 (Public Review):

      “While some of the binding assays show rather modest band shifts (Figure 4B for example), the data in Figure 4A showing that there is no binding detected unless a non-hydrolyzable ATP analogue is employed, argues for specificity in nucleic acid binding. The question that does arise is whether the binding is specific for tRNA.”

      Author Response: We have adjusted brightness/contrast of the EMSAs in Figure 4 to allow for better visualization of band shifts. Additionally, a discussion of the specificity of Dbp5-nucleic acid binding and the observed tRNA binding has been added (lines 313-322)

      Reviewer #1 (Public Review):

      “With the exception of the binding studies, which also employ a mixture of yeast tRNAs, this study relies primarily on a single tRNA species to come to the conclusions drawn. Many other studies have used multiple tRNAs to explore whether pathways characterized are generalizable to other tRNAs.“

      Author Response: We have added additional tRNA targets for FISH/Northerns in Supplement 1C/D/E/F)

      Reviewer #2 (Public Review):

      “There are some pieces of data that are misinterpreted. (Figure 1A and B look the same; in Fig 1E, the DAPI staining is abnormal; in Fig 4 the bands can't be seen.)”

      Author Response: Thank you for your constructive feedback. We have replaced FISH images to improve DAPI staining (Figure 1E), adjusted EMSAs to allow for better visualization of band shifts. (Figure 4), improved Northern Blots for quality (Figure 3C), and rearranged Figure 1A/B for readability. We maintain that the results from Figure 1A/B are not misinterpreted but agree that the readability of the figure was poor and have adjusted labels/formatting accordingly. The results of these experiments show that the deletion of Los1 does not alter Dbp5 localization and conversely loss of Dbp5 does not alter Los1 localization. As such the localization patterns under loss-of-function conditions look the same as wild-type for each protein respectively.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their service and are pleased to see that they were positive about the overall study. The reviewers provided several very good suggestions that we feel have improved the revised manuscript. In response to their suggestions, we have added four new figures of additional data (Figure 1, Supplement 2; Figure 2, Supplement 2; Figure 3, Supplements 1 and 2) in this revision. We have addressed the specific review comments/suggestions point-by-point below. Text changes in the manuscript are indicated in red with line numbers indicated.

      Public Reviews:

      Reviewer #1 (Public Review):

      This important study from Jahncke et al. demonstrates inhibitory synaptic defects and elevated seizure susceptibility in multiple models of dystroglycanopathy. A strength of the paper is the use of a wide range of genetic models to disrupt different aspects of dystroglycan protein or glycosylation in forebrain neurons. The authors use a combination of immunohistochemistry and electrophysiology to identify cellular migration, lamination, axonal targeting, synapse formation/function, and seizure phenotypes in forebrain neurons. This is an elegant study with extensive data supporting the conclusions. The role of dystroglycan and the dystrophin glycoprotein complex (DGC) in cellular migration and synapse formation are of broad interest.

      • A strength of this paper is the use of several transgenic mouse lines with mutations in genes involved in glycosylation of dystroglycan. Knockout of POMT2 abolishes the majority of dystroglycan glycosylation, while point mutations in B4GAT and FKRP presumably produce more minor changes in glycosylation. This is a powerful approach to inves5gate the role of glycosylation in dystroglycan function. However, the authors do not address how mutations in these genes may affect glycosylation or expression of proteins other than dystroglycan. It is possible, even likely, that some of the phenotypes observed are due to changing glycosylation in any number of other proteins. The paper would be strengthened by addressing this possibility more directly.

      We are glad to see that the reviewer appreciated the range of transgenic models used to define the role of Dag1 glycosylation. It is certainly possible that glycosylation of proteins other than Dag1 is affected by deletion of Pomt2, B4Gat1 and/or FKRP. Indeed, Cadherin and Plexin proteins undergo Omannosylation in the brain. However, recent work has shown that these proteins are not dependent on Pomt1/2 for their O-mannosylation, and use an alternative glycosylation pathway. Therefore, they unlikely to contribute to the phenotypes we observed in our Pomt2, B4Gat1 and/or FKRP mutants. Furthermore, we did not observe any phenotypes in these models that was not also observed in the Dag1 conditional knockouts. We have clarified this point in the results section (lines 117-121) with additional references, and added the caveat that Pomt2, B4gat1, and Fkrp could play a role in the glycosylation of proteins other than Dag1.

      • It would be helpful to have a more clear description of how dystroglycan glycosylation is altered in B4GAT1M155T or FKRPP448L mice. For example, Figure 1 makes it appear that the distal sugar moieties are missing, however, the IIH6 antibody, which binds to terminal matriglycan repeats on the glycan chain, recognizes dystroglycan in these mutants.

      We apologize for the confusion caused by our schematic in Figure 1. We have adjusted the opacity of the schematic in Figure 1A to better illustrate that the matriglycan chain is s5ll present, albeit at reduced levels, in the B4Gat1 and FKRP mutants. In addition, this is directly shown in the western blot in Figure 1B.

      • In Figure 1, the authors use the IIH6 antibody, which recognizes the terminal portion of the dystroglycan glycan chain, to label dystroglycan in the hippocampus. As expected, Emx1Cre,POMT2cKO mice, which lack glycosylation of dystroglycan, do not show any labelling. However, this experiment does not reveal anything about dystroglycan expression, only that the IIH6 antibody no longer recognizes dystroglycan. It would be very helpful in interpreting the later results to know whether the level and pattern of dystroglycan expression is normal or absent in the POMT2cKO mice, perhaps using another antibody that does not target the glycosylated region. For example, figure 3 shows reduced axon targeting to the cell body layer in POMT2cKO, however, it is unclear whether this is due to absence/mislocalization of dystroglycan at the cell surface, or if dystroglycan expression is normal, but glycosylation is directly required for axon targeting.

      Addressed in the “Recommendation for Authors” section below

      • In Figures 3 and 5, the authors use CB1R labelling to measure axon targeting and synapses formation. However, it is not clear how the authors measure axon targeting and synapses number separately using the same CB1R antibody. In addition, figure 3 shows reduced CB1R labelling in Dag1cyto pyramidal cell layer, but Figure 5 shows no change in CB1R labelling in the same mice. These results would appear to be contradictory.

      In Figure 3, the data reflects fluorescent intensity of CB1R+ axons measured across the en5re hippocampal depth. In contrast, the synapse number in Figure 5 is measured as VGat+ and CB1R+ puncta (axonal swellings) within the pyramidal cell layer (SP). The discrepancy between these measurements in the Dag1Cyto mutants likely reflects a change in the distribution of the synaptic contacts in SP (ie: increased contacts in the upper portion of the SP relative to the bottom). This is clarified in the text, lines 315-319.

      • The authors measure spontaneous IPSCs (sIPSC) in CA1 pyramidal neurons to measure inhibitory synaptic function. This measure assesses inhibitory synaptic input from all sources, but dystroglycan mutations primarily impairs synapses arising from CCK+/CB1R interneurons, leaving synapses arising from PV or other interneurons relatively unchanged. To assess changes in CCK+/CB1R interneurons the authors apply the cholinergic receptor agonist Carbachol (which selectively activates CCK+/CB1R interneurons) and measure the change in sIPSC amplitude and frequency. While this is an interesting and reasonable experiment, the observed effects could be due to altered carbachol sensitivity in the transgenic mice. Control experiments showing that the effect of Carbachol on excitability of CCK+/CB1R interneurons is similar across mouse lines is missing.

      The reviewer is correct that we did not show that CCK/CB1R+ interneurons have the same sensitivity to CCh in controls and the various mutants. Indeed, this is something we have struggled with over the course of the study, and is an inherent limitation of the current study. Unfortunately, these cells are relatively sparse in the CA1, and therefore patching onto presumptive CCK/CB1R+ INs at random to test this directly is not feasible. There are also no genetic or viral tools that we are aware of at this time to fluorescently label these cells for targeted recordings (this would need to be a Cre-independent transgenic mouse line since we are using Cre to delete Dag1 and Pomt2). We tried to assess this by measuring c-fos immunohistochemistry staining as a proxy for activity in response to CCh. Briefly, we incubated acute slices with NBQX, SR95531, and Kynurenic Acid to block synaptic activity, and added CCh in the bath for 30, 60, and 90 minutes to induce CCK/CB1R+ INs firing. Slices were then fixed and stained for c-fos and NECAB1 to identify the CCK/CB1R+ interneurons.

      Unfortunately, we had a very difficult time imaging these slices, and we were not confident in our ability to localize c-fos+/NECAB1+ cells. We have clarified that this is an inherent limitation to the study in the text, lines 394-396.

      • Earlier work has shown that selective deletion of dystroglycan from pyramidal neurons produces near complete loss of CCK+/CB1R interneurons and synapse formation, a more severe deficit than observed here using a more widespread Cre-driver. This finding is surprising, as generally more wide-spread gene deletion results in more severe, not less severe, phenotypes. The authors make the reasonable claim that more wide-spread gene deletion better mimics human pathologies. However, possible speculation on why this is the case for dystroglycan could provide insight into the nature of CNS deficits in different forms of dystroglycanopathies.

      The reviewer is correct that previous work from both our lab and others have shown that deletion of Dag1 from only pyramidal neurons with NEX-cre leads to a complete loss of CCK/CB1R+ INs, and is thus more severe than the phenotype seen with the broader deletion of Dag1 with Emx1-Cre. We were also surprised by this result, so we also generated Dag1;Nestin-Cre mice. These mice show an iden5cal phenotype as the Dag1;Emx1-Cre mutants (new data; Figure 3, Supplement 1; text lines 226-233). This makes us confident in the validity of the Dag1;Emx-Cre mutants with regards to modeling the human disease. We do not know why the NEX-Cre line shows a more severe phenotype; it is possible that this is due to an unknown epistatic interaction between Dag1 and NEX-Cre.

      Reviewer #2 (Public Review):

      The manuscript by Jahncke and colleagues is centered on the CCK+ synaptic defects that are a consequence of Dystroglycanopathy and/or impaired dystroglycan-related protein function. The authors use conditional mouse models for Dag1 and Pomt2 to ablate their function in mouse forebrain neurons and demonstrate significant impairment of CCK+/CB1R+ interneuron (IN) development in addition to being prone to seizures. Mice lacking the intracellular domain of Dystroglycan have milder defects, but impaired CCK+/CB1R+ IN axon targeting. The authors conclude that the milder dystroglycanopathy is due to the par5ally reduced glycosylation that occurs in the milder mouse models as opposed to the more severe Pomt2 models. Additionally, the authors postulate that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy and are required for the organization of functional inhibitory synapse assembly.

      The manuscript is overall, fairly well-written and the description of the phenotypic impact of disruption of Dystroglycan forebrain neurons (and similar glycosyltransferase pathway proteins) demonstrate impairment in axon targeting and organization.

      There are some questions with regards to interpretation of some of the results from these conditional mouse models.

      • The study is mostly descriptive, and some validation of subunits of the dystroglycanglycoprotein complex and laminin interactions would go towards defining the impact of disruption of dystroglycan's function in the brain.

      Addressed in the “Recommendation for Authors” section below

      • The statistics and basic analysis of the manuscript appear to be appropriate and within parameters for a study of this nature.

      • Some clarification between the discrepancies between the Walker Warburg Syndrome (WWS) patient phenotypes and those observed in these conditional mouse models is warranted. This manuscript has the potential to be impactful in the Dystroglycanopathy and general neurobiology fields.

      Addressed in the “Recommendation for Authors” section below

      Reviewer #3 (Public Review):

      The study presents a systematic analysis of how a range of dystroglycan mutations alter CCK/CB1 axonal targeting and inhibition in hippocampal CA1 and impact seizure susceptibility. The study follows up on prior literature identifying a role for dystroglycan in CCK/CB1 synapse formation. The careful assay includes comparison of 5 distinct dystroglycan mutation types known to be associated with varying degrees of muscular dystrophy phenotypes: a forebrain specific Dag1 knockout in excitatory neurons at 10.5, a forebrain specific knockout of the glycosyltransferase enzyme in excitatory neurons, mice with deletion of the intracellular domain of beta-Dag1 and 2 lines with missense mutations with milder phenotypes. They show that forebrain glutamatergic deletion of Dag1 or glycosyltransferase alters cortical lamination while lamination is preserved in mice with deletion of the intracellular domain or missense mutation.

      The study extends prior works by identifying that forebrain deletion of Dag1 or glycosyltransferase in excitatory neurons impairs CCK/CB1 and not PV axonal targeting and CB1 basket formation around CA1 pyramidal cells. Mice with deletion of the intracellular domain or missense mutation show limited reductions in CCK/CB1 fibers in CA1. Carbachol enhancement of CA1 IPSCs was reduced both in forebrain knockouts. Interestingly, carbachol enhancement of CA1 IPSCs was reduced when the intracellular domain of beta-Dag1was deleted, but not I the missense mutations, suggesting a role of the intracellular domain in synapse maintenance. All lines except the missense mutations, showed increased susceptibility to chemically induced behavioral seizures. Together, the study, is carefully designed, well controlled and systematic. The results advance prior findings of the role for dystroglycans in CCK/CB1 innervations of PCs by demonstrating effects of more selective cellular deletions and site specific mutations in extracellular and intracellular domains. The interesting finding that deletion of intracellular domain reduces both CB1 terminals in CA1 and carbachol modulation of IPSCs warrants further analysis. Lack of EEG evaluation of seizure latency is a limitation.

      Specific comments

      • Whether CCK/CB1 cell numbers in the CA1 are differentially affected in the transgenic mice is not clarified.

      This is a good point; we have now addressed this in Figure 3, Supplement 2 (new data; text lines 234-245). In brief, using two different markers (NECAB1 and NECAB2), we see no change in the number of CCK+/CB1R+ INs in the mutant mice.

      • 2. Whether basal synaptic inhibition is altered by the changes in CCK innervation is not examined.

      We apologize for the confusion. This is addressed in the text, lines 371-375:

      “Notably, even baseline sIPSC frequency was reduced in Dag1cyto/- mutants (2.27±1.70 Hz) compared to WT controls (4.46±2.04 Hz, p = 0.002), whereas baseline sIPSC frequencies appeared normal in all other mutants when compared to their respective controls.”

      Reviewer #1 (Recommendations For The Authors):

      Line 321- CCH-mediated CHANGE in sIPSC amplitude...

      This has been corrected (now line 356)

      Reviewer #2 (Recommendations For The Authors):

      Major Comments:

      • Disruption of the dystroglycan (and subsequent glycosyltransferase proteins) in the brain would likely impact laminin localization and cytoskeletal stability of the dystroglycanprotein complex. The authors should assess (via immunolabeling) the disruption laminin using laminin IF in the various conditional mouse model forebrain sections.

      We have stained brains from Dag1, Pomt2, and Dag1cyto mutants with an antibody to Laminin (new data; Figure 2, Supplement 2; text lines 191-205). Briefly, the data clearly shows that laminin staining is abnormal on the pial surface and in the blood vessels of the Dag1;Emx1-cre mutants. This is less severe in the Pomt2;Emx1 mutants, and normal in the Dag1cyto mutants. We also examined higher magnification of laminin staining in hippocampal SP around the pyramidal cells. Laminin in the region was diffuse (not synaptically localized) and there was no difference between any of the mutants and their respective controls (data not shown).

      • 2. The biggest question(s) I have is if the synaptic defects that were measured (Fig 6) in the spontaneous inhibitory post-synaptic currents (sIPSCs) could be rescued as a function of the glycosylation of dystroglycan? While ribitol/CDP-ribose has been shown to enhance alpha-dystroglycan glycosylation and total glycosylation, it might be appropriate here. NADplus exogenous supplementation has been (Ortez-Cordero et al., eLife, 2021) has a faster acting effect on glycosylation of dystroglycan and may work in this context. Can the authors add NADplus prior to their CCK+/CB1R+ IN recordings and evaluate synaptic current effects to determine if glycosylation rescue can actually occur?

      We are very much interested in the potential to rescue synaptic defects in the various mutants, and this is an active area of study for us going forward. However, we do not think the suggested experiments involving ribitol/NADplus supplementation are likely to work in our specific experiments with these models. In Dag1;Emx1-Cre and Pomt2;Emx1-Cre mice, which show the most dramatic phenotype, there is no O-mannosyl chain ini5ated for ribitol to act upon. In the Dag1Cyto mice, matriglycan is normal and therefore ribitol supplementation is unlikely to have an effect. In B4Gat1 and FKRP mutants, while matriglycan is reduced, there is no significant functional synaptic defect observed. Therefore, even if ribitol was able to increase matriglycan in these two mutants, we would be unable to detect a functional difference. As a side note, while the NADplus supplementation is an interesting idea, the previous study cited did these experiments in vitro in cell lines, so it is not clear if this would have the same effect in vivo. In addition, the time frame that they analyzed was following 24-72 hours of supplementation in cultured cells, which led to ~10% increase in IIH6 at 24 hours. We are unable to incubate acute slices for that amount of time prior to our recordings.

      • 3. Minor point. Genetic abbreviation for POMT2 should be "Pomt2", unless some other justification is provided by the authors. I believe the other mutations introduced (e.g. FKRP P448L are humanized mutations).

      This has been corrected throughout

      • 4. While dystroglycan glycosylation using the IIHC6 antibody is important for proper localization, the core DAG-6F4 monocloncal antibody (DSHB Iowa Hybridoma Bank) would inform you if there is actual disruption in the amount of dystroglycan protein translation and/or production in the forebrain. Can the authors address this question on total dystroglycan production?

      This is a great suggestion. We obtained both the DAG-6F4 monoclonal antibody from DSHB and a monoclonal antibody to alpha-Dag1 from Abcam (45-3) and tried using them for immunostaining, but they did not work with brain tissue. However, we were able to use an antibody to beta-Dag1 (Leica, B-DG-CE) for immunostaining. This new data is included in Figure 1, Supplement 2 (text lines 134-140) and shows that as expected, beta-Dag1 is completely gone in Dag1;Emx1-Cre and Dag1Cyto mutants. In the Pomt2;Emx1-Cre mutants, betaDag1 is present but no longer has the punctate appearance consistent with synaptic localization. We have added a section in the discussion expanding on the interpretation of the data, lines 449-462.

      • 5. Please comment more on the structural changes in the forebrain and the presence or lack thereof cobblestone (e.g. lissencephaly) in the POMT2 mutant mice (and the other dystroglycanopathy models)? There appears to be some discordance with that and the human Walker Warburg Syndrome (WWS) patients.

      The Pomt2;Emx1-cre mutants show a cobblestone phenotype (identical to the Dag1;Emx1-Cre mutants), see Figure 2. This is consistent with these two models having a complete loss of Dag1 function, and therefore modeling the most severe forms of dystroglycanopathy (WWS, MEB). In contrast, the B4Gat1 and FKRP mutants show relatively normal cortical migration because these mutants are hypomorphic and therefore retain some degree of functional Dag1. These two mice model a milder form of dystroglycanopathy. We have clarified this on lines 188-190 and 573-578.

      • 6. Line 577. Minor typo, statement ended in a comma, versus a period.

      Done

      • 7. Methods. Please report on the sex of the mice used in the experiments.

      Mice of both sexes were used throughout the study. This has been clarified in the methods section, and we have added information regarding how many mice of each sex were used in each experiment in supplemental table 1

      Reviewer #3 (Recommendations For The Authors):

      Additional Specific Comments,

      • Although authors include n slice/animals and other details in the methodology, including data as % changes and n (slices/animals) in results will greatly improve the readability.

      We have clarified that only one cell per slice was used for physiological recordings (Figure 6) in the methods section, as CCh does not wash out.

      • 2. IPSCs are measured as inward currents in high chloride with AMPA blockers which is appropriate. However, Mg was appears to be low (1 mM) in cutting solution. Was this the case in the recording solution. If so, why were NMDA blockers not used.

      To clarify, 10mM Mg was included in the cutting solution, and 1mM Mg was included in the recording solution. When the cell is clamped at -70mV, 1mM Mg2+ is sufficient to block NMDA receptors: haps://www.nature.com/ar5cles/309261a0

    1. Author Response

      Reviewer 1:

      1. The missing mouse gender information will be incorporated into the revised manuscript. For flow cytometry, two male and two female mice of each genotype were used. For single cell RNA sequencing, two female and one male mouse of each genotype were used. For the bulk RNA sequencing four male cd47−/− mice and four male wildtype mice were used.

      2. The bulk RNA sequencing analysis identified elevated expression of erythropoietic genes in CD8+ spleen cells from cd47−/− versus wildtype mice that were obtained using magnetic bead depletion of all other lineages. Therefore, we used the same Miltenyi negative selection kit as the first step to prepare the cells for single cell RNA sequencing. These untouched cells were then depleted of most mature CD8 T cells using a Miltenyi CD8a(Ly2) antibody positive selection kit. An important consideration underlying this approach was recognizing that the commercial magnetic bead depletion kits used for preparing specific immune cell types are optimized to give relatively pure populations of the intended immune cells using wildtype mice. Our previous experience studying NK cell development in the cd47−/− mice taught us that NK precursors, which are rare in wildtype mouse spleens, accumulate in cd47−/− spleens and were not removed by the antibody cocktail optimized for wildtype spleen cells (Nath et al Front Immunol 2018). The present data indicate that erythroid precursors behave similarly.

      3. Anemia is a prevalent side effect of several CD47 therapeutic antibodies being developed for cancer therapy. Anemia would be expected to induce erythropoiesis in bone marrow and possibly at extramedullary sites. Human spleen cells are not accessible to directly evaluate extramedullary erythropoiesis in cancer patients, but analysis of circulating erythroid precursors or liquid biopsy methods could be useful to detect induction of extramedullary erythropoiesis by these therapeutics. We are currently investigating the ability of CD47 antibodies to directly induce erythropoiesis using a human in vitro model.

      Reviewer 2:

      1. The reviewer asked, “whether the increased splenic erythropoiesis is a direct consequence of CD47-KO or a response to the anemic stress in this mouse model.” Our data supports both a direct role for CD47 and an indirect role resulting from the response to anemic stress. We cited our previous publications describing increased Sox2+ stem cells in spleens of Cd47 and Thbs1 knockout mice, but we neglected to emphasize another study where we found that bone marrow from cd47−/− mice subjected to the stress of ionizing radiation exhibited more colony forming units for erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) progenitors compared to bone marrow from irradiated wildtype mice (Maxhimer Sci Transl Med 2009). Taken together, our published data demonstrates that loss of CD47 results in an intrinsic protection of hematopoietic stem cells from genotoxic stress. This function of CD47 is thrombospondin-1-dependent and is consistent with the up-regulation of early erythroid precursors in the spleens of both knockout mice but cannot explain why the Thbs1−/− mice have fewer committed erythroid precursors than wildtype. We cited studies that documented increased red cell turnover in cd47−/− mice but less red cell turnover in Thbs1−/− mice compared to wildtype mice. Increased red cell clearance in cd47−/− mice is mediated by loss of the “don’t eat me” function of CD47 on red cells. In wildtype mice, clearance is augmented by thrombospondin-1 binding to the clustered CD47 on aging red cells (Wang, Aging Cell 2020). Thus, anemic stress in the mouse strains studied here decreases in the order cd47−/− > WT > Thbs−/−. This is consistent with the increased committed erythroid progenitors reported here in cd47−/− spleens and decreased committed progenitors in the Thbs1−/− spleens.

      2. The cd47−/− mice used for the current study are the same strain as those reported by Lindberg et al in 1996, with additional backcrossing onto a C57BL/6 background.

    1. Author Response

      We are grateful to the editor and the reviewers for recognizing the importance of our theoretical study on the mechanisms of centrosome size control. We appreciate their thoughtful critiques and suggested improvements, all of which we intend to address in the revised manuscript as outlined below. We acknowledge that the experimental evidence supporting the proposed theory is currently incomplete. We anticipate that our study will serve as inspiration for future experiments aimed at testing the proposed theory.

      As noted by both reviewers, our model is built on the assumption that the diffusion of molecular components is much faster than any reactive time scales. To explore the impact of diffusion on centrosome size regulation, we are presently working on a spatial model of centrosome growth within a spatially extended system. Our objective is to analyze the influence of diffusion, and we plan to integrate these findings into the revised manuscript.

      To address the concerns raised by both the reviewers regarding the applicability of our model to various organisms, we plan to revise the manuscript to clearly delineate the parameter ranges within which our model could be relevant for different organisms such as C. elegans or Drosophila. While centrosomal components may vary among different organisms, the underlying pathways of interactions exhibit similarities. Leveraging the generality of our theory, it has the capability to capture diverse centrosomal growth behaviors contingent on the parameter choices. Our objective is to emphasize these distinctions, illustrating how the modulation of growth cooperativity and enzyme concentration can influence size regulation and size scaling behaviors. Given the limited availability of quantitative experimental data across diverse organisms, we recognize the challenge in directly comparing our theory with data. Nevertheless, we are committed to presenting a thorough motivation for such comparisons to prevent any confusion or readability issues.

      We acknowledge the reviewers' concerns regarding the limited details provided on the simulation methods and the rationale behind the choice of model parameters. To address this, we will provide detailed explanations on the stochastic simulations, how the model parameters were calibrated, accompanied by appropriate references for the selected parameter values. Additionally, we thank reviewer 1 for the excellent suggestion to incorporate a linear stability analysis of the ordinary differential equations underlying the model. This analysis will offer valuable insights into how the physical parameters of the model influence the tendency to produce equal-sized centrosomes, and we are committed to including this in the revised manuscript. Additionally, we thank reviewer 2 for proposing the use of Polo pulse dynamics to more precisely constrain the parameter regime for centrosome growth dynamics in Drosophila. We will strive to incorporate this into the revised manuscript, recognizing the challenge of quantitatively interpreting centrosome size or subunit concentration values from experimental data on fluorescence intensities. We also plan to discuss enzyme pulse dynamics in C. elegans in the revised manuscript, as it presents a valuable prediction from our model.

      We disagree with reviewer 1's assertion that Reference 8 (Zwicker et al., PNAS 2014) effectively addresses the robustness of centrosome size equality in the presence of positive feedback. The linear stability analysis presented in Figure 5 of Reference 8 demonstrates stability of centrosome size around the fixed point, leading to the inference that Ostwald ripening can be inhibited by the catalytic activity of the centriole. In our manuscript (see Supplementary Figure 3), we demonstrate that the existence of the stable fixed point does not necessarily give rise to equal-sized centrosomes due to the slow dynamics of the solution around the fixed point. With an appreciable amount of positive feedback in the growth dynamics, the solution moves very slowly around the fixed point (similar to a line attractor), and cannot reach the fixed point within a biologically relevant timescale leaving the centrosomes at unequal sizes. Therefore, we argue that the model in Reference 8 lacks a robust mechanism for size control in the presence of autocatalytic growth. Additionally, we wish to emphasize that the choice of initial size difference in our model does not qualitatively alter the results for robustness in centrosome size equality, as shown in Supplementary Figure 3. Nevertheless, we acknowledge the need for a quantitative analysis of the dependence of size regulation on the initial discrepancy in centrosome size. We will incorporate such an analysis into the revised manuscript to strengthen our conclusions. Reviewer 2 has questioned the dismissal of the non-cooperative growth model, suggesting that minor adjustments in that model, such as incorporating size-dependent addition or loss rates due to surface assembly/disassembly, could potentially maintain equally sized organelles with sigmoidal growth dynamics. However, this conclusion is inaccurate. Any auto-regulatory positive feedback would result in size inequality, unless the positive feedback is shared between the organelles. The introduction of size-dependent addition rates due to surface-mediated assembly, would result in auto-regulatory positive feedback, leading to unequal sizes. We have explored a similar scenario of growth dynamics involving assembly and disassembly throughout the pericentriolic material volume in Supplementary Section II, demonstrating significant size inequality in that model and a lack of robustness in size control. We will provide a detailed response to this point in our reply, along with an explicit examination of the surface assembly model.

      In addition to the aforementioned modifications, we will revise the section discussing the predictions of the proposed model in the revised manuscript to rectify any lack of clarity in testable model predictions. We aim to provide clearer demonstrations of how our model predictions differ from those of previous models.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful to the 3 reviewers and the editorial team for agreeing that our work is rigorous and valuable for the fields of olfaction and developmental biology. We provide a revised version of the manuscript that addresses major concerns raised by the reviewers and adheres to their suggestions.

      Specifically:

      -We clarify what is novel in this work and we cover the appropriate literature.

      -We tone down the language and interpretation of our data

      -We clarify the categorization of zones and improve the readability to the best of our ability.

      We have also made every effort to address minor points raised by the 3 reviewers and made clarifications wherever requested.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In order to find small molecules capable of enhancing regenerative repair, this study employed a high throughput YAP-activity screen method to query the ReFRAME library, identifying CLK2 inhibitor as one of the hits. Further studies showed that CLK2 inhibition leads to AMOTL2 exon skipping, rendering it unable to suppress YAP.

      The novelty of the study is that it showed that inhibition of a kinase not previously associated with the HIPPO pathway can influence YAP activity through modification of mRNA splicing. The major arguments appear solid.

      We thank the Reviewer for their thoughtful assessment of this work. We have fully addressed each comment below in a point-by-point fashion.

      There are several noteworthy points when assessing the results. In Figure S1C, 100nM drug was toxic to cells at 72 hours and 1nM drug suppressed cell proliferation by 60%. Yet such concentrations were used in Figure 1B and C to argue CLK2 inhibition liberates YAP activity (which one would assume will increase cellular proliferation). In Figure 1C it appears that 1nM drug treatment led to some kind of cellular stress, as cells are visibly enlarged. In Figure 1D, 1nM drug, which would have suppressed cell growth by 60%, did not affect YAP phosphorylation. Taken together, it appears even though CLK2 inhibitor (at high concentrations) liberates YAP activity, its toxicity may override the potential use of this drug as a YAP-activator to salve tissue regenerative repair, which was one of the goals hinted in the background section.

      We do not claim that CLK2 inhibition is useful as a YAP activator, either as a precise pharmacological tool or as a therapeutic mechanism for inducing regenerative repair. Instead, the key finding of this work is to describe a novel, unanticipated cellular mechanism for activating YAP, one that should be considered when optimizing pharmacological candidates that modulate alternative splicing for diseases where potential proliferation is undesirable.

      However, to address this point, we have included additional experimentation. Specifically, we show that cytotoxicity with compound treatment at 24 hours, a timepoint at which we perform most evaluation of alternative splicing induced by compound, is considerably less than that observed at 72 hours. Now included as Figure S1C, this panel shows while the compound displays some cytotoxicity at ~1 nM at 72 hours, the half maximal inhibitory potency at 24 hours is ~300 nM. As such, we believe there is not incongruity between YAP activity, cellular proliferation, and SM04690-induced cytotoxicity. It is simply such that higher concentrations of compound, and thus increased engagement of CLK2 and other targets of the inhibitor, result in a cumulative cytotoxic effect over time.

      In Figure 2D, at 100nM concentration, the drug did not appear to affect AMOTL2 splicing. Even though at higher concentrations it did, this potentially put into question whether YAP activity liberated by this drug at 1nM (Fig 2A), 10-50nM (Fig 2C) concentrations is caused by altered AMOTL2 splicing. Discussions should be provided on the difference in drug concentrations in these experiments. Does the drug decay very fast, and is that why later studies required higher dose?

      We believe this comment is in reference to Fig. 3D, and we argue that, while faint, there is the presence of AMOTL2 splicing at 100 nM SM04690 treatment as seen by a faint lower molecular weight band. However, to further understand the extent to which AMOTL2 is alternatively spliced in response to compound treatment, we performed RT-qPCR analysis of AMOTL2 splicing with an expanded concentration response. These results indicate that high magnitude exon skipping of AMOTL2 occurs starting at 10 nM with 24-hour treatment of compound (now in the manuscript as Fig. S4A). This result matches with our data in Fig. 2C, wherein YAP phosphorylation begins decreasing at 10 nM SM04690 treatment.

      Likely impact of the work on the field: this study presented a high throughput screen method for YAP activators and showed that such an approach works. The hit compound found from ReFRAME library, a CLK2 inhibitor, may not be actually useful as a YAP activator, given its clear toxicity. Applying this screen method on other large compound libraries may help find a YAP activator that helps regenerative repair. The finding that CLK2 inhibition could alter AMOTL2 splicing to affect HIPPO pathway could bring a new angle to understanding the regulation of HIPPO pathway.

      Reviewer #2 (Public Review):

      In this manuscript, the authors have screened the ReFRAME library and identified candidate small molecules that can activate YAP. The found that SM04690, an inhibitor of the WNT signaling pathway, could efficiently activate YAP through CLK2 kinase which has been shown to phosphorylate SR proteins to alter gene alternative splicing. They further demonstrated that SM04690 mediated alternative splicing of AMOTL2 and rendered it unlocalized on the membrane. Alternatively spliced AMOTL2 prevented YAP from anchoring to the cell membrane which results in decreased YAP phosphorylation and activated YAP. Previous findings showed that WNT signaling more or less activates YAP. The authors revealed that an inhibitor of WNT signaling could activate YAP. Thus, these findings are potentially interesting and important. However, the present manuscript provided a lot of indirect data and lacked key experiments.

      We thank the Reviewer for their thorough review of this work. We have responded to each comment below.

      Major points:

      1. In Figure S3, since inhibition of CLK2 resulted in extensive changes in alternative splicing, why did the authors choose AMOTL2? How to exclude other factors such as EEF1A1 and HSPA5, do they affect YAP activation? Angiomotin-related AMOTL1 and AMOTL2 were identified as negative regulators of YAP and TAZ by preventing their nuclear translocation. It has been reported that high cell density promoted assembly of the Crumbs complex, which recruited AMOTL2 to tight junctions. Ubiquitination of AMOTL2 K347 and K408 served as a docking site for LATS2, which phosphorylated YAP to promote its cytoplasmic retention and degradation. How to determine that alternative splicing rather than ubiquitination of AMOTL2 affects YAP activity? Does AMOTL2 Δ5 affect the ubiquitination of AMOTL2? Does overexpression of AMOTL2 Δ5Δ9 cause YAP and puncta to co-localize?

      AMOTL2 is the relevant cellular target, because among the entire transcriptome it was the third most alternatively spliced in response to CLK2 inhibition (Fig. S3). No other targets relevant to the Hippo pathway were identified.

      We have shown that overexpression of exon skipped AMOTL2 (Fig. 3F) recapitulates the effect of compound, indicating that splicing per se is what drives the YAP activation phenotype. While AMOTL2 is ubiquitinated, these established sites of ubiquitination do not lie within exons 5 or 9. Thus, we anticipate that ubiquitination is less likely a driving factor in the observed phenotype. The manuscript is written as not to exclude this as a possibility, but it is downstream of what we describe, and we believe out of scope to explore this further in this preliminary report.

      1. The author proposed that AMOTL2 splicing isoform formed biomolecular condensates. However, there was no relevant experimental data to support this conclusion. AMOTL2 is located not only on the cell membrane but also on the circulating endosome of the cell, and the puncta formed after AMOTL2 dissociation from the membrane is likely to be the localization of the circulating endosome. The author should co-stain AMOTL2 with markers of circulating endosomes or conduct experiments to prove the liquidity of puncta to verify the phase separation of AMOTL2 splicing isoform.

      We do not claim AMOTL2 forms biomolecular condensates. Instead, we hypothesize in the Discussion section that AMOTL2 could possibly phase separate into biomolecular condensates based on its similarity to AMOT, which has been shown to phase separate and form cytoplasmic puncta (PMID: 36318920). AMOT has also been shown to colocalize with endosomes (PMID: 25995376), which also appear as puncta.

      1. The localization of YAP in cells is regulated by cell density, and YAP usually translocates to the nucleus at low cell density. In Figure 2E, the cell densities of DMSO and SM04690-treated groups are inconsistent. In Figure 4A, the magnification of t DMSO and SM04690-treated groups is inconsistent, and the SM04690treated group seems to have a higher magnification.

      In immunofluorescence experiments, cells were plated at the same density and grown for the same amount of time before treatment. Additionally, within an experiment, images were taken at the same magnification. Any apparent differences in cell density are due to effects of the compound.

      1. There have been many reports that the WNT signaling pathway and the Hippo signaling pathway can crosstalk with each other. The authors should exclude the influence of the WNT signaling pathway by using SM04690.

      While the WNT pathway has been shown to influence Hippo pathway activity, we have shown a direct effect of CLK2 inhibition by SM04690. Any WNT potential pathway effects are in addition to the splicing-based mechanism we described.

      Reviewer #3 (Public Review):

      This study on drug repurposing presents the identification of potent activators of the Hippo pathway. The authors successfully screen a drug library and identify two CLK kinase inhibitors as YAP activators, with SM04690 targeting specifically CLK2. They further investigate the molecular basis of SM04690-induced YAP activity and identify splicing events in AMOTL2 as strongly affected by CLK2 inhibition. Exon skipping within AMOTL2 decreases the interactions with membrane bound proteins and is sufficient to induce YAP target gene expression. Overall the study is well designed, the conclusions are supported by sufficient data and represent an exciting connection between alternative splicing and the HIPPO pathway. The specificity of the inhibitor towards CLK2 and the mode of action via AMOTL2 could be supported by further data:

      We thank the Reviewer for their close examination of our work. We respond below.

      1. The inconsistent inhibitor concentrations and varying results reported in the paper can be distracting. For instance, the response of endogenous targets to 100 nM concentration is described as a >5-fold increase in Figure 2B, whereas it is reported as a 1-1.5-fold response to 1000 nM in Figure 2D. This inconsistency should be addressed and clarified to provide a more accurate and reliable representation of the findings.

      In Figure 2D, we have transduced cells with lentivirus, which most likely suppresses their responsiveness to compound treatment. We have addressed the issue of varying inhibitor concentrations in response to Reviewer 1.

      1. In the absence of a strong inhibitor induced YAP target gene expression (Figure 2D), it is difficult to conclude the dependency on YAP expression, as investigated by siRNA mediated knockdown. In a similar experiment, the dependency of the inhibitor on CLK2 expression could be confirmed

      While the sample with Scramble virus does not respond to the same extent that WT HEK293A cells do (e.g., Fig. 2B), there is still responsiveness to compound. Likewise, YAP knockdown cells display statistically significant decreases in YAP-controlled transcripts. This decrease of transcript is therefore sufficient evidence that SM04690 requires YAP for its activity. We have shown that multiple CLK2 inhibitors recapitulate the effect of SM04690, abrogating the need to show dependency of CLK2.

      1. To further support the conclusion that CLK2 is the direct target of SM04690, it would be informative to investigate the effects of CLK1/4 inhibition on AMOTL2 exons (for example within RNA-seq data). If CLK1/4 inhibitors do not induce changes in AMOTL2 exons, it would strengthen the evidence for CLK2's role as the direct target. Including the results in the discussion would enhance the comprehensiveness of the study.

      We showed that CLK1/4 inhibition with small molecules ML167 and TG003 does not affect YAP activity in our luciferase reporter assay (Fig. S2D), which we believe is sufficient evidence that CLK1/4 is neither the direct target of SM04690 nor relevant to the splicing mechanism we describe.

      1. It would be important to determine the specific dose of SM04690 required to induce changes in AMOTL2 splicing. The authors observe that AMOTL2 protein levels appear unaffected at doses below 50 nM in Figure 3D, while YAP target genes are already affected at 20 nM in Figure 3G. Although Western blotting may not be the most sensitive method to detect minor changes in splicing, performing PCR experiments at lower doses could provide more insight into the splicing changes. Therefore, it is suggested that the authors include PCR experiments at lower doses to determine if changes in splicing are visible and to better establish the relationship between splicing and gene expression changes.

      We agree with the Reviewer that this experiment is essential to better understand splicing changes with SM04690 treatment. Accordingly, we have added RT-qPCR-based analysis of AMOTL2 exon inclusion at lower concentrations between 10 nM and 100 nM (Fig. S4A). We included a similar discussion in response to a point from Reviewer 1.

      Reviewer #1 (Recommendations For The Authors):

      As stated in the public review section, it will be helpful to discuss the differences in drug concentration. Although no one should require or expect a perfect drug dose match throughout any study, in this study the drug dose clearly demarcated when CLK2 inhibitor help/hurt proliferation, when CLK2 inhibitor was able to affect YAP phosphorylation, and when CLK2 inhibitor was able to affect AMOTL2 splicing. This is not to challenge the major conclusions of the paper, but it is hard to ignore if no discussion is provided.

      Several suggestions on data presentation:

      1. Scale bar information is missing in Fig. 2E, 4A and 4B.

      We have corrected this mistake in the revised manuscript.

      1. For Fig.3 D and 3E, it's better if kD information was labeled alongside the AMOTL2 Western blot.

      Thank you for the suggestion; we have added the appropriate labeling.

      1. It's better to label Figure2D as sh YAP-1, sh YAP-2; Figure 3A as sh CLK2-1, sh CLK2-2 etc. Currently they are all labeled shRNA-1, shRNA-2, which can be confusing.

      We have altered the labeling for clarity as requested.

      Reviewer #3 (Recommendations For The Authors):

      1. The use of asterisks in Figure 2D is unclear, especially their placement on the "Scramble" sample.

      We have amended the asterisks and have also added more detail to the figure legend.

      1. When designing primers for splicing-sensitive PCR, it is recommended that the skipping isoform is larger than 100 bp. This will help to avoid quantitative issues with ethidium bromide staining. In the results part, the text reads as if only the skipping isoform is present after SM04690 treatment.

      This experiment was performed to confirm the presence of exon skipping in the treated samples. Accordingly, we did not optimize the ethidium bromide staining of the lower bp bands. We will take the size of the isoform into consideration in any future experiments. We thank the reviewer for catching the textual error and have amended the text in the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      My main request is to show the phylogeny in the main text, so the reader knows what nodes are being compared.

      Full phylogeny was added to the main text as Fig. 2. Additionally, phylogenetic tree in Newick format is presented as a Supplementary file 2.

      I also suggest the authors check their figure legends carefully. At least in figure one, I think there is some mix-up with the letter labelling of the panels.

      Our mistake. Figure legend was corrected. In this version of the manuscript Figure 1 was split into Fig. 1 and Fig. 3. Corrected version is presented in the legend to Fig. 3.

      And lastly, I urge the authors to deposit the tree, alignment, and reconstructed sequences in a public repository.

      Alignment in fasta format and phylogenetic tree in Newick format were added as supplementary files to the publication (supplementary file 1 and supplementary file 2, respectively). Reconstructed sequences (both Most likely and AltAll variants) were shown as a figure supplement (Figure 3 – figure supplement 2). Posterior probabilities for all positions of the reconstructed sequences were added as a supplementary file (supplementary file 3).

      Reviewer #2 (Recommendations For The Authors):

      -I find the term "secondarily single sHsp" to be a little confusing, especially because it is often used in relation to IbpA/B, but it is just IbpA in another species. I think it would be more clear for the reader to consistently refer to it as Erwiniaceae IbpA vs Escherichia IbpA, or something similar.

      In the introduction we clarified (page 4 lines 11-13) that the term “secondarily single” IbpA refers to IbpA that lacks partner protein as a result of ibpB gene loss. This is in opposition to “single-protein” IbpA from a clade in which gene duplication leading to creation of two – protein sHsp system did not occur (like Vibrionaceae or Aeromonadaceae) - see Obuchowski et al., 2019.

      -Figure 1B. The labels are not defined. What is L? A and B refer to IbpA and IbpB but this should be made more clear to the reader. Why is this panel only referred to in the Introduction and not the Results? Why is there a second panel for E.amy, rather than including it in the same panel, as for other experiments? What are the error bars? (That goes for every error bar in the paper, none are defined).

      Labels in Fig.1B were corrected; “L” was used in reference to “luciferase alone” and it has been corrected for consistency to “no sHsp”. The sHsps activity measurements (obtained in the same experiment) were split into two separate panels as a correspondence to the two branches of the simplified tree in Fig. 1. The figure was modified to make it clearer and avoid confusion. Definitions of error bars were added to this and other figures.

      -"AncA0 exhibited sequestrase activity on the level comparable to IbpA from Escherichia coli (IbpAE.coli). AncA1 was moderately efficient in this process and IbpA from Erwinia amylovora (IbpAE.amyl) was the least efficient sequestrase (Fig. 1D)." - First, this should be referring to Fig. 1C. Second, the text doesn't quite match the panel. A0 appears to have the strongest sequestrase activity over most concentrations. Can the authors comment on in what concentration range these differences are most meaningful?

      Figure legend was corrected. Descriptions of panels C and D were fixed. Now these data are presented in panels A and B of a new Fig. 3. In our opinion differences in sequestration are most meaningful at lower sHsp concentrations (in this case lower than 5 µM), as with high enough sHsp concentration even less effective sequestrases seem to be able to effectively sequester aggregated proteins. Comment about it was added to the main text (page 5, line 6)

      -"Ancestral proteins' interaction with the aggregated substrates was stronger than in the case of extant E. amylovora IbpA, but weaker than in the case of extant E. coli IbpA (Fig. 1C)." - Is this referring to Fig. 1C, or to the unlabelled panel on the bottom right panel of Fig 1 (that is not referred to in the legend)? Can the authors comment on why they think the 2 ancestral proteins are much more similar to each other than they are to either of the native IbpAs?

      Due to our mistake descriptions of panels C and D were switched.

      Figure 1 was rearranged and split into Figures 1 and 3. Former figure S1 (full phylogeny) was inserted into the main text, as Fig. 2, per request of reviewer #1. Former panel 1D (now 3B) was rearranged, as graph was not apparent to be a part of that panel and looked as if it was unlabeled.

      The fact that the two ancestral proteins are more similar to each other than to the extant E. coli and E. amylovora proteins in their interaction with model substrate might be caused by higher sequence identity between the two ancestral proteins than between ancestral and extant proteins (10 amino acid differences between AncA0 and AncA1 compared to 20 differences between AncA1 and IbpA from E. amylovora or 11 differences between AncA0 and IbpA from E. coli). One also has to remember that this property is only one aspect of sHsp activity – proteins AncA0 and AncA1 are much less similar to each other if other activities such as sequestrase activity are considered. Substrate affinity and sequestrase activity are connected to each other, but there isn’t a strict correlation, as can be seen in the case of free ACD domains, which strongly bind aggregated substrate while effectively lacking sequestrase activity (fig. 5 A, fig. 5 – figure supplement 4 A,B).

      -Figure 1E should have E. coli IbpA and IbpB, by themselves, included for comparison. Strangely, it seems, by comparison to Fig 1B, that the "inhibitory" activity of A0 is not present in the E. coli protein, and the authors should comment on this. Similarly, A1 disaggregation looks like it might not be significantly different than the E. coli protein. Can the authors comment on why disaggregation might be so low in A1 compared to E.amy?

      E. coli IbpA alone was added to Fig. 1E (Fig. 3C in the new version) as suggested.

      AncA1 indeed exhibits similar activity to extant IbpA from E. coli, which, at the conditions of the experiment, does not possess inhibitory effect observed for AncA0. This suggests that:

      -There was an additional increase in ability to stimulate luciferase disaggregation between AncA1 and extant IbpA from E. amylovora

      -There was also an increase of ability to stimulate luciferase refolding between AncA0 and extant E. coli IbpA, albeit to a significantly lesser degree than in the Erwiniaceae branch.

      It is quite likely that after separation of Erwiniaceae and Enterobacteriaceae sHsp systems, they underwent further optimization through evolution. This might have led to observed higher effectiveness of modern IbpAs from both clades in refolding stimulation in comparison to the reconstructed ancestral proteins.

      Despite the above, effects of substitutions on positions 66 and 109 on activities of the extant E. coli and E. amylovora proteins suggests that the two identified positions still play key role in differentiating extant IbpAs from Erwiniaceae and Enterobacteriaceae.

      Nevertheless, additional mutations that lead to increased ability to stimulate luciferase reactivation must have occurred in both Erwiniaceae and Enterobacteriaceae branches of the phylogeny during evolution. These substitutions would be a worthwhile subject of further study.

      -Fig 1D - lizate should be lysate.

      The typo was corrected.

      -What is the bottom right panel in Fig 1? It doesn't seem to be referred to in the legend.

      This panel was intendent to be the part of figure 1D, but it was not clearly visible. This figure was rearranged to make it clearer. Now these data are presented as Fig. 3B.

      -Sequences are provided for the ancestral proteins, but I don't see them anywhere for the alternative ancestral proteins. How similar are the Anc proteins to the AltAlls? If they are very similar, this may not tell us anything about "robustness".

      Sequences of alternative proteins are added as a figure supplement (Fig. 3 - figure supplement 2). Full sequences of ML and alternative ancestors with posterior probabilities for each reconstructed position are presented in supplementary file 3

      The testing of the robustness to statistical uncertainty was intended to test to what extent properties of reconstructed ancestral proteins could be influenced by uncertainty present in a given reconstruction due to probabilistic nature of the process. Relatively high similarity between ML and AltAll sequences would indicate low uncertainty of the reconstruction (most likely due to high conservation during evolution). In such a case similar properties of AltAll and ML proteins would simply indicate that they are robust to the level of uncertainty present in a given reconstruction (which may be low). It would not tell us much about “general” robustness to mutations, but it was not relevant to research questions considered.

      -If the functional gain by IbpA comes down to only two amino acid substitutions, I'm not convinced this would be meaningfully reflected in any tests of positive selection.

      After considering Reviewer #1’s comments about limitations of models used for selection analysis we added acknowledgment in the discussion (page 9, line 9 - 13) that results indicating positive selection in our dataset should not be considered conclusive (see answer to Reviewer #1’s public review below).

      -The full MSA should be provided as supplemental material.

      The full MSA in fasta format is presented in the supplementary file 1.

      -For the aggregate binding panels in Figs 3 and 4, it would be helpful to show the native and ancestral proteins for comparison. I know this is a bit redundant, as they're present in Fig 1, but I find it hard to judge the scale of change. This is especially important because A0 and A1 are very similar in Fig 1, so I want to see what kind of difference the 2 mutations make.

      Data presented in Fig. 3C (Fig. 5C in the new version) refer to the binding of α-crystallin domains (A0ACD and A0ACD Q66H G109D) and not full length sHsps to E. coli proteins aggregated on a BLI sensor. Our intention was to show the influence of the two crucial substitutions (Q66H G109D) on the properties of A0 ancestral α-crystallin domain.

      Figure 4 (Fig. 6 in the new version) represent the effects of the substitutions on the identified positions 66 and 109 on the properties of extant IbpA orthologs from E. coli and E. amylovora, showing that these two positions play a key role in differentiating properties of those extant proteins. Changes in binding to aggregated substrate caused by those substitutions, as shown in Figure 6 B,C (new version), are indeed larger than observed between AncA0 and AncA1, as shown in Fig. 3B (new version).

      One has to remember, however, that the experiment shown in Fig.3 (new version) shows the effects of all 10 amino acid changes between the nodes A0 and A1 and not only the two analyzed substitutions, as was the case in experiment shown in Fig. 6 B,C (new version). Moreover, due to relatively large number of differences between ancestral and extant sequences (11 differences between AncA0 and E. coli IbpA, 20 differences between AncA1 and E. amylovora IbpA), substitutions in the two experiments are introduced into different sequence context.

      Because of the above, we believe that direct comparison of the results obtained for ancestral proteins with the results obtained for substitutions introduced into extant proteins would not meaningfully contribute to answering the question of the role of analyzed substitution in the context of extant proteins, while decreasing clarity of presented information.

      -Some of the luciferase plots show a time course, but others just show a single %. What is the time point used for the single % plots?

      Information was added to appropriate figure legends that for experiments showing a single timepoint the luciferase activity was measured after 1h of refolding.

      Reviewer #3 (Recommendations For The Authors):

      1. In the Introduction, it would be beneficial to explore additional instances where this evolutionary simplification process has been observed in nature. Investigating the prevalence of this phenomenon and identifying other multi-protein systems that have undergone simplification could enhance the understanding of its significance and implications.

      The section of the introduction concerning gene loss and differential paralog retention was expanded with additional examples of gene loss that is considered adaptive (page 3 lines 1 - 12).

      1. I am intrigued by the reasons why certain organisms continue to maintain a two-protein system despite the viability of a single-protein system. This aspect is particularly relevant for bacteria, considering the fitness cost associated with maintaining extra gene copies. Do you have any hypotheses or theories that may shed light on this intriguing observation?

      Refolding of proteins from aggregates requires the functional cooperation of sHsps and chaperones from Hsp70 system and Hsp100 disaggregase. In two protein sHsps system one sHsp (IbpA) is specialized in substrate binding, while the second one (IbpB) possesses low substrate binding potential and enhances sHps dissociation from substrates (Obuchowski et al, 2019). Thus, the presence of IbpB reduces the amount of chaperones from Hsp70 system required to outcompete sHsps from aggregated substrates to initiate refolding process. The cost associated with maintaining extra sHsp gene copy (ibpB) in bacteria might be compensated by lower requirement for Hsp70 chaperones for efficient and fast protein refolding following stress conditions.

      In this study we have demonstrated how such a system could have been simplified to a single – protein system capable of efficient substrate sequestration as well as stimulation of reactivation. This indeed leads to the question why such single – protein system isn’t more prevalent in Enterobacterales.

      One possibility may be that there are very specific requirements for efficient reactivation by a single – protein sHsp system. We have shown that new, more efficient IbpA functionality observed in Erwiniaceae required at least two separate mutations. It is possible, that such combinations of two substitutions simply did not occur in Enterobacteriaceae clade, in which IbpA still required partner protein for efficient reactivation stimulation.

      One must also remember that experiments performed in this study were performed in vitro in a specific set of conditions, which most likely does not represent whole spectrum of challenges faced by different bacteria. It is possible that two – protein system has some other additional adaptive effects, counterbalancing the additional cost of gene maintenance. It was for example recently shown (Miwa & Taguchi, PNAS, 120 (32) e2304841120) that bacterial sHsps play an important role in regulation of stress response. Two – protein system could potentially allow for more complex regulation.

      1. Incorporating X-ray crystallization as an additional technique in the methodology would offer detailed molecular insights into the effects of Q66H and G109D substitutions on ACD-C-terminal peptide and ACD-substrate interactions. The inclusion of such data would further strengthen the results section and provide robust support for your findings. Since the x-ray data might be difficult to collect, the authors might think to get alphafold model or some rosetta score for the model to discuss the finding further.

      In response to reviewer comment we added the comparison of the structural models of AncA0 and AncA0 Q66H G109D ACD dimers complexed with the C-terminal peptides, representing middle structures of largest clusters obtained from equilibrium molecular dynamics simulation trajectories based on the AlphaFold2 prediction and in silico mutagenesis (Fig. 5 – figure supplement 2). Model comparison as well as C-terminal peptide – ACD contact analysis did not reveal any major changes in mode of peptide binding or α-crystallin domain conformation, although we do acknowledge that simulation timescale limits the conformational sampling.

      Reviewer #1 (Public Review):

      The work in this paper is in general done carefully. Reconstructions are done appropriately and the effects of statistical uncertainty are quantified properly. My only slight complaint is that I couldn't find statistics about posterior probabilities anywhere and that the sequences and trees do not seem to be deposited.

      Posterior probabilities for all positions of reconstructed proteins were added as a supplementary file 3. MSA of all sequences used for ancestral reconstruction as well as phylogenetic tree in Newick format were added as supplementary files 1 and 2, respectively.

      I would also have preferred to have the actual phylogeny in the main text. This is a crucial piece of data that the reader needs to see to understand what exactly is being reconstructed.

      Full phylogeny was added to the main text as Fig. 2.

      The paper identifies which mutations are crucial for the functional differences between the ancestors tested. This is done quite carefully - the authors even show that the same substitutions also work in extant proteins. My only slight concern was the authors' explanation of what these substitutions do. They show that these substitutions lower the affinity of the C-terminal peptide to the alpha-crystallin domain - a key oligomeric interaction. But the difference is very small - from 4.5 to 7 uM. That seems so small that I find it a bit implausible that this effect alone explains the differences in hydrodynamic radius shown in Figure S8. From my visual inspection, it seems that there is also a noticeable change in the cooperativity of the binding interaction. The binding model the authors use is a fairly simple logarithmic curve that doesn't appear to consider the number of binding sites or potential cooperativity. I think this would have been nice to see here.

      The binding model we used is equivalent to the Hill equation as it accounts for the variable slope of sigmoid function by inclusion of input scaling factor k, which is equivalent to the hill coefficient. Simple one site binding model and two site binding model were also considered but provided worse fits to the data than model including binding cooperativity. Not providing values of fitted parameter k was our mistake, and it was corrected (Fig. 5. with a legend). Additionally, output scaling parameter L is not necessary as fraction bound takes values from 0 to 1, therefore we have fitted the curves again without this parameter. The new values of fitted parameters are very similar to the previous ones. To make text more accessible to the reader, we have used a conventional form of Hill equation. Indeed, AncA0 Q66H G109D ACD displays higher binding cooperativity than more ancestral AncA0 ACD (hill coefficient 2.3 for AncA0 vs 3.7 for AncA0 Q66H G109D). Fitted values of Hill coefficients are higher than one can expect for 2-site ACD dimer, which is probably caused by an experimental setup of BLI, where C-terminal peptide is immobilized on the sensor and ACD is present in solution as bivalent analyte leading to emergence of avidity effects. Both cooperativity and avidity are reflected in the value of Hill coefficient, however as ligand density on the sensor is the same in all experiments only change in ACD binding cooperativity can account for observed difference in the value of Hill coefficients. Difference in the C-terminal peptide binding cooperativity may influence the process of sHsp oligomerization and assembly formation despite similar binding affinity, especially if avidity of multiple binding sites within oligomer is considered.

      In addition, we changed the legend to Figure S8 (now called Fig. 5 – figure supplement 4A ) to clarify the fact that the differences in average hydrodynamic radius are in fact ferly small. To highlight the observation that there are two populations of particles in AncA0 and AncA0 Q66H G109D measured at 25, 35 and 45 °C with different hydrodynamic diameters, we used % of intensity in DLS measurement. It allows us to show the change in the hydrodynamic diameter distribution that is relatively small. We recognize it was not properly explained in the article and added a clarification in figure description.

      Lastly, the authors use likelihood methods to test for signatures of selection. This reviewer is not a fan of these methods, as they are easily misled by common biological processes (see PMID 37395787 for a recent critique). Perhaps these pitfalls could simply be acknowledged, as I don't think the selection analysis is very important to the impact of the work.

      We thank the reviewer for pointing to the recent research about limitations of methods used in our work in selection analysis. As per recommendation we added acknowledgment of limitations of methods used to discussion (page 9, line 9 - 13), modifying wording of our conclusions to deemphasize significance of selection analysis results.

    1. Author Response:

      We thank the editors and reviewers for their time in reviewing our manuscript. We would like to post a brief response to the peer reviews at this stage, and we will revise the manuscript and re-post at a later time.

      The main concerns regarding our molecular dating approach consist of the limited number of marker genes used for phylogenetic reconstruction, the molecular clock model employed, and the calibrations used. Firstly, regarding the marker genes that we used in our phylogenetic reconstruction, we will point out that we have extensively benchmarked these methods in a previous study (Martinez-Gutierrez and Aylward, 2021). We initially planned on presenting all of these results together in the same manuscript, but we decided that benchmarking phylogenetic marker genes across all Bacteria and Archaea together with an extensive molecular dating analysis was too much for a single study, and we therefore divided the results into two papers. In short, we agree with R1 that the use of different marker genes will lead to marked differences in the posterior ages of our Bayesian molecular dating analysis; however, we demonstrated that several of the few marker genes shared between Bacteria and Archaea lack of a strong phylogenetic signal and therefore introduce topological biases in the final phylogeny (i.e., long branch attraction). Consequently, using poorly-performing marker genes for molecular dating does not add valuable information to the overall analysis.

      Secondly, regarding the autocorrelated Log-normal model used in our study (-ln on Phylobayes), we believe this is appropriate. Besides being biologically meaningful for our study, it represents a compromise between a relaxed model with rate variation across branches and the assumption of correlation between parent and descent branches (Thorne et al., 1998). In contrast, a fully uncorrelated model that assumes rate independence across branches would make our analysis extremely time-consuming and intractable given our study encompasses all of Bacteria and Archaea. Nonetheless we understand the concerns raised, and in a future manuscript we will include age estimates resulting from the CIR and UGAM models in order to explore the potential effect of model selection in posterior dates.

      Thirdly and lastly, we will point out that calibrations for molecular dating of Bacteria and Archaea are always highly controversial, and there are essentially no calibrations for the early evolution of life on Earth that would not be contested to some degree. Researchers are therefore left to use their best judgment and provide reasonable rationale, which we have done here. We understand that strong opinions abound in this area, and many researchers will disagree with our approach, but that alone does not invalidate our study. Moreover, the main novelty of our approach is the use of a large tree that combines Bacteria and Archaea; extensive benchmarking of different calibration points on such a large tree is not possible here as it may be on a smaller set. One of the main concerns is the use of the age estimate of the Great Oxidation Event (GOE, 2.4 Ga) as minimum and maximum constraints for oxygenic Cyanobacteria, and Ammonia Oxidizing Archaea and aerobic Marinimicrobia, respectively. We agree that oxygen may have existed before the GOE as proposed previously (e.g., Ostrander et al., 2021), however; the strongest geochemical evidence so far (Mass Independent Fractionation of Sulfur, MIFs, (Farquhar et al., 2000)) indicates a significant accumulation of oxygen around that time. We therefore feel that this is a reasonable calibration to use for microbial lineages that have a physiology that is tightly linked to the production or consumption of oxygen. Similar reasoning has been used in other molecular dating studies, so our logic is not out of step with much research in the field (Liao et al., 2022; Ren et al., 2019).

      Due to the limitations of molecular dating studies of microorganisms, we have been very careful to avoid strong conclusions based on the absolute dates we calculated, and the primary interest of readers will likely be the relative divergence times of the marine clades we study (i.e., the overall timeline of microbial diversification in the ocean). We will provide a more in-depth assessment of models and calibrations for Bacteria and Archaea in a future draft, but in the meantime we hope to convey that our study is not without merit despite the substantial challenges of research in this area.

      References:

      • Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759.
      • Liao T, Wang S, Stüeken EE, Luo H. 2022. Phylogenomic Evidence for the Origin of Obligate Anaerobic Anammox Bacteria Around the Great Oxidation Event. Mol Biol Evol 39. doi:10.1093/molbev/msac170
      • Martinez-Gutierrez CA, Aylward FO. 2021. Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Mol Biol Evol 38:5514–5527.
      • Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, Swan BK, Fonseca MM, Posada D, Stepanauskas R, Hollibaugh JT, Foster PG, Woyke T, Luo H. 2019. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J 13:2150–2161.
      • Ostrander CM, Johnson AC, Anbar AD. 2021. Earth's first redox revolution. Annu Rev Earth Planet Sci. 49, 337-366.
      • Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657.