22 Matching Annotations
  1. Nov 2022
    1. BER * For non-helix distorting base lesions. * Base is not present, a gap is present in DNA. * Specific DNA glycosylases used for identification. * APEX1 and APEX2 (AP endonucleases): responsible for end processing * An AP site (apurinic/apyrimidinic site). * The exposed 3' OH is available to a replicative polymerase. * Ligation performed by ligase * Short or long patch BER is possible.

    1. In HR, * MRN -- begginings of dsDNA resection. * The PARP1 protein is active on ssDNA. * Free 3' ends made available, crucial for later DNA pol binding. * RPA binds, coats, the ssDNA.<br /> * Rad51 searches for strand for invasion. * Strand invasion carried out by sister chromatid, etc. * D-loop formation.

      May have. * DSBR * SDSA * BIR

    2. NHEJ relies on microhomologies. Doesn't require homologous sequence from another source. * Ku protein instrumental in identification of DSB and recruits DNA-PKcs. * DNa-PKcs autophosphorylates. * DNA ends processed by Artemis. * LIG4 and XCRR4 are needed for strand ligation.

    1. TEs are transposable elements.

      Transposons are mobile DNA elements.Can move throughout the genome. Can be catagorised as class 1 (retrotransposons) or class 2 (DNA transposons).

      Class 1 comprises TEs with LTRs, retroposons (LINE), SINEs.

      Class 2 comprises TEs that operate under replicative transposition or non-replicative transposition. Replicative transposition (nick and paste) -- a total of two TEs as an end result, one as part of the donor and one as part of the target sequence. cointegrate.

      Non-replicative transposition (cut and paste) - only one TE generated, in the target.

      Examples of DNA-only transposon:

    1. The initial sample consisted of 1 band. F = 0. 1st generation = The sample overall less dense, still one band. Intermediate density. dsDNA made of one strand heavy and one light. After 2 generations, there was a band for intermediate density and for strands of just light, N-14, dsDNA.

    2. Parental strands consist of N-15 isotopes. Replicated daughter strands consist of N-14 isotopes. The CsCl ultracentrifugation process creates density gradient. This allows DNA fragments of different densities to migrate and form a band at the point at which their buoyant density equals that of the salt.

    1. The several panels show what happens in each cycle. Each cycle consists of a denaturation step at a temperature higher than the melting temperature of the duplex DNA (e.g. 95 oC ), then an annealing step at a temperature below the melting temperature for the primer-template (e.g. 55 oC), followed by extension of the primer by DNA polymerase using dNTPs provided in the reaction. This is done at the temperature optimum for the DNA polymerase (e.g. 70 oC for a thermostable polymerase). Thermocylers are commercially available for carrying out many cycles quickly and reliably
      • Denature
      • Annealing primer
      • Synthesize new DNA with polymerase