3 Matching Annotations
  1. Dec 2021
  2. Jun 2021
    1. Dual spaces also appear in geometry as the natural setting for certain objects. For example, a differentiable function f:M→R

      Dual spaces also appear in geometry as the natural setting for certain objects. For example, a differentiable function f:M→R where M is a smooth manifold is an object that produces, for any point p∈M and tangent vector v∈TpM, a number, the directional derivative, in a linear way. In other words, ==a differentiable function defines an element of the dual to the tangent space (the cotangent space) at each point of the manifold.==

    1. To put it succinctly, differential topology studies structures on manifolds that, in a sense, have no interesting local structure. Differential geometry studies structures on manifolds that do have an interesting local (or sometimes even infinitesimal) structure.

      Differential topology take a more global view and studies structures on manifolds that have no interesting local structure while differential geometry studies structures on manifolds that have interesting local structures.