4,014 Matching Annotations
  1. Last 7 days
    1. eLife assessment

      This study provides the fundamental insight that TGN46, a single-pass membrane protein, acts as a cargo receptor for proteins at the Trans-Golgi Network. The authors demonstrate that the luminal domain of TGN46 is crucial for the incorporation of the soluble secretory protein PAUF into CARTS, a class of vesicles mediating TGN to surface traffic. The data presented are compelling, yielding a clear model for the sorting of cargos destined for secretion.

    1. eLife assessment

      The study addresses a central question in systems neuroscience (validation of active inference models of exploration) using a combination of behavior, neuroimaging, and modelling. The data provided are useful but incomplete, missing critical detail. Additionally, some of the conclusions require a comparison model, and proper consideration of alternative explanations.

    1. eLife assessment

      This study reports important findings about new locomotory dynamics of crawling Drosophila larva based on imaging the reaction forces during larval crawling. The evidence with the new high-resolution microscopy method is compelling, as it significantly improves the spatial, temporal, and force resolution compared to previous methods for studying Drosophila larva and could be applied to other crawling organisms. The manuscript explains the new technology, WARP microscopy, and provides analysis of the data to characterize small animal behavior and discover new crawling-associated anatomical features and motor patterns. The work will be of interest to the broad neuroscience community interested in the mechanisms of locomotion in a highly tractable model.

    1. eLife assessment

      This important study explores numerous lines of evidence for the surprisingly diverse diets of a group of toothed birds that lived over 100 million years ago. The large amount of data the authors collected forms a solid dataset. The methods might in principle extensible to other limbed vertebrates, although there are concerns regarding some of the details. The article will be of interest to colleagues studying ecological evolution in birds or dinosaurs more generally, as well as to anyone studying the impact of the mass extinction event 66 million years ago.

    1. eLife assessment

      The microRNA lin-4, originally discovered in C. elegans, has a key role in developmental timing across species, but how its expression is developmentally controlled is poorly understood. Here, the authors provide convincing evidence that two MYRF transcription factors are essential positive regulators of lin-4 during early C. elegans larval development. These results provide important insight into the molecular nature of developmental timing that could have significant implications for understanding these processes in more complex systems.

    1. eLife assessment

      This important study combines a range of advanced ultrastructural imaging approaches to define the unusual endosomal system of African trypanosomes. Compelling images reveal that, unlike a conventional set of compartments, the endosome in these protists forms a continuous membrane system with functionally distinct subdomains, as defined by canonical markers for early, late, and recycling endosomes. The findings compellingly support that the endocytic system in bloodstream stages has adapted to support remarkably high rates of membrane turnover necessary for immune complex removal and survival in the blood. This research is particularly relevant to those investigating infectious diseases

    1. eLife assessment

      This fundamental study addresses the earliest events that enable plant roots to reorient growth in response to gravity. Compelling molecular and cell biological data establish that plasma membrane localization of the LAZY or NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR) protein family is required for rapid and polar redirection of D6 protein kinase, an activator of the PIN3 auxin transporter. This work complements and extends recent publications on the NGR family in gravity sensing (PMID: 37741279 and PMID: 37561884). Collectively these papers advance our understanding of rapid plant gravity sensing and response.

    1. eLife assessment

      This valuable study identifies an uncharacterized yeast gene regulating chronological lifespan in a mitochondrial-dependent pathway. The approach to identify and characterise this new gene is appealing, but the evidence in support of some of the major conclusions is incomplete. The paper focuses on chronological lifespan and mitochondrial function, and it will be of interest to yeast biologists working in metabolism and aging.

    1. eLife assessment

      This important study combines experimental and computational data to address crucial aspects of RNA methylation by a vital RNA methyltransferase (MTase). The authors have provided compelling, strong evidence, utilizing well-established techniques, to elucidate aspects of the methyl transfer mechanism of methyltransferase-like protein 3 (METTL3), which is a part of the METTL3-14 complex. This work will be of broad interest to biochemists, biophysicists, and cell biologists alike.

    1. eLife assessment

      This important study presents findings regarding the role of Juvenile Hormone in development and cell differentiation in the ametabolous insect Thermobia domestica, providing an in-depth analysis of JH's roles in a member of this basally branching group. The evidence supporting the claims of the authors is convincing, drawing on a broad range of approaches and variety of experimental techniques. While the interpretation of this work in the wider context - its relevance for the evolution of metamorphosis - is in some places somewhat speculative, the work will be of interest to evolutionary developmental biologists studying the evolution of metamorphosis, and the evolution of insects in general.

    1. eLife assessment

      This study reports important findings on identifying sequence motifs that predict substrate specificity in a class of lipid synthesis enzymes. It sheds light on a mechanism used by bacteria to modify the lipids in their membrane to develop antibiotic resistance. The evidence is convincing, with a careful application of machine learning methods, validated by mass spectrometry-based lipid anlaysis experiments. This interdisciplinary study will be of interest to computational biologists and to the community working on lipids and on enzymes involved in lipid synthesis or modification.

    1. eLife assessment

      This important study addresses the problem of detecting weak similarity between protein sequences, a procedure commonly used to infer homology or assign putative functions to uncharacterized proteins. The authors present a convincing approach that combines recently developed protein language models with well-established methods. The benchmarks provided show that the proposed tool is fast and accurate for remote homology detection, making this paper of general interest to all researchers working in the fields of protein evolution and genome annotation.

    1. eLife assessment

      The findings in the manuscript are important and the strength of evidences from the genomic analyses is convincing. However, the evidence for the existence of functional MER21B/C remnants in mice, as well as for the imprinting status of Zdbf2 in rabbits and non-human primates was viewed as mainly correlative and incomplete. This manuscript will be of interest to developmental biologists and those working on possible novel mechanisms of gene regulation.

    1. eLife assessment

      The manuscript looks at how dysregulated purine metabolism in mutants for the Aprt gene impacts survival, motor and sleep behavior in the fruit fly. Interestingly, although several deficits arise from dopaminergic neurons, dopamine levels are increased in Aprt mutants. Instead the biochemical change responsible for Aprt mutant neurobehavioural phenotypes appears to be a reduction in levels of adenosine. This valuable study suggests that Drosophila Aprt mutants may serve as a model for understanding Lesch-Nyhan Disease (LND), caused by mutations in the human HPRT1 gene, and may also potentially serve as a model to screen for drugs for the neurobehavioural deficits observed in LND. The strength of evidence is solid.

    1. eLife assessment

      This valuable study examines the relationship between positional anchoring of grid cell activity and performance in spatial navigation tasks that requires path integration. The authors demonstrate that grid cells can either fire in relation to the position relative to task-relevant virtual stimuli or independently based on the distance covered. Their findings convincingly reveal that mice exhibited better performance in the path integration task when grid cell activity was anchored to their position on the virtual track rather than the distance traversed, highlighting the contribution of grid firing to spatial navigation behavior. The work will be of interest to experimental and computational neuroscientists interested in spatial navigation.

    1. eLife assessment

      This work describes a novel and powerful affinity interactomics approach that allows investigators to identify networks of protein-protein interactions in cells. The important findings presented here describe the application of this technique to the SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1), the truncation of which leads to centronuclear myopathy. The authors present solid evidence that BIN1 SH3 engages with an unexpectedly high number of cellular proteins, many of which are linked to skeletal muscle disease, and evidence is presented to suggest that BIN1 may play a role in mitosis creating the potential for new avenues in drug development efforts. Some of the findings, however, are rather preliminary, and questions about differences in affinities between whole intact protein and fragment binding partners are not adequately discussed.

    1. eLife assessment

      This article reports an important fluorescence-based reporter system to evaluate kinase conformations. This assay is applied to four different kinases that have very unique regulatory features, thereby indicating that the assay can be used to provide solid evidence on the conformational state of a large number of kinases. This paper will be of interest to researchers working on kinases and their conformational states.

    1. eLife assessment

      The authors identify new mechanisms that link a PIK3R1 mutant to cellular signaling and division in Activated PI3 Kinase Delta Syndrom 1 and 2 (APDS1/2). The conclusion that this mutant serves as a dominant negative form of the protein, impacting PI3K complex assembly and IRS/AKT signaling, is important, and the evidence from constitutive and inducible systems in cultured cells is convincing. Nevertheless, there are several limitations relating to differences between cell lines and expression systems, as well as more global characterization of the protein interaction landscape, which would further enhance the work.

    1. eLife assessment

      In this manuscript, the authors address the function of keratin 17 (K17), a marker of the most aggressive pancreatic ductal adenocarcinomas (PDACs). While this potentially useful study addresses an important area of pancreatic cancer research, the lack of evidence demonstrating nuclear localization of K17 in human PDAC and the excessive reliance on a single cell line reduce the significance of the work. Moreover, the weak phenotypes of K17 phosphosite mutants provide incomplete support for the authors' mechanistic model.

    1. eLife assessment

      This valuable study sheds light on the pivotal role of alterations in chondrocyte glycan metabolism in two contexts: The onset of cartilage degeneration and early onset of osteoarthritis (OA). The action is through hypertrophic differentiation of chondrocytes, a finding that provides insights into the identification of nascent markers for early-stage OA. The evidence supporting the claims is solid, with the authors clearly demonstrating the role of articular cartilage corefucosylation in the development of OA. The authors' inferences would be further enhanced through future experiments aimed at analyzing the mechanisms underlying the changes in glycometabolism in cartilage.

    1. eLife assessment

      This manuscript describes fundamental single-molecule correlative force and fluorescence microscopy experiments to visualize the 1D diffusion dynamics and long-range nucleosome sliding activity of the yeast chromatin remodelers, RSC and ISW2. Compelling evidence shows that both remodelers exhibit 1D diffusion on bare DNA but utilize different mechanisms, with RSC primarily hopping and ISW2 mainly sliding on DNA. These results will be of interest to researchers working on chromatin remodeling.

    1. eLife assessment

      This important study employs multiscale simulations to show that PIP2 lipids bind to DIV S4-S5 linkers within the inactivated state of a voltage-gated sodium channel, affecting the coupling of voltage sensors to the ion-conducting pore. The authors demonstrate that PIP2 prolongs inactivation by binding to the same site that binds the C-terminal during recovery from inactivation, and they suggest that binding to gating charges in the resting state may impede activation, both findings that contribute to our understanding of sodium channel modulation. The coarse-grained and atomistic molecular dynamics simulations are convincing, including state dependence and linker mutants to back up the claims.

    1. eLife assessment

      This landmark study sheds light on a long-standing puzzle in Protein kinase A activation in Trypanosoma. Extensive experimental work provides exceptional evidence for the conclusions of the work, which represents a significant advancement in our understanding of the molecular mechanism of cyclic nucleotide binding domains. The work is relevant for researchers with interests in kinases and their mechanistic study.

    1. eLife assessment

      This important study reports on key characteristics of MYC-driven cancers: dysregulated pre-mRNA splicing and altered metabolism, with the data being overall solid. The manuscript should be of broad interest to cancer biologists due to its therapeutic implications.

    1. eLife assessment

      This potentially useful study aims to advance our understanding of the structure of the native form of a viral toxin secreted from infected cells. While some of the findings confirm previous reports, the new claims in this study are unfortunately only inadequately supported by the methods and analyses used. More rigorous approaches are needed to justify the main conclusion that the structure of the viral toxin derived from infected cells in this study is distinct from previously reported structures of recombinantly expressed versions of the toxin.

    1. eLife assessment

      This important study elucidates the molecular divergence of caspase 3 and 7 in the vertebrate lineage. Convincing biochemical and mutational data provide evidence that in humans, caspase 7 has lost the ability to cleave gasdermin E due to changes in a key residue, S234. The diversification and specialization of gasdermins such as gasdermin E in humans compared to early vertebrates such as teleosts may enable each human gasdermin molecule to have more restricted and tightly regulated physiological functions in different cell death pathways.

    1. eLife assessment

      This useful study reports that a water-soluble analog of heliomycin, 4-dmH, induces protein degradation of not only SirT1 but also tNOX, unlike heliomycin, which induces degradation of SirT1 but not tNOX, a difference that could in principle explain why 4-dmH induces apoptosis while heliomycin induces autophagy. The presented data solidly support the authors' conclusions.

    1. eLife assessment

      This important work suggests that the observed cosine-like activity in the head direction circuit of insects not only subserves vector addition but also minimizes noise in the representation. The authors provide solid evidence using the locust and fruit fly connectomes. The work raises important theoretical questions about the organization of the navigation system and will be of interest to theoretical and experimental researchers studying navigation.

    1. eLife assessment

      This study provides important new insights into the structural diversity of effectors – proteins secreted by pathogens and symbionts into host cells – from the plant-associated fungus Fusarium oxysporum f. sp. lycopersici. The study provides a convincing approach to elucidate how effectors navigate their host environment by exploiting both computational and experimental approaches to understand how their structure influences binding partners. The work will be of interest to those studying molecular host-microbe interactions and disease protection.

    1. eLife assessment

      This study provides a fundamental advance in palaeontology by reporting the fossils of a new invertrebrate, Beretella spinosa, and inferring its relationship with already described species. The analysis placed the newly described species in the earliest branch of moulting invertebrates. The study, supported by convincing fossil observation, hypothesizes that early moulting invertebrate animals were not vermiform.

    1. eLife assessment

      The work by Lewis and co-workers presents important findings on the role of myosin structure/energetics on the molecular mechanisms of hibernation by comparing muscle samples from small and large hibernating mammals. The solid methodological approaches have revealed insights into the mechanisms of non-shivering thermogenesis and energy expenditure.

    1. eLife assessment

      This paper presents valuable findings that shed light on the mental organisation of knowledge about real-world objects. It provides diverse, if incomplete and tentative, evidence from behaviour, brain, and large language models that this knowledge is divided categorically between relatively small objects (closer to the relevant scale for direct manipulation) and larger objects (further from the typical scope of human affordances for action).

    1. eLife assessment

      The present study provides valuable evidence on the neurochemical mechanisms underlying working memory in obesity. The authors' approach considering specific working memory operations (maintenance, updating) and putative dopaminergic genes is solid, though the inclusion of a more direct measure of dopamine signaling and further theoretical analysis and interpretation of findings would have strengthened the work.

    1. eLife assessment

      This important study explores the potential influence of physiologically relevant mechanical forces on the extrusion of vesicles from C. elegans neurons. The authors provide compelling evidence to support the idea that uterine distension can induce vesicular extrusion from adjacent neurons. The work would be strengthened by using an additional construct (preferably single-copy) to demonstrate that the observed phenotypes are not unique to a single transgenic reporter. Overall, this work will be of interest to neuroscientists and investigators in the extracellular vesicle and proteostasis fields.

    1. eLife assessment

      This is a saturation mutagenesis screening of the CDKN2A gene, successfully assessing the functionality of the missense variants. The results seem robust, but currently, the manuscript is incomplete with a number of weaknesses. The work has the potential to serve as a valuable resource for diagnostic labs as well as cancer geneticists.

    1. eLife assessment

      This study presents a useful comparison of the dynamic properties of two RNA-binding domains. The data collection and analysis are solid, making excellent use of a suite of NMR methods. However, evidence to support the proposed model linking dynamic behavior to RNA recognition and binding by the tandem domains remains incomplete. The work will be of interest to biophysicists working on RNA-binding proteins.

    1. eLife assessment

      This valuable study combines multidisciplinary approaches to examine the role of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a potential novel host dependency factor for Zika virus. The main claims are partially supported by the data, but remain incomplete. The evidence would be strengthened by improving the immunofluorescence analyses, addressing the role of IGF2BP2 in "milder" infections, and elucidating the role of IGF2BP2 in the biogenesis of the viral replication organelle. With the experimental evidence strengthened, this work will be of interest to virologists working on flaviviruses.

    1. eLife assessment

      The manuscript explores the ways in which the genetic code evolves, specifically how stop codons are reassigned to become sense codons. The authors present phylogenetic data showing that mutations at position 67 of the termination factor are present in organisms that nevertheless use the UGA codon as a stop codon, thereby questioning the importance of this position in the reassignment of stop codons. Alternative models on the role of eRF1 would reflect a more balanced view of the data. Overall, the data are solid and these findings will be valuable to the genomic/evolution fields.

    1. eLife assessment

      This study presents a valuable finding on the process of brown to white adipogenic transdifferentiation within the perirenal adipose depot. The evidence supporting the claims is convincing, although limited sequencing depth of single nuclei and lack of regulatory insights somewhat lessens the impact of these findings. The work will be of interested to adipose tissue biologists.

    1. eLife assessment

      This study presents valuable insights into the evolution of the gasdermin family, making a strong case that a GSDMA-like gasdermin activated by caspase-1 cleavage was already present in early land vertebrates. Convincing biochemical evidence is provided that extant avian, reptilian, and amphibian GSDMA proteins can still be activated by caspase-1 and upon cleavage induce pyroptosis-like cell death -- at least that they do so in the context of human cell lines. The caspase-1 cleavage site has only been lost in mammals, which use the more recently evolved GSDMD as a caspase-1 cleavable pyroptosis inducer. The presented work will be of considerable interest to scientists working on the evolution of cell death pathways, or on cell death regulation in non-mammalian vertebrates.

    1. eLife assessment

      Bladder dysfunction following spinal cord injury (SCI) represents a severe and disabling complication without effective therapies. Following evidence that AMPA receptors play a key role in bladder function the authors show convincingly that AMPA allosteric activators can ameliorate many of the subacute defects in bladder and sphincter function following SCI, including prolonged voiding intervals and high bladder pressure thresholds for voiding. These valuable results in rodents may help in the development of these agents as therapeutics for humans with SCI-induced bladder dysfunction.

    1. eLife assessment

      This important study identifies the TNXB-AKT pathway as a potential mechanism underlying hemophilia-associated cartilage degeneration. The evidence supporting the conclusions is convincing, with murine and human patient evidence as well as genome-wide DNA methylation analysis. This paper would be of interest to cell biologists and biochemists working on musculoskeletal disorders.

    1. eLife assessment

      This important study identifies the role of Caveolin1 and Cavin1 as regulators of TransEndothelial Macroaperture (TEM). The methodology used is rigorous and compelling, and further research can point to more mechanistic understanding of the process.

    1. eLife assessment

      This valuable study introduces an innovative method for measuring interocular suppression depth, which implicates mechanisms underlying subconscious visual processing. The evidence is solid in suggesting a limitation of measuring conventional bCFS threshold alone that could be remediated by the new method. It will be of interest not only to cognitive psychologists and neuroscientists who study sensation and perception but also to philosophers who work on theories of consciousness.

    1. eLife assessment

      The manuscript from Richter et al. is a very thorough anatomical description of the external sensory organs in Drosophila larvae. It represents a fundamental step forward for sensory physiology, and provides a tool for investigating the relationship between the structure and function of sensory organs. Using improved electron microscopy analysis and digital modelling, the authors provide compelling evidence that form the basis for further molecular and functional studies to decipher the sensory strategies used by larvae to navigate through their environment.

    1. eLife assessment

      This important paper uses a multifaceted approach to implicate the locus coeruleus-noradrenaline system in the stress-induced transcriptional changes of dorsal and ventral hippocampus. It provides an inventory of dorsal and ventral hippocampal gene expression upregulated by activation of LC-NA system, which can be used as starting point for more functional studies related to the effects of stress-induced physiological and pathological changes. The results convincingly support the conclusions. This paper will be of interest to those interested in stress neurobiology, hippocampal, and/or noradrenaline function.

    1. eLife assessment

      This valuable manuscript by Lane introduces an exciting way to measure SARS-CoV-2 aerosolized shedding using a disposable exhaled breath condensate collection device (EBCD). The paper draws the conclusion that the contagious shedding of the virus via the aerosol route persists at a high level until 8 days after symptoms. While the methodology is potentially of high importance and the paper is clearly written, the conclusions are incomplete and only partially supported by the data.

  2. Feb 2024
    1. Editors Assessment:

      The snake pipefish, Entelurus aequoreus, is a species of fish that dwells in open seagrass habitats in the northern Atlantic. As a pipefish, it is a member of the Syngnathidae family of fish which also includes seahorses and seadragons. In recent years it has expanded its population size and range into arctic waters. To better understand these demographic changes genomic data is useful, and to address this a high-quality reference genome has been produced. Building on a previous short-read reference, a near chromosome-scale genome assembly for the snake pipefish was assembled using PacBio CLR and Hi-C reads. After revisions the authors provided more details on the assembly metrics, the final assembly has a length of 1.6 Gbp, with scaffold and contig N50s of 62.3 Mbp and 45.0 Mbp respectively. Demographic inference analysis of the snake pipefish genome using this data enables tracing of population changes over the past 1 million years, and this reference will allow further analyses and studies relating these to changes in climate.

      **This evaluation refers to version 1 of the preprint *

    1. eLife assessment

      This valuable study uses multiple large neuroimaging data sets acquired at different points through the lifespan to provide solid evidence that birthweight (BW) is associated with robust and persistent variations in cortical anatomy, but less-substantial influences on cortical change over time. These findings, supported by robust statistical methods, illustrate the long temporal reach of early developmental influences and carry relevance for how we conceptualize, study, and potentially modify such influences more generally. The paper will be of interest to people interested in brain development and aging.

    1. eLife assessment

      In this valuable study, the authors explore regulatory cascades governing mammalian cochlear hair cell development and survival. They confirm previous studies that the transcription factors Pou4f3 and Gfi1 are necessary for hair cell survival, and use compelling evidence to demonstrate that the RNA binding protein gene RBM24 is regulated by Pou4f3, but not Gfi1. These findings will be of interest to those working on hearing loss, and hold significance for viral gene delivery methods aiming to manipulate gene expression.

    1. Editors Assessment: Understanding the distribution of Anopheles mosquito species is essential for planning and implementing malaria control programmes, a task undertaken in this study that assesses the composition and distribution of the Anopheles in different districts of Kinshasa in the Democratic Republic of Congo. Mosquitoes were collected using CDC light traps, and then identified by morphological and molecular means. In total 3,839 Anopheles were collected, and data was digitised, validated and shared via the GBIF database under a CC0 waiver. The project monitoring the monthly dynamics of four species of Anopheles, showing a fluctuation in their respective frequencies during the study period. Review improved the metadata by adding more accurate date information, and this data can provide important information for further basic and advanced studies on the ecology and phenology of these vectors in West Africa.

      *This evaluation refers to version 1 of the preprint

    1. eLife assessment

      This study presents a valuable set of calcium imaging data to analyze the dynamics of excitatory and inhibitory responses in the projection neurons of the honeybees during and after odor presentations. The neural circuit model fed with the imaging data recapitulated odor-specific activity in the Kenyon cells in the post-odor period and the timing shift of behavioral response in associative learning. This solid work will be of interest to researchers working on associative learning.

    1. eLife assessment

      This important study develops a machine learning method to reveal hidden unknown functions and behavior in gene regulatory networks by searching parameter space in an efficient way. The evidence for some parts of the paper is still incomplete and needs systematic comparison to other methods and to the ground truth, but the work will be of broad interest to anyone working in biology of all stripes since the ideas reach beyond gene regulatory networks to revealing hidden functions in any complex system with many interacting parts.

    1. eLife assessment

      This study provides important insights into the role of neurexins as regulators of synaptic strength and timing at the glycinergic synapse between neurons of the medial nucleus of the trapezoid body and the lateral superior olive, key components of the auditory brainstem circuit involved in computing sound source location from differences in the intensity of sounds arriving at the two ears. Through an elegant combination of genetic manipulation, fluorescence in-situ hybridization, ex vivo slice electrophysiology, pharmacology, and optogenetics, the authors provide convincing evidence to support their claims. While further work is needed to reveal the mechanistic basis by which neurexins influence glycinergic neurotransmission, this work will be of interest to both auditory and synaptic neuroscientists.

    1. eLife assessment

      This study provides important evidence supporting the ability of a new type of neuroimaging, OPM-MEG system, to measure beta-band oscillation in sensorimotor tasks on 2-14 years old children and to demonstrate the corresponding development changes, since neuroimaging methods with high spatiotemporal resolution that could be used on small children are quite limited. The evidence supporting the conclusion is solid but lacks clarifications about the much-discussed advantages of OPM-MEG system (e.g., motion tolerance), control analyses (e.g., trial number), and rationale for using sensorimotor tasks. This work will be of interest to the neuroimaging and developmental science communities.

    1. eLife assessment

      This useful study seeks to address the importance of physical interaction between proteins in higher-order complexes for covariation of evolutionary rates at different sites in these interacting proteins. Following up on a previous analysis with a smaller dataset, the authors provide compelling evidence that the exact contribution of physical interactions, if any, remains difficult to quantify. The work will be of relevance to anyone interested in protein evolution.

    1. eLife assessment

      This paper investigates the impact of intranasal instillation of SARS CoV2 spike protein in mouse models of lung inflammation. The authors conclude that the spike protein can interact with macrophages through carbohydrate recognition and can induce recruitment and NETosis of neutrophils, contributing to lung inflammation. They also use the cremaster muscle model to investigate effect of the spike proteins on neutrophil dynamics and death using intravital microscopy. Given that mucosal vaccines using SARS CoV2 spike variants could be envisioned as desirable, the observation that spike can induce lung/mucosal inflammation even without an adjuvant is important. Despite limitations of some loose terminology and some weak controls, the key observations are solid and demand further attention given the importance of the antigen.

    1. eLife assessment

      This study presents valuable findings that examine both how Down syndrome (DS)-related physiological, behavioral, and phenotypic traits track across time, as well as how chronic treatment with green tea extracts 25 enriched in epigallocatechin-3-gallate (GTE-EGCG), administered in drinking water spanning prenatal through 5 months of age, impacts these measures in wild-type and Ts65Dn mice. The strength of the evidence is solid, due to high variability across measures, perhaps in part attributable to a failure to include sex as a factor for measures known to be sexually dimorphic. This study is of interest to scientists interested in Down Syndrome and its' treatment, as well as scientists who study disorders that impact multiple organ systems.

    1. eLife assessment

      This fundamental study provides insight into the fascinating process of self- and non-self-recognition in the protist Tetrahymena thermophila, a species with seven distinct mating types. Using an elegant combination of phenotypic assays, protein studies, and imaging, the authors present convincing evidence that a large multifunctional protein complex at the cell surface mediates both self- and non-self mating-type recognition. This study extends our understanding of how more than two mating types/sexes may be specified in a species, and it will be relevant for anyone interested in sexual systems and cell-cell communication.

    1. eLife assessment

      This valuable study advances our understanding of the potential therapeutic strategies for the treatment of pheochromocytomas using single-cell transcriptomics. The authors propose a new molecular classification criterion based on the characterization of tumor microenvironmental features, based on solid evidence. The work, which could be improved further through delineating the choice of the PASS scoring system, will be of broad interest to clinicians, medical researchers, and scientists working in the field of pheochromocytoma.

    1. eLife assessment

      This important paper provides solid evidence that the angular gyrus plays a role in insight-based memory updating. The study is well conducted, timely, and presents clear-cut behavioral results. While the study provides robust evidence that transcranial magnetic stimulation to the angular gyrus impacts memory, evidence for the strong claim of a causal contribution of the angular gyrus in particular – apart from other connected regions, including the hippocampus – is not conclusive.

    1. eLife assessment

      This important study identifies novel small molecule antagonists of CXCR4 that disrupt nanocluster formation and chemotactic function without blocking CXCL12 binding and downstream signals. The conclusions are based on solid evidence, but the work could be improved by including kinetic and dose information on the most active inhibitors. We also note that modeling and mutagenesis implicate helix V and VI in an allosteric mechanism, but that the description of the modeling is not sufficiently detailed such that others could replicate it.

    1. eLife assessment

      The authors report the cryo-EM structure of human vesicular monoamine transporter 2 (VMAT2) bound to the noncompetitive inhibitor tetrabenazine (in an occluded state). This important achievement captures the structure of a major facilitator superfamily (MFS) transporter critical for human neurotransmission. The evidence for the structure is solid, but the molecular dynamics aspect of the study is incomplete.

    1. eLife assessment

      The authors have made important contributions to our understanding of the pathogenesis of erectile dysfunction (ED) in diabetic patients. They have identified the gene Lbh, expressed in pericytes of the penis and decreased in diabetic animals. Overexpression of Lbh appears to counteract ED in these animals. The authors also confirm Lbh as a potential marker in cavernous tissues in both humans and mice. While solid evidence supports Lbh's functional role as a marker gene, further research is needed to elucidate the specific mechanisms by which it exerts its effects. This work is of interest to those working in the fields of ED and angiogenesis.

    1. eLife assessment

      This useful study examines how deletion of a major DNA repair gene in bacteria may facilitate the rise of mutations that confer resistance against a range of different antibiotics. Although the phenotypic evidence is intriguing, the interpretation of the phenotypic data presented and the proposed mechanism by which these mutations are generated are incomplete, relying on untested assumptions and suboptimal methodology. If substantially improved, this work could be of interest to microbiologists studying antibiotic resistance, genome integrity, and evolution, but as yet is of unclear significance.

    1. eLife assessment

      This important study advances our understanding of early Cambrian cnidarian paleoecology and suggests that the reconstructed ancestral feeding and respiration mechanisms predate jet-propelled swimming utilized by modern jellyfish. The work combines solid evidence of fluid and structural mechanics modeling, simulating for the first time the feeding and respiratory capacities in a microfossil (Quadrapyrgites), which in turn opens new possibilities using this approach for paleontological research. Assuming that the prior interpretations and assumptions concerning the modeled organism's soft part and skeletal anatomy are correct, the hypotheses that (1) the organism could alternately contract and expand the oral region and (2) such movement increased feeding efficiency seem plausible.

    1. eLife assessment

      By assessing what it means to replicate a null finding, and by proposing two methods that can be used to evaluate whether null findings have been replicated (frequentist equivalence testing, and Bayes factors), this article represents an important contribution to work on reproducibility. Through a compelling re-analysis of results from the Reproducibility Project: Cancer Biology, the authors demonstrate that even when 'replication success' is reduced to a single criterion, different methods to assess replication of a null finding can lead to different conclusions.

    1. eLife assessment

      In this important study by Theriot et al., the authors utilize an impressive set of innovative approaches to conduct a CRISPRi pooled screen in human cells using large-scale microscopy screen data. They leverage an improved barcoding approach to identify genes targeted in specific cells and examine the effects on cell morphology using high-dimensional phenotypic analysis. The method and data presented are compelling.

    1. eLife assessment

      The findings of this study are valuable as they challenge the dogma regarding the link between lowered bacterial metabolism and tolerance to aminoglycosides. The authors propose that the well-known tolerance to AG of mutants such as those of complexes I and II is not due to a decrease in the proton motive force and thus antibiotic uptake. The results presented here are solid but incomplete and the conclusions require additional experimental support.

    1. eLife assessment

      This study presents a valuable finding on the possible use of vilazodone in the management of thrombocytopenia through regulating 5-HT1A receptor signaling. The evidence supporting the claims of the authors is solid, with the combined use of computational methods and biochemical assays. The work will be of broad interest to scientists working in the field of thrombocytopenia.

    1. eLife assessment

      This manuscript is a valuable contribution to our understanding of foraging behaviors in marine bacteria. The authors present a conceptual model for how a marine bacterial species consumes an abundant polysaccharide. Using experiments in microfluidic devices and through measurements of motility and gene expression, the authors offer solid evidence that the degradation products of polysaccharide digestion can stimulate motility.

    1. eLife assessment

      The authors of this study implemented an important toolset for 3D reconstruction and segmentation of dissection photographs, which could serve as an alternative for cadaveric and ex vivo MRIs. The tools were tested on synthetic and real data with compelling performance. This toolset could further contribute to the study of neuroimaging-neuropathological correlations.

    1. eLife assessment

      This study presents a valuable investigation of how people approach and avoid uncertainty, with a particular focus on the effects of overall uncertainty. They find that individuals approach uncertainty to a point, but when uncertainty is particularly high, they avoid it. The results are interpreted under a cognitive cost-resource rational framework. The methods are convincing, using appropriate and current methodologies, but more details on analyses and placing the work more fully in the context of the existing literature would make the contribution more significant.

    1. eLife assessment

      The work by Hornberger and team presents a novel workflow for the visualisation of myofibrils with high resolution and contrast that will be highly valued by the scientific community. The novel methods include solid validation of both sample preparation and analysis, and have been used to make the fundamental discovery of myofibrillogenesis as the mechanism of mechanical loading-induced growth. However, whether this mechanism is present in other settings of muscle growth (i.e non-loading), other striated tissue (e.g myocardium), or is sex-dependent requires future experiments.

    1. eLife assessment

      The work by Hornberger and team presents a novel workflow for the visualisation of myofibrils with high resolution and contrast that will be highly valued by the scientific community. The methods include solid validation of both sample preparation and analysis, and have been used to make the fundamental discovery of myofibrillogenesis as the mechanism of mechanical loading-induced growth. Whether this mechanism is present in other settings of muscle growth (i.e., non-loading), other striated tissue (e.g myocardium), or is sex-dependent, will require future experiments.

    1. eLife assessment

      This valuable work performed fMRI experiments in a rodent model of absence seizures. The results provide new information regarding the brain's responsiveness to environmental stimuli during absence seizures. The authors suggest reduced responsiveness occurs during this type of seizure, and the evidence leading to the conclusion is solid, although reviewers had divergent opinions.

    1. eLife assessment

      This important study demonstrates that the cells in the behavior of the presomitic mesoderm in zebrafish embryos depends on both an intrinsic program and external information, which provides new insight into the biology underlying embryo axis segmentation. The findings are supported convincingly by a thorough and quantitative single-cell real-time imaging approach, both in vitro and in vivo, which the authors developed.

    1. eLife assessment

      This valuable prospective study develops a new tool to accelerate pharmacological studies by using neural networks to emulate the human ventricular cardiomyocyte action potential. The evidence supporting the conclusions is convincing, based on using a large and high-quality dataset to train the neural network emulator. There are nevertheless a few areas in which the article may be improved through validating the neural network emulators against extensive experimental data. In addition, the article may be improved through delineating the exact speed-up achieved and the scope for acceleration. The work will be of broad interest to scientists working in cardiac simulation and quantitative system pharmacology.

    1. eLife assessment

      This important study combines experimental infections with laboratory and field Plasmodium falciparum isolates to quantify the force of human malaria parasite transmission. By using compelling methodological approaches, the authors establish clear positive correlations between mosquito infection levels (as determined by oocyst numbers), sporozoite loads in salivary glands, and sporozoites expelled during feeding. The link between heterogenous infection levels in the mosquitoes and malaria transmission would be of interest to vector biologists, parasitologists, immunologists, and mathematical modellers.

    1. eLife assessment

      This important study advances our understanding of the biological significance of the DNA sequence adjacent to telomeres. The data presented convincingly demonstrates that subtelomeric repeats are non-essential and have a minimal, if any, role in maintaining telomere integrity of budding yeast. The work will be of interest to telomere community specifically and the genome integrity community more broadly.

    1. eLife assessment

      This important work presents an example of how genomic data can be used to improve understanding of an ongoing, long-term bacterial outbreak in a hospital with an application to multi-drug resistant Pseudomonas aeruginosa, and will be of interest to researchers concerned with the spread of drug-resistant bacteria in hospital settings. The convincing genomic analyses highlight the value of routine surveillance of patients and environmental sampling and show how such data can help in dating the origin of the outbreak and in characterising the epidemic lineages. These findings highlight the importance of understanding environmental factors contributing to the transmission of P. aeruginosa for guiding and tailoring infection control efforts; however, epidemiological information was limited and the sampling methodology was inconsistent, complicating interpretation of inferences about exact transmission routes.

    1. eLife assessment

      This study presents valuable findings on the role of the sirtuins SIRT1 and SIRT3 during Salmonella Typhimurium infection. Although the work increases our understanding of the mechanisms used by this pathogen to interact with its host and may have implications for other intracellular pathogens, the reviewers found that the evidence to support the claims is incomplete. In particular, the discrepancy between results obtained using cultured cell lines and the animal model of infection stands out.

    1. eLife assessment

      This manuscript examines shared and divergent mechanisms of disruptions of five different mTOR pathway genes on embryonic mouse brain neuronal development. The significance of the manuscript is important, because it bridges several different genetic causes of focal malformations of cortical development. The strength of evidence is compelling, relying on both gain and loss of function, demonstrating differential impact on excitatory synaptic activity, conferring gene-specific mechanisms of hyperexcitability. The results have both theoretical and practical implications for the field of developmental neurobiology and clinical epilepsy.

    1. eLife assessment

      Little is known about the role of the microbiome alterations in epithelial ovarian cancer. This important and rigorous study carefully examined the microbiome composition of 1001 samples from close to 200 ovarian cancer cases and controls, and presents compelling evidence that the fallopian tube microbiota are perturbed in ovarian cancer patients. These insights are expected to fuel further exploration into translational opportunities stemming from these findings.

    1. eLife assessment

      This study presents a valuable finding for the immunotherapy of cancer. The data support the role of PDLIM2 as a tumor suppressor, and more immediately, its relevance for strategies to improve the efficacy of immunotherapy. The evidence supporting the conclusions is compelling and the work will be of interest to biomedical scientists working on cancer immunology.

    1. eLife assessment

      This study presents a useful resource for the gene expression profiles of different cell types in the parietal lobe of the cerebral cortex of prenatal macaques. The evidence supporting the claims of the authors is solid, and revision has clarified some of the cell isolation and cell classification issues flagged by reviewers. This dataset will be of interest to developmental neurobiologists and could potentially be used for future comparative studies on early brain development.

    1. eLife assessment

      This study presents two useful new mouse models that individually tag proteins from the SMAD family to identify distinct roles during early pregnancy. Solid evidence is provided that SMAD1 and SMAD5 target many of the same genomic regions as each other and the progesterone receptor. Given the broad effect of these signaling pathways in multiple systems, these new tools will most likely interest readers across biological disciplines.

    1. eLife assessment

      The authors conduct a valuable GWAS meta-analysis for COVID-19 hospitalization in admixed American populations and prioritized risk variants and genes. The evidence supporting the claims of the authors is incomplete. The work will be of interest to scientists studying the genetic basis of COVID pathogenesis.

    1. eLife assessment

      This is an important study on DNA gyrase that provides further evidence for its mode of action via a double-stranded DNA break and against a recently-proposed alternative mechanism. The evidence presented is solid and is derived from state-of-the-art techniques. The work casts new light on the interactions that occur between gyrase molecules and will be of interest to biochemists and cell biologists.

    1. eLife assessment

      The important work by Aballay et al. significantly advances our understanding of how G protein-coupled receptors (GPCRs) regulate immunity and pathogen avoidance. The authors provide convincing evidence for the GPCR NPR-15 to mediate immunity by altering the activity of several key transcription factors. This work will be of broad interest to immunologists.

    1. eLife assessment

      This study characterized the activity of optogenetically identified dopaminergic and GABAergic neurons in the ventral tegmental area in mice performing a memory-guided T-maze task, and shows that subpopulations of dopaminergic and GABAergic neurons exhibited choice-related activity during the delay period, consistent with some previous studies (e.g. Morris et al., 2006, Parker et al., 2016). The authors demonstrate that these delay-period activities were enhanced when the task requires short-term memory. The results are convincing and this study provides important results regarding the nature of delay-period activity in the task.

    1. eLife assessment

      This study used prolonged stimulation of a limb to examine possible plasticity in somatosensory evoked potentials and the role of the blood brain barrier (BBB). The significance is important because thus far BBB modulation of plasticity is mostly in the context of pathology. The revisions greatly improved the paper and the strength of evidence is convincing.

    1. eLife assessment

      This important study by Yogesh and Keller provides a set of results describing the response properties of cholinergic input and its functional impacts in the mouse visual cortex. They found that cholinergic inputs are elevated by locomotion in a binary manner regardless of locomotor speeds, and activation of cholinergic input differently modulated the activity of Later 2/3 and Layer 5 visual cortex neurons induced by bottom-up (visual stimuli) and top-down (visuomotor mismatch) inputs. The reviewers found that the experiments are cutting-edge and well executed, and the results to be mostly convincing.

    1. eLife assessment

      This important study examined the mechanisms underlying reduced excitability of ventral tegmental area dopamine neurons in mice that underwent a chronic mild unpredictable stress treatment. The authors identify NALCN and TRPC6 channels as key mechanisms that regulate spontaneous firing of ventral tegmental area dopamine neurons and examined their roles in reduced firing in mice that underwent a chronic mild unpredictable stress treatment. The authors' conclusions on neurophysiological data are supported by multiple approaches and convincing, although the relevance of the behavioral results to human depression remains unclear.

    1. eLife assessment

      Using state-of-the-art single-nucleus RNA sequencing, Yao et al. investigate the transcriptomic features of neural stem cells (NSCs) in the human hippocampus to address how they vary across different age groups and stroke conditions. The authors report alterations in NSC subtype proportions and gene expression profiles after stroke and an exemplary gene elevated in NSCs and reactive astrocytes in stroke patients. Although the study is valuable, the significance is restricted by technical limitations and the incomplete evidence supporting the main conclusions.

    1. eLife assessment

      This important multicenter study provides convincing evidence that the auditory noise emitted during online transcranial ultrasound stimulation (TUS) protocols can pose a considerable confound and is able to explain corticospinal excitability changes as measured with Motor Evoked Potentials (MEP). The findings lay the ground for future studies optimising protocols and control conditions to leverage TUS as a meaningful experimental and clinical tool. A clear strength of the study is the multitude of control conditions (i.e., control sites, acoustic masking, acoustic stimulation). These findings will be of interest to neuroscience researchers using brain stimulation approaches.

    1. eLife assessment

      This important study utilizes a virus-mediated short hairpin RNA (shRNA) approach to investigate in a novel way the role of the wild-type PHOX2B transcription factor in critical chemosensory neurons in the brainstem retrotrapezoid nucleus (RTN) region for maintaining normal CO2 chemoreflex control of breathing in adult rats. The solid results presented show blunted ventilation during elevated inhaled CO2 (hypercapnia) with knockdown of PHOX2B, accompanied by a reduction in expression of Gpr4 and Task2 mRNA for the proposed RTN neuron proton sensor proteins GPR4 and TASK2. These results suggest that maintained expression of wild-type PHOX2B affects respiratory control in adult animals, which complements previous studies showing that PHOX2B-expressing RTN neurons may be critical for chemosensory control throughout the lifespan and with implications for neurological disorders involving the RTN. When some methodological, data interpretation, and prior literature reference issues further highlighting novelty are adequately addressed, this study will be of interest to neuroscientists studying respiratory neurobiology as well as the neurodevelopmental control of motor behavior.

    1. eLife assessment

      This study provides valuable observations indicating that human pyramidal neurons propagate information as fast as rat pyramidal neurons despite their larger size. Solid evidence demonstrates that this property is due to several biophysical properties of human neurons. This study will be of interest to neurophysiologists.

    1. eLife assessment

      This study on the effects of fasting on safety learning rests on basic premises and concepts that both reviewers found difficult to follow. If these can be clarified, the findings may well be useful and of some utility for the field of emotional learning as well as experimental clinical psychology. However, the main claims of the study are only partially supported and are therefore incomplete.

    1. eLife assessment

      This potentially valuable study uses classic neuroanatomical techniques and synchrotron X-ray tomography to investigate the mapping of the trunk within the brainstem nuclei of the elephant brain. Given its unique specializations, understanding the somatosensory projections from the elephant trunk would be of general interest to evolutionary neurobiologists, comparative neuroscientists, and animal behavior scientists. However, the anatomical analysis is inadequate to support the authors' conclusion that they have identified the elephant trigeminal sensory nuclei rather than a different brain region, specifically the inferior olive.

    1. eLife assessment

      This study investigated the role of specific proteins in a mouse model of developmental epilepsy. The significance of the work is important because a new mouse model was used to simulate a type of developmental epilepsy. The work is also significant because the deletion of two proteins together, but not separately, improved the symptoms, and data were convincing.

    1. eLife assessment

      The authors used an innovative modified 10X genomic sequencing method to detect cPCDHg is-forms in pyramidal neurons. With solid electrophysiological recordings, they showed that neurons expressing the same sets of cPCDHg isoforms are less likely to form synapses with each other. These valuable findings confirms previous results and extend our understanding of cPCDHg diversity and neuronal connectivity.

    1. eLife assessment

      This important study tests the hypothesis that a high autism quotient in neurotypical adults is strongly associated with suboptimal motor planning and visual updating after eye movements, which in turn, is related to a disrupted efference copy mechanism. The implication is that such abnormal behavior would be exaggerated in those with ASD and may contribute to sensory overload - a key symptom in this condition. The evidence presented is convincing, with significant effects in both visual and motor domains, adequate sample sizes, and consideration of alternatives. However, the study would be strengthened with minor but necessary corrections to methods and statistics, as well as a moderation of claims regarding direct application to ASD in the absence of testing such patients.

    1. eLife assessment

      This study provides a valuable contribution to understanding the neural mechanisms underlying age-related changes in attention and speech understanding. The large dataset (N=105) provides convincing evidence for how speech recognition behaviour and neural tracking of speech separately evolve in about 2 years. The work would be of interest to psychologists, neuroscientists, and audiologists.

    1. eLife assessment

      This important paper sheds light on the role of expectations in perceptual decision- making. Sophisticated analyses of human EEG data provide convincing evidence that both motor preparation and sensory processing were affected by expectations, albeit with different time courses. These findings will be of interest to scientists interested in perception and decision-making.

    1. eLife assessment

      This paper explores the relationships among evolutionary and epidemiological quantities in influenza, and presents fundamental findings that substantially advance our understanding of the drivers of influenza epidemics. The authors use a rich set of data sources to gather and analyze compelling evidence on the roles of genetic distance, other influenza dynamics and epidemiological indicators in predicting influenza epidemics. The central findings highlight the significant influence of genetic distance on A(H3N2) virus epidemiology and emphasize the role of A(H1N1) virus incidence in shaping A(H3N2) epidemics, suggesting subtype interference as a key factor. This paper also makes relevant data available to the research community.

    1. eLife assessment

      In this important study, the authors develop a promising experimental approach to a central question in ecology: What are the contributions of resource use and interactions in the shaping of an ecosystem? For this, they develop a synthetic ecosystem set-up, a variant of SELEX that allows very detailed control over ecological variables. The evidence is convincing, and the work should be of broad interest to the ecology community, leading to further quantitative studies.

    1. eLife assessment

      This valuable study describes mice with a knock out of the IQ motif-containing H (IQCH) gene, to model a human loss-of-function mutation in IQCH associated with male sterility. The infertility is reproduced in the mouse, making it a compelling model, but some of the mechanistic experiments provide only indirect and thus incomplete evidence for interaction between IQCH and potential RNA binding proteins. With more rigorous approaches, the paper should be of interest to cell biologists and male reproductive biologists working on the sperm flagellar cytoskeleton and mitochondrial structure.

    1. eLife assessment

      This study presents a valuable examination into the role Notch-RBP-J signalling in regulating monocyte subset homeostasis. The data were collected and analysed using solid and validated methodology and can be used as a starting point for exploring the mechanisms involved in RBP-J signalling in non-classical monocytes. The data presented strongly confirm the authors conclusions. However, this paper primarily focuses on providing a description, and additional studies are necessary to fully elucidate the mechanisms through which RBP-J deficiency contributes to the specific increase in Ly6Clo monocyte numbers in both the blood and lungs.

    1. eLife assessment

      This study provides an important finding that the local abundance of metabolites impacts the biology of the tumor microenvironment by utilizing kidney tumors from patients and adjacent normal tissues. The evidence supporting the claims of the authors is convincing although certain caveats need to be taken into consideration as the authors acknowledged in the paper. The work will be of interest to the research community working on metabolism and on kidney cancer especially.

    1. eLife assessment

      This study is useful as it provides further analysis of previously published data to address which specific genes are part of the masculinizing actions of E2 on female zebra finches, and where these key genes are expressed in the brain. However the data supporting the conclusion of masculinizing the song system are incomplete as the current manuscript is a re-analysis of differential gene expression modulated by E2 treatment between male/female zebra finches without manipulation of gene expression. The conclusions (and title) regarding song learning are not completely supported, with no gene manipulation or song analysis. The use of WGCNA for a question of sex-chromosome expression in species without dosage compensation is considered inadequate. As the experimental design did not include groups to directly test for song learning, and there was also no analysis of song performance, these data were also considered inadequate in that regard.

    1. eLife assessment

      This landmark study presents MetaPathPredict, a method that uses a stacked ensemble of neural networks to predict the presence or absence of KEGG modules based on annotated features in the genome. The evidence supporting the conclusions is compelling, with a tool that allows for prediction of KEGG modules in sparse gene sequence datasets.

    1. eLife assessment

      In this important study, the authors explore the importance of developmental changes in cortico-DRN innervation in the balance of behavioral control in a foraging task. The authors report somewhat convincing evidence that while juvenile mice and adult mice both perform the task, juveniles exhibit more impulsive behavior due to reduced efficacy of cortico-DRN projections. The authors conclude that the development of cortico-DRN (esp mPFC) projections allows 5HT input to promote perseveration (or exploitation) in the balance of behavioral control. However, reviewers raised issues regarding the strength of the evidence without further experiments.

    1. eLife assessment

      Using single-cell sequencing, high-resolution imaging, and inducible genetic deletion of yolk-sac (YS) derived macrophages, the authors present a useful map of fetal liver macrophage subpopulations and provide important data demonstrating that heterogeneous fetal liver macrophages regulate erythrocyte enucleation, interact physically with fetal HSCs, and may regulate neutrophil accumulation in the fetal liver. These novel findings, although yet incomplete, might provide a solid foundation for further investigating the effects of macrophages on HSC function during fetal hematopoiesis and into adulthood and will be useful for the field of macrophage biology and developmental hematopoiesis.

    1. eLife assessment

      This manuscript addresses a non-canonical function of the Class 2 ribonuclease III Drosha in the regulation of adult neural stem cell fate, important for understanding how these cells generate neurons or oligodendrocytic cells.<br /> Overall, this manuscript has many strengths. The authors identify 165 proteins, several of them enriched in neural stem cells, and potentially specific for miRNA dependent or independent Drosha macromolecular complexes.<br /> While the authors provide systematic and convincing evidence on the biochemical interactions among the key players in this cascade, the significance of these interactions for neural stem cell fate determination in vivo remains unclear, as the in vitro cellular systems used to document most of the data reported in the paper may not (fully) represent resident neural stem cells in the adult hippocampus. The in vivo function mediated by Drosha/ Safb1 needs to be substantiated by more evidence and/or complementary approaches.

    1. eLife assessment

      The authors observed a positive correlation between FSH and fat mass, as well as a negative association with the appendicular lean mass/fat mass ratio. These valuable findings in male subjects within a hypogonadal setting following Degarelix treatment imply that FSH might function as a predictor, similar to observations in women. However, it's important to note that the analysis is incomplete, as other major confounding factors such as testosterone were not included.

    1. eLife assessment

      The findings are important and would potentially have theoretical and practical implications outside the field. However the strength of evidence presented was assessed as being incomplete in several respects. Major strengths are (1) genetic factors in facial appearance are of broad interest, and the potential influence of possibly identical factors in a serious congenital disorder (cleft lip/palate) heightens that interest further; (2) proving which single nucleotide variants influence phenotypes, and by what mechanisms, is a major challenge for the field as a whole. The weakness, as assessed, was that in its present form the experimental approach was not sufficiently rigorous to support the conclusions unambiguously.

    1. eLife assessment

      This important study presents data suggesting that HFD-induced histone epimutations in sperm may impact the transcriptome of the placenta, thereby contributing to the paternal transmission of paternal metabolic disorders to offspring. Although the hypothesis is interesting and the evidence presented is compelling, more careful statistical analyses and functional validation experiments are needed to further strengthen the conclusion.

    1. eLife assessment

      In their short technical report, Verma et al. describe how endogenously-tagged dynein and dynactin molecules localize to growing microtubule plus-ends and move processively along microtubules in cells. The authors present solid evidence that cytoplasmic dynein is a processive motor that takes long excursions prior to dissociating from microtubules. However, there are concerns about the robustness of the imaging and analysis protocols, which should be more clearly defined. This is a useful study that will be of interest to cell biologists and biochemists in the motor protein field.

    1. eLife assessment

      The important study uses a new experimental method to provide compelling evidence on how sense- and anti-sense transcription is differentially regulated. The method described here can generally be used to study the alterations in transcription. This paper will be of interest to scientists working in the gene regulation community.

    1. eLife assessment

      Benner et al. identify OVO as a transcriptional factor instrumental in promoting the expression of hundreds of genes essential for female germline identity and early embryo development. While they provide the dataset that supports their model, the major evidence for the model proposed in this manuscript comes from a separate manuscript by the same group, making the contribution of this manuscript somewhat unclear - that is, the evidence provided in this paper is incomplete to support the proposal of this paper. Overall, the study provides useful information that will help understand the function of ovo during oogenesis and early embryonic development.

    1. eLife assessment

      This study combines molecular genetics and target validation to discover genes involved in obesity and determine their role. It was unanimously agreed that the work is important in terms of significance as it has conceptual and practical implications beyond metabolism, including embryonic and placental development. The strength of evidence is convincing from the use of their forward genetic screen in mice.

  3. www.biorxiv.org