10,000 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public review):

      Summary:

      Drosophila larval type II neuroblasts generate diverse types of neurons by sequentially expressing different temporal identity genes during development. Previous studies have shown that transition from early temporal identity genes (such as Chinmo and Imp) to late temporal identity genes (such as Syp and Broad) depends on the activation of the expression of EcR by Seven-up (Svp) and progression through the G1/S transition of the cell cycle. In this study, Chaya and Syed examined if the expression of Syp and EcR is regulated by cell cycle and cytokinesis by knocking down CDK1 or Pav, respectively, throughout development or at specific developmental stages. They find that knocking down CDK1 or Pav either in all type II neuroblasts throughout the development or in single type neuroblast clones after larval hatching consistently leads to failure to activate late temporal identity genes Syp and EcR. To determine whether the failure of the activation of Syp and EcR is due to impaired Svp expression, they also examined Svp expression using a Svp-lacZ reporter line. They find that Svp is expressed normally in CDK1 RNAi neuroblasts. Further, knocking down CDK1 or Pav after Svp activation still leads to loss of Syp and EcR expression. Finally, they also extended their analysis to type I neuroblasts. They find that knocking down CDK1 or Pav, either at 0 hours or at 42 hours after larval hatching, also results in loss of Syp and EcR expression in type I neuroblasts. Based on these findings, the authors conclude that cycle and cytokinesis are required for the transition from early to late late temporal identity genes in both types of neuroblasts. These findings add mechanistic details to our understanding of the temporal patterning of Drosophila larval neuroblasts.

      Strengths:

      The data presented in the paper are solid and largely support their conclusion. Images are of high quality. The manuscript is well-written and clear.

      Weaknesses:

      The authors have addressed all the weaknesses in this revision.

    2. Reviewer #2 (Public review):

      Summary:

      Neural stem cells produce a wide variety of neurons during development. The regulatory mechanisms of neural diversity are based on the spatial and temporal patterning of neural stem cells. Although the molecular basis of spatial patterning is well-understood, the temporal patterning mechanism remains unclear. In this manuscript, the authors focused on the roles of cell cycle progression and cytokinesis in temporal patterning and found that both are involved in this process.

      Strengths:

      They conducted RNAi-mediated disruption on cell cycle progression and cytokinesis. As they expected, both disruptions affected temporal patterning in NSCs.

      Weaknesses:

      Although the authors showed clear results, they needed to provide additional data to support their conclusion sufficiently.

      For example, they can examine the effects of cell cycle acceleration on the temporal patterning.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chaya and Syed focuses on understanding the link between cell cycle and temporal patterning in central brain type II neural stem cells (NSCs). To investigate this, the authors perturb the progression of the cell cycle by delaying the entry into M phase and preventing cytokinesis. Their results convincingly show that temporal factor expression requires progression of the cell cycle in both Type 1 and Type 2 NSCs in the Drosophila central brain. Overall, this study establishes an important link between the two timing mechanisms of neurogenesis.

      Strengths:

      The authors provide solid experimental evidence for the coupling of cell cycle and temporal factor progression in Type 2 NSCs. The quantified phenotype shows an all-or-none effect of cell cycle block on the emergence of subsequent temporal factors in the NSCs, strongly suggesting that both nuclear division and cytokinesis are required for temporal progression. The authors also extend this phenotype to Type 1 NSCs in the central brain, providing a generalizable characterization of the relationship between cell cycle and temporal patterning.

      Weaknesses:

      One major weakness of the study is that the authors do not explore the mechanistic relationship between cell cycle and temporal factor expression. Although their results are quite convincing, they do not provide an explanation as to why Cdk1 depletion affects Syp and EcR expression but not the onset of svp. This result suggests that at least a part of the temporal cascade in NSCs is cell-cycle independent which isn't addressed or sufficiently discussed.

    1. Reviewer #1 (Public review):

      Petrovic et al. investigate CCR5 endocytosis via arrestin2, with a particular focus on clathrin and AP2 contributions. The study is thorough and methodologically diverse. The NMR titration data clearly demonstrate chemical shift changes at the canonical clathrin-binding site (LIELD), present in both the 2S and 2L arrestin splice variants. To assess the effect of arrestin activation on clathrin binding, the authors compare: truncated arrestin (1-393), full-length arrestin, and 1-393 incubated with CCR5 phosphopeptides. All three bind clathrin comparably, whereas controls show no binding. These findings are consistent with prior crystal structures showing peptide-like binding of the LIELD motif, with disordered flanking regions. The manuscript also evaluates a non-canonical clathrin binding site specific to the 2L splice variant. Though this region has been shown to enhance beta2-adrenergic receptor binding, it appears not to affect CCR5 internalization.

      Similar analyses applied to AP2 show a different result. AP2 binding is activation-dependent and influenced by the presence and level of phosphorylation of CCR5-derived phosphopeptides. These findings are reinforced by cellular internalization assays.

      In sum, the results highlight splice-variant-dependent effects and phosphorylation-sensitive arrestin-partner interactions. The data argue against a (rapidly disappearing) one-size-fits-all model for GPCR-arrestin signaling and instead support a nuanced, receptor-specific view, with one example summarized effectively in the mechanistic figure.

    2. Reviewer #2 (Public review):

      Summary:

      Based on extensive live cell assays, SEC, and NMR studies of reconstituted complexes, these authors explore the roles of clathrin and the AP2 protein in facilitating clathrin mediated endocytosis via activated arrestin-2. NMR, SEC, proteolysis, and live cell tracking confirm a strong interaction between AP2 and activated arrestin using a phosphorylated C-terminus of CCR5. At the same time a weak interaction between clathrin and arrestin-2 is observed, irrespective of activation.

      These results contrast with previous observations of class A GPCRs and the more direct participation by clathrin. The results are discussed in terms of the importance of short and long phosphorylated bar codes in class A and class B endocytosis.

      Strengths:

      The 15N,1H and 13C,methyl TROSY NMR and assignments represent a monumental amount of work on arrestin-2, clathrin, and AP2. Weak NMR interactions between arrestin-2 and clathrin are observed irrespective of activation of arrestin. A second interface, proposed by crystallography, was suggested to be a possible crystal artifact. NMR establishes realistic information on the clathrin and AP2 affinities to activated arrestin with both kD and description of the interfaces.

    3. Reviewer #3 (Public review):

      Summary:

      Overall, this is a well-done study, and the conclusions are largely supported by the data, which will be of interest to the field.

      Strengths:

      Strengths of this study include experiments with solution NMR that can resolve high-resolution interactions of the highly flexible C-terminal tail of arr2 with clathrin and AP2. Although mainly confirmatory in defining the arr2 CBL 376LIELD380 as the clathrin binding site, the use of the NMR is of high interest (Fig. 1). The 15N-labeled CLTC-NTD experiment with arr2 titrations reveals a span from 39-108 that mediates an arr2 interaction, which corroborates previous crystal data, but does not reveal a second area in CLTC-NTD that in previous crystal structures was observed to interact with arr2.

      SEC and NMR data suggest that full-length arr2 (1-418) binding with 2-adaptin subunit of AP2 is enhanced in the presence of CCR5 phospho-peptides (Fig. 3). The pp6 peptide shows the highest degree of arr2 activation, and 2-adaptin binding, compared to less phosphorylated peptide or not phosphorylated at all. It is interesting that the arr2 interaction with CLTC NTD and pp6 cannot be detected using the SEC approach, further suggesting that clathrin binding is not dependent on arrestin activation. Overall, the data suggest that receptor activation promotes arrestin binding to AP2, not clathrin, suggesting the AP2 interaction is necessary for CCR5 endocytosis.

      To validate the solid biophysical data, the authors pursue validation experiments in a HeLa cell model by confocal microscopy. This requires transient transfection of tagged receptor (CCR5-Flag) and arr2 (arr2-YFP). CCR5 displays a "class B"-like behavior in that arr2 is rapidly recruited to the receptor at the plasma membrane upon agonist activation, which forms a stable complex that internalizes onto endosomes (Fig. 4). The data suggest that complex internalization is dependent on AP2 binding not clathrin (Fig. 5).

      The addition of the antagonist experiment/data adds rigor to the study.

      Overall, this is a solid study that will be of interest to the field.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Yamamoto et al. presents a model by which the four main axes of the limb are required for limb regeneration to occur in the axolotl. A longstanding question in regeneration biology is how existing positional information is used to regenerate the correct missing elements. The limb provides an accessible experimental system by which to study the involvement of the anteroposterior, dorsoventral, and proximodistal axes in the regenerating limb. Extensive experimentation has been performed in this area using grafting experiments. Yamamoto et al. use the accessory limb model and some molecular tools to address this question. There are some interesting observations in the study. In particular, one strength the potent induction of accessory limbs in the dorsal axis with BMP2+Fgf2+Fgf8 is very interesting. Although interesting, the study makes bold claims about determining the molecular basis of DV positional cues, but the experimental evidence is not definitive and does not take into account the previous work on DV patterning in the amniote limb. Also, testing the hypothesis on blastemas after limb amputation would be needed to support the strong claims in the study.

      Strengths:

      The manuscript presents some novel new phenotypes generated in axolotl limbs due to Wnt signaling. This is generally the first example in which Wnt signaling has provided a gain of function in the axolotl limb model. They also present a potent way of inducing limb patterning in the dorsal axis by the addition of just beads loaded with Bmp2+Fgf8+Fgf2.

      Comments on revised version:

      Re-evaluation: The authors have significantly improved the manuscript and their conclusions reflect the current state of knowledge in DV patterning of tetrapod limbs. My only point of consideration is their claim of mesenchymal and epithelial expression of Wnt10b and the finding that Fgf2 and Wnt10b are lowly expressed. It is based upon the failed ISH, but this doesn't mean they aren't expressed. In interpreting the Li et al. scRNAseq dataset, conclusions depend heavily on how one analyzes and interprets it. The 7DPA sample shows a very low representation of epithelial cells compared to other time points, but this is likely a technical issue. Even the epithelial marker, Krt17, and the CT/fibroblast marker show some expression elsewhere. If other time points are included in the analysis, Wnt10b, would be interpreted as relatively highly expressed almost exclusively in the epithelium. By selecting the 7dpa timepoint, which may or may not represent the MB stage as it wasn't shown in the paper, the conclusions may be based upon incomplete data. I don't expect the authors to do more work, but it is worth mentioning this possibility. The authors have considered and made efforts to resolve previous concerns.

    2. Reviewer #2 (Public review):

      Summary:

      This study explores how signals from all sides of a developing limb, front/back and top/bottom, work together to guide the regrowth of a fully patterned limb in axolotls, a type of salamander known for its impressive ability to regenerate limbs. Using a model called the Accessory Limb Model (ALM), the researchers created early staged limb regenerates (called blastemas) with cells from different sides of the limb. They discovered that successful limb regrowth only happens when the blastema contains cells from both the top (dorsal) and bottom (ventral) of the limb. They also found that a key gene involved in front/back limb patterning, called Shh (Sonic hedgehog), is only turned on when cells from both the dorsal and ventral sides come into contact. The study identified two important molecules, Wnt10B and FGF2, that help activate Shh when dorsal and ventral cells interact. Finally, the authors propose a new model that explains how cells from all four sides of a limb, dorsal, ventral, anterior (front), and posterior (back), contribute at both the cellular and molecular level to rebuilding a properly structured limb during regeneration

      Strengths:

      The techniques used in this study, like delicate surgeries, tissue grafting, and implanting tiny beads soaked with growth factors, are extremely difficult, and only a few research groups in the world can do them successfully. These methods are essential for answering important questions about how animals like axolotls regenerate limbs with the correct structure and orientation. To understand how cells from different sides of the limb communicate during regeneration, the researchers used a technique called in situ hybridization, which lets them see where specific genes are active in the developing limb. They clearly showed that the gene Shh, which helps pattern the front and back of the limb, only turns on when cells from both the top (dorsal) and bottom (ventral) sides are present and interacting. The team also took a broad, unbiased approach to figure out which signaling molecules are unique to dorsal and ventral limb cells. They tested these molecules individually and discovered which could substitute for actual dorsal and ventral cells, providing the same necessary signals for proper limb development. Overall, this study makes a major contribution to our understanding of how complex signals guide limb regeneration, showing how different regions of the limb work together at both the cellular and molecular levels to rebuild a fully patterned structure.

      Weaknesses:

      Because the expressional analyses are performed on thin sections of regenerating tissue, in the original manuscript, they provided only a limited view of the gene expression patterns in their experiments, opening the possibility that they could be missing some expression in other regions of the blastema. Additionally, the quantification method of the expressional phenotypes in most of the experiments did not appear to be based on a rigorous methodology. The authors' inclusion of an alternate expression analysis, qRT-PCR, on the entire blastema helped validate that the authors are not missing something in the revised manuscript.

      Overall, the number of replicates per sample group in the original manuscript was quite low (sometimes as low as 3), which was especially risky with challenging techniques like the ones the authors employ. The authors have improved the rigor of the experiment in the revised manuscript by increasing the number of replicates. The authors have not performed a power analysis to calculate the number of animals used in each experiment that is sufficient to identify possible statistical differences between groups. However, the authors have indicated that there was not sufficient preliminary data to appropriately make these quantifications.

      Likewise, in the original manuscript, the authors used an AI-generated algorithm to quantify symmetry on the dorsal/ventral axis, and my concern was that this approach doesn't appear to account for possible biases due to tissue sectioning angles. They also seem to arbitrarily pick locations in each sample group to compare symmetry measurements. There are other methods, which include using specific muscle groups and nerve bundles as dorsal/ventral landmarks, that would more clearly show differences in symmetry. The authors have now sufficiently addressed this concern by including transverse sections of the limbs annd have explained the limitations of using a landmark-based approach in their quantification strategy.

    3. Reviewer #3 (Public review):

      Summary:

      After salamander limb amputation, the cross-section of the stump has two major axes: anterior-posterior and dorsal-ventral. Cells from all axial positions (anterior, posterior, dorsal, ventral) are necessary for regeneration, yet the molecular basis for this requirement has remained unknown. To address this gap, Yamamoto et al. took advantage of the ALM assay, in which defined positional identities can be combined on demand and their effects assessed through the outgrowth of an ectopic limb. They propose a compelling model in which dorsal and ventral cells communicate by secreting Wnt10b and Fgf2 ligands respectively, with this interaction inducing Shh expression in posterior cells. Shh was previously shown to induce limb outgrowth in collaboration with anterior Fgf8 (PMID: 27120163). Thus, this study completes a concept in which four secreted signals from four axial positions interact for limb patterning. Notably, this work firmly places dorsal-ventral interactions upstream of anterior-posterior, which is striking for a field that has been focussed on anterior-posterior communication. The ligands identified (Wnt10b, Fgf2) are different to those implicated in dorsal-ventral patterning in the non-regenerative mouse and chick models. The strength of this study is in the context of ALM/ectopic limb engineering. Although the authors attempt to assay the expression of Wnt10b and Fgf2 during limb regeneration after amputation, they were unable to pinpoint the precise expression domains of these genes beyond 'dorsal' and 'ventral' blastema. Given that experimental perturbations were not performed in regenerating limbs - almost exclusively under ALM conditions - this author finds the title "Dorsoventral-mediated Shh induction is required for axolotl limb regeneration" a little misleading.

      Strengths:

      (1) The ALM and use of GFP grafts for lineage tracing (Figures 1-3) take full advantage of the salamander model's unique ability to outgrow patterned limbs under defined conditions. As far as I am aware, the ALM has not been combined with precise grafts that assay 2 axial positions at once, as performed in Figure 3. The number of ALMs performed in this study deserves special mention, considering the challenging surgery involved.

      (2) The authors identify that posterior Shh is not expressed unless both dorsal and ventral cells are present. This echoes previous work in mouse limb development models (AER/ectoderm-mesoderm interaction) but this link between axes was not known in salamanders. The authors elegantly reconstitute dorsal-ventral communication by grafting, finding that this is sufficient to trigger Shh expression (Figure 3 - although see also section on Weaknesses).

      (3) Impressively, the authors discovered two molecules sufficient to substitute dorsal or ventral cells through electroporation into dorsal- or ventral- depleted ALMs (Figure 5). These molecules did not change the positional identity of target cells. The same group previously identified the ventral factor (Fgf2) to be a nerve-derived factor essential for regeneration. In Figure 6, the authors demonstrate that nerve-derived factors, including Fgf2, are alone sufficient to grow out ectopic limbs from a dorsal wound. Limb induction with a 3-factor cocktail without supplementing with other cells is conceptually important for regenerative engineering.

      (4) The writing style and presentation of results is very clear.

      Overall appraisal:

      This is a logical and well-executed study that creatively uses the axolotl model to advance an important framework for understanding limb patterning. The relevance of the mechanisms to normal limb regeneration are not yet substantiated, in the opinion of this reviewer. Additionally, Wnt10b and Fgf2 should be considered molecules sufficient to substitute dorsal and ventral identity (solely in terms of inducing Shh expression). It is not yet clear whether these molecules are truly necessary (loss of function would address this).

      Comments on revisions:

      Congratulations - I still find this an elegant and easy-to-read study with significant implications for the field! Linking your mechanisms to normal limb regeneration (i.e. regenerating blastema, not ALM), as well as characterising the cell populations involved, will be interesting directions for the future.

    1. Reviewer #1 (Public review):

      Summary

      The manuscript presents EIDT, a framework that extracts an "individuality index" from a source task to predict a participant's behaviour in a related target task under different conditions. However, the evidence that it truly enables cross-task individuality transfer is not convincing.

      Strengths

      The EIDT framework is clearly explained, and the experimental design and results are generally well-described. The performance of the proposed method is tested on two distinct paradigms: a Markov Decision Process (MDP) task (comparing 2-step and 3-step versions) and a handwritten digit recognition (MNIST) task under various conditions of difficulty and speed pressure. The results indicate that the EIDT framework generally achieved lower prediction error compared to baseline models and that it was better at predicting a specific individual's behaviour when using their own individuality index compared to using indices from others.

      Furthermore, the individuality index appeared to form distinct clusters for different individuals, and the framework was better at predicting a specific individual's behaviour when using their own derived index compared to using indices from other individuals.

      Comments on revisions:

      I thank the author for the additional analyses. They have fully addressed all of my previous concerns, and I have no further recommendations.

    2. Reviewer #2 (Public review):

      This paper introduces a framework for modeling individual differences in decision-making by learning a low-dimensional representation (the "individuality index") from one task and using it to predict behaviour in a different task. The approach is evaluated on two types of tasks: a sequential value-based decision-making task and a perceptual decision task (MNIST). The model shows improved prediction accuracy when incorporating this learned representation compared to baseline models.

      The motivation is solid, and the modelling approach is interesting, especially the use of individual embeddings to enable cross-task generalization. That said, several aspects of the evaluation and analysis could be strengthened.

      (1) The MNIST SX baseline appears weak. RTNet isn't directly comparable in structure or training. A stronger baseline would involve training the GRU directly on the task without using the individuality index-e.g., by fixing the decoder head. This would provide a clearer picture of what the index contributes.

      (2) Although the focus is on prediction, the framework could offer more insight into how behaviour in one task generalizes to another. For example, simulating predicted behaviours while varying the individuality index might help reveal what behavioural traits it encodes.

      (3) It's not clear whether the model can reproduce human behaviour when acting on-policy. Simulating behaviour using the trained task solver and comparing it with actual participant data would help assess how well the model captures individual decision tendencies.

      (4) Figures 3 and S1 aim to show that individuality indices from the same participant are closer together than those from different participants. However, this isn't fully convincing from the visualizations alone. Including a quantitative presentation would help support the claim.

      (5) The transfer scenarios are often between very similar task conditions (e.g., different versions of MNIST or two-step vs three-step MDP). This limits the strength of the generalization claims. In particular, the effects in the MNIST experiment appear relatively modest, and the transfer is between experimental conditions within the same perceptual task. To better support the idea of generalizing behavioural traits across tasks, it would be valuable to include transfers across more structurally distinct tasks.

      (6) For both experiments, it would help to show basic summaries of participants' behavioural performance. For example, in the MDP task, first-stage choice proportions based on transition types are commonly reported. These kinds of benchmarks provide useful context.

      (7) For the MDP task, consider reporting the number or proportion of correct choices in addition to negative log-likelihood. This would make the results more interpretable.

      (8) In Figure 5, what is the difference between the "% correct" and "% match to behaviour"? If so, it would help to clarify the distinction in the text or figure captions.

      (9) For the cognitive model, it would be useful to report the fitted parameters (e.g., learning rate, inverse temperature) per individual. This can offer insight into what kinds of behavioural variability the individuality index might be capturing.

      (10) A few of the terms and labels in the paper could be made more intuitive. For example, the name "individuality index" might give the impression of a scalar value rather than a latent vector, and the labels "SX" and "SY" are somewhat arbitrary. You might consider whether clearer or more descriptive alternatives would help readers follow the paper more easily.

      (11) Please consider including training and validation curves for your models. These would help readers assess convergence, overfitting, and general training stability, especially given the complexity of the encoder-decoder architecture.

      Comments on revisions:

      Thank you to the authors for the updated manuscript. The authors have addressed the majority of my concerns, and the paper is now in a much better form.

      Regarding my previous Comment 6, I still believe it would be helpful to include a graph similar to what is typically reported for these tasks-specifically, a breakdown of choices based on rare versus common transitions (see Model-Based Influences on Humans' Choices and Striatal Prediction Errors, Figure 2). Presenting this for both the actual behaviour and the simulated data would strengthen the paper and allow for clearer comparison.

    3. Reviewer #3 (Public review):

      Summary:

      This work presents a novel neural network-based framework for parameterizing individual differences in human behavior. Using two distinct decision-making experiments, the author demonstrates the approach's potential and claims it can predict individual behavior (1) within the same task, (2) across different tasks, and (3) across individuals. While the goal of capturing individual variability is compelling and the potential applications are promising, the claims are weakly supported, and I find that the underlying problem is conceptually ill-defined.

      Strengths:

      The idea of using neural networks for parameterizing individual differences in human behavior is novel, and the potential applications can be impactful.

      Weaknesses:

      (1) To demonstrate the effectiveness of the approach, the authors compare a Q-learning cognitive model (for the MDP task) and RTNet (for the MNIST task) against the proposed framework. However, as I understand it, neither the cognitive model nor RTNet is designed to fit or account for individual variability. If that is the case, it is unclear why these models serve as appropriate baselines. Isn't it expected that a model explicitly fitted to individual data would outperform models that do not? If so, does the observed superiority of the proposed framework simply reflect the unsurprising benefit of fitting individual variability? I think the authors should either clarify why these models constitute fair control or validate the proposed approach against stronger and more appropriate baselines.

      (2) It's not very clear in the results section what it means by having a shorter within-individual distance than between-individual distances. Related to the comment above, is there any control analysis performed for this? Also, this analysis appears to have nothing to do with predicting individual behavior. Is this evidence toward successfully parameterizing individual differences? Could this be task-dependent, especially since the transfer is evaluated on exceedingly similar tasks in both experiments? I think a bit more discussion of the motivation and implications of these results will help the reader in making sense of this analysis.

      (3) The authors have to better define what exactly he meant by transferring across different "tasks" and testing the framework in "more distinctive tasks". All presented evidence, taken at face value, demonstrated transferring across different "conditions" of the same task within the same experiment. It is unclear to me how generalizable the framework will be when applied to different tasks.

      (4) Conceptually, it is also unclear to me how plausible it is that the framework could generalize across tasks spanning multiple cognitive domains (if that's what is meant by more distinctive). For instance, how can an individual's task performance on a Posner task predict task performance on the Cambridge face memory test? Which part of the framework could have enabled such a cross-domain prediction of task performance? I think these have to be at least discussed to some extent, since without it the future direction is meaningless.

      (5) How is the negative log-likelihood, which seems to be the main metric for comparison, computed? Is this based on trial-by-trial response prediction or probability of responses, as what usually performed in cognitive modelling?

      (6) None of the presented evidence is cross-validated. The authors should consider performing K-fold cross-validation on the train, test, and evaluation split of subjects to ensure robustness of the findings.

      (7) The authors excluded 25 subjects (20% of the data) for different reasons. This is a substantial proportion, especially by the standards of what is typically observed in behavioral experiments. The authors should provide a clear justification for these exclusion criteria and, if possible, cite relevant studies that support the use of such stringent thresholds.

      (8) The authors should do a better job of creating the figures and writing the figure captions. It is unclear which specific claim the authors are addressing with the figure. For example, what is the key message of Figure 2C regarding transfer within and across participants? Why are the stats presentation different between the Cognitive model and the EIDT framework plots? In Figure 3, it's unclear what these dots and clusters represent and how they support the authors' claim that the same individual forms clusters. And isn't this experiment have 98 subjects after exclusion, this plot has way less than 98 dots as far as I can tell. Furthermore, I find Figure 5 particularly confusing, as the underlying claim it is meant to illustrate is unclear. Clearer figures and more informative captions are needed to guide the reader effectively.

      (9) I also find the writing somewhat difficult to follow. The subheadings are confusing, and it's often unclear which specific claim the authors are addressing. The presentation of results feels disorganized, making it hard to trace the evidence supporting each claim. Also, the excessive use of acronyms (e.g., SX, SY, CG, EA, ES, DA, DS) makes the text harder to parse. I recommend restructuring the results section to be clearer and significantly reducing the use of unnecessary acronyms.

      Comments on revisions:

      The authors have addressed my previous comments with great care and detail. I appreciate the additional analyses and edits. I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents compelling new data that combine two FTD-tau mutations P301L/S320F (PL-SF), that reliably induce spontaneous full-length tau aggregation across multiple cellular systems. However, several conclusions would benefit from more validation. Key findings rely on quantification of overexposed immunoblot, and in some experiments, the tau bands shift in molecular weight that are not explained (and in some instances vary between experiments). The effect seems to be driven by the S320F mutation, with the P301L mutation enhancing the effect observed with S320F alone. Although the observation that Hsp70, but not the related Hsc70, enhances aggregation is intriguing, the mechanistic basis for these differences remains unclear despite both Hsp70 and Hsc70 binding to tau. Additional experiments clarifying which PL-SF tau species Hsp70 engages, how this interaction alters tau conformational landscapes, and whether other chaperones or cofactors contribute to this effect would help solidify the conclusions and build a mechanistic picture. Overexpression of Hsp70 in the context of PL tau did not increase tau aggregation, which raises questions about whether the observed effects are specific to the SF mutation. Hsp70 functions in the context of a larger network of chaperones and has been proposed to cooperate with other proteins/machinery to disassemble tau amyloids, perhaps to produce more seeds. This would be consistent with the presented observations. For example, co-IP experiments using Hsp70 as bait combined with proteomics could really help build a more complete picture of what tau species Hsp70 binds and what other factors cooperate to yield the observed increases in aggregation. As it stands, the Hsp70 component of the paper is not fully developed, and additional experiments to address these questions would strengthen this manuscript beyond simply presenting a new tool to study spontaneous tau aggregation.

      Strengths:

      (1) The PL-SF FL tau mutant aggregates spontaneously in different cellular systems and shows hallmarks of tau pathology linked to disease.

      (2) PL-SF 4delta mutant reverses the spontaneous aggregation phenotype, consistent with these residues being critical for tau aggregation.

      (3) PL-SF 4delta also loses the ability to recruit Hsp70/Hsc70, consistent with these residues also being critical for chaperone recruitment.

      (4) The PL-SF tau mutant establishes a new system to study spontaneous tau assembly and to begin to compare it to seeded tau aggregation processes.

      Weaknesses:

      (1) Mechanistic insight into how Hsp70 but not Hsc70 increase PL-SF FL tau aggregation/pathology is missing. This is despite both chaperones binding to PL-SF FL tau. What species of tau does Hsp70 bind, and what cofactors are important in this process?

      (2) The study relies heavily on densitometry of bands to draw conclusions; in several instances, the blots are overexposed to accurately quantify the signal.

    2. Reviewer #2 (Public review):

      Summary:

      This study developed a novel tauopathy model combining two mutations, P301L and S320F, termed the PL-SF model. This model shows rapid tau protein aggregation.

      Strengths:

      The authors demonstrated pathogenicity through solid in vivo and in vitro experiments. Simultaneously, they used this model to investigate the role of the heat shock protein Hsp70 in tau protein aggregation, finding that Hsp70 promotes rather than inhibits tau pathology, which differs from previous findings.

      Weaknesses:

      (1) Although the PL-SF model can accelerate tau aggregation, it is crucial to determine whether this aligns with the temporal progression and spatial distribution of tau pathology in the brains of patients with tauopathies.

      (2) The authors did not elucidate the specific molecular mechanism by which Hsp70 promotes tau aggregation.

      (3) Some figures in this study show large error bars in the quantitative data (some statistical analysis figures, MEA recordings, etc.), indicating significant inter-sample variability. It is recommended to label individual data points in all quantitative figures and clearly indicate them in figure legends.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents convincing findings that oligodendrocytes play a regulatory role in spontaneous neural activity synchronization during early postnatal development, with implications for adult brain function. Utilizing targeted genetic approaches, the authors demonstrate how oligodendrocyte depletion impacts Purkinje cell activity and behaviors dependent on cerebellar function. Delayed myelination during critical developmental windows is linked to persistent alterations in neural circuit function, underscoring the lasting impact of oligodendrocyte activity.

      Strengths:

      (1) The research leverages the anatomically distinct olivocerebellar circuit, a well-characterized system with known developmental timelines and inputs, strengthening the link between oligodendrocyte function and neural synchronization.

      (2) Functional assessments, supported by behavioral tests, validate the findings of in vivo calcium imaging, enhancing the study's credibility.

      (3) Extending the study to assess long-term effects of early life myelination disruptions adds depth to the implications for both circuit function and behavior.

      Weaknesses:

      (1) The study would benefit from a closer analysis of myelination during the periods when synchrony is recorded. Direct correlations between myelination and synchronized activity would substantiate the mechanistic link and clarify if observed behavioral deficits stem from altered myelination timing.

      (2) Although the study focuses on Purkinje cells in the cerebellum, neural synchrony typically involves cross-regional interactions. Expanding the discussion on how localized Purkinje synchrony affects broader behaviors-such as anxiety, motor function, and sociality - would enhance the findings' functional significance.

      (3) The authors discuss the possibility of oligodendrocyte-mediated synapse elimination as a possible mechanism behind their findings, drawing from relevant recent literature on oligodendrocyte precursor cells. However, there are no data presented supporting these assumptions. The authors should explain why they think the mechanism behind their observation extends beyond the contribution of myelination or remove this point from the discussion entirely.

      Comment for resubmission: Although the argument on synaptic elimination has been removed, it has been replaced with similarly unclear speculation about roles for oligodendrocytes outside of conventional myelination or metabolic support, again without clear evidence. The authors measured MBP area but have not performed detailed analysis of oligodendrocyte biology to support the claims made in the discussion. Please consider removing this section or rephrasing it to align with the data presented.

      (4) It would be valuable to investigate secondary effects of oligodendrocyte depletion on other glial cells, particularly astrocytes or microglia, which could influence long-term behavioral outcomes. Identifying whether the lasting effects stem from developmental oligodendrocyte function alone or also involve myelination could deepen the study's insights.

      (5) The authors should explore the use of different methods to disturb myelin production for a longer time, in order to further determine if the observed effects are transient or if they could have longer-lasting effects.

      (6) Throughout the paper, there are concerns about statistical analyses, particularly on the use of the Mann-Whitney test or using fields of view as biological replicates.

    1. Reviewer #1 (Public review):

      Summary:

      Kashiwagi et al. undertook a population analysis of dendritic spine nanostructure applied to the objective grouping of 8 mouse models of neuropsychiatric disorders. They report that spine morphology in cultured hippocampal neurons shows a higher similarity among schizophrenia mouse models (compared with autism spectrum disorder (ASD) mouse models), and identify an effect of Ecrg4 (encoding small secretory peptides) on spine dynamics and shape in these models.

      Strengths:

      The study developed a method for objectively comparing spine properties in primary hippocampal neuron cultures from 8 mouse models of psychiatric disorders at the population level using high-resolution structured illumination microscopy (SIM) imaging. This novel technique identified two distinct groups of mouse models according to the population-level spine properties: those with ASD-related gene mutations and those with schizophrenia-related gene mutations. Functional studies, including gene knockdown and overexpression experiments, identified an effect of Ecrg4 on the spine phenotype of the schizophrenia model mice.

      Weaknesses:

      The main weakness is that the study is wholly in vitro, using cultured hippocampal neurons. The authors present this as an advantage, however, arguing that spine morphology as measured in a reduced culture system can demonstrate direct effects of gene mutations on neuronal phenotypes in the absence of indirect influences from nonneuronal cells or specific environments.

      Another weakness is that CaMKIIαK42R/K42R mutant mice are presented as a schizophrenia model, the authors justifying this by saying that "CaMKII-related signaling pathway disruption has been implicated in the working memory deficits found in schizophrenia patients". Since mutations in CAMK2A cause autosomal dominant intellectual developmental disorder-53 (OMIM 617798) and autosomal recessive intellectual developmental disorder-63 (OMIM 618095), and mice carrying the CAMK2A E183V mutation exhibit ASD-related synaptic and behavioral phenotypes (PMID: 28130356), I think it's stretching credibility to refer to the CaMKIIαK42R/K42R mice as a schizophrenia model.

      Although the manuscript is largely well written, there are some instances of ambiguous/unspecific language. This extends to the title (Decoding Spine Nanostructure in Mental Disorders Reveals a Schizophrenia-1 Linked Role for Ecrg4), which gives no indication that the work was in vitro on cultured neurons derived from mouse models.

    2. Reviewer #2 (Public review):

      Okabe and colleagues build on a super-resolution-based technique that they have previously developed in cultured hippocampal neurons, improving the pipeline and using it to analyze spine nanostructure differences across 8 different mouse lines with mutations in autism or schizophrenia (Sz) risk genes/pathways. It is a worthy goal to try to use multiple models to examine potential convergent (or not) phenotypes, and the authors have made a good selection of models. They identify some key differences between the autism versus the Sz risk gene models, primarily that dendritic spines are smaller in Sz models and (mostly) larger in autism risk gene models. They then focus on three models (2 Sz - 22q11.2 deletion, Setd1a; 1 ASD - Nlgn3) for time-lapse imaging of spine dynamics, and together with computational modelling provide a mechanistic rationale for the smaller spines in Sz risk models. Bulk RNA sequencing of all 8 model cultures identifies several differentially expressed genes, which they go on to test in cultures, finding that ecgr4 is upregulated in several Sz models and its misexpression recapitulates spine dynamics changes seen in the Sz mutants, while knockdown rescues spine dynamics changes in the Sz mutants. Overall, these have the potential to be very interesting findings and useful for the field. However, I do have a number of major concerns.

      (1) The main finding of spine nanostructure changes is done by carrying out a PCA on various structural parameters, creating spine density plots across PC1 and PC2, and then subtracting the WT density plot from the mutant. Then, spines in the areas with obvious differences only are analyzed, from which they derive the finding that, for example, spine sizes are smaller. However, this seems a circular approach. It is like first identifying where there might be a difference in the data, then only analyzing that part of the data. I welcome input from a statistician, but to me, this is at best unconventional and potentially misleading. I assume the overall means are not different (although this should be included), but could they look at the distribution of sizes and see if these are shifted?

      (2) Despite extracting 64 parameters describing spine structure, only 5 of these seemed to be used for the PCA. It should be possible to use all parameters and show the same results. More information on PC1 and PC2 would be helpful, given that the rest of the paper is based on these - what features are they related to? These specific features could then be analyzed in the full dataset, without doing the cherry picking above. It would also be helpful to demonstrate whether PC1 and 2 differ across groups - for example, the authors could break their WT data into 2 subsets and repeat the analysis.

      (3) Throughout the paper, the 'n' used for statistical analysis is often spine, which is not appropriate. At a minimum, cell should be used, but ideally a nested mixed model, which would take into account factors like cell, culture, and animal, would be preferable. Also, all of these factors should be listed, with sufficient independent cultures.

      (4) The authors should confirm that all mutants are also on the C57BL/6J background, and clarify whether control cultures are from littermates (this would be important). Also, are control versus mutant cultures done simultaneously? There can be significant batch effects with cultures.

      (5) The spine analysis uses cultures from 18-22 DIV - this is quite a large range. It would be worth checking whether age is a confounder or correlated with any parameters / principal components.

      (6) The computational modelling is interesting, but again, I am concerned about some circularity. Parameter optimization was used to identify the best fit model that replicated the spine turnover rates, so it is somewhat circular to say that this matched the observations when one of these is the turnover rate. It is more convincing for spine density and size, but why not go back and test whether parameter differences are actually seen - for example, it would be possible to extract the probability of nascent spine loss, etc. More compelling would be to repeat the experiments and see if the model still fits the data. In the interpretation (line 314-318) it is stated that '... reduced spine maturation rate can account for the three key properties of schizophrenia-related spines...', which is interesting if true, but it has just been stated that the probability of spine destabilization is also higher in mutants (line 303) - the authors should test whether if the latter is set to be the same as controls whether all the findings are replicated.

      (7) No validation for overexpression or knockdown is shown, although it is mentioned in the methods - please include. Also, for the knockdown, a scrambled shRNA control would be preferable.

      (8) The finding regarding ecgr4 is interesting, but showing that some ecgr4 is expressed at boutons and spines and some in DCVs is not enough evidence to suggest that actively involved in the regulation of synapse formation and maturation (line 356).

      (9) The same caveats that apply to the analysis also apply to the ecgr4 rescue. In addition, while for 22q the control shRNA mutant vs WT looks vaguely like Figure 2, setd1a looks completely different. And if rescued, surely shRNA in the mutant should now resemble control in WT, so there shouldn't be big differences, but in fact, there are just as many differences as comparing mutant vs wildtype? Plus, for spine features, they only compare mutant rescue with mutant control, but this is not ideal - something more like a 2-way ANOVA is really needed. Maybe input from a statistician might be useful here?

      (10) Although this is a study entirely focused on spine changes in mouse models for Sz, there is no discussion (or citation) of the various studies that have examined this in the literature. For example, for Setd1a, smaller spines or reduced spine densities have been described in various papers (Mukai et al, Neuron 2019; Chen et al, Sci Adv 2022; Nagahama et al, Cell Rep 2020).

      (11) There is a conceptual problem with the models if being used to differentiate autism risk from Sz risk genes. It is difficult to find good mouse models for Sz, so the choice of 22q11.2del and Setd1a haploinsufficiency is completely reasonable. However, these are both syndromic. 22qdel syndrome involves multiple issues, including hearing loss, delayed development, and learning disabilities, and is associated with autism (20% have autism, as compared to 25% with Sz). Similarly, Setd1a is also strongly associated with autism as well as Sz (and also involves global developmental delay and intellectual disability). While I think this is still the best we can do, and it is reasonable to say that these models show biased risk for these developmental disorders, it definitely can't be used as an explanation for the higher variability seen in the autism risk models.

      (12) I am not convinced that using dissociated cultures is 'more likely to reflect the direct impact of schizophrenia-related gene mutations on synaptic properties' - first, cultures do have non-neuronal cells, although here glial proliferation was arrested at 2 days, glia will be present with the protocol used (or if not, this needs demonstrating). Second, activity levels will affect spine size, and activity patterns are very abnormal in dissociated cultures, so it is very possible that spine changes may not translate into in vivo scenarios. Overall, it is a weakness that the dissociated culture system has been used, which is not to say that it is not useful, and from a technical and practical perspective, there are good justifications.

      (13) As a minor comment, the spine time-lapse imaging is a strength of the paper. I wonder about the interpretation of Figure 5. For example, the results in Figure 5G and J look as if they may be more that the spines grow to a smaller size and start from a smaller size, rather than necessarily the rate of growth.

    1. Reviewer #1 (Public review):

      Summary of goals:

      The authors' stated goal (line 226) was to compare gene expression levels for gut hormones between males and females. As female flies contain more fat than males, they also sought to identify hormones that control this sex difference. Finally, they attempted to place their findings in the broader context of what is already known about established underlying mechanisms.

      Strengths:

      (1) The core research question of this work is interesting. The authors provide a reasonable hypothesis (neuro/entero-peptides may be involved) and well-designed experiments to address it.

      (2) Some of the data are compelling, especially positive results that clearly implicate enteropeptides in sex-biased fat contents (Figures 1 and 3).

      Weaknesses:

      (1) The greatest weakness of this work is that it falls short of providing a clear mechanism for the regulation of sex-biased fat content by AstC and Tk. By and large, feminization of neurons or enteroendocrine cells with UAS-traF did not increase fat in males (Figure 2). The authors mention that ecdysone, juvenile hormone or Sex-lethal may instead play a role (lines 258-270), but this is speculative, making this study incomplete.

      (2) Related to the above point, the cellular mechanisms by which AstC and Tk regulate fat content in males and females are only partially characterized. For example, knockdown of TkR99D in insulin-producing neurons (Figure 4E) but not pan-neuronally (Figure 4B) increases fat in males, but Tk itself only shows a tendency (Figure 3B). In females, the situation is even less clear: again, Tk only shows a tendency (Figure 3B), and pan-neuronal, but not IPC-specific knockdown of TkR99D decreases fat.

      (3) The text sometimes misrepresents or contradicts the Results shown in the figures. UAS-traF expression in neurons or enteroendocrine cells did sometimes alter fat contents (Figure 2H, S), but the authors report that sex differences were unaffected (lines 164-166). On the other hand, although knockdown of Tk in enteroendocrine cells caused no significant effect (Figure 3B), the authors report this as a trend towards reduction (lines 182-183). This biased representation raises concerns about the interpretation of the data and the authors' conclusions.

      (4) The authors find that in males, neuropeptide expression in the head is higher (Figure 1F-J). This may also play an important role in maintaining lower levels of fat in males, but this finding is not explored in the manuscript.

      Appraisal of goal achievement & conclusions:

      The authors were successful in identifying hormones that show sex bias in their expression and also control the male vs. female difference in fat content. However, elucidation of the relevant cellular pathways is incomplete. Additionally, some of their conclusions are not supported by the data (see Weaknesses, point 3).

      Impact:

      It is difficult to evaluate the impact of this study. This is in great part because the authors do not attempt to systematically place their findings about AstC/Tk in the broader context of their previous studies, which investigated the same phenomenon (Wat et al., 2021, eLife and Biswas et al., 2025, Cell Reports). As the underlying mechanisms are complex and likely redundant, it is necessary to generate a visual model to explain the pathways which regulate fat content in males and females.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Biswas and Rideout investigates sex differences in the expression and function of hormones derived from Drosophila enteroendocrine cells (EE). The authors report that while whole-body and head expression of several EE hormones (AstA, AstC, Tk, NPF, Dh31) is male-biased, gut-specific expression of AstC, Tk, and NPF is female-biased. Intriguingly, this sex-specific effect is not dependent on Tra - a surprising and important result. The authors then used an RNAi-based approach to demonstrate that gut-derived AstC and Tk promote fat storage specifically in females. Similar effects are observed when their receptors are knocked down in neurons. In addition, the authors were able to demonstrate that while Tk promotes female body fat via the insulin-producing cells. Together, these findings suggest that EE cell-derived hormones contribute to sex-specific fat storage regulation.

      Strengths:

      Overall, I find the paper quite interesting. While the findings are brief, they reveal novel aspects of the sex-specific lipid storage program that I believe are important. As noted by the authors in the discussion, there are many open questions, including how these neuronal effects translate into systemic sex-specific regulation of lipid storage. Regardless, I find the results to be convincing - this paper will serve as the launching point of many future studies.

      Weaknesses:

      My main criticisms are focused on two points:

      (1) If the sex specific differences are eliminated by tra overexpression, what else might be responsible? As the authors note, the differences in 20E titers might be responsible. I would encourage the authors to simply feed adult flies with food containing 20E and determine if this alters sex-specific 20E expression.

      (2) I'm quite intrigued by the discovery that Tra does not eliminate the sex-specific differences. There are quite a few recent studies demonstrating that fruitless influences sex-specific neuronal function - here to I would encourage the authors to examine whether this aspect of the sex-determination pathway is involved in the lipid accumulation phenotype.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates how the brain processes facial expressions across development by analyzing intracranial EEG (iEEG) data from children (ages 5-10) and post-childhood individuals (ages 13-55). The researchers used a short film containing emotional facial expressions and applied AI-based models to decode brain responses to facial emotions. They found that in children, facial emotion information is represented primarily in the posterior superior temporal cortex (pSTC)-a sensory processing area-but not in the dorsolateral prefrontal cortex (DLPFC), which is involved in higher-level social cognition. In contrast, post-childhood individuals showed emotion encoding in both regions. Importantly, the complexity of emotions encoded in the pSTC increased with age, particularly for socially nuanced emotions like embarrassment, guilt, and pride.The authors claim that these findings suggest that emotion recognition matures through increasing involvement of the prefrontal cortex, supporting a developmental trajectory where top-down modulation enhances understanding of complex emotions as children grow older.

      Strengths:

      (1) The inclusion of pediatric iEEG makes this study uniquely positioned to offer high-resolution temporal and spatial insights into neural development compared to non-invasive approaches, e.g., fMRI, scalp EEG, etc.

      (2) Using a naturalistic film paradigm enhances ecological validity compared to static image tasks often used in emotion studies.

      (3) The idea of using state-of-the-art AI models to extract facial emotion features allows for high-dimensional and dynamic emotion labeling in real time.

      Weaknesses:

      (1) The study has notable limitations that constrain the generalizability and depth of its conclusions. The sample size was very small, with only nine children included and just two having sufficient electrode coverage in the posterior superior temporal cortex (pSTC), which weakens the reliability and statistical power of the findings, especially for analyses involving age. Authors pointed out that a similar sample size has been used in previous iEEG studies, but the cited works focus on adults and do not look at the developmental perspectives. Similar work looking at developmental changes in iEEG signals usually includes many more subjects (e.g., n = 101 children from Cross ZR et al., Nature Human Behavior, 2025) to account for inter-subject variabilities.

      (2) Electrode coverage was also uneven across brain regions, with not all participants having electrodes in both the dorsolateral prefrontal cortex (DLPFC) and pSTC, making the conclusion regarding the different developmental changes between DLPFC and pSTC hard to interpret (related to point 3 below). It is understood that it is rare to have such iEEG data collected in this age group, and the electrode location is only determined by clinical needs. However, the scientific rigor should not be compromised by the limited data access. It's the authors' decision whether such an approach is valid and appropriate to address the scientific questions, here the developmental changes in the brain, given all the advantages and constraints of the data modality.

      (3) The developmental differences observed were based on cross-sectional comparisons rather than longitudinal data, reducing the ability to draw causal conclusions about developmental trajectories. Also, see comments in point 2.

      (4) Moreover, the analysis focused narrowly on DLPFC, neglecting other relevant prefrontal areas such as the orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC), which play key roles in emotion and social processing. Agree that this might be beyond the scope of this paper, but a discussion section might be insightful.

      (5) Although the use of a naturalistic film stimulus enhances ecological validity, it comes at the cost of experimental control, with no behavioral confirmation of the emotions perceived by participants and uncertain model validity for complex emotional expressions in children. A non-facial music block that could have served as a control was available but not analyzed. The validation of AI model's emotional output needs to be tested. It is understood that we cannot collect these behavioral data retrospectively within the recorded subjects. Maybe potential post-hoc experiments and analyses could be done, e.g., collect behavioral, emotional perception data from age-matched healthy subjects.

      (6) Generalizability is further limited by the fact that all participants were neurosurgical patients, potentially with neurological conditions such as epilepsy that may influence brain responses. At least some behavioral measures between the patient population and the healthy groups should be done to ensure the perception of emotions is similar.

      (7) Additionally, the high temporal resolution of intracranial EEG was not fully utilized, as data were downsampled and averaged in 500-ms windows. It seems like the authors are trying to compromise the iEEG data analyses to match up with the AI's output resolution, which is 2Hz. It is not clear then why not directly use fMRI, which is non-invasive and seems to meet the needs here already. The advantages of using iEEG in this study are missing here.

      (8) Finally, the absence of behavioral measures or eye-tracking data makes it difficult to directly link neural activity to emotional understanding or determine which facial features participants attended to. Related to point 5 as well.

      Comments on revisions:

      A behavioral measurement will help address a lot of these questions. If the data continues collecting, additional subjects with iEEG recording and also behavioral measurements would be valuable.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, Fan et al. aim to characterize how neural representations of facial emotions evolve from childhood to adulthood. Using intracranial EEG recordings from participants aged 5 to 55, the authors assess the encoding of emotional content in high-level cortical regions. They report that while both the posterior superior temporal cortex (pSTC) and dorsolateral prefrontal cortex (DLPFC) are involved in representing facial emotions in older individuals, only the pSTC shows significant encoding in children. Moreover, the encoding of complex emotions in the pSTC appears to strengthen with age. These findings lead the authors to suggest that young children rely more on low-level sensory areas and propose a developmental shift from reliance on lower-level sensory areas in early childhood to increased top-down modulation by the prefrontal cortex as individuals mature.

      Strengths:

      (1) Rare and valuable dataset: The use of intracranial EEG recordings in a developmental sample is highly unusual and provides a unique opportunity to investigate neural dynamics with both high spatial and temporal resolution.

      (2 ) Developmentally relevant design: The broad age range and cross-sectional design are well-suited to explore age-related changes in neural representations.

      (3) Ecological validity: The use of naturalistic stimuli (movie clips) increases the ecological relevance of the findings.

      (4) Feature-based analysis: The authors employ AI-based tools to extract emotion-related features from naturalistic stimuli, which enables a data-driven approach to decoding neural representations of emotional content. This method allows for a more fine-grained analysis of emotion processing beyond traditional categorical labels.

      Weaknesses:

      (1) While the authors leverage Hume AI, a tool pre-trained on a large dataset, its specific performance on the stimuli used in this study remains unverified. To strengthen the foundation of the analysis, it would be important to confirm that Hume AI's emotional classifications align with human perception for these particular videos. A straightforward way to address this would be to recruit human raters to evaluate the emotional content of the stimuli and compare their ratings to the model's outputs.

      (2) Although the study includes data from four children with pSTC coverage-an increase from the initial submission-the sample size remains modest compared to recent iEEG studies in the field.

      (3) The "post-childhood" group (ages 13-55) conflates several distinct neurodevelopmental periods, including adolescence, young adulthood, and middle adulthood. As a finer age stratification is likely not feasible with the current sample size, I would suggest authors temper their developmental conclusions.

      (4) The analysis of DLPFC-pSTC directional connectivity would be significantly strengthened by modeling it as a continuous function of age across all participants, rather than relying on an unbalanced comparison between a single child and a (N=7) post-childhood group. This continuous approach would provide a more powerful and nuanced view of the developmental trajectory. I would also suggest including the result in the main text.

    1. Reviewer #1 (Public review):

      Summary:

      This is a strong paper that presents a clear advance in multi-animal tracking. The authors introduce an updated version of idtracker.ai that reframes identity assignment as a contrastive representation learning problem rather than a classification task requiring global fragments. This change leads to substantial gains in speed and accuracy and removes a known bottleneck in the original system. The benchmarking across species is comprehensive, the results are convincing, and the work significant.

      Strengths:

      The main strengths are the conceptual shift from classification to representation learning, the clear performance gains, and the improved robustness of the new version. Removing the need for global fragments makes the software much more flexible in practice, and the accuracy and speed improvements are well demonstrated across a diverse set of datasets. The authors' response also provides further support for the method's robustness.

      The comparison to other methods is now better documented. The authors clarify which features are used, how failures are defined, how parameters are sampled, and how accuracy is assessed against human-validated data. This helps ensure that the evaluation is fair and that readers can understand the assumptions behind the benchmarks.

      The software appears thoughtfully implemented, with GUI updates, integration with pose estimators, and tools such as idmatcher.ai for linking identities across videos. The overall presentation has been improved so that the limitations of the original idtracker.ai, the engineering optimizations, and the new contrastive formulation are more clearly separated. This makes the central ideas and contributions easier to follow.

      Weaknesses:

      I do not have major remaining criticisms. The authors have addressed my earlier concerns about the clarity and fairness of the comparison with prior methods, the benchmark design, and the memory usage analysis by adding methodological detail and clearly explaining their choices. At this point I view these aspects as transparent features of the experimental design that readers can take into account, rather than weaknesses of the work.

      Overall, this is a high-quality paper. The improvements to idtracker.ai are well justified and practically significant, and the authors' response addresses the main concerns about clarity and evaluation. The conceptual contribution, thorough empirical validation, and thoughtful software implementation make this a valuable and impactful contribution to multi-animal tracking.

    2. Reviewer #3 (Public review):

      Summary:

      The authors propose a new version of idTracker.ai for animal tracking. Specifically, they apply contrastive learning to embed cropped images of animals into a feature space where clusters correspond to individual animal identities. By doing this, they address the requirement for so-called global fragments - segments of the video, in which all entities are visible/detected at the same time. In general, the new method reduces the long tracking times from the previous versions, while also increasing the average accuracy of assigning the identity labels.

      Strengths and weaknesses:

      The authors have reorganized and rewritten a substantial portion of their manuscript, which has improved the overall clarity and structure to some extent. In particular, omitting the different protocols enhanced readability. However, all technical details are now in appendix which is now referred to more frequently in the manuscript, which was already the case in the initial submission. These frequent references to the appendix - and even to appendices from previous versions - make it difficult to read and fully understand the method and the evaluations in detail. A more self-contained description of the method within the main text would be highly appreciated.

      Furthermore, the authors state that they changed their evaluation metric from accuracy to IDF1. However, throughout the manuscript they continue to refer to "accuracy" when evaluating and comparing results. It is unclear which accuracy metric was used or whether the authors are confusing the two metrics. This point needs clarification, as IDF1 is not an "accuracy" measure but rather an F1-score over identity assignments.

      The authors compare the speedups of the new version with those of the previous ones by taking the average. However, it appears that there are striking outliers in the tracking performance data (see Supplementary Table 1-4). Therefore, using the average may not be the most appropriate way to compare. The authors should consider using the median or providing more detailed statistics (e.g., boxplots) to better illustrate the distributions.

      The authors did not provide any conclusion or discussion section. Including a concise conclusion that summarizes the main findings and their implications would help to convey the message of the manuscript.

      The authors report an improvement in the mean accuracy across all benchmarks from 99.49% to 99.82% (with crossings). While this represents a slight improvement, the datasets used for benchmarking seem relatively simple and already largely "solved". Therefore, the impact of this work on the field may be limited. It would be more informative to evaluate the method on more challenging datasets that include frequent occlusions, crossings, or animals with similar appearances. The accuracy reported in the main text is "without crossings" - this seems like incomplete evaluation, especially that tracking objects that do not cross seems a straightforward task. Information is missing why crossings are a problem and are dealt with separately. There are several videos with a much lower tracking accuracy, explaining what the challenges of these videos are and why the method fails in such cases would help to understand the method's usability and weak points.

    1. Reviewer #1 (Public review):

      Olmstead et al. present a single-cell nuclear sequencing dataset that interrogates how hippocampal gene expression changes in response to distinct physiological stimuli and across circadian time. The authors perform single-nucleus RNA sequencing on mouse hippocampal tissue after (1) kainic acid-induced seizure, (2) exposure to an enriched environment, and (3) at multiple circadian phases.

      The dataset is rigorously collected, and a major strength is the use of the previously established ABC taxonomy from Yao et al. (2023) to define cell types. The authors further show that this taxonomy is largely independent of activity-driven transcriptional programs. Using these annotations, they examine activity-regulated gene expression across neuronal and glial subclasses. They identify ZT12, corresponding to the transition from the light to the dark period, as transcriptionally distinct from other circadian time points, and show that this pattern is conserved across many cell types. Finally, they test how circadian phase influences activity-dependent gene expression by exposing mice to an enriched environment at different times of day, and report no significant interaction between circadian phase and enriched environment exposure.

      A crucial consideration for users of this dataset is the potential confounding effect between circadian phase and locomotor activity. This is particularly relevant because dentate gyrus activity is strongly modulated by locomotion. The authors acknowledge this issue in the Discussion and provide useful guidance for how to interpret their findings, considering this confound.

      Taken together, this dataset represents a useful resource for the neuroscience community, particularly for investigators interested in how novel experience and circadian phase shape activity-related and immediate early gene expression in the hippocampus

    2. Reviewer #2 (Public review):

      This manuscript presents the ACT-DEPP dataset, a comprehensive single-nucleus RNA-sequencing atlas of the mouse hippocampus that examines how activity-dependent and circadian transcriptional programs intersect. The dataset spans multiple experimental conditions and circadian time points, clarifying how cell-type identity relates to transcriptional state. In particular, the authors compare stimulus-evoked activity programs (environmental enrichment and kainate-induced seizures) with circadian phase-dependent transcriptional oscillations. They also identify a transcriptional inflection point near ZT12 and argue that immediate early gene (IEG) induction is broadly maintained across circadian phases, with minimal ZT-dependent modulation.

      Strengths:

      The study is ambitious in scope and data volume, and outlines the data-processing and atlas-registration workflows. The side-by-side treatment of stimulus paradigms and ZT sampling provides a coherent framework for parsing state (activity) from phase (circadian) across diverse neuronal and non-neuronal classes. Several findings - especially the ZT12 "inflection" and the differential sensitivity of pathways across subclasses - are intriguing.

      Weaknesses:

      (1) The authors acknowledge, but do not adequately address, the fundamental confounding factor between circadian phase and spontaneous locomotor activity. The assertion that these represent "orthogonal regulatory axes," based on largely non-overlapping DEGs, may be overstated. The absence of behavioral monitoring during baseline is a major limitation.

      (2) The statement "Thus, novel experiences and seizures trigger categorically distinct transcriptional responses-with respect to both magnitude and specific genes-in these hippocampal subregions" is overstated, given the data presented. Figure 2A-B shows that approximately one-third of EE-induced DEGs at 30 minutes overlap with KA DEGs, and this overlap increases substantially at 6 hours in CA1 (where EE and KA responses become "fully shared"). This suggests the responses are quantitatively different rather than "categorically distinct."

      (3) In Figure 4B, "active cells" are defined as those with {greater than or equal to}3 of 15 IEGs above the 90th percentile, with thresholds apparently calibrated in CA1. Because baseline expression distributions differ across subclasses, this rule can bias activation rates across cell types.

      (4) Few genes show significant ZT × stimulus (EE or seizure) interactions, concentrated in neuronal populations. Given unequal nucleus counts and biological replicates across subclasses, small effects may be underpowered.

      (5) In Figure 6 I, J, the relationship between the highlighted pathways/functions and circadian phase is not yet explicit.

      (6) Line 276-280: The enrichment of lncRNAs at ZT12 in CA1 is intriguing but underdeveloped. What are these lncRNAs, and what might they regulate?

      Overall, most descriptive conclusions are supported (e.g., broad phase-robustness of classical IEGs; an inflection near ZT12). Claims about the separability/orthogonality of activity vs circadian programs, and about categorical distinctions between EE and KA responses, would benefit from more conservative wording or additional analyses to rule out behavioral and power-related alternatives.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a robust set of experiments that provide new insights into the role of STN neurons during active and passive avoidance tasks. These forms of avoidance have received comparatively less attention in the literature than the more extensively studied escape or freezing responses, despite being extremely relevant to human behaviour and more strongly influenced by cognitive control.

      Strengths:

      Understanding the neural infrastructure supporting avoidance behaviour would be a fundamental milestone in neuroscience. The authors employ sophisticated methods to delineate the role of STN neurons during avoidance behaviours. The work is thorough and the evidence presented is compelling. Experiments are carefully constructed, well-controlled, and the statistical analyses are appropriate.

      Weaknesses:

      One possible remaining conceptual concern that might require future work is determining whether STN primarily mediates higher-level cognitive avoidance or if its activation primarily modulates motor tone.

    2. Reviewer #2 (Public review):

      Summary:

      Zhou, Sajid et al. present a study investigating the STN involvement in signaled movement. They use fiber photometry, implantable lenses, and optogenetics during active avoidance experiments to evaluate this. The data are useful for the scientific community and the overall evidence for their claims is solid, but many aspects of the findings are confusing. The authors present a huge collection of data, it is somewhat difficult to extract the key information and the meaningful implications resulting from these data.

      Strengths:

      The study is comprehensive in using many techniques and many stimulation powers and frequencies and configurations.

      Weaknesses - re-review:

      All previous weaknesses have been addressed. The authors should explain how inhibition of the STN impairing active avoidance is consistent with the STN encoding cautious action. If 'caution' is related to avoid latency, why does STN lesion or inhibition increase avoid latency, and therefore increase caution? Wouldn't the opposite be more consistent with the statement that the STN 'encodes cautious action'?

    3. Reviewer #3 (Public review):

      Summary:

      The authors use calcium recordings from STN to measure STN activity during spontaneous movement and in a multi-stage avoidance paradigm. They also use optogenetic inhibition and lesion approaches to test the role of STN during the avoidance paradigm. The paper reports a large amount of data and makes many claims, some seem well supported to this Reviewer, others not so much.

      Strengths:

      Well-supported claims include data showing that during spontaneous movements, especially contraversive ones, STN calcium activity is increased using bulk photometry measurements. Single-cell measures back this claim but also show that it is only a minority of STN cells that respond strongly, with most showing no response during movement, and a similar number showing smaller inhibitions during movement.

      Photometry data during cued active avoidance procedures show that STN calcium activity sharply increases in response to auditory cues, and during cued movements to avoid a footshock. Optogenetic and lesion experiments are consistent with an important role for STN in generating cue-evoked avoidance. And a strength of these results is that multiple approaches were used.

      Original Weaknesses:

      I found the experimental design and presentation convoluted and some of the results over-interpreted.

      As presented, I don't understand this idea that delayed movement is necessarily indicative of cautious movements. Is the distribution of responses multi-modal in a way that might support this idea; or do the authors simply take a normal distribution and assert that the slower responses represent 'caution'? Even if responses are multi-modal and clearly distinguished by 'type', why should readers think this that delayed responses imply cautious responding instead of say: habituation or sensitization to cue/shock, variability in attention, motivation, or stress; or merely uncertainty which seems plausible given what I understand of the task design where the same mice are repeatedly tested in changing conditions. This relates to a major claim (i.e., in the title).

      Related to the last, I'm struggling to understand the rationale for dividing cells into 'types' based the their physiological responses in some experiments.

      In several figures the number of subjects used was not described. This is necessary. Also necessary is some assessment of the variability across subjects. The only measure of error shown in many figures relates trial-to-trial or event variability, which is minimal because in many cases it appears that hundreds of trials may have been averaged per animal, but this doesn't provide a strong view of biological variability (i.e., are results consistent across animals?).

      It is not clear if or how spread of expression outside of target STN was evaluated, and if or how or how many mice were excluded due to spread or fiber placements. Inadequate histological validation is presented and neighboring regions that would be difficult to completely avoid, such as paraSTN may be contributing to some of the effects.

      Raw example traces are not provided.

      The timeline of the spontaneous movement and avoidance sessions were not clear, nor the number of events or sessions per animal and how this was set. It is not clear if there was pre-training or habituation, if many or variable sessions were combined per animal, or what the time gaps between sessions was, or if or how any of these parameters might influence interpretation of the results.

      Comments on revised version:

      The authors removed the optogenetic stimulation experiments, but then also added a lot of new analyses. Overall the scope of their conclusions are essentially unchanged.

      Part of the eLife model is to leave it to the authors discretion how they choose to present their work. But my overall view of it is unchanged. There are elements that I found clear, well executed, and compelling. But other elements that I found difficult to understand and where I could not follow or concur with their conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      Artiushin et al. establish a comprehensive 3D atlas of the brain of the orb-web building spider Uloborus diversus. First, they use immunohistochemistry detection of synapsin to mark and reconstruct the neuropils of the brain of six specimen and they generate a standard brain by averaging these brains. Onto this standard 3D brain, they plot immunohistochemical stainings of major transmitters to detect cholinergic, serotonergic, octopaminergic/taryminergic and GABAergic neurons, respectively. Further, they add information on the expression of a number of neuropeptides (Proctolin, AllatostatinA, CCAP and FMRFamide). Based on this data and 3D reconstructions, they extensively describe the morphology of the entire synganglion, the discernable neuropils and their neurotransmitter/neuromodulator content.

      Strengths:

      While 3D reconstruction of spider brains and the detection of some neuroactive substances have been published before, this seems to be the most comprehensive analysis so far both in terms of number of substances tested and the ambition to analyzing the entire synganglion. Interestingly, besides the previously described neuropils, they detect a novel brain structure, which they call the tonsillar neuropil.

      Immunohistochemistry, imaging and 3D reconstruction are convincingly done and the data is extensively visualized in figures, schemes and very useful films, which allow the reader to work with the data. Due to its comprehensiveness, this dataset will be a valuable reference for researchers working on spider brains or on the evolution of arthropod brains.

      Weaknesses:

      As expected for such a descriptive groundwork, new insights or hypotheses are limited while the first description of the tonsillar neuropil is interesting. The reconstruction of the main tracts of the brain would be a very valuable complementary piece of data.

    2. Reviewer #2 (Public review):

      Summary

      Artiushin et al. created the first three-dimensional atlas of a synganglion in the hackled orb-weaver spider, which is becoming a popular model for web-building behavior. Immunohistochemical analysis with an impressive array of antisera reveal subcompartments of neuroanatomical structures described in other spider species as well as two previously undescribed arachnid structures, the protocerebral bridge, hagstone, and paired tonsillar neuropils. The authors describe the spider's neuroanatomy in detail and discuss similarities and differences from other spider species. The final section of the discussion examines the homology between onychophoran and chelicerate arcuate bodies and mandibulate central bodies.

      Strengths

      The authors set out to create a detailed 3D atlas and accomplished this goal.

      Exceptional tissue clearing and imaging of the nervous system reveals the three-dimensional relationships between neuropils and some connectivity that would not be apparent in sectioned brains.

      Detailed anatomical description makes it easy to reference structures described between the text and figures.

      The authors used a large palette of antisera which may each be investigated in future studies for function in the spider nervous system and may be compared across species.

      Weaknesses addressed in the revision

      Additional added information about spider-specific neuropils helps orient a non-expert reader. While the function and connectivity of many of these structures is currently unknown, this study will be foundational in future investigations of function.

    3. Reviewer #3 (Public review):

      Summary:

      This is an impressive paper that offers a much-needed 3D standardized brain atlas for the hackled-orb weaving spider Uloborus diversus, an emerging organism of study in neuroethology. The authors used a detailed immunohistological wholemount staining method that allowed them to localize a wide range of common neurotransmitters and neuropeptides and map them on a common brain atlas. Through this approach, they discovered groups of cells that may form parts of neuropils that had not previously been described, such as the 'tonsillar neuropil', which might be part of a larger insect-like central complex. Further, this work provides unique insights into previously underappreciated complexity of higher-order neuropils in spiders, particularly the arcuate body, and hints at a potentially important role for the mushroom bodies in vibratory processing for web-building spiders.

      Strengths:

      To understand brain function, data from many experiments on brain structure must be compiled to serve as a reference and foundation for future work. As demonstrated by the overwhelming success in genetically tractable laboratory animals, 3D standardized brain atlases are invaluable tools-especially as increasing amounts of data are obtained at the gross morphological, synaptic, and genetic levels, and as functional data from electrophysiology and imaging are integrated. Among 'non-model' organisms, such approaches have included global silver staining and confocal microscopy, MRI, and more recently, micro-computed tomography (X-ray) scans used to image multiple brains and average them into a composite reference. In this study, the authors used synapsin immunoreactivity to generate an averaged spider brain as a scaffold for mapping immunoreactivity to other neuromodulators. Using this framework, they describe many previously known spider brain structures and also identify some previously undescribed regions. They argue that the arcuate body-a midline neuropil thought to have diverged evolutionarily from the insect central complex-shows structural similarities that may support its role in path integration and navigation.

      Having diverged from insects such as the fruit fly Drosophila melanogaster over 400 million years ago, spiders are an important group for study-particularly due to their elegant web-building behavior, which is thought to have contributed to their remarkable evolutionary success. How such exquisitely complex behavior is supported by a relatively small brain remains unclear. A rich tradition of spider neuroanatomy emerged in the previous century through the work of comparative zoologists, who used reduced silver and Golgi stains to reveal remarkable detail about gross neuroanatomy. Yet, these techniques cannot uncover the brain's neurochemical landscape, highlighting the need for more modern approaches-such as those employed in the present study.

      A key insight from this study involves two prominent higher-order neuropils of the protocerebrum: the arcuate body and the mushroom bodies. The authors show that the arcuate body has a more complex structure and lamination than previously recognized, suggesting it is insect central complex-like and may support functions such as path integration and navigation, which are critical during web building. They also report strong synapsin immunoreactivity in the mushroom bodies and speculate that these structures contribute to vibratory processing during sensory feedback, particularly in the context of web building and prey localization. These findings align with prior work that noted the complex architecture of both neuropils in spiders and their resemblance (and in some cases greater complexity) compared to their insect counterparts. Additionally, the authors describe previously unrecognized neuropils, such as the 'tonsillar neuropil,' whose function remains unknown but may belong to a larger central complex. The diverse patterns of neuromodulator immunoreactivity further suggest that plasticity plays a substantial role in central circuits.

      Weaknesses:

      My major concern, however, is some of the authors' neuroanatomical descriptions rely too heavily on inference rather than what is currently resolvable from their immunohistochemistry stains alone.

      Comments on revisions:

      I thought that the authors did an excellent job responding to the reviews, and I have no further comments.

    1. Reviewer #1 (Public review):

      Summary

      In their manuscript, Ho and colleagues investigate the importance of thymically-imprinted self-reactivity in determining CD8 T cell pathogenicity in non-obese diabetic (NOD) mice. The authors describe pre-existing functional biases associated with naive CD8 T cell self-reactivity based on CD5 levels, a well characterized proxy for T cell affinity to self-peptide. They find that naive CD5hi CD8 T cells are poised to respond to antigen challenge; these findings are largely consistent with previously published data on the C57Bl/6 background. The authors go on to suggest that naive CD5hi CD8 T cells are more diabetogenic as 1) the CD5hi naive CD8 T cell receptor repertoire has features associated with autoreactivity and contains a larger population of islet-specific T cells, and 2) the autoreactivity of "CD5hi" monoclonal islet-specific TCR transgenic T cells cannot be controlled by phosphatase over-expression. Thus, they implicate CD8 T cells with relatively higher levels of basal self-reactivity in autoimmunity. The data presented offers valuable insights and sets the foundation for future studies, but some conclusions are not yet fully supported.

      Specific comments

      There is value in presenting phenotypic differences between naive CD5lo and CD5hi CD8 T cells in the NOD background as most previous studies have used T cells harvested from C57Bl/6 mice or peripheral blood from healthy human donors.

      The comparison of a marker of self-reactivity, CD5 in this case, on broad thymocyte populations (DN/DP/CD8SP) is cautioned. CD5 is upregulated with signals associated with b-selection and positive selection; CD5 levels will thus vary even among subsets within these broad developmental intermediates. This is a particularly important consideration when comparing CD5 across thymic intermediates in polyclonal versus TCR transgenic thymocytes due to the striking differences in thymic selection efficiency, resulting in different developmental population profiles. The higher levels of CD5 noted in the DN population of NOD8.3 mice, for example, is likely due to the shift towards more mature DN4 post-b-selection cells. Similarly, in the DP population, the larger population of post-positive selection cells in the NOD8.3 transgenic thymus may also skew CD5 levels significantly. Overall, the reported differences between NOD and NOD8.3 thymocyte subsets could be due largely to differences in differentiation/maturation stage rather than affinity for self-antigen during T cell development. The authors have added some additional text to the revised manuscript that acknowledges some of these limitations.

      The lack of differences in CD5 levels of post-positive selection DP thymocytes, CD8 SP thymocytes, and CD8 T cells in the pancreas draining lymph nodes from NOD vs NOD8.3 mice also raises questions about the relevance of this model to address the question of basal self-reactivity and diabetogenicity and the authors' conclusion that "that intrinsic high CD5-associated self-reactivity in NOD8.3 T cells overrides the transgenic Pep-mediated protection observed in dLPC/NOD mice"; the phenotype of the polyclonal and NOD8.3 TCR transgenic CD8 T cells that were analyzed in the (spleen and) pancreas draining lymph nodes is not clear (i.e., are these gated on naive T cells?). Furthermore, the rationale for the comparison with NOD-BDC2.5 mice that carry an MHC II-restricted TCR is unclear.

      In reference to the conclusion that transgenic Pep phosphatase does not inhibit the diabetogenic potential of "CD5hi" CD8 T cells, there is some concern that comparing diabetes development in mice receiving polyclonal versus TCR transgenic T cells specific for an islet antigen is not appropriate. The increased frequency and number of antigen specific T cells in the NOD8.3 mice may be responsible for some of the observed differences. Further justification for the comparison is suggested.

      The manuscript presents an interesting observation that TCR sequences from CD5hi CD8 T cells may share certain characteristics with diabetogenic T cells found in patients (e.g., CDR3 length), and that autoantigen-specific T cells may be enriched within the CD5hi naive CD8 T cell population. However, the percentage of tetramer-positive cells among naive CD8 T cells appears unusually high in the data presented, and caution is warranted when comparing additional T cell receptor features of self-reactivity/auto-reactivity between CD4 and CD8 T cells.

      The counts for the KEGG enrichment pathways presented are relatively low, and the robustness of the analysis should be carefully considered, particularly given that several significance values appear borderline. That said, the differentially expressed genes among CD5lo and CD5hi CD8 T cells are generally consistent with previously published datasets.

      The manuscript includes some imprecise wording that may be misleading. For example (not exhaustive): The strength of TCR reactivity to foreign antigen is not "contributed by basal TCR signal" per se but rather correlates with sub-threshold TCR signals necessary for T cell development and survival, CD5 is not broadly expressed on all B cells as the text might suggest but is restricted to a specific subset of B cells, some of the proximal signaling molecules downstream of the preTCR are different than for the mature TCR, upregulation of CD127 at early timepoints post T cell activation is not directly suggestive of their "heightened capabilities in memory T cell homeostasis", etc. The statement "Our study exclusively examined female mice because the disease modeled is relevant in females" should be reconsidered. While the use of female NOD mice can be justified by their higher incidence of diabetes than their male counterparts, the current wording could be misleading.

      For clarity and transparency, please consider while additional information is provided in the revised manuscript, gating strategies are not always clear (i.e., naive versus total CD8 T cells), and the age/status of the mice from which cells are harvested (i.e., prediabetic?) is not consistently provided as far as this reviewer noted.

    2. Reviewer #2 (Public review):

      Summary:

      In this study Chia-Lo Ho et al. study the impact of CD5high CD8 T cells in the pathophysiology of type 1 diabetes (T1D) in NOD mice. The authors used high expression of CD5 as a surrogate of high TCR signaling and self-reactivity and compared the phenotype, transcriptome, TCR usage, function and pathogenic properties of CD5high vs. CD5low CD8 T cells extracted from the so-called naive T cell pool. The study shows that CD5high CD8 T cells resemble memory T cells poised for stronger response to TCR stimulation and that they exacerbate disease upon transfer in RAG-deficient NOD mice. The authors attempt to link these features to the thymic selection events of these CD5high CD8 T cells. Importantly, forced overexpression of the phosphatase PTPN22 in T cells attenuated TCR signaling and reduced pathogenicity of polyclonal CD8 T cells but not highly autoreactive 8.3-TCR CD8 T cells.

      Strengths:

      The study is nicely performed and the manuscript is clearly and well written. Interpretation of the data is careful and fair. The data are novel and likely important. However, some issues would need to be clarified through either text changes or addition of new data.

      Weaknesses:

      The definition of naïve T cells based solely on CD44low and CD62Lhigh staining may be oversimplistic. Indeed, even within this definition naïve CD5high CD8 T cells express much higher levels of CD44 than CD5low CD8 T cells.

      Comments on revisions:

      The authors addressed my previous comments thoughtfully and extensively.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Ho et al. hypothesised that autoreactive T cells receiving enhanced TCR signals during positive selection in the thymus are primed for generating effector and memory T cells. They used CD5 as a marker for TCR signal strength during their selection at the double positive stage. Supporting their hypothesis, naïve T cells with high CD5 proliferated better and expressed markers of T cell activation compared to naïve T cells with lower levels of CD5. Furthermore, results showed that autoimmune diabetes can be efficiently induced after the transfer of naïve CD5 hi T cells compared to CD5 lo T cells. This provided solid evidence in support of their hypothesis that T cells receiving higher basal TCR signaling are primmed to develop into effector T cells. However, all functional characterisation was done on the cells in the periphery and CD5 hi cells in the peripheral lymphoid compartment can receive tonic TCR signaling. Hence, the function of CD5 hi T cells might not be related to development and programming in the thymus. This is a major hurdle in the interpretation of the results and justifying the title of the study. The evidence that transgenic PTPN22 expression could not regulate T cell activation in CD5 hi TCR transgenic autoreactive T cells was weak. Studying T cell development in TCR transgenic mice and looking at TCR downstream signaling could be misleading due to transgenic expression of TCR at all developmental stages.

      Strengths:

      (1) Demonstrating that CD5 hi cells in naïve CD8 T cell compartment express markers of T cell activation, proliferation and cytotoxicity at a higher level

      (2) Using gene expression analysis, study showed CD5 hi cells among naïve CD8 T cells are transcriptionally poised to develop into effector or memory T cells.

      (3) Study showed that CD5 hi cells have higher basal TCR signaling compared to CD5 lo T cells.

      (4) Key evidence of pathogenicity of autoreactive CD5 hi T cells was provided by doing the adoptive transfer of CD5 hi and CD5 lo CD8 T cells into NOD Rag1-/- mice and comparing them.

      Weaknesses:

      (1) Although CD5 can be used as a marker for self-reactivity and T cell signal strength during thymic development, it can also be regulated in the periphery by tonic TCR signaling or when T cells are activated by its cognate antigen. Hence, TCR signals in the periphery could also prime the T cells towards effector/memory differentiation. That's why from the evidence presented here it cannot be concluded that this predisposition of T cells towards effector/memory differentiation is programmed due to higher reactivity towards self-MHC molecules in the thymus, as stated in the title.

      (2) Flow cytometry data needs to be revisited for the gating strategy, biological controls and interpretation.

      (3) Evidence linking CD5 hi cells to more effector phenotype using gene enrichment scores is very weak.

      (4) Experiments done in this study did not address why CD5 hi T cells could be negatively regulated in NOD mice when PTPN22 is overexpressed resulting in protection from diabetes but the same cannot be achieved in NOD8.3 mice.

      (5) Experimental evidence provided to show that PTPN22 overexpression does not regulate TCR signaling in NOD8.3 T cells is weak.

      (6) TCR sequencing analysis does not conclusively show that CD5 hi population is linked with autoreactive T cells. Doing single-cell RNAseq and TCR seq analysis would have helped address this question.

      (7) When analysing data from CD5 hi T cells from the pancreatic lymph node, it is difficult to discriminate if the phenotype is just because of T cells that would have just encountered the cognate antigen in the draining lymph node or if it is truly due to basal TCR signaling.

    1. Reviewer #1 (Public review):

      Summary:

      In this study the authors use a Drosophila model to demonstrate that Tachykinin (Tk) expression is regulated by the microbiota. In Drosophila conventionally reared (CR) flies are typically shorter lived than those raised without a microbiota (axenic). Here, knockdown of Tk expression is found to prevent lifespan shortening by the microbiota and the reduction of lipid stores typically seen in CR flies when compared to axenic counterparts. It does so without reducing food intake or fecundity which are often seen as necessary trade-offs for lifespan extension. Further, the strength of the interaction between Tk and the microbiota is found to be bacteria specific and is stronger in Acetobacter pomorum (Ap) mono-associated flies compared to Levilactobacillus brevis (Lb) mono-association. The impact on lipid storage was also only apparent in Ap-flies.

      Building on these findings the authors show that gut specific knockdown is largely sufficient to explain these phenotypes. Knockdown of the Tk receptor, TkR99D, in neurons recapitulates the lifespan phenotype of intestinal Tk knockdown supporting a model whereby Tk from the gut signals to TkR99D expressing neurons to regulate lifespan. In addition, the authors show that FOXO may have a role in lifespan regulation by the Tk-microbiota interaction. However, they rule out a role for insulin producing cells or Akh-producing cells suggesting the microbiota-Tk interaction regulates lifespan through other, yet unidentified, mechanisms.

      Major comments:

      Overall, I find the key conclusions of the paper convincing. The authors present an extensive amount of experimental work, and their conclusions are well founded in the data. In particular, the impact of TkRNAi on lifespan and lipid levels, the central finding in this study, has been demonstrated multiple times in different experiments and using different genetic tools. As a result, I don't feel that additional experimental work is necessary to support the current conclusions.

      However, I find it hard to assess the robustness of the lifespan data from the other manipulations used (TkR99DRNAi, TkRNAi in dFoxo mutants etc.) because information on the population size and whether these experiments have been replicated is lacking. Can the authors state in the figure legends the numbers of flies used for each lifespan and whether replicates have been done? For all other data it is clear how many replicates have been done, and the methods give enough detail for all experiments to be reproduced.

      Significance:

      Overall, I find the key conclusions of the paper convincing. The authors present an extensive amount of experimental work, and their conclusions are well founded in the data. We have known that the microbiota influence lifespan for some time but the mechanisms by which they do so have remained elusive. This study identifies one such mechanism and as a result opens several avenues for further research. The Tk-microbiota interaction is shown to be important for both lifespan and lipid homeostasis, although it's clear these are independent phenotypes. The fact that the outcome of the Tk-microbiota interaction depends on the bacterial species is of particular interest because it supports the idea that manipulation of the microbiota, or specific aspects of the host-microbiota interaction, may have therapeutic potential.

      These findings will be of interest to a broad readership spanning host-microbiota interactions and their influence on host health. They move forward the study of microbial regulation of host longevity and have relevance to our understanding of microbial regulation of host lipid homeostasis. They will also be of significant interest to those studying the mechanisms of action and physiological roles of Tachykinins.

      Field of expertise: Drosophila, gut, ageing, microbiota, innate immunity

    2. Reviewer #2 (Public review):

      Summary:

      The main finding of this work is that microbiota impacts lifespan though regulating the expression of a gut hormone (Tk) which in turn acts on its receptor expressed on neurons. This conclusion is robust and based on a number of experimental observations, carefully using techniques in fly genetics and physiology: 1) microbiota regulates Tk expression, 2) lifespan reduction by microbiota is absent when Tk is knocked down in gut (specifically in the EEs), 3) Tk knockdown extends lifespan and this is recapitulated by knockdown of a Tk receptor in neurons. These key conclusions are very convincing. Additional data are presented detailing the relationship between Tk and insulin/IGF signalling and Akh in this context. These are two other important endocrine signalling pathways in flies. The presentation and analysis of the data are excellent.

      There are only a few experiments or edits that I would suggest as important to confirm or refine the conclusions of this manuscript. These are:

      (1) When comparing the effects of microbiota (or single bacterial species) in different genetic backgrounds or experimental conditions, I think it would be good to show that the bacterial levels are not impacted by the other intervention(s). For example, the lifespan results observed in Figure 2A are consistent with Tk acting downstream of the microbes but also with Tk RNAi having an impact on the microbiota itself. I think this simple, additional control could be done for a few key experiments. Similarly, the authors could compare the two bacterial species to see if the differences in their effects come from different ability to colonise the flies.

      (2) The effect of Tk RNAi on TAG is opposite in CR and Ax or CR and Ap flies, and the knockdown shows an effect in either case (Figure 2E, Figure 3D). Why is this? Better clarification is required.

      (3) With respect to insulin signalling, all the experiments bar one indicate that insulin is mediating the effects of Tk. The one experiment that does not is using dilpGS to knock down TkR99D. Is it possible that this driver is simply not resulting in an efficient KD of the receptor? I would be inclined to check this, but as a minimum I would be a bit more cautious with the interpretation of these data.

      (4) Is it possible to perform at least one lifespan repeat with the other Tk RNAi line mentioned? This would further clarify that there are no off-target effects that can account for the phenotypes.

      There are a few other experiments that I could suggest as I think they could enrich the current manuscript, but I do not believe they are essential for publication:

      (5) The manuscript could be extended with a little more biochemical/cell biology analysis. For example, is it possible to look at Tk protein levels, Tk levels in circulation, or even TkR receptor activation or activation of its downstream signalling pathways? Comparing Ax and CR or Ap and CR one would expect to find differences consistent with the model proposed. This would add depth to the genetic analysis already conducted. Similarly, for insulin signalling - would it be possible to use some readout of the pathway activity and compare between Ax and CR or Ap and CR?

      (6) The authors use a pan-acetyl-K antibody but are specifically interested in acetylated histones. Would it be possible to use antibodies for acetylated histones? This would have the added benefit that one can confirm the changes are not in the levels of histones themselves.

      (7) I think the presentation of the results could be tightened a bit, with fewer sections and one figure per section.

      Significance:

      The main contribution of this manuscript is the identification of a mechanism that links the microbiota to lifespan. This is very exciting and topical for several reasons:

      (1) The microbiota is very important for overall health but it is still unclear how. Studying the interaction between microbiota and health is an emerging, growing field, and one that has attracted a lot of interest, but one that is often lacking in mechanistic insight. Identifying mechanisms provides opportunities for therapies. The main impact of this study comes from using the fruit fly to identify a mechanism.

      (2) It is very interesting that the authors focus on an endocrine mechanism, especially with the clear clinical relevance of gut hormones to human health recently demonstrated with new, effective therapies (e.g. Wegovy).

      (3) Tk is emerging as an important fly hormone and this study adds a new and interesting dimension by placing TK between microbiota and lifespan.

      I think the manuscript will be of great interest to researchers in ageing, human and animal physiology and in gut endocrinology and gut function.

    3. Reviewer #3 (Public review):

      Summary:

      Marcu et al. demonstrate a gut-neuron axis that is required for the lifespan-shortening effects mediated by gut bacteria. They show that the presence of commensal bacteria-particularly Acetobacter pomorum-promotes Tk expression in the gut, which then binds to neuronal tachykinin receptors to shorten lifespan. Tk has also recently been reported to extend lifespan via adipokinetic hormone (Akh) signaling (Ahrentløv et al., Nat Metab 7, 2025), but the mechanism here appears distinct. The lifespan shortening by Ap via Tk seems to be partially dependent on foxo and independent of both insulin signaling and Akh-mediated lipid mobilization.

      Although the detailed mechanistic link to lifespan is not fully resolved, the experiment and its results clearly show the involvement of the molecules tested. This work adds a valuable dimension to our growing understanding of how gut bacteria influence host longevity. However, there are some points that should be addressed.

      (1) Tk+ EEC activity should be assessed directly, rather than relying solely on transcript levels. Approaches such as CaLexA or GCaMP could be used.

      (2) In Line243, the manuscript states that the reporter activity was not increased in the posterior midgut. However, based on the presented results in Fig4E, there is seemingly not apparent regional specificity. A more detailed explanation is necessary.

      (3) If feasible, assessing foxo activation would add mechanistic depth. This could be done by monitoring foxo nuclear localization or measuring the expression levels of downstream target genes.

      (4) Fig1C uses Adh for normalization. Given the high variability of the result, the authors should (1) check whether Adh expression levels changed via bacterial association and/or (2) compare the results using different genes as internal standard.

      (5) While the difficulty of maintaining lifelong axenic conditions is understandable, it may still be feasible to assess the induction of Tk (i.e.. Tk transcription or EE activity upregulation) by the microbiome on males.

      (6) We also had some concerns regarding the wording of the title.<br /> Fig6B and C suggests that TkR86C, in addition to TkR99D, may be involved in the A. pomorum-lifespan interaction. Consider revising the title to refer more generally to the "tachykinin receptor" rather than only TkR99D.<br /> The difference between "aging" and "lifespan" should also be addressed. While the study shows a role for Tk in lifespan, assessment of aging phenotypes (e.g. Climbing assay, ISC proliferation) beyond the smurf assay is required to make conclusions about aging.

      (7) The statement in Line 82 that EEs express 14 peptide hormones should be supported with an appropriate reference, if available.

      Significance:

      General assessment: The main strength of this study is the careful and extensive lifespan analyses, which convincingly demonstrate the role of gut microbiota in regulating longevity. The authors clarify an important aspect of how microbial factors contribute to lifespan control. The main limitation is that the study primarily confirms the involvement of previously reported signaling pathways, without identifying novel molecular players or previously unrecognized mechanisms of lifespan regulation.

      Advance: The lifespan-shortening effect of Acetobacter pomorum (Ap) has been reported previously, as has the lifespan-shortening effect of Tachykinin (Tk). However, this study is the first to link these two factors mechanistically, which represents a significant and original contribution to the field. The advance is primarily mechanistic, providing new insight into how microbial cues converge on host signaling pathways to influence ageing.

      Audience: This work will be of particular interest to a specialized audience of basic researchers in ageing biology. It will also attract interest from microbiome researchers who are investigating host-microbe interactions and their physiological consequences. The findings will be useful as a conceptual framework for future mechanistic studies in this area.

      Field of expertise: Drosophila ageing, lifespan, microbiome, metabolism

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Hernandez-Nunez et al. provides a comprehensive characterization of how heart-brain circuits develop in a vertebrate brain, namely the zebrafish. The characterization is performed using a combination of modern and sophisticated imaging and neural manipulation techniques and achieves unprecedented clarity and detail in how the heart-brain communication develops early in life. The paper describes a three-stage program, where first an efferent-circuit from the motor vagus to the heart develops, followed by sympathetic innervation, and lastly sensory neurons innervate the heart.

      Strengths:

      The paper is very clearly and nicely written. The findings are novel and of high quality and relevance. The presentations are very clear and nicely interpreted. The analyses are well presented and applied.

      Weaknesses:

      From the heart rate traces, heart rate variability seems to be prominent and changes across days post-fertilization (dpf). That would be a useful dependent variable, considering that the variation captured by the models does not fully explain heart rate, both for sympathetic and parasympathetic efferents. Given the strong autorhythmicity of nodal tissue in neurogenic hearts, modulatory inputs could potentially predict heart rate variability with higher precision.

    2. Reviewer #2 (Public review):

      Hernandez-Nunez et al. investigate the development and function of neural circuits involved in the regulation of heart rate in larval zebrafish. Using conserved genetic markers, they identify neural pathways involved in the bidirectional control of heart rate and in providing sensory feedback, potentially enabling more precise tuning. The main observation is that the different elements of this circuit are laid down in a developmentally staggered manner.

      At 4 days old, the heart rate is invariant to a range of sensory stimuli, and the vagal motor or sympathetic pathways could not be seen to innervate the heart. Progressively through development, the heart is first innervated by the vagal motor pathway, whose axons are cholinergic, before the formation of phox2bb+ intracardiac neurons (ICNs). At this stage, before the first ICNs are observed, activation of the vagal motor pathway by optogenetic activation of a localized population of cholinergic hindbrain neurons leads to bradycardia. After the vagal motor innervation begins, the sympathetic pathway innervates the heart, which could be visualized in the form of TH+ fibers from the anterior paravertebral ganglia (APG). The activity of the TH+ APG neurons was diverse and showed proportional, integral, and derivative-like relationships to the heart rate, suggesting a role in more precise tuning of the rate than what could be achieved through the vagal pathway alone. The sensory vagus innervation of the heart was identified to be the last stage to develop; however, neurons in the nodose ganglion exhibited diverse responses tuned to the heart rate well before the innervation reached the heart. The authors attribute this to the fact that other indirect sensory cues from the gills or vasculature could be used to sense heart rate prior to innervation.

      This study identifies key components of the control loop required for the regulation of heart rate in zebrafish. The control mechanism appears to be independent of the cues that trigger heart rate changes, indicating that the circuit is indeed part of an interoceptive pathway for heart rate control. Evidence for the staggered development of the vagal-motor, sympathetic, and sensory pathways is conclusive, and as the authors discuss, this phenomenon progressively allows for finer-grained control of the heart rate. This could be achieved through proportional-integral-derivative-like control properties emerging in a diverse set of neurons in the APG and sensory feedback of the state of the heart. In line with these findings, the baseline variability of heart rate prior to innervation at 4 days old appears to be comparatively lower than the later stages (Figure 1C, D, Supplementary Figure 1C-F) and increases over development.

      Based on this observation and the time courses of the kernels identified by the GLMs, I would expect heart rate fluctuations of a finer time scale, ultimately limited by the time course of GCaMP6s, to be captured by the models in Figures 3, 5, and 7, in addition to the stimulus-locked changes that are highlighted. While the models yield valuable insight in the form of the activation kernels and their potential roles, in one instance, this captures the potential contribution of either the motor vagus or the APG to the change in heart rate. This makes it challenging to identify where it falls short and the potential functions of pathways that are yet to be discovered.

      Lastly, the proposed anatomical connectivity of the heart-brain circuit is based on tracts observed in this study as well as those inferred from function and from previous studies.

      (1) It is not clear from the images presented here whether the VSNs send feedback projections to the brainstem VPN.

      (2) Do the brainstem neurons identified by their functional roles send efferent projections via the motor vagus nerve? This is unclear from the results presented and needs to be clarified in the text.

      (3) Add appropriate clarifying annotations to Figure 9 and a section of text discussing the potential unknowns in the proposed circuit diagram.

    1. Reviewer #1 (Public review):

      Summary:

      This paper demonstrates the first application of voltage imaging using a genetically encoded voltage indicator, ArcLight, for recording the spontaneous activity of the developing spinal cord in zebrafish. This technology enabled better temporal resolution compared to what has been demonstrated with calcium imaging in past studies (Muto et al., 2011; Warp et al., 2012; Wan et al., 2019 ), which led to the discovery of the maturation process of "firing" shapes in spinal neurons. This maturation process occurs simultaneously with axonal elongation and network integration. Thus, voltage imaging revealed new biological details of the development of the spinal circuits.

      Strengths:

      The use of voltage imaging instead of calcium imaging revealed biological details of the functional maturation of spinal cord neurons in developing zebrafish.

      Weaknesses:

      This manuscript lacks many basic components and explanations necessary for understanding the methodologies used in this study.

    2. Reviewer #2 (Public review):

      The authors present highly impressive in vivo voltage‐imaging data, demonstrating neuronal activity at subcellular, cellular, and population levels in a developing organism. The approach provides excellent spatial and temporal resolution, with sufficient signal-to-noise to detect hyperpolarizations and subthreshold events. The visualization of contralateral synchrony and its developmental loss over time is particularly compelling. The observation that ipsilateral synchrony persists despite contralateral desynchronization is a striking demonstration of the power of GEVIs in vivo. While I outline several points that should be addressed, I consider this among the strongest demonstrations of in vivo GEVI imaging to date.

      Major points:

      (1) Clarification of GEVI performance characteristics

      There is a widespread misconception in the GEVI field that response speed is the dominant or primary determinant of sensor performance. Although fast kinetics are certainly desirable, they are not the only (or even necessarily the limiting) factor for effective imaging. Kinetic speed specifies the time to reach ~63% of the maximal ΔF/F for a given voltage step (typically 100 mV, approximating the amplitude of a neuronal action potential), but in practical imaging, a slower sensor with a large ΔF/F can outperform a faster sensor with a small ΔF/F. In this context, the authors' use of ArcLight is actually instructive. ArcLight is one of the slower GEVIs in common use, yet Figures S1a-b clearly show that it still reports voltage transients in vivo very well. I therefore strongly recommend moving these panels into the main text to emphasize that robust in vivo imaging can be achieved even with a relatively slow GEVI, provided the signal amplitude and SNR are adequate. This will help counteract the common misunderstanding in the field.

      (2) ArcLight's voltage-response range

      ArcLight is shifted toward more negative potentials (V₁/₂ ≈ −30 mV). This improves subthreshold detection but makes distinguishing action potentials from subthreshold transients more challenging. The comparison with GCaMP is helpful because the Ca²⁺ signal largely reflects action potentials. Panels S1c-f show similar onset kinetics but a longer decay for GCaMP. Surprisingly, the ΔF/F amplitudes are comparable; typically, GCaMP changes are larger. To support lines 193-194, the authors should include a table summarizing the onset/offset kinetics and ΔF/F ranges for neurons expressing ArcLight versus GCaMP.

      Additionally, the expected action-potential amplitude in zebrafish neurons should be stated. In Figure S1b, a 40 mV change appears to produce ~0.5% ΔF/F, but this should be quantified and noted. Could this comparison to GCaMP help resolve action potentials from subthreshold bursts?

      (3) Axonal versus somatic amplitudes (Line 203)

      The manuscript states that voltage amplitudes are "slightly smaller" in axons than in somata; this requires quantitative values and statistical testing. More importantly, differences in optical amplitude reflect factors such as expression levels, background fluorescence, and optical geometry, not necessarily true differences in voltage amplitude. The axonal signals are clearly present, but their relative magnitude should not be interpreted without correction.

      (4) Figure 4C: need for an off-ROI control

      Figure 4C should include a control ROI located away from ROI3 to demonstrate that the axonal signal is not due to background fluctuations, similar to the control shown in Figure S3. Although the ΔF image suggests localization, showing the trace explicitly would strengthen the point. The fluorescence-change image in Figure 4c should also be fully explained in the legend.

      (5) Figure 5: hyperpolarization signals

      Figure 5 is particularly impressive. It appears that Cell 2 at 18.5 hpf and Cell 1 at 18 hpf exhibit hyperpolarizing events. The authors should confirm that these are true hyperpolarizations by giving some indication of how often they were observed.

      (6) SNR comparison (Lines 300-302)

      The claim that ArcLight and GCaMP exhibit comparable SNR requires statistical support across multiple cells.

    3. Reviewer #3 (Public review):

      Summary:

      The authors aimed to establish a long-term voltage imaging platform to investigate how coordinated neuronal activity emerges during spinal cord development in zebrafish embryos. Using the genetically encoded voltage indicator ArcLight, they tracked membrane potential dynamics in motor neurons at population, single-cell, and subcellular levels from 18 to 23 hours post-fertilization (hpf), revealing relationships between firing maturation, waveform characteristics, and axonal outgrowth.

      Strengths:

      (1) Technical advancement in developmental voltage imaging:

      This study demonstrates voltage imaging of motor neurons in the developing vertebrate spinal cord. The approach successfully captures voltage dynamics at multiple spatial scales-neuronal population, single-cell, and subcellular compartments.

      (2) Insights into the relationship between morphological and functional maturation:

      The work reveals important relationships between voltage dynamics maturation and morphological changes.

      (3) Kinetics analysis of membrane potential waveform enabled by voltage imaging:

      The characterization of "immature" versus "mature" firing based on quantitative waveform parameters provides insights into functional maturation that are inaccessible by calcium imaging. This analysis reveals a maturation process in the biophysical properties of developing neurons.

      (4) Matching of voltage indicator kinetics to biological signal:

      The authors' choice of ArcLight, despite its slow kinetics compared to newer GEVIs, proved well-suited to the low-frequency activity patterns in developing spinal neurons (frequency ~0.3 Hz).

      Weaknesses:

      (1) Insufficient comparison with prior calcium imaging studies:

      While the authors state that voltage imaging provides superior temporal resolution compared to calcium imaging (lines 192-196, 301), and this is generally true, the current manuscript does not adequately cite or discuss previous calcium imaging studies. Since neural activity occurs at low frequency in the developing spinal cord, calcium imaging is adequate for characterizing the emergence of coordinated activity patterns in the developing zebrafish spinal cord. Notably, Wan et al. (2019, Cell) performed a comprehensive single-cell reconstruction of emerging population activity in the entire developing zebrafish spinal cord using calcium imaging. This work should be properly acknowledged and compared. The specific advantages of voltage imaging over these prior studies need to be more clearly articulated, e.g. detection of subthreshold events and membrane potential waveform kinetics.

      (2) Considerations for generalizability of the ArcLight-based voltage imaging approach:

      While this study successfully demonstrates voltage imaging using ArcLight in the developing spinal cord, the generalizability of this approach to later developmental stages and other neural systems warrants discussion. ArcLight exhibits relatively slow kinetics (rise time ~100-200 ms, decay τ ~200-300 ms). In the current study, these kinetics are well-suited to the developmental activity patterns observed (firing frequency ~0.3 Hz), representing appropriate matching of indicator properties to biological timescales. However, the same approach may be less suitable for later developmental stages when neural activity occurs at higher frequencies.

      (3) Incomplete methodological descriptions:

      As a paper establishing a new imaging approach, several critical details are missing or unclear.

      (a) Imaging system specifications: The imaging setup description lacks essential information, including light source specifications, excitation wavelength/filter sets, and light power at the sample. The authors should also clarify whether wide-field optics was used rather than confocal or selective plane imaging.

      (b) Long-term imaging protocol: Whether neurons were imaged continuously or with breaks between imaging sessions is not explicitly stated. The current phrasing could be interpreted as a continuous 4.5-hour recording, which would be technically impressive but may not be what was actually done.

      (c) Image processing procedures: Denoising and bleach correction procedures are mentioned but not described, which is critical for a methods-focused paper.

      (d) The waveform classification (Supplementary Figure S6) shows overlapping kinetics between "immature" and "mature" firing, yet the classification method is not adequately justified.

      (e) Given that photostability and toxicity are critical considerations for long-term voltage imaging, these aspects warrant further clarification. While the figures suggest stable ArcLight fluorescence during the experiments, the manuscript lacks quantification of photobleaching, a discussion of potential toxicity concerns associated with the indicator, and information regarding the maximum duration over which the ArcLight signal can faithfully report physiological voltage dynamics.

      (4) Incomplete data representation and quantification:

      (a) The claim of "reduced variability" in calcium imaging (line 194) is not clearly demonstrated in Supplementary Figure S1.

      (b) Amplitude distributions for cell/subcellular compartments are not systematically quantified. Figure S3 shows ~5% changes in some axons versus ~2% in others, but it remains unclear whether these variabilities reflect differences between axonal compartments within the same cell, between individual cells, or between individual fish.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript reported a method for deep brain imaging with a GRIN lens that combines "low-NA telecentric scanning (LNTS) of laser excitation with high-NA fluorescence collection" to achieve a larger FOV than conventional approaches.

      Strengths:

      The manuscript presented in vivo structural images and calcium activity results in side-by-side comparison to wide-field epi fluorescence imaging through a GRIN lens and two-photon scanning imaging.

      Weaknesses:

      (1) Lack of sufficient technique information on the "high-NA (1.0) fluorescence collection". Is it custom-made or an off-the-shelf component? The only optical schematic, Figure 1, shows two lenses and a Si-PMT as the collection apparatus. There is no information about the lenses and the spacing between each component.

      (2) There is no discussion about the speed limitation of the LNTS method, which, as a scanning-based method, is limited by the scanner speed. At a 10 Hz frame rate, the LNTS, although it has a better FOV, is much slower than widefield fluorescence imaging. The 10 Hz speed is not sufficient for some fast calcium activities.

      (3) Supplementary Figure 5 is irrelevant to the main claim of the manuscript. This is a preliminary simulation related to the authors' proposed future work.

    2. Reviewer #2 (Public review):

      Summary:

      This study introduces a simple optical strategy for one-photon imaging through GRIN lenses that prioritizes coverage while maintaining practical signal quality. By using low-NA telecentric scanned excitation together with high-NA collection, the approach aims to convert nearly the full lens facet into a usable field of view (FOV) with uniform contrast and visible somata. The method is demonstrated in 4-µm fluorescent bead samples and mouse brain, with qualitative comparisons to widefield and two-photon (2P) imaging. Because the configuration relies on standard components and a minimalist optical layout, it may enable broader access to large-area cellular imaging in the deep brain across neuroscience laboratories.

      Strengths:

      (1) This method mitigates off-axis aberrations and enlarges the usable FOV. It achieves near full-facet usable FOV with consistent centre-to-edge contrast, as evidenced by 4-µm fluorescent bead samples (uniform visibility to the edge) and in vivo microglia imaging (resolvable somata across the field).

      (2) The optical design is simple and supports efficient photon collection, lowering the barrier to adoption relative to adaptive optics (AO) or lens design-based correction. Using standard components and treating the GRIN lens as a high-NA (~1.0) light pipe increases collection efficiency for ballistic and scattered fluorescence. Figure annotations report the illumination energy required to reach a fixed detected-photon target (e.g., ~1000 detected photons per bead/cell for the 500-µm FOV condition), and under this equal-output criterion, the LNTS configuration achieves comparable or better image quality at lower illumination energy than conventional wide-field imaging, supporting improved photon efficiency and implying reduced bleaching and heating for equivalent signal levels.

      (3) The in vivo functional recordings are stable and exhibit strong signals. In vivo calcium imaging shows high-SNR ΔF/F₀ traces that remain stable over ~30-minute sessions with only modest baseline drift reported, supporting physiological measurements without heavy denoising and enabling large-scale data collection.

      (4) The low-NA excitation provides an extended focal depth, enabling more neurons to be tracked concurrently within a single FOV while maintaining practical signal quality. It reduces sensitivity to axial motion and minor misalignment and enhances overall experimental efficiency.

      Weaknesses:

      (1) Quantitative characterization is limited. Resolution and contrast are not comprehensively mapped as functions of field position and depth, and a clear, operational definition of "usable FOV" is not specified with threshold criteria.

      (2) The claim of approximately 100% usable FOV is largely supported by qualitative images; standardized metrics (e.g., PSF/MTF maps, contrast-to-noise ratio profiles, cell-detection yield versus radius) are needed to calibrate expectations and enable comparison across systems.

      (3) The trade-off inherent to low NA excitation, namely a broader axial PSF and possible neuropil/background contamination, is acknowledged qualitatively but not quantified. Analyses that separate in-focus from out-of-focus signal would help readers judge single-cell fidelity across the field.

      (4) Generalizability remains to be established. Performance across multiple GRIN models (e.g., diameter, NA), wavelengths, is not yet demonstrated. Longer-session photobleaching, heating, and phototoxicity, particularly near the edge of the FOV, also require fuller evaluation.

      Readers should view it as a coverage-first strategy that enlarges the FOV while accepting a modest trade-off in resolution due to the low-NA excitation and the extended axial PSF.

    1. Reviewer #1 (Public review):

      Summary:

      This paper proposes a non-decision time (NDT)-informed approach to estimating time-varying decision thresholds in diffusion models of decision making. The manuscript motivates the method well, outlines the identifiability issues it is intended to address, and evaluates it using simulations and two empirical datasets. The aim is clear, the scope is deliberately focused, and the manuscript is well written. The core idea is interesting, technically grounded, and a meaningful contribution to ongoing work on collapsing thresholds.

      Strengths:

      The manuscript is logically structured and easy to follow. The emphasis on parameter recovery is appropriate and appreciated. The finding that the exponential NDT-informed function produces substantially better recovery than the hyperbolic form is useful, given the importance placed on identifiability earlier in the paper. The threshold visualisations are also helpful for interpreting what the models are doing. Overall, the work offers a well-defined, methodologically oriented contribution that will interest researchers working on time-varying thresholds.

      Weaknesses / Areas for Clarification:

      A few points would benefit from clarification, additional analysis, or revised presentation:

      (1) It would help readers to see a concrete demonstration of the trade-off between NDT and collapsing thresholds, to give a sense of the scale of the identifiability problem motivating the work.

      (2) Before moving to the empirical datasets, the manuscript really needs a simulation-based model-recovery comparison, since all major conclusions of the empirical applications rely on model comparison. One approach might be to simulate from (a) an FT model with across-trial drift variability and (b) one of the CT models, then fit both models to each of the simulated data sets. This would address a longstanding issue: sometimes CT models are preferred even when the estimated collapse in the thresholds is close to zero. A recovery study would confirm that model selection behaves sensibly in the new framework.

      (3) An additional subtle point is that BIC is defined in terms of the maximised log-likelihood of the model for the data being modelled. In the joint model, the parameter estimates maximise the combined likelihood of behavioural and non-decision-time data. This means the behavioural log-likelihood evaluated at the joint MLEs is not the behavioural MLE. If BIC is being computed for the behavioural data only, this breaks the assumptions underlying BIC. The only valid BIC here would be one defined for the joint model using the joint likelihood.

      (4) Table 1 sets up the Study 1 comparisons, but there's no row for the FT model. Similarly, Figures 10 and 13 would be more informative if they included FT predictions. This matters because, in Study 1, the FT model appears to fit aggregate accuracy better than the BIC-preferred collapsing model, currently shown only in Appendix 5. Some discussion of why would strengthen the argument.

      (5) In Figure 7, the degree of decay underestimation is obscured by using a density plot rather than a scatterplot, consistent with the other panels of the same figure. Presenting it the same way would make the mis-recovery more transparent. The accompanying text may also need clarification: when data are generated from an FT model with across-trial drift variability, the NDT-informed model seems to infer FT boundaries essentially. If that's correct, the model must be misfitting the simulated data. This is actually a useful result as it suggests across-trial drift variability in FT models is discriminable from collapsing-threshold models. It would be good to make this explicit.

      (6) Given the large recovery advantage of the exponential NDT-informed function over the hyperbolic one, the authors may want to consider whether the results favour adopting the former more generally. Given these findings, I would consider recommending the exponential NDT-informed model for future use.

      (7) In Study 2 (Figure 13), all models qualitatively miss an interesting empirical pattern: under speed emphasis, errors are faster than corrects, while under accuracy emphasis, errors become slower. The error RT distribution in the speed condition is especially poorly captured. It would be helpful for the authors to comment, as it suggests that something theoretically relevant is missing from all models tested.

      (8) The threshold visualisations extend to 3 seconds, yet both datasets show decisions mostly finishing by ~1.5 seconds. Shortening the x-axis would better reflect the empirical RT distributions and avoid unintentionally overstating the timescale of the empirical decision processes.

    2. Reviewer #2 (Public review):

      Summary:

      The authors use simulations and empirical data fitting in order to demonstrate that informing a decision model on estimates of single-trial non-decision time can guide the model to more reliable parameter estimates, especially when the model has collapsing bounds.

      Strengths:

      The paper is well written and motivated, with clear depth of knowledge in the areas of neurophysiology of decision-making, sequential sampling models, and, in particular, the phenomenon of collapsing decision bounds.

      Two large-scale simulations are run to test parameter recovery, and two empirical datasets are fit and assessed; the fitting procedures themselves are state-of-the-art, and the study makes use of a very new and well-designed ERP decomposition algorithm that provides single-trial estimates of the duration of diffusion; the results provide inferences about the operation of decision bound collapse - all of this is impressive.

      Weaknesses:

      This is an interesting and promising idea, but a very important issue is not clear: it is an intuitive principle that information from an external empirical source can enhance the reliability of parameter estimates for a given model, but how can the overall BIC improve, unless it is in fact a different model? Unfortunately, it is not clear whether and how the model structure itself differs between the NDT-informed and non-NDT-informed cases. Ideally, they are the same actual model, but with one getting extra guidance on where to place the tau and/or sigma parameters from external measurements. The absence of sigma (non-decision time variance) estimates for the non-NDT-informed model, however, suggests it is different in structure, not just in its lack of constraints. If they were the same model, whether they do or do not possess non-decision time variability (which is not currently clear), the only possible reason that the NDT-informed model could achieve better BIC is because the non-NDT-informed model gets lost in the fitting procedure and fails to find the global optimum. If they are in fact different models - for example, if the NDT-informed model is endowed with NDT variability, while the non-NDT-informed model is not - then the fit superiority doesn't necessarily say anything about an NDT-informed reliability boost, but rather just that a model with NDT variability fits better than one without.

      One reason this is unclear is that Footnote 4 says that this study did not allow trial-to-trial variability in nondecision time, but the entire premise of using variable external single-trial estimates of nondecision times (illustrated in Figure 2) assumes there is nondecision time variability and that we have access to its distribution.

      It is good that there is an Intro section to explain how the tradeoff between NDT and collapsing bound parameters renders them difficult to simultaneously identify, but I think it needs more work to make it clear. First of all, it is not impossible to identify both, in the same way as, say, pre- and post-decisional nondecision time components cannot be resolved from behaviour alone - the intro had already talked about how collapsing bounds impact RT distribution shapes in specific ways, and obviously mean (or invariant) NDT can't do that - it can only translate the whole distribution earlier/later on the time axis. This is at odds with the phrasing "one CANNOT estimate these three parameters simultaneously." So it should be first clarified that this tradeoff is not absolute. Second, many readers will wonder if it is simply a matter of characterising the bound collapse time course as beginning at accumulation onset, instead of stimulus offset - does that not sidestep the issue? Third, assuming the above can be explained, and there is a reason to keep the collapse function aligned to stimulus onset, could the tradeoff be illustrated by picking two distinct sets of parameter values for non-decision time, starting threshold, and decay rate, which produce almost identical bound dynamics as a function of RT? It is not going to work for most readers to simply give the formula on line 211 and say "There is a tradeoff." Most readers will need more hand-holding.

      A lognormal distribution is used as line 231 says it "must" produce a right-skew. Why? It is unusual for non-decision time distribution to be asymmetric in diffusion modeling, so this "must" statement must be fully explained and justified. Would I be right in saying that if either fixed or symmetrically distributed nondecision times were assumed, as in the majority of diffusion models, then the non-identifiability problem goes away? If the issue is one faced only by a special class of DDMs with lognormal NDT, this should be stated upfront.

      In the simulation study methods, is the only difference between NDT-informed and non-informed models that the non-NDT-informed must also estimate tau and sigma, whereas the NDT-informed model "knows" these two parameters and so only has the other three to estimate? And is it the exact same data that the two models are fit to, in each of the simulation runs? Why is sigma missing from the uninformed part of Figure 4? If it is nondecision time variability, shouldn't the model at least be aware of the existence of sigma and try to estimate it, in order for this to be a meaningful comparison?

      I am curious to know whether a linear bound collapse suffers from the same identifiability issues with NDT, or was it not considered here because it is so suboptimal next to the hyperbolic/exponential?

      The approach using HMP rests on the assumption that accumulation onset is marked by the peak of a certain neural event, but even if it is highly predictive of accumulation onset, depending on what it reflects, it could come systematically earlier or later than the actual accumulation onset. Could the authors comment on what implications this might have for the approach?

      Figure 7: for this simulation, it would be helpful to know the degree to which you can get away with not equipping the model to capture drift rate variability, when the degree of that d.r. variability actually produces appreciable slow error rates. The approach here is to sample uniformly from ranges of the parameters, but how many of these produce data that can be reasonably recognised as similar to human behaviour on typical perceptual decision tasks? The authors point out that only 5% of fits estimate an appreciable bound collapse but if there are only 10% of the parameter vectors that produce data in a typical RT range with typical error rates etc, and half of these produce an appreciable downturn in accuracy for slower RT, and all of the latter represent that 5%, then that's quite a different story. An easy fix would be to plot estimated decay as a scatter plot against the rate of decline of accuracy from the median RT to the slowest RT, to visualise the degree to which slow errors can be absorbed by the no-dr-var model without falsely estimating steep bound collapse. In general, I'm not so sure of the value of this section, since, in principle, there is no getting around the fact that if what is in truth a drift-variability source of slow errors is fit with a model that can only capture it with a collapsing bound, it will estimate a collapsing bound, or just fail to capture those slow errors.

    3. Reviewer #3 (Public review):

      The current paper addresses an important issue in evidence accumulation models: many modelers implement flat decision boundaries because the collapsing alternatives are hard to reliably estimate. Here, using simulations, the authors demonstrate that parameter recovery can be drastically improved by providing the model with additional data (specifically, an EEG-informed estimate of non-decision time). Moreover, in two empirical datasets, it is shown that those EEG-informed models provide a better fit to the data. The method seems sound and promising and might inform future work on the debate regarding flat vs collapsing choice boundaries. As an evidence-accumulation enthusiast, I am quite excited about this work, although for a broader audience, the immediate applicability of this approach seems limited because it does require EEG data (i.e. limiting widespread use of the method or e.g., answering questions about individual differences that require a very large N).

    1. Reviewer #1 (Public review):

      Summary:

      Two major breakthroughs in the field of arbuscular mycorrhiza (AM) were the discoveries that first AM fungi obtain lipids (not only carbohydrates) from their plant hosts (Bravo et al 2017; Jiang et al 2017; Keymer et al 2017; Luginbuehl et al 2017) and second that presumably obligate biotrophic AM fungi can produce spores in the absence of host plants when exposed to myristate (Sugiura et al 2020; Tanaka et al 2022).

      For this manuscript, Chen et al asked the question of whether myristate in the soil may also play a role in AM symbiosis when AM fungi live in symbiosis with their plant hosts. They show that myristate occurs in natural as well as agricultural soils, probably as a component of root exudates. Further, they treat AM fungi with myristate when grown in symbiosis in a Petri dish system with carrot hairy roots or in pots with alfalfa or rice to describe which effect the exogenous myristate has on symbiosis. Using 13C labelling, they show that myristate is taken up by AM fungi, although they can obtain sugars and lipids from the plant host. They also show that myristate leads to an increase in root colonization as well as expression of fungal genes involved in FA assimilation.

      Interestingly, the effect of myristate on colonization depends on the plant species and the level of phosphate fertilization provided to the plant. The reason for this remains unknown.

      Strengths:

      The findings are interesting and provide an advance in our understanding of lipid use by the extraradical mycelium of AM fungi.

      Weaknesses:

      However, there are some misconceptions in the writing, and some experimental results remain poorly clear as they are presented in a highly descriptive manner without interpretation or explanation.

    2. Reviewer #2 (Public review):

      Summary:

      Arbuscular mycorrhizal fungi (AMF) are among the most widely distributed soil microorganisms, forming symbiotic relationships (AM symbiosis) with approximately 70% of terrestrial vascular plants. AMF are considered obligate biotrophs that rely on host-derived symbiotic carbohydrates. However, it remains unclear whether symbiotic AMF can access exogenous non-symbiotic carbon sources. By conducting three interconnected and complementary experiments, Chen et al. investigated the direct uptake of exogenous 13C1-labeled myristate by symbiotic Rhizophagus irregularis, R. intraradices, and R. diaphanous, and assessed their growth responses using AMF-carrot hairy root co-culture systems (Experiments 1 and 2). They also explored the environmental distribution of myristate in plant and soil substrates, and evaluated the impact of exogenous myristate on the symbiotic carbon-phosphorus exchange between R. irregularis and alfalfa or rice in a greenhouse experiment (Experiment 3). Given that the AM symbiosis not only plays a significant role in the biogeochemical cycling of C and P elements but also acts as a key driver of plant community structure and productivity. The topic of this manuscript is relevant. The study is well-designed, and the manuscript is well-written. I find it easy and interesting to follow the entire narrative.

      Strengths:

      The manuscript provides evidence from 13C labeling and molecular analyses showing that symbiotic AMF can absorb non-symbiotic C sources like myristate in the presence of plant-derived symbiotic carbohydrates, challenging the traditional assumption that AMF exclusively rely on symbiotic carbon sources supplied from associated host plants. This finding advances our understanding of the nutritional interactions between AMF and host plants. Furthermore, the manuscript reveals that myristate is widely present in diverse soil and plant components; however, exogenous myristate disrupts the carbon-phosphorus exchange in arbuscular mycorrhizal symbiosis. These insights have significant implications for the application and regulation of the AM symbiosis in sustainable agriculture and ecological restoration.

      Weaknesses:

      The limitations of this study include:

      (1) The absorption of myristate by symbiotic AMF was observed only after exogenous application under artificial conditions, which may not accurately reflect natural environments.

      (2) The investigation into the mechanism by which myristate disrupts C-P exchange in AM symbiosis remains preliminary.

      Nevertheless, the authors have adequately discussed these limitations in the manuscript.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have addressed a major question since the discovery of myristate uptake from AM fungi as a non-symbiotic C source. Myristate has been used to grow some AM fungi axenically, but the biological significance of this saprobic attitude in natural or agronomical environments remained unexplored. The results of this research soundly demonstrate that myristate-derived C is used by AM fungi, leading to improved development of both extraradical and intraradical mycelium (at least under low P conditions). However, this does not lead to obvious advantages for the plant, since symbiotic nutrient exchange (carbon and phosphorus) is reduced upon myristate application. Furthermore, myristate-treated plants quench their defence responses.

      Strengths:

      The study is extensive, based on a solid experimental setup and methodological approach, combining several state-of-the-art techniques. The conclusions are novel and of high relevance for the scientific community. The writing is fluent and clear.

      Weaknesses:

      Some of the figures should be improved for clarity. The conclusions do not express a conclusive remark that, in my opinion, emerges clearly from the results: myristate application in agriculture does not seem to be a very promising approach, since it unbalances the symbiosis nutritional equilibrium and may weaken plant immunity. This is a very important point (albeit rather unpleasant for applicative scientists) that should be stressed in the conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, Okell et al. describe the imaging protocol and analysis pipeline pertaining to the arterial spin labeling (ASL) MRI protocol acquired as part of the UK Biobank imaging study. In addition, they present preliminary analyses of the first 7000+ subjects in whom ASL data were acquired, and this represents the largest such study to date. Careful analyses revealed expected associations between ASL-based measures of cerebral hemodynamics and non-imaging-based markers, including heart and brain health, cognitive function, and lifestyle factors. As it measures physiology and not structure, ASL-based measures may be more sensitive to these factors compared with other imaging-based approaches.

      Strengths:

      This study represents the largest MRI study to date to include ASL data in a wide age range of adult participants. The ability to derive arterial transit time (ATT) information in addition to cerebral blood flow (CBF) is a considerable strength, as many studies focus only on the latter.

      Some of the results (e.g., relationships with cardiac output and hypertension) are known and expected, while others (e.g., lower CBF and longer ATT correlating with hearing difficulty in auditory processing regions) are more novel and intriguing. Overall, the authors present very interesting physiological results, and the analyses are conducted and presented in a methodical manner.

      The analyses regarding ATT distributions and the potential implications for selecting post-labeling delays (PLD) for single PLD ASL are highly relevant and well-presented.

      Weaknesses:

      At a total scan duration of 2 minutes, the ASL sequence utilized in this cohort is much shorter than that of a typical ASL sequence (closer to 5 minutes as mentioned by the authors). However, this implementation also included multiple (n=5) PLDs. As currently described, it is unclear how any repetitions were acquired at each PLD and whether these were acquired efficiently (i.e., with a Look-Locker readout) or whether individual repetitions within this acquisition were dedicated to a single PLD. If the latter, the number of repetitions per PLD (and consequently signal-to-noise-ratio, SNR) is likely to be very low. Have the authors performed any analyses to determine whether the signal in individual subjects generally lies above the noise threshold? This is particularly relevant for white matter, which is the focus of several findings discussed in the study.

      Hematocrit is one of the variables regressed out in order to reduce the effect of potential confounding factors on the image-derived phenotypes. The effect of this, however, may be more complex than accounting for other factors (such as age and sex). The authors acknowledge that hematocrit influences ASL signal through its effect on longitudinal blood relaxation rates. However, it is unclear how the authors handled the fact that the longitudinal relaxation of blood (T1Blood) is explicitly needed in the kinetic model for deriving CBF from the ASL data. In addition, while it may reduce false positives related to the relationships between dietary factors and hematocrit, it could also mask the effects of anemia present in the cohort. The concern, therefore, is two-fold: (1) Were individual hematocrit values used to compute T1Blood values? (2) What effect would the deconfounding process have on this?

      The authors leverage an observed inverse association between white matter hyperintensity volume and CBF as evidence that white matter perfusion can be sensitively measured using the imaging protocol utilized in this cohort. The relationship between white matter hyperintensities and perfusion, however, is not yet fully understood, and there is disagreement regarding whether this structural imaging marker necessarily represents impaired perfusion. Therefore, it may not be appropriate to use this finding as support for validation of the methodology.

    2. Reviewer #2 (Public review):

      Summary:

      Okell et al. report the incorporation of arterial spin-labeled (ASL) perfusion MRI into the UK Biobank study and preliminary observations of perfusion MRI correlates from over 7000 acquired datasets, which is the largest sample of human perfusion imaging data to date. Although a large literature already supports the value of ASL MRI as a biomarker of brain function, this important study provides compelling evidence that a brief ASL MRI acquisition may lead to both fundamental observations about brain health as manifested in CBF and valuable biomarkers for use in diagnosis and treatment monitoring.

      ASL MRI noninvasively quantifies regional cerebral blood flow (CBF), which reflects both cerebrovascular integrity and neural activity, hence serves as a measure of brain function and a potential biomarker for a variety of CNS disorders. Despite a highly abbreviated ASL MRI protocol, significant correlations with both expected and novel demographic, physiological, and medical factors are demonstrated. In many such cases, ASL was also more sensitive than other MRI-derived metrics. The ASL MRI protocol implemented also enables quantification of arterial transit time (ATT), which provides stronger clinical correlations than CBF in some factors. The results demonstrate both the feasibility and the efficacy of ASL MRI in the UK Biobank imaging study, which expects to complete ASL MRI in up to 60,000 richly phenotyped individuals. Although a large literature already supports the value of ASL MRI as a biomarker of brain function, this important study provides compelling evidence that a brief ASL MRI acquisition may lead to both fundamental observations about brain health as manifested in CBF and valuable biomarkers for use in diagnosis and treatment monitoring.

      Strengths:

      A key strength of this study is the use of an ASL MRI protocol incorporating balanced pseudocontinuous labeling with a background-suppressed 3D readout, which is the current state-of-the-art. To compensate for the short scan time, voxel resolution was intentionally only moderate. The authors also elected to acquire these data across five post-labeling delays, enabling ATT and ATT-corrected CBF to be derived using the BASIL toolbox, which is based on a variational Bayesian framework. The resulting CBF and ATT maps shown in Figure 1 are quite good, especially when combined with such a large and deeply phenotyped sample.

      Another strength of the study is the rigorous image analysis approach, which included covariation for a number of known CBF confounds as well as correction for motion and scanner effects. In doing so, the authors were able to confirm expected effects of age, sex, hematocrit, and time of day on CBF values. These observations lend confidence in the veracity of novel observations, for example, significant correlations between regional ASL parameters and cardiovascular function, height, alcohol consumption, depression, and hearing, as well as with other MRI features such as regional diffusion properties and magnetic susceptibility. They also provide valuable observations about ATT and CBF distributions across a large cohort of middle-aged and older adults.

      Weaknesses:

      This study primarily serves to illustrate the efficacy and potential of ASL MRI as an imaging parameter in the UK Biobank study, but some of the preliminary observations will be hypothesis-generating for future analyses in larger sample sizes. However, a weakness of the manuscript is that some of the reported observations are difficult to follow. In particular, the associations between ASL and resting fMRI illustrated in Figure 7 and described in the accompanying Results text are difficult to understand. It could also be clearer whether the spatial maps showing ASL correlates of other image-derived phenotypes in Figure 6B are global correlations or confined to specific regions of interest. Finally, while addressing partial volume effects in gray matter regions by covarying for cortical thickness is a reasonable approach, the Methods section seems to imply that a global mean cortical thickness is used, which could be problematic given that cortical thickness changes may be localized.

    3. Reviewer #3 (Public review):

      Summary:

      This is an extremely important manuscript in the evolution of cerebral perfusion imaging using Arterial Spin Labelling (ASL). The number of subjects that were scanned has provided the authors with a unique opportunity to explore many potential associations between regional cerebral blood flow (CBF) and clinical and demographic variables.

      Strengths:

      The major strength of the manuscript is the access to an unprecedentedly large cohort of subjects. It demonstrates the sensitivity of regional tissue blood flow in the brain as an important marker of resting brain function. In addition, the authors have demonstrated a thorough analysis methodology and good statistical rigour.

      Weaknesses:

      This reviewer did not identify any major weaknesses in this work.

    1. Reviewer #2 (Public review):

      Summary:

      This is an interesting study exploring methods for reconstructing visual stimuli from neural activity in the mouse visual cortex. Specifically, it uses a competition dataset (published in the Dynamic Sensorium benchmark study) and a recent winning model architecture (DNEM, dynamic neural encoding model) to recover visual information stored in ensembles of mouse visual cortex.

      Strengths:

      This is a great start for a project addressing visual reconstruction. It is based on physiological data obtained at a single-cell resolution, the stimulus movies were reasonably naturalistic and representative of the real world, the study did not ignore important correlates such as eye position and pupil diameter, and of course, the reconstruction quality exceeded anything achieved by previous studies. There appear to be no major technical flaws in the study, and some potential confounds were addressed upon revision. The study is an enjoyable read.

      Weaknesses:

      The study is technically competent and benchmark-focused, but without significant conceptual or theoretical advances. The inclusion of neuronal data broadens the study's appeal, but the work does not explore potential principles of neural coding, which limits its relevance for neuroscience and may create some disappointment to some neuroscientists. The authors are transparent that their goal was methodological rather than explanatory, but this raises the question of why neuronal data were necessary at all, as more significant reconstruction improvements might be achievable using noise-less artificial video encoders alone (network-to-network decoding approaches have been done well by teams such as Han, Poggio, and Cheung, 2023, ICML). Yet, even within the methodological domain, the study does not articulate clear principles or heuristics that could guide future progress. The finding that more neurons improve reconstruction aligns with well-established results in the literature that show that higher neuronal numbers improve decoding in general (for example, Hung, Kreiman, Poggio, and DiCarlo, 2005) and thus may not constitute a novel insight.

      Specific issues:

      (1) The study showed that it could achieve high-quality video reconstructions from mouse visual cortex activity using a neural encoding model (DNEM), recovering 10-second video sequences and approaching a two-fold improvement in pixel-by-pixel correlation over attempts. As a reader, I was left with the question: okay, does this mean that we should all switch to DNEM for our investigations of mouse visual cortex? What makes this encoding model special? It is introduced as "a winning model of the Sensorium 2023 competition which achieved a score of 0.301...single trial correlation between predicted and ground truth neuronal activity," but as someone who does not follow this competition (most eLife readers are not likely to do so, either), I do not know how to gauge my response. Is this impressive? What is the best theoretical score, given noise and other limitations? Is the model inspired by the mouse brain in terms of mechanisms or architecture, or was it optimized to win the competition by overfitting it to the nuances of the data set? Of course, I know that as a reader, I am invited to read the references, but the study would stand better on its own, if it clarified how its findings depended on this model.

      The revision helpfully added context to the Methods about the range of scores achieved by other models, but this information remains absent from the Abstract and other important sections. For instance, the Abstract states, "We achieve a pixel-level correlation of 0.57 between the ground truth movie and the reconstructions from single-trial neural responses," yet this point estimate (presented without confidence intervals or comparisons to controls) lacks meaning for readers who are not told how it compares to prior work or what level of performance would be considered strong. Without such context, the manuscript undercuts potentially meaningful achievements.

      (2) Along those lines, the authors conclude that "the number of neurons in the dataset and the use of model ensembling are critical for high-quality reconstructions." If true, these principles should generalize across network architectures. I wondered whether the same dependencies would hold for other network types, as this could reveal more general insights. The authors replied that such extensions are expected (since prior work has shown similar effects for static images) but argued that testing this explicitly would require "substantial additional work," be "impractical," and likely not produce "surprising results." While practical difficulty alone is not a sufficient reason to leave an idea untested, I agree that the idea that "more neurons would help" would be unsurprising. The question then becomes: given that this is a conclusion already in the field, what new principle or understanding has been gained in this study?

      (3) One major claim was that the quality of the reconstructions depended on the number of neurons in the dataset. There were approximately 8000 neurons recorded per mouse. The correlation difference between the reconstruction achieved by 1000 neurons and 8000 neurons was ~0.2. Is that a lot or a little? One might hypothesize that 7000 additional neurons could contribute more information, but perhaps, those neurons were redundant if their receptive fields are too close together or if they had the same orientation or spatiotemporal tuning. How correlated were these neurons in response to a given movie? Why did so many neurons offer such a limited increase in correlation? Originally, this question was meant to prompt deeper analysis of the neural data, but the authors did not engage with it, suggesting a limited understanding of the neuronal aspects of the dataset.

      (4) We appreciated the experiments testing the capacity of the reconstruction process, by using synthetic stimuli created under a Gaussian process in a noise-free way. But this originally further raised questions: what is the theoretical capability for reconstruction of this processing pipeline, as a whole? Is 0.563 the best that one could achieve given the noisiness and/or neuron count of the Sensorium project? What if the team applied the pipeline to reconstruct the activity of a given artificial neural network's layer (e.g., some ResNet convolutional layer), using hidden units as proxies for neuronal calcium activity? In the revision, this concern was addressed nicely in the review in Supplementary Figure 3C. Also, one appreciates that as a follow up, the team produced error maps (New Figure 6) that highlight where in the frames the reconstruction are likely to fail. But the maps went unanalyzed further, and I am not sure if there was a systematic trend in the errors.

      (5) I was encouraged by Figure 4, which shows how the reconstructions succeeded or failed across different spatial frequencies. The authors note that "the reconstruction process failed at high spatial frequencies," yet it also appears to struggle with low spatial frequencies, as the reconstructed images did not produce smooth surfaces (e.g., see the top rows of Figures 4A and 4B). In regions where one would expect a single continuous gradient, the reconstructions instead display specular, high-frequency noise. This issue is difficult to overlook and might deserve further discussion.

    2. Reviewer #3 (Public review):

      Summary:

      This paper presents a method for reconstructing input videos shown to a mouse from the simultaneously recorded visual cortex activity (two-photon calcium imaging data). The publicly available experimental dataset is taken from a recent brain-encoding challenge, and the (publicly available) neural network model that serves to reconstruct the videos is the winning model from that challenge (by distinct authors). The present study applies gradient-based input optimization by backpropagating the brain-encoding error through this selected model (a method that has been proposed in the past, with other datasets). The main contribution of the paper is, therefore, the choice of applying this existing method to this specific dataset with this specific neural network model. The quantitative results appear to go beyond previous attempts at video input reconstruction (although measured with distinct datasets). The conclusions have potential practical interest for the field of brain decoding, and theoretical interest for possible future uses in functional brain exploration.

      Strengths:

      The authors use a validated optimization method on a recent large-scale dataset, with a state-of-the-art brain encoding model. The use of an ensemble of 7 distinct model instances (trained on distinct subsets of the dataset, with distinct random initializations) significantly improves the reconstructions. The exploration of the relation between reconstruction quality and number of recorded neurons will be useful to those planning future experiments.

      Weaknesses:

      The main contribution is methodological, and the methodology combines pre-existing components without any new original component.

    1. Reviewer #1 (Public review):

      This manuscript introduces a biologically informed RNN (bioRNN) that predicts the effects of optogenetic perturbations in both synthetic and in vivo datasets. By comparing standard sigmoid RNNs (σRNNs) and bioRNNs, the authors make a compelling case that biologically grounded inductive biases improve generalization to perturbed conditions. This work is innovative, technically strong, and grounded in relevant neuroscience, particularly the pressing need for data-constrained models that generalize causally.

      Comments on revisions:

      The authors have addressed all my concerns.

    2. Reviewer #2 (Public review):

      Sourmpis et al. present a study in which the importance of including certain inductive biases in the fitting of recurrent networks is evaluated with respect to the generalization ability of the networks when exposed to untrained perturbations.

      The work proceeds in three stages:

      (i) a simple illustration of the problem is made. Two reference (ground-truth) networks with qualitatively different connectivity, but similar observable network dynamics, are constructed, and recurrent networks with varying aspects of design similarity to the reference networks are trained to reproduce the reference dynamics. The activity of these trained networks during untrained perturbations is then compared to the activity of the perturbed reference networks. It is shown that, of the design characteristics that were varied, the enforced sign (Dale's law) and locality (spatial extent) of efference were especially important.

      (ii) The intuition from the constructed example is then extended to networks that have been trained to reproduce certain aspects of multi-region neural activity recorded from mice during a detection task with a working-memory component. A similar pattern is demonstrated, in which enforcing the sign and locality of efference in the fitted networks has an influence on the ability of the trained networks to predict aspects of neural activity during unseen (untrained) perturbations.

      (iii) The authors then illustrate the relationship between the gradient of the motor readout of trained networks with respect to the net inputs to the network units, and the sensitivity of the motor readout to small perturbations of the input currents to the units, which (in vivo) could be controlled optogenetically. The paper is concluded with a proposed use for trained networks, in which the models could be analyzed to determine the most sensitive directions of the network and, during online monitoring, inform a targeted optogenetic perturbation to bias behavior.

      The authors do not overstate their claims, and in general, I find that I agree with their conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      The authors analyzed the expression of ATAD2 protein in post-meiotic stages and characterized the localization of various testis-specific proteins in the testis of the Atad2 knockout (KO). By cytological analysis as well as the ATAC sequencing, the study showed that increased levels of HIRA histone chaperone, accumulation of histone H3.3 on post-meiotic nuclei, defective chromatin accessibility and also delayed deposition of protamines. Sperm from the Atad2 KO mice reduces the success of in vitro fertilization. The work was performed well, and most of the results are convincing. However, this manuscript does not suggest a molecular mechanism for how ATAD2 promotes the formation of testis-specific chromatin.

      Strengths:

      The paper describes the role of ATAD2 AAA+ ATPase in the proper localization of sperm-specific chromatin proteins such as protamine, suggesting the importance of the DNA replication-independent histone exchanges with the HIRA-histone H3.3 axis.

      Weaknesses:

      The work was performed well, and most of the results are convincing. However, this manuscript does not suggest a molecular mechanism for how ATAD2 promotes the formation of testis-specific chromatin.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Liakopoulou et al. presents a comprehensive investigation into the role of ATAD2 in regulating chromatin dynamics during spermatogenesis. The authors elegantly demonstrate that ATAD2, via its control of histone chaperone HIRA turnover, ensures proper H3.3 localization, chromatin accessibility, and histone-to-protamine transition in post-meiotic male germ cells. Using a new well-characterized Atad2 KO mouse model, they show that ATAD2 deficiency disrupts HIRA dynamics, leading to aberrant H3.3 deposition, impaired transcriptional regulation, delayed protamine assembly, and defective sperm genome compaction. The study bridges ATAD2's conserved functions in embryonic stem cells and cancer to spermatogenesis, revealing a novel layer of epigenetic regulation critical for male fertility.

      Strengths:

      The MS first demonstration of ATAD2's essential role in spermatogenesis, linking its expression in haploid spermatids to histone chaperone regulation by connecting ATAD2-dependent chromatin dynamics to gene accessibility (ATAC-seq), H3.3-mediated transcription, and histone eviction. Interestingly and surprisingly, sperm chromatin defects in Atad2 KO mice impair only in vitro fertilization but not natural fertility, suggesting unknown compensatory mechanisms in vivo.

      Weaknesses:

      The MS is robust and there are not big weaknesses

      The authors have addressed all the queries successfully.

    3. Reviewer #3 (Public review):

      Summary:

      The authors generated knockout mice for Atad2, a conserved bromodomain-containing factor expressed during spermatogenesis. In Atad2 KO mice, HIRA, a chaperone for histone variant H3.3, was upregulated in round spermatids, accompanied by an apparent increase in H3.3 levels. Furthermore, the sequential incorporation and removal of TH2B and PRM1 during spermiogenesis were partially disrupted in the absence of ATAD2, possibly due to delayed histone removal. Despite these abnormalities, Atad2 KO male mice were able to produce offspring normally.

      Strengths:

      The manuscript addresses the biological role of ATAD2 in spermatogenesis using a knockout mouse model, providing a valuable in vivo framework to study chromatin regulation during male germ cell development. The observed redistribution of H3.3 in round spermatids is clearly presented and suggests a previously unappreciated role of ATAD2 in histone variant dynamics. The authors also document defects in the sequential incorporation and removal of TH2B and PRM1 during spermiogenesis, providing phenotypic insight into chromatin transitions in late spermatogenic stages. Overall, the study presents a solid foundation for further mechanistic investigation into ATAD2 function.

      Weaknesses:

      While the manuscript reports the gross phenotype of Atad2 KO mice, the findings remain largely superficial and do not convincingly demonstrate how ATAD2 deficiency affects chromatin.

    1. Reviewer #3 (Public review):

      Summary:

      This paper presents a timely and significant contribution to the study of lysine acetoacetylation (Kacac). The authors successfully demonstrate a novel and practical chemo-immunological method using the reducing reagent NaBH4 to transform Kacac into lysine β-hydroxybutyrylation (Kbhb).

      Strengths:

      This innovative approach enables simultaneous investigation of Kacac and Kbhb, showcasing their potential in advancing our understanding of post-translational modifications and their roles in cellular metabolism and disease.

      Weaknesses:

      The study lacks supporting in vivo data, such as gene knockdown experiments, to validate the proposed conclusions at the cellular level.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Subhramanian et al. carefully examined how microglia adapt their surveillance strategies during chronic neurodegeneration, specifically in prion-infected mice. The authors used ex vivo time-lapse imaging and in vitro strategies and found that reactive microglia adopt a highly mobile, "kiss-and-ride" behavior, contrasting the more static surveillance typical of homeostatic microglia. The manuscript provides fundamental mechanistic insights into the dynamics of microglia-neuron interactions, implicates P2Y6 signaling in regulating mobility, and suggests that intrinsic reprogramming of microglia might underlie this behavior, the conclusions are therefore compelling.

      Strengths:

      (1) The novelty of the study is high, particularly the demonstration that microglia lose territorial confinement and dynamically migrate from neuron to neuron under chronic neurodegeneration.

      (2) The possible implications of a stimulus-independent high mobility in reactive microglia are particularly striking. Although this is not fully explored.

      (3) The use of time-lapse imaging in organotypic slices rather than overexpression models provided a more physiological approach.

      (4) Microglia-neuron interactions in neurodegeneration have broad implications for understanding the progression of diseases, such as Alzheimer's and Parkinson's, that are associated with chronic inflammation.

      Weaknesses:

      Previous weaknesses were addressed.

    2. Reviewer #2 (Public review):

      This is a nice paper focused microglial responses to different clinical stages of prion infection in acute brain slices. The key here is the use of time-lapse imaging that captures the dynamics of microglial surveillance, including morphology, migration, and intracellular neuron/microglial contacts. The authors use a myeloid GFP-labeled transgenic mouse to track microglia in SSLOW-infected brain slices, quantifying differences in motility and microglial-neuronal interactions via live fluorescence imaging. Interesting findings include the elaborate patterns of motility among microglia, the distinct types and durations of intracellular contacts, the potential role of calcium signaling in facilitating hypermobility, and the fact that this motion-promoting status is intrinsic to the microglia, persisting even after the cells have been isolated from infected brains. Although largely a descriptive paper, it offers mechanistic insights, including the role of calcium in supporting microglial movement, with bursts of signaling identified even within the time lapse format, and inhibition studies implicating the purinergic receptor and calcium transient regulator P2Y6 in migratory capacity.

      Strengths:

      (1) The focus on microglia activation and activity in the context of prion disease is interesting

      (2) Two different prions produce largely the same response

      (3) Use of time-lapse provides insight into the dynamics of microglia, distinguishing between types of contact - mobility vs motility - and providing insight on the duration/transience and reversibility of extensive somatic contacts that include brief and focused connections in addition to soma envelopment.

      (4) Imaging window selection (3 hours) guided by prior publications documenting preserved morphology, activity, and gene expression regulation up to 4 hours.

      (5) The distinction between high- and low-mobility microglia is interesting, especially given that hypermobility seems to be an innate property of the cells.

      (6) The live-imaging approach is validated by fixed tissue confocal imaging.

      (7) The variance in duration of neuron/microglia contacts is interesting, although there is no insight into what might dictate which status of interaction predominates

      (8) The reversibility of the enveloping action, which is not apparently a commitment to engulfment, is interesting, as is the fact that only neurons are selected for this activity.

      (9) The calcium studies use the fluorescent dye calbryte-590, which picks up neuronal and microglial bursts -prolonged bursts are detected in enveloped neurons and in the hyper-mobile microglia - the microglial lead is followed up using MRS-2578 P2Y6 inhibitor that blunts the mobility of the microglia

      Comments on revisions:

      The authors have addressed my concerns in full - I think this is a very nice addition to the literature.

    1. Reviewer #1 (Public review):

      Summary:

      Siddiqui et al., investigate the question of how bacterial metabolism contributes to the attraction of C. elegans to specific bacteria. They show that C. elegans prefers three bacterial species when cultured in a leucine-enriched environment. These bacterial species release more isoamyl alcohol, a known C. elegans attractant, when cultured with leucine supplement than without leucine supplement. The study shows correlative evidence that isoamyl alcohol is produced from leucine by the Ehrlich pathway. In addition, they show that SNIF-1 is a receptor for isoamyl alcohol because a null mutant of this receptor exhibits lower chemotaxis to isoamyl alcohol and that chemotaxis to isoamyl alcohol is rescued by expression of snif-1 in AWC.

      Strengths:

      (1) This study takes a creative approach to examine the question of what specific volatile chemicals released by bacteria may signify to C. elegans by examining both bacterial metabolism and C. elegans preference behavior. Although C. elegans has long been known to be attracted to bacterial metabolites, this study may be one of the first to examine the possible role of a specific bacterial metabolic pathway in mediating attraction.

      (2) A strength of the paper is the identification of SNIF-1 as a receptor for isoamyl alcohol. The ligands for very few olfactory receptors have been identified in C. elegans and so this is a significant addition to the field. The SNIF-1 null mutant strain will likely be a useful reagent for many labs examining olfactory and foraging behaviors.

      Weaknesses:

      (1) The authors write that the leucine metabolism via the Ehrlich pathway is required for production of isoamyl alcohol by three bacteria (CEent1, JUb66, BIGb0170), but their evidence for this is correlation and not causation. They show that the gene, ilvE (which is part of the Ehrlich pathway) is upregulated in CEent1 bacteria upon exposure to leucine. Although this indicates that the ilvE gene may be involved in leucine metabolism, it does not show causation. To show causation, they need to knockout ilvE from one of these strains, show that the bacteria does not have increased isoamyl alcohol production when cultured on leucine, and that the bacteria is no longer attractive to C. elegans.

      (2) Although the authors do show that the three bacterial strains they focus on (CEent1, JUb66, and BIGb0170) are more attractive to C. elegans when supplemented with leucine. Some other strains such as BIGb0393 are also more attractive with leucine supplementation and produce isoamyl alcohol (Fig 1B and Supp Table 2). It is unclear why these other strains are not included with the selected three strains.

      (3) The behavioral evidence that snif-1 gene encodes a receptor for isoamyl alcohol is compelling because of the mutant phenotype and rescue experiments. The evidence would be stronger with calcium imaging of AWC neurons in response to isoamyl alcohol in the receptor mutant with the expectation that the response would be reduced or abolished in the mutant compared to wildtype.

    2. Reviewer #2 (Public review):

      Summary:

      Siddiqui et al. show that C. elegans prefers certain bacterial strains that have been supplemented with the essential amino acid (EEA) leucine. They convincingly show that some leucine enriched bacteria stimulate the production of isoamyl alcohol (IAA). IAA is an attractive odorant that is sensed by the AWC. The authors an identify a receptor, SRD-12, that is expressed in the AWC chemosensory neurons and is required for chemotaxis to IAA. The authors propose that IAA is a predominant olfactory cue that determines diet preference in C. elegans. Since leucine is an EAA, the authors propose that worm IAA sensing allows the animal provides a proxy mechanism to identify EAA rich diets.

      Strengths:

      The authors propose IAA as a predominant olfactory cue that determines diet preference in C. elegans providing molecular mechanism underlying diet selection. They show that wild isolates of C. elegans have strong chemotactic response to IAA indicating that IAA is an ecologically relevant odor for the worm. The paper is well written, and the presented data are convincing and well organized. This is an interesting paper that connects chemotactic response with bacterially produced odors and thus provides an understanding how animals adapt their foraging behavior through the perception of molecules that may indicate the nutritional value.

      Weaknesses:

      Major: While I do like the way the authors frame C. elegans IAA sensing as mechanisms to identify leucine (EAA) rich diets, it is not fully clear whether bacterial IAA production is a proxy for bacterial leucine levels.

      (1) Can the authors measure leucine (or other EAA) content of the different CeMbio strains? This would substantiate the premise in the way they frame this in the introduction. While the authors convincingly show that leucine supplementation induces IAA production in some strains, it is not clear if there are lower leucine levels in the different in the non-preferred strains.

      (2) It is not clear whether the non-preferred bacteria in Figure 1A and 1B have the ability to produce IAA. To substantiate the claim that C. elegans prefers CEent1, JUb66, and BIGb0170 due to their ability to generate IAA from leucine, it would be measure IAA levels in non-preferred bacteria (+ and - leucine supplementation). If the authors have these data it would be good to include this.

      (3) The authors would strengthen their claim if they could show that deletion or silencing ilvE enzyme reduces IAA levels and eliminates the increased preference upon leucine supplementation.

      (4) While the three preferred bacteria possess the ilvE gene, it is not clear whether this enzyme is present in the other non-preferred bacterial strains. As far as I know, the CeMbio strains have been sequenced, so it should be easy to determine if the non-preferred bacteria possess the capacity to make IAA. Does expression of ilvE in e.g. E. coli increase its preference index or are the other genes in the biosynthesis pathway missing?

      (5) It is strongly implied that leucine rich diets are beneficial to the worm. Do the authors have data to show the effect on leucine supplementation on C. elegans healthspan, life-span or broodsize?

      Comments on revisions:

      (1) The authors have addressed most of the earlier questions. The main unresolved issue is the link between iaa production is a reflection of bacterial leucine levels. It is not clear if there are lower leucine levels in the different in non-preferred strains.

      The main conclusions that: 1. some bacterial strains can convert exogenous leucine into IAA which is an attractant to C. elegans. 2. The identification of a GPCR required for IAA responses are solid. These are important results that carry the paper. My outstanding concern remains with the overinterpretation of the framing that C. elegans IAA sensing is used as a mechanism to identify leucine (EAA) rich diets. It is fine to leave this a favorite hypothesis in the discussion but statements throughout the paper need to be nuanced without leucine measurement of the different bacterial strains. (Also since for the bacterial chemotaxis assays there were only done with a single concentration of leucine makes it difficult to infer bacterial leucine concentrations). I recommend softening claims related to leucine-rich diet detection unless quantitative measurements are provided.

      Part of the issue in the text lies in the difference between "supplemented" and "chemotaxis" (lab based constructs) and enriched and foraging (natural environment based). This is also the way it is set up in the introduction "Do animals use specific sensing mechanisms to find an EAA-enriched diet?". If enriched is used strictly the same as supplemented then it would be fine but in the text this distinction gets blurred and enriched drifts to the more ethological explanation.

      Then it is more than just semantics since leucine-supplemented diets are not something that occurs in the natural environment. IAA production by bacteria could be a signal for a leucine rich environment and it is fine to speculate about this in the discussion.

      Examples where the wording needs to be more precise to reflect the experimental results rather than the possible impact in its natural environment:

      The title:' The olfactory receptor SNIF-1 mediates foraging for leucine-rich diets in C. elegans"

      The intro:"Taken together, SNIF-1 regulates the dietary preference of worms to IAA-producing bacteria and thereby mediates the foraging behavior of C. elegans to leucine-enriched diets. Thus, IAA produced by bacteria is a dietary quality code for leucine-enriched bacteria."

      Results "Figure 1. C. elegans relies on odors to select leucine-enriched bacteria"

      Supplementation is used more in the text and the figure legends whereas headings and abstract use enriched. The experiments in the paper only describe leucine-supplemented experiments. So use I would supplemented instead of enriched when describing experiments for clarity.

      For instance:

      Page 4:"Microbial odors drive the preference of C. elegans for leucine-enriched diet"

      Page 5: "Altogether, these findings suggested that worms rely on odors to distinguish various bacteria and find leucine-enriched bacteria"

      Page 7: "Isoamyl alcohol odor is a signature for a leucine-enriched diet"

      Page 9: AWC odor sensory neurons facilitate the diet preference of C. elegans for leucine-enriched diets"

      page 20 "Leucine-enriched diets produce significantly higher levels of IAA odor, making up to 90% of their headspace"

      (2) As suggested in the first round of review the authors now add data IAA levels in non-preferred bacteria (+ and - leucine supplementation) in table S2. While it is good to have this data, the table is not very clear. Not clear what ND stands for in the table S2. Not determined or not detected? I assume not determined since some strains Jub44, BiGb0393 Jub134 produce IAA even in the absence of LEU. The authors mention that "the abundance of IAA in these strains is significantly less". However, the table just reflects yes or no. Can the authors give an indication of the concentration to understand what significantly less means? Fig. 2c at least gives a heat map.

      (3) On wormbase the gene is still called srd-12. The authors should seek permission to rename srd-12 to snif-1.

    1. Reviewer #1 (Public review):

      Summary:

      This work by Al-Jezani et al. focused on characterizing clonally derived MSC populations from the synovium of normal and osteoarthritis (OA) patients. This included characterizing the cell surface marker expression in situ (at time of isolation), as well as after in vitro expansion. The group also tried to correlate marker expression with trilineage differential potential. They also tested the ability of the different sub-populations for their efficacy in repairing cartilage in a rat model of OA. The main finding of the study is that CD47hi MSCs may have a greater capacity to repair cartilage than CD47lo MSCs, suggesting that CD47 may be a novel marker of human MSCs that have enhanced chondrogenic potential.

      Strengths:

      Studies on cell characterization of the different clonal populations isolated indicate that the MSC are heterogenous and traditional cell surface markers for MSCs do not accurately predict the differentiation potential of MSCs. While this has been previously established in the field of MSC therapy, the authors did attempt to characterize clones derived from single cells, as well as evaluate the marker profile at the time of isolation. While the outcome of heterogeneity is not surprising, the methods used to isolate and characterze the cells were well developed. The interesting finding of the study is the identification of CD47 as a potential MSC marker that could be related to chondrogenic potential. The authors suggest that MSCs with high CD47 repaired cartilage more effectively than MSC with low CD47 in a rat OA model.

      Comments on revisions:

      Thank you for addressing the comments from the first review. No additional revisions.

    2. Reviewer #2 (Public review):

      Summary:

      This is a compelling study that systematically characterized and identified clonal MSC populations derived from normal and osteoarthritis human synovium. There is immense growth in the focus on synovial-derived progenitors in the context of both disease mechanisms and potential treatment approaches, and the authors sought to understand the regenerative potential of synovial-derived MSCs.

      Strengths:

      This study has multiple strengths. MSC cultures were established from an impressive number of human subjects, and rigorous cell surface protein analyses were conducted, at both pre-culture and post-culture timepoints. In vivo experiments using a rat DMM model showed beneficial therapeutic effects of MSCs vs non-MSCs, with compelling data demonstrating that only "real" MSC clones incorporate into cartilage repair tissue and express Prg4. Proteomics analysis was performed to characterize non-MSC vs MSC cultures, and high CD47 expression was identified as a marker for MSC. Injection of CD47-Hi vs CD47-Low cells in the same rat DMM model also demonstrated beneficial effects, albeit only based on histology. A major strength of these studies is the direct translational opportunity for novel MSC-based therapeutic interventions, with high potential for a "personalized medicine" approach.

      Weaknesses:

      Weaknesses of this study include the rather cursory assessment of the OA phenotype in the rat model, confined entirely to histology (i.e. no microCT, no pain/behavioral assessments, no molecular readouts). This is relevant given the mixed results in therapeutic experiments demonstrating lower OA scores, but not lower inflammation scores, in CD47-Hi-treated rats. Thus, future work should focus on characterizing the therapeutic mechanism further given the clinical relevant of inflammation and pain in OA. It is somewhat unclear how the authors converged on CD47 vs other factors, but despite its somewhat broad profile, it was shown to be a useful marker to differentiate functional effects of MSCs. Additional work is needed to understand whether MSCs also engraft in ectopic cartilage (in the context of osteophyte/chondrophyte formation) or whether their effects are limited to articular cartilage. Despite these areas for improvement, this is a strong paper with a high degree of rigor, and the results are compelling, timely, and important.

      Overall, the authors achieved their aims, and the results support not just the therapeutic value of clonally-isolated synovial MSCs but also the immense heterogeneity in stromal cell populations (containing true MSCs and non-MSCs) that must be investigated further. Of note, the authors employed the ISCT criteria to characterize MSCs, with mixed results in pre-culture and post-culture assessments. This work is likely to have a long-term impact on methodologies used to culture and study MSCs, in addition to advancing the field's knowledge about how synovial-derived progenitors contribute to cartilage repair in vivo.

      Comments on revisions:

      I commend the authors for a good revision. While the revision primarily entailed re-analysis or additional analysis of existing data, as well as text-based changes, it improved the clarity and completeness of the manuscript.

      I do encourage the authors to expand their phenotyping assessments in future studies given that the interaction between structural disease, inflammation, and pain is complex, and our understanding of how the two interact and affect each other is evolving. There are multiple recent publications that show that a therapeutic or knock-out is protective against cartilage damage but doesn't alleviate pain, or vice versa. Thus, as a field, understanding which therapies target which pathological manifestations is an important next step to advance treatments. I also look forward to the follow-up studies on the MSC's role in ectopic cartilage.

    1. Reviewer #1 (Public review):

      This is a highly original and impactful study that significantly advances our understanding of transcriptional regulation, in particular RNAPII pausing, during early heart development. The Chen lab has a long history of producing influential studies in cardiac morphogenesis, and this manuscript represents another thorough and mechanistically insightful contribution. The authors have thoroughly addressed this Reviewer's concerns and incorporated all of my suggestions in the revised manuscript. In addition, their responses to the other reviewer's comments are also very clear. As it is, this work is of great interest to the readership of Elife, as well as to the general scientific community.

      The authors reveal a fundamentally new role for Rtf1-a component of the PAF1 complex-in governing promoter-proximal RNAPII pausing in the context of myocardial lineage specification. While transcriptional pausing has been implicated in stress responses and inducible gene programs, its developmental relevance has remained poorly defined. This study fills that gap with rigorous in vivo evidence demonstrating that Rtf1-dependent pausing is indispensable for activating the cardiac gene program from the lateral plate mesoderm.

      Importantly, the study also provides compelling therapeutic implications. Showing that CDK9 inhibition-using either flavopiridol or targeted knockdown-can restore promoter-proximal pausing and rescue cardiomyocyte formation in Rtf1-deficient embryos suggests that modulation of pause-release kinetics may represent a new avenue for correcting transcriptionally driven congenital heart defects. Given that many CDK inhibitors are clinically approved or in active development, this connection significantly elevates the translational impact of the findings.

      In sum, this study is rigorous, innovative, and transformative in its implications for developmental biology and cardiac medicine. I strongly support its publication.

    2. Reviewer #2 (Public review):

      Summary:

      Langenbacher at el. examine the requirement of Rtf1, a component of the PAF1C complex, which regulates transcriptional pausing in cardiac development. The authors first confirm that newly generated rtf1 mutant alleles recapitulate the defects in cardiac progenitor differentiation found using morpholinos from their previous work. The authors then show that conditional loss of Rtf1 in mouse embryos and depletion in mouse ESCs both demonstrates a failure to turn on cardiac progenitor and differentiation marker genes, supporting conservation of Rtf1 in promoting vertebrate cardiac progenitor development. The authors then employ bulk RNA-seq on flow-sorted hand2:GFP+ cells and multiomic single-cell RNA-seq on whole Rtf1-depleted zebrafish embryos at the 10-12 somite stage. These experiments corroborate that gene expression associated with cardiac progenitor differentiation is lost. Furthermore, analysis of differentiation trajectories suggests that the expression of genes associated with cardiac, blood, and endothelial progenitor differentiation is not initiated within the anterior lateral plate mesoderm. Structure-function analysis supports that the Rtf1 Plus3 domain is necessary for its function in promoting cardiac progenitor differentiation. ChIP-seq for RNA Pol II on 10-12 somite stage zebrafish embryos supports that Rtf1 is required for proper promoter pausing at the transcriptional start site. The transcriptional promoter pausing defect and cardiac differentiation can partially be rescued in zebrafish rtf1 mutants through pharmacological inhibition and depletion of Cdk9, a kinase that inhibits elongation. Thus, the authors have provided a clear analysis of the requirements and basic mechanism that Rf1 employs regulating cardiac progenitor development.

      Strengths and weaknesses:

      Overall, the data presented are strong and the message of the study is clear. The conclusions that Rtf1 is required for transcriptional pause release and promotes vertebrate cardiac progenitor differentiation are supported. Areas of strength include the complementary approaches in zebrafish and mouse embryos, and mouse embryonic stem cells, which together support the conserved requirement for Rtf1 in promoting cardiac differentiation. The bulk and single-cell RNA-sequencing analyses provide further support for this model via examining broader gene expression. In particular, the pseudotime analysis bolsters that there is a broader effect on differentiation of anterior lateral plate mesoderm derivatives. The structure-function analysis provides a relatively clean demonstration of the requirement of the Rtf1 Plus3 domain. The pharmacological and depletion epistasis of Cdk9 combined with the RNA Pol II ChIP-seq nicely support the mechanism implicating Cdk9 in the Rtf1-dependent RNA Pol II promoter pausing. Additionally, this is a revised manuscript. The authors were overall responsive to the previous critiques. The new analysis and revisions have helped to strengthen their hypothesis and improve the clarity of their study. While the revised manuscript is significantly improved, the lack of analysis from the multiomic analysis still represents a lost opportunity to provide further insight into Rtf1 mechanisms within this study. However, the authors have nevertheless achieved their goal for this study. The data sets reported will also be useful tools for further analysis and integration by the cardiovascular development community. Thus, the study will be of interest to scientists studying cardiovascular development and those broadly interested in epigenetic regulation controlling vertebrate development.

    1. Reviewer #1 (Public review):

      The authors used fluorescence microscopy, image analysis, and mathematical modeling to study the effects of membrane affinity and diffusion rates of MinD monomer and dimer states on MinD gradient formation in B. subtilis. To test these effects, the authors experimentally examined MinD mutants that lock the protein in specific states, including Apo monomer (K16A), ATP-bound monomer (G12V) and ATP-bound dimer (D40A, hydrolysis defective), and compared to wild-type MinD. Overall, the experimental results support the conclusions that reversible membrane binding of MinD is critical for the formation of the MinD gradient, but the binding affinities between monomers and dimers are similar.

      The modeling part is a new attempt to use the Monte Carlo method to test the conditions for the formation of the MinD gradient in B. subtilis. The modeling results provide good support for the observations and find that the MinD gradient is sensitive to different diffusion rates between monomers and dimers. This simulation is based on several assumptions and predictions, which raises new questions that need to be addressed experimentally in the future.

    2. Reviewer #3 (Public review):

      This important study by Bohorquez et al examines the determinants necessary for concentrating the spatial modulator of cell division, MinD, at the future site of division and the cell poles. Proper localization of MinD is necessary to bring the division inhibitor, MinC, in proximity to the cell membrane and cell poles where it prevents aberrant assembly of the division machinery. In contrast to E. coli, in which MinD oscillates from pole-to-pole courtesy of a third protein MinE, how MinD localization is achieved in B. subtilis-which does not encode a MinE analog-has remained largely a mystery. The authors present compelling data indicating that MinD dimerization is dispensable for membrane localization but required for concentration at the cell poles. Dimerization is also important for interactions between MinD and MinC, leading to the formation of large protein complexes. Computational modeling, specifically a Monte Carlo simulation, supports a model in which differences in diffusion rates between MinD monomers and dimers lead to concentration of MinD at cell poles. Once there, interaction with MinC increases the size of the complex, further reinforcing diffusion differences. Notably, interactions with MinJ-which has previously been implicated in MinCD localization, are dispensable for concentrating MinD at cell poles although MinJ may help stabilize the MinCD complex at those locations.

      [Editor's note: The editors and reviewers have no further comments and encourage the authors to proceed with a Version of Record.]

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates the biological mechanism underlying the assembly and transport of the AcrAB-TolC efflux pump complex. By combining endogenous protein purification with cryo-EM analysis, the authors show that the AcrB trimer adopts three distinct conformations simultaneously and identify a previously uncharacterized lipoprotein, YbjP, as a potential additional component of the complex. The work aims to advance our understanding of the AcrAB-TolC efflux system in near-native conditions and may have broader implications for elucidating its physiological mechanism.

      Strengths:

      Overall, the manuscript is clearly presented, and several of the datasets are of high quality. The use of natively isolated complexes is a major strength, as it minimizes artifacts associated with reconstituted systems and enables the discovery of a novel subunit. The authors also distinguish two major assemblies-the TolC-YbjP sub-complex and the complete pump-which appear to correspond to the closed and open channel states, respectively. The conceptual advance is potentially meaningful, and the findings could be of broad interest to the field.

      Weaknesses:

      (1) As the identification of YbjP is a key contribution of this work, a deeper comparison with functional "anchor" proteins in other efflux pumps is needed. Including an additional supplementary figure illustrating these structural comparisons would be valuable.

      (2) The observation of the LTO states in the presence of TolC represents an important extension of previous findings. A more detailed discussion comparing these LTO states to those reported in earlier structural and biochemical studies would improve the clarity and significance of this point.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript reports the high-resolution cryo-EM structures of the endogenous TolC-YbjP-AcrABZ complex and a TolC-YbjP subcomplex from E. coli, identifying a novel accessory subunit. This work is an impressive effort that provides valuable structural insights into this native complex.

      Strengths:

      (1) The study successfully determines the structure of the complete, endogenously purified complex, marking a significant achievement.

      (2) The identification of a previously unknown accessory subunit is an important finding.

      (3) The use of cryo-EM to resolve the complex, including potential post-translational modifications such as N-palmitoyl and S-diacylglycerol, is a notable highlight.

      Weaknesses:

      (1) Clarity and Interpretation: Several points need clarification. Additionally, the description of the sample preparation method, which is a key strength, is currently misplaced and should be introduced earlier.

      (2) Data Presentation: The manuscript would benefit significantly from improved figures.

      (3) Supporting Evidence: The inclusion of the protein purification profile as a supplementary figure is essential. Furthermore, a discussion comparing the endogenous AcrB structure to those obtained in other systems (e.g., liposomes) and commenting on observed lipid densities would strengthen the overall analysis.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript "Structural mechanisms of pump assembly and drug transport in the AcrAB-TolC efflux system" by Ge et al. describes the identification of a previously uncharacterized lipoprotein, YbjP, as a novel partner of the well-studied Enterobacterial tripartite efflux pump AcrAB-TolC. The authors present cryo-electron microscopy structures of the TolC-YbjP subcomplex and the complete AcrABZ-TolC-YbjP assembly. While the identification and structural characterization of YbjP are potentially novel, the stated focus of the manuscript-mechanisms of pump assembly and drug transport - is not sufficiently addressed. The manuscript requires reframing to emphasize the principal novelty associated with YbjP and significant development of the other aspects, especially the claimed novelty of the AcrB drug-efflux cycle.

      Strengths:

      The reported association of YbjP with AcrAB-TolC is novel; however, a recent deposition of a preceding and much more detailed manuscript to the BioRxiv server (Horne et al., https://doi.org/10.1101/2025.03.19.644130) removes much of the immediate novelty.

      Weaknesses:

      While the identification of YbjP is novel, the authors do not appear to acknowledge the precedence of another work (Horne et al., 2025), and it is not cited within the correct context in the manuscript.

      Several results presented in the TolC-YbjP section do not represent new findings regarding TolC structure itself. The structure and gating behaviour of TolC should be more thoroughly introduced in the Introduction, including prior work describing channel opening and conformational transitions. The current manuscript does not discuss the mechanistic role of helices H3/H4 and H7/H8 in channel dilation, despite implying that YbjP binding may influence these features. Only the original closed TolC structure is cited, and the manuscript does not address prior mutational studies involving the D396 region, though this residue is specifically highlighted in the presented structures.

      The manuscript provides only a general structural alignment between the closed TolC-YbjP subcomplex and the open TolC observed in the full pump assembly. However, multiple open, closed, and intermediate conformations of AcrAB-TolC have already been reported. Thus, YbjP alone cannot be assumed to account for TolC channel gating. A systematic comparison with existing structures is necessary to determine whether YbjP contributes any distinct allosteric modulation.

      The analysis of AcrB peristaltic action is superficial, poorly substantiated and importantly, not novel. Several references to the ATP-synthase cycle have been provided, but this has been widely established already some 20 years ago - e.g. https://www.science.org/doi/10.1126/science.1131542.

      The most significant limitation of the study is the absence of functional characterization of YbjP in vivo or in vitro. While the structural association between YbjP and TolC is interesting, the biological role of YbjP remains unclear. Moreover, the manuscript does not examine structural differences between the presented complex and previously solved AcrAB-TolC or MexAB-OprM assemblies that might support a mechanistic model.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Lu and colleagues demonstrates convincingly that PRRT2 interacts with brain voltage-gated sodium channels to enhance slow inactivation in vitro and in vivo. The work is interesting and rigorously conducted. The relevance to normal physiology and disease pathophysiology (e.g., PRRT2-related genetic neurodevelopmental disorders) seems high. Some simple additional experiments could elevate the impact and make the study more complete.

      Strengths:

      Experiments are conducted rigorously, including experimenter blinding and appropriate controls. Data presentation is excellent and logical. The paper is well written for a general scientific audience.

      Weaknesses:

      There are a few missing experiments and one place where data are over-interpreted.

      (1) An in vitro study of Nav1.6 is conspicuously absent. In addition to being a major brain Na channel, Nav1.6 is predominant in cerebellar Purkinje neurons, which the authors note lack PRRT2 expression. They speculate that the absence of PRRT2 in these neurons facilitates the high firing rate. This hypothesis would be strengthened if PRRT2 also enhanced slow inactivation of Nav1.6. If a stable Nav1.6 cell were not available, then simple transient co-transfection experiments would suffice.

      (2) To further demonstrate the physiological impact of enhanced slow inactivation, the authors should consider a simple experiment in the stable cell line experiments (Figure 1) to test pulse frequency dependence of peak Na current. One would predict that PRRT2 expression will potentiate 'run down' of the channels, and this finding would be complementary to the biophysical data.

      (3) The study of one K channel is limited, and the conclusion from these experiments represents an over-interpretation. I suggest removing these data unless many more K channels (ideally with measurable proxies for slow inactivation) were tested. These data do not contribute much to the story.

      (4) In Figure 2, the authors should confirm that protein is indeed expressed in cells expressing each truncated PRRT2 construct. Absent expression should be ruled out as an explanation for absent enhancement of slow inactivation.

    2. Reviewer #2 (Public review):

      Summary:

      As a member of DspB subfamily, PRRT2 is primarily expressed in the nervous system and has been associated with various paroxysmal neurological disorders. Previous studies have shown that PRRT2 directly interacts with Nav1.2 and Nav1.6, modulating channel properties and neuronal excitability.

      In this study, Lu et al. reported that PRRT2 is a physiological regulator of Nav channel slow inactivation, promoting the development of Nav slow inactivation and impeding the recovery from slow inactivation. This effect can be replicated by the C-terminal region (256-346) of PRRT2, and is highly conserved across species from zebrafish, mouse, to human PRRT2. TRARG1 and TMEM233, the other two DspB family members, showed similar effects on Nav1.2 slow inactivation. Co-IP data confirms the interaction between Nav channels and PRRT2. Prrt2-mutant mice, which lack PRRT2 expression, require lower stimulation thresholds for evoking after-discharges when compared to WT mice.

      Strengths:

      (1) This study is well designed, and data support the conclusion that PRRT2 is a potent regulator of slow inactivation of Nav channels.

      (2) This study reveals similar effects on Nav1.2 slow inactivation by PRRT2, TMEM233, and TRARG1, indicating a common regulation of Nav channels by DspB family members (Supplemental Figure 2). A recent study has shown that TMEM233 is essential for ExTxA (a plant toxin)-mediated inhibition on fast inactivation of Nav channels; and PRRT2 and TRARG1 could replicate this effect (Jami S, et al. Nat Commun 2023). It is possible that all three DspB members regulate Nav channel properties through the same mechanism, and exploring molecules that target PRRT2/TRARG1/TMEM233 might be a novel strategy for developing new treatments of DspB-related neurological diseases.

      Weaknesses:

      (1) Previously, the authors have reported that PRRT2 reduces Nav1.2 current density and alters biophysical properties of both Nav1.2 and Nav1.6 channels, including enhanced steady-state inactivation, slower recovery, and stronger use-dependent inhibition (Lu B, et al. Cell Rep 2021, Fig 3 & S5). All those changes are expected to alter neuronal excitability and should be discussed.

      (2) In this study, the fast inactivation kinetics was examined by a single stimulus at 0 mV, which may not be sufficient for the conclusion. Inactivation kinetics at more voltage potentials should be added.

      (3) It is a little surprising that there is no difference in Nav1.2 current density in axon-blebs between WT and Prrt2-mutant mice (Figure 7B). PRRT2 significantly shifts steady-state slow inactivation curve to hyperpolarizing direction, at -70 mV, nearly 70% of Nav1.2 channels are inactivated by slow inactivation in cells expressing PRRT2 when compared to less than 10% in cells expressing GFP (Figure supplement 1B); with a holding potential of -70 mV, I would expect that most of Nav channels are inactivated in axon-blebs from WT mice but not in axon-blebs from Prrt2-mutant mice, and therefore sodium current density should be different in Figure 7B, which was not. Any explanation?

      (3) Besides Nav channels, PRRT2 has been shown to act on Cav2.1 channels as well as molecules involved in neurotransmitter release, which may also contribute to abnormal neuronal activity in Prrt2-mutant mice. These should be mentioned when discussing PRRT2's role in neuronal resilience.

    3. Reviewer #3 (Public review):

      This paper reveals that the neuronal protein PRRT2, previously known for its association with paroxysmal dyskinesia and infantile seizures, modulates the slow inactivation of voltage-gated sodium ion (Nav) channels, a gating process that limits excitability during prolonged activity. Using electrophysiology, molecular biology, and mouse models, the authors show that PRRT2 accelerates entry of Nav channels into the slow-inactivated state and slows their recovery, effectively dampening excessive excitability. The effect seems evolutionarily conserved, requires the C-terminal region of PRRT2, and is recapitulated in cortical neurons, where PRRT2 deficiency leads to hyper-responsiveness and reduced cortical resilience in vivo. These findings extend the functional repertoire of PRRT2, identifying it as a physiological brake on neuronal excitability. The work provides a mechanistic link between PRRT2 mutations and episodic neurological phenotypes.

      Comments:

      (1) The precise structural interface and the molecular basis of gating modulation remain inferred rather than demonstrated.

      (2) The in vivo phenotype reflects a complex circuit outcome and does not isolate slow-inactivation defects per se.

      (3) Expression of PRRT2 in muscle or heart is low, so the cross isoform claims are likely of limited physiological significance.

      (4) The mechanistic separation between the trafficking of PRRT2 and its gating effects is not clearly resolved.

      (5) Additional studies with Nav1.6 should be carried out.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides valuable new insights into the Paleocene Asian mammal recovery and diversification dynamics during the first ten million years post-dinosaur extinction. Studies that have examined the mammalian recovery and diversification post-dinosaur extinction have primarily focused on the North American mammal fossil record, and it's unclear if patterns documented in North America are characteristic of global patterns. This study examines dietary metrics of Paleocene Asian mammals and found that there is a body size disparity increase before dietary niche expansion and that dietary metrics track climatic and paleobotanical trends of Asia during the first 10 million years after the dinosaur extinction.

      Strengths:

      The Asian Paleocene mammal fossil record is greatly understudied, and this work begins to fill important gaps. In particular, the use of interdisciplinary data (i.e., climatic and paleobotanical) is really interesting in conjunction with observed dietary metric trends.

      Weaknesses:

      While this work has the potential to be exciting and contribute greatly to our understanding of mammalian evolution during the first 10 million years post-dinosaur extinction, the major weakness is in the dental topographic analysis (DTA) dataset.

      There are several specimens in Figure 1 that have broken cusps, deep wear facets, and general abrasion. Thus, any values generated from DTA are not accurate and cannot be used to support their claims. Furthermore, the authors analyze all tooth positions at once, which makes this study seem comprehensive (200 individual teeth), but it's unclear what sort of noise this introduces to the study. Typically, DTA studies will analyze a singular tooth position (e.g., Pampush et al. 2018 Biol. J. Linn. Soc.), allowing for more meaningful comparisons and an understanding of what value differences mean. Even so, the dataset consists of only 48 specimens. This means that even if all the specimens were pristinely preserved and generated DTA values could be trusted, it's still only 48 specimens (representing 4 different clades) to capture patterns across 10 million years. For example, the authors note that their results show an increase in OPCR and DNE values from the middle to the late Paleocene in pantodonts. However, if a singular tooth position is analyzed, such as the lower second molar, the middle and late Paleocene partitions are only represented by a singular specimen each. With a sample size this small, it's unlikely that the authors are capturing real trends, which makes the claims of this study highly questionable.

    2. Reviewer #2 (Public review):

      Summary:

      This study uses dental traits of a large sample of Chinese mammals to track evolutionary patterns through the Paleocene. It presents and argues for a 'brawn before bite' hypothesis - mammals increased in body size disparity before evolving more specialized or adapted dentitions. The study makes use of an impressive array of analyses, including dental topographic, finite element, and integration analyses, which help to provide a unique insight into mammalian evolutionary patterns.

      Strengths:

      This paper helps to fill in a major gap in our knowledge of Paleocene mammal patterns in Asia, which is especially important because of the diversification of placentals at that time. The total sample of teeth is impressive and required considerable effort for scanning and analyzing. And there is a wealth of results for DTA, FEA, and integration analyses. Further, some of the results are especially interesting, such as the novel 'brawn before bite' hypothesis and the possible link between shifts in dental traits and arid environments in the Late Paleocene. Overall, I enjoyed reading the paper, and I think the results will be of interest to a broad audience.

      Weaknesses:

      I have four major concerns with the study, especially related to the sampling of teeth and taxa, that I discuss in more detail below. Due to these issues, I believe that the study is incomplete in its support of the 'brawn before bite' hypothesis. Although my concerns are significant, many of them can be addressed with some simple updates/revisions to analyses or text, and I try to provide constructive advice throughout my review.

      (1) If I understand correctly, teeth of different tooth positions (e.g., premolars and molars), and those from the same specimen, are lumped into the same analyses. And unless I missed it, no justification is given for these methodological choices (besides testing for differences in proportions of tooth positions per time bin; L902). I think this creates some major statistical concerns. For example, DTA values for premolars and molars aren't directly comparable (I don't think?) because they have different functions (e.g., greater grinding function for molars). My recommendation is to perform different disparity-through-time analyses for each tooth position, assuming the sample sizes are big enough per time bin. Or, if the authors maintain their current methods/results, they should provide justification in the main text for that choice.

      Also, I think lumping teeth from the same specimen into your analyses creates a major statistical concern because the observations aren't independent. In other words, the teeth of the same individual should have relatively similar DTA values, which can greatly bias your results. This is essentially the same issue as phylogenetic non-independence, but taken to a much greater extreme.

      It seems like it'd be much more appropriate to perform specimen-level analyses (e.g., Wilson 2013) or species-level analyses (e.g., Grossnickle & Newham 2016) and report those results in the main text. If the authors believe that their methods are justified, then they should explain this in the text.

      (2) Maybe I misunderstood, but it sounds like the sampling is almost exclusively clades that are primarily herbivorous/omnivorous (Pantodonta, Arctostylopida, Anagalida, and maybe Tillodonta), which means that the full ecomorphological diversity of the time bins is not being sampled (e.g., insectivores aren't fully sampled). Similarly, the authors say that they "focused sampling" on those major clades and "Additional data were collected on other clades ... opportunistically" (L628). If they favored sampling of specific clades, then doesn't that also bias their results?

      If the study is primarily focused on a few herbivorous clades, then the Introduction should be reframed to reflect this. You could explain that you're specifically tracking herbivore patterns after the K-Pg.

      (3) There are a lot of topics lacking background information, which makes the paper challenging to read for non-experts. Maybe the authors are hindered by a short word limit. But if they can expand their main text, then I strongly recommend the following:

      (a) The authors should discuss diets. Much of the data are diet correlates (DTA values), but diets are almost never mentioned, except in the Methods. For example, the authors say: "An overall shift towards increased dental topographic trait magnitudes ..." (L137). Does that mean there was a shift toward increased herbivory? If so, why not mention the dietary shift? And if most of the sampled taxa are herbivores (see above comment), then shouldn't herbivory be a focal point of the paper?

      (b) The authors should expand on "we used dentitions as ecological indicators" (L75). For non-experts, how/why are dentitions linked to ecology? And, again, why not mention diet? A strong link between tooth shape and diet is a critical assumption here (and one I'm sure that all mammalogists agree with), but the authors don't provide justification (at least in the Introduction) for that assumption. Many relevant papers cited later in the Methods could be cited in the Introduction (e.g., Evans et al. 2007).

      (c) Include a better introduction of the sample, such as explicitly stating that your sample only includes placentals (assuming that's the case) and is focused on three major clades. Are non-placentals like multituberculates or stem placentals/eutherians found at Chinese Paleocene fossil localities and not sampled in the study, or are they absent in the sampled area?

      (d) The way in which "integration" is being used should be defined. That is a loaded term which has been defined in different ways. I also recommend providing more explanation on the integration analyses and what the results mean.

      If the authors don't have space to expand the main text, then they should at least expand on the topics in the supplement, with appropriate citations to the supplement in the main text.

      (4) Finally, I'm not convinced that the results fully support the 'brawn before bite' hypothesis. I like the hypothesis. However, the 'brawn before ...' part of the hypothesis assumes that body size disparity (L63) increased first, and I don't think that pattern is ever shown. First, body size disparity is never reported or plotted (at least that I could find) - the authors just show the violin plots of the body sizes (Figures 1B, S6A). Second, the authors don't show evidence of an actual increase in body size disparity. Instead, they seem to assume that there was a rapid diversification in the earliest Paleocene, and thus the early Paleocene bin has already "reached maximum saturation" (L148). But what if the body size disparity in the latest Cretaceous was the same as that in the Paleocene? (Although that's unlikely, note that papers like Clauset & Redner 2009 and Grossnickle & Newham 2016 found evidence of greater body size disparity in the latest Cretaceous than is commonly recognized.) Similarly, what if body size disparity increased rapidly in the Eocene? Wouldn't that suggest a 'BITE before brawn' hypothesis? So, without showing when an increase in body size diversity occurred, I don't think that the authors can make a strong argument for 'brawn before [insert any trait]".

      Although it's probably well beyond the scope of the study to add Cretaceous or Eocene data, the authors could at least review literature on body size patterns during those times to provide greater evidence for an earliest Paleocene increase in size disparity.

    1. Reviewer #1 (Public review):

      Summary:

      This is an interesting and useful review highlighting the complex pathways through which pulmonary colonisation or infection with Mycobacterium tuberculosis (Mtb) may progress to develop symptomatic disease and transmit the pathogen. I found the section on immune correlates associated with individuals who have clearly been exposed to and reacted to Mtb but did not develop latent infections particularly valuable. However, several aspects would benefit from clarification.

      Strengths:

      The main strengths lie in the arguments presented for a multiplicity of immune pathways to TB disease.

      Weaknesses:

      The main weaknesses lie in clarity, particularly in the precise meanings of the three figures.

      I accept that there is a 'goldilocks zone' that underpins the majority of TB cases we see and predominantly reflects different patterns of immune response, but the analogies used need to be more clearly thought through.

    2. Reviewer #2 (Public review):

      Summary:

      This is a thought-provoking perspective by Reichmann et al, outlining supportive evidence that Mycobacterium tuberculosis co-evolved with its host Homo Sapiens to both increase susceptibility to infection and reduce rates of fatal disease through decreased virulence. TB is an ancient disease where two modes of virulence are likely to have evolved through different stages of human evolution: one before the Neolithic Demographic Transition, where humans lived in sparse hunter-gatherer communities, which likely selected for prolonged Mtb infection with reduced virulence to allow for transmission across sparse populations. Conversely, following the agricultural and industrial revolutions, Mtb virulence is likely to have evolved to attack a higher number of susceptible individuals. These different disease modalities highlight the central idea that there are different immunological routes to TB disease, which converge on a disease phenotype characterized by high bacterial load and destruction of the extracellular matrix. The writing is very clear and provides a lot of supportive evidence from population studies and the recent clinical trials of novel TB vaccines, like M72 and H56. However, there are areas to support the thesis that have been described only in broad strokes, including the impact of host and Mtb genetic heterogeneity on this selection, and the alternative model that there are likely different TB diseases (as opposed to different routes to the same disease), as described by several groups advancing the concept of heterogeneous TB endotypes. I expand on specific points below.

      Strengths:

      (1) The idea that Mtb evolved to both increase transmission (and possible commensalism with humans) with low rates of reactivation is intriguing. The heterogeneous TB phenotypes in the collaborative cross model (PMID: 35112666) support this idea, where some genetic backgrounds can tolerate a high bacterial load with minimal pathology, while others show signs of pathogenesis with low bacterial loads. This supports the idea that the underlying host state, driven by a number of factors like genetics and nutrition, is likely to explain whether someone will co-exist with Mtb without pathology, or progress to disease. I particularly enjoyed the discussion of the protective advantages provided by Mtb infection, which may have rewired the human immune system to provide protection against heterologous pathogens- this is supported by recent studies showing that Mtb infection provides moderate protection against SARS-CoV-2 (PMID: 35325013, and 37720210), and may have applied to other viruses that are likely to have played a more significant role in the past in the natural selection of Homo Sapiens.

      (2) Modeling from Marcel Behr and colleagues (PMID: 31649096) indeed suggests that there are at least TB clinical phenotypes that likely mirror the two distinct phases of Mtb co-evolution with humans. Most of the TB disease progression occurs rapidly (within 1-2 years of exposure), and the rest are slow cases of reactivation over time. I enjoyed the discussion of the difference between the types of immune hits needed to progress to disease in the two scenarios, where you may need severe immune hits for rapid progression, a phenotype that likely evolved after the Neolithic transition to larger human populations. On the other hand, a series of milder immune events leading to reactivation after a long period of asymptomatic infection likely mirrors slow progression in the hunter-gatherer communities, to allow for prolonged transmission in scarce populations. Perhaps a clearer analysis of these models would be helpful for the reader.

      Weaknesses:

      (1) The discussion of genetic heterogeneity is limited and only discusses evidence from MSMD studies. Genetics is an important angle to consider in the co-evolution of Mtb and humans. There is a large body of literature on both host and Mtb genetic associations with TB disease. The very fact that host variants in one population do not necessarily cross-validate across populations is evidence in support of population-specific adaptations. Specific Mtb lineages are likely to have co-evolved with distinct human populations. A key reference is missing (PMID: 23995134), which shows that different lineages co-evolved with human migrations. Also, meta-analyses of human GWAS studies to define variants associated with TB are very relevant to the topic of co-evolution (e.g., PMID: 38224499). eQTL studies can also highlight genetic variants associated with regulating key immune genes involved in the response to TB. The authors do mention that Mtb itself is relatively clonal with ~2K SNPs marking Mtb variation, much of which has likely evolved under the selection pressure of modern antibiotics. However, some of this limited universe of variants can still explain co-adaptations between distinct Mtb lineages and different human populations, as shown recently in the co-evolution of lineage 2 with a variant common in Peruvians (PMID: 39613754).

      (2) Although the examples of anti-TNF and anti-PD1 treatments are relevant as drivers of TB in limited clinical contexts, the bigger picture is that they highlight major distinct disease endotypes. These restricted examples show that TB can be driven by immune deficiency (as in the case of anti-TNF, HIV, and malnutrition) or hyperactivation (as in the case of anti-PD1 treatment), but there are still certainly many other routes leading to immune suppression or hyperactivation. Considering the idea of hyper-activation as a TB driver, the apparent higher rate of recurrence in the H56 trial referenced in the review is likely due to immune hyperactivation, especially in the context of residual bacteria in the lung. These different TB manifestations (immune suppression vs immune hyperactivation) mirror TB endotypes described by DiNardo et al (PMID: 35169026) from analysis of extensive transcriptomic data, which indicate that it's not merely different routes leading to the same final endpoint of clinical disease, but rather multiple different disease endpoints. A similar scenario is shown in the transcriptomic signatures underlying disease progression in BCG-vaccinated infants, where two distinct clusters mirrored the hyperactivation and immune suppression phenotypes (PMID: 27183822). A discussion of how to think about translating the extensive information from system biology into treatment stratification approaches, or adjunct host-directed therapies, would be helpful.

    3. Reviewer #3 (Public review):

      Summary:

      This perspective article by Reichmann et al. highlights the importance of moving beyond the search for a single, unified immune mechanism to explain host-Mtb interactions. Drawing from studies in immune profiling, host and bacterial genetics, the authors emphasize inconsistencies in the literature and argue for broader, more integrative models. Overall, the article is thought-provoking and well-articulated, raising a concept that is worth further exploration in the TB field.

      Strengths:

      Timely and relevant in the context of the rapidly expanding multi-omics datasets that provide unprecedented insights into host-Mtb interactions.

      Weaknesses (Minor):

      (1) Clarity on the notion of a "unified mechanism". It remains unclear whether prior studies explicitly proposed a single unifying immunological model. While inconsistencies in findings exist, they do not necessarily demonstrate that earlier work was uniformly "single-minded". Moreover, heterogeneity in TB has been recognized previously (PMIDs: 19855401, 28736436), which the authors could acknowledge.

      (2) Evolutionary timeline and industrial-era framing. The evolutionary model is outdated. Ancient DNA studies place the Mtb's most recent common ancestor at ~6,000 years BP (PMIDs: 25141181; 25848958). The Industrial Revolution is cited as a driver of TB expansion, but this remains speculative without bacterial-genomics evidence and should be framed as a hypothesis. Additionally, the claim that Mtb genomes have been conserved only since the Industrial Revolution (lines 165-167) is inaccurate; conservation extends back to the MRCA (PMID: 31448322).

      (3) Trained immunity and TB infection. The treatment of trained immunity is incomplete. While BCG vaccination is known to induce trained immunity (ref 59), revaccination does not provide sustained protection (ref 8), and importantly, Mtb infection itself can also impart trained immunity (PMID: 33125891). Including these nuances would strengthen the discussion.

    1. Reviewer #1 (Public review):

      In this important study, the authors characterized the transformation of neural representations of olfactory stimuli from primary sensory cortex to multisensory regions in the medial temporal lobe and investigated how they were affected by non-associative learning. The authors used high-density silicon probe recordings from five different cortical regions while familiar vs. novel odors were presented to a head-restrained mouse. This is a timely study because unlike other sensory systems (e.g., vision), the progressive transformation of olfactory information is still poorly understood. The authors report that both odor identity and experience are encoded by all of these five cortical areas but nonetheless, some themes emerge. Single neuron tuning of odor identity is broad in the sensory cortices but becomes narrowly tuned in hippocampal regions. Furthermore, while experience affects neuronal response magnitudes in early sensory cortices, it changes the proportion of active neurons in hippocampal regions. Thus, this study is an important step forward in the ongoing quest to understand how olfactory information is progressively transformed along the olfactory pathway.

      The study is well-executed. The direct comparison of neuronal representations from five different brain regions is impressive. Conclusions are based on single neuronal level as well as population level decoding analyses. Among all the reported results, one stands out for being remarkably robust. The authors show that the anterior olfactory nucleus (AON), which receives direct input from the olfactory bulb output neurons, was far superior at decoding odor identity as well as novelty compared to all the other brain regions. This is perhaps surprising because the other primary sensory region - the piriform cortex - has been thought to be the canonical site for representing odor identity. A vast majority of studies have focused on aPCx, but direct comparisons between odor coding in the AON and aPCx are rare. The experimental design of this current study allowed the authors to do so and the AON was found to convincingly outperform aPCx. Although this result goes against the canonical model, it is consistent with a few recent studies including one that predicted this outcome based on anatomical and functional comparisons between the AON-projecting tufted cells vs. the aPCx-projecting mitral cells in the olfactory bulb.

      Future experiments are needed to probe the circuit mechanisms underlying the differential importance of the two primary olfactory cortices, as well as their potential causal roles in odor identification. Moreover, future work should test whether the decoding accuracy of odor identity and experience from neural data (as reported here) can predict the causal contributions of these regions, as revealed through perturbations during behavioral tasks that explicitly probe odor identification and/or experience.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates how olfactory representations are transformed along the cortico-hippocampal pathway in mice during a non-associative learning paradigm involving novel and familiar odors. By recording single-unit activity in several key brain regions (AON, aPCx, LEC, CA1, and SUB), the authors aim to elucidate how stimulus identity and experience are encoded and how these representations change across the pathway.

      The study addresses an important question in sensory neuroscience regarding the interplay between sensory processing and signaling novelty/familiarity. It provides insights into how the brain processes and retains sensory experiences, suggesting that the earlier stations in the olfactory pathway, the AON aPCx, play a central role in detecting novelty and encoding odor, while areas deeper into the pathway (LEC, CA1 & Sub) are more sparse and encodes odor identity but not novelty/familiarity. However, there are several concerns related to methodology, data interpretation, and the strength of the conclusions drawn.

      Strengths:

      The authors combine the use of modern tools to obtain high-density recordings from large populations of neurons at different stages of the olfactory system (although mostly one region at a time) with elegant data analyses to study an important and interesting question.

      Weaknesses:

      The first and biggest problem I have with this paper is that it is very confusing, and the results seem to be all over the place. In some parts, it seems like the AON and aPCx are more sensitive to novelty; in others, it seems the other way around. I find their metrics confusing and unconvincing. For example, the example cells in Figure 1C shows an AON neuron with a very low spontaneous firing rate and a CA1 with a much higher firing rate, but the opposite is true in Fig. 2A. So, what are we to make of Fig. 2C that shows the difference in firing rates between novel vs. familiar odors measured as a difference in spikes/sec. The meaning of this is unclear. The authors could have used a difference in Z-scored responses to normalize different baseline activity levels. (This is just one example of a problem with the methodology.)

      There are a lot of high-level data analyses (e.g., decoding, analyzing decoding errors, calculating mutual information, calculating distances in state space, etc.) but very little neural data (except for Fig. 2C, and see my comment above about how this is flawed). So, if responses to novel vs. familiar odors are different in the AON and aPCx, how are they different? Why is decoding accuracy better for novel odors in CA1 but better for familiar odors in SUB (Fig. 3A)? The authors identify a small subset of neurons that have unusually high weights in the SVM analyses that contribute to decoding novelty, but they don't tell us which neurons these are and how they are responding differently to novel vs. familiar odors.

      The authors call AON and aPCx "primary sensory cortices" and LEC, CA1, and Sub "multisensory areas". This is a straw man argument. For example, we now know that PCx encodes multimodal signals (Poo et al. 2021, Federman et al., 2024; Kehl et al., 2024), and LEC receives direct OB inputs, which has traditionally been the criterion for being considered a "primary olfactory cortical area". So, this terminology is outdated and wrong, and although it suits the authors' needs here in drawing distinctions, it is simplistic and not helpful moving forward.

      Why not simply report z-scored firing rates for all neurons as a function of trial number? (e.g., Jacobson & Friedrich, 2018). Fig. 2C is not sufficient. For example, in the Discussion, they say, "novel stimuli caused larger increases in firing rates than familiar stimuli" (L. 270), but what does this mean? Odors typically increase the firing in some neurons and suppress firing in others. Where does the delta come from? Is this because novel odors more strongly activate neurons that increase their firing or because familiar odors more strongly suppress neurons?

      Ls. 122-124 - If cells in AON and aPCx responded the same way to novel and familiar odors, then we would say that they only encode for odor and not at all for experience. So, I don't understand why the authors say these areas code for a "mixed representation of chemical identity and experience." "On the other hand," if LEC, CA1, and SUB are odor selective and only encode novel odors, then these areas, not AON and aPCx, are the jointly encoding chemical identity and experience. Also, I do not understand why, here, they say that AON and PCx respond to both while LEC, CA1, and SUB were selective for novel stimuli, but the authors then go on to argue that novelty is encoded in the AON and PCx, but not in the LEC, CA1, and SUB.

      Ls. 132-140 - As presented in the text and the figure, this section is unclear and confusing. Their use of the word "shuffled" is a major source of this confusion, because this typically is the control that produces outcomes at chance level. More importantly, it seems as though they did the wrong analysis here. A better way to do this analysis is to train on some of the odors and test on an untrained odor (i.e., what Bernardi et al., 2021 called "cross-condition generalization performance"; CCGP).

      Comments on revisions:

      I think the authors have done an adequate job addressing the reviewers' concerns. Most importantly, I found the first version of the manuscript quite confusing, and the consequent clarifications have addressed this issue.

      In several cases, I see their point, while I still disagree with whether they made the best decisions. However, the issues here do not fundamentally change the big-picture outcome, and if they want to dig in with their approaches (e.g., only using auROC or just reporting delta firing rates without any normalization), it's their choice.

    3. Reviewer #3 (Public review):

      In this manuscript, the authors investigate how odor-evoked neural activity is modulated by experience within the olfactory-hippocampal network. The authors perform extracellular recordings in the anterior olfactory nucleus (AON), the anterior piriform (aPCx) and lateral entorhinal cortex (LEC), the hippocampus (CA1) and the subiculum (SUB), in naïve mice and in mice repeatedly exposed to the same odorants. They determine the response properties of individual neurons and use population decoding analyses to assess the effect of experience on odor information coding across these regions.

      The authors' findings show that odor identity is represented in all recorded areas, but that the response magnitude and selectivity of neurons are differentially modulated by experience across the olfactory-hippocampal pathway.

      Overall, this work represents a valuable multi-region data set of odor-evoked neural activity. However, a few limitations in experimental design and analysis restrict the conclusions that can be drawn from this study.

      Main limitations:

      The authors use a non-associative learning paradigm - repeated odor exposure - to test how experience modulates odor responses along the olfactory-hippocampal pathway. While repeated odor exposure clearly modulates sampling behavior and odor-evoked neural activity, the relevance of this modulation across different brain areas remains difficult to assess.

      The authors discuss the olfactory-hippocampal pathway as a transition from primary sensory (AON, aPCx) to associative areas (LEC, CA1, SUB). While this is reasonable, given the known circuit connectivity, other interpretations are possible. For example, AON, aPCx, and LEC receive direct inputs from the olfactory bulb ('primary cortex'), while CA1 and SUB do not; AON receives direct top-down inputs from CA1 ('associative cortex'), while aPCx does not. In fact, the data presented in this manuscript do not appear to support a consistent transformation from sensory to associative, as implied by the authors.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes critical intermediate reaction steps of a HA synthase at the molecular level; specifically, it examines the 2nd step, polymerization, adding GlcA to GlcNAc to form the initial disaccharide of the repeating HA structure. Unlike the vast majority of known glycosyltransferases, the viral HAS (a convenient proxy extrapolated to resemble the vertebrate forms) uses a single pocket to catalyze both monosaccharide transfer steps. The authors' work illustrates the interactions needed to bind & proof-read the UDP-GlcA using direct and '2nd layer' amino acid residues. This step also allows the HAS to distinguish the two UDP-sugars; this is very important as the enzymes are not known or observed to make homopolymers of only GlcA or GlcNAc, but only make the HA disaccharide repeats GlcNAc-GlcA.

      Strengths:

      Overall, the strengths of this paper lie in its techniques & analysis.

      The authors make significant leaps forward towards understanding this process using a variety of tools and comparisons of wild-type & mutant enzymes. The work is well presented overall with respect to the text and illustrations (especially the 3D representations), and the robustness of the analyses & statistics is also noteworthy.

      Furthermore, the authors make some strides towards creating novel sugar polymers using alternative primers & work with detergent binding to the HAS. The authors tested a wide variety of monosaccharides and several disaccharides for primer activity and observed that GlcA could be added to cellobiose and chitobiose, which are moderately close structural analogs to HA disaccharides. Did the authors also test the readily available HA tetramer (HA4, [GlcA-GlcNAc]2) as a primer in their system? This is a highly recommended experiment; if it works, then this molecule may also be useful for cryo-EM studies of CvHAS as well.

      Weaknesses:

      In the past, another report describing the failed attempt of elongating short primers (HA4 & chitin oligosaccharides larger than the cello- or chitobiose that have activity in this report) with a vertebrate HAS, XlHAS1, an enzyme that seems to behave like the CvHAS ( https://pubmed.ncbi.nlm.nih.gov/10473619/); this work should probably be cited and briefly discussed. It may be that the longer primers in the 1999 paper and/or the different construct or isolation specifics (detergent extract vs crude) were not conducive to the extension reaction, as the authors extracted recombinant enzyme.

      There are a few areas that should be addressed for clarity and correctness, especially defining the class of HAS studied here (Class I-NR) as the results may (Class I-R) or may not (Class II) align (see comment (a) below), but overall, a very nicely done body of work that will significantly enhance understanding in the field.

    2. Reviewer #2 (Public review):

      Summary:

      The paper by Stephens and co-workers provides important mechanistic insight into how hyaluronan synthase (HAS) coordinates alternating GlcNAc and GlcA incorporation using a single Type-I catalytic centre. Through cryo-EM structures capturing both "proofreading" and fully "inserted" binding poses of UDP-GlcA, combined with detailed biochemical analysis, the authors show how the enzyme selectively recognizes the GlcA carboxylate, stabilizes substrates through conformational gating, and requires a priming GlcNAc for productive turnover.

      These findings clarify how one active site can manage two chemically distinct donor sugars while simultaneously coupling catalysis to polymer translocation.

      The work also reports a DDM-bound, detergent-inhibited conformation that possibly illuminates features of the acceptor pocket, although this appears to be a purification artefact (it is indeed inhibitory) rather than a relevant biological state.

      Overall, the study convincingly establishes a unified catalytic mechanism for Type-I HAS enzymes and represents a significant advance in understanding HA biosynthesis at the molecular level.

      Strengths:

      There are many strengths.

      This is a multi-disciplinary study with very high-quality cryo-EM and enzyme kinetics (backed up with orthogonal methods of product analysis) to justify the conclusions discussed above.

      Weaknesses:

      There are few weaknesses.

      The abstract and introduction assume a lot of detailed prior knowledge about hyaluronan synthases, and in doing so, risk lessening the readership pool.

      A lot of discussion focuses on detergents (whose presence is totally inhibitory) and transfer to non-biological acceptors (at high concentrations). This risks weakening the manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      This study investigated whether the identity of a peripheral saccade target object is fed back to the foveal retinotopic cortex during saccade preparation, a critical prediction of the foveal prediction hypothesis proposed by Kroell & Rolfs (2022). To achieve this, the authors leveraged a gaze-contingent fMRI paradigm, where the peripheral saccade target was removed before the eyes landed near it, and used multivariate decoding analysis to quantify identity information in the foveal cortex. The results showed that the identity of the saccade target object can be decoded based on foveal cortex activity, despite the fovea never directly viewing the object, and that the foveal feedback representation was similar to passive viewing and not explained by spillover effects. Additionally, exploratory analysis suggested IPS as a candidate region mediating such foveal decodability. Overall, these findings provide neural evidence for the foveal cortex processing the features of the saccade target object, potentially supporting the maintenance of perceptual stability across saccadic eye movements.

      Strengths:

      This study is well-motivated by previous theoretical findings (Kroell & Rolfs, 2022), aiming to provide neural evidence for a potential neural mechanism of trans-saccadic perceptual stability. The question is important, and the gaze-contingent fMRI paradigm is a solid methodological choice for the research goal. The use of stimuli allowing orthogonal decoding of stimulus category vs stimulus shape is a nice strength, and the resulting distinctions in decoded information by brain region are clean. The results will be of interest to readers in the field, and they fill in some untested questions regarding pre-saccadic remapping and foveal feedback.

      Weaknesses:

      The authors have done a nice job addressing the previous weaknesses. The remaining weaknesses / limitations are appropriately discussed in the manuscript. E.g., the use of only 4 unique stimuli in the experiment. The findings are intriguing and relevant to saccadic remapping and foveal feedback, but somewhat limited in terms of the ability to draw theoretical distinctions between these related phenomena.

      Specifics:

      The revised manuscript is much improved in terms of framing and discussion of the prior literature, and the theoretical claims are now stated with appropriate nuance.

      I have two remaining minor suggestions/comments, which the authors may optionally respond to:

      (1) In the parametric modulation analysis, the authors' additional analyses nicely addresses my concern and strengthens the claim. However, the description in the revised manuscript (Pg 7 Ln 190-191) is minimal and may be difficult to grasp what the control analysis is about and how it rules out alternative explanations to the IPS findings. The authors may wish to elaborate on the description in the text.

      (2) Out of curiosity (not badgering): The authors argued that the findings of Harrison et al. (2013) and Szinte et al. (2015) can be explained by feature integration between the currently attended location and its future, post-saccadic location. Couldn't the same argument apply in the current paradigm, where attention at the saccade target gets remapped to the pre-saccadic fovea (see also Rolfs et al., 2011 Fig 5), thus leading to the observed feature remapping?

    2. Reviewer #3 (Public review):

      Summary:

      In this paper the authors used fMRI to determine whether peripherally-viewed objects could be decoded from foveal cortex, even when the objects themselves were never viewed foveally. Specifically they investigated whether pre-saccadic target attributes (shape, semantic category) could be decoded from foveal cortex. They found that object shape, but not semantic category could be decoded, providing evidence that foveal feedback relies on low-mid-level information. The authors claim that this provides evidence for a mechanism underlying visual stability and object recognition across saccades.

      Strengths:

      I think this is another nice demonstration that peripheral information can be decoded from / is processed in foveal cortex - the methods seem appropriate, and the experiments and analyses carefully conducted, and the main results seem convincing. The paper itself was very clear and well-written.

      Weaknesses:

      Given that foveal feedback has been found in previous studies that don't incorporate saccades, it is still unclear how this mechanism might specifically contribute to stability across saccades, rather than just being a general mechanism that aids the processing/discrimination of peripherally-viewed stimuli. The authors address this point, but I guess whether foveal feedback during fixation and saccade prep are really the same, is ultimately a question that needs more experimental work to disentangle.

    1. Reviewer #2 (Public review):

      Summary:

      The author proposes a novel method for mapping single-cell data to specific locations with higher resolution than several existing tools.

      Strengths:

      The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus.

      Comments on revised version:

      I have no additional comments regarding the current version of the manuscript.

    2. Reviewer #3 (Public review):

      Summary:

      The authors have provided a thorough and constructive response to the comments. They effectively addressed concerns regarding the dependence on marker gene selection by detailing the incorporation of multiple feature selection strategies, such as highly variable genes and spatially informative markers (e.g., via Moran's I), which enhance glmSMA's robustness even when using gene-limited reference atlases.

      Furthermore, the authors thoughtfully acknowledged the assumption underlying glmSMA-that transcriptionally similar cells are spatially proximal-and discussed both its limitations and empirical robustness in heterogeneous tissues such as human PDAC. Their use of real-world, heterogeneous datasets to validate this assumption demonstrates the method's practical utility and adaptability.

      Overall, the response appropriately contextualizes the limitations while reinforcing the generalizability and performance of glmSMA. The authors' clarifications and experimental justifications strengthen the manuscript and address the reviewer's concerns in a scientifically sound and transparent manner.

      Comments on revised version:

      Figure 1 does not yet clearly convey what the glmSMA algorithm actually does. I recommend revising or redesigning the figure so that the workflow, main inputs, and outputs of the algorithm are more intuitively presented. A clearer visual explanation would help readers quickly grasp the core concept and contribution of glmSMA.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines whether changes in pupil size index prediction-error-related updating during associative learning, formalised as information gain via Kullback-Leibler (KL) divergence. Across two independent tasks, pupil responses scaled with KL divergence shortly after feedback, with the timing and direction of the response varying by task. Overall, the work supports the view that pupil size reflects information-theoretic processes in a context-dependent manner.

      Strengths:

      This study provides a novel and convincing contribution by linking pupil dilation to information-theoretic measures, such as KL divergence, supporting Zénon's hypothesis that pupil responses reflect information gain during learning. The robust methodology, including two independent datasets with distinct task structures, enhances the reliability and generalisability of the findings. By carefully analysing early and late time windows, the authors capture the timing and direction of prediction-error-related responses, offering new insights into the temporal dynamics of model updating. The use of an ideal-learner framework to quantify prediction errors, surprise, and uncertainty provides a principled account of the computational processes underlying pupil responses. The work also highlights the critical role of task context in shaping the direction and magnitude of these effects, revealing the adaptability of predictive processing mechanisms. Importantly, the conclusions are supported by rigorous control analyses and preprocessing sanity checks, as well as convergent results from frequentist and Bayesian linear mixed-effects modelling approaches.

      Weaknesses:

      Some aspects of directionality remain context-dependent, and on current evidence cannot be attributed specifically to whether average uncertainty increases or decreases across trials. Differences between the two tasks (e.g., sensory modality and learning regime) limit direct comparisons of effect direction and make mechanistic attribution cautious. In addition, subjective factors such as confidence were not measured and could influence both prediction-error signals and pupil responses. Importantly, the authors explicitly acknowledge these limitations, and the manuscript clearly frames them as areas for future work rather than settled conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigate whether pupil dilation reflects information gain during associative learning, formalised as Kullback-Leibler divergence within an ideal observer framework. They examine pupil responses in a late time window after feedback and compare these to information-theoretic estimates (information gain, surprise, and entropy) derived from two different tasks with contrasting uncertainty dynamics.

      Strength:

      The exploration of task evoked pupil dynamics beyond the immediate response/feedback period and then associating them with model estimates was interesting and inspiring. This offered a new perspective on the relationship between pupil dilation and information processing.

      Weakness:

      However, the interpretability of the findings remains constrained by the fundamental differences between the two tasks (stimulus modality, feedback type, and learning structure), which confound the claimed context-dependent effects. The later time-window pupil effects, although intriguing, are small in magnitude and may reflect residual noise or task-specific arousal fluctuations rather than distinct information-processing signals. Thus, while the study offers valuable methodological insight and contributes to ongoing debates about the role of the pupil in cognitive inference, its conclusions about the functional significance of late pupil responses should be treated with caution.

    3. Reviewer #3 (Public review):

      Summary:

      Thank you for inviting me to review this manuscript entitled "Pupil dilation offers a time-window on prediction error" by Colizoli and colleagues. The study examines prediction errors, information gain (Kullback-Leibler [KL] divergence), and uncertainty (entropy) from an information-theory perspective using two experimental tasks and pupillometry. The authors aim to test a theoretical proposal by Zénon (2019) that the pupil response reflects information gain (KL divergence). The conclusion of this work is that (post-feedback) pupil dilation in response to information gain is context dependent.

      Strengths:

      Use of an established Bayesian model to compute KL divergence and entropy.

      Pupillometry data preprocessing and multiple robustness checks.

      Weaknesses:

      Operationalization of prediction errors based on frequency, accuracy, and their interaction:

      The authors rely on a more model-agnostic definition of the prediction error in terms of stimulus frequency ("unsigned prediction error"), accuracy, and their interaction ("signed prediction error"). While I see the point, I would argue that this approach provides a simple approximation of the prediction error, but that a model-based approach would be more appropriate.

      Model validation:

      My impression is that the ideal learner model should work well in this case. However, the authors don't directly compare model behavior to participant behavior ("posterior predictive checks") to validate the model. Therefore, it is currently unclear if the model-derived terms like KL divergence and entropy provide reasonable estimates for the participant data.

      Lack of a clear conclusion:

      The authors conclude that this study shows for the first time that (post-feedback) pupil dilation in response to information gain is context dependent. However, the study does not offer a unifying explanation for such context dependence. The discussion is quite detailed with respect to task-specific effects, but fails to provide an overarching perspective on the context-dependent nature of pupil signatures of information gain. This seems to be partly due to the strong differences between the experimental tasks.

    1. Reviewer #2 (Public review):

      Summary

      This study investigates the role of GMCL1 in regulating the mitotic surveillance pathway (MSP), a protective mechanism that activates p53 following prolonged mitosis. The authors identify a physical interaction between 53BP1 and GMCL1, but not with GMCL2. They propose that the ubiquitin ligase complex CRL3-GMCL1 targets 53BP1 for degradation during mitosis, thereby preventing the formation of the "mitotic stopwatch" complex (53BP1-USP28-p53) and subsequent p53 activation. The authors show that high GMCL1 expression correlates with resistance to paclitaxel in cancer cell lines that express wild-type p53. Importantly, loss of GMCL1 restores paclitaxel sensitivity in these cells, but not in p53-deficient lines. They propose that GMCL1 overexpression enables cancer cells to bypass MSP-mediated p53 activation, promoting survival despite mitotic stress. Targeting GMCL1 may thus represent a therapeutic strategy to re-sensitize resistant tumors to taxane-based chemotherapy.

      Strengths

      This manuscript presents potentially interesting observations. The major strength of this article is the identification of GMCL1 as 53BP1 interaction partner. The authors identified relevant domains and show that GMCL1 controls 53BP1 stability. The authors further show a potentially interesting link between GMCL1 status and sensitivity to Taxol.

      Weaknesses

      A major limitation of the original manuscript was that the functional relevance of GMCL1 in regulating 53BP1 within an appropriate model system was not clearly demonstrated. In the revised version, the authors attempt to address this point. However, the new experiment is insufficiently controlled, making it difficult to interpret the results. State-of-the-art approaches would typically rely on single-cell tracking to monitor cell fate following release from a moderately prolonged mitosis.

      In contrast, the authors use a population-based assay, but the reported rescue from arrest is minimal. If the assay were functioning robustly, one would expect that nearly all cells depleted of USP28 or 53BP1 should have entered S-phase at a defined time after release. Thus, the very small rescue effect of siTP53BP1 suggests that the current assay is not suitable. It is also likely that release from a 16-hour mitotic arrest induces defects independent of the 53BP1-dependent p53 response.

      Furthermore, the cell-cycle duration of RPE1 cells is less than 20 hours. It is therefore unclear why cells are released for 30 hours before analysis. At this time point, many cells are likely to have progressed into the next cell cycle, making it impossible to draw conclusions regarding the immediate consequences of prolonged mitosis. As a result, the experiment cannot be evaluated due to inadequate controls.

      To strengthen this part of the study, I recommend that the authors first establish an assay that reliably rescues the mitotic-arrest-induced G1 block upon depletion of p53, 53BP1, or USP28. Once this baseline is validated, GMCL1 knockout can then be introduced to quantify its contribution to the response.

      A broader conceptual issue is that the evidence presented does not form a continuous line of reasoning. For example, it is not demonstrated that GMCL1 interacts with or regulates 53BP1 in RPE1 cells-the system in which the limited functional experiments are conducted.

      There are also a number of inconsistencies and issues with data presentation that need to be addressed:

      (1) Figure 2C: p21 levels appear identical between GMCL1 KO and WT rescue. If GMCL1 regulates p53 through 53BP1, p21 should be upregulated in the KO.

      (2) Figure 2A vs. 2C: GMCL1 KO affects chromatin-bound 53BP1 in Figure 2A, yet in Figure 2C it affects 53BP1 levels specifically in G1-phase cells. This discrepancy requires clarification.

      (3) Figure 2C quantification: The three biological repeats show an unusual pattern, with one repeat's data points lying exactly between the other two. It is unclear what the line represents; please clarify.

      (4) Figure nomenclature: Some abbreviations (e.g., FLAG-KI in Fig. 1F, WKE in Fig. 1C-D, ΔMFF in Fig. 1E) are not defined in the figure legends. All abbreviations must be explained.

      (5) Figure 2D: Please indicate how many times the experiment was reproduced. Quantification with statistical testing would strengthen the result. Pull-downs of 53BP1 with calculation of the ubiquitinated/total ratio could also support the conclusion.

      (6) Figures 3A and 3C: The G1 bars share the same color as the error bars, making the graphs difficult to interpret. Please adjust the color scheme.

    2. Reviewer #3 (Public review):

      Summary:

      In this study, Kito et al follow up on previous work that identified Drosophila GCL as a mitotic substrate recognition subunit of a CUL3-RING ubiquitin ligase (CRL3) complex. Here they identified mutants of the human ortholog of GCL, GMCL1, that disrupt the interaction with CUL3 (GMCL1E142K) and that lack the substrate interaction domain (GMCL1 BBO). Immunoprecipitation followed by mass spectrometry identified 9 proteins that interacted with wild type FLAG-GMCL1 but not GMCL1 EK or GMCL1 BBO. These proteins included 53BP1, which plays a well characterized role in double strand break repair but also functions in a USP28-p53-53BP1 "mitotic stopwatch" complex that arrests the cell cycle after a substantially prolonged mitosis. Consistent with the IP-MS results, FLAG-GMCL1 immunoprecipitated 53BP1. Depletion of GMCL1 during mitotic arrest increased protein levels of 53BP1, and this could be rescued by wild type GMCL1 but not the E142K mutant or a R433A mutant that failed to immunoprecipitate 53BP1. Using a publicly available dataset, the authors identified a relatively small subset of cell lines with high levels of GMCL1 mRNA that were resistant to the taxanes paclitaxel, cabazitaxel, and/or docetaxel. This type of analysis is confounded by the fact that paclitaxel and other microtubule poisons accumulate to substantially different levels in various cell lines (PMID: 8105478, PMID: 10198049) so careful follow up experiments are required to validate results. The correlation between increased GMCL1 mRNA and taxane resistance was not observed in lung cancer cell lines. The authors propose this was because nearly half of lung cancers harbor p53 mutations, and lung cancer cell lines with wild type but not mutant p53 showed the correlation between increased GMCL1 mRNA and taxane resistance. However, the other cancer cell types in which they report increased GMCL1 expression correlates with taxane sensitivity also have high rates of p53 mutation. Furthermore, p53 status does not predict taxane response in patients (PMID: 10951339, PMID: 8826941, PMID: 10955790). The authors then depleted GMCL1 and reported that it increased apoptosis in two cell lines with wild type p53 (MCF7 and U2OS) due to activation of the mitotic stopwatch. This is surprising because the mitotic stopwatch paper cited (PMID: 38547292) reported that U2OS cells have an inactive stopwatch. Though it can be partially restored by treatment with an inhibitor of WIP1, the stopwatch was reported to be substantially impaired in U2OS cells, in contrast to what is reported here. Additionally, activation of the stopwatch results in cell cycle arrest rather than apoptosis in most cell types, including MCF7. Beyond this, it has recently been shown that the level of taxanes and other microtubule poisons achieved in patient tumors is too low to induce mitotic arrest (PMID: 24670687, PMID: 34516829, PMID: 37883329). Physiologically relevant concentrations are achieved with approximately 5-10 nM paclitaxel, rather than the 100 nM used here. The findings here demonstrating that GMCL1 mediates chromatin localization of 53BP1 during mitotic arrest are solid and of interest to cell biologists, but it is unlikely that these findings are relevant to paclitaxel response in patients.

      Strengths:

      This study identified 53BP1 as a target of CRL3GMCL1-mediated degradation during mitotic arrest. AlphaFold3 predictions of the binding interface followed by mutational analysis identified mutants of each protein (GMCL1 R433A and 53BP1 IEDI1422-1425AAAA) that disrupted their interaction. Knock-in of a FLAG tag into the C-terminus of GMCL1 in HCT116 cells followed by FLAG immunoprecipitation confirmed that endogenous GMCL1 interacts with endogenous CUL3 and 53BP1 during mitotic arrest.

      Weaknesses:

      The clinical relevance of the study is overinterpreted. The authors have not taken relevant data about the clinical mechanism of taxanes into account. Supraphysiologic doses of microtubule poisons cause mitotic arrest and can activate the mitotic stopwatch. However, in physiologic concentrations of clinically useful microtubule poisons, cells proceed though mitosis and divide their chromosomes on mitotic spindles that are at least transiently multipolar. Though these low concentrations may result in a brief mitotic delay, it is substantially shorter than the arrest caused by high concentrations of microtubule poisons, and the one mimicked here by 16 hours of 0.4 mg/mL nocodazole or 48 hours of 100 nM paclitaxel. Resistance to mitotic arrest occurs through different mechanisms than resistance to multipolar spindles, raising concerns about the relevance of prolonged mitosis to paclitaxel response in cancer. Nocodazole is a microtubule poison that is not used clinically and does not induce multipolar spindles, so a similar apoptotic response to both drugs increases concern about a lack of physiological relevance. Moreover, clinical response to paclitaxel does not correlate with p53 status (PMID: 10951339, PMID: 8826941, PMID: 10955790). No evidence is presented that GMCL1 affects cellular response to clinically relevant doses of paclitaxel.

      Comments on revisions:

      (1) The claim that GMCL1 modulates paclitaxel sensitivity in cancer should be toned down. Inaccurate statements based on an outdated understanding of the anti-cancer mechanism of paclitaxel should be removed (eg lines 42-44: "In cancers that are resistant to paclitaxel, a microtubule-targeting agent, cells bypass mitotic surveillance activation, allowing unchecked proliferation...", lines 73-75: "Proper mitotic arrest is critical for the efficacy of microtubule-targeting therapies...", lines 78-79: "This resistance is frequently associated with loss of MSP activity, for example due to defective p53 signaling". As cited in the public review, p53 status does not correlate with paclitaxel response in cancer.)

      (2) Perform timelapse experiments +/- GMCL1 siRNA in the absence of drug and in the presence of low, physiologically relevant concentrations of paclitaxel (5-10 nM), as well as supraphysiologic concentrations (100 nM) and correlate mitotic duration with cell cycle arrest. Test if co-depletion of 53BP1 with GMCL1 rescues cell cycle arrest after a substantially prolonged mitosis. Perform these experiments in a cell line with an intact mitotic stopwatch.

    1. Reviewer #1 (Public review):

      Summary:

      This paper introduces a dual-pathway model for reconstructing naturalistic speech from intracranial ECoG data. It integrates an acoustic pathway (LSTM + HiFi-GAN for spectral detail) and a linguistic pathway (Transformer + Parler-TTS for linguistic content). Output from the two components is later merged via CosyVoice2.0 voice cloning. Using only 20 minutes of ECoG data per participant, the model achieves high acoustic fidelity and linguistic intelligibility.

      Strengths:

      (1) The proposed dual-pathway framework effectively integrates the strengths of neural-to-acoustic and neural-to-text decoding and aligns well with established neurobiological models of dual-stream processing in speech and language.

      (2) The integrated approach achieves robust speech reconstruction using only 20 minutes of ECoG data per subject, demonstrating the efficiency of the proposed method.

      (3) The use of multiple evaluation metrics (MOS, mel-spectrogram R², WER, PER) spanning acoustic, linguistic (phoneme and word), and perceptual dimensions, together with comparisons against noise-degraded baselines, adds strong quantitative rigor to the study.

      Weaknesses:

      (1) It is unclear how much the acoustic pathway contributes to the final reconstruction results, based on Figures 3B-E and 4E. Including results from Baseline 2 + CosyVoice and Baseline 3 + CosyVoice could help clarify this contribution.

      (2) As noted in the limitations, the reconstruction results heavily rely on pre-trained generative models. However, no comparison is provided with state-of-the-art multimodal LLMs such as Qwen3-Omni, which can process auditory and textual information simultaneously. The rationale for using separate models (Wav2Vec for speech and TTS for text) instead of a single unified generative framework should be clearly justified. In addition, the adaptor employs an LSTM architecture for speech but a Transformer for text, which may introduce confounds in the performance comparison. Is there any theoretical or empirical motivation for adopting recurrent networks for auditory processing and Transformer-based models for textual processing?

      (3) The model is trained on approximately 20 minutes of data per participant, which raises concerns about potential overfitting. It would be helpful if the authors could analyze whether test sentences with higher or lower reconstruction performance include words that were also present in the training set.

      (4) The phoneme confusion matrix in Figure 4A does not appear to align with human phoneme confusion patterns. For instance, /s/ and /z/ differ only in voicing, yet the model does not seem to confuse these phonemes. Does this imply that the model and the human brain operate differently at the mechanistic level?

      (5) In general, is the motivation for adopting the dual-pathway model to better align with the organization of the human brain, or to achieve improved engineering performance? If the goal is primarily engineering-oriented, the authors should compare their approach with a pretrained multimodal LLM rather than relying on the dual-pathway architecture. Conversely, if the design aims to mirror human brain function, additional analysis, such as detailed comparisons of phoneme confusion matrices, should be included to demonstrate that the model exhibits brain-like performance patterns.

    2. Reviewer #2 (Public review):

      Summary:

      The study by Li et al. proposes a dual-path framework that concurrently decodes acoustic and linguistic representations from ECoG recordings. By integrating advanced pre-trained AI models, the approach preserves both acoustic richness and linguistic intelligibility, and achieves a WER of 18.9% with a short (~20-minute) recording.

      Overall, the study offers an advanced and promising framework for speech decoding. The method appears sound, and the results are clear and convincing. My main concerns are the need for additional control analyses and for more comparisons with existing models.

      Strengths:

      (1) This speech-decoding framework employs several advanced pre-trained DNN models, reaching superior performance (WER of 18.9%) with relatively short (~20-minute) neural recording.

      (2) The dual-pathway design is elegant, and the study clearly demonstrates its necessity: The acoustic pathway enhances spectral fidelity while the linguistic pathway improves linguistic intelligibility.

      Weaknesses:

      The DNNs used were pre-trained on large corpora, including TIMIT, which is also the source of the experimental stimuli. More generally, as DNNs are powerful at generating speech, additional evidence is needed to show that decoding performance is driven by neural signals rather than by the DNNs' generative capacity.

    1. Reviewer #1 (Public review):

      Summary:

      Here, the authors address the organization of reach-related activity in layer 2/3 across a broad swath of anterodorsal neocortex that included large subregions of M1, M2, and S1. In mice performing a novel variant water-reaching task, the authors measured activity using two-photon fluorescence imaging of a GECI expressed in excitatory projection neurons. The authors found a substantial diversity of response patterns using a number of metrics they developed for characterizing the PETHs of neurons across reach conditions (target locations). By mapping single-neuron properties across the cortex, the authors found substantial spatial variation, only some of which aligned with traditional boundaries between cortical regions. Using Gaussian mixture models, the authors found evidence of distinct response types in each region, with several types prominent in multiple cortical regions. Aggregating across regions, four primary subpopulations were apparent, each distinct in its average response properties. Strikingly, each subpopulation was observed in multiple regions, but subpopulation members from different regions exhibited largely similar response properties.

      Strengths:

      The work addresses a fundamental question in the field that has not previously been addressed at cellular resolution across such a broad cortical extent. I see this as truly foundational work that will support future investigation of how the rodent brain drives and controls reaching.

      The quantification is thoughtful and rigorous. It is great that the authors provide an explanation for and intuition behind their response metrics, rather than burying everything in the Methods.

      The Discussion and general contextualization of the results are thorough, thoughtful, and strong. It is great that the authors avoid the common over-interpretation of classical observations regarding cortical organization that are endemic in the field.

      All things considered, this is the best paper regarding spatial structure in the motor system I have ever read. The breadth of cellular resolution activity measurement, the rigor of the quantification, and the clear and open-minded interrogation of the data collectively have produced a very special piece of work.

      Weaknesses:

      The behavioral task is very impressive and an important contribution to the field in its own right. However, given that it appears substantially different from the one used in the previous paper, the characterization of the behavior provided in the Results is too brief. More illustration of the behavior would be helpful. For example, it is rather deep into the paper when the authors reveal that the mice can whisk to help localize the target location. That should be expressed at the outset when the behavior is first described. Other suggestions for elaborating the behavior description are included below.

      Statistical support for key claims is lacking. For example, "The five areas of interest varied in the fraction of neurons that were modulated: M2 had 14%, M1 had 23%, S1-fl had 30%, S1-hl had 25%, and S1-tr had 27%" - I cannot locate the statistical tests showing that these values are actually different. Another example is Figure 7, where a key observation is that distributions of PETH features are distinct across regions. It is clear that at least some distributions are not overlapping, but a clearer statistical basis for this key claim should be provided.

      I understand that the authors are planning a follow-up study that addresses the relation between activity patterns and kinematics. One question about interpreting the results here though, is how much the activity variation across target locations may relate to the kinematic differences across these different conditions, as opposed to true higher-order movement features like reach direction.

    2. Reviewer #2 (Public review):

      Summary:

      The functional parcellation of cortical areas is a critical question in neuroscience. This is particularly true in frontal areas in mice. While sensory areas are relatively well characterized by their tuning to sensory stimuli, the situation is much less clear for motor areas. This has become even more ambiguous since recent studies using large-scale neuronal recordings consistently report mixed sensory and motor-related activity throughout the brain, and motor mapping studies have shown that movements evoked by cortical stimulation are by no means limited to motor areas alone. Here, the authors use a correlation approach combining large-scale functional imaging at cellular resolution with movement-tracking in mice executing a reaching task. Across multiple recording sessions in the same animals, the authors have imaged a large portion of the sensorimotor cortex at cellular resolution in mice performing a reaching task, recording the activity of nearly 40,000 neurons. By aligning the calcium signal of each neuron to three task events-the Go cue triggering the reach, the onset of paw lift, and the contact between the paw and the target-for different target positions, the authors identified different response patterns distributed differently across cortical areas. They defined a set of features that describe the neurons' response pattern, representing the temporal dynamics and tuning properties for the different target positions. These features were used to construct cortical maps, and the authors show that, interestingly, gradient maps obtained from the first derivative of the feature maps reveal sharp discontinuities at the boundaries between anatomically defined cortical areas. Using dimensionality reduction of the neuronal response features, the authors found that, despite clear differences in their average response properties, individual neurons from the same cortical areas do not form distinct clusters in the reduced-dimensional space. In fact, most areas contain heterogeneous neuronal populations, and most neuronal populations are present in multiple areas, albeit in different proportions. Interestingly, the authors identified four neuronal subpopulations based on the distance between the components of the Gaussian mixture model used to model the distribution of neurons within each area. One of these subpopulations is almost exclusively represented in the anterior M2 cortex, while another is broadly distributed across the different areas.

      Strengths:

      This article is based on an impressive dataset of nearly 40,000 neurons covering a large portion of the sensorimotor cortex and on innovative analytical approaches. This study is likely the first to clearly demonstrate boundaries between cortical areas defined based on the responses of individual neurons. This innovative approach to functional mapping of cortical areas potentially opens up new perspectives for higher-resolution mapping of frontal cortical areas, using a broader repertoire of sensory and motor evoked responses.

      Weaknesses:

      The second part of the article, which presents multimodal responses in the cortical areas, seems to be a perhaps overly complicated way of showing what has already been demonstrated in numerous recent publications, but these new analyses expand upon these previous observations by revealing an interesting functional organization of the sensorimotor cortex, highlighting interesting similarities and differences between certain areas.

    1. Reviewer #1 (Public review):

      WIPI1 is a PROPPIN family protein that has been implicated in Retromer-mediated membrane fission events. Although the cargos that it has been tested to be important for are diverse, one of the cargos that is unaffected is Beta1-Integrin. This leads the authors to assess another PROPPIN family protein - WIPI2, which is a homolog of WIPI1. KD using siRNA is effective and had no consequences on LAMP1, EGFR trafficking or GLUT1 trafficking. Integrin-B1, however, had a large and significant defect in its recycling from the endosome, with a clear endosomal colocalisation. Complementation experiments with WT WIPI2 recovered the phenotype, but various mutant WIPI2 complements resulted in elongated tubules, and there was also a dominant negative effect of the mutant. Integrin is a classic retreiver cargo, so the authors rationalise that WIPI2 may be playing a role with retreiver that WIPI1 plays with retromer. To assess this, they perform a set of immunoprecipitations. SNX17, the retreiver-associated sorting nexin, co-IPs with WIPI2 in a VPS26C-dependent manner. VPS26C but not VPS26 co-IPs with WIPI2, and the reciprocal with WIPI1. These interactions were not present for the FSSS mutation of WIPI2. WIPI2 localises to Rab11 endosomes mainly, as does retriever. Mutations of WIPI2 not only affected WIPI2 localisation, but also VPS35L mutations, indicating that there is a functional relationship between the two.

      On the whole, I find the manuscript compelling. The manuscript is very clearly written, the results are convincing and well performed. The flow of experiments is logical, and although not comprehensive in the subsequent mechanistic understanding, the fundamental findings are important and convincing. My comments below are, on the whole, minor and are intended to support the communication of the findings to the field.

      (1) The IP interaction data were convincing; however, for me and some others, an interaction is only convincing when performed in vitro, and understood at a structural level. I do not suggest the authors do that in this case; however, I think, at a minimum, some sensible moderation of claims would be useful here.

      (2) I found the final localisation data and its interpretation confusing. My interpretation of that data would not be that the retreiver is relocalised, but rather that there is less of both recruited to the membrane and the remaining localisation distribution is shifted. In addition, I am not quite sure of the model here - is the idea that WIPI2 recruits retreiver, if that is the case, I find it hard to resolve with its role as a mediator of fission. Clarity would be appreciated here.

      (3) I am concerned that the repeats being compared for statistical analysis are not biological repeats but technical repeats (cells in the same experiment). I should think the idea of the statistical comparison is to show experimental reproducibility and variability across biological repeats. Therefore, I would expect an appropriate number of biological repeats (3 or more minimum), to be the data compared in the statistical analysis and graphs. I think it is appropriate to average the technical repeats from each biological repeat. I find these to be useful resources https://doi.org/10.1083/jcb.202401074, https://doi.org/10.1083/jcb.200611141

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript from De Leo and Mayer presents evidence that the PROPPIN protein, WIPI2, associates with the Retriever complex, and is required for the proper transport of the SNX17-Retriever cargo, beta1-integrin. This finding fits with prior papers from the Mayer lab, which showed that a related PROPPIN, WIPI1, is required for the transport of some SNX27-Retromer cargo, including GLUT1. The retromer and retriever complexes are architecturally similar. Importantly, they act at the same endosomes, and each transports cargo from endosomes to the plasma membrane. Thus, the possibility that each also requires a structurally related PROPPIN is of interest. However, the manuscript is incomplete, and the main claims are only partially supported.

      Strengths:

      The topic that PROPPIN proteins are important for the function of the Retromer and Retriever complexes expands our view of the trafficking complex.

      Weaknesses:

      Many important controls are missing. Several points that are made in the manuscript are only supported through a single approach.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript of Mayer and colleagues analyzes the function of WIPI proteins in mammalian cells. The authors previously identified CROP as a complex consisting of WIPI1 and the retromer complex, primarily in yeast cells. In mammalian cells, both WIPI1 and WIPI2 exist, whereas retromer has a homologous complex termed retriever. They now find that WIPI2 can form a complex with retriever subunits. They named this complex CROP2. Their data further indicate that CROP2 and CROP1 have distinct substrate specificities as knockdown of CROP2 subunits affects beta1 integrin sorting, whereas knockdown of CROP1 affects EGFR and GLUT1. They further identify a similar sequence (FSSS) in both WIPI1 and WIPI2, which is required for their specific binding to retromer and retriever.

      Strengths:

      CROP1 and CROP2 seem to use similar features for their formation, and have different substrates, which is convincingly shown.

      Weaknesses:

      The analysis lacks information that this is a complex as claimed. It can be deduced from the interaction analysis, but was not shown.

    1. Reviewer #1 (Public review):

      A summary of what the authors were trying to achieve:

      (1) Identify probiotic candidates based on the phylogenetic proximity and their presence in the lower respiratory tract based on phylogenetic analysis and on meta-analysis of 16S rRNA sequencing of mouse lung samples.

      (2) Predefine probiotic candidates with overlapping and competing metabolic profiles based on a simple and easy-to-applicable score, taking carbon source use into consideration.

      (3) Confirm the functionality of these candidate probiotics in vitro and define their mechanism of action (niche exclusion by either metabolic competition or active antibacterial strategies).

      (4) Confirm the probiotic action in vivo.

      Strengths:

      The authors attempt to go the whole 9 yards from rational choice of phylogenetic close lower respiratory tract probiotics, over in silico modelling of niche index based on use of similar carbon sources with in vitro confirmation, to in vivo competition experiments in mice.

      Weaknesses:

      (1) The use of a carbon source is defined as growth to OD600 two SD above the blank level. While allowing a clear cutoff, this procedure does not take into account larger differences in the preferences of carbon sources between the pathogen and the probiotic candidate. If the pathogen is much better at taking up and processing a carbon source, the competition by the probiotic might be biologically irrelevant.

      (2) The authors do not take into account the growth of candidate probiotics in the presence of Bt. In monoculture, three of the four most potent candidate probiotics grow to comparable levels as Bt in LSM.

      (3) Niche exclusion in vivo is not shown. Mortality of hosts after infection with Bt is not a measure for competition of CP with the pathogen. Only Bt titers would prove a competitive effect. For CP17, less than half of the mice were actually colonized, but still, there is 100% protection. Activation of the host immune system would explain this and has to be excluded as an alternative reason for improved host survival.

      Appraisal:

      (1) Based on phylogenetic comparison and published resources on lower respiratory tract colonizing bacteria, the authors find a reasonably good number of candidate probiotics that grow in LSM and successfully compete with the pathogenic target bacterium Bt in vitro.

      (2) In vivo, only host survival was tested, and a direct competition of CP with Bt by testing for Bt titers was not shown.

      Impact:

      Niche exclusion based on competition for environmentally provided metabolites is not a new concept and was experimentally tested, e.g. in the intestine. The authors show here that this concept could be translated into the resource-poor environment of the respiratory tract. It remains to be tested if the LSM growth-based competition data in vitro can be translated into niche exclusion in vivo.

    2. Reviewer #2 (Public review):

      Summary:

      This study aims to establish a rational framework for designing bacterial probiotics against respiratory infections. The central hypothesis is that in vitro antagonism, particularly through metabolic niche overlap with a pathogen, predicts in vivo efficacy.

      Strengths:

      (1) Systematic pipeline: The study integrates bacterial isolation, in vitro characterization, model development, and in vivo validation into a cohesive workflow.

      (2) Quantitative model: The introduction of the Niche Index (NI) and Niche Index Fraction (NIF) provides a novel, quantitative tool for predicting probiotic efficacy based on ecological principles.

      (3) Mechanistic insight: The work dissects different modes of action, clearly demonstrating that inhibition can be driven by specialized metabolite production (CP8) or carbon resource competition (e.g., CP7), with lactate utilization identified as a key factor.

      Weaknesses:

      (1) Limited model generalizability: The predictive power of the NI model is not universal. It fails to account for the in vivo inefficacy of CP8 (a metabolite-dependent inhibitor) and cannot explain the short-term protection conferred by some non-inhibitory CPs in vivo, suggesting unmodeled mechanisms like immune priming are at play.

      (2) Preliminary nature of key findings: The emphasis on lactate consumption as a critical predictor, while interesting, is not sufficiently explored to establish its general importance beyond the specific strains and conditions tested.

      Appraisal:

      The authors successfully achieve their aim of establishing a rational probiotic-design pipeline. The data robustly support the conclusion that metabolic niche overlap predicts efficacy for many strains, while also clearly delineating the model's limitations, as acknowledged by the authors.

      Impact:

      This work provides a valuable methodological framework for hypothesis-driven probiotic discovery. The quantitative Niche Index offers immediate utility to the field and, with further refinement, has the potential to become a fundamental tool for developing respiratory therapeutics.

  2. Dec 2025
    1. Reviewer #1 (Public review):

      Summary:

      This research group has consistently performed cutting-edge research aiming to understand the role of hormones in the control of social behaviors, specifically by utilizing the genetically-tractable teleost fish, medaka, and the current work is no exception. The overall claim they make, that estrogens modulate social behaviors in males is supported, with important caveats. For one, there is no evidence these estrogens are generated by "neurons" as would be assumed by their main claim that it is NEUROestrogens that drive this effect. While indeed the aromatase they have investigated is expressed solely in the brain, in most teleosts, brain aromatase is only present in glial cells (astrocytes, radial glia). The authors should change this description so as not to mislead the reader. Below I detail more specific strengths and weaknesses of this manuscript.

      Strengths:

      Excellent use of the medaka model to disentangle the control of social behavior by sex steroid hormones

      The findings are strong for the most part because deficits in the mutants are restored by the molecule (estrogens) that was no longer present due to the mutation

      Presentation of the approach and findings are clear, allowing the reader to make their own inferences and compare them with the authors'

      Includes multiple follow-up experiments, which leads to tests of internal replication and an impactful mechanistic proposal

      Findings are provocative not just for teleost researchers, but for other species since, as the authors point out, the data suggest mechanisms of estrogenic control of social behaviors may be evolutionary ancient

      Weaknesses:

      The experimental design for studying aggression in males has flaws, but it appears a typical resident-intruder type assay is not appropriate for medaka. seems other species may be better for studying aggression in teleosts.

    2. Reviewer #3 (Public review):

      Summary:

      Taking advantage of the existence in fish of two genes coding for estrogen synthase, the enzyme aromatase, one mostly expressed in the brain (Cyp19a1b) and the other mostly found in the gonads (Cyp19a1a), this study investigates the role of brain-derived estrogens in the control of sexual and aggressive behavior in male medaka. The constitutive deletion of Cyp19a1b, confirmed by the ablation of its transcript, markedly reduced brain estrogen content. This effect is accompanied by reduced sexual and aggressive behavior and reduced expression of the transcripts coding for androgen receptors (AR), ara and arb, in brain regions involved in social behavior regulation. Both AR expression and aspects of social behaviors were restored by adult treatment with estrogens, providing some support for a role of aromatization. Expression analysis of AR isoforms and behavior of mutants of estrogen receptors (ER) indicates that these effects are likely mediated by the activation of the esr1 and esr2a isoforms. Together, these results provide valuable insights into the role of brain-derived estrogens in social behavior in fish.

      Strengths:

      This study evaluates the role of brain "specific" Cyp19a1 in the social behavior in male teleost fish, which as a taxon are more abundant and yet proportionally less studied that the most common birds and rodents. Therefore, evaluating the generalizability of results from higher vertebrates is important. The study suggests that, as opposed to mammals, the facilitatory role of brain-derived estrogens on mating and aggression is limited to adulthood.

      Results obtained from multiple mutant lines converge to show that estrogens most likely synthesized in the brain drives aspects of male sexual behavior.

      The comparative discussion of the age-dependent abundance of brain aromatase in fish vs mammals and its role in organization vs activation is important beyond the study of the targeted species.

      Weaknesses:

      Most experiments are weakly powered (low sample size).

      The variability of the mRNA content for a same target gene between experiments (genotype comparison vs E2 treatment comparison) raises questions about the reproducibility of the data (apparent disappearance of genotype effect).

      Conclusions :

      Overall, the present study provides convincing evidence for a facilitatory role of estrogens originating from the brain on sexual behavior and aggressive behavior in male medaka. The role of specific estrogen receptor isoforms underlying the expression of androgen receptors is supported by converging evidence from multiple mutant lines.

    1. Reviewer #1 (Public review):

      Summary:

      This paper provides a novel method to improve the accuracy of predictions of the impact of ITN strategies, by using sub-national estimates of the duration of ITN access and use over time from cross-sectional survey data and annual country ITNs received.

      Strengths:

      The approach is novel, makes use of available data, and has considered all of the relevant components of ITN distributions.

      Weaknesses:

      (1) The main message of the paper was not very clear, and did not seem to fit the title. The title focuses on sub-national tailoring of ITN, but the abstract did not feature results directly about SNT. It was not very clear what the main result of the paper was - there are several ITN observations in the results and discussion. Most did not seem to be directly about SNT, but rather sub-national differences in use and access were accounted for in the analyses. It was not clear if the same conclusions would be reached without accounting for sub-national differences, but the estimates and predictions could be expected to be more accurate.

      (2) Some of the results seemed to me to be apparent even without a modelling exercise (eg high coverage could not be maintained between campaigns, use would be higher with 2-yearly distributions rather than 3-yearly) or were not in themselves new insights (eg estimates of the duration of use). It would be helpful to clearly state what the novel results are in the abstract, the first paragraph of the discussion and the conclusions, and to make sure that the title is consistent.

      (3) On L236, the link to SNT is stated: "the models indicate trends that can support sub-national tailoring of ITNs". They could indeed, but SNT itself is not done in this paper. It seems to be about improving sub-national predictions of the impact of single ITN strategies, by taking into account sub-national variation in access and use duration. This is useful, and the model developed has novel aspects.

      (4) Individual countries may have records on when nets were distributed to the regions rather than needing to use the annual country number of nets together with the DHS data. It could be helpful to say what the analysis steps would be in that case.

      (5) There were several assumptions that needed to be made in building the model. There is some validation of the timing of the distributions (L633 "verified where possible through discussion with interested parties nationally and internationally") and the fit of estimated access and use to survey data, and agreement between predictions of prevalence and MAP estimates. It would be helpful to say which assumptions are important for the results (and would be key knowledge gaps) and which would not make a difference. It might be possible to validate the net timing model using a country where net distributions are known reasonably well.

      (6) What was assumed about what happens to old nets after a mass campaign was not clear. This assumption is likely to affect the predictions of access for the biennial distributions.

      (7) L312 and elsewhere: That use given access declines with net age is plausible. However, I wondered if this could be partly a consequence of the assumptions in the model (eg the two exponential decays for access and use, the possible assumption that new nets displace the current ones when there is a mass campaign).

      (8) The Methods section on Estimating historical use and access seemed to be aimed at readers familiar with formulae, but I think it could lose other interested readers. It could be useful to explain a little more about what is happening at each step and also why.

      (9) The model was fitted to MAP estimates of PfPR2-10, which themselves come from a model. It may be that there is different uncertainty in the MAP estimates for different regions. I couldn't see this on the graph, but maybe the uncertainty is small. Was this taken into account in the fitting?

      (10) Was uncertainty from each estimated component integrated into the other components?

      (11) Eyeballing Figure 2 (Burkina Faso), there is a general pattern of decline in all the regions, some differences between the regions and some differences in how well the model fits between the regions. If possible, it could be helpful to say how much better the fit was when using region-specific compared to countrywide parameter values for access and use, and how different the results would be.

      (12) The question of moving from a campaign every three to every two years may not be the most pertinent question in the current funding landscape. I realise that a paper is in development for a long time, but it would be helpful to comment on what else the model could be used for when fewer rather than more nets are likely to be available.

    2. Reviewer #2 (Public review):

      Summary:

      The authors design a custom Bayesian model to estimate the probabilities of access, use and use given access of insecticide-treated nets in six African countries, providing sub-national estimates and inferring the average duration of ITN use and access. An individual-based model was employed to simulate malaria epidemics and estimate the effectiveness of different ITN distribution strategies. The study finds that the mean probability of use or access did not reach 80% (a universal coverage formely targeted by WHO) for any of the regions, even for biennial campaigns, demonstrates that switching from triennial to biennial distribution campaigns increases population use by 7.9%, and evaluates the impact of employing more efficient ITNs on P. falciparum prevalence.

      Strengths:

      The authors developed a data-driven model that accounts for data collection imperfections and sources of uncertainty while differentiating between ITN use and access. They developed a methodology to infer the timing of a mass campaign from publicly available data instead of assuming fixed dates. The probability of use given access allows for determining the regions where ITN distribution is least effective. This work can help better inform future interventions by identifying regions where increasing mass campaign frequency or employing better ITNs are most effective. Finally, in addition to insights on ITN access and use for the six countries analyzed, the paper contributes a methodological framework that can likely be extended to other countries.

      Weaknesses:

      Since the models employed are rather complex, the description of the methodology may be hard to follow for most readers. In addition, the models assume many hypotheses, including:

      (1) Exponential decay of ITN use/access.

      (2) The decay rates for the probability of the ITN repelling and killing a mosquito are the same.

      (3) Given a time instant, all individuals in the same administrative unit and have the same probability of using a net;

      (4) ITN use/access decay models do not depend on the distribution strategy (e.g. bienal vs trienal distribution).

      (5) The Bayesian model assumes some narrow prior distributions.

      The impact of these hypotheses on the estimated parameters is not explored in the paper, and no sensitivity analyses are performed, although some limitations are discussed.

    1. Reviewer #1 (Public review):

      Summary:

      Metabolic dysfunction-associated steatotic liver disease (MASLD) ranges from simple steatosis, steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. In the current study, the authors aimed to determine the early molecular signatures differentiating patients with MASLD associated fibrosis from those patients with early MASLD but no symptoms. The authors recruited 109 obese individuals before bariatric surgery. They separated the cohorts as no MASLD (without histological abnormalities) and MASLD. The liver samples were then subjected to transcriptomic and metabolomic analysis. The serum samples were subjected to metabolomic analysis. The authors identified dysregulated lipid metabolism, including glyceride lipids, in the liver samples of MASLD patients compared to the no MASLD ones. Circulating metabolomic changes in lipid profiles slightly correlated with MASLD, possibly due to the no MASLD samples derived from obese patients. Several genes involved in lipid droplet formation were also found elevated in MASLD patients. Besides, elevated levels of amino acids, which are possibly related to collagen synthesis, were observed in MASLD patients. Several antioxidant metabolites were increased in MASLD patients. Furthermore, dysregulated genes involved in mitochondrial function and autophagy were identified in MASLD patients, likely linking oxidative stress to MASLD progression. The authors then determined the representative gene signatures in the development of fibrosis by comparing this cohort with the other two published cohorts. Top enriched pathways in fibrotic patients included GTPas signaling and innate immune responses, suggesting the involvement of GTPas in MASLD progression to fibrosis. The authors then challenged human patient derived 3D spheroid system with a dual PPARa/d agonist and found that this treatment restored the expression levels of GTPase-related genes in MASLD 3D spheroids. In conclusion, the authors suggested the involvement of upregulated GTPase-related genes during fibrosis initiation.

      Concerns from first round of review:

      (1) A recent study, via proteomic and transcriptomic analysis, revealed that four proteins (ADAMTSL2, AKR1B10, CFHR4 and TREM2) could be used to identify MASLD patients at risk of steatohepatitis (PMID: 37037945). It is not clear why the authors did not include this study in their comparison.

      (2) The authors recruited 109 patients but only performed transcriptomic and metabolomic analysis in 94 liver samples. Why did the authors exclude other samples?

      (3) The authors mentioned clinical data in Table 1 but did not present the table in this manuscript.

      (4) The generated metabolomic data could be a very useful resource to the MASLD community. However, it is very confusing how the data was generated in those supplemental tables. There is no clear labeling of human clinical information in those tables. Also, what do those values mean in columns 47-154? This reviewer assumed that they are the raw data of metabolomic analysis in plasma samples. However, without clear clinical information in these patients, it is impossible that any scientist can use the data to reproduce the authors' findings.

      (5) In Fig. 5B, the authors excluded the steatosis and fibrosis overlapped genes. Steatosis and fibrosis specific genes could simply reflect the outcomes rather than causes. In this case, the obtained results might not identify the gene signatures related to fibrosis initiation.

      (6 In Fig. 6D, the authors used 3D liver spheroid to validate their findings. However, there is no images showing the 3D liver spheroid formation before and after PPARa/d agonist treatment. It is not clear whether the 3D liver spheroid was successfully established.

      (7) The authors suggested that targeting LX-2 cells with Rac1 and Cdc42 inhibitors could reduce collagen production. Did the authors observe these two genes upregulated in mRNA and protein expression levels in their cohort when compared MASLD patients with and without fibrosis?

      (8) Did the authors observe that the expression levels of Rac1 and Cdc42 are correlated with fibrosis progression in MASLD patients?

      (9) Other studies have revealed several metabolite changes related to MASLD progression (PMID: 35434590, PMID: 22364559). However, the authors did not discuss the discrepancies between their findings with the previous studies.

      Significance:

      Overall, the current study might provide some new resources regarding transcriptomic and metabolomic data derived from obese patients with and without MASLD. The MASLD research community will be interested in the resource data.

      Comments on revised version:

      Thank you for the authors' responses to my concerns. I do not have any further comments.

    2. Reviewer #2 (Public review):

      In this paper, Kaldis and collaborators investigate the molecular heterogeneity of a 109 morbidly obese patient cohort, focusing on liver transcriptomics and metabolomics analysis from liver and serum. The main finding (i.e. upregulation of GTPase-coding genes) was validated in spheroids and a human HSC cell line. As these proteins are involved in critical cellular functions related to metabolism and cytoskeleton dynamics, these findings shed light on their involvement in human liver pathology which so far has been poorly (or even not) documented to date. This is an interesting addition to the current knowledge about chronic liver pathology and warranting further in-depth molecular investigations to address molecular mechanisms of action (cellular specificity, GTPase-driven pathways...).

      Strengths:

      Using a well-characterized patient cohort of moderate size, the study provide transcriptomic and metabolomic data of high quality with adequate statistical corrections which are a very useful resource for the community. Mechanistic experiments usefully hint at novel druggable targets in the early steps of fibrosis, hence probably in hepatic stellate cell activation.

      Weaknesses:

      Cross comparisons with other cohorts is informative but of limited interest due to patient classification issues, inherent to histological staging practices. The lack of correlation between transcriptomic and metabolomic data is deceptive but expected due to the systemic nature of metabolomic analysis and was also observed in recently published papers.

      Comments on revised version:

      I have no further comment about this amended version, aside from suggesting to add (if known) the time at which biopsies were collected. Time-of-day is an important yet often overlooked parameter of gene expression variation, and along the same line, the imposed fasting to bariatric surgery patients is also a matter of variation of gene expression and of metabolite abundance. It is hoped that future investigations will more precisely characterize the role of the newly identified targets in MASLD.

    3. Reviewer #3 (Public review):

      Summary:

      Metabolic dysfunction associated liver disease (MASLD) describes a spectrum of progressive liver pathologies linked to life style-associated metabolic alterations (such as increased body weight and elevated blood sugar levels), reaching from steatosis over steatohepatitis to fibrosis and finally end stage complications, such as liver failure and hepatocellular carcinoma. Treatment options for MASLD include diet adjustments, weight loss, and the receptor-β (THR-β) agonist resmetirom, but remain limited at this stage, motivating further studies to elucidate molecular disease mechanisms to identify novel therapeutic targets.

      In their present study, the authors aim to identify early molecular changes in MASLD linked to obesity. To this end, they study a cohort of 109 obese individuals with no or early-stage MASLD combining measurements from two anatomic sides: 1. bulk RNA-sequencing and metabolomics of liver biopsies, and 2. metabolomics from patient blood. Their major finding is that GTPase-related genes are transcriptionally altered in livers of individuals with steatosis with fibrosis compared to steatosis without fibrosis.

      Comments from the first round of review:

      (1) Confounders (such as (pre-)diabetes)

      The patient table shows significant differences in non-MASLD vs. MASLD individuals, with the latter suffering more often from diabetes or hypertriglyceridemia. Rather than just stating corrections, subgroup analyses should be performed (accompanied with designated statistical power analyses) to infer the degree to which these conditions contribute to the observations. I.e., major findings stating MASLD-associated changes should hold true in the subgroup of MASLD patients without diabetes/of female sex and so forth (testing for each of the significant differences between groups).

      Post-rebuttal update: The authors have performed the requested sub-group analysis and find the gene signatures hold for the non-diabetic sub-cohort, but not the diabetic subgroup. They denote a likely interaction between fibrosis and diabetes, that was not corrected for in the original analysis.

      (2) External validation

      Additionally, to back up the major GTPase signature findings, it would be desirable to analyze an external dataset of (pre)diabetes patients (other biased groups) for alternations in these genes. It would be important to know if this signature also shows in non-MASLD diabetic patients vs. healthy patients or is a feature specific to MASLD. Also, could the matched metabolic data be used to validate metabolite alterations that would be expected under GTPase-associated protein dysregulation?

      Post-rebuttal update: The authors confirm that with the present data, insulin resistance cannot be fully ruled out as a confounder to the GTP-ase related gene signature. They however plan future mouse model experiments to study whether the GTPase-fibrosis signature differs in diabetic vs. non-diabetic conditions.

      (3).3D liver spheroid MASH model, Fig. 6D/E

      This 3D experiment is technically not an external validation of GTPase-related genes being involved in MASLD, since patient-derived cells may only retain changes that have happened in vivo. To demonstrate that the GTPase expression signature is specifically invoked by fibrosis the LX-2 set up is more convincing, however, the up-regulation of the GTPase-related genes upon fibrosis induction with TGF-beta, in concordance with the patient data, needs to be shown first (qPCR or RNA-seq). Additionally, the description of the 3D model is too uncritical. The maintenance of functional PHHs is a major challenge (PMID: 38750036, PMID: 21953633, PMID: 40240606, PMID: 31023926). It cannot be ruled out that their findings are largely attributable to either 1) the (other present) mesenchymal cells (i.e., mesenchyme-derived cells, such as for example hepatic stellate cells, not to be confused with mesenchymal stem cells, MSCs), or 2) related to potential changes in PHHs in culture, and these limitations need to be stated.

      Post-rebuttal update: To address the concern of other cells than hepatocytes contributing to the observed effects in culture, the authors performed TGF-beta treatment in independent mono-cultures (Figure R4): LX-2 and hepatocytes, and the spheroid system. Surprisingly, important genes highlighted in Figure 6E for the spheroid system (RAB6A, ARL4A, RAB27B, DIRAS2) are all absent from this qPCR(?) validation experiment. The authors evaluate instead RAC1, RHOU, VAV1, DOCK2, RAB32. ­In spheroids, RHOU and RAB32 are down-regulated with TGF-B. In hepatocytes DOCK2 and RAC seemed up-regulated. They find no difference in these genes in LX-2 cells. Surprisingly, ACTA2 expression values are missing for LX-2 cells. Together, it is hard to judge which individual cell type recapitulates the changes observed in patients in this validation experiment, as the major genes called out in Figure 6E are not analyzed.

      Unfortunately, the 3D liver spheroid model used (as presente­d in PMID39605182) lacks important functional validation tests of maintained hepatocyte identity in culture (at the very least Albumin expression and secretion plus CYP3A4 assay). This functional data (acquired at the time point in culture when the RNA expression analysis in 6E was performed) is indispensable prior to stating that mature hepatocytes cause the observed effects.

      (4) Novelty / references

      Similar studies that also combined liver and blood lipidomics/metabolomics in obese individuals with and without MASLD (e.g. PMID 39731853, 39653777) should be cited. Additionally, it would benefit the quality of the discussion to state how findings in this study add new insights over previous studies, if their findings/insights differ, and if so, why.

      Post-rebuttal update: The authors have included the studies into their discussion.

    1. Reviewer #1 (Public Review):

      Summary:

      Argunşah et al. describe and investigate the mechanisms underlying the differential response dynamics of barrel vs septa domains in the whisker-related primary somatosensory cortex (S1). Upon repeated stimulation, the authors report that the response ratio between multi- and single-whisker stimulation increases in layer (L) 4 neurons of the septal domain, while remaining constant in barrel L4 neurons. The authors attribute this divergence to differences in short-term synaptic plasticity, particularly within somatostatin-expressing (SST⁺) interneurons. This interpretation is supported by 1) the increased density of SST+ neurons in L4 of the septa compared to barrel domain, 2) the stronger response of (L2/3) SST+ neurons to repeated multi- vs single-whisker stimulation and 3) the reduced functional difference in single- versus multi-whisker response ratios across barrel and septal domains in Elfn1 KO mice, which lack a synaptic protein that confers characteristic short-term plasticity, notably in SST+ neurons. Consistently, a decoder trained on WT data fails to generalize to Elfn1 KO responses. Finally, the authors report a relative enrichment of S2- and M1-projecting cell densities in L4 of the septal domain compared to the barrel domain, suggesting that septal and barrel circuits may differentially route information about single vs multi-whisker stimulation downstream of S1.

      Strengths:

      This paper describes and aims to study a circuit underlying differential response between barrel columns and septal domains of the primary somatosensory cortex. This work supports the view these two domains contribute distinctly to the processing single versus multi-whisker inputs and highlight the role of SST+ neuron and their short-term plasticity. Together, this study suggests that the barrel cortex multiplexes whisker-derived sensory information across its domains, enabling parallel processing within S1.

      Weaknesses:

      Although the divergence in responses to repeated single- versus multi-whisker stimulation between barrel and septal domains is consistent with a role for SST⁺ neuron short-term plasticity, the evidence presented does not conclusively demonstrate that this mechanism is the critical driver of the difference. The lack of targeted recordings and manipulations limits the strength of this conclusion: SST⁺ neuron activity is not measured in L4, nor is it assessed in a domain-specific manner. The Elfn1 knockout manipulation does not appear to selectively affect either stimulus condition, domain or interneuron subtype. Finally, all experiments were performed under anesthesia, which raises concerns about how well the reported dynamics generalize to awake cortical processing.

    2. Reviewer #2 (Public review):

      Summary:

      Argunsah and colleagues demonstrate that SST expressing interneurons are concentrated in the mouse septa and differentially respond to repetitive multi-whisker inputs. Identifying how a specific neuronal phenotype impacts responses is an advance.

      Strengths:

      (1) Careful physiological and imaging studies.

      (2) Novel result showing the role of SST+ neurons in shaping responses.

      (3) Good use of a knockout animal to further the main hypothesis.

      (4) Clear analytical techniques.

      Comments on revisions:

      The authors have effectively responded to my initial critiques - I have no further concerns.

    3. Reviewer #3 (Public review):

      Summary:

      This study investigates the functional differences between barrel and septal columns in the mouse somatosensory cortex, focusing on how local inhibitory dynamics (particularly involving SST⁺ interneurons) may mediate temporal integration of multi-whisker (MW) stimuli in septa. Using a combination of in vivo multi-unit recordings, calcium imaging, and anatomical tracing, the authors propose a model in which Elfn1-dependent synaptic facilitation onto SST⁺ interneurons contributes to the distinct sensory responses to MW input in barrels and septa, enabling functional segregation between these domains.

      Strengths:

      The study presents a thought-provoking and useful conceptual model for understanding sensory processing in the somatosensory cortex. While barrel columns have been widely studied, septal regions remain relatively understudied in mice. If septa indeed act as selective integrators of distributed sensory input, this would suggest a novel computational role for cortical microcircuits beyond the classical view focused on barrels. Although still hypothetical, the proposed model in which SST⁺ interneurons contribute to domain-specific sensory responses between barrel and septal domains is intriguing and opens new avenues for investigating inhibitory circuit mechanisms.

      Weaknesses:

      The primary limitation of this study lies in the spatial and cellular specificity of the recording techniques. The physiological data rely predominantly on unsorted multi-unit activity (MUA) recorded with low-channel-count silicon probes. Because MUA aggregates signals from multiple neurons over a radius of approximately 50-100 µm (often wider than the typical septal width in mice), this approach makes it difficult to confidently isolate activity originating strictly from within septal domains. The manuscript would benefit from additional analyses to validate the spatial specificity of these recordings, such as systematically varying spike detection thresholds to test the robustness of domain attribution, as suggested by the reviewer. Furthermore, although the authors now appropriately frame their findings in the Elfn1 knockout mice as indirect evidence, it is worth emphasizing that the study lacks direct in vivo, cell-type-specific recordings and manipulations to more definitively test the proposed mechanism.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Pereira de Castro and coworkers are studying potential competition between a more standard splicing factor SF1 and an alternative splicing factor called QK1. This is interesting because they bind to overlapping sequence motifs and could potentially have opposing effects on promoting the splicing reaction. To test this idea, the authors KD either SF1 or QK1 in mammalian cells and uncover several exons whose splicing regulation follows the predicted pattern of being promoted for splicing by SF1 and repressed by QK1. Importantly, these have introns enriched in SF1 and QK1 motifs. The authors then focus on one exon in particular with two tandem motifs to study the mechanism of this in greater detail and their results confirm the competition model. Mass spec analysis largely agrees with their proposal; however, it is complicated by apparently quick transition of SF1 bound complexes to later splicing intermediates. An inspired experiment in yeast shows how QK1 competition could potentially have a determinental impact on splicing in an orthogonal system. Overall these results show how splicing regulation can be achieved by competition between a "core" and alternative splicing factor and provide additional insight into the complex process of branch site recognition. The manuscript is exceptionally clear and the figures and data very logically presented. The work will be valuable to those in the splicing field who are interested in both mechanism and bioinformatics approaches to deconvolve any apparent "splicing code" being used by cells to regulate gene expression.

      Strengths:

      (1) The main discovery of the manuscript involving evidence for SF1/QK1 competition is quite interesting and important for this field. This evidence has been missing and may change how people think about branch site recognition.

      (2) The experiments and the rationale behind them are clearly and logically presented.

      (3) The experiments are carried out to a high standard and well-designed controls are included.

      (4) The extrapolation of the result to yeast in order to show the potentially devastating consequences of QK1 competition was creative and informative.

      Weaknesses:

      Overall the weaknesses are relatively minor and involve cases where conclusions could potentially have been strengthened with additional experimentation. For example, pull-down of the U2 snRNP could be strengthened by detection of the snRNA whereas the proteins may themselves interact with these factors in the absence of the snRNA. In addition the discussion is a bit speculative given the data, but compelling nonetheless.

    2. Reviewer #3 (Public review):

      Summary:

      In this manuscript the authors were trying to establish whether competition between the RNA binding proteins SF1 and QKI controlled splicing outcomes. These two proteins have similar binding sites and protein sequences, but SF1 lacks a dimerization motif and seems to bind a single version of the binding sequence. Importantly, these binding sequences correspond to branchpoint consensus sequences, with SF1 binding leading to productive splicing, but QKI binding leading instead to association with paraspeckle proteins. They show that in human cells SF1 generally activates exons and QKI represses, and a large group of the jointly regulated exons (43% of joint targets) are reciprocally controlled by SF1 and QKI. They focus on one of these exons RAI14 that shows this reciprocal pattern of regulation, and has 2 repeats of the binding site that make it a candidate for joint regulation, and confirm regulation within a minigene context. The authors used assembly of proteins within nuclear extracts to explain the effect of QKI versus SF1 binding. Finally the authors show that expression of QKI is lethal in yeast, and causes splicing defects.

      How this fits in the field. This study is interesting and provides a conceptual advance by providing a general rule how SF1 and QKI interact with relation to binding sites, and the relative molecular fates followed, so is very useful. Most of the analysis seems to focus on one example, but the choice of this example was carefully explained in the text. The molecular analysis and global work significantly adds to the picture from the previously published paper about NUMB joint regulation by QKI and SF (Zong et al, cited in text as reference 50, that looked at SF1 and QKI binding in relation to a duplicated binding site/branchpoint sequence in NUMB).

      Strengths:

      The data presented are strong and clear. The ideas discussed in this paper are of wide interest, and present a simple model where two binding sites generates a potentially repressive QKI response, whereas exons that have a single upstream sequence are just regulated by SF1. The assembly of splicing complexes on RNAs derived from RAI14 in nuclear extracts, followed by mass spec gave interesting mechanistic insight into what was occurring as a result of QKI versus SF1 binding.

      Weaknesses:

      The authors have addressed the previous weaknesses of the study, resulting in a much stronger manuscript

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors investigate the nanoscopic distribution of glycine receptor subunits in the hippocampus, dorsal striatum, and ventral striatum of the mouse brain using single-molecule localization microscopy (SMLM). They demonstrate that only a small number of glycine receptors are localized at hippocampal inhibitory synapses. Using dual-color SMLM, they further show that clusters of glycine receptors are predominantly localized within gephyrin-positive synapses. A comparison between the dorsal and ventral striatum reveals that the ventral striatum contains approximately eight times more glycine receptors and this finding is consistent with electrophysiological data on postsynaptic inhibitory currents. Finally, using cultured hippocampal neurons, they examine the differential synaptic localization of glycine receptor subunits (α1, α2, and β). This study is significant as it provides insights into the nanoscopic localization patterns of glycine receptors in brain regions where this protein is expressed at low levels. Additionally, the study demonstrates the different localization patterns of GlyR in distinct striatal regions and its physiological relevance using SMLM and electrophysiological experiments. However, several concerns should be addressed.

      Specific comments on the original version:

      (1) Colocalization analysis in Figure 1A. The colocalization between Sylite and mEos-GlyRβ appears to be quite low. It is essential to assess whether the observed colocalization is not due to random overlap. The authors should consider quantifying colocalization using statistical methods, such as a pixel shift analysis, to determine whether colocalization frequencies remain similar after artificially displacing one of the channels.

      (2) Inconsistency between Figure 3A and 3B. While Figure 3B indicates an ~8-fold difference in the number of mEos4b-GlyRβ detections per synapse between the dorsal and ventral striatum, Figure 3A does not appear to show a pronounced difference in the localization of mEos4b-GlyRβ on Sylite puncta between these two regions. If the images presented in Figure 3A are not representative, the authors should consider replacing them with more representative examples or providing an expanded images with multiple representative examples. Alternatively, if this inconsistency can be explained by differences in spot density within clusters, the authors should explain that.

      (3) Quantification in Figure 5. It is recommended that the authors provide quantitative data on cluster formation and colocalization with Sylite puncta in Figure 5 to support their qualitative observations.

      (4) Potential for pseudo replication. It's not clear whether they're performing stats tests across biological replica, images, or even synapses. They often quote mean +/- SEM with n = 1000s, and so does that mean they're doing tests on those 1000s? Need to clarify.

      (5) Does mEoS effect expression levels or function of the protein? Can't see any experiments done to confirm this. Could suggest WB on homogenate, or mass spec?

      (6) Quantification of protein numbers is challenging with SMLM. Issues include i) some of FP not correctly folded/mature, and ii) dependence of localisation rate on instrument, excitation/illumination intensities, and also the thresholds used in analysis. Can the authors compare with another protein that has known expression levels- e.g. PSD95? This is quite an ask, but if they could show copy number of something known to compare with, it would be useful.

      (7) Rationale for doing nanobody dSTORM not clear at all. They don't explain the reason for doing the dSTORM experiments. Why not just rely on PALM for coincidence measurements, rather than tagging mEoS with a nanobody, and then doing dSTORM with that? Can they explain? Is it to get extra localisations- i.e. multiple per nanobody? If so, localising same FP multiple times wouldn't improve resolution. Also, no controls for nanobody dSTORM experiments- what about non-spec nb, or use on WT sections?

      (8) What resolutions/precisions were obtained in SMLM experiments? Should perform Fourier Ring Correlation (FRC) on SR images to state resolutions obtained (particularly useful for when they're presenting distance histograms, as this will be dependent on resolution). Likewise for precision, what was mean precision? Can they show histograms of localisation precision.

      (9) Why were DBSCAN parameters selected? How can they rule out multiple localisations per fluor? If low copy numbers (<10), then why bother with DBSCAN? Could just measure distance to each one.

      (10) For microscopy experiment methods, state power densities, not % or "nominal power".

      (11) In general, not much data presented. Any SI file with extra images etc.?

      (12) Clarification of the discussion on GlyR expression and synaptic localization: The discussion on GlyR expression, complex formation, and synaptic localization is sometimes unclear, and needs terminological distinctions between "expression level", "complex formation" and "synaptic localization". For example, the authors state: "What then is the reason for the low protein expression of GlyRβ? One possibility is that the assembly of mature heteropentameric GlyR complexes depends critically on the expression of endogenous GlyR α subunits." Does this mean that GlyRβ proteins that fail to form complexes with GlyRα subunits are unstable and subject to rapid degradation? If so, the authors should clarify this point. The statement "This raises the interesting possibility that synaptic GlyRs may depend specifically on the concomitant expression of both α1 and β transcripts." suggests a dependency on α1 and β transcripts. However, is the authors' focus on synaptic localization or overall protein expression levels? If this means synaptic localization, it would be beneficial to state this explicitly to avoid confusion. To improve clarity, the authors should carefully distinguish between these different aspects of GlyR biology throughout the discussion. Additionally, a schematic diagram illustrating these processes would be highly beneficial for readers.

      (13) Interpretation of GlyR localization in the context of nanodomains. The distribution of GlyR molecules on inhibitory synapses appears to be non-homogeneous, instead forming nanoclusters or nanodomains, similar to many other synaptic proteins. It is important to interpret GlyR localization in the context of nanodomain organization.

      Significance:

      The paper presents biological and technical advances. The biological insights revolve mostly on the documentation of Glycine receptors in particular synapses in forebrain, where they are typically expressed at very low levels. The authors provide compelling data indicating that the expression is of physiological significance. The authors have done a nice job of combining genetically tagged mice with advanced microscopy methods to tackle the question of distributions of synaptic proteins. Overall, these advances are more incremental than groundbreaking.

      Comments on revised version:

      The authors have addressed the majority of the significant issues raised in the review and revised the manuscript appropriately. One issue that can be further addressed relates to the issue of pseudo-replication. The authors state in their response that "All experiments were repeated at least twice to ensure reproducibility (N independent experiments). Statistical tests were performed on pooled data across the biological replicates; n denotes the number of data points used for testing (e.g., number of synaptic clusters, detections, cells, as specified in each case).". This suggests that they're not doing their stats on biological replicates, and instead are pseudo replicating. It's not clear how they have ensured reproducibility, when the stats seem to have been done on pooled data across repeats.

    2. Reviewer #2 (Public review):

      Summary:

      In their manuscript "Single molecule counting detects low-copy glycine receptors in hippocampal and striatal synapses" Camuso and colleagues apply single molecule localization microscopy (SMLM) methods to visualize low copy numbers of GlyRs at inhibitory synapses in the hippocampal formation and the striatum. SMLM analysis revealed higher copy numbers in striatum compared to hippocampal inhibitory synapses. They further provide evidence that these low copy numbers are tightly linked to post-synaptic scaffolding protein gephyrin at inhibitory synapses. Their approach profits from the high detection sensitivity and resolution of SMLM and challenges the controversial view on the presence of GlyRs in these formations although there are reports (electrophysiology) on the presence of GlyRs in these particular brain regions. These new datasets in the current manuscript may certainly assist in understanding the complexity of fundamental building blocks of inhibitory synapses.

      Strengths:

      The manuscript provides new insights to presence of low-copy numbers by visualizing them via SMLM. This is the first report that visualizes GlyR optically in the brain applying the knock-in model of mEOS4b tagged GlyRß and quantifies their copy number comparing distribution and amount of GlyRs from hippocampus and striatum. Imaging data correspond well to electrophysiological measurements in the manuscript.

      Comments on revised version:

      My concerns have been successfully addressed by the authors during the revision process.

    3. Reviewer #3 (Public review):

      In this study, Camuso et al., make use of a knock-in mouse model expressing endogenously mEos4b-tagged GlyRβ subunits to detect endogenous glycine receptors in mouse brain using single-molecule localization microscopy (SMLM). At synapses in the hippocampus GlyRβ molecules are detected at very low copy numbers. Assuming that each detected GlyRβ molecule is incorporated in a pentameric glycine receptor, it was estimated that while the majority of hippocampal inhibitory synapses do not contain glycine receptors, a small population of inhibitory synapses contain a few (up to 10) glycine receptors. Using dual-color SMLM approaches it is furthermore confirmed that the detected GlyRβ molecules are embedded in the postsynaptic domain marked by gephyrin. In contrast to the hippocampus, at inhibitory synapses in the striatum GlyRβ molecules were detected at considerably higher copy numbers. Interestingly, the observed number of GlyRβ detections was significantly higher in the ventral striatum compared to the dorsal striatum. These findings are corroborated by electrophysiological recordings showing that postsynaptic glycinergic currents can be readily detected in the ventral striatum but are almost absent in the dorsal striatum. Using lentiviral overexpression of recombinant GlyRalpha1, alpha2, and beta subunits in cultured hippocampal neurons, it is shown that GlyR alpha1 subunits are readily detectable at synapses, but overexpressed GlyRalpha2 and beta subunits did not strongly enrich at synapses. This could indicate that GlyRa1 expression is limiting the synaptic expression of GlyRβ-containing glycine receptors in hippocampal neurons.

      Comments on revised version:

      This revised manuscript is significantly improved. New experimental and quantitative analysis is presented that strengthen the conclusions. Overall, the results presented in this manuscript are based on carefully performed SMLM experiments and are well-presented and described. The knock-in mouse with endogenously tagged GlyRβ molecules is a very strong aspect of this study and provides confidence in the labeling, the combination with SMLM is very strong as it provides high sensitivity and spatial resolution. These results confirm previous studies and will be of interest to a specialised audience interested in glycine receptors, inhibitory synapse biology and super-resolution microscopy.

    1. Reviewer #1 (Public review):

      Summary:

      This very thorough anatomical study addresses the innervation of the Drosophila male reproductive tract. Two distinct glutamatergic neuron types were classified: serotonergic (SGNs) and octopaminergic (OGNs). By expansion microscopy, it was established that glutamate and serotonin /octopamine are co-released. The expression of different receptors for 5-HT and OA in muscles and epithelial cells of the innervation target organs was characterized. The pattern of neurotransmitter receptor expression in the target organs suggests that seminal fluid and sperm transport and emission are subjected to complex regulation. While silencing of abdominal SGNs leads to male infertility and prevents sperm from entering the ejaculatory duct, silencing of OGNs does not render males infertile.

      Strengths:

      The studied neurons were analysed with different transgenes and methods, as well as antibodies against neurotransmitter synthesis enzymes, building a consistent picture of their neurotransmitter identity. The careful anatomical description of innervation patterns together with receptor expression patterns if the target organs provides a solid basis for advancing the understanding how seminal fluid and sperm transport and emission are subjected to complex regulation. The functional data showing that SGNs are required for male fertility and for the release of sperm from the seminal vesicle into the ejaculatory duct is convincing.

      Weaknesses:

      The functional analysis of the characterized neurons is not as comprehensive as the anatomical description and phenotypic characterization was limited to simple fertility assays. It is understandable that a full functional dissection is beyond the scope of the present work. The paper contains experiments showing neuron-independent peristaltic waves in the reproductive tract muscles, which are thematically not very well integrated into the paper. Although very interesting, one wonders if these experiments would not fit better into a future work that also explores these peristaltic waves and their interrelation with neuromodulation mechanistically.

      Comments on revisions:

      The manuscript has improved after fixing many small issues/errors. The new sections in the discussion are likewise adding to the quality of the manuscript.

    2. Reviewer #2 (Public review):

      Summary:

      Cheverra et al. present a comprehensive anatomical and functional analysis of the motor neurons innervating the male reproductive tract in Drosophila melanogaster, addressing a gap in our understanding of the peripheral circuits underlying ejaculation and male fertility. They identify two classes of multi-transmitter motor neurons-OGNs (octopamine/glutamate) and SGNs (serotonin/glutamate)-with distinct innervation patterns across reproductive organs. The authors further characterize the differential expression of glutamate, octopamine, and serotonin receptors in both epithelial and muscular tissues of these organs. Behavioral assays reveal that SGNs are essential for male fertility, whereas OGNs and glutamatergic transmission are dispensable. This work provides a high-resolution map linking neuromodulatory identity to organ-specific motor control, offering a valuable framework to explore the neural basis of male reproductive function.

      Strengths:

      Through the use of an extensive set of GAL4 drivers and antibodies, this work successfully and precisely defines the neurons that innervate the male reproductive tract, identifying the specific organs they target and the nature of the neurotransmitters they release. It also characterizes the expression patterns and localization of the corresponding neurotransmitter receptors across different tissues. The authors describe two distinct groups of dual-identity neurons innervating the male reproductive tract: OGNs, which co-express octopamine and glutamate, and SGNs, which co-express serotonin and glutamate. They further demonstrate that the various organs within the male reproductive system differentially express receptors for these neurotransmitters. Based on these findings, the authors propose that a single neuron capable of co-releasing a fast-acting neurotransmitter along side a slower-acting one may more effectively synchronize and stagger events that require precise timing. This, together with the differential expression of ionotropic glutamate receptors and metabotropic aminergic receptors in postsynaptic muscle tissue, adds an additional layer of complexity to the coordinated regulation of fluid secretion, organ contractility, and directional sperm movement-all contributing to the optimization of male fertility.

      Weaknesses:

      One potential limitation of the study is the absence of information regarding the number of individuals examined for the various characterizations, which may weaken the strength of the conclusions. Another limitation may be the lack of quantitative analyses in the colocalization and morphological differentiation experiments. Nevertheless, the authors have indicated that such quantifications will be provided in a forthcoming publication; therefore, this should be considered only a partial limitation, as it is expected to be addressed in the near future.

      Wider context:

      This study delivers the first detailed anatomical map connecting multi-transmitter motor neurons with specific male reproductive structures. It highlights a previously unrecognized functional specialization between serotonergic and octopaminergic pathways and lays the groundwork for exploring fundamental neural mechanisms that regulate ejaculation and fertility in males. The principles uncovered here may help explain how males of Drosophila and other organisms adjust reproductive behaviors in response to environmental changes. Furthermore, by shedding light on how multi-transmitter systems operate in reproductive control, this model could provide insights into therapeutic targets for conditions such as male infertility and prostate cancer-where similar neuronal populations are involved in humans. Ultimately, this genetically accessible system serves as a powerful tool for uncovering how multi-transmitter neurons orchestrate coordinated physiological actions necessary for the functioning of complex organs.

    3. Reviewer #3 (Public review):

      Summary:

      This work provides an overview of the motor neuron landscape in the male reproductive system. Some work had been done to elucidate the circuits of ejaculation in the spine, as well as, the cord but this work fills a gap of knowledge at the level of the reproductive organs. Using complementary approaches the authors show that there are two types of motor neurons that are mutually exclusive: neurons that co-express octopamine and glutamate and neurons that co-express serotonin and glutamate. They also show evidence that both types of neurons express large dense core vesicles indicating that neuropeptides play a role in male fertility. This paper provides a thorough characterization of expression of the different glutamate, octopamine and serotonin receptors in the different organs and tissues of the male reproductive system. The differential expression in different tissues and organs allows building initial theories on the control of emission and expulsion. Additionally, the authors characterize the expression of synaptic proteins and the neuromuscular junction sites. On a mechanistic level, the authors show that neither octopamine/glutamate neuron transmission nor glutamate transmission in serotonin/glutamate neurons are required for male fertility. This final result is quite surprising and opens up many questions on how ejaculation is coordinated.

      Strengths:

      This work fills an important gap on characterization of innervation of the male reproductive system by providing an extensive characterization of the motor neurons and the potential receptors of motor neuron release.The authors show convincing evidence of glutamate/monoamine co-release and of mutual exclusivity of serotonin/glutamate and octopamine/glutamate neurons.

      Weaknesses:

      The experiment looking at peristaltic waves in the male organs is missing labeling of the different regions and quantification of the observed waves.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors developed a chemical labeling reagent for P2X7 receptors, called X7-uP. This labeling reagent selectively labels endogenous P2X7 receptors with biotin based on ligand-directed NASA chemistry. After labeling the endogenous P2X7 receptor with biotin, the receptor can be fluorescently labeled with streptavidin-AlexaFluor647. The authors carefully examined the binding properties and labeling selectivity of X7-uP to P2X7, characterized the labeling site of P2X7 receptors, and demonstrated fluorescence imaging of P2X7 receptors. The data obtained by SDS-PAGE, Western blot, and fluorescence microscopy clearly shows that X7-uP labels the P2X7 receptor. Finally, the authors fluorescently labeled the endogenous P2X7 in BV2 cells, which are a murine microglia model, and used dSTORM to reveal a nanoscale P2X7 redistribution mechanism under inflammatory conditions at high resolution.

      Strengths:

      X7-uP selectively labels endogenous P2X7 receptors with biotin. Streptavidin-AlexaFluor647 binds to the biotin labeled to the P2X7 receptor, allowing visualization of endogenous P2X7 receptors.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Arnould et. al. develop an unbiased, affinity-guided reagent to label P2X7 receptor and use super-resolution imaging to monitor P2X7 redistribution in response to inflammatory signaling.

      Strengths:

      I think the X7-uP probe that they developed is very useful for visualizing localization of P2X7 receptor. They convincingly show that under inflammatory conditions, there is a reorganization of P2X7 localization into receptor clusters. Moreover, I think they have shown a very clever way to specifically label any receptor of interest. This has broad appeal.

      I think the authors have done a very nice job addressing my original concerns. Here are those original concerns and my new comments related to how the authors address them.

      (1) While the authors state that chemical modification of AZ10606120 to produce the X7-UP reagent has "minimal impact" on the inhibition of P2X7, we can see from Figure 2A and 2B that it does not antagonize P2X7 as effectively as the original antagonist. For the sake of completeness and quantitation, I think it would be great if the authors could determine the IC50 for X7-uP and compare it to the IC50 of AZ10606120.

      The authors now show the relative inhibition of X7-uP compared to AZ10606120 at different concentrations. This provides a nice comparison to give the reader an idea of how effectively X7-uP inhibits P2X7 receptor. This is great.

      (2) Do the authors know whether modification of the lysines with biotin affects the receptor's affinity for ATP (or ability to be activated by ATP)? What about P2X7 that has been modified with biotin and then labeled with Alexa 647? For the sake of completeness and quantitation, I think it would be great if the authors could determine the EC50 of biotinylated P2X7 for ATP as well as biotinylated and then Alexa 647 labeled P2X7 for ATP and compare these values to the affinity of unmodified WT P2X7 for ATP.

      I agree with the authors that assessing the functional integrity of P2X7 following biotinylation and fluorophore labeling is outside the scope of this paper but would be important for studies involving dynamic or post-labeling functional analyses such as live trafficking.

      (3) It is a little misleading to color the fluorescence signal from mScarlet green (for example, in Figure 3 and Figure 4). The fluorescence is not at the same wavelength as GFP. In fact, the wavelength (570 nm - 610 nm) for emission is closer to orange/red than to green. I think this color should be changed to differentiate the signal of mScarlet from the GFP signal used for each of the other P2X receptor subtypes.

      The authors have now changed the mScarlet color to orange, which solves my concern.

      (4) It is my understanding that P2X6 does not form homotrimers. Thus, I was a little surprised to see that the density and distribution of P2X6-GFP in Figure 3 looks very similar to the density and distribution of the other P2X subtypes. Do the authors have an explanation for this? Are they looking at P2X6 protomers inserted into the plasma membrane? Does the cell line have endogenous P2X receptor subtypes? Is Figure 3 showing heterotrimers with P2X6 receptor? A little explanation might be helpful.

      The authors address this point very well and include nice data to show that P2X6 does not insert into the plasma membrane as a homotrimer.

      (5) It is easy to overlook the fact that the antagonist leaves the binding pocket once the biotin has been attached to the lysines. It might be helpful if the authors made this a little more apparent in Figure 1 or in the text describing the NASA chemistry reaction.

      The authors have modified Figure 1 to make it easier to understand the NASA chemistry reaction.

      I congratulate the authors on an outstanding paper!

    1. Reviewer #1 (Public review):

      Summary:

      The co-localization of large conductance calcium- and voltage activated potassium (BK) channels with voltage-gated calcium channels (CaV) at the plasma membrane is important for the functional role of these channels in controlling cell excitability and physiology in a variety of systems. An important question in the field is where and how do BK and CaV channels assemble as 'ensembles' to allow this coordinated regulation - is this through preassembly early in the biosynthetic pathway, during trafficking to the cell surface or once channels are integrated into the plasma membrane. These questions also have broader implications for assembly of other ion channel complexes. Using an imaging based approach, this paper addresses the spatial distribution of BK-CaV ensembles using both overexpression strategies in tsa201 and INS-1 cells and analysis of endogenous channels in INS-1 cells using proximity ligation and superesolution approaches. In addition, the authors analyse the spatial distribution of mRNAs encoding BK and Cav1.3. The key conclusion of the paper that BK and CaV1.3 are co-localised as ensembles intracellularly in the ER and Golgi is well supported by the evidence. The experiments and analysis are carefully performed and the findings are very well presented.

    2. Reviewer #3 (Public review):

      Summary:

      The authors present a clearly written and beautifully presented piece of work demonstrating clear evidence to support the idea that BK channels and Cav1.3 channels can co-assemble prior to their assertion in the plasma membrane.

      Strengths:

      The experimental records shown back up their hypotheses and the authors are to be congratulated for the large number of control experiments shown in the ms.

    1. Reviewer #1 (Public review):

      Summary:

      Adult (4mo) rats were tasked to either press one lever for an immediate reward or another for a delayed reward. The task had an adjusting amount structure in which (1) the number of pellets provided on the immediate reward lever changed as a function of the decisions made, (2) rats were prevented from pressing the same lever three times in a row.

      While the authors have been very responsive to the reviews, and I appreciate that, unfortunately, the new analyses reported in this revision actually lead me to deeper concerns about the adequacy of the data to support the conclusions. In this revision, it has become clear that the conclusions are forced and not supported by the data. Alternative theories are not considered or presented. This revision has revealed deep problems with the task, the analyses, and the modeling.

      Data Weaknesses

      Most importantly, the inclusion of the task behavior data has revealed a deep problem with the entire structure of the data. As is obvious in Figure 1D, there is a slow learning effect that is changing over the sessions as the animals learn to stop taking the delayed outcome. Unfortunately, the 8s delays came *after* the 4s. The first 20 sessions contain 19 4s delays and 1 8s delay, while the last 20 sessions contain 14 8s delays and 6 4s delays. Given the changes across sessions, it is likely that a large part of the difference is due to across-session learning (which is never addressed or considered).

      These data are not shown by subject and I suspect that individual subjects did all 4s then all 8s and some subjects switched tasks at different times. If my suspicion is true, then any comparisons between the 4s and 8s conditions (which are a major part of the author's claims) may have nothing to do with the delays, but rather with increased experience on the task.

      Furthermore, the four "groups", which are still poorly defined, seem to have been assessed at a session-by-session level. So when did each animal fall into a given group? Why is Figure 1D not showing which session fell into which group and why are we not seeing each animal's progression? They also admit that animals used a mixture of strategies, which implies that the "group" assignment is an invalid analysis, as the groups do not accommodate strategy mixing.

      Figure 2 shows that none of the differences of the group behavior against random choice with a basic p(delay) are significant. The use a KS test to measure these differences. KS tests are notoriously sensitive as KS tests simply measure whether there are any statistical differences between two distributions. They do not report the full statistics for Figure 2, but only say that the 4HI group was not significant (KS p-value = 0.72) and the 8LO showed a p-value of 0.1 (which they interpret as significant). p=0.1 is not significant. They don't report the value of the 4LO or 8HI groups (why not?), but say they are in-between these two extremes. That means *none* of the differences are significant.

      They then test a model with additional parameters, and say that the model includes more than the minimal p_D parameter, but never report BIC or AIC model comparisons. In order to claim that the model is better than the bare p_D assumption, they should be reporting model-comparison statistics. But given that the p_D parameters are enough (q.v. Figure 2), this entire model seems unnecessary

      It took me a while to determine what was being shown in Figure 3, but I was eventually able to determine that 0 was the time after the animal made the choice to wait out the delay side, so the 4s in Figure 3A1 with high power in the low-frequency (<5 Hz) range is the waiting time. They don't show the full 8s time. Nor do they show the spectrograms separated by group (assuming that group is the analytical tool they are using). In B they show only show theta power, but it is unclear how to interpret these changes over time.

      In Figure 4, panel A is mostly useless because it is just five sample sessions showing firing rate plotted on the same panels as the immediate reward amount. If they want to claim correlation, they should show and test it. But moreover, this is not how neural data should be presented - we need to know what the cells are doing, population-wise. We need to have an understanding of the neural ensemble. These data are clearly being picked and chosen, which is not OK.

      Figure 4, panels B and C show that the activity trivially reflects the reward that has been delivered to the animal, if I am understanding the graphs correctly. (The authors do not interpret it this way, but the data is, to my eyes, clear.) The "immediate" signal shows up immediately at choice and reflects the size of the immediate reward (which is varying). The "delay" signal shows up after the delay and does not, which makes sense as the animals get 6 pellets on the delayed side no matter what. In fact, the max delayed side activity = the max immediate side activity, which is 6 pellets. This is just reward-related firing.

      Figure 5 is poorly laid out, switching the order in 5C to be 2 1 3 in E and F. (Why?!) The statistics for Figure 5 on page 17 should be asking whether there are differences between neuron types, not whether there is a choice x time interaction in a given neuron type. When I look at Figure 5F1-3, all three types look effectively similar with different levels of noise. It is unclear why they are doing this complicated PC analysis or what we should be drawing from it.

      Figure 6 mis-states pie charts as "total number" rather than proportions.

      Interpretation Weaknesses

      The separation of cognitive effort into "resource-based" and "resistance-based" seems artificial to me. I still do not understand why the ability to resist a choice does not also depend on resource or why using resources are not a form of resistance. Doesn't every action in the end depend on the resources one has available? And doesn't every use of a resource resist one option by taking another? Even if one buys these two separate cognitive control processes (which at this point in reading the revision, I do not), the paper starts from the assumption that a baseline probability of waiting out the delays is a "resistance-based cognitive control" (why?) and a probability of choice that takes into account the size of the immediate value (confusingly abbreviated as ival) is a "resource-based cognitive control" (again, why?)

    2. Reviewer #2 (Public review):

      Summary:

      I appreciate the considerable work the authors have done on the revision. The manuscript is markedly improved.

      Strengths still include the strong theoretical basis, well-done experiments, and clear links to LFP / spectral analyses that have links to human data. The task is now more clearly explained, and the neural correlates better articulated.

      Weaknesses:

      I had remaining questions, many related to my previous questions.<br /> (1) The results have some complexity, but I still had questions about which is resource and which is resistance based. The authors say in the last sentence of the discussion: "Prominent pre-choice theta power was associated with a behavioral strategy characterized by a strong bias towards a resistance-based strategy, whereas the neural signature of ival-tracking was associated with a strong bias towards a resource-based strategy.".<br /> I might suggest making this simpler and clear in the abstract and the first paragraph of the discussion. A simple statement like 'pre-choice theta was biased towards resistance whereas single neurons were biased towards resources" might make this idea come across?

      (2) I think most readers would like to see raw single trial LFP traces in Figure 3, single unit rasters in Figure 4, and spike-field records in Figure 5.

      (3) What limitations are there to this work? I wonder if readers might benefit from some contextualization - the sample size, heterogenous behavior - lack of cell-type specificity - using PC3 to define spectral relationships - I might suggest pointing these out.

      (4) I still wasn't sure what 4 Hz vs. theta 6-12 Hz meant - is it all based on PC3's pos/neg correlation? I wonder if showing a scatter plot with the y-axis being PC3 and the x-axis being theta 4 Hz power would help distinguish these? Is this the first time this sort of analysis has been done? If so, it requires clearer definitions.

    3. Reviewer #3 (Public review):

      Summary:

      The study investigated decision making in rats choosing between small immediate rewards and larger delayed rewards, in a task design where the size of the immediate rewards decreased when this option was chosen and increased when it was not chosen. The authors conceptualise this task as involving two different types of cognitive effort; 'resistance-based' effort putatively needed to resist the smaller immediate reward, and 'resource-based' effort needed to track the changing value of the immediate reward option. They argue based on analyses of the behaviour, and computational modelling, that rats use different strategies in different sessions, with one strategy in which they preferentially choose the delayed reward option irrespective of the current immediate reward size, and another strategy in which they preferentially choose the immediate reward option when the immediate reward size is large, and the delayed reward option when the immediate reward size is small. The authors recorded neural activity in anterior cingulate cortex. They propose that oscillatory activity in the 6-12Hz theta band occurs when subjects use a 'resistance-based' strategy of choosing the delayed option irrespective of the current value of the immediate reward option. They also examine neural representation of the current value of the immediate reward option, and suggest that this value is more strongly represented when subjects are using this value information to guide choice. They further argue that neurons whose activity is modulated by theta oscillations are less involved in tracking the value of the immediate reward option than neurons whose activity is not theta modulated. If solid, these findings will be of interest to researchers working on cognitive control and ACCs involvement in decision making. However, there are some issues with the modelling and analysis which preclude high confidence in the validity of the conclusions.

      Strengths:

      The behavioural task used is interesting and the recording methods used (64 channel silicon probes) should enable the collection of good quality single unit and LFP electrophysiology data. The authors recorded from a sizable sample of subjects for this type of study. The approach of splitting the data into sessions where subjects used different strategies and then examining the neural correlates of each is in principle interesting, though I have some reservations about the strength of evidence for the existence of multiple strategies.

      Limitations:

      The dataset is unbalanced in terms of both the number of sessions contributed by each subject, and their distribution across the different putative behavioural strategies (see Table 1), with some subjects contributing 7 sessions to a given strategy and others 0. Further, only 2 of 10 subjects contribute any sessions to one of the behavioural strategies (8LO), and a single subject contributes >50% of the sessions (7 of 13) sessions to another strategy (8HI). Apparent differences in brain activity between the strategies could therefore in fact reflect differences between subjects, which could arise due to e.g. differences in electrode placement. To make firm conclusions that neural activity is different in sessions where different strategies are thought to be employed, it would be necessary to account for potential cross-subject variation in the data. The current statistical methods don't appear to do this as they use within subject measures (e.g. trials or neurons) as the experimental unit and ignore which subject the neuron/trial came from.

      The starting point for the analysis was the splitting of sessions into 4 groups based on the duration of the delay (4 vs 8 seconds) and then clustering within each delay category into two sub-groups. It was not clear why 2 clusters per delay category were used, nor whether the data did in fact have a clear split into two distinct clusters or continuous variation across the population of sessions. The simplified RL model used in the revised manuscript (which is an improvement from that used in the previous version) could in principle help to quantify variation across the populations of sessions, by using model fitting and comparison methods to evaluate variation in strategy across subjects. However, as far as I could tell no model-fitting or comparison was performed, and the only attempt to link the model to data was by simulating data using a fixed probability of choosing the delayed lever (i.e. with no learning across trials) and comparing the distribution of total rewards obtained per session with that of the subjects in each group (Figure 2). Total reward per session is a very coarse behavioural metric and using likelihood-based methods to fit model parameters to subjects trial-by-trial choice data would provide a more sensitive way of using the modelling to assess behavioural strategy across sessions.

      Conceptually, it is not obvious that choices towards the delayed vs immediate lever reflect use of different strategies employing different types of cognitive effort. Rather these could reflect a single strategy which compares the estimated value of the two levers, with differences in behaviour between sessions accounted for either by differences in the task itself (between the 8s and 4s delay condition) or differences in the parameters of the strategy, such as the strength of temporal discounting.

      Even if one accepts the claim that the task recruits two distinct types of cognitive control, the argument that theta oscillations, which occur on delay choice trials in the 4s delay condition, are a correlate of a 'resistance-based' strategy (resisting the immediate reward), is hard to reconcile with the fact that theta oscillations do not occur on delay choice trials in the 8s delay condition (Figure 3). The authors note this discrepancy, but state that 'The reason was because these groups largely avoided the delayed lever (Figure 1) and thereby abandoned the need to implement resistance-based control altogether.' However, the data in Figure 1D show that even in the 8s condition the subjects choose the delayed lever on around 50% of trials. It is not obvious why choosing the delayed lever on 50% of trials in the 8s condition does not require 'resistance-based' cognitive effort, while choosing it in the 4s delay condition does.

      The other main claims regarding the neural data are that the neuronal representation of the value of the immediate reward lever (ival) is stronger in sessions where subjects are choosing that lever more often, particularly the 8LO group, and that neurons whose activity tracks ival are a different population from neurons whose activity is theta modulated. However, the analysis methods used to make these claims are rather convoluted and make it hard to assess the strength of the evidence for them.

      To evaluate the strength of ival representation in neural activity, the authors first fit a regression model predicting each neuron's activity at different timepoints as a function of behavioural variables including ival, which is a sensible first step. However, they then perform clustering on the regression coefficients and then plot neural activity only for the cluster which they state 'provided the clearest example of value tracking'. It is not clear how the clustering was done, whether there were in fact well defined clusters in the neural activity, how the clusters whose activity is plotted were chosen, nor the proportion of neurons in this cluster for each group of sessions. The analysis therefore provides only limited information about the strength of ival representation in different session groups. It would be useful to quantify the variance explained by ival in neural activity for each group of sessions using a simpler quantification of the regression analysis, such as cross-validated coefficient of partial determination.

      The analysis of how theta modulation related to representation of ival across neurons was also complicated and non-standard. To determine whether individual neurons were theta modulated, the authors did PCA on a matrix comprised of spike train autocorrelations for individual neurons, and then grouped neurons according to the projection of their autocorrelation function onto the 3rd Principal Component, on the basis that neurons with negative projection onto this component showed a peak roughly at theta frequency in the power spectrum of their autocorrelation. Even ignoring the fact that the peak in the power spectrum is broad and centred above the standard theta frequency (see figure 5B3), this is an arbitrary and unnecessarily complex way to determine if neurons are theta modulated. It would be much simpler and greatly preferable to either directly assess the modulation depth of individual neurons spike train autocorrelation in the theta band, or to use a metric of spike-LFP coupling in the theta band instead. The authors do include some analysis of spike field coherence in Figure 6 and this is a much more sensible approach. However, it is worth noting that the only session group which shows a difference in coherence at theta frequency relative to the other groups is 8LO, to which only 2 of 8 animals contribute any data and 70% of sessions come from one animal. It is therefore unclear whether differences in this group are due to differences in behavioural strategy, or reflect other sources of cross-animal variation.

    1. Reviewer #1 (Public review):

      The paper from Hudait and Voth details a number of coarse-grained simulations as well as some experiments focused on the stability of HIV capsids in the presence of the drug lenacapavir. The authors find that LEN hyperstabilizes the capsid, making it fragile and prone to breaking inside the nuclear pore complex.

      I found the paper interesting. I have a few suggestions for clarification and/or improvement.

      (1) How directly comparable are the NPC-capsid and capsid-only simulations? A major result rests on the conclusion that the kinetics of rupture are faster inside the NPC, but are the numbers of LENs bound identical? Is the time really comparable, given that the simulations have different starting points? I'm not really doubting the result, but I think it could be made more rigorous/quantitative.

      (2) Related to the above, it is stated on page 12 that, based on the estimated free-energy barrier, pentamer dissociation should occur in ~10 us of CG time. But certainly, the simulations cover at least this length of time?

      (3) At first, I was surprised that even in a CG simulation, LEN would spontaneously bind to the correct site. But if I read the SI correctly, LEN was parameterized specifically to bind to hexamers and not pentamers. This is fine, but I think it's worth describing in the main text.

    2. Reviewer #2 (Public review):

      Here, Hudait et al. use CG modeling to investigate the mechanism by which lenacapavir (LEN) treats HIV capsids that dock to the nuclear pore complex (NPC). However, the manuscript fails to present meaningful findings that were previously unreported in the literature, and is thus of low impact. Many claims made in the manuscript are not substantiated by the presented data. Key mechanistic details that the work purports to reveal are artifacts of the parameterization choices or simulation/analysis design, with the simulations said to reveal details that they were specifically biased to reproduce. This makes the manuscript highly problematic, as its contributions to the literature would represent misconceptions based on oversights in modeling, and thus mislead future readers.

      (1) Considering the literature, it is unclear that the manuscript presents new scientific discoveries. The following are results from this paper that have been previously reported:

      (a) LEN-bound capsid can dock to the nuclear pore (Figure 2; see e.g. 10.1016/j.cell.2024.12.008 or 10.1128/mbio.03613-24).

      (b) NUP98 interacts with the docked capsid (Figure 2; see e.g. 10.1016/j.virol.2013.02.008 or 10.1038/s41586-023-06969-7 or 10.1016/j.cell.2024.12.008).

      (c) LEN and NUP98 compete for a binding interface (Figure 2; see e.g. 10.1126/science.abb4808 or 10.1371/journal.ppat.1004459).

      (d) LEN creates capsid defects (Figure 3 and 5, see e.g. 10.1073/pnas.2420497122).

      (e) RNP can emerge from a damaged capsid (Figure 3 and 5; see e.g. 10.1073/pnas.2117781119 or 10.7554/eLife.64776).

      (f) LEN hyperstabilizes/reduces the elasticity of the capsid lattice (Figure 6; see e.g. 10.1371/journal.ppat.1012537).

      (2) The mechanistic findings related to how these processes occur are problematic, either based on circular reasoning or unsubstantiated, based on the presented data. In some cases, features of parameterization and simulation/analysis design are erroneously interpreted as predictions by the CG models.

      (a) Claim: LEN-bound capsids remain associated with the NPC after rupture. CG simulations did not reach the timescale needed to demonstrate continued association or failure to translocate, leaving the claim unsubstantiated.

      (b) Claim: LEN contributes to loss of capsid elasticity. The authors do not measure elasticity here, only force constants of fluctuations between capsomers in freely diffusing capsids. Elasticity is defined as the ability of a material to undergo reversible deformation when subjected to stress. Other computational works that actually measure elasticity (e.g., 0.1371/journal.ppat.1012537) could represent a point of comparison, but are not cited. The changes in force constants in the presence of LEN are shown in Figure 6C, but the text of the scale bar legend and units of k are not legible, so one cannot discern the magnitude or significance of the change.

      (c) Claim: Capsid defects are formed along striated patterns of capsid disorder. Data is not presented that correlates defects/cracks with striations.

      (d) Claim: Typically 1-2 LEN, but rarely 3 bind per capsid hexamer. The authors state: "The magnitude of the attractive interactions was adjusted to capture the substoichiometric binding of LEN to CA hexamers (Faysal et al., 2024). ... We simulated LEN binding to the capsid cone (in the absence of NPC), which resulted in a substoichiometric binding (~1.5 LEN per CA hexamer), consistent with experimental data (Singh et al., 2024)." This means LEN was specifically parameterized to reproduce the 1-2 binding ratio per hexamer apparent from experiments, so this was a parameterization choice, not a prediction by CG simulations as the authors erroneously claim: "This indicates that the probability of binding a third LEN molecule to a CA hexamer is impeded, likely due to steric effects that prevent the approach of an incoming molecule to a CA hexamer where 2 LEN molecules are already associated. ... Approximately 20% of CA hexamers remain unoccupied despite the availability of a large excess of unbound LEN molecules. This suggests a heterogeneity in the molecular environment of the capsid lattice for LEN binding." These statements represent gross over-interpretation of a bias deliberately introduced during parameterization, and the "finding" represents circular reasoning. Also, if "steric effects" play any role, the authors could analyze the model to characterize and report them rather than simply speculate.

      (e) Claim: Competition between NUP98 and LEN regulates capsid docking. The authors state: "A fraction of LEN molecules bound at the narrow end dissociate to allow NUP98 binding to the capsid ... Therefore, LEN can inhibit the efficient binding of the viral cores to the NPC, resulting in an increased number of cores in the cytoplasm." Capsid docking occurs regardless of the presence of LEN, and appears to occur at the same rate as the LEN-free capsid presented in the authors' previous work (Hudait &Voth, 2024). The presented data simply show that there is a fluctuation of bound LEN, with about 10 fewer (<5%) bound at the end of the simulation than at the beginning, and the curve (Figure 2A) does not clearly correlate with increased NUP98 contact. In that case, no data is shown that connects LEN binding with the regulation of the docking process. Further, the two quoted statements contradict each other. The presented data appear to show that NUP outcompetes LEN binding, rather than LEN inhibiting NUP binding. The "Therefore" statement is an attempt to reconcile with experimental studies, but is not substantiated by the presented data.

      (f) Claim: LEN binding leads to spontaneous dissociation of pentamers. The CG simulation trajectories show pentamer dissociation. However, it is quite difficult to believe that a pentamer in the wide end of the capsid would dissociate and diffuse 100 nm away before a hexamer in the narrow end (previously between two pentamers and now only partially coordinated, also in a highly curved environment, and further under the force of the extruding RNA) would dissociate, as in Figure 2B. A more plausible explanation could be force balance between pent-hex versus hex-hex contacts, an aspect of CG parameterization. No further modeling is presented to explain the release of pentamers, and changes in pent-hex stiffness are not apparent in the force constant fluctuation analysis in Figure 6C.

      (g) Claim: WTMetaD simulations predict capsid rupture. The authors state: "In WTMetaD simulations, we used the mean coordination number (Figure S6) between CA proteins in pentamers and in hexamers as the reaction coordinate." This means that the coordination number, the number of pent-hex contacts, is the bias used to accelerate simulation sampling. Yet the authors then interpret a change in coordination number leading to capsid rupture as a discovery, representing a fundamental misuse of the WTMetaD method. Changes in coordination number cannot be claimed as an emergent property when they are in fact the applied bias, when the simulation forced them to sample such states. The bias must be orthogonal to the feature of interest for that feature to be discoverable. While the reported free energies are orthogonal to the reaction coordinate, the structural and stepwise-mechanism "findings" here represent circular reasoning.

      (3) Another major concern with this work is the excessive self-citation, and the conspicuous lack of engagement with similar computational modeling studies that investigate the HIV capsid and its interactions with LEN, capsid mechanical properties relevant to nuclear entry, and other capsid-NPC simulations (e.g., 10.1016/j.cell.2024.12.008 and 10.1371/journal.ppat.1012537). Other such studies available in the literature include examination of varying aspects of the system at both CG and all-atom levels of resolution, which could be highly complementary to the present work and, in many cases, lend support to the authors' claims rather than detract from them. The choice to omit relevant literature implies either a lack of perspective or a lack of collegiality, which the presentation of the work suffers from. Overall, it is essential to discuss findings in the context of competing studies to give readers an accurate view of the state of the field and how the present work fits into it. It is appropriate in a CG modeling study to discuss the potential weaknesses of the methodology, points of disagreement with alternative modeling studies, and any lack of correlation with a broader range of experimental work. Qualitative agreement with select experiments does not constitute model validation.

      (4) Other critiques, questions, concerns:

      (a) The first Results sub-heading presents "results", complete with several supplementary figures and a movie that are from a previous publication about the development of the HIV capsid-NPC model in the absence of LEN (Hudait &Voth, 2024). This information should be included as part of the introduction or an abbreviated main-text methods section rather than being included within Results as if it represents a newly reported advancement, as this could be misleading.

      (b) The authors say the unbiased simulations of capsid-NPC docking were run as two independent replicates, but results from only one trajectory are ever shown plotted over time. It is not mentioned if the time series data are averaged or smoothed, so what is the shadow in these plots (e.g., Figures 1,2, and Supplementary Figure 5)?

      (c) Why do the insets showing LEN binding in Figure 2A look so different from the models they are apparently zoomed in on? Both instances really look like they are taken from different simulation frames, rather than being a zoomed-in view.

      (d) What are the sudden jerks apparent in the SI movies? Perhaps this is related to the rate at which trajectory frames are saved, but occasionally, during the relatively smooth motion of the capsid-NPC complex, something dramatic happens all of a sudden in a frame. For example, significant and apparently instantaneous reorientation of the cone far beyond what preceding motions suggest is possible (SI movie 2, at timestamp 0.22), RNP extrusion suddenly in a single frame (SI movie 2, at timestamp 0.27), and simultaneous opening of all pentamers all at once starting in a single frame (SI movie 2, at timestamp 0.33). This almost makes the movie look generated from separate trajectories or discontinuous portions of the same trajectory. If movies have been edited for visual clarity (e.g., to skip over time when "nothing" is happening and focus on the exciting aspects), then the authors should state so in the captions.

      (e) Figure 3c presents a time series of the degree of defects at pent-hex and hex-hex interfaces, but I do not understand the normalization. The authors state, "we represented the defects as the number of under-coordinated CA monomers of the hexamers at the pentamer-hexamer-pentamer and hexamer-hexamer interface as N_Pen-Hex and N_Hex-Hex ... Note that in N_Pen-Hex and N_Hex-Hex are calculated by normalizing by the total number of CA pentamer (12) and hexamer rings (209) respectively." Shouldn't the number of uncoordinated monomers be normalized by the number of that type of monomer, rather than the number of capsomers/rings? E.g., 12*5 and 209*6, rather than 12 and 209?

      (f) The authors state that "Although high computational cost precluded us from continuing these CG MD simulations, we expect these defects at the hexamer-hexamer interface to propagate towards the high curvature ends of the capsid." The defects being reported are apparently propagating from (not towards) the high curvature ends of the capsid.

      (g) The first half of the paper uses the color orange in figures to indicate LEN, but the second half uses orange to indicate defects, and this could be confusing for some readers. Both LEN and "defects" are simply a cluster of spheres, so highlighted defects appear to represent LEN without careful reading of captions.

      (h) SI Figure S3 captions says "The CA monomers to which at least one LEN molecule is bound are shown in orange spheres. The CA monomers to which no LEN molecule is bound are shown in white spheres. " While in contradiction, the main-text Fig 2 says "The CA monomers to which at least one LEN molecule is bound are shown in white spheres. The CA monomers to which no LEN molecule is bound are shown in orange spheres. " One of these must be a typo.

      (i) The authors state that: "CG MD simulations and live-cell imaging demonstrate that LEN-treated capsids dock at the NPC and rupture at the narrow end when bound to the central channel and then remain associated to the NPC after rupture." However, the live cell imaging data do not show where rupture occurs, such that this statement is at least partially false. It is also unclear that CG simulations show that cores remain bound following rupture, given that simulations were not extended to the timescale needed to observe this, again rendering the statement partially false.

      (j) The authors state: "We previously demonstrated that the RNP complex inside the capsid contributes to internal mechanical strain on the lattice driven by CACTD-RNP interactions and condensation state of RNP complex (Hudait &Voth, 2024). " In that case, why do the present CG models detect no difference in results for condensed versus uncondensed RNP?

      (k) The authors state: "The distribution demonstrates that the binding of LEN to the distorted lattice sites is energetically favorable. Since LEN localizes at the hydrophobic pocket between two adjoining CA monomers, it is sterically favorable to accommodate the incoming molecule at a distorted lattice site. This can be attributed to the higher available void volume at the distorted lattice relative to an ordered lattice, the latter being tightly packed. This also allows the drug molecule to avoid the multitude of unfavorable CA-LEN interactions and establish the energetically favorable interactions leading to a successful binding event. " What multitude of unfavorable interactions are the authors referring to? Data is not presented to substantiate the claim of increased void volume between hexamers in the distorted lattice. Capsomer distortion is shown as a schematic in Figure 6A rather than in the context of the actual model.

      (l) The authors state that "These striated patterns also demonstrate deviations from ideal lattice packing. " What does ideal lattice packing mean in this context, where hexamers are in numerous unique environments in terms of curvature? What is the structural reference point?

      (m) If pentamer-hexamer interactions are weakened in the presence of LEN, why are differences at these interfaces not apparent in the Figure 6C data that shows stiffening of the interactions between capsomer subunits?

      (n) The authors state: "Lattice defects arising from the loss of pentamers and cracks along the weak points of the hexameric lattice drive the uncoating of the capsid." The word rupture or failure should be used here rather than uncoating; it is unclear that the authors are studying the true process of uncoating and whether the defects induced by LEN binding relate in any way to uncoating.

      (o) The authors state: "LEN-treated broken cores are stabilized by the interaction with the disordered FG-NUP98 mesh at the NPC." But no data is presented to demonstrate that capsid stability is increased by NUP98 interaction. In fact, the presented data could suggest the opposite since capsids in contact with NUP98 in the NPC appeared to rupture faster than freely diffusing capsids.

      (p) The authors state: "LEN binding stimulates similar changes in free capsids, but they occur with lower frequency on similar time scales, suggesting that the cores docked at the NPC are under increased stress, resulting in more frequent weakening of the hexamer-pentamer and hexamer-hexamer interactions, as well as more nucleation of defects at the hexamer-hexamer<br /> Interface. ... Our results suggest that in the presence of the LEN, capsid docking into the NPC central channel will increase stress, resulting in more frequent breaks in the capsid lattice compared to free capsids." The first is a run-on sentence. The results shown support that LEN stimulates changes in free capsids to happen faster, but not more frequently. The frequency with which an event occurs is separate from the speed with which the event occurs.

      (q) The authors state: "A possible mechanistic pathway of capsid disassembly can be that multiple pentamers are dissociated from the capsid sequentially, and the remaining hexameric lattice remains stabilized by bound LEN molecules for a time, before the structural integrity of the remaining lattice is compromised." This statement is inconsistent with experimental studies that say LEN does not lead to capsid disassembly, and may even prevent disassembly as part of its disruption of proper uncoating (e.g., 10.1073/pnas.2420497122 previously published by the authors).

      (r) Finally, it remains a concern with the authors' work that the bottom-up solvent-free CG modeling software used in this and supporting works is not open source or even available to other researchers like other commonly used molecular dynamics software packages, raising significant questions about transparency and reproducibility.

    1. Reviewer #1 (Public review):

      Summary:

      Spinal projection neurons in the anterolateral tract transmit diverse somatosensory signals to the brain, including touch, temperature, itch, and pain. This group of spinal projection neurons is heterogeneous in their molecular identities, projection targets in the brain, and response properties. While most anterolateral tract projection neurons are multimodal (responding to more than one somatosensory modality), it has been shown that cold-selective projection neurons exist in lamina I of the spinal cord dorsal horn. Using a combination of anatomical and physiological approaches, the authors discovered that the cold-selective lamina I projection neurons are heavily innervated by Trpm8+ sensory neuron axons, with calb1+ spinal projection neurons primarily capturing these cold-selective lamina I projection neurons. These neurons project to specific brain targets, including the PBNrel and cPAG. This study adds to the ongoing effort in the field to identify and characterize spinal projection neuron subtypes, their physiology, and functions.

      Strengths:

      (1) The combination of anatomical and physiological analyses is powerful and offers a comprehensive understanding of the cold-selective lamina I projection neurons in the spinal cord dorsal horn. For example, the authors used detailed anatomical methods, including EM imaging of Trpm8+ axon terminals contacting the Phox2a+ lamina I projection neurons. Additionally, they recorded stimulus-evoked activity in Trpm8-recipient neurons, carefully selected by visual confirmation of tdTomato and GFP juxtaposition, which is technically challenging.

      (2) This study identifies, for the first time, a molecular marker (calb1) that labels cold-selective lamina I projection neurons. Although calb1+ projection neurons are not entirely specific to cold-selective neurons, using an intersectional strategy combined with other genes enriched in this ALS group or cold-induced FosTRAP may further enhance specificity in the future.

      (3) This study shows that cold-selective lamina I projection neurons specifically innervate certain brain targets of the anterolateral tract, including the NTS, PBNrel, and cPAG. This connectivity provides insights into the role of these neurons in cold sensation, which will be an exciting area for future research.

      Weaknesses:

      (1) The sample size for the ex vivo electrophysiology is small. Given the difficulty and complexity of the preparation, this is understandable. However, a larger sample size would have strengthened the authors' conclusions.

      (2) The authors used tdTomato expression to identify brain targets innervated by these cold-selective lamina I projection neurons. Since tdTomato is a soluble fluorescent protein that fills the entire cell, using synaptophysin reporters (e.g., synaptophysin-GFP) would have been more convincing in revealing the synaptic targets of these projection neurons.

      (3) The summary cartoon shown in Figure 7 can be misleading because this study did not determine whether these cold-selective lamina I projection neurons have collateral branches to multiple brain targets or if there are anatomical subtypes that may project exclusively to specific targets. For example, a recent study (Ding et al., Neuron, 2025) demonstrated that there are PBN-projecting spinal neurons that do not project to other rostral brain areas. Furthermore, based on the authors' bulk labeling experiments, the three main brain targets are NTS, PBNrel, and cPAG. The VPL projection is very sparse and almost negligible.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors took advantage of a semi-intact ex vivo somatosensory preparation that includes hindlimb skin to characterize the response of projection neurons in the dorsal horn of the spinal cord to peripheral stimulation, including cold thermal stimuli. The main aim was to characterize the connectivity between peripheral afferents expressing the cold-sensing receptor TRPM8 and a set of genetically tagged neurons of the anterolateral system (ALS). These ALS neurons expressed high levels of the calcium-binding protein calbindin 1.

      In addition, combining different viral tracing methods, the authors could identify the anatomical targets of this specific subset of projection neurons within the brainstem and diencephalon.

      Strengths:

      The use of a relatively new (seldom used previously) transgenic line to label TRPM8-expressing afferents, combined with the genetic characterization of a previously identified subset of projection neurons, adds a specificity to the characterization. The transgenic line appears to capture well the subpopulation of Trpm8-expressing neurons

      In addition, the use of electron microscopy techniques makes the interpretation of the structural contacts more compelling.

      The writing is clear, and the presentation of findings follows a logical flow.

      Overall, this study provides solid, novel information about the brain circuits involved in cold thermosensation.

      Weaknesses:

      In the characterization of recorded neurons in close contact or in the absence of this contact with TRPM8 afferents, the number of recorded neurons is relatively low. In addition, the strength of thermal stimuli is not very well controlled, preventing a more precise characterization of the connectivity.

      The authors could provide some sense of the effort needed to record from the 6 cold-activated neurons described. How many preparations were needed, etc?

    1. Reviewer #1 (Public review):

      This manuscript provides several important findings that advance our current knowledge about the function of the gustatory cortex (GC). The authors used high-density electrophysiology to record neural activity during a sucrose/NaCl mixture discrimination task. They observed population-based activity capable of representing different mixtures in a linear fashion during the initial stimulus sampling period, as well as representing the behavioral decision (i.e., lick left or right) at a later time point. Analyzing this data at the single neuron level, they observed functional subpopulations capable of encoding the specific mixture (e.g., 45/55), tastant (e.g., sucrose), and behavioral choice (e.g., lick left). To test the functional consequences of these subpopulations, they built a recurrent neural network model in order to "silence" specific functional subpopulations of GC neurons. The virtual ablation of these functional subpopulations altered virtual behavioral performance in a manner predicted by the subpopulation's presumed contribution.

      Strengths:

      Building a recurrent neural network model of the gustatory cortex allows the impact of the temporal sequence of functionally identifiable populations of neurons to be tested in a manner not otherwise possible. Specifically, the author's model links neural activity at the single neuron and population level with perceptual ability. The electrophysiology methods and analyses used to shape the network model are appropriate. Overall, the conclusions of the manuscript are well supported.

      Weaknesses:

      One potential concern is the apparent mismatch between the neural and behavioral data. Neural analyses indicate a clear separation of the activity associated with each mixture that is independent of the animal's ultimate choice. This would seemingly indicate that the animals are making errors despite correctly encoding the stimulus. Based solely on the neural data, one would expect the psychometric curve to be more "step-like" with a significantly steeper slope. One potential explanation for this observation is the concentration of the stimuli utilized in the mixture discrimination task. The authors utilize equivalent concentrations, rather than intensity-matched concentrations. In this case, a single stimulus can (theoretically) dominate the perception of a mixture, resulting in a biased behavioral response despite accurate concentration coding at the single neuron level. Given the difficulty of isointensity matching concentrations, this concern is not paramount. However, the apparent mismatch between the neural and behavioral data should be acknowledged/addressed in the text.

    2. Reviewer #2 (Public review):

      Lang et al. investigate the contribution of individual neuronal encoding of specific task features to population dynamics and behavior. Using a taste-based decision-making behavioral task with electrophysiology from the mouse gustatory cortex and computational modeling, the authors reveal that neurons encoding sensory, perceptual, and decision-related information with linear and categorical patterns are essential for driving neural population dynamics and behavioral performance. Their findings suggest that individual linear and categorical coding units have a significant role in cortical dynamics and perceptual decision-making behavior.

      Overall, the experimental and analytical work is of very high quality, and the findings are of great interest to the taste coding field, as well as to the broader systems neuroscience field.

      I have a couple of suggestions to further enhance the authors' important conclusions:

      My main comment is the distinction between constrained and unconstrained units. The authors train a small percentage of units to match the real neural data (constrained units), and then find some unconstrained units that are similar to the real neural data and some that are not. As far as I could tell, the relative fraction of constrained and unconstrained units in the trained RNN is not reported; I assume the constrained ones are a much smaller population, but this is unclear. The selection of different groups of neurons for the RNN ablation experiments appears to be based on their response profiles only. Therefore, if I understood correctly, both constrained and unconstrained units and ablated together for a given response category (e.g., linear or step-perception). It would be useful, therefore, to separately compare the effects of constrained vs. unconstrained RNN units.

      Specifically:

      (1) For the analyses in the initial version of the manuscript, the authors should specify how many units in each ablation category are constrained and unconstrained.

      (2) The authors should repeat Figure 6, but only for unconstrained units to test how much of the effects in the initial version of Figure 6 are driven by constrained vs. unconstrained RNN units.

      (3) The authors should repeat Figure 7, but performing ablations separately on the constrained and unconstrained units to examine how the network behaves in each case and the resulting "behavioral" effect.

    3. Reviewer #3 (Public review):

      Primary taste cortex neurons show a variety of dynamic response profiles during taste decision-making tasks, reflecting both sensory and decision variables. In the present study, Lang et al. set out to determine how neurons with distinct response profiles contribute to perceptual decisions about taste stimuli.

      The methods, with reference to the behavioral task and electrophysiological recordings/data analysis, are straightforward, solid, and appropriate. The computational model is presented in a clear and conceptually intuitive manner, although the details are outside of my area of expertise.

      The experimental design features a simple 2-alternative forced-choice design that yielded clear psychometric curves across a range of stimuli. In vivo recordings were performed using Neuropixels and yielded an appropriate sample of single neuron responses. The strength of the model lies in the fact that it consists of single neurons whose response profiles mimic those recorded in vivo, and allows neuron-selective manipulation.

      By virtually lesioning specific subsets of neurons in the network, the authors demonstrate that a relatively small population of neurons with specific tuning profiles was sufficient to produce the observed neural dynamics and behavioral responses. This effect was selective as lesioning other responsive neurons did not affect overall response dynamics or performance.

      These findings provide new insight into the relation between the response profiles of single neurons in sensory cortex, their population-level activity dynamics, and the perceptual decisions they inform.

      The approach is particularly innovative as it uses computational modeling to target functionally-defined "cell types", which cannot necessarily be targeted by more conventional genetic approaches.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Green et al. attempt to use large-scale protein structure analysis to find signals of selection and clustering related to antibiotic resistance. This was applied to the whole proteome of Mycobacterium tuberculosis, with a specific focus on the smaller set of known antibiotic-resistance-related proteins.

      Strengths:

      The use of geospatial analysis to detect signals of selection and clustering on the structural level is really intriguing. This could have a wider use beyond the AMR-focussed work here and could be applied to a more general evolutionary analysis context. Much of the strength of this work lies in breaking ground into this structural evolution space, something rarely seen in such pathogen data. Additional further research can be done to build on this foundation, and the work presented here will be important for the field.

      The size of the dataset and use of protein structure prediction via AlphaFold, giving such a consistent signal within the dataset, is also of great interest and shows the power of these approaches to allow us to integrate protein structure more confidently into evolution and selection analyses.

      Weaknesses:

      There are several issues with the evolutionary analysis and assumptions made in the paper, which perhaps overstate the findings, or require refining to take into account other factors that may be at play.

      (1) The focus on antimicrobial resistance (AMR) throughout the paper contains the findings within that lens. This results in a few different weaknesses:

      (a) While the large size of the analysis is highlighted in the abstract and elsewhere, in reality, only a few proteins are studied in depth. These are proteins already associated with AMR by many other studies, somewhat retreading old ground and reducing the novelty.

      (b) Beyond the AMR-associated proteins, the proteome work is of great interest, but only casually interrogated and only in the context of AMR. There appears to be an assumption that all signals of positive selection detected are related to AMR, whereas something like cas10 is part of the CRISPR machinery, a set of proteins often under positive selection, and thus unlikely to be AMR-related.

      (2) The strength of the signal from the structural information and the novelty of the structural incorporation into prediction are perhaps overstated.

      (a) A drop of 13% in F1 for a gain of 2% in PPV is quite the trade-off. This is not as indicative of a strong predictor that could be used as the abstract claims. While the approach is novel and this is a good finding for a first attempt at such complex analysis, this is perhaps not as significant as the authors claim

      (b) In relation to this, there is a lack of situating these findings within the wider research landscape. For instance, the use of structure for predicting resistance has been done, for example, in PncA (https://academic.oup.com/jacamr/article/6/2/dlae037/7630603, https://www.sciencedirect.com/science/article/pii/S1476927125003664, https://www.nature.com/articles/s41598-020-58635-x) and in RpoB (https://www.nature.com/articles/s41598-020-74648-y). These, and other such works, should be acknowledged as the novelty of this work is perhaps not as stark as the authors present it to be.

      (3) The authors postulate that neutral AA substitutions would be randomly distributed in the protein structure and thus use random mutations as a negative control to simulate this neutral evolution. However, I am unsure if this is a true negative control for neutral evolution. The vast majority of residues would be under purifying selection, not neutral selection, especially in core proteins like rpoB and gyrA. Therefore, most of these residues would never be mutated in a real-world dataset. Therefore, you are not testing positive selection against neutral selection; you are testing positive against purifying, which will have a much stronger signal. This is likely to, in turn, overestimate the signal of positive selection. This would be better accounted for using a model of neutral evolution, although this is complex and perhaps outside the scope. Still, it needs to be made clear that these negative controls are not representative of neutral evolution.

      (4) In a similar vein, the use of 15 Å as a cut-off for stating co-localisation feels quite arbitrary. The average radius of a globular protein is about 20 Å, so this could be quite a large patch of a protein. I think it may be good to situate the cut-off for a 'single location' within a size estimator of the entire protein, as 15 Å could be a neighbourhood in a large protein, but be the whole protein for smaller ones.

    2. Reviewer #2 (Public review):

      Summary:

      This is an important study that, for the first time, systematically places the homoplastic genetic variation observed in the coding regions in a large collection of >31,000 M. tuberculosis samples into the protein structural context. This should be much more informative when, e.g. predicting antimicrobial resistance. The authors imaginatively apply the Getis-Ord score, which originated in geographical spatial analysis but has also been used in human disease to demonstrate that missense mutations in M. tuberculosis known to be associated with antimicrobial resistance are clustered in space. That they are able to consider almost all of the proteome using a large dataset of 31,000 M. tuberculosis complex clinical samples, which makes the evidence convincing.

      Strengths:

      To my knowledge, this is the first study to place the homoplastic missense mutations from a large clinical dataset into their protein structural context and attempt to look for clustering in space, which could be indicative of a recent evolutionary pressure, such as the use of antibiotics. The field usually only views resistance through the genetic paradigm, so it is delightful to see a structural paradigm being brought to bear, as this should, in theory, be much more informative, as protein structure is much closer to function. In addition, the dataset used is large (>31,000 clinical M. tuberculosis samples), and the authors are able to consider almost all of the ORFs (3,687/3,996) in the M. tuberculosis reference, and hence the analysis is comprehensive.

      Weaknesses:

      It is not apparent at the time of this review if the study could be reproduced by other researchers as e.g. whilst the authors state that the raw sequencing files (FASTQ) underpinning the dataset of 31,428 M. tuberculosis isolates can be downloaded the table in the Supplement containing the sample and accession identifiers contains rows that do not contain NCBI accessions e.g. '01R0685' or 'IDR 1600023875' or '1479144813357T181715lib5022nextseqn0035151bp' instead of the expected form e.g. 'SAMEA1016138'. I have searched the NCBI SRA using these terms and got no results, so they cannot be used to download any FASTQ files. There is also no information in the preprint on how the reads were processed (which is a complex process) and the dataset of SNPs subsequently built. One can trace back through the references, but I cannot find anywhere where one can download the SNP dataset, which would permit researchers to reproduce at least the latter stages of the work -- one obvious option would be to make the SNP dataset available. Likewise, the authors have constructed a "M. tuberculosis structureome", which would be very useful for the community but does not appear to be publicly available. At the time of the review, not all the GitHub repositories were public, so these points may have been rectified when that was corrected.

      The authors correctly point out in the Introduction that supervised methods like GWAS or ML need datasets with matching genetic and phenotypic drug susceptibility data, which are much difficult/expensive to obtain, but don't then close the loop by comparing their results back to such supervised methods. They pick out RnJ as having previously been identified by a GWAS, but it would have provided a useful validation of their method to e.g. demonstrating that X% of the genes they identify were also identified by GWAS/ML studies, and therefore their method can achieve similar results but without having to collect pDST data.

      Whilst the authors acknowledge that assuming all sites are equally likely to mutate in their random shuffling procedure is a shortcoming, a bigger weakness is, I suspect, that one should also only consider which amino acids could arise at each codon due to a SNP. Shuffling assumes any amino acid can arise at any codon which is only possible with multiple nucleotide changes, which is possible but highly unlikely.

      Finally, the authors implicitly assume that the mutations do not perturb the structure of the proteins, which is likely to be generally true for essential genes but less likely to be true for non-essential genes. This assumption underpins their entire approach and should be borne in mind when evaluating the results.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Xie and colleagues presents an intriguing behavioral finding for the field of perceptual learning (PL): combining the reactivation-based training paradigm with anodal tDCS induces complete generalization of the learning effect. Notably, this generalization is achieved without compromising the magnitude of learning effects and with an 80% reduction in total training time. The experimental design is well-structured, and the observed complete generalization is robustly replicated across two stimulus dimensions (orientation and motion direction).

      However, while the empirical results are methodologically valid and scientifically surprising, the theoretical framework proposed to explain them appears underdeveloped and, in some cases, difficult to reconcile with the existing literature. Several arguments are insufficiently justified. In addition, the introduction of a non-standard metric (NGI: normalized learning gain index) raises concerns about the interpretability and comparability with existing PL literature.

      Strengths:

      (1) Rigorous experimental design

      In this study, Xie and colleagues employed a 2×2 factorial design (Training paradigm: Reactivation vs. Full-Practice × tDCS protocols: Anodal vs. Sham), which allowed clear dissociation of the main and interaction effects.

      (2) High statistical credibility

      Sample sizes were predetermined using G*Power, non-significant effects were evaluated using the Bayes factor, and the core behavioral findings were replicated in a second stimulus dimension. These strengthen the credibility of the findings.

      (3) Strong translational potential

      The observed complete generalization could have useful implications for sensory rehabilitation. The large reduction (80%) in total training time is particularly compelling.

      Weaknesses:

      (1) NGI (Normalized learning gain index) is a non-standard behavioral metric and may distort interpretability.

      NGI (pre - post / ((pre + post) / 2)) is rarely used in PL studies to measure learning effects. Almost all PL studies rely on raw thresholds and percent improvements (pre - post / pre), making it difficult to contextualize the current NGI-based results within the broader field. The current manuscript provides no justification for adopting NGI.

      A more critical issue is the NGI's nonlinearity: by normalizing to the mean of pre- and post-test thresholds, it disproportionately inflates learning effects for participants with lower post-test thresholds. Notably, the "complete generalization" claims are illustrated mainly with NGI plots. Although the authors also analyze thresholds directly and the results also support the core claim, the interpretation in the text relies heavily on NGI.

      The authors may consider rerunning key analyses using the standard percent improvement metric. If retaining NGI, the authors should provide explicit justification for why NGI is superior to standard measures.

      (2) The proposed theoretical framework is sometimes unclear and insufficiently supported.

      The authors propose the following mechanistic chain:

      (a) reactivation-based learning depends on offline consolidation mediated by GABA (page 4 line 73);

      (b) online a-tDCS reduces GABA (page 4, line 76), thereby disrupting offline consolidation (page 11, line 225);

      (c) disrupted offline consolidation reduces perceptual overfitting (page 4, line 77; page 11, line 225), thereby enabling generalization;

      (d) under full-practice training, a-tDCS increases specificity via a different mechanism (page 11 line 235).

      While this framework is plausible in broad terms, several components are speculative at best in the absence of neurochemical or neural measurements.

      (3) Several reasoning steps require further clarification.

      (a) Mechanisms of Reactivation-based Learning.

      The manuscript focuses on the neurochemical basis of reactivation-based learning. However, reactivation-induced neurochemical changes differ across brain regions. In the motor cortex, Eisenstein et al. (2023) reported that after reactivation, increased GABA and decreased E/I ratio were associated with offline gains. In contrast, Bang et al. (2018) demonstrated that, in the visual cortex, reactivation decreased GABA and increased E/I ratio. While both studies are consistent with GABA involvement, the direction of GABA modulation differs. The authors should clarify this discrepancy.<br /> More importantly, Bang et al. (2018) demonstrated that reactivation-based (3 blocks) and full-practice (16 blocks) training produced similar time courses of E/I ratio changes in V1: an initial increase followed by a decrease. Given this similarity, the manuscript would benefit from a more thorough discussion of how the two paradigms diverge mechanistically. For example, behaviorally, Song et al. (2021) reported greater generalization with reactivation-based training than with full-practice training, aligning with Kondat et al. (2025). Neurally, Kondat et al. (2024) showed that reactivation-based training increased activity in higher-order brain regions (e.g., IPS), whereas full practice training reduced connectivity between temporal and parietal regions.

      (b) tDCS Mechanisms and Protocols.

      The effect of a-tDCS on GABA is not consistent across brain regions. While a-tDCS reliably reduces GABA in the motor cortex, recently, a more related work (Abuleli et al., 2025) reports no significant modulation of GABA or Glx in V1, challenging the authors' assumption of tDCS-induced GABA reduction in the visual cortex.

      The manuscript proposes that online a-tDCS disrupts offline consolidation is somewhat difficult to interpret conceptually. Online tDCS typically modulates processes occurring during stimulation (e.g., encoding process, attentional state), whereas consolidation occurs afterward. Thus, stating that online tDCS protocols only disrupt offline consolidation without considering the possibility that they first modulate the encoding process is difficult to interpret. Even if tDCS has prolonged effects, the link between online stimulation and disruption of offline consolidation remains unelucidated.

      (c) Missing links between GABA modulation and perceptual overfitting.

      The proposed chain ("tDCS disrupts consolidation → reduced overfitting → improved generalization") skips a critical step: how GABA modulation translates to changes in neural representational properties (e.g., tuning width, representational overlap between trained/untrained stimuli) that define "perceptual overfitting." The PL literature has not established a link between GABA levels and these representational changes, leaving a key component of the mechanistic explanation underspecified.

      (d) Insufficient explanation of the opposite effects.

      The manuscript does not fully explain why the same a-tDCS promotes generalization in reactivation-based training but increases specificity in full-practice training. Both paradigms engage offline consolidations, and, as mentioned above, the time courses of E/I ratio changes are similar for 3-block reactivation-based or 16-block training. Thus, if offline consolidation mechanisms (and their associated E/I changes) are comparable across paradigms, it is unclear why identical a-tDCS would produce opposite outcomes in the two paradigms.

    2. Reviewer #2 (Public review):

      Xie et al., combined transcranial direct current brain stimulation (tDCS) and a reactivation-based training protocol to investigate the generalization of learning. Using visual perceptual learning as a model, they found that a reactivation-based training protocol, when combined with anodal tDCS over the visual cortex, can induce learning transfer to untrained visual orientations and motion directions. Interestingly, extending reactivation-based training to a full-training protocol with more training trials did not induce generalization of learning. Furthermore, even when paired with tDCS, extending the training protocol did not provide benefits for generalization of learning. This study provides interesting insights into the mechanisms of brain plasticity and how future training protocols could be designed to achieve robust and generalizable learning outcomes.

      The authors supported their arguments with a series of well-constructed experiments. The conclusions are largely supported by the data, although some clarifications about their hypotheses and control analyses could strengthen the work:

      (1) The authors hypothesize that tDCS can reduce perceptual overfitting through reduced GABA concentrations in the visual cortex, which leads to learning transfer. However, without a clear description of the role of GABA in perceptual learning and perceptual overfitting, it is difficult for the reader to understand why reduced GABA concentrations would contribute to generalization. Do the authors imply that increased GABA can lead to specificity? Are there studies that can support this argument? The authors also did not describe clearly how reactivation-based visual perceptual learning can modify GABA levels in the visual cortex differently (compared to full-practice) during training and during the offline consolidation phase. In order for the reader to better understand their hypotheses and the motivation of the current study, it is beneficial for the authors to provide a concise but clearer description of the roles of GABA in perceptual learning with a focus on the roles of GABA in generalization and during off-line consolidation for different types of training protocols (see for instance Bang et al., 2018; Frangou et al., 2019; Frank et al., 2022; Jia et al., 2024; Shibata et al., 2011; Tamaki et al., 2020; Yamada et al., 2024).

      (2) Based on the results, an alternative explanation is that the amount of transfer to the untrained visual feature might be related to the amount of learning for the trained visual feature, which might be different depending on the training protocol and brain stimulation combination. Is it beneficial to compare the amount of learning gains across different training and stimulation protocols to rule out this possibility? Would more learning gains for the trained visual feature predict less transfer for the untrained visual feature? Are there correlations between learning gains and learning transfer?

      (3) The authors argued that a reactivation-based training protocol, rather than the amount of training, was critical for the generalization of learning. The control experiment in the study showed that full-practice training combined with tDCS did not lead to transfer, as in reactivation-based training. However, in order to rule out the confounding effects from the amount of training, it is crucial to examine whether a training protocol in which a similar number of trials as in the reactivation-based training but not separated across training sessions would lead to similar generalization of learning.

    3. Reviewer #3 (Public review):

      Summary:

      This research focuses on a long-lasting and interesting phenomenon in human plasticity. When humans learn basic perceptual skills such as judging the orientation of a simple line, the learned abilities are often limited to the trained condition but not generalizable to untrained conditions. The authors hypothesized that this learning specificity was related to GABA, an inhibitory neurotransmitter in the brain. Using a novel training method that combines reactivation and a brain stimulation method (tDCS) that hypothetically inactivates GABA, the authors hypothesized that learned visual perceptual skills would show greater transfer.

      Strengths:

      The authors conducted a list of well-conceived behavior studies to demonstrate the effectiveness of their proposed method in enabling learning transfer in two different visual tasks, and carefully conducted comparison studies to elucidate other possible explanations. The sample size was adequate to convey convincing results, and the analyses were thorough.

      Weaknesses:

      While the authors built their training paradigm on

      (1) the hypothetical role GABA plays in inhibiting learning transfer, and

      (2) the hypothetical impact tDCS may have on GABA, there was no direct evidence supporting these hypotheses in the current study.

      Further, learning specificity takes many formats from features to locations to tasks; it is not yet clear the scope of the observed transfer with the proposed method.

    1. Reviewer #1 (Public review):

      Summary:

      The authors generated mouse and zebrafish models for DeSanto-Shinawi Syndrome, caused by loss-of-function variants in the WAC gene. Using these vertebrate systems, they demonstrate conserved craniofacial and social-behavioral phenotypes that parallel human clinical features, along with deficits in GABAergic markers. They observe increased seizure susceptibility and male-biased brain volumetric changes in Wac mutant mice. Together, these findings begin to define the biological consequences of Wac haploinsufficiency and provide valuable resources for future mechanistic studies.

      Strengths:

      WAC is a high-confidence neurodevelopmental disorder gene and one of the genes identified by large-scale exome sequencing efforts, including the Satterstrom et al. (2020) autism spectrum disorder cohort. This study establishes the first vertebrate Wac models, addressing a major gap in the understanding of DeSanto-Shinawi Syndrome, and provides a framework for studying other syndromic forms of autism. The models generated will be impactful and useful to the community to study and understand DeSanto-Shinawi Syndrome.

      The cross-species analysis is important and well executed, and reveals both conserved and divergent phenotypes. The behavioral and anatomical assays are rigorously executed and well-controlled, and the inclusion of RNA-sequencing analyses adds valuable insights into the mechanisms underlying brain function in Wac mutants. Notably, the RNA-seq data reveal upregulation of several clustered protocadherins, genes central to neuronal identity and cell-cell interactions, which are known to be regulated by dynamic developmental regulation of chromatin architecture. This observation provides an intriguing hint that could link Wac function to higher-order chromatin organization and neuronal connectivity.

      Weaknesses:

      The evidence is solid, but the study remains incomplete in its mechanistic depth and molecular interpretation. The authors compellingly describe behavioral, anatomical, and transcriptomic phenotypes associated with WAC loss, yet do not explore how WAC mechanistically regulates chromatin or transcription. Given prior evidence that WAC interacts with the RNF20/40 ubiquitin ligase complex and promotes histone H2B ubiquitination and transcriptional elongation, the paper would benefit from a discussion of these functions as a potential link between Wac haploinsufficiency and the observed changes in neuronal gene expression. Similarly, the authors mention WAC's WW and coiled-coil domains but do not consider how these domains could mediate nuclear interactions or recruitment of transcriptional cofactors that shape gene regulation and chromatin organization in neurons.

      The transcriptomic analysis is rich but largely descriptive. Although the upregulation of clustered protocadherins is particularly intriguing, these findings are not validated or localized to specific neuronal populations. The study would be strengthened by independently validating the most significant RNA-seq changes, such as protocadherin gamma genes, using in situ hybridization methods to confirm the spatial and cellular specificity of expression changes.

      Finally, while the behavioral and MRI results add valuable breadth, their interpretation would be improved by clearer reporting of sample sizes, statistical corrections, and effect sizes to support claims of sex-specific and regional brain volume differences.

    2. Reviewer #2 (Public review):

      The authors describe the first deep neurological characterization of WAC mutation in two vertebrate species (zebrafish and mouse). They examine these at various levels, guided by the work in humans that has associated a heterozygous WAC mutation with DeSantos Shinawi Syndrome (DESSH). Therefore, they investigate the animals for a variety of phenotypes, following a template for what is seen when characterizing a new mouse/fish model of a developmental disability gene. Investigations include analysis of skull and jaw for abnormalities(both species), MRI of brain structure(in mice), electrophysiology(mice), assessment of signaling pathways (by Western blot, in mice), cell counts (both, more in mice), transcriptomics (mice), and behavior (both).

      Generally, this describes an important first characterization of the consequences of the mutation. Most of the studies appear well-conducted and reasonably powered, thus solid or convincing. However, there are a few places where the data presentation could be improved for clarity, and a few concerns about some choices in analytical approach for a couple of the experiments, where improved statistical approaches could improve their sensitivity and/or better rule out false positives, and thus the support of some of these claims is currently incomplete. There is also some lack of clarity about the rationale for some decisions regarding the fish genetics. Nonetheless, this is an important and useful first characterization of many phenotypes of these lines. Such experiments form a baseline for future mechanistic studies in the same lines and a platform to test approaches to reverse phenotypes.

      Individual claims and their strength & weaknesses:

      (1) The authors developed mouse and zebrafish models of WAC deletion

      They used the existing KOMP floxed WAC line to generate a null allele. For the mouse, there is a Western showing that it is indeed null for the protein. The fish data is less robustly validated - they don't confirm the allele in null at the protein or RNA level, and fish have two paralogs (waca and wacb), and this paper only characterizes one of these. So this evidence is less clear. The evaluated mice are heterozygous (Het), similar to patients, while the fish appear to be evaluated as homozygous mutants.

      (2) The authors show that both species show altered craniofacial features

      These data appear well powered, and the findings are robust.

      (3) Each model altered GABAergic neurons

      In mice, the authors stained with PV antibodies and saw a decrease in cells positive for this staining. A second marker, Lhx6, does not show a difference, suggesting this might be a change in PV expression rather than cell number. They could maybe look into the literature to see if this loss of just the protein also occurs in other models. Overall, the sample size here is a bit smaller than other parts of the paper (n=3), and the methods on the cell counts were less clear, so it is not as clear that this finding is as robust. The authors counted several other broad classes of cells, and those appear normal. Interestingly, there might also be some TBR1 mislocalization in layer 6 that might be significant with added power.

      The fish data is based on an in situ hybridization for GAD. The measure shown is the width of the positive area in the forebrain. This measure is not one I have seen much before, and has potential to be driven by something unrelated to GABA (e.g., if the whole forebrain were simply a bit smaller). So this analysis could use a couple of other approaches (density of signal?) and/or a control probe for some other brain gene showing the measure is normal, and thus it is not just a size issue.

      (4) Mice were more susceptible to the seizure-inducing agent PTZ

      These data appear well powered, and the findings are robust. The authors also did a fair amount of useful electrophysiology that was all normal, but appeared to be well executed.

      (5) Mice had changes in brain volume that interact with sex

      The authors conducted an MRI on a good number of mice and reported a slight increase in global volume just in males. Sample size is fair, but the statistical approach here may be better if it puts males and females in the same model (to boost power and explicitly test for sex by genotype interaction that they report), and there is some chance that the brain region level differences that they report could include some false positives. They tested many regions, and it is not clear whether or not they corrected for the number of tests. Often, an FDR correction would be used in such imaging studies. It may be that only the most robust regional findings will survive those corrections. It is interesting data either way, but the analysis could be improved.

      (6) Several behaviors are altered in the mice as well

      These studies were fairly well-powered (n=15,16), and they found several positive and negative results, including alterations in memory and sociability in both species. There is a minor statistical flaw in the three-chamber analysis (they don't actually compare the Hets directly to the wildtypes in their statistical testing - a common mistake in neuroscience that should be addressed. But the data look like they will probably still be significant when correctly analyzed. In the supplement, the authors could do a bit more with the data they have to look at hyperactivity (i.e., show total motion in open field, not just time in center vs. periphery), and adding sex to their model might improve sensitivity for genotype effects.

      (7) Some biochemical signaling pathways are altered in the brain

      These are n=4 immunoblots, and show altered phospho ERK, but no changes in other signaling events predicted from prior WAC literature like H2B ubiquitination. They appear well done, and the authors share the full blots in the supplement.

      (8) WAC deletion also alters gene expression in the brain

      These studies were well-powered for RNAseq, with 10 and 14 samples, using neonates (P2), just the forebrain. The sequencing quality metrics all looked good, and the approach to analysis was okay. It would be stronger to again include sex in the model, rather than separate by sex. There were some typos in this part of the paper that made part of the conclusions unclear, but the RNAseq nicely confirmed the mutation of the mice, and discovered many differentially expressed genes, consistent with the role of this gene as a regulator of transcription. The presentation could be expanded to make more use of the data. Overall, though, this is a useful first characterization of the transcriptome in the line.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates whether newborns can use speaker identity to separate verbal memories, aiming to shed light on the earliest mechanisms of language learning and memory formation. The authors employ a well-designed experimental paradigm using functional near-infrared spectroscopy (fNIRS) to measure neural responses in newborns exposed to familiar and novel words, with careful counterbalancing and acoustic controls. Their main finding is that newborns show differential neural activation to novel versus familiar words, particularly when speaker identity changes, suggesting that even at birth, infants can use indexical cues to support memory.

      Strengths:

      Major strengths of the work include its innovative approach to a longstanding question in developmental science, the use of appropriate and state-of-the-art neuroimaging methods for this age group, and a thoughtful experimental design that attempts to control for order and acoustic confounds. The study addresses a significant gap in our understanding of how infants process and remember speech, and the data are presented transparently, with clear reporting of both significant and non-significant results.

      Weaknesses:

      However, there are notable weaknesses that limit the strength of the conclusions. The main recognition effect is restricted to a specific subgroup of participants and emerges only during a particular testing window, raising questions about the robustness and generalizability of the findings. The sample size, while typical for infant neuroimaging, is modest, and the statistical power is further reduced by missing data and group-dependent effects. Additionally, the claims regarding episodic memory and evolutionary implications are somewhat overstated, as the paradigm primarily demonstrates memory retention over a few minutes without evidence of the rich, contextually bound recall characteristic of fully developed episodic memory.

      Overall, the authors have achieved their primary aim of demonstrating that speaker identity can facilitate memory separation in newborns, providing valuable preliminary evidence for early indexical processing in language learning. The results are intriguing and likely to stimulate further research, but the limitations in effect robustness and theoretical interpretation mean that the findings should be viewed as an important step forward rather than a definitive answer. The methods and data will be of interest to researchers studying infant cognition, memory, and language, and the study highlights both the promise and the challenges of probing complex cognitive processes in the earliest stages of life.

    2. Reviewer #2 (Public review):

      Summary:

      Previous studies by some of the same authors of the actual manuscript showed that healthy human newborns memorize recently learned nonsense words. They exposed neonates to a familiarization period (several minutes) when multiple repetitions of a bisyllabic word were presented, uttered by the same speaker. Then they exposed neonates to an "interference period" when newborns listened to music or the same speaker uttering a different pseudoword. Finally, neonates were exposed to a test period when infants hear the familiarized word again. Interestingly, when the interference was music, the recognition of the word remained. The word recognition of the word was measured by using the NIRS technique, which estimates the regional brain oxygenation at the scalp level. Specifically, the brain response to the word in the test was reduced, unveiling a familiarity effect, while an increase in regional brain oxygenation corresponds to the detection of a "new word" due to a novelty effect. In previous studies, music does not erase the memory traces for a word (familiarity effect), while a different word uttered by the same speaker does.

      The current study aims at exploring whether and how word memory is interfered with by other speech properties, specifically the changes in the speaker, while young children can distinguish speakers by processing the speech. The author's main hypothesis anticipates that new speaker recognition would produce less interference in the familiarized word because somehow neonates "separate" the processing of both words (familiarized uttered by one speaker, and interfering word, uttered by a different speaker), memorizing both words as different auditory events.

      From my point of view, this hypothesis is interesting, since the results would contribute to estimating the role of the speaker in word learning and speech processing early in life.

      Strengths:

      (1) New data from neonates. Exploring neonates' cognitive abilities is a big challenge, and we need more data to enrich the knowledge of the early steps of language acquisition.

      (2) The study contributes new data showing the role of speaker (recognition) on word learning (word memory), a quite unexplored factor. The idea that neonates include speakers in speech processing is not new, but its role in word memory has not been evaluated before. The possible interpretation is that neonates integrate the process of the linguistic and communicative aspects of speech at this early age.

      (3) The study proposes a quite novel analytic approach. The new mixed models allow exploring the brain response considering an unbalanced design. More than the loss of data, which is frequent in infants' studies, the familiarization, interference and learning processes may take place at different moments of the experiment (e.g. related to changes in behavioural states along the experiment) or expressed in different regions (e.g. related to individual variations in optodes' locations and brain anatomy).

      Weaknesses:

      I did not find major weaknesses. However, I would like to have more discussion or explanation on the following points.

      (1) It would be fine to report the contribution of each infant to the analysis, i.e. how many good blocks, 1 to 5 in sequence 1 and 2, were provided by each infant.

      (2) Why did the factor "blocknumber" range from 0 to 4? The authors should explain what block zero means and why not 1 to 5.

      (3) I may suggest intending to integrate the changes in brain activity across the 3 phases. That is, whether changes in familiarization relate to changes in the test and interference phases. For instance, in Figure 2, the brain response distinguishes between same and novel words that occurred over IFG and STG in both hemispheres. However, in the right STG there was no initial increase in the brain response, and the response for the same was higher than the one for novels in the 5th block.

      (4) Similarly, it is quite amazing that the brain did not increase the activity with respect to the familiarization during the interference phase, mainly over the left hemisphere, even if both the word and speaker changed. Although the discussion considers these findings, an integrated discussion of the detection of novel words and the detection of a novel speaker over time may benefit from a greater integration of the results.

      Appraisal:

      The authors achieved their aims because the design and analytic approaches showed significant differences. The conclusions are based on these results. Specifically, the hypothesis that neonates would memorize words after interference, when interfered speech is pronounced by a different speaker, was supported by the data in blocks 2 and 5, and the potential mechanisms underlying these findings were discussed, such as separate processing for different speakers, likely related to the recognition of speaker identity.

      I think the discussion is well-structured, although I may suggest integrating the changes into the three phases of the study. Maybe comparing with other regions, not related to speech processing.

      Evaluating neonates is a challenge. Because physiology is constantly changing. For instance, in 9 minutes, newborns may transit from different behavioral states and experience different physiological needs.

      This study offers the opportunity to inspire looking for commonalities and individual differences when investigating early memory capacities of newborns.

    1. Reviewer #1 (Public review):

      Working memory affects sensory processing. Observers make faster and more accurate perceptual decisions at remembered locations, and corresponding regions of retinotopic visual cortex display enhanced response gain and modulations in oscillatory activity and spike-phase coupling.

      Roshanaei et al investigate the relationship between working memory, oscillatory activity, and response gain by reanalyzing extracellular laminar probe recordings from area MT of rhesus monkeys performing a spatial working memory task. During the memory period, visual probes were flashed in the receptive field of the recorded neurons, allowing a comparison of visual responses when memory overlapped with this receptive field (IN) or a location in the opposite hemifield (OUT). They first replicate a range of findings, including increased power in lower frequency bands (theta and alpha/beta) and increased visually-evoked responses in the IN condition. The authors next deployed a spectral technique (MODWT) to decompose the local field potential on single trials into 6 non-arbitrary component frequency bands. This approach allows the authors to observe shifts in peak spectral frequencies across IN and OUT trials. Finally, these single-trial spectral decompositions allowed the authors to relate frequency band power and response gain. This analysis revealed that response gain tended to increase with power in lower (alpha, beta, and theta) frequency bands, and this effect minimally interacted with the remembered location.

      Together, these interesting results provide correlational evidence that the effect of working memory on response gain may be mediated by oscillatory power. As the authors note, these results are also consistent with theories positing that lower frequency oscillatory activity primarily reflects working-memory related feedback signals from prefrontal and parietal cortex.

      These findings also suggest opportunities for further exploration. From a methodological perspective, it's not clear if the particular spectral decomposition highlighted here is necessary for obtaining these results, or if applying more standard approaches to single trials (as in Lundqvist et al., 2016) would have provided similar sensitivity. Additionally, although the relationship among working memory, oscillatory power, and response gain explored here is necessarily correlational, it could be of interest to subject these factors to a mediation analysis in this or future studies. Finally, the careful analysis of oscillatory phenomena reported here can ideally be used to inform large-scale circuit models and constrain the underlying mechanism.

    2. Reviewer #2 (Public review):

      Summary:

      Roshanaei et al investigate how working memory (WM) modulates neural activity in the primate visual system by examining local field potentials (LFPs) and spiking activity recorded in area MT. This work is an extension and the reuse of the dataset of the group's prior manuscript, Bahmani et al, Neuron 2018. The animals perform a spatial working memory task where they need to remember the location of a probe stimulus presented within (IN condition) or outside (OUT condition) the neuron's mapped receptive field (RF).

      As the first step, the authors replicate the findings in their Neuron 2018 paper by showing:<br /> (1) Significant modulation of the LFP power in αβ band during the working memory period in IN vs OUT conditions. This effect was absent in the gamma band.<br /> (2) A significant increase in phase-coded mutual information for probe location for the IN condition compared to the OUT condition.

      The authors then apply the Maximal Overlap Discrete Wavelet Transform (MODWT) to decompose LFP signals at the single-trial level, an approach that allows them to identify oscillatory components without imposing pre-defined frequency bands. They find that the precise frequencies of low-frequency oscillations (theta, alpha, and beta) correlate with the visually evoked firing rates of MT neurons.

      Strengths:

      The work addresses an important question: how cognitive states such as working memory modulate sensory processing in the visual cortex. More specifically, as we are expanding our understanding of the role of feedback in the brain, a me role of oscillations.

      The application of MODWT to single-trial LFPs represents a methodological advance over traditional bandpass filtering, which typically relies on trial-averaged power and may miss fine-grained frequency variability.

      The work aligns with ongoing efforts to understand how feedback and oscillatory dynamics contribute to top-down modulation in the brain.

      Weaknesses:

      (1) Several early results (e.g., increases in alpha/beta power and phase coding) closely replicate previous work from the same group and may be better placed in the Supplementary Information or omitted entirely. The novelty of the current paper lies mainly in the single-trial decomposition and frequency-rate relationship. However, the manuscript fails to expand the prior findings using the traditional methods, or at least offer a more mechanistic insight into the role of top-down modulation of the MT area during working memory tasks. Single-trial analysis can offer new avenues for mechanistic insight. For example, authors could have investigated the relationship of Cross-frequency coupling (CFC) with trial-by-trial behavior of the animal (Voytek et al., 2010) or transient synchronous oscillations for memory maintenance (Buschman et al, 2012).

      (2) The statistical methods require greater transparency. Details such as whether tests were one- or two-sided, how multiple comparisons were controlled, and how correlations among nearby electrodes were handled are not fully reported.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors develop a biologically plausible recurrent neural network model to explain how the hippocampus generates and uses barcode-like activity to support episodic memory. They address key questions raised by recent experimental findings: how barcodes are generated, how they interact with memory content (such as place and seed-related activity), and how the hippocampus balances memory specificity with flexible recall. The authors demonstrate that chaotic dynamics in a recurrent neural network can produce barcodes that reduce memory interference, complement place tuning, and enable context-dependent memory retrieval, while aligning their model with observed hippocampal activity during caching and retrieval in chickadees.

      Strengths:

      (1) The manuscript is well-written and structured.

      (2) The paper provides a detailed and biologically plausible mechanism for generating and utilizing barcode activity through chaotic dynamics in a recurrent neural network. This mechanism effectively explains how barcodes reduce memory interference, complement place tuning, and enable flexible, context-dependent recall.

      (3) The authors successfully reproduce key experimental findings on hippocampal barcode activity from chickadee studies, including the distinct correlations observed during caching, retrieval, and visits.

      (4) Overall, the study addresses a somewhat puzzling question about how memory indices and content signals coexist and interact in the same hippocampal population. By proposing a unified model, it provides significant conceptual clarity.

      Weaknesses:

      The recurrent neural network model incorporates assumptions and mechanisms, such as the modulation of recurrent input strength, whose biological underpinnings remain unclear. The authors acknowledge some of these limitations thoughtfully, offering plausible mechanisms and discussing their implications in depth. It may be worth exploring the robustness of the results to certain modeling assumptions. For instance, the choice to run the network for a fixed amount of time and then use the activity at the end for plasticity could be relaxed.

    2. Reviewer #2 (Public review):

      Summary:

      Striking experimental results by Chettih et al 2024 have identified high-dimensional, sparse patterns of activity in the chickadee hippocampus when birds store or retrieve food at a given site. These barcode-like patterns were interpreted as "indexes" allowing the birds to retrieve from memory the locations of stored food.

      The present manuscript proposes a recurrent network model that generates such barcode activity and uses it to form attractor-like memories that bind information about location and food. The manuscript then examines the computational role of barcode activity in the model by simulating two behavioral tasks, and by comparing the model with an alternate model in which barcode activity is ablated.

      Strengths of the study:

      proposes a potential neural implementation for the indexing theory of episodic memory\

      Provides a mechanistic model of striking experimental findings: barcode-like, sparse patterns of activity when birds store a grain at a specific location

      A particularly interesting aspect of the model is that it proposes a mechanism for binding discrete events to a continuous spatial map, and demonstrates the computational advantages of this mechanism

      Weaknesses:

      The importance of different modeling ingredients and dynamical mechanisms could be made more clear.

    1. Reviewer #2 (Public review):

      A long-standing debate in the field of Pavlovian learning relates to the phenomenon of timescale invariance in learning i.e. that the rate at which an animal learns about a Pavlovian CS is driven by the relative rate of reinforcement of the cue (CS) to the background rate of reinforcement. In practice, if a CS is reinforced on every trial, then the rate of acquisition is determined by the relative duration of the CS (T) and the ITI (C = inter-US-interval = duration of CS + ITI), specifically the ratio of C/T. Therefore, the point of acquisition should be the same with a 10s CS and a 90s ITI (T = 10; C = 90 + 10 = 100, C/T = 100/10 = 10) and with a 100s CS and a 900s ITI (T = 100; C = 900 + 100 = 1000, C/T = 1000/100 = 10). That is to say, the rate of acquisition is invariant to the absolute timescale as long as this ratio is the same. This idea has many other consequences, but is also notably different from more popular prediction-error based associative learning models such as the Rescorla-Wagner model. The initial demonstrations that the ratio C/T predicts the point of acquisition across a wide range of parameters (both within and across multiple studies) was conducted in Pigeons using a Pavlovian autoshaping procedure. What has remained under contention is whether or not this relationship holds across species, particularly in the standard appetitive Pavlovian conditioning paradigms used in rodents. The results from rodent studies aimed at testing this have been mixed, and often the debate around the source of these inconsistent results focuses on the different statistical methods used to identify the point of acquisition for the highly variable trial-by-trial responses at the level of individual animals.

      The authors successfully replicate the same effect found in pigeon autoshaping paradigms decades ago (with almost identical model parameters) in a standard Pavlovian appetitive paradigm in rats. They achieve this through a clever change the experimental design, using a convincingly wide range of parameters across 14 groups of rats, and by a thorough and meticulous analysis of these data. It is also interesting to note that the two authors have published on opposing sides of this debate for many years, and as a result have developed and refined many of the ideas in this manuscript through this process.

      Main findings

      (1) The present findings demonstrate that the point of initial acquisition of responding is predicted by the C/T ratio.

      (2) The terminal rates of responding to the CS appear to be related to the reinforcement rate of the CS (T; specifically, 1/T) but not its relation to the reinforcement rate of the context (i.e. C or C/T). In the present experiment, all CS trials were reinforced so it is also the case that the terminal rate of responding was related to the duration of the CS.

      (3) An unexpected finding was that responding during the ITI was similarly related to the rate of contextual reinforcement (1/C). This novel finding suggests that the terminal rate of responding during the ITI and the CS are related to their corresponding rates of reinforcement. This finding is surprising as it suggests that responding during the ITI is not being driven by the probability of reinforcement during the ITI.

      (4) Finally, the authors characterised the nature of increased responding from the point of initial acquisition until responding peaks at a maximum. Their analyses suggest that nature of this increase was best described as linear in the majority of rats, as opposed to the non-linear increase that might be predicted by prediction error learning models (e.g. Rescorla-Wagner). However, more detailed analyses revealed that these changes can be quite variable across rats, and more variable when the CS had lower informativeness (defined as C/T).

      Strengths and Weaknesses:

      There is an inherent paradox regarding the consistency of the acquisition data from Gibbon & Balsam's (1981) meta-analysis of autoshaping in pigeons, and the present results in magazine response frequency in rats. This consistency is remarkable and impressive, and is suggestive of a relatively conserved or similar underlying learning principle. However, the consistency is also surprising given some significant differences in how these experiments were run. Some of these differences might reasonably be expected to lead to differences in how these different species respond. For example:

      The autoshaping procedure commonly used in the pigeons from these data were pretrained to retrieve rewards from a grain hopper with an instrumental contingency between head entry into the hopper and grain availability. During Pavlovian training, pecking the key light also elicited an auditory click feedback stimulus, and when the grain hopper was made available, the hopper was also illuminated.

      In the present experimental procedure, the rats were not given contextual exposure to the pellet reinforcers in the magazine (e.g. a magazine training session is typically found in similar rodent procedures). The Pavlovian CS was a cue light within the magazine itself.

      These design features in the present rodent experiment are clearly intentional. Pretraining with the reinforcer in the testing chambers would reasonably alter the background rate of reinforcement (parameter), so it make sense not to include this but differs from the paradigm used in pigeons. Having the CS inside the magazine where pellets are delivered provides an effective way to reduce any potential response competition between CS and US directed responding and combines these all into the same physical response. This makes the magazine approach response more like the pecking of the light stimulus in the pigeon autoshaping paradigm. However, the location of the CS and US is separated in pigeon autoshaping, raising questions about why the findings across species are consistent despite these differences.

      Intriguingly, when the insertion of a lever is used as a Pavlovian cue in rodent studies, CS directed responding (sign-tracking) often develops over training such that eventually all animals bias their responding towards the lever than towards the US (goal-tracking at the magazine). However, the nature of this shift highlights the important point that these CS and US directed responses can be quite distinct physically as well as psychologically. Therefore, by conflating the development of these different forms of responding, it is not clear whether the relationship between C/T and the acquisition of responding describes the sum of all Pavlovian responding or predominantly CS or US directed responding.

      Another interesting aspect of these findings is that there is a large amount of variability that scales inversely with C/T. A potential account of the source of this variability is related to the absence of preexposure to the reward pellets. This is normally done within the animals' homecage as a form of preexposure to reduce neophobia. If some rats take longer to notice and then approach and finally consume the reward pellets in the magazine, the impact of this would systematically differ depending on the length of the ITI. For animals presented with relatively short CSs and ITIs, they may essentially miss the first couple of trials and/or attribute uneaten pellets accumulating in the magazine to the background/contextual rate of reinforcement. What is not currently clear is whether this was accounted for in some way by confirming when the rats first started retrieving and consuming the rewards from the magazine.

      While the generality of these findings across species is impressive, the very specific set of parameters employed to generate these data raise questions about the generality of these findings across other standard Pavlovian conditioning parameters. While this is obviously beyond the scope of the present experiment, it is important to consider that the present study explored a situation with 100% reinforcement on every trial, with a variable duration CS (drawn form a uniform distribution), with a single relatively brief CS (maximum of 122s) CS and a single US. Again, the choice of these parameters in the present experiment is appropriate and very deliberately based on refinements from many previous studies from the authors. This includes a number of criteria used to define magazine response frequency which includes discarding specific responses (discussed and reasonably justified clearly in the methods section). Similarly, the finding that terminal rates of responding are reliably related to 1/T is surprising, and it is not clear whether this might be a property specific to this form of variable duration CS, the use of a uniform sampling distribution, or the use of only a single CS. However, it is important to keeps these limitations in mind when considering some of the claims made in the discussion section of this manuscript that go beyond what these data can support.

    1. Reviewer #1 (Public review):

      Summary:

      The authors presented a simplified E. coli cell-free protein synthesis (eCFPS) system that reduces core reaction components from 35 to 7, improving protein expression levels. They also presented a "fast lysate" protocol that simplifies extract preparation, enhancing accessibility and robustness for diverse applications.

      Strengths:

      The authors present a valuable new protocol for eCFPS, which simplifies its application.

      Weaknesses:

      The authors only provided the data for optimization, leaving the underlying mechanism that explains the phenomena unexplained.

    2. Reviewer #2 (Public review):

      Summary:

      The authors have made a convincing argument that the current system of in vitro translation using E. coli extracts can be significantly optimized to work with much lesser components, while maintaining activity. They have showcased their improved activity using not only physical but also functional readouts.

      Strengths:

      The experiments are designed in a very logical and easy-to-understand manner, which makes it easier not only to follow the paper but also to reproduce the results. Functional assays with the synthesized proteins are a good way to demonstrate functionality and applicability of the system.

      Weaknesses:

      The production of the lysate requires special instrumentation, limiting accessibility. While the strengths of the study are well-emphasized, the limitations are not mentioned. Representation of some experiments could be done in a more complete manner.

    3. Reviewer #3 (Public review):

      Summary:

      The authors aimed to overcome the challenges associated with complex, conventional prokaryotic cell-free protein synthesis (CFPS) systems, which require up to thirty-five components, by developing a streamlined and efficient E. coli CFPS platform to encourage broader adoption. The main objective was to reduce the number of reaction components from thirty-five to seven, while also developing an accessible 'fast lysate' preparation protocol that eliminates time-consuming runoff and dialysis steps. The authors also sought to demonstrate the robustness and translational quality of this streamlined system by efficiently synthesising challenging functional proteins, including the cytotoxic restriction endonuclease BsaI and the self-assembling intermediate filament protein vimentin.

      Strengths:

      This study presents several key strengths of the optimised E. coli cell-free protein synthesis system in terms of its design, performance and accessibility.

      (1) The reaction mixture has been dramatically simplified, with the number of essential core components successfully reduced from up to thirty-five in conventional systems to just seven.

      (2) The "fast lysate" protocol is a significant advance in terms of procedure.

      (3) The system's ability to synthesise challenging, functional proteins is evidence of its robustness.

      Weaknesses:

      (1) Title: "A simplified and highly efficient cell-free protein synthesis system for prokaryotes".

      (a) This title is misleading since one would expect a simplified and highly efficient cell-free protein synthesis system to yield similar protein levels compared to current cell-free protein synthesis systems. What this study shows is that the composition of cell-free protein synthesis systems can be simplified while maintaining a certain level of protein synthesis. Here, optimisation does not involve maintaining protein synthesis yield while simplifying the cell-free protein synthesis system; rather, it involves developing a simplified cell-free protein synthesis system. As mentioned in my comments below, this study lacks a comparison of protein levels with a typical cell-free protein synthesis system.

      (b) What do the authors mean by "highly efficient"? Highly efficient compared to what experimental conditions? If one is interested in the yield of protein synthesis, is this simplified system highly efficient compared to current systems?

      (2) Figures 1, 3-5 :

      (a) What do relative luciferase units represent? How are these units calculated?

      (b) In this system, the level of expression depends mainly on the level of NLuc transcripts and the efficiency of NLuc translation. How did the authors ensure that the chemical composition of the different eCFPS buffers only affected protein translation and not transcript levels? In other words, are luciferase units solely an indicator of protein synthesis efficiency, or do they also depend on transcription efficiency, which could vary depending on the experimental conditions?

      (c) How long were the eCFPS reactions allowed to proceed before performing the luciferase activity measurement? Depending on the reaction time, the absence or presence of certain compounds may or may not impact NLuc expression. For example, it can be assumed that tRNA does not significantly affect NLuc levels over a short period of time, and that endogenous tRNA in the lysate is present at sufficient concentrations. However, over a longer period of time, the addition of tRNA could be essential to achieve optimal NLuc levels.

      (d) The authors show that tRNA and amino acids are not strictly essential for the expression of NLuc, likely due to residual amounts within the cell lysate. However, are the protein levels achieved without added amino acids and tRNA sufficient for biochemical assays that require a certain amount of protein? It is important to note that the focus here is on optimising the simplicity of the buffer rather than the level of protein expression. In fact, the simplicity of the buffer is prioritised over the amount of protein produced. This should be made clear.

      (e) How would the NLuc level compare if all the components were optimised individually and present in an optimised buffer, compared to a buffer optimised for simplicity as described by the authors?

      (3) Line 71, Streamlining eCFPS: removal of dispensable components. This title is misleading because it creates the false impression that proteins can be produced in vitro without the addition of certain compounds. While this is true, the level of protein produced may not be sufficient for subsequent biochemical analyses. This should be made clear.

      (4) Figure 2: In the legend, "(A) Protein expression levels of the eCFPS system measured at varying concentrations of KGlu and MgGlu2" would be more accurate if changed to "(A) Protein expression levels of the eCFPS system using an Nanoluciferase (NLuc) reporter DNA measured at varying concentrations of KGlu and MgGlu2".

      (5) Lanes 302-303: "The thorough optimization of the seven core components was a critical step in achieving high protein expression levels". What are "high expression levels"? Compared to what?

    1. Reviewer #1 (Public review):

      Summary:

      The authors have created a new model of KCNC1-related DEE in which a pathogenic patient variant (A421V) is knocked into mouse in order to better understand the mechanisms through which KCNC1 variants lead to DEE.

      Strengths:

      (1) The creation of a new DEE model of KCNC1 dysfunction.

      (2) InVivo phenotyping demonstrates key features of the model such as early lethality and several types of electrographic seizures.

      (3) The ex vivo cellular electrophysiology is very strong and comprehensive including isolated patches to accurately measure K+ currents, paired recording to measure evoked synaptic transmission, and the measurement of membrane excitability at different timepoint and in two cell types.

      (4) 2P imaging relates the cellular dysfunction in PV neurons to epilepsy.

    2. Reviewer #2 (Public review):

      Summary:

      Wengert et al. generated and comprehensively characterized the Kcnc1 A421V/+ knock-in mouse, which models developmental epileptic encephalopathy. The Kcnc1 gene encodes the Kv3.1 channel subunit, which, similar to the role of BK-channels in some excitatory neurons, facilitates high-frequency firing in inhibitory neurons by accelerating the downward hyperpolarization of individual action potentials. Although various Kcnc1 mutations are linked to developmental epileptic encephalopathies, the functional impact of the A421V mutation remained controversial. To elucidate its effect on the neuronal excitability and neurological functions, the authors generated cre-dependent KI mice and thoroughly characterized them using neonatal neurological assessments, high-quality in vitro electrophysiology, and in vivo imaging/electrophysiology analyses. These studies revealed impaired excitability in the PV+ inhibitory interneurons, correlating with the emergence of epilepsy and premature death. Overall, this study provides strong support for the role of the A421V mutation in disrupting inhibitory function.

      Overall, the study is well-designed and conducted at a high quality. The use of a Cre-dependent KI system is effective for maintaining the mutant line despite the premature death phenotype, and may also minimize the phenotype drift that can arise when breeding from mice using milder phenotype manifestation (as ones with severe phenotype often fail to reproduce). The neonatal behavior analysis is thoroughly conducted, and the in vitro electrophysiology studies are of high quality, providing robust insights into the functional impact of the mutation.

      One limitation of this study is the demonstration of the trafficking defect of mutant Kv3.1, which relies solely on the fluorescence density, and such analysis often lacks a rigorous quantitative measurement. A biochemical analysis (surface biotinylation or immunoblot using membrane fractionation) will make the conclusion more convincing, although this poses a technical challenge as the Kv3.1 is expressed primarily expressed only in a subset of PV+ cells.

      While the study focused on the superficial layer because Kv3.1 is the major channel subunit, some of the neurons co-express Kv3.2, and Kv3.1 and Kv3.2 can form heteromeric channels. It would be interesting to explore whether the mutant Kv3.1 subunits exert a dominant-negative effect on Kv3.2 in these populations.

    3. Reviewer #3 (Public review):

      Summary:

      Here Wengert et al., establish a rodent model of KCNC1 (Kv3.1) epilepsy by introducing the A421V mutation. The authors perform video-EEG, slice electrophysiology, and in vivo 2P imaging of calcium activity to establish a disease mechanisms involving impairment in the excitability of fast spiking parvalbumin (PV) interneurons in the cortex and thalamic PV cells.

      Outside out nucleated patch recordings were used to evaluate the biophysical consequence of the A421V mutation on potassium currents and showed a clear reduction in potassium currents. Similarly action potential generation in cortical PV interneurons was severely reduced. Given that both potassium currents and action potential generation was found to be unaffected in excitatory pyramidal cells in the cortex the authors propose that loss of inhibition leads to hyperexcitability and seizure susceptibility in a mechanism similar to that of Dravet Syndrome.

      Strengths:

      This manuscript establishes a new rodent model of KCNC1-developmental and epileptic encephalopathy. The manuscript provides strong evidence that parvabumin interneurons are impaired by the Kcnc1-A421V mutation and that cortical excitatory neurons are not impaired. Together, these findings support the conclusion that seizure phenotypes associated with Kcnc1-A421V are caused by impaired cortical inhibition.

      Weaknesses:

      The manuscript identifies a partial mechanism of disease that leaves several aspects unresolved including the possible role of subcortical regions in the seizure mechanism. Similarly, while the authors identify a reduction in potassium currents and a reduction in PV cell surface expression of Kv3.1 why the A421V missense mutation leads to a more severe phenotype than previously reported loss-of-function mutations in Kv3.1is not clear.

    1. Reviewer #1 (Public review):

      Sandkuhler et al. re-evaluated the biological functions of TANGO2 homologs in C. elegans, yeast, and zebrafish. Compared to the previously reported role of TANGO2 homologs in transporting heme, Sandkuhler et al. expressed a different opinion on the biological functions of TANGO2 homologs. With the support of some results from their tests, they conclude that 'there is insufficient evidence to support heme transport as the primary function of TANGO2', in addition to the evidence that C. elegans TANGO2 helps counteract oxidative stress.. While the differences are reported in this study, more work is needed to elucidate the intuitive biological function of TANGO2.

      Strengths:

      (1) This work revisits a set of key experiments, including the toxic heme analog GaPP survival assay, the fluorescent ZnMP accumulation assay, and the multi-organismal investigations documented by Sun et al. in Nature (2022), which are critical for comparing the two works. Meanwhile, the authors also highlight the differences in reagents and methods between the two studies, demonstrating significant academic merit.

      (2) This work reported additional phenotypes for the C. elegans mutant of the TANGO2 homologs, including lawn avoidance, reduced pharyngeal pumping, smaller brood size, faster exhaustion under swimming test, and a shorter lifespan. These phenotypes are important for understanding the biological function of TANGO2 homologs, while they were missing from the report by Sun et al.

      (3) Investigating the 'reduced GaPP consumption' as a cause of increased resistance against the toxic GaPP for the TANGO2 homologs, hrg-9 hrg-10 double null mutant provides a valuable perspective for studying the biological function of TANGO2 homologs.

      (4) The induction of hrg-9 gene expression by paraquat indicates a strong link between TANGO2 and mitochondrial function.

      (5) This work thoroughly evaluated the role of TANGO2 homologs in supporting yeast growth using multiple yeast strains and also pointed out the mitochondrial genome instability feature of the yeast strain used by Sun et al.

      Weakness:

      It is always a challenge to replicate someone else's work, but it is worthwhile to take on the challenge, provide evidence, and raise concerns about it. These authors attempted to replicate the experiment using the same biological material as that used by Sun et al. in Nature (2022), despite some experimental differences between the two studies. This study does not have many technical weaknesses, but it can become a much better project by focusing on the new phenotypes discovered here.

    2. Reviewer #2 (Public review):

      This work offers a valuable re-evaluation of earlier claims from other groups about TANGO2 functions and proposes that energy-related and stress-related pathways may be more important to the disorder than previously thought. A key strength of this work is the use of multiple model systems. The authors provide solid data that show how TANGO2 is probably only indirectly involved in heme transport and provide support for alternative mechanisms where TANGO2 is actually directly control. These findings provide valuable information for researchers seeking more accurate therapeutic targets.

      Strengths:

      The study refutes earlier claims about TANGO2's involvement in heme transport and extends previous findings by implicating TANGO2 in metabolism and oxidative stress, thereby highlighting new aspects of its role in cell physiology. The use of different model systems (Saccharomyces cerevisiae, Caenorhabditis elegans, Danio rerio) to address the main research questions is useful and demonstrates evolutionary conservation of the studied processes. Finally, the results suggest a broader impact than previously described, somewhat supporting the novelty of the study.

      Weaknesses:

      Although the phenotypic analyses are broad and generally well executed, a key limitation is that the main conclusions mainly rely on these readouts. While informative, sole phenotypic analyses cannot directly demonstrate the underlying molecular mechanisms proposed by the authors. The study includes limited functional or biochemical assays connecting TANGO2 orthologs to the proposed energy and stress pathways. Some observations would benefit from additional orthogonal validation to strengthen the overall interpretation. As a result, the evidence supporting the central mechanistic interpretation remains indirect, although compelling.

      Overall, the authors have achieved their stated aims, and their results mainly support their main conclusion (i.e., TANGO2 is unlikely to function in heme transport and is probably linked to energy and stress pathways). However, much of the evidence comes from phenotypic analyses, which limits the strength of the mechanistic claims, leaving the proposed pathways somewhat indirect.

      This work is likely to have a valuable impact on the subfield by clarifying that TANGO2 is not involved (at least directly) in heme transport and clarifying its actual role in energy and stress-related processes. By rigorously reassessing and confuting earlier claims from other studies across multiple model systems, the current work will help to guide the future research and therapeutic exploration in the context of TANGO2 deficiencies. This study will provide a solid foundation for more mechanistic insights into TANGO2 function.

    3. Reviewer #3 (Public review):

      In this paper, Sandkuhler et al. reassessed the role of TANGO2 as a heme chaperone proposed by Sun et al in a recently published paper (https://doi.org/10.1038/s41586-022-05347-z). Overall, Sandkuhler et al. conclude that the heme-related roles of TANGO2 had been overemphasized by Sun et al. especially because the hrg9 gene does not exclusively respond to different regimens of heme synthesis/uptake but is susceptible to a greater extent to, for example, oxidative stress. Impaired heme trafficking is then interpreted as due to general mitochondrial dysfunction. In recent years, the discussion around the heme-related roles of TANGO2 has been tantalizing but is still far from a definitive consensus. Discrepancies between results and their interpretation are testament to how ambitious the understanding of TANGO2 and the phenotypes associated with TANGO2 defects are.

      The work presented by Sandkuhler et al. is methodologically sound, and the authors have appropriately addressed my concerns in the first round of review. Overall, this paper challenges the recent developments in the field in relation to heme trafficking and provides a wider perspective on the biological roles of TANGO2.

    1. Reviewer #1 (Public review):

      Summary:

      Carloni et al. comprehensively analyze which proteins bind repetitive genomic elements in Trypanosoma brucei. For this, they perform mass spectrometry on custom-designed, tagged programmable DNA-binding proteins. After extensively verifying their programmable DNA-binding proteins (using bioinformatic analysis to infer target sites, microscopy to measure localization, ChIP-seq to identify binding sites), they present, among others, two major findings: 1) 14 of the 25 known T. brucei kinetochore proteins are enriched at 177bp repeats. As T. brucei's 177bp repeat-containing intermediate-sized and mini-chromosomes lack centromere repeats but are stable over mitosis, Carloni et al. use their data to hypothesize that a 'rudimentary' kinetochore assembles at the 177bp repeats of these chromosomes to segregate them. 2) 70bp repeats are enriched with the Replication Protein A complex, which, notably, is required for homologous recombination. Homologous recombination is the pathway used for recombination-based antigenic variation of the 70bp-repeat-adjacent variant surface glycoproteins.

      Strengths and Weaknesses:

      The manuscript was previously reviewed through Review Commons. As noted there, the experiments are well controlled, the claims are well supported, and the methods are clearly described. The conclusions are convincing. All concerns I raised have been addressed except one (minor point #8):

      "The way the authors mapped the ChIP-seq data is potentially problematic when analyzing the same repeat type in different genomic regions. Reads with multiple equally good mapping positions were assigned randomly. This is fine when analyzing repeats by type, independent of genomic position, which is what the authors do to reach their main conclusions. However, several figures (Fig. 3B, Fig. 4B, Fig. 5B, Fig. 7) show the same repeat type at specific genomic locations." Due to the random assignment, all of these regions merely show the average signal for the given repeat. I find it misleading that this average is plotted out at "specific" genomic regions.<br /> Initially, I suggested a workaround, but the authors clarified why the workaround was not feasible, and their explanation is reasonable to me. That said, the figures still show a signal at positions where they can't be sure it actually exists. If this cannot be corrected analytically, it should at least be noted in the figure legends, Results, or Discussion.

      Importantly, the authors' conclusions do not hinge on this point; they are appropriately cautious, and their interpretations remain valid regardless.

      Significance:

      This work is of high significance for chromosome/centromere biology, parasitology, and the study of antigenic variation. For chromosome/centromere biology, the conceptual advancement of different types of kinetochores for different chromosomes is a novelty, as far as I know. It would certainly be interesting to apply this study as a technical blueprint for other organisms with mini-chromosomes or chromosomes without known centromeric repeats. I can imagine a broad range of labs studying other organisms with comparable chromosomes to take note of and build on this study. For parasitology and the study of antigenic variation, it is crucial to know how intermediate- and mini-chromosomes are stable through cell division, as these chromosomes harbor a large portion of the antigenic repertoire. Moreover, this study also found a novel link between the homologous repair pathway and variant surface glycoproteins, via the 70bp repeats. How and at which stages during the process, 70bp repeats are involved in antigenic variation is an unresolved, and very actively studied, question in the field. Of course, apart from the basic biological research audience, insights into antigenic variation always have the potential for clinical implications, as T. brucei causes sleeping sickness in humans and nagana in cattle. Due to antigenic variation, T. brucei infections can be chronic.

      Comments on revised version:

      All my recommendations have been addressed.

    2. Reviewer #2 (Public review):

      The Trypanosoma brucei genome, like that of other eukaryotes, contains diverse repetitive elements. Yet, the chromatin-associated proteome of these regions remains largely unexplored. This study represents a very important conceptual and technical advancement by employing synthetic TALE DNA-binding proteins fused to YFP to selectively capture proteins associated with specific repetitive sequences in T. brucei chromatin. The data presented here are convincing, supported by appropriate controls and a well-validated methodology, aligned with current state-of-the-art approaches.

      The authors used synthetic TALE DNA binding proteins, tagged with YFP, which were designed to target five specific repeat elements in T. brucei genome, including centromere and telomeres-associated repeats and those of a transposon element. This is in order to identify specific proteins that bind to these repetitive sequences in T. brucei chromatin. Validation of the approach was done using a TALE protein designed to target the telomere repeat (TelR-TALE) that detected many of the proteins that were previously implicated with telomeric functions. A TALE protein designed to target the 70 bp repeats that reside adjacent to the VSG genes (70R-TALE) detected proteins that function in DNA repair and a protein designed to target the 177 bp repeat arrays (177R-TALE) identified kinetochore proteins associated T. brucei mega base chromosomes, as well as in intermediate and mini-chromosomes, which imply that kinetochore assembly and segregation mechanisms are similar in all T. brucei chromosomes.

      This study represents a significant conceptual and technical advancement. To the best of our knowledge, it is the first report of employing TALE-YFP for affinity-based detection of protein complexes bound to repetitive genomic sequences in T. brucei. This approach enhances our understanding the organization in these important regions of the trypanosomal chromatin and provides the foundation for investigating the functional roles of associated proteins in parasite biology. These findings will be of particular interest to researchers studying the molecular biology of kinetoplastid parasites and other unicellular organisms, as well as to scientists investigating the roles of repetitive genomic elements in chromatin structure and their functional role in higher eukaryotes.

      Importantly, any essential or unique interacting partners identified using the approach employed here, could serve as a potential target for therapeutic intervention in severe tropical diseases cause by kinetoplastids.

    1. Reviewer #1 (Public review):

      Summary:

      The authors set out on the ambitious task of establishing the reproducibility of claims from the Drosophila immunity literature. Starting out from a corpus of 400 articles from 1959 and 2011, the authors sought to determine whether their claims were confirmed or contradicted by previous or subsequent publications. Additionally, they actively sought to replicate a subset of the claims for which no previous replications were available (although this set was not representative of the whole sample, as the authors focused on suspicious and/or easily testable claims). The focus of the article is on inferential reproducibility; thus, methods don't necessarily map exactly to the original ones.

      The authors present a large-scale analysis of the individual replication findings, which are presented in a companion article (Westlake et al., 2025. DOI 10.1101/2025.07.07.663442). In their retrospective analysis of reproducibility, the authors find that 61% of the original claims were verified by the literature, 7.5% were partialy verified, and only 6.8% were challenged, with 23.8% having no replication available. This is in stark contrast with the result of their prospective replications, in which only 16% of claims were successfully reproduced.

      The authors proceed to investigate correlates of replicability, with the most consistent finding being that findings stemming from higher-ranked universities (and possibly from very high impact journals) were more likely to be challenged.

      Strengths:

      (1) The work presents a large-scale, in-depth analysis of a particular field of science that includes authors with deep domain expertise of the field. This is a rare endeavour to establish the reproducibility of a particular subfield of science, and I'd argue that we need many more of these in different areas.

      (2) The project was built on a collaborative basis (https://ReproSci.epfl.ch/), using an online database (https://ReproSci.epfl.ch/), which was used to organize the annotations and comments of the community about the claims. The website remains online and can be a valuable resource to the Drosophila immunity community.

      (3) Data and code are shared in the authors' GitHub repository, with a Jupyter notebook available to reproduce the results.

      Main concerns:

      (1) Although the authors claim that "Drosophila immunity claims are mostly replicable", this conclusion is strictly based on the retrospective analysis - in which around 84% of the claims for which a published verification attempt was found. This is in very stark contrast with the findings that the authors replicate prospectively, of which only 16% are verified.

      Although this large discrepancy may be explained by the fact that the authors focused on unchallenged and suspicious claims (which seems to be their preferred explanation), an alternative hypothesis is that there is a large amount of confirmation bias in the Drosophila immunity literature, either because attempts to replicate previous findings tend to reach similar results due to researcher bias, or because results that validate previous findings are more likely to be published.

      Both explanations are plausible (and, not being an expert in the field, I'd have a hard time estimating their relative probability), and in the absence of prospective replication of a systematic sample of claims - which could determine whether the replication rate for a random sample of claims is as high as that observed in the literature -, both should be considered in the manuscript.

      (2) The fact that the analysis of factors correlating with reproducibility includes both prospective and retrospective replications also leads to the possibility of confusion bias in this analysis. If most of the challenged claims come from the authors' prospective replications, while most of the verified ones come from those that were replicated by the literature, it becomes unclear whether the identified factors are correlated with actual reproducibility of the claims or with the likelihood that a given claim will be tested by other authors and that this replication will be published.

      (3) The methods are very brief for a project of this size, and many of the aspects in determining whether claims were conceptually replicated and how replications were set up are missing.

      Some of these - such as the PubMed search string for the publications and a better description of the annotation process - are described in the companion article, but this could be more explicitly stated. Others, however, remain obscure. Statements such as "Claims were cross-checked with evidence from previous, contemporary and subsequent publications and assigned a verification category" summarize a very complex process for which more detail should be given - in particular because what constitutes inferential reproducibility is not a self-evident concept. And although I appreciate that what constitutes a replication is ultimately a case-by-case decision, a general description of the guidelines used by the authors to determine this should be provided. As these processes were done by one author and reviewed by another, it would also be useful to know the agreement rates between them to have a general sense of how reproducible the annotation process might be.

      The same gap in methods descriptions holds for the prospective replications. How were labs selected, how were experimental protocols developed, and how was the validity of the experiments as a conceptual replication assessed? I understand that providing the methods for each individual replication is beyond the scope of the article, but a general description of how they were developed would be important.

      (4) As far as I could tell, the large-scale analysis of the replication results was not preregistered, and many decisions seem somewhat ad hoc. In particular, the categorization of journals (e.g. low impact, high impact, "trophy") and universities (e.g. top 50, 51-100, 101+) relies on arbitrary thresholds, and it is unclear how much the results are dependent on these decisions, as no sensitivity analyses are provided.

      Particularly, for analyses that correlate reproducibility with continuous variable (such as year of publication, impact factor or university ranking, I'd strongly favor using these variables as continuous variables in the analysis (e.g. using logistic regression) rather than performing pairwise comparisons between categories determined by arbitrary cutoffs. This would not only reduce the impact of arbitrary thresholds in the analysis, but would also increase statistical power in the univariate analyses (as the whole sample can be used in at once) and reduce the number of parameters in the multivariate model (as they will be included as a single variable rather than multiple dummy variables when there are more than two categories).

      (5) The multivariate model used to investigate predictors of replicability includes unchallenged claims along with verified ones in the outcome, which seems like an odd decision. If the intention is to analyze which factors are correlated with reproducibility, it would make more sense to remove the unchallenged findings, as these are likely uninformative in this sense. In fact, based on the authors' own replications of unchallenged findings, they may be more likely to belong the "challenged" category than to the "unchallenged" one if they were to be verified.

    2. Reviewer #2 (Public review):

      Summary:

      Lemaitre et al. conducted an analysis of 400 publications in the Drosophila immunity field (1959-2011), performing both univariable and multivariable analyses to identify factors that correlate with or influence the irreproducibility of scientific claims. Some of the findings are unexpected, for instance, neither the career stage of the PI nor that of the first author appears to matter that much, while others, such as the influence of institutional prestige or publication in "trophy journals," are more predictable. The results provide valuable insight into patterns of irreproducibility in academia and may help inform policies to improve research reproducibility in the field.

      Strengths:

      This study is based on a large, manually curated dataset, complemented by a companion paper (Westlake et al., 2025. DOI 10.1101/2025.07.07.663442) that provides additional details on experimentally documented cases. The statistical methods are appropriate, and the findings are both important and informative. The results are clearly presented and supported by accessible documentation through the ReproSci project.

      Weaknesses:

      The analysis is limited to a specific field (immunity) and model system (Drosophila). Since biological context may influence reproducibility -- for example, depending on whether mechanisms are more hardwired or variable -- and the model system itself may contribute to these effects (as the authors note), it remains unclear to what extent these findings generalize to other fields or organisms. The authors could expand the discussion to address the potential scope and limitations of the study's generalizability.

    3. Reviewer #3 (Public review):

      Summary:

      The authors of this paper were trying to identify how reproducible, or not, their subfield (Drosophilia immunity) was since its inception over 50 years ago. This required identifying not only the papers, but the specific claims made in the paper, assessing if these claims were followed up in the literature, and if so whether the subsequent papers supported or refuted the original claim. In addition to this large manually curated effort, the authors further investigated some claims that were left unchallenged in the literature by conducting replications themselves. This provided a rich corpus of the subfield that could be investigated into what characteristics influence reproducibility.

      Strengths:

      A major strength of this study is the focus on a subfield, the detailing of identifying the main, major, and minor claims - which is a very challenging manual task - and then cataloging not only their assessment of if these claims were followed up in the literature, but also what characteristics might be contributing to reproducibility, which also included more manual effort to supplement the data that they were able to extract from the published papers. While this provides a rich dataset for analysis, there is a major weakness with this approach, which is not unique to this study.

      Weaknesses:

      The main weakness is relying heavily on the published literature as the source for if a claim was determined to be verified or not. There are many documented issues with this stemming from every field of research - such as publication bias, selective reporting, all the way to fraud. It's understandable why the authors took this approach - it is the only way to get at a breadth of the literature - however the flaw with this approach is it takes the literature as a solid ground truth, which it is not. At the same time, it is not reasonable to expect the authors to have conducted independent replications for all of the 400 papers they identified. However, there is a big difference trying to assess the reproducibility of the literature by using the literature as the 'ground truth' vs doing this independently like other large-scale replication projects have attempted to do. This means the interpretation of the data is a bit challenging.

      Below are suggestions for the authors and readers to consider:

      (1) I understand why the authors prefer to mention claims as their primary means of reporting what they found, but it is nested within paper, and that makes it very hard to understand how to interpret these results at times. I also cannot understand at the high-level the relationship between claims and papers. The methods suggest there are 3-4 major claims per paper, but at 400 papers and 1,006 claims, this averages to ~2.5 claims per paper. Can the authors consider describing this relationship better (e.g., distribution of claims and papers) and/or considering presenting the data two ways (primary figures as claims and complimentary supplementary figures with papers as the unit). This will help the reader interpret the data both ways without confusion. I am also curious how the results look when presented both ways (e.g., does shifting to the paper as the unit of analysis shift the figures and interpretation?). This is especially true since the first and last author analysis shows there is varying distribution of papers and claims by authors (and thus the relationship between these is important for the reader).

      (2) As mentioned above, I think the biggest weakness is that the authors are taking the literature at face value when assigning if a claim was validated or challenged vs gathering new independent evidence. This means the paper leans more on papers, making it more like a citation analysis vs an independent effort like other large-scale replication projects. I highly recommend the authors state this in their limitations section.

      On top of that, I have questions that I could not figure out (though I acknowledge I did not dig super deep into the data to try). The main comment I have is How was verified (and challenged) determined? It seems from the methods it was determined by "Claims were cross-checked with evidence from previous, contemporary and subsequent publications and assigned a verification category". If this is true, and all claims were done this way - are verified claims double counted then? (e.g., an original claim is found by a future claim to be verified - and thus that future claim is also considered to be verified because of the original claim).

      Related, did the authors look at the strength of validation or challenged claims? That is, if there is a relationship mapping the authors did for original claims and follow-up claims, I would imagine some claims have deeper (i.e., more) claims that followed up on them vs others. This might be interested to look at as well.

      (3) I recommend the authors add sample sizes when not present (e.g., Fig 4C). I also find that the sample sizes are a bit confusing, and I recommend the authors check them and add more explanation when not complete, like they did for Fig 4A. For example, Fig 7B equals to 178 labs (how did more than 156 labs get determined here?), and yet the total number of claims is 996 (opposed to 1,006). Another example, is why does Fig 8B not have all 156 labs accounted for? (related to Fig 8B, I caution on reporting a p value and drawing strong conclusions from this very small sample size - 22 authors). As a last example, Fig 8C has al 156 labs and 1,006 claims - is that expected? I guess it means authors who published before 1995 (as shown in Figure 8A continued to publish after 1995?) in that case, it's all authors? But the text says when they 'set up their lab' after 1995, but how can that be?

      (4) Finally, I think it would help if the authors expanded on the limitations generally and potential alternative explanations and/or driving factors. For example, the line "though likely underestimated' is indicated in the discussion about the low rate of challenged claims, it might be useful to call out how publication bias is likely the driver here and thus it needs to be carefully considered in the interpretation of this. Related, I caution the authors on overinterpreting their suggestive evidence. The abstract for example, states claims of what was found in their analysis, when these are suggestive at best, which the authors acknowledge in the paper. But since most people start with the abstract, I worry this is indicating stronger evidence than what the authors actually have.

      The authors should be applauded for the monumental effort they put into this project, which does a wonderful job of having experts within a subfield engage their community to understand the connectiveness of the literature and attempt to understand how reliable specific results are and what factors might contribute to them. This project provides a nice blueprint for others to build from as well as leverage the data generated from this subfield, and thus should have an impact in the broader discussion on reproducibility and reliability of research evidence.

    1. Reviewer #1 (Public review):

      One of the roadblocks in PfEMP1 research has been the challenges in manipulating var genes to incorporate markers to allow the transport of this protein to be tracked and to investigate the interactions taking place within the infected erythrocyte. In addition, the ability of Plasmodium falciparum to switch to different PfEMP1 variants during in vitro culture has complicated studies due to parasite populations drifting from the original (manipulated) var gene expression. Cronshagen et al have provided a useful system with which they demonstrate the ability to integrate a selectable drug marker into several different var genes that allows the PfEMP1 variant expression to be 'fixed'. This on its own represents a useful addition to the molecular toolbox and the range of var genes that have been modified suggests that the system will have broad application. As well as incorporating a selectable marker, the authors have also used selective linked integration (SLI) to introduce markers to track the transport of PfEMP1, investigate the route of transport and probe interactions with PfEMP1 proteins in the infected host cell.

      One of the major strengths of this paper is that the authors have not only put together a robust system for further functional studies, but they have used it to produce a range of interesting findings including:

      Co-activation of rif and var genes when in a head-to-head orientation.

      The reduced control of expression of var genes in the 3D7-MEED parasite line.

      More support for the PTEX transport route for PfEMP1.<br /> Identification of new proteins involved in PfEMP1 interactions in the infected erythrocyte, including some required for cytoadherence.

      In most cases the experimental evidence is straightforward, and the data support the conclusions strongly. The authors have been very careful in the depth of their investigation, and where unexpected results have been obtained, they have looked carefully at why these have occurred.

      A weakness of the paper is, as mentioned above, that the results are sometimes not as clear as might have been expected, for example, in the requirement for panning modified parasites to produce binding to EPCR. Where this has happened, the authors take a robust and thoughtful approach, and acknowledge that (as in most research) there are more questions to address. Being able to select specific var gene switches using drug markers will provide some useful starting points to understand how switching happens in P. falciparum. However, our trypanosome colleagues might remind us that forcing switches may show us some mechanisms, but perhaps not all.

      Despite these sometimes complicated findings, the authors have achieved their aim as stated in the title of the paper, and in doing so have provided an excellent resource to themselves and other researchers in the field to answer some important questions.

      Overall, the authors have produced a useful and robust system to support functional studies on PfEMP1, which provides a platform for future studies manipulating the domain content in var genes. They have used this system to produce a range of interesting findings and to support its use by the research community.

      Comments on revisions:

      I have no further recommendations for changes by the authors. They have addressed my concerns, and the paper reads very well.

    2. Reviewer #2 (Public review):

      Summary

      Croshagen et al develop a range of tools based on selection-linked integration (SLI) to study PfEMP1 function in P. falciparum. PfEMP1 is encoded by a family of ~60 var genes subject to mutually exclusive expression. Switching expression between different family members can modify the binding properties of the infected erythrocyte while avoiding the adaptive immune response. Although critical to parasite survival and Malaria disease pathology, PfEMP1 proteins are difficult to study owing to their large size and variable expression between parasites within the same population. The SLI approach previously developed by this group for genetic modification of P. falciparum is employed here to selectively and stably activate expression of target var genes at the population level. Using this strategy, the binding properties of specific PfEMP1 variants were measured for several distinct var genes with a novel semi-automated pipeline to increase throughput and reduce bias. Activation of similar var genes in both the common lab strain 3D7 and the cytoadhesion competent FCR3/IT4 strain revealed higher binding for several PfEMP1 IT4 variants with distinct receptors, indicating this strain provides a superior background for studying PfEMP1 binding. SLI also enables modifications to target var gene products to study PfEMP1 trafficking and identify interacting partners by proximity-labeling proteomics, revealing two novel exported proteins required for cytoadherence. Overall, the data demonstrate a range of SLI-based approaches for studying PfEMP1 that will be broadly useful for understanding the basis for cytoadhesion and parasite virulence.

      Comments:

      While the capability of SLI to active selected var gene expression was initially reported by Omelianczyk et al., the present study greatly expands the utility of this approach. Several distinct var genes are activated in two different P. falciparum strains and shown to modify the binding properties of infected RBCs to distinct endothelial receptors; development of SLI2 enables multiple SLI modifications in the same parasite line; SLI is used to modify target var genes to study PfEMP1 trafficking and determine PfEMP1 interactomes with BioID. Along the way, the authors also demonstrate a new selection marker for P. falciparum transfection (a mutant FNT lactate transporter that provides resistance to the compound BH267.meta). Curiously, Omelianczyk et al activated a single var (Pf3D7_0421300) and observed elevated expression of an adjacent var arranged in a head to tail manner, possibly resulting from local chromatin modifications enabling expression of the neighboring gene. In contrast, the present study observed activation of neighboring genes with head to head but not head to tail arrangement, which may be the result of shared promoter regions. The reason for these differing results is unclear although it should be noted that the two studies examined different var loci.

      The IT4var19 panned line that became binding-competent showed increased expression of both paralogs of ptp3 (as well as a phista and gbp), suggesting that overexpression of PTP3 may improve PfEMP1 display and binding. Interestingly, IT4 appears to be the only known P. falciparum strain (only available in PlasmoDB) that encodes more than one ptp3 gene (PfIT_140083100 and PfIT_140084700). PfIT_140084700 is almost identical to the 3D7 PTP3 (except for a ~120 residue insertion in 3D7 beginning at residue 400). In contrast, while the C-terminal region of PfIT_140083100 shows near perfect conservation with 3D7 PTP3 beginning at residue 450, the N-terminal regions between the PEXEL and residue 450 are quite different. This may indicate the generally stronger receptor binding observed in IT4 relative to 3D7 results from increased PTP3 activity due to multiple isoforms or that specialized trafficking machinery exists for some PfEMP1 proteins.

      Revisions:

      The authors thoughtfully addressed all the reviewer comments.

    3. Reviewer #3 (Public review):

      Summary:

      The submission from Cronshagen and colleagues describes the application of a previously described method (selection linked integration) to the systematic study of PfEMP1 trafficking in the human malaria parasite Plasmodium falciparum. PfEMP1 is the primary virulence factor and surface antigen of infected red blood cells and is therefore a major focus of research into malaria pathogenesis. Since the discovery of the var gene family that encodes PfEMP1 in the late 1990s, there have been multiple hypotheses for how the protein is trafficked to the infected cell surface, crossing multiple membranes along the way. One difficulty in studying this process is the large size of the var gene family and the propensity of the parasites to switch which var gene is expressed, thus preventing straightforward gene modification-based strategies for tagging the expressed PfEMP1. Here the authors solve this problem by forcing expression of a targeted var gene by fusing the PfEMP1 coding region with a drug selectable marker separated by a skip peptide. This enabled them to generate relatively homogenous populations of parasites all expressing tagged (or otherwise modified) forms of PfEMP1 suitable for study. They then applied this method to study various aspects of PfEMP1 trafficking.

      Strengths:

      The study is very thorough, and the data are well presented. The authors used SLI to target multiple var genes, thus demonstrating the robustness of their strategy. They then perform experiments to investigate possible trafficking through PTEX, they knockout proteins thought to be involved in PfEMP1 trafficking and observe defects in cytoadherence, and they perform proximity labeling to further identify proteins potentially involved in PfEMP1 export. These are independent and complimentary approaches that together tell a very compelling story.

      Weaknesses:

      (1) When the authors targeted IT4var19, they were successful in transcriptionally activating the gene, however they did not initially obtain cytoadherent parasites. To observe binding to ICAM-1 and EPCR, they had to perform selection using panning. This is an interesting observation and potentially provides insights into PfEMP1 surface display, folding, etc. However, it also raises questions about other instances in which cytoadherence was not observed. Would panning of these other lines have successfully selected for cytoadherent infected cells? Did the authors attempt panning of their 3D7 lines? Given that these parasites do export PfEMP1 to the infected cell surface (Figure 1D), it is possible that panning would similarly rescue binding. Likewise, the authors knocked out PTP1, TryThrA and EMPIC3 and detected a loss of cytoadhesion, but they did not attempt panning to see if this could rescue binding. The strong selection that panning exerts on parasite populations could result in selection of compensatory changes that enable cytoadherence, which could be very informative, although the analysis could potentially be quite complicated and beyond the scope of the current paper. Nonetheless, these are important concepts to consider when assessing these phenotypes.

      (2) The authors perform a series of trafficking experiments to help discern whether PfEMP1 is trafficked through PTEX. While the results were not entirely definitive, they make a strong case for PTEX in PfEMP1 export. The authors then used BioID to obtain a proxiome for PfEMP1 and identified proteins they suggest are involved in PfEMP1 trafficking. However, it seemed that components of PTEX were missing from the list of interacting proteins. Is this surprising and does this observation shed any additional light on the possibility of PfEMP1 trafficking through PTEX? This warrants a comment or discussion.

      Comments on revisions:

      The authors have responded thoroughly and constructively to suggestions and comments in the initial review. I have no additional comments. This is a great contribution to the literature.

    1. Reviewer #1 (Public review):

      Summary:

      This study resolves a cryo-EM structure of the GPCR, GPR30, in the presence of bicarbonate, which the author's lab recently identified as the physiological ligand. Understanding the ligand and the mechanism of activation is of fundamental importance to the field of receptor signaling. This solid study provides important insight into the overall structure and suggests a possible bicarbonate binding site.

      Strengths:

      The overall structure, and proposed mechanism of G-protein coupling are solid. Based on the structure, the authors identify a binding pocket that might accommodate bicarbonate. Although assignment of the binding pocket is speculative, extensive mutagenesis of residues in this pocket identifies several that are important to G-protein signaling. The structure shows some conformational differences with a previous structure of this protein determined in the absence of bicarbonate (PMC11217264). To my knowledge, bicarbonate is the only physiological ligand that has been identified for GPR30, making this study an important contribution to the field. However, the current study provides novel and important circumstantial evidence for the bicarbonate binding site based on mutagenesis and functional assays.

      Weaknesses:

      Bicarbonate is a challenging ligand for structural and biochemical studies, and because of experimental limitations, this study does not elucidate the exact binding site. Higher resolution structures would be required for structural identification of bicarbonate. The functional assay monitors activation of GPR30, and thus reports on not only bicarbonate binding, but also the integrity of the allosteric network that transduces the binding signal across the membrane. However, biochemical binding assays are challenging because the binding constant is weak, in the mM range.

      The authors appropriately acknowledge the limitations of these experimental approaches, and they build a solid circumstantial case for the bicarbonate binding pocket based on extensive mutagenesis and functional analysis. However, the study does fall short of establishing the bicarbonate binding site.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, "Cryo-EM structure of the bicarbonate receptor GPR30," the authors aimed to enrich our understanding of the role of GPR30 in pH homeostasis by combining structural analysis with a receptor function assay. This work is a natural development and extension of their previous work on Nature Communications (PMID: 38413581). In the current body of work, they solved the cryo-EM structure of the human GPR30-G-protein (mini-Gsqi) complex in the presence of bicarbonate ions at 3.15 Å resolution. From the atomic model built based on this map, they observed the overall canonical architecture of class A GPCR and also identified 3 extracellular pockets created by ECLs (Pockets A-C). Based on the polarity, location, size, and charge of each pocket, the authors hypothesized that pocket A is a good candidate for the bicarbonate binding site. To identify the bicarbonate binding site, the authors performed an exhaustive mutant analysis of the hydrophilic residues in Pocket A and analyzed receptor reactivity via calcium assay. In addition, the human GPR30-G-protein complex model also enabled the authors to elucidate the G-protein coupling mechanism of this special class A GPCR, which plays a crucial role in pH homeostasis.

      Strengths:

      As a continuation of their recent Nature Communications publication, the authors used cryo-EM coupled with mutagenesis and functional studies to elucidate bicarbonate-GPR30 interaction. This work provided atomic-resolution structural observations for the receptor in complex with G-protein, allowing us to explore its mechanism of action, and will further facilitate drug development targeting GPR30. There were 3 extracellular pockets created by ECLs (Pockets A-C). The authors were able to filter out 2 of them and hypothesized that pocket A was a good candidate for the bicarbonate binding site based on the polarity, location, and charge of each pocket. From there, the authors identified the key residues on GPR30 for its interaction with the substrate, bicarbonate. Together with their previous work, they mapped out amino acids that are critical for receptor reactivity.

      Weaknesses:

      When we see a reduction of a GPCR-mediated downstream signaling, several factors could potentially contribute to this observation: 1) a reduced total expression of this receptor due to the mutation (transcription and translation issue); 2) a reduced surface expression of this receptor due to the mutation (trafficking issue); and 3) a dysfunctional receptor that doesn't signal due to the mutation. In the current revision, based on the gating strategy, the surface expression of the HA-positive WT GPR30-expressing cells is only 10.6% of the total population, while the surface expression levels of the mutants range from 1.89% (P71A) to 64.4% (D111A). Combining this information with the functional readout in Figure 3F and G, as well as their previous work, the authors concluded that mutations at P71, E115, D125, Q138, C207, D210, and H307 would decrease bicarbonate responses. Among those sites,

      E115, Q138, and H307 were from their previous Nature Comm paper.

      Authors claim P71 and C207 make a structural-stability contribution, as their mutations result in a significant reduction in surface expression: P71A (1.89%) and C207A (2.71%). However, compared to 10.6% of the total population in the WT, (P71A is 17.8% of the WT, and C207A is 25.6% of the WT), this doesn't rule out the possibility that the mutated receptor is also dysfunctional: at 10 mM NaHCO3, RFU of WT is ~500, RFU of P71 and C207 are ~0.

      The authors also interpret "The D125ECL1A mutant has lost its activity but is located on the surface" and only mention "D125 is unlikely to be a bicarbonate binding site, and the mutational effect could be explained due to the decreased surface expression". Again, compared to 10.6% of the total population in the WT, D125A (3.94%) is 37.2% of the WT. At 10 mM NaHCO3, the RFU of the WT is ~500, the RFU of D125 is ~0. This doesn't rule out the possibility that the mutated receptor is also dysfunctional. It is not clear why D125A didn't make it to the surface.

      Other mutants that the authors didn't mention much in their text: D111A (64.4%, 607.5% of WT surface expression), E121A (50.4%, 475.5% of WT surface expression), R122 (41.0%, 386.8% of WT surface expression), N276A (38.9%, 367.0% of WT surface expression) and E218A (24.6%, 232.1% of WT surface expression) all have similar RFU as WT, although the surface expression is about 2-6 times more. On the other hand, Q215A (3.18%, 30% of WT surface expression) has similar RFU as WT, with only a third of the receptor on the surface.

      Altogether, the wide range of surface expression across the different cell lines, combined with the different receptor function readouts, makes the cell functional data only partially support their structural observations.

    3. Reviewer #3 (Public review):

      Summary

      GPR30 responds to bicarbonate and plays a role in regulating cellular pH and ion homeostasis. However, the molecular basis of bicarbonate recognition by GPR30 remains unresolved. This study reports the cryo-EM structure of GPR30 bound to a chimeric mini-Gq in the presence of bicarbonate, revealing mechanistic insights into its G-protein coupling. Nonetheless, the study does not identify the bicarbonate-binding site within GPR30.

      Strengths

      The work provides strong structural evidence clarifying how GPR30 engages and couples with Gq.

      Weaknesses

      Several GPR30 mutants exhibited diminished responses to bicarbonate, but their expression levels were also reduced. As a result, the mechanism by which GPR30 recognizes bicarbonate remains uncertain, leaving this aspect of the study incomplete.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents a new Bayesian approach to estimate importation probabilities of malaria combining epidemiological data, travel history, and genetic data through pairwise IBD estimates. Importation is an important factor challenging malaria elimination, especially in low transmission settings. This paper focus on Magude and Matutuine, two districts in south Mozambique with very low malaria transmission. The results show isolation-by-distance in Mozambique, with genetic relatedness decreasing with distances larger than 100 km, and no spatial correlation for distances between 10 and 100 km. But again strong spatial correlation in distances smaller than 10 km. They report high genetic relatedness between Matutuine and Inhambane, higher than between Matutuine and Magude. Inhambane is the main source of importation in Matutuine, accounting for 63.5% of imported cases. Magude, on the other hand, shows smaller importation and travel rates than Matutuine, as it is a rural area with less mobility. Additionally, they report higher levels of importation and travel in the dry season, when transmission is lower. Also, no association with importation was found for occupation, sex and other factors. These data have practical implications for public health strategies aiming malaria elimination, for example, testing and treating travelers from Matutuine in the dry season.

      Strengths:

      The strength of this study relies in the combination of different sources of data - epidemiological, travel and genetic data - to estimate importation probabilities, the statistical analyses.

      Weaknesses:

      The authors recognize the limitations related to sample size and the biases of travel reports.

    2. Reviewer #2 (Public review):

      Summary:

      Based on a detailed dataset, the authors present a novel Bayesian approach to classify malaria cases as either imported or locally acquired.

      Strengths:

      The proposed Bayesian approach for case classification is simple, well justified, and allows the integration of parasite genomics, travel history, and epidemiological data.

      Weakness:

      While the authors aim to classify cases as imported or locally acquired, the work lacks a quantification of the contribution of each case type to overall transmission.

      Comments on revisions:

      All my questions and concerns were satisfactorily addressed.

    3. Reviewer #3 (Public review):

      This work provides a novel statistical model to identify imported malaria cases, which are an important challenge for elimination, particularly in low-transmission areas. This tool was applied in Plasmodium falciparum populations in Mozambique and determined differences in importation rates in 2 low-transmission districts in the South.

      Strengths:

      The study has several strengths, mainly the development of a novel Bayesian model that integrates genomic, epidemiological, and travel data to estimate importation probabilities. The results showed insights into malaria transmission dynamics, particularly identifying importation sources and differences in importation rates in Mozambique. Finally, the relevance of the findings is to suggest interventions focusing on the traveler population to support efforts for malaria elimination.

      Weaknesses:

      The study also has some limitations, although the authors have plans to address them. The sample collection was not representative of some provinces, and not all samples had sufficient metadata for the risk factor analysis. Additionally, the authors used a proxy for transmission intensity and assumed some other conditions to calculate the importation probability for specific scenarios. They plan to conduct a new sample collection and include monthly malaria incidence estimates in the future.

      Comments on revisions:

      - Delete "We added this text to the discussion" in line 302 (Discussion)<br /> - I recommend adding the plans to address limitations indicated in the Response to Reviewers document in the Discussion. This would really strengthen the limitation section.

    1. Reviewer #1 (Public review):

      Summary:

      Colorectal cancer (CRC) is the third most common cancer globally and the second leading cause of cancer-related deaths. Colonoscopy and fecal immunohistochemical testing are among the early diagnostic tools that have significantly enhanced patient survival rates in CRC. Methylation dysregulation has been identified in the earliest stages of CRC, offering a promising avenue for screening, prediction, and diagnosis. The manuscript entitled "Early Diagnosis and Prognostic Prediction of Colorectal Cancer through Plasma Methylation Regions" by Zhu et al. presents that a panel of genes with methylation pattern derived from cfDNA (27 DMRs), serving as a noninvasive detection method for CRC early diagnosis and prognosis.

      Strengths:

      The authors provided evidence that the 27 DMRs pattern worked well in predicting CRC distant metastasis, and the methylation score remarkably increased in stages III-IV. Additionally, compared with the traditional tumor marker CEA, 27 DMRs prediction showed a superior sensitivity, highlighting the potential clinical application.

      Weaknesses:

      The major concerns are the design of DMRs screening, the relatively low sensitivity of this DMRs' pattern in detecting early-stage of CRC, the limited size of the cohorts, and the lack of comparison with the traditional diagnosis test.

      Comments on revisions:

      All my concerns have been cleared, and I have no further questions.

    2. Reviewer #2 (Public review):

      In this study, the authors aimed to develop cfDNA markers for comprehensive diagnosis, metastatic assessment, and prognostic prediction of colorectal cancer (CRC). Through integrative analysis of public 450K DNA methylation datasets and in-house targeted bisulfite sequencing (BS-seq) data from CRC and paired normal tissues, as well as plasma samples, they identified a signature comprising 27 differentially methylated regions (DMRs). This signature was subsequently validated for three clinical applications: cancer detection, metastasis prediction, and prognosis assessment.

      Strengths:

      The 27-DMR signature demonstrates value for both diagnosis and prognosis of CRC. Additionally, the datasets generated in this study serve as a valuable resource for the research community.

      Weaknesses:

      The validation cohorts for cancer detection and metastasis prediction were relatively small, which may limit the generalizability of the findings. The cancer detection model's performance does not surpass some published methods or commercial products.

    1. Reviewer #1 (Public review):

      Summary:

      Taylar Hammond and colleagues identified new regulators of the G1/S transition of the cell cycle. They did so by screening publicly available data from the Cancer Dependency Map and identified FAM53C as a positive regulator of the G1/S transition. Using biochemical assays they then show that FAM53 interacts with the DYRK1A kinase to inhibit its function. They show in RPE1 cells that loss of FAMC53 leads to a DYRK1A + P53-dependent cell cycle arrest. Combined inactivation of FAM53C and DYRK1A in a TP53-null background caused S-phase entry with subsequent apoptosis. Finally the authors assess the effect of FAM53C deletion in a cortical organoid model, and in Fam53c knockout mice. Whereas proliferation of the organoids is indeed inhibited, mice show virtually no phenotype.

      The authors have revised the manuscript, and I respond here point-by-point to indicate which parts of the revision I found compelling, and which parts were less convincing. So the numbering is consistent with the numbering in my first review report.

      (1) The p21 knockdowns are a valuable addition, and the claim that other p53 targets than p21 are involved in the FAMC53 RNAi-mediated arrest is now much more solid. Minor detail: if S4D is a quantification of S4C, it is hard to believe that the quantification was done properly (at least the DYRK1Ai conditions). Perhaps S4C is not the best representative example, or some error was made?

      (2a) I appreciate the decision to remove the cyclin D1 phosphorylation data. A more nuanced model now emerges. It is not clear to me however why the Protein Simple immunoassay was used for experiments with RPE cells, and not the cortical organoids. Even though no direct claims are made based on the phospho-cyclin D data in Figure 5E+G, showing these data suggests that FAM53C deletion increases DYRK1A-mediated cyclin D1 phosphorylation. I find it tricky to show these data, while knowing now that this effect could not be shown in the RPE1 cells.<br /> (2b) The quantifications of the immunoassays are not convincing. In multiple experiments, the HSP90 levels vary wildly, which indicates big differences in protein loading if HSP90 is a proper loading control. This is for example problematic for the interpretation of figure 3F and S3I. The cyclin D1 "bands" look extremely similar between siCtrl and siFAM53C (Fig S3I), in fact the two series of 6 samples with different dosages of DYRK1Ai look seem an identical repetition of each other. I did not have to option to overlay them, but it would be important to check if a mistake was made here. The cyclin D1 signals aside, the change in cycD1/HSP90 ratios seems to be entirely caused by differences in HSP90 levels. Careful re-analysis of the raw data and more equal loading seem necessary. The same goes (to a lesser extent) for S3J+K.<br /> (2c) the new model in Fig S4L: what do the arrows at the right FAM53C and p53 that merge a point straight towards S-phase mean? They suggest that p53 (and FAM53C) directly promote S-phase progression, but most likely this is not what the authors intended with it.

      (3) Clear; nicely addressed.

      (4) Thank you for correcting.

      (5) I appreciate that the authors are now more careful to call the IMPC analysis data preliminary. This is acceptable to me, but nevertheless, I suggest the authors to seriously consider taking this part entirely out. The risk of chance finding and the extremely skewed group sizes (as reviewer #2 had pointed out) hamper the credibility of this statistical analysis.

    2. Reviewer #2 (Public review):

      The authors sought to identify new regulators of the G1/S transition by mining the Cancer Dependency Map (DepMap) co-dependency dataset. This analysis successfully identified FAM53C, a poorly characterized protein, as a candidate. The strength of the paper lies in this initial discovery and the subsequent biochemical work convincingly showing that FAM53C can directly interact with the kinase DYRK1A, a known cell cycle regulator.

      The authors then present evidence, primarily from acute siRNA knockdown in RPE-1 cells, that loss of FAM53C induces a strong G1 cell cycle arrest. Their follow-up investigation proposes a model where FAM53C normally inhibits DYRK1A, thereby protecting Cyclin D from degradation and preventing p53 activation, to allow for G1/S progression. The authors have commendably addressed some concerns from the initial review: they have now demonstrated the G1 arrest using two independent siRNAs (an improvement over the initial pool), shown the effect in several additional cancer cell lines (U2OS, A549, HCT-116), and developed a more nuanced model that incorporates p53 activation, which helps to explain some of the complex data.

      However, a central and critical weakness persists. The entire functional model is built upon the very strong G1 arrest phenotype observed in vitro following acute knockdown. This finding is in stark contrast to data from other contexts. As the authors note, the knockout of Fam53c in mice results in minimal phenotypes, and the DepMap data itself suggests the gene is largely non-essential in most cancer cell lines.

      This major discrepancy creates two competing interpretations:

      As the authors suggest, FAM53C has a critical role in the cell cycle, but its loss is rapidly masked by compensatory mechanisms in long-term knockout models (like iPSCs and mice) or in established cancer cell lines.

      The strong acute G1 arrest is an experimental artifact of the siRNA-mediated knockdown, and not a true reflection of FAM53C's primary function.

      The authors' new controls (using two individual siRNAs and showing the arrest is RB-dependent) make an off-target effect less likely, but they do not definitively rule it out. The gold-standard experiment to distinguish between these two possibilities-a rescue of the phenotype using an siRNA-resistant cDNA-has not been performed.

      Because this key control is missing, the foundation of the paper's functional claims is not as solid as it needs to be. While the study provides an interesting and valuable new candidate for the cell cycle field to investigate, readers should be cautious in accepting the strength of FAM53C's role in the G1/S transition until this central discrepancy is definitively resolved.

    3. Reviewer #3 (Public review):

      Summary:

      In this study Hammond et al. investigated the role of Dual-specificity Tyrosine Phosphorylation regulated Kinase 1A (DYRK1) in G1/S transition. By exploiting Dependency Map portal, they identified a previously unexplored protein FAM53C as potential regulator of G1/S transition. Using RNAi, they confirmed that depletion of FAM53C suppressed proliferation of human RPE1 cells and that this phenotype was dependent on the presence protein RB. In addition, they noted increased level of CDKN1A transcript and p21 protein that could explain G1 arrest of FAM53C-depleted cells but surprisingly, they did not observe activation of other p53 target genes. Proteomic analysis identified DYRK1 as one of the main interactors of FAM53C and the interaction was confirmed in vitro. Further, they showed that purified FAM53C blocked the ability of DYRK1 to phosphorylate cyclin D in vitro although the activity of DYRK1 was likely not inhibited (judging from the modification of FAM53C itself). Instead, it seems more likely that FAM53C competes with cyclin D in this assay. Authors claim that the G1 arrest caused by depletion of FAM53C was rescued by inhibition of DYRK1 but this was true only in cells lacking functional p53. This is quite confusing as DYRK1 inhibition reduced the fraction of G1 cells in p53 wild type cells as well as in p53 knock-outs, suggesting that FAM53C may not be required for regulation of DYRK1 function. Instead of focusing on the impact of FAM53C on cell cycle progression, authors moved towards investigating its potential (and perhaps more complex) roles in differentiation of IPSCs into cortical organoids and in mice. They observed a lower level of proliferating cells in the organoids but if that reflects an increased activity of DYRK1 or if it is just an off-target effect of the genetic manipulation remains unclear. Even less clear is the phenotype in FAM53C knock-out mice. Authors did not observe any significant changes in survival nor in organ development but they noted some behavioral differences. Weather and how these are connected to the rate of cellular proliferation was not explored. In the summary, the study identified previously unknown role of FAM53C in proliferation but failed to explain the mechanism and its physiological relevance at the level of tissues and organism. Although some of the data might be of interest, in current form the data is too preliminary to justify publication.

      Major comments:

      (1) Whole study is based on one siRNA to Fam53C and its specificity was not validated. Level of the knock down was shown only in the first figure and not in the other experiments. The observed phenotypes in the cell cycle progression may be affected by variable knock-down efficiency and/or potential off target effects.

      (2) Experiments focusing on the cell cycle progression were done in a single cell line RPE1 that showed a strong sensitivity to FAM53C depletion. In contrast, phenotypes in IPSCs and in mice were only mild suggesting that there might be large differences across various cell types in the expression and function of FAM53C. Therefore, it is important to reproduce the observations in other cell types.

      (3) Authors state that FAM53C is a direct inhibitor of DYRK1A kinase activity (Line 203), however this model is not supported by the data in Fig 4A. FAM53C seems to be a good substrate of DYRK1 even at high concentrations when phosphorylations of cyclin D is reduced. It rather suggests that DYRK1 is not inhibited by FAM53C but perhaps FAM53C competes with cyclin D. Further, authors should address if the phosphorylation of cyclin D is responsible for the observed cell cycle phenotype. Is this Cyclin D-Thr286 phosphorylation, or are there other sites involved?

      (4) At many places, information on statistical tests is missing and SDs are not shown in the plots. For instance, what statistics was used in Fig 4C? Impact of FAM53C on cyclin D phosphorylation does not seem to be significant. IN the same experiment, does DYRK1 inhibitor prevent modification of cyclin D?

      (5) Validation of SM13797 compound in terms of specificity to DYRK1 was not performed.

      (6) A fraction of cells in G1 is a very easy readout but it does not measure progression through the G1 phase. Extension of the S phase or G2 delay would indirectly also result in reduction of the G1 fraction. Instead, authors could measure the dynamics of entry to S phase in cells released from a G1 block or from mitotic shake off.

      Comments to the revised manuscript:

      In the revised version of the manuscript, authors addressed most of the critical points. They now include new data with depletion of FAM53C using single siRNAs that show small but significant enrichment of population of the G1 cells. This G1 arrest is likely caused by a combined effects on induction of p21 expression and decreased levels of cyclin D1. Authors observed that inhibition of DYRK1 rescued cyclin D1 levels in FAM53 depleted cells suggesting that FAM53C may inhibit DYRK1. This possibility is also supported by in vitro experiments. On the other hand, inhibition of DYRK1 did not rescue the G1 arrest upon depletion of FAM53C, suggesting that FAM53C may have also DYRK1-independent role in G1. Functional rescue experiments with cyclin D1 mutants and detection of DYRK1 activity in cells would be necessary to conclusively explain the function of FAM53C in progression through G1 phase but unfortunately these experiments were technically not possible. Knock out of FAM53C in iPSCs and in mice suggest that FAM53C may have additional functions besides the cell cycle control and/or that adaptation may have occurred in these model systems. Overall, the study implicated FAM53C in fine tuning DYRK1 activity in cells that may to some extent influence the progression through G1 phase. In addition, FAM53C may also have DYRK1 and cell cycle independent functions that remain to be addressed by future studies.

    1. Reviewer #1 (Public review):

      Summary:

      Cotton et al. investigated the role of tusB in antibiotic tolerance in Yersinia pseudotuberculosis. They used the IP2226 strain and introduced appropriate mutations and complementation constructs. Assays were performed to measure growth rates, antibiotic tolerance, tRNA modification, gene expression and proteomic profiles. In addition, experiments to measure ribosome pausing and bioinformatic analysis of codon usage in ribosomal proteins provided in-depth mechanistic support for the conclusions.

      Strengths:

      The findings are consistent with the authors having uncovered new mechanistic insights into bacterial antibiotic tolerance mediated by reducing ribosomal protein abundance.

      Weaknesses:

      Since the WT strain grows faster than the tusB mutant, there is a question of how growth rate, per se, impacts some of the analysis done. The authors should address this issue. In addition, it may not be essential, but would analysis of another slow-growing mutant (in some other antibiotic tolerance pathway if available) serve as a good control in this context?

    2. Reviewer #2 (Public review):

      Summary:

      This study addresses a critical clinical challenge-bacterial antibiotic tolerance (a key driver of treatment failure distinct from genetic resistance)-by uncovering a novel regulatory role of the conserved s2U tRNA modification in Yersinia pseudotuberculosis. Its strengths are notable and lay a solid foundation for understanding phenotypic drug tolerance. The study is the first to link s2U tRNA modification loss to antibiotic tolerance, specifically targeting translation/transcription-inhibiting antibiotics (doxycycline, gentamicin, rifampicin). By establishing a causal chain - s2U deficiency → codon-specific ribosome pausing (at AAA/CAA/GAA) → reduced ribosomal protein translation → global translational suppression → tolerance - it expands the functional landscape of tRNA modifications beyond canonical translation fidelity, filling a gap in how RNA epigenetics shapes bacterial stress adaptation.

      Strengths:

      This study makes a valuable contribution to understanding tRNA modification-mediated antibiotic tolerance.

      Weaknesses:

      There are several limitations that weaken the robustness of the study's mechanistic conclusions. Addressing these gaps would significantly enhance its impact and translational potential.

    3. Reviewer #3 (Public review):

      Summary:

      In the manuscript of Cotten et al., the authors study the 2-thiolation of tRNA in bacterial antibiotic resistance. The wildtype organism, Yersinia pseudotuberculosis, downregulates 2-thiolation as a response to antibiotics targeting the ribosome. In this manuscript, the authors show that a knockout of tusB causes slower translation. They provide evidence on the mechanisms of the slowing by determining transcription and translation, ribosome profiling and performing codon-usage analysis. They successfully determined that 2 codons are drivers of the translation slowdown, and the data is highly conclusive. Technically, I have nothing to criticize.

      Strengths:

      All in all, the study is very well made, and the writing is clear and concise. It covers a wide array of state-of-the-art analyses to unravel the interplay of tRNA modifications in translation.

      Weaknesses:

      The only question that remains to be asked is why the slowed translation leads to a better survival of the bacteria under antibiotic stress. In my opinion, the mechanism itself remains unclear. Thus, the statement that "We expect that this reduction in ribosomal proteins is globally reducing the translational capacity of the cell and is responsible for inducing tolerance to ribosome and RNA polymerase-targeting antibiotics" does not truly emphasize the remaining open question of why slowed translation favors survival. Therefore, I would recommend a minor text revision.

    1. Reviewer #1 (Public review):

      Summary:

      This unique study reports original and extensive behavioral data collected by the authors on 21 living mammal taxa in zoo conditions (primates, tree shrew, rodents, carnivorans, and marsupials) on how descent along a vertical substrate can be done effectively and securely using gait variables. Ten morphological variables reflecting head size and limb proportions are examined in relationship to vertical descent strategies and then applied to reconstruct modes of vertical descent in fossil mammals.

      Strengths:

      This is a broad and data-rich comparative study, which requires a good understanding of the mammal groups being compared and how they are interrelated, the kinematic variables that underlie the locomotion used by the animals during vertical descent, and the morphological variables that are associated with vertical descent styles. Thankfully, the study presents data in a cogent way with clear hypotheses at the beginning, followed by results and a discussion that addresses each of those hypotheses using the relevant behavioral and morphological variables, always keeping in mind the relationships of the mammal groups under investigation. As pointed out in the study, there is a clear phylogenetic signal associated with vertical descent style. Strepsirrhine primates much prefer descending tail first, platyrrhine primates descend sideways when given a choice, whereas all other mammals (with the exception of the raccoon) descend head first. Not surprisingly, all mammals descending a vertical substrate do so in a more deliberate way, by reducing speed, and by keeping the limbs in contact for a longer period (i.e., higher duty factors).

    2. Reviewer #2 (Public review):

      Summary:

      This paper contains kinematic analyses of a large comparative sample of small to medium-sized arboreal mammals (n = 21 species) traveling on near-vertical arboreal supports of varying diameter. This data is paired with morphological measures from the extant sample to reconstruct potential behaviors in a selection of fossil euarchontaglires. This research is valuable to anyone working in mammal locomotion and primate evolution.

      Strengths:

      The experimental data collection methods align with best research practices in this field and are presented with enough detail to allow for reproducibility of the study as well as comparison with similar datasets. The four predictions in the introduction are well aligned with the design of the study to allow for hypothesis testing. Behaviors are well described and documented, and Figure 1 does an excellent job in conveying the variety of locomotor behaviors observed in this sample. I think the authors took an interesting and unique angle by considering the influence of encephalization quotient on descent and the experience of forward pitch in animals with very large heads.

      Comment from the Reviewing Editor on the revised version:

      The authors responded to many comments of the reviewers, and I would be happy to see the authors make this version the Version of Record.

    1. Reviewer #2 (Public review):

      The Revision title and abstract are not updated enough to distinguish the special niche piRNA clusters from the more prominent major dual strand piRNA clusters that are widely known in the field for Drosophila, like 42AB and 38C. This revision mainly adds the term "piRNA source loci (piSL)" that is too vague and not a well-accepted name that would distinguish just these particularly niche piRNA clusters from major dual strand piRNA clusters like 42AB and 38C. This piSL term is problematic because it seems to imply these piSL's are connected to or would eventually become major dual strand piRNA clusters, but there is zero evidence in this study for any genetic or evolutionary connection between these two distinct types of piRNA sources. This revision still lacks the necessary changes needed to point out like in the abstract that major dual strand piRNA clusters like 42AB, 38C, 80F, and 102F in Drosophila that make up the bulk of piRNAs cannot be shown to be impacted by changes aimed at depleting ADMA-histones from these loci, and the authors' current evidence is still only limited to showing in these few 'niche' piRNA clusters that ADMA-histones may exhibit a direct interaction with Rhino as supported only by the knockdown of Drosophila Art4.

      The author's rebuttal letter argues that 42AB and 38C are just conserved piRNA clusters that may no longer be regulated by ADMA. This is still a weak claim for dismissing the potential genetic redundancy problem when this study can only report strong knockdown of Art4. First, the dual strand 42AB piRNA cluster's conservation as a Drosophilid piRNA cluster is actually still a relatively recent evolutionary innovation in just D.simulans and D.melanogaster that are less than 3MYA diverged. This 42AB cluster is no longer conserved in D.sechelia and is also younger than the uni-strand Flamenco piRNA cluster that is conserve to 7MYA. The evolutionary arguments by the authors are not well-grounded. Second, the 42AB and 38C are the largest major dual strand piRNA clusters with very significant localization of Rhino and impact from Rhino loss of function, and if this paper's central thesis is that ADMA-histones directed by Art1 or Art4 is critical for the expression of dual-strand piRNA cluster loci by impacting Rhino, the current data still remain weak with no new experiments to help bolster their claims.

      The author's rebuttal letter argues that the challenges they faced in trying to knock down Art1 in the fly was thwarted by reagent issues, and the explanations are unsatisfactory. They claim they only tested two RNAi cross lines to try to knock down Art1: the strain BDSC #36891, y[1] sc[*] v[1] sev[21]; P{y[+t7.7], v[+t1.8]=TRiP.GL01072}attP2/TM3, Sb[1] that they said they could not obtain this strain to be alive from the stock center? And then testing an alternative line VDRC #v110391P{KK101196}VIE-260B that displayed mediocre knockdown, the authors seemed to suggest they have given up trying to make this very important experiment work? They should have tried to figure out with the BDSC, a venerable stock center for Drosophila genetic tools, why they could not receive that fly strain alive (shipping flies at the economy rate internationally may be cheaper but often is too strenuous for flies to survive), and the authors have not acknowledged testing two other available knockdown lines for Art1: BDSC #31348, y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF01306}attP2 dsRNA and VDRC #w1118 P{GD11959}v40388. Trying to get good knockdown of Art1 would be a critical must-have experiment to address whether this arginine methyltransferase has an in vivo impact on ADMA-histones in the Drosophila ovary and showing an impact on 42AB and 38C. The revision does not address this major deficiency in impact on these two major dual strand piRNA clusters, only the very few niche piRNA clusters that are responsive to Art4 knockdown.

      The rebuttal letter argues that "Therefore, conserved clusters such as 42AB and 38C may no longer be regulated by ADMA." but then the revision discussion is still speculating much too wildly that the piRNA source loci are then precursors for the eventual large piRNA clusters of 42AB and 38C. This renaming of the term piRNA source loci and the model in Fig. 7C is still misleading because 42AB and 38C are the main largest dual-strand piRNA clusters, and the pictures depict the ADMA-histones as recruiting Rhino and then Kipferl at a piRNA cluster. The term "piRNA source loci" does not sound distinct enough to separate it from the main piRNA clusters of 42AB and 38C, and I had suggested calling them 'niche piRNA clusters' to denote they are very special and distinct to only be responsive to Drosophila Art4 knockdown.

      In regards to the revision's changing of gene names, the convention for gene names is to use the previous name designation. Rather than calling the gene DART1, the conventional name of this gene in Flybase is Art1 (CG6554). There is the same problem with using the new name DART4 when in Flybase the gene is called Art4 (CG5358). Alternatively, the authors should clarify the re-naming up front and make it consistent with Drosophila genetics nomenclature, perhaps dArt1 or dArt4 would be more appropriate.

    2. Reviewer #3 (Public review):

      Summary:

      This study investigates how Rhino, a chromatin-associated HP1-family protein essential for germline piRNA biogenesis in Drosophila, is initially recruited to specific genomic loci. Although canonical dual-strand piRNA clusters such as 42AB, 38C, 80F, and 102F produce the majority of germline piRNAs, the mechanisms guiding Rhino to these regions remain poorly understood. To explore the earliest steps of Rhino loading, the authors use a doxycycline-inducible Rhino transgene in OSC cells, a system that expresses only the primary Piwi pathway and therefore provides an experimentally accessible, epigenetically naïve context distinct from the endogenous germline environment. Through a combination of inducible Rhino expression, knockdown of selected Drosophila PRMTs (DARTs), ChIP-seq, small RNA sequencing, and imaging, the authors propose that asymmetric arginine-methylated histones, particularly those deposited by DART4, contribute to defining initial sites of Rhino association. They identify a subset of Rhino-bound loci, termed DART4-dependent piRNA source loci (piSL), which lose Rhino, Kipferl, and piRNA production upon DART4 depletion and may represent nascent or transitional piRNA clusters. Overall, the study provides intriguing evidence for a link between ADMA histone marks and de novo Rhino recruitment, particularly in the simplified OSC context, and offers new candidate loci for further exploration of early piRNA-cluster chromatin dynamics.

      Strengths:

      This study offers important insights into how asymmetric dimethylarginine (ADMA) histone marks contribute to the initial recruitment of Rhino, a Drosophila HP1-family protein essential for dual-strand piRNA cluster specification. Using an integrative approach that includes ectopic expression of a Rhino transgene in OSC cells, germline knockdown of DART4 in Drosophila ovaries, ChIP-seq, small RNA-seq, and imaging, the authors show that ADMA marks particularly H3R17me2a and H4R3me2acorrelate with Rhino binding at the boundaries of canonical piRNA clusters and at DART4-dependent piRNA source loci (piSL). These piSL may represent nascent or transitional piRNA-generating regions. Overall, the dataset presented here provides a valuable resource for understanding the chromatin features associated with the emergence and maturation of piRNA clusters.

      Weaknesses:

      Despite the strengths of the study, several important limitations remain. Although Rhino binding correlates with ADMA-enriched boundaries, the data do not directly demonstrate that these histone marks are required for Rhino spreading, leaving the mechanistic relationship correlative rather than causal. The DART4-dependent piRNA source loci identified here produce only low levels of piRNAs, and their functional contribution remains uncertain. In addition, redundancy among DART family methyltransferases remains unresolved: only DART4 was tested in the germline, and effective knockdown of DART1 or other DARTs could not be achieved, limiting the ability to evaluate whether ADMA-histones more broadly regulate Rhino recruitment at canonical clusters. Consequently, the current dataset primarily supports DART4-dependent effects at a small subset of evolutionarily young loci, and both the model and the title may overstate the generality of this mechanism across the full repertoire of dual-strand piRNA clusters.

      In conclusion, this study is carefully executed and puts forward compelling hypotheses regarding the early chromatin environment that may underlie piRNA cluster formation. The findings will be relevant to researchers interested in genome regulation, small RNA biology, and chromatin-mediated transposon control.

    1. Reviewer #1 (Public review):

      Summary:

      Even though mutations in LRRK2 and GBA1 (which encodes the protein GCase) increase the risk of developing Parkinson's disease (PD), the specific mechanisms driving neurodegeneration remain unclear. Given their known roles in lysosomal function, the authors investigate how LRRK2 and GCase activity influence the exocytosis of the lysosomal lipid BMP via extracellular vesicles (EVs). They use fibroblasts carrying the PD-associated LRRK2-R1441G mutation and pharmacologically modulate LRRK2 and GCase activity.

      Strengths:

      The authors examine both proteins at endogenous levels, using MEFs instead of cancer cells. The study's scope is potentially interesting and could yield relevant insights into PD disease mechanisms.

      Weaknesses:

      Many of the authors' conclusions are overstated and not sufficiently supported by the data. Several statistical errors undermine their claims. Pharmacological treatment is very long, leading to potential off target effects. Additionally, the authors should be more rigorous when using EV markers.

      Comments on revisions:

      The authors have not addressed most of my concerns. For example, instead of trying with a 1-2 hour MLi2 treatment, they cited all the papers that use extremely long time points for LRRK2 inhibition; the fact that other groups do it does not mean it is biologically correct. They also refused to quantify their western blots in a proper manner, without the "hyper-normalization" claiming that it is an accepted way to quantify western blots. Again, it is statistically incorrect and biologically impossible. They also do not have a satisfactory explanation as to why the R1441G cells (which increase LRRK2 kinase activity) have no effect on EV release, but they still claim it is LRRK2 kinase activity dependent.

      Overall, I am very confused by the model proposed by the authors. They only see increased EV release in the G2019S expressing cells, but not the R1441G cells, yet they claim that the increase of EV release is LRRK2 kinase activity dependent. Then, they claim that the presence of BMP (unchanged in R1441G vs CTL) in EVs is also LRRK2 kinase activity dependent. Finally, they perform TIRF with pHluorin-CD63 construct and observed an increase in G2019S cells vs CTL "further confirming that BMP release is associated with EV secretion". First, I could not see the increase in BMP release in G2019S cells (if I missed it, I apologize). And second, why didn't they do this experiment in R1441G cells? As, the R1441G cells have not displayed an increase in EV release compared to CTL cells, it could also be possible that the BMP release might be more abundant through lysosomal exocytosis (which could explain the pHluorin results) than EVs. Overall, the authors nicely demonstrate that the R1441G cells have more BMP species, likely due to increase CLN5 expression, but the release of the BMP is still not clear to this reviewer.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, authors used MEFs expressing the R1441G mutant of leucine-rich repeat kinase 2 (LRRK2), a mutant associated with the early onset of Parkinson's disease. They report that in these cells LAMP2 fluorescence is higher but BMP fluorescence is lower, MVE size is reduced and that MVEs contain less ILVs. They also report that LAMP2-positive EVs are increased in mutant cells in a process sensitive to LRRK2 kinase inhibition but are further increased by glucocerebrosidase (GCase) inhibition, and that total di-22:6-BMP and total di-18:1-BMP are increased in mutant LRRK2 MEFs compared to WT cells by mass spectrometry. They also report that LRRK2 kinase inhibition partially restores cellular BMP levels, and that GCase inhibition further increased BMP levels, and that in EVs from the LRRK2 mutant, LRRK2 inhibition decreases BMP while GCase inhibition has the opposite effect. Moreover, they report that BMP increase is not due to increased BMP synthesis, although authors observe that CLN5 is increased in LRRK2 mutant cells. Finally, they report that GW4869 decreases EV release and exosomal BMP, while bafilomycin A1 increases EV release. They conclude that LRRK2 regulates BMP levels (in cells) and release (via EVs). They also conclude that the process is modulated by GCase in LRRK2 mutant cells, and that these studies may contribute to the use of BMP-positive EVs as a biomarker for Parkinson's disease and associated treatments.

      Strengths:

      This is a potentially interesting paper,. However, I had comments that authors needed to address to clarify some aspects of their study.

      Weaknesses:

      (1) The authors seem to have missed the point in their reply to my first comment. They mention the paper by Stuffers et al., who reports that endosome biogenesis continues without ESCRT. This is a nice paper, but it is irrelevant to the subject at hand. In my initial comment, I drew the author's attention to an apparent contradiction: higher LAMP2 staining in R1441G LRRK2 knock-in MEFs and yet smaller MVEs with a reduced surface area. LAMP2 being one of the major glycoproteins of MVE's limiting membrane, one would have expected lower LAMP2 staining if cells contain fewer and smaller MVEs. Authors now state that elevated LAMP2 expression in cells expressing R1441G reflects a cell type-specific effect (differential penetrance of LRRK2 signaling on lysosomal biogenesis), because amounts of LAMP1 and CD63 are similar in cells from LRRK2 G2019S PD patients and control cells (new Fig 7A-F). However, authors still conclude that LRRK2 modulates the lysosomal network, including LAMP2 and CLN5. Does it?

      Similarly, the mass spec analysis of BMP (Fig S1H) does not support the data in Fig 1. Does this Table include all major isoforms found in these cells? If so, the dominant isoform is by far the di-18:1 isoform in wt and R1441G cells (at least 10X more abundant than other isoforms). Now, di-18:1-BMP is roughly 4X more abundant in R1441G cells when compared to wt cells, while BMP is reduced by half in R1441G cells (light microscopy in Fig 1). Authors argue that light microscopy may only detects a so-called antibody accessible pool. What is this? And why would this pool decrease in R1441G cells when LAMP2 is higher? Alternatively, they argue that the anti-BMP antibody may be less specific and detect other analytes. As I had already mentioned, this makes no sense, since the observed signal is lower and not higher. If authors do not trust their light microscopy analysis, why show the data?

      (2) Cells contain 3 LAMP2 isoforms. Which one is upregulated and/or secreted in exosomes?

      (3) The new Fig S4A is far from convincing. How were cells fractionated and what are the gradients (not described in Methods)? CD63 (presumably endolysosomes) is spread over fractions 8 - 13. LRRK2 (fractions 8-9) does not copurify with CD63. The bulk of LRRK2 is at the bottom (presumably cytosol if this is a floatation gradient), and a minor fraction moves into the gradient. CLN5 is even less clear since the bulk is also at the bottom with a tiny fraction only between LRRK2 and CD63. Also, why do authors conclude that a considerable pool of newly synthesized CLN5 did not reach its final destination at the endolysosome and may instead be retained in the ER? Where is the ER on the gradient?

      (4) Fig S4B shows blots of whole cell lysates from CTRL and LRRK2 mutant-derived fibroblasts: 6 lanes are shown but without captions, containing varying amounts of calnexin and CD63. In addition, the blots look very dirty. Where is CD63? Is it the minor band at ≈37 kD (as in Fig S4A)? Or the major band below the 50kD marker? What are the other bands on these blots? As a result, the quantification shown in the bar graph does not mean much.

      (5) The cell content of 18.1-BMP is increased approx. 5X by BafA1 (Fig 6C) but amounts of 18.1-BMP secreted in EVs hardly changes (Fig 6E). Since BMP is mostly present as 18.1 isoform (22:6-BMP being only a minor species, Fig S1H), does it mean that BafA1 does not increase BMP secretion and/or only a minor fraction of total cellular BMP is secreted in exosomes?

      Comments on revisions:

      How come 0.2 mmol/L of 22:6 and 18:1 fatty acid both correspond to 65 µg/mL (Fig 4A)?

      It is stated in the Legend of Fig4 that long (B-C) and short (D) chase time points are shown as fold change. There is no panel D in the figure.

    1. Reviewer #1 (Public review):

      Summary:

      Marchand et al. seek to understand how basement membrane (BM) is initially assembled around developing vasculature (and by extension basement membrane assembly generally progresses). To do this, they use an established cell culture system that is amenable to advanced microscopy techniques, including high-resolution fluorescence imaging and atomic force microscopy. This allows them to produce very high-quality imaging data that includes both protein localization and matrix topography in 3D. They show that fibronectin (FN) is remodeled as collagen IV (Col IV) assembles. Lysyl oxidase-like-2 (LOXL2) is needed for this process, and without it, BM does not form correctly, cells cannot adhere to BM, and cells also don't correctly form junctions with other cells.

      Detailed Review:

      The authors provide quantitative measures of BM fibril assembly at the earliest timepoints. They show two phases of growth - initial deposition, elongation, and interconnection of short fibers; the second is a significant thickening. As the BM forms, FN is immediately associated with filaments, but laminin and Col IV are not associated with fibers as detected by AFM. LOXL2 is associated with fibers, similar to FN. At a later time point, Col IV becomes associated with fibers, but laminin never does. Likely FN templates LOXL2, which crosslink Col IV into fibrils over time. Could the authors comment on how this data fits with in vivo data from model organisms? Also, I would like to know if they can uncouple LOXL2 from the FN matrix? Could you express a mutated form of LOXL2 that cannot interact with FN but still is able to crosslink Col IV?)

      Depletion of LOXL2 supports this mechanism. Without it, Col IV and FN are uncoupled and accumulate as large aggregates rather than a complex fibrous network. Further, long-term thickening/growth of the fibronectin network is inhibited, indicating LOXL2 and/or the Col IV network positively reinforces fibronectin assembly. (Does LOXL2 directly act on FN, or is this effect dependent on Col IV? The nature of the molecular interactions between COL IV, LOXL2, and FN will be an important future research area.)

      Next, Marchand et al. ask if failure to produce mature BM (induced by LOXL2 depletion) has consequences for underlying cells. They demonstrate a clear shift in the orientation of actin towards a linear alignment, and similarly, cells change shape from round to very elongated. Cell junctions also shifted to a linear arrangement in LOXL2 depletion. This fits with the known balance between cell-ECM and cell-cell adhesion. The changes in actin network and cell shape/adhesion correlate with a change in B1 integrin localization upon LOXL2 depletion. B1 integrin colocalized with sparse early FN fibers, but was absent from large FN aggregates that occur if LOXL2 is depleted. Similar reorganization of integrin adhesion components (FAK, Vinc, Pax). Clearly, there is feedback between BM assembly and cell junction organization. But I think the authors might emphasize to the reader that this normally reinforces the epithelial fate of these cells. It's less a balance and more like a tipping point. (Related to this section, I could not read Figure 4C graphs unless I enlarged them to 300%.)

      Finally, they culture cells on micro groove plates, with or without LOXL2. The grooved substrate can orient the cells, and they show this is superseded by BM once it assembles. Without LOXL2 cells on micro-grooved substrates become disorganized, similar to their observation on flat surfaces (elongated cells, linear actin, etc.). This demonstrates a switch from external topographical cues to self-generated BM. This is consistent with the idea of reorganizing junctions to produce a stable epithelial tube. I was very interested in their 3D culture. The effect of BM assembly on tube diameter makes sense. But how does BM assembly support complex capillary functions like branching? (Can they force branching with targeted mutations that decouple integrin from the BM?) Is this a question of change to cell fate? (Are other remodeling enzymes activated after initial BM assembly that could support growth and/or branching?)

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript entitled "Adaptation of endothelial cells to microenvironment 1 topographical cues through lysyl oxidase like-2-mediated basement membrane scaffolding" by Marchand et al., aims to determine the impact of LOXL2 on the dynamic formation of vascular basement membranes (BMs).

      Strengths:

      This manuscript includes a nice combination of different methods and presents the results in an appropriate manner.

      Furthermore, the results clearly demonstrate an impact of LOXL2 on collagen IV-fibronectin organization and topography. Finally, the proper arrangement of collagen IV-fibronectin impacts cell alignment.

      Weaknesses:

      An open question for this reviewer is what the real take-home message of the present study is? Can the authors deliver novel insight into BM formation transferable to the in vivo situation? Why do the authors not see a "real" BM? Could it be that in vivo endothelial cells do not build the vascular BM alone? Thus, are additional cell types needed? And what will happen then if LOXL2 expression is altered?

      Major comments:

      (1) Can the authors show that LOXL2 cross-links fibronectin and collagen IV?

      (2) The authors stated that LOXL2 depletion affects cytoskeleton arrangements and cell shape. Could it be that this is simply a secondary effect mediated primarily through the altered cross-linking of fibronectin and collagen IV?

      (3) Can the authors perform cell adhesion studies on CDMs derived from wild-type versus LOXL2-deficient cells?

      (4) Line 226-230: Can the authors provide the proliferation data of wildtype and LOXL2-depleted cells supporting their Src and Akt activity findings?

      (5) Line 298-299: The authors made a statement about laminin. Can the authors think of a co-culture of wild-type versus LOXL2-depleted endothelial cells in combination with pericytes or fibroblasts, as these cells contribute to the efficient assembly of a functional vascular basement membrane (10.1182/blood-2009-05-222364). Here, you can determine the impact of altered fibronectin-collagen IV cross-linking on laminin network formation. This will affect their conclusion in lines 299-304, as these facts are solely based on endothelial cells.

      (6) Suggestion: can the authors supplement recombinant LOXL2 protein in its active version to the LOXL2-depleted endothelial cells to rescue the observed changes? And further compare LOXL2 enzymatic function with LOXL2 protein harbouring Zn instead of Cu, making it enzymatic inactive. Here, the authors might be able to strengthen their hypothesis that LOXL2 might bridge fibronectin and collagen IV or link both proteins.

      (7) There are grammatical errors in the manuscript that the authors should work on.

    3. Reviewer #3 (Public review):

      This important study shows that basement membrane (BM) generation is a key event mediating cell 3D organization in response to microenvironmental cues. Such a mechanism participates in the endothelial cell capacity to organize into a capillary vessel segment through the shift of interactions with the interstitial ECM to interactions with vascular BM. This is particularly important for the developing, sprouting vasculature. The authors conclusively show, using TIRF and atomic force microscopy substantiated by 3D sprouting assays, that the lysyl oxidase Loxl2 plays a key role herein. With respect to translation into clinical practice, the dysregulation of adherens junctions and barrier properties associated with Loxl2 dysfunction mediated defects in BM supports its involvement in the progression of long-term microvascular diseases.

      An outstanding question not answered in the current MS is how Loxl2 integrates into the Dll4-Notch mediated control of tip-stalk-phalanx cell differentiation in the developing (embryonic) vasculature. The authors focused a lot on Loxl2 loss of function; however, in a (patho)physiological context, Loxl2 gain of function would be relevant. Loxl2 is a hypoxia target and Loxl2 accumulates in the ECM upon hypoxic stress (as occurs during ischemic CVD, stroke/heart infarct). It would be interesting to know how Loxl2 gain-of-function impacts BM assembly, endothelial behavior, mechanosensing, and vessel angiogenic remodeling.

    1. Reviewer #1 (Public review):

      Summary:

      The authors utilize genetic code expansion to tag TDP-43 and G3BP1, and evaluate this protein tagging system (ANAP) compared to antibodies, and evaluate protein trafficking and stress granule formation in response to stress with sodium arsenite treatment. They find similar staining to antibodies in HeLa cells, mouse embryonic stem cells, and primary mouse cortical neurons. This is a useful study that demonstrates the utility of ANAP tagging to evaluate ALS proteins.

      Strengths:

      Rescue of cell survival by ANAP-tagged TDP-43 is compelling

      Weaknesses:

      While the ANAP-tagged proteins had similar distributions to antibody staining, there were some discrepancies that may be more explained by the technique than by novel findings, as the authors suggested. The inclusion of additional controls to evaluate this would be helpful.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Chen and colleagues describe a novel means of labeling two RNA-binding proteins, G3BP1 and TDP-43, using genetic code expansion. Overexpressed constructs that incorporate the intrinsically-fluorescent non-canonical amino acid Anap redistribute to cytoplasmic granules upon application of external stressors such as sodium arsenite. Similar labeling and redistribution of overexpressed G3BP1 and TDP-43 were observed in cultures of mouse primary neurons.

      Strengths:

      Genetic code expansion and non-canonical amino acid labeling have quite a few advantages over traditional fusion proteins for tracking protein redistribution in living cells. The authors show that they are able to label exogenous G3BP1 and TDP-43 with the non-canonical amino acid Anap and follow labeled proteins in living cells with and without stress.

      Weaknesses:

      The authors do not convincingly leverage the advantages of genetic code expansion in the current study. There is no specific question posed by the authors that can be or is answered using this approach, and several of the experiments lack critical controls. This is also not the first example of TDP-43 labeling by genetic code expansion (see PMID: 38290242). As a result, the study as a whole adds little to our understanding of protein trafficking and behavior under stress.

    1. Reviewer #2 (Public review):

      This paper proposes two changes to classic RSA, a popular method to probe neural representation in neuroimaging experiments: computing RSA at row/column level of RDM, and using linear mixed modeling to compute second level statistics, using the individual row/columns to estimate a random effect of stimulus. The benefit of the new method is demonstrated using simulations and a re-analysis of a prior fMRI dataset on object perception and memory encoding.

      The author's claim that tRSA is a promising approach to perform more complete modeling of cogneuro data, and to conceptualize representation at the single trial/event level (cf Discussion section on P42), is appealing.

      In their revised manuscript, the authors have addressed some previous concerns, now referencing more literature aiming to improve RSA and its associated statistical inferences, and providing more guidance on methodological considerations in the Discussion. However, I wish the authors had more extensively edited the Introduction to better contextualize the work and clarify the specific settings in which they see the method as being beneficial over classic RSA. For example, some of the limitations of cRSA mentioned on page 6, e.g. related to presenting the same stimuli to multiple subjects, seem to be quite specific to settings where the researcher expects differential responses across subjects to fundamentally alter the interpretation, rather than something that will just average out by repeatedly offering the same stimulus, or combining data across subjects. It's not clear to me how the switch from 'matrix-level' to 'row-level' analysis in tRSA necessarily addresses this problem. I would be very helpful if the authors would more explicitly outline what problem the row-level aspect of tRSA is solving; what problem statistical inference via LMM is solving; and walk the reader through a very specific use case (perhaps a toy version of the real-data experiment which is now at the end of the paper). Explaining the utility of tRSA for experimental settings in which assessing representational strength for a single-events is crucial would clarify the contribution of this new method better.

      A few weaknesses mentioned in my previous review were not adequately addressed. To demonstrate the utility of the method on real neural recordings, only a single dataset is used with a quite complicated experimental design; it's not clear if there is any benefit of using tRSA on a simpler real dataset. Moreover, the cells of an RDM/RSM reflect pairwise comparisons between response patterns. Because the response patterns are repeatedly compared, the cells of this matrix are not independent of one another. While the authors show examples that failure to meet independence assumptions do not affect results in their specific dataset, it does not get acknowledged as a problem at a more fundamental level. Finally, while the paper now states that 'simulations and example tRSA code' are publicly available, the link points to the lab's general github page containing many lab repositories, in which I could not identify a specific repository related to this paper. This is disappointing given that the main goal of this manuscript is to provide a new method that they encourage others to use; a clear pointer to available code is only a minimal requirement to achieve that goal. A dedicated repository, including documentation, READMEs and tutorials/demo's to run simulations, compare methods, etc. would greatly enhance the paper's contribution.

    1. Reviewer #2 (Public review):

      Summary:

      Egawa et al describe the developmental timeline of the assembly of nodes of Ranvier in the chick brainstem auditory circuit. In this unique system, the spacing between nodes varies significantly in different regions of the same axon from early stages, which the authors suggest is critical for accurate sound localization. Egawa et al set out to determine which factors regulate this differential node spacing. They do this by using immunohistological analyses to test the correlation of node spacing with morphological properties of the axons, and properties of oligodendrocytes, glial cells that wrap axons with the myelin sheaths that flank the nodes of Ranvier. They find that axonal structure does not vary significantly, but that oligodendrocyte density and morphology varies in the different regions traversed by these axons, which suggests this is a key determinant of the region-specific differences in node density and myelin sheath length. They also find that differential oligodendrocyte density is partly determined by secreted neuronal signals, as (presumed) blockage of vesicle fusion with tetanus toxin reduced oligodendrocyte density in the region where it is normally higher. Based on these findings, the authors propose that oligodendrocyte morphology, myelin sheath length, and consequently nodal distribution are primarily determined by intrinsic oligodendrocyte properties rather than neuronal factors such as activity.

      Significance:

      In our view the study tackles a fundamental question likely to be of interest to a specialized audience of cellular neuroscientists. This descriptive study is suggestive that in the studied system, oligodendrocyte density determines the spacing between nodes of Ranvier, but further manipulations of oligodendrocyte density per se are needed to test this convincingly.

    2. Reviewer #3 (Public review):

      Summary:

      The authors have investigated the myelination pattern along the axons of chick avian cochlear nucleus. It has already been shown that there are regional differences in the internodal length of axons in the nucleus magnocellularis. In the tract region across the midline, internodes are longer than in the nucleus laminaris region. Here the authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons. However, the demonstration falls rather short of being convincing.

      Significance:

      The authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons.

      Editors' note: The authors have written an effective rebuttal to the previous round of reviews.

    1. Reviewer #1 (Public review):

      Summary:

      The authors attempted to clarify the impact of N protein mutations on ribonucleoprotein (RNP) assembly and stability using analytical ultracentrifugation (AUC) and mass photometry (MP). These complementary approaches provide a more comprehensive understanding of the underlying processes. Both SV-AUC and MP results consistently showed enhanced RNP assembly and stability due to N protein mutations.<br /> The overall research design appears well planned, and the experiments were carefully executed.

      Strengths:

      SV-AUC, performed at higher concentrations (3 µM), captured the hydrodynamic properties of bulk assembled complexes, while MP provided crucial information on dissociation rates and complex lifetimes at nanomolar concentrations. Together, the methods offered detailed insights into association states and dissociation kinetics across a broad concentration range. This represents a thorough application of solution physicochemistry.

      Weaknesses:

      Unlike AUC, MP observes only a part of solution. In MP, bound molecules are accumulated on the glass surface (not dissociated) thus concentration in solution should change as time develops. How does such concentration change impact the result shown here?

      Comments on revisions:

      The response from the authors is appropriate and reasonable.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors apply a variety of biophysical and computational techniques to characterize the effects of mutations in the SARS-CoV-2 N protein on the formation of ribonucleoprotein particles (RNPs). They find convergent evolution in multiple repeated independent mutations strengthening binding interfaces, compensating for other mutations that reduce RNP stability but which enhance viral replication.

      Strengths:

      The authors assay the effects of a variety of mutations found in SARS-CoV-2 variants of concern using a variety of approaches, including biophysical characterization of assembly properties of RNPs, combined with computational prediction of the effects of mutations on molecular structures and interactions. The findings of the paper contribute to our increasing understanding of the principles driving viral self-assembly, and increases the foundation for potential future design of therapeutics such as assembly inhibitors.

      Weaknesses:

      For the most part, the paper is well-written, the data presented support the claims made, and the arguments made easy to follow. However, I believe that parts of the presentation could be substantially improved. I found portions of the text to be overly long and verbose and likely could be substantially edited; the use of acronyms and initialisms is pervasive, making parts of the exposition laborious to follow; and portions of the figures are too small and difficult to read/understand.

      Comments on revisions:

      The authors have adequately addressed all of my concerns.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript investigates how mutations in the SARS-CoV-2 nucleocapsid protein (N) alter ribonucleoprotein (RNP) assembly, stability, and viral fitness. The authors focus on mutations such as P13L, G214C, G215C combining biophysical assays (SV-AUC, mass photometry, CD spectroscopy, EM), VLP formation, and reverse genetics. They propose that SARS-CoV-2 exploits "fuzzy complex" principles, where distributed weak interfaces in disordered regions allow both stability and plasticity, with measurable consequences for viral replication.

      Strengths:

      * The paper demonstrates a comprehensive integration of structural biophysics, peptide/protein assays, VLP systems, and reverse genetics.

      * Identification of both de novo (P13L) and stabilizing (G214C/G215C) interfaces provides a mechanistic insight into RNP formation.

      * Strong application of the "fuzzy complex" framework to viral assembly, showing how weak/disordered interactions support evolvability, is a significant conceptual advance in viral capsid assembly.

      * Overall, the study provides a mechanistic context for mutations that have arisen in major SARS-CoV-2 variants (Omicron, Delta, Lambda) and a mechanistic basis for how mutations influence phenotype via altered biomolecular interactions.

      Weaknesses:

      The weaknesses are shared via detailed comments to follow.

      Comments on revisions:

      The authors have addressed the criticisms of the original manuscript satisfactorily.