10,000 Matching Annotations
  1. Oct 2024
    1. Reviewer #3 (Public review):

      In this study, O'Brien et al. address the need for scalable and cost-effective approaches to finding lead compounds for the treatment of the growing number of Mendelian diseases. They used state-of-the-art phenotypic screening based on an established high-dimensional phenotypic analysis pipeline in the nematode C. elegans.

      First, a panel of 25 C. elegans models was created by generating CRISPR/Cas9 knock-out lines for conserved human disease genes. These mutant strains underwent behavioral analysis using the group's published methodology. Clustering analysis revealed common features for genes likely operating in similar genetic pathways or biological functions. The study also presents results from a more focused examination of ciliopathy disease models.

      Subsequently, the study focuses on the NALCN channel gene family, comparing the phenotypes of mutants of nca-1, unc-77, and unc-80. This initial characterization identifies three behavioral parameters that exhibit significant differences from the wild type and could serve as indicators for pharmacological modulation.

      As a proof-of-concept, O'Brien et al. present a drug repurposing screen using an FDA-approved compound library, identifying two compounds capable of rescuing the behavioral phenotype in a model with UNC80 deficiency. The relatively short time and low cost associated with creating and phenotyping these strains suggest that high-throughput worm tracking could serve as a scalable approach for drug repurposing, addressing the multitude of Mendelian diseases. Interestingly, by measuring a wide range of behavioural parameters, this strategy also simultaneously reveals deleterious side effects of tested drugs that may confound the analysis.

      Considering the wealth of data generated in this study regarding important human disease genes, it is regrettable that the data is not made accessible to researchers less versed in data analysis methods. This diminishes the study's utility. It would have a far greater impact if an accessible and user-friendly online interface were established to facilitate data querying and feature extraction for specific mutants. This would empower researchers to compare their findings with the extensive dataset created here.

      Another technical limitation of the study is the use of single alleles. Large deletion alleles were generated by CRISPR/Cas9 gene editing. At first glance, this seems like a good idea because it limits the risk that background mutations, present in chemically-generated alleles, will affect behavioral parameters. However, these large deletions can also remove non-coding RNAs or other regulatory genetic elements, as found, for example, in introns. Therefore, it would be prudent to validate the behavioral effects by testing additional loss-of-function alleles produced through early stop codons or targeted deletion of key functional domains.

    1. Reviewer #1 (Public review):

      Summary:

      This study explores the sequence characteristics and features of high-occupancy target (HOT) loci across the human genome. The computational analyses presented in this paper provide information into the correlation of TF binding and regulatory networks at HOT loci that were regarded as lacking sequence specificity.

      By leveraging hundreds of ChIP-seq datasets from the ENCODE Project to delineate HOT loci in HepG2, K562, and H1-hESC cells, the investigators identified the regulatory significance and participation in 3D chromatin interactions of HOT loci. Subsequent exploration focused on the interaction of DNA-associated proteins (DAPs) with HOT loci using computational models. The models established that the potential formation of HOT loci is likely embedded in their DNA sequences and is significantly influenced by GC contents. Further inquiry exposed contrasting roles of HOT loci in housekeeping and tissue-specific functions spanning various cell types, with distinctions between embryonic and differentiated states, including instances of polymorphic variability. The authors conclude with a speculative model that HOT loci serve as anchors where phase-separated transcriptional condensates form. The findings presented here open avenues for future research, encouraging more exploration of the functional implications of HOT loci.

      Strengths:

      The concept of using computational models to define characteristics of HOT loci is refreshing and allows researchers to take a different approach in identifying potential targets. The major strengths of the study lie in the very large number of datasets analyzed, with hundreds of ChIP-seq data sets for both HepG2 and K562 cells as part of the ENCODE project. Such quantitative power allowed the authors to delve deeply into HOT loci, which were previously thought to be artifacts.

      Weaknesses:

      While this study contributes to our knowledge of HOT loci, there are critical weaknesses that need to be addressed. There are questions on the validity of the assumptions made for certain analyses. The speculative nature of the proposed model involving transcriptional condensates needs either further validation or be toned down. Furthermore, some apparent contradictions exist among the main conclusions, and these either need to be better explained or corrected. Lastly, several figure panels could be better explained or described in the figure legends.

      Update After Revisions:

      The authors have addressed the above comments and concerns appropriately. The addition of the new Figure 9 is particularly compelling and strengthens the authors' conclusions. This reviewer has no further concerns.

    2. Reviewer #2 (Public review):

      Summary:

      The paper by Hydaiberdiev and Ovcharenko offers comprehensive analyses and insights about the 'high-occupancy target' (HOT) loci in the human genome. These are considered genomic regions that overlap with transcription factor binding sites. The authors provided very comprehensive analyses of the TF composition characteristics of these HOT loci. They showed that these HOT loci tend to overlap with annotated promoters and enhancers, GC-rich regions, open chromatin signals, and highly conserved regions and that these loci are also enriched with potentially causal variants with different traits.

      Strengths:

      Overall, the HOT loci' definition is clear and the data of HOT regions across the genome can be a useful dataset for studies that use HepG2 or K562 as a model. I appreciate the authors' efforts in presenting many analyses and plots backing up each statement.

      Comments on revised version:

      In the second round of review, I think the authors have sufficiently addressed all of my previous comments. The study itself is very comprehensive, tackling all aspects of the HOT loci, though I still find the paper to be unnecessarily long and long-winded. That said, being consistent with the long and detailed paper, the provided Github repository and Zenodo archive is well-documented. I appreciate that the authors include detailed readme about the different datafiles available for readers. The list of HOT loci is probably the most useful asset in this manuscript and the authors did a good job documenting data availability in both Github and Zenodo.

    3. Reviewer #3 (Public review):

      Summary:

      Hudaiberdiev and Ovcharenko investigate regions within the genome where a high abundance of DNA associated proteins are located and identify DNA sequence feature enriched in these regions, their conservation in evolution, and variation in disease. Using ChIP-seq binding profiles of over 1,000 proteins in three human cell lines (HepG2, K562, and H1) as a data source they're able to identify nearly 44,000 high-occupancy target loci (HOT) that form at promoter and enhancer regions, thus suggesting these HOT loci regulate housekeeping and cell identity genes. Their primary investigative tool is HepG2 cells, but they employ K562 and H1 cells as tools to validate these assertions in other human cell types. Their analyses use RNA pol II signal, super enhancer, regular enhancer and epigentic marks to support the identification of these regions. The work is notable, in that it identifies a set of proteins that are invariantly associated with high-occupancy enhancers and promoters and argues for the integration of these molecules at different genomic loci. These observations are leveraged by the authors to argue HOT loci as potential sites of transcriptional condensates, a claim that they provide information in support of. Transcriptional condensates are an important "family" of condensates, regulating different types of genes and this work supports the hypothesis that they possess similar protein partner molecules as those thought to define such bodies.

    1. Reviewer #1 (Public Review):

      Summary:

      Wang and colleagues identify biallelic variants of DNAH3 in four unrelated Han Chinese infertile men through whole-exome sequencing, which contributes to abnormal sperm flagellar morphology and ultrastructure. To investigate the importance of DNAH3 in male infertility, the authors generated crispant Dnah3 knockout (KO) male mice. They observed that KO mice are also infertile, showing a severe reduction in sperm movement with abnormal IDA (inner dynein arms) and mitochondrion structure. Moreover, nonfunctional DNAH3 expression decreased the expression of IDA-associated proteins in the spermatozoa of patients and KO mice, which are involved in the disruption of sperm motility. Interestingly, the infertility of patients and KO mice is rescued by intracytoplasmic sperm injection (ICSI). Taken together, the authors propose that DNAH3 is a novel pathogenic gene for asthenoterozoospermia and male infertility.

      Strengths:

      This work investigates the role of DNAH3 in sperm mobility and male infertility. By using gold-standard molecular biology techniques, the authors demonstrate with exquisite resolution the importance of DNAH3 in sperm morphology, showing strong evidence of its role in male infertility. Overall, this is a very interesting, well-written, and appealing article. All aspects of the study design and methods are well described and appropriate to address the main question of the manuscript. The conclusions drawn are consistent with the analyses conducted and supported by the data.

      Weaknesses:

      The paper is solid, and in its current form, I have not detected relevant weaknesses.

    2. Reviewer #2 (Public Review):

      Wang et al. investigated the role of dynein axonemal heavy chain 3 (DNAH3) in male infertility. They found that variants of DNAH3 were present in four infertile men, and the deficiency of DNAH3 in sperm affects sperm mobility. Additionally, they showed that Dnah3 knockout male mice are infertile. Furthermore, they demonstrated that DNAH3 influences inner dynein arms by regulating several DNAH proteins. Importantly, they showed that intracytoplasmic sperm injection (ICSI) can rescue the infertility in Dnah3 knockout mice and two patients with DNAH3 variants.

      Strengths:

      The conclusions of this paper are well-supported by data.

      Weaknesses:

      The sample/patient size is small; however, the findings are consistent with those of a recent study on DNAH3 in male infertility with 432 patients.

    3. Reviewer #3 (Public Review):

      Summary:

      (1) To further explore the genetic basis of asthenoteratozoospermia, the authors performed whole-exome sequencing analyses among infertile males affected by asthenoteratozoospermia. Four unrelated Han Chinese patients were found to carry biallelic variations of DNAH3, a gene encoding IDA-associated protein.<br /> (2) To verify the function of IDA associated protein DNAH3, the authors generated a Dnah3-KO mouse model and revealed that the loss of DNAH3 leads to severe male infertility as a result of the severe reduction in sperm movement with the abnormal IDA and mitochondrion structures.<br /> (3) Mechanically, they confirmed decreased expression of IDA-associated proteins (including DNAH1, DNAH6 and DNALI1) in the spermatozoa from patients with DNAH3 mutations and Dnah3-KO male mice.<br /> (4) Then, they also found that male infertility caused by DNAH3 deficiency could be rescued by intracytoplasmic sperm injection (ICSI) treatment in humans and mice.

      Strengths:

      (1) In addition to existing research, the authors provided novel variants of DNAH3 as important factors leading to asthenoteratozoospermia. This further expands the spectrum of pathogenic variants in asthenoteratozoospermia.<br /> (2) By mechanistic studies, they found that DNAH3 deficiency led to decreased expression of IDA-associated proteins, which may be used to explain the disruption of sperm motility and reduced fertility caused by DNAH3 deficiency.<br /> (3) Then, successful ICSI outcomes were observed in patients with DNAH3 mutations and Dnah3 KO mice, which will provide an important reference for genetic counselling and clinical treatment of male infertility.

    1. Reviewer #1 (Public Review):

      The authors showed that autophagy-related genes are involved in plant immunity by regulating the protein level of the salicylic acid receptor, NPR1.

      The experiments are carefully designed and the data is convincing. The authors did a good job of understanding the relationship between ATG6 and NRP1.

      Comments on latest version:

      The authors have already addressed all my comments. I have no further issues with the manuscript.

    2. Reviewer #2 (Public Review):

      The manuscript by Zhang et al. explores the effect of autophagy regulator ATG6 on NPR1-mediated immunity. The authors propose that ATG6 directly interacts with NPR1 in the nucleus to increase its stability and promote NPR1-dependent immune gene expression and pathogen resistance. This novel role of ATG6 is proposed to be independent of its role in autophagy in the cytoplasm. The authors demonstrate through biochemical analysis that ATG6 interacts with NPR1 in yeast and very weakly in vitro. They further demonstrate using overexpression transgenic plants that in the presence of ATG6-mcherry the stability of NPR1-GFP and its nuclear pool is increased.

      Comments on latest version:

      The term "invasion" has to be replaced with infection, as it doesn't have much meaning to this particular study. I already explained this point in the first review, but authors did not address it throughout the manuscript.

      In fig. 1e there's no statistical analysis. How can one show measurements from multiple samples without statistical analysis? All the data points have to be shown in the graph and statistics performed. In the arg6-npr1 and snrk-npr1 pairs no nuclear marker is included. How can one know where the nucleus is, particularly in such poor quality low res. images? The nucleus marker has to be included in this analysis and shown. This is an important aspect of the study as nuclear localization of ATG6 is proposed to be essential for its new function. Co-localization provided in the fig. S2 cannot complement this analysis, particularly since no cytoplasmic fraction is present for NPR1-GFP in fig. S2.

      In the alignment in fig 2c, it is not explained what are the species the atg6 is taken from. The predicted NLS has to be shown in the context of either the entire protein sequence alignment or at least individual domain alignment with the indication of conserved residues (consensus). They have to include more species in the analysis, instead of including 3 proteins from a single species. Also, the predicted NLS in atg6 doesn't really have the classical type architecture, which might be an indication that it is a weak NLS, consistent with the fact that the protein has significant cytoplasmic accumulation. They also need to provide the NLS prediction cut-off score, as this parameter is a measure of NLS strength.

      Line 150: the NLS sequence "FLKEKKKKK" is a wrong sequence.

      In fig. 3d no explanation for the error bars is included, and what type of statistical analysis is performed is not explained.

    1. Reviewer #1 (Public review):

      Freas et al. investigated if the exceedingly dim polarization pattern produced by the moon can be used by animal to guide a genuine navigational task. The sun and moon are celestial beacons for directional information, but they can be obscured by clouds, canopy, or the horizon. However, even when hidden from view, these celestial bodies provide directional information through the polarized light patterns in the sky. While the sun's polarization pattern is famously used by many animals for compass orientation, until now it has never been shown that the extremely dim polarization pattern of the moon can be used for navigation. To test this, Freas et al. studied nocturnal bull ants, by placing a linear polarizer in the homing path on a freely navigating ant 45 degrees shifted to the moon's natural polarization pattern. They recorded the homing direction of an ant before entering the polarizer, under the polarizer, and again after leaving the area covered by the polarizer. The results very clearly show, that ants walking under the linear polarizer change their homing direction by about 45 degrees in comparison to the homing direction under the natural polarization pattern and change it back after leaving the area covered by the polarizer again. These results can be repeated throughout the lunar month, showing that bull ants can use the moon's polarization pattern even under crescent moon conditions. Finally, the authors show, that the degree in which the ants change their homing direction is dependent on the length of their home vector, just as it is for the solar polarization pattern.

      The behavioral experiments are very well designed, and the statistical analyses are appropriate for the data presented. The authors' conclusions are nicely supported by the data and clearly show nocturnal bull ants use the dim polarization pattern of the moon for homing, in the same way many animals use the sun's polarization pattern during the day. This is the first proof of the use of the lunar polarization pattern in any animal.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to understand whether polarised moonlight could be used as a directional cue for nocturnal animals homing at night, particularly at times of night when polarised light is not available from the sun. To do this, the authors used nocturnal ants, and previously established methods, to show that the walking paths of ants can be altered predictably when the angle of polarised moonlight illuminating them from above is turned by a known angle (here +/- 45 degrees).

      Strengths:

      The behavioural data are very clear and unambiguous. The results clearly show that when the angle of downwelling polarised moonlight is turned, ants turn in the same direction. The data also clearly show that this result is maintained even for different phases (and intensities) of the moon, although during the waning cycle of the moon the ants' turn is considerably less than may be expected.

      Weaknesses:

      The final section of the results - concerning the weighting of polarised light cues into the path integrator - lacks clarity and should be re-worked and expanded in both the Methods and the Results (also possibly with an extra methods figure). I was really unsure of what these experiments were trying to show or what the meaning of the results actually are.

      Impact:

      The authors have discovered that nocturnal bull ants, while homing back to their nest holes at night, are able to use the dim polarised light pattern formed around the moon for path integration. Even though similar methods have previously shown the ability of dung beetles to orient along straight trajectories for short distances using polarised moonlight, this the first evidence of an animal that uses polarised moonlight in homing. This is quite significant, and their findings are well supported by their data.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a series of experiments aimed at investigating orientation to polarized lunar skylight in a nocturnal ant, the first report of its kind that I am aware of.

      Strengths:

      The study was conducted carefully and is clearly explained here.

      Weaknesses:

      The revised manuscript is much improved.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to investigate the role of ORMDL3 in regulating Type 1 interferon (IFN) responses and its effect on tumor growth inhibition. The study focuses on the mechanisms involving the RIG-I pathway and USP10-mediated degradation and attempts to establish a link between ORMDL3 expression and the effectiveness of cancer therapy. The authors also explore the broader implications of ORMDL3 in immune signaling, particularly within the context of Type 1 IFN signaling and its therapeutic potential.

      Strengths:

      • The manuscript explores a novel aspect of cancer immunology by examining the relationship between ORMDL3 and Type 1 IFN signaling, potentially offering new therapeutic avenues.<br /> • A variety of experimental approaches are employed, including knockdown models, overexpression assays, and protein interaction analyses, to elucidate the role of ORMDL3 in modulating immune responses.<br /> • The findings suggest a potential mechanism by which ORMDL3 affects the tumor microenvironment and immune responses, which could have significant implications for understanding cancer progression and therapy.

      Weaknesses:

      • The study does not clearly establish the relationship between Type 1 IFN and cancer therapy, and more robust data are needed to support the claim that tumor growth inhibition occurs via Type 1 IFN upregulation following ORMDL3 knockdown.<br /> • There is ambiguity regarding whether ORMDL3 has a positive or negative role in the Type 1 IFN pathway, especially given conflicting findings in the literature that link higher ORMDL3 levels to increased Type 1 IFN expression.<br /> • The use of certain experimental models, such as HEK293T cells (which are not typical Type 1 IFN producers), raises concerns about the validity and generalizability of the results. Further clarity is needed regarding the rationale for using the same tag in overexpression experiments.<br /> • The manuscript contains several inconsistencies and lacks detailed explanations of critical areas, such as the mechanism by which ORMDL3 facilitates USP10 transfer to RIG-I despite no direct interaction between ORMDL3 and RIG-I.

    2. Reviewer #2 (Public review):

      Summary:

      The authors identified ORMDL3 as a negative regulator of the RLR pathway and anti-tumor immunity. Mechanistically, ORMDL3 interacts with MAVS and further promotes RIG-I for proteasome degradation. In addition, the deubiquitinating enzyme USP10 stabilizes RIG-I and ORMDL3 disturbs this process. Moreover, in subcutaneous syngeneic tumor models in C57BL/6 mice, they showed that inhibition of ORMDL3 enhances anti-tumor efficacy by augmenting the proportion of cytotoxic CD8-positive T cells and IFN production in the tumor microenvironment (TME).

      Strengths:

      The paper has a clearly arranged structure and the English is easy to understand. It is well written. The results are clearly supporting the conclusion.

    1. Reviewer #1 (Public review):

      Aging is associated with a number of physiologic changes including perturbed circadian rhythms. However, mechanisms by which rhythms are altered remain unknown. Here authors tested the hypothesis that age-dependent factors in the sera affect the core clock or outputs of the core clock in cultured fibroblasts. They find that both sera from young and old donors are equally potent at driving robust ~24h oscillations in gene expression, and report the surprising finding that the cyclic transcriptome after stimulation by young or old sera differs markedly. In particular, genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions, while genes associated with oxidative phosphorylation and Alzheimer's Disease lose rhythmicity in the aged condition. Also, the expression of cycling genes associated with cholesterol biosynthesis increases in the cells entrained with old serum. Together, the findings suggest that age-dependent blood-borne factors, yet to be identified, affect circadian rhythms in the periphery. The most interesting aspect of the paper is that the data suggest that the same system (BJ-5TA), may significantly change its rhythmic transcriptome depending on how the cells are synchronized. While there is a succinct discussion point on this, it should be expanded and described whether there are parallels with previous works, as well as what would be possible mechanisms for such an effect.

      Comments on revised version:

      The authors have done a thorough revision of their manuscripts and provided convincing answers to all of my points. In particular, I applaud the authors for having added raw luminescence traces, and for providing Figure S5 on the amplitudes. Perhaps the authors could add a comment in the final text that the amplitudes are fairly low, 10^0.1 = 1.25 which means that the bulk of those genes has rhythms of at most 25%, which could reflect that the synchronization of the cells is partial.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors study intraflagellar transport (IFT) in cilia of diverse organs in zebrafish. They elucidate that IFT88-GFP (an IFT-B core complex protein) can substitute for endogenous IFT88 in promoting ciliogenesis and use it as a reporter to visualize IFT dynamics in living zebrafish embryo. They observe striking differences in cilia lengths and velocity of IFT trains in different cilia types, with smaller cilia length correlating with lower IFT speed. They generate several mutants and show that disrupting function of different kinesin-2 motors and BBSome or altering post translational modifications of tubulin does not have a significant impact on IFT velocity. They however observe that when the amount of IFT88 is reduced it impacts the cilia length, IFT velocity as well as the number and size of IFT trains. They also show that IFT train size is slightly smaller in one of the organs with shorter cilia (spinal cord). Based on their observations they propose that IFT velocity determines cilia length and go one step further to propose that IFT velocity is regulated by the size of IFT trains.

      Strengths:

      The main highlight of this study is the direct visualization of IFT dynamics in multiple organs of a living complex multi-cellular organism, zebrafish. The quality of the imaging is really good. Further, the authors have developed phenomenal resources to study IFT in zebrafish which would allow us to explore several mechanisms involved in IFT regulation in future studies. They make some interesting findings in mutants with disrupted function of kinesin-2, BBSome and tubulin modifying enzymes which are interesting to compare with cilia studies in other model organisms. Also, there observation of a possible link between cilia length and IFT speed is potentially fascinating.

      Weaknesses:

      The central hypothesis of the manuscript, which is cilia length regulation occurs via controlling IFT speed through the modulation of the size of the IFT complex, is supported only with preliminary data and needs stronger evidence.<br /> The authors have robustly shown that the cilia length and IFT train speeds are highly variable between organs and have a strong correlation. With this they hypothesize that IFT train speeds could play a role in determining ciliary length, which is an interesting hypothesis that merits discussion. However, the claim that the cilia length (and IFT velocity) in different organs is different due to difference in the sizes of IFT trains is based on weak evidence. This is based on a marginal difference of IFT train sizes they observe between cilia of crista and spinal cord in immunofluorescence experiments (Fig. 5C). Inferring that this minor difference is key to the striking difference in cilia length and IFT velocity is too bold in my opinion.<br /> To back this hypothesis, they look at ift88 morphants where there is a reduced pool of IFT88 (part of the IFTB1 complex which forms the core of IFT trains, based on multiple cryo-EM studies of IFT trains). Disruption (or reduced number) of IFTB1 complex could indeed lead to IFT trains not being formed properly, which can have an impact on IFT (train size, speed, frequency, etc.) and ciliary structure, as shown by the authors. However, this does not directly imply that under wild-type conditions, cilia in spinal cord have poorly formed slightly shorter IFT trains (cilia length ˜0.9 µm in spinal cord vs ˜1.2 µm in cristae; Fig. 3G) which results in strikingly lower speeds (˜0.4 µm/s in spinal cord vs ˜1.6 µm/s in cristae; Fig. 3G) and shorter cilia (˜3µm in spinal cord vs ˜26µm in cristae; Fig. 3H). Such a claim would require much stronger evidence.

      Finally, if IFT train speeds directly correlate with size of IFT train, the authors should be able to see this within the same cilia, i.e., the velocity of a brighter IFT train (larger train) would be higher than the velocity of a dimmer IFT train (smaller train) within the same cilia. This is not apparent from the movies and such a correlation should be verified to make their claim stronger.

      Impact:

      Overall, I think this work develops an exciting new multicellular model organism to study IFT mechanisms. Zebrafish is a vertebrate where we can perform genetic modifications with relative ease. This could be an ideal model to study not just the role of IFT in connection with ciliary function but also ciliopathies. Further, from an evolutionary perspective, it is fascinating to compare IFT mechanisms in zebrafish with unicellular protists like Chlamydomonas, simple multicellular organisms like C elegans and primary mammalian cell cultures. Having said that, the central hypothesis of the manuscript in not backed with strong evidence and I would recommend the authors to not give too much weight on the hypothesis that IFT train velocity is determined by the size of IFT trains. Given the technological advancements made in this study, I think it is fine if it is a descriptive manuscript and doesn't necessarily need a breakthrough hypothesis based on the marginal correlation they observe.

    2. Reviewer #3 (Public review):

      Summary:

      An interesting feature of cilia in vertebrates and many, if not all, invertebrates is the striking heterogeneity of their lengths among different cell types. As mutations interfering with ciliary length usually impair ciliary functions, ciliary length appears to be tuned for proper ciliary functions in a given type of cells. Although ciliary length is known to be affected by multiple factors, including intraflagellar transport (IFT), a cilia-specific, train-like bidirectional transportation, and ciliary proteins regulating microtubule dynamics, how it is intrinsically controlled remains largely elusive.

      In the manuscript, the authors addressed this question from the angle of IFT by using zebrafish as a model organism. They demonstrated that ectopically expressed Ift88-GFP induced by heat shock treatment was able to sustain the normal development of and the cilia formation in ovl-/- zebrafish that would otherwise be dead by 7 dpf and lack of cilia due to the lack of Ift88, a critical component of IFT-B complex, suggesting a full function of the exogenous protein. They next live imaged Ift88-GFP in wild-type zebrafish larvae to visualize the IFT. Interestingly, they found that both anterograde and retrograde velocities of Ift88-GFP puncta differed in cilia of different cell types (crista, neuromast, pronephric duct, spinal chord, and epidermal cells) and displayed a positive correlation with the inherent length of the cilia. Similar results were obtained with ectopically expressed tdTomato-Ift43 driven by a beta-actin promoter. In the same cell type, however, the velocities of Ift88-GFP puncta did not alter in cilia of different lengths or at different developmental stages. Depletion of proteins such as Bbs4, Ttll3, Ttll6, and Ccp5 did not substantially alter the IFT velocities, excluding contributions of the BBSome or the enzymes involved in tubulin glycylation or glutamylation. They also used a cilia-localized ATP reporter to exclude the possibility of different ciliary ATP concentrations. When they compared the size of Ift88-GFP puncta in crista cilia, which are inherently long, and spinal chord cilia, which are relatively short, by imaging with a STED super-resolution microscope, they noticed a positive correlation between the puncta size, which presumably reflected the size of IFT trains, and the length of the cilia. Furthermore, in morphant larvae with slightly decreased Ift88 levels, judged by the grossly normal body axis, IFT particle sizes, their velocities, and ciliary lengths were all reduced as compared to control morphants. Therefore, they proposed that longer IFT trains facilitate faster IFT to result in longer cilia.

      Strengths:

      The authors demonstrated that: (1) both anterograde and retrograde IFT velocities can differ markedly in cilia of different cell types in zebrafish larvae; (2) specific IFT velocities are intrinsic to cell types; (3) IFT velocities in different types of cells are positively correlated with inherent ciliary lengths; and (4) IFT velocities are positively correlated with the size of IFT trains. These findings provide both new knowledge on IFT properties in zebrafish and insights that would facilitate understandings on mechanisms underlying the diversity of ciliary lengths in multicellular organisms. The experiments were carefully done and results are generally convincing. The imaging methods for tracing IFT in cilia of multiple cell types in zebrafish larvae are expected to be useful to other researchers in the field.

      Weaknesses:

      (1) Although the proposed model is reasonable, it is largely based on correlations.<br /> (2) The effects of anti-sense RNA-induced Ift88 downregulation on IFT and ciliary length are artificial. It is unclear whether the levels of one or more IFT components are indeed regulated to control IFT train sizes and ciliary lengths in physiological conditions. Similarly, whether IFT velocities are indeed dictated by the size of IFT trains remains to be clarified.<br /> (3) In the Discussion section, Kif17 is described as an important motor for IFT in mouse olfactory cilia. In the cited literature (Williams et al., 2014), however, Kif17 is reported to be dispensable for IFT in mouse olfactory cilia. This makes the discussions on Kif17 absurd.

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript titled "Benchmarking tRNA-Seq quantification approaches by realistic tRNA-Seq data simulation identifies two novel approaches with higher accuracy," Tom Smith and colleagues conducted a comparative evaluation of various sequencing-based tRNA quantification methods. The inherent challenges in accurately quantifying tRNA transcriptional levels, stemming from their short sequences (70-100nt), extensive redundancy (~600 copies in human genomes with numerous isoacceptors and isodecoders), and potential for over 100 post-transcriptional chemical modifications, necessitate sophisticated approaches. Several wet-experimental methods (QuantM-tRNA, mim-tRNA, YAMAT, DM-tRNA, and ALL-tRNA) combined with bioinformatics tools (bowtie2-based, SHRiMP, and mimseq) have been proposed for this purpose. However, their practical strengths and weaknesses have not been comprehensively explored to date. In this study, the authors systematically assessed and compared these methods, considering factors such as incorrect alignments, multiple alignments, misincorporated bases (experimental errors), truncated reads, and correct assignments. Additionally, the authors introduced their own bioinformatic approaches (referred to as Decision and Salmon), which, while not without flaws (as perfection is unattainable), exhibit significant improvements over existing methods.

      Strengths:

      The manuscript meticulously compares tRNA quantification methods, offering a comprehensive exploration of each method's relative performance using standardized evaluation criteria. Recognizing the absence of "ground-truth" data, the authors generated in silico datasets mirroring common error profiles observed in real tRNA-seq data. Through the utilization of these datasets, the authors gained insights into prevalent sources of tRNA read misalignment and their implications for accurate quantification. Lastly, the authors proposed their own downstream analysis pipelines (Salmon and Decision), enhancing the manuscript's utility.

    2. Reviewer #2 (Public review):

      Summary:

      The authors provided benchmarking study results on tRNA-seq in terms of read alignment and quantification software with optimal parameterization. This result can be a useful guideline for choosing optimal parameters for tRNA-seq read alignment and quantification.

      Strengths:

      Benchmarking results for read alignment can be a useful guideline for choosing optimal parameters and mapping strategy (mapping to amino acid) for various tRNAseq.

      Weaknesses:

      Some explanation on sequencing data analysis pipeline is not clear for general readers.

    1. Reviewer #1 (Public review):

      This paper describes proteome solubility analysis (PISA) of 96 compounds in living cells and 70 compounds in cell lysates. A wealth of information related to on- and off-target engagement is uncovered. This work fits well the eLife profile, will be of interest to a large community of proteomics researchers, and thus is likely to be reasonably highly cited.

    2. Reviewer #3 (Public review):

      Summary:

      This work aims to demonstrate how recent advances in thermal stability assays can be utilised to screen chemical libraries and determine compound mechanism of action. Focusing on 96 compounds with known mechanisms of action, they use the PISA assay to measure changes in protein stability upon treatment with a high dose (10uM) in live K562 cells and whole cell lysates from K562 or HCT116. They intend this work to showcase a robust workflow which can serve as a roadmap for future studies.

      Strengths:

      The major strength of this study is the combination of live and whole cell lysates experiments. This allows the authors to compare the results from these two approaches to identify novel ligand-induced changes in thermal stability with greater confidence. More usefully, this also enables the authors to separate primary and secondary effects of the compounds within the live cell assay.

      The study also benefits from the number of compounds tested within the same framework, which allows the authors to make direct comparisons between compounds.

      These two strengths are combined when they compare between CHEK1 inhibitors and suggest that AZD-7762 likely induces secondary destabilisation of CRKL through off-target engagement with tyrosine kinases.

      Weaknesses:

      One of the stated benefits of PISA compared to the TPP in the original publication (Gaetani et al 2019) was that the reduced number of samples required allows more replicate experiments to be performed. Despite this, the authors of this study performed only duplicate experiments. They acknowledge this precludes use of frequentist statistical tests to identify significant changes in protein stability. Instead, they apply an 'empirically derived framework' in which they apply two thresholds to the fold change vs DMSO: absolute z-score (calculated from all compounds for a protein) > 3.5 and absolute log2 fold-change > 0.2. They state that the fold-change threshold was necessary to exclude non-specific interactors. While the thresholds appear relatively stringent, this approach will likely reduce the robustness of their findings in comparison to an experimental design incorporating more replicates. Firstly, the magnitude of the effect size should not be taken as a proxy for the importance of the effect. They acknowledge this and demonstrate it using their own data for PIK3CB and p38α inhibitors (Figure 2B-C). They have thus likely missed many small, but biological relevant changes in thermal stability due to the fold-change threshold. Secondly, this approach relies upon the fold-changes between DMSO and compound for each protein being comparable, despite them being drawn from samples spread across 16 TMT multiplexes. Each multiplex necessitates a separate MS run and the quantification of a distinct set of peptides, from which the protein-level abundances are estimated. Thus, it is unlikely the fold-changes for unaffected proteins are drawn from the same distribution, which is an unstated assumption of their thresholding approach. The authors could alleviate the second concern by demonstrating that there is very little or no batch effect across the TMT multiplexes. However, the first concern would remain. The limitations of their approach could have been avoided with more replicates and use of an appropriate statistical test. It would be helpful if the authors could clarify if any of the missed targets passed the z-score threshold but fell below the fold-change threshold.

      The authors use a single, high, concentration of 10uM for all compounds. Given that many of the compounds may have low nM IC50s, this concentration could be orders of magnitude above the one at which they inhibit their target. This makes it difficult to assess the relevance of the off-target effects identified to clinical applications of the compounds or biological experiments. The authors acknowledge this and use ranges of concentrations for follow-up studies (e.g. Figure 2E-F). Nonetheless, this weakness is present for the vast bulk of the data presented.

      Aims achieved, impact and utility:

      The authors have achieved their main aim of presenting a workflow which serves to demonstrate the potential value of this approach. However, by using a single high dose of each compound and failing to adequately replicate their experiments and instead applying heuristic thresholds, they have limited the impact of their findings. Their results will be a useful resource for researchers wishing to explore potential off-target interactions and/or mechanisms of action for these 96 compounds but are expected to be superseded by more robust datasets in the near future. The most valuable aspect of the study is the demonstration that combining live cell and whole cell lysate PISA assays across multiple related compounds can help to elucidate the mechanisms of action.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript of Odermatt et al. investigates the volatiles released by two species of Desmodium plants and the response of herbivores to maize plants alone or in combination with these species. The results show that Desmodium releases volatiles in both the laboratory and the field. Maize grown in the laboratory also released volatiles, in a similar range. While female moths preferred to oviposit on maize, the authors found no evidence that Desmodium volatiles played a role in lowering attraction to or oviposition on maize.

      Strengths:

      The manuscript is a response to recently published papers that presented conflicting results with respect to whether Desmodium releases volatiles constitutively or in response to biotic stress, the level at which such volatiles are released, and the behavioral effect it has on the fall armyworm. These questions are relevant as Desmodium is used in a textbook example of pest-suppressive sustainable intercropping technology called push-pull, which has supported tens of thousands of smallholder farmers in suppressing moth pests in maize. A large number of research papers over more than two decades have implied that Desmodium suppresses herbivores in push-pull intercropping through the release of large amounts of volatiles that repel herbivores. This premise has been questioned in recent papers. Odermatt et al. thus contribute to this discussion by testing the role of odors in oviposition choice. The paper confirms that ovipositing FAW preferred maize, and also confirmed that odors released from Desmodium appeared not important in their bioassays.

      The paper is a welcome addition to the literature and adds quality headspace analyses of Desmodium from the laboratory and the field. Furthermore, the authors, some of whom have since long contributed to developing push-pull, also find that Desmodium odors are not significant in their choice between maize plants. This advances our knowledge of the mechanisms through which push-pull suppresses herbivores, which is critically important to evolving the technique to fit different farming systems and translating this mechanism to fit with other crops and in other geographical areas.

      Weaknesses:

      Below I outline the major concerns:

      (1) Clear induction of the experimental plants, and lack of reflective discussion around this: from literature data and previous studies of maize and Desmodium, it is clear that the plants used in this study, particularly the Desmodium, were induced. Maize appeared to be primarily manually damaged, possibly due to sampling (release of GLV, but little to no terpenoids, which is indicative of mostly physical stress and damage, for example, one of the coauthor's own paper Tamiru et al. 2011), whereas Desmodium releases a blend of many compounds (many terpenoids indicative of herbivore induction). Erdei et al. also clearly show that under controlled conditions maize, silver leaf and green leaf Desmodium release volatiles in very low amounts. While the condition of the plants in Odermatt et al. may be reflective of situations in push-pull fields, the authors should elaborate on the above in the discussion (see comments) such that the readers understand that the plant's condition during the experiments. This is particularly important because it has been assumed that Desmodium releases typical herbivore-induced volatiles constitutively, which is not the case (see Erdei et al. 2024). This reflection is currently lacking in the manuscript.

      (2) Lack of controls that would have provided context to the data: The experiments lack important controls that would have helped in the interpretation:

      (2a) The authors did not control the conditions of the plants. To understand the release of volatiles and their importance in the field, the authors should have included controlled herbivory in both maize and Desmodium. This would have placed the current volatile profiles in a herbivory context. Now the volatile measurements hang in midair, leading to discussions that are not well anchored (and should be rephrased thoroughly, see eg lines 183-188). It is well known that maize releases only very low levels of volatiles without abiotic and biotic stressors. However, this changes upon stress (GLVs by direct, physical damage and eg terpenoids upon herbivory, see above). Erdei et al. confirm this pattern in Desmodium. Not having these controls, means that the authors need to put the data in the context of what has been published (see above).

      (2b) It would also have been better if the authors had sampled maize from the field while sampling Desmodium. Together with the above point (inclusion of herbivore-induced maize and Desmodium), the levels of volatile release by Desmodium would have been placed into context.

      (2c) To put the volatiles release in the context of push-pull, it would have been important to sample other plants which are frequently used as intercrop by smallholder farmers, but which are not considered effective as push crops, particularly edible legumes. Sampling the headspace of these plants, both 'clean' and herbivore-induced, would have provided a context to the volatiles that Desmodium (induced) releases in the field - one would expect unsuccessful push crops to not release any of these 'bioactive' volatiles (although 'bioactive' should be avoided) if these odors are responsible for the pest suppressive effect of Desmodium. Many edible intercrops have been tested to increase the adoption of push-pull technology but with little success.

      Because of the lack of the above, the conclusions the authors can draw from their data are weakened. The data are still valuable in the current discussion around push-pull, provided that a proper context is given in the discussion along the points above.

      (3) 'Tendency' of the authors to accept the odor hypothesis (i.e. that Desmodium odors are responsible for repelling FAW and thereby reduce infestation in maize under push-pull management) in spite of their own data: The authors tested the effects of odor in oviposition choice, both in a cage assay and in a 'wind tunnel'. From the cage experiments, it is clear that FAW preferred maize over Desmodium, confirming other reports (including Erdei et al. 2024). However, when choosing between two maize plants, one of which was placed next to Desmodium to which FAW has no tactile (taste, structure, etc), FAW chose equally. Similarly in their wind tunnel setup (this term should not be used to describe the assay, see below), no preference was found either between maize odor in the presence or absence of Desmodium. This too confirms results obtained by Erdei et al. (but add an important element to it by using Desmodium plants that had been induced and released volatiles, contrary to Erdei et al. 2024). Even though no support was found for repellency by Desmodium odors, the authors in many instances in the manuscript (lines 30-33, 164-169, 202, 279, 284, 304-307, 311-312, 320) appear to elevate non-significant tendencies as being important. This is misleading readers into thinking that these interactions were significant and in fact confirming this in the discussion. The authors should stay true to their own data obtained when testing the hypothesis of whether odors play a role in the pest-suppressive effect of push-pull.

      (4) Oviposition bioassay: with so many assays in close proximity, it is hard to certify that the experiments are independent. Please discuss this in the appropriate place in the discussion.

      (5) The wind tunnel has a number of issues (besides being poorly detailed):

      (5a) The setup which the authors refer to as a 'wind tunnel' does not qualify as a wind tunnel. First, there is no directional flow: there are two flows entering the setup at opposite sides. Second, the flow is way too low for moths to orient in (in a wind tunnel wind should be presented as a directional cue. Only around 1.5 l/min enters the wind tunnel in a volume of 90 l approximately, which does not create any directional flow. Solution: change 'wind tunnel' throughout the text to a dual choice setup /assay.

      (5b) There is no control over the flows in the flight section of the setup. It is very well possible that moths at the release point may only sense one of the 'options'. Please discuss this.

      (5c) Too low a flow (1,5 l per minute) implies a largely stagnant air, which means cross-contamination between experiments. An experiment takes 5 minutes, but it takes minimally 1.5 hours at these flows to replace the flight chamber air (but in reality much longer as the fresh air does not replace the old air, but mixes with it). The setup does not seem to be equipped with e.g. fans to quickly vent the air out of the setup. See comments in the text. Please discuss the limitations of the experimental setup at the appropriate place in the discussion.

      (5d) The stimulus air enters through a tube (what type of tube, diameter, length, etc) containing pressurized air (how was the air obtained into bags (type of bag, how is it sealed?), and the efflux directly into the flight chamber (how, nozzle?). However, it seems that there is no control of the efflux. How was leakage prevented, particularly how the bags were airtight sealed around the plants?

      (5e) The plants were bagged in very narrowly fitting bags. The maize plants look bent and damaged, which probably explains the GLVs found in the samples. The Desmodium in the picture (Figure 5 supplement), which we should assume is at least a representative picture?) appears to be rather crammed into the bag with maize and looks in rather poor condition to start with (perhaps also indicating why they release these volatiles?). It would be good to describe the sampling of the plants in detail and explain that the way they were handled may have caused the release of GLVs.

      (6) Figure 1 seems redundant as a main figure in the text. Much of the information is not pertinent to the paper. It can be used in a review on the topic. Or perhaps if the authors strongly wish to keep it, it could be placed in the supplemental material.

    2. Reviewer #2 (Public review):

      Based on the controversy of whether the Desmodium intercrop emits bioactive volatiles that repel the fall armyworm, the authors conducted this study to assess the effects of the volatiles from Desmodium plants in the push-pull system on behavior of FAW oviposition. This topic is interesting and the results are valuable for understanding the push-pull system for the management of FAW, the serious pest. The methodology used in this study is valid, leading to reliable results and conclusions. I just have a few concerns and suggestions for improvement of this paper:

      (1) The volatiles emitted from D. incanum were analyzed and their effects on the oviposition behavior of FAW moth were confirmed. However, it would be better and useful to identify the specific compounds that are crucial for the success of the push-pull system.

      (2) That would be good to add "symbols" of significance in Figure 4 (D).

      (3) Figure A is difficult for readers to understand.

      (4) It will be good to deeply discuss the functions of important volatile compounds identified here with comparison with results in previous studies in the discussion better.

    1. Reviewer #1 (Public review):

      Summary & Assessment:

      The catalytic core of the eukaryotic decapping complex consists of the decapping enzyme DCP2 and its key activator DCP1. In humans, there are two paralogs of DCP1, DCP1a and DCP1b, that are known to interact with DCP2 and recruit additional cofactors or coactivators to the decapping complex; however, the mechanisms by which DCP1 activates decapping and the specific roles of DCP1a versus DCP1b, remain poorly defined. In this manuscript, the authors used CRISPR/Cas9-generated DCP1a/b knockout cells to begin to unravel some of the differential roles for human DCP1a and DCP1b in mRNA decapping, gene regulation, and cellular metabolism. While this manuscript presents some new and interesting observations on human DCP1 (e.g. human DCP1a/b KO cells are viable and can be used to investigate DCP1 function; only the EVH1 domain, and not its disordered C-terminal region which recruits many decapping cofactors, is apparently required for efficient decapping in cells; DCP1a and b target different subsets of mRNAs for decay and may regulate different aspects of metabolism), there is one key claim about the role of DCP1 in regulating DCP2-mediated decapping that is still incompletely or inconsistently supported by the presented data in this revised version of the manuscript.

      Strengths & well-supported claims:

      • Through in vivo tethering assays in CRISPR/Cas9-generated DCP1a/b knockout cells, the authors show that DCP1 depletion leads to significant defects in decapping and the accumulation of capped, deadenylated mRNA decay intermediates.<br /> • DCP1 truncation experiments reveal that only the EVH1 domain of DCP1 is necessary to rescue decapping defects in DCP1a/b KO cells.<br /> • RNA and protein immunoprecipitation experiments suggest that DCP1 acts as a scaffold to help recruit multiple decapping cofactors to the decapping complex (e.g. EDC3, DDX6, PATL1 PNRC1, and PNRC2), but that none of these cofactors are essential for DCP2-mediated decapping in cells.<br /> • The authors investigated the differential roles of DCP1a and DCP1b in gene regulation through transcriptomic and metabolomic analysis and found that these DCP1 paralogs target different mRNA transcripts for decapping and have different roles in cellular metabolism and their apparent links to human cancers. (Although I will note that I can't comment on the experimental details and/or rigor of the transcriptomic and metabolomic analyses, as these are outside my expertise.)

      Weaknesses & incompletely supported claims:

      (1) One of the key mechanistic claims of the paper is that "DCP1a can regulate DCP2's cellular decapping activity by enhancing DCP2's affinity to RNA, in addition to bridging the interactions of DCP2 with other decapping factors. This represents a pivotal molecular mechanism by which DCP1a exerts its regulatory control over the mRNA decapping process." Similar versions of this claim are repeated in the abstract and discussion sections. However, this claim appears to be at odds with the observations that: (a) in vitro decapping assays with immunoprecipitated DCP2 show that DCP1 knockout does not significantly affect the enzymatic activity of DCP2 (Fig 2C&D; I note that there may be a very small change in DCP2 activity shown in panel D, but this may be due to slightly different amounts of immunoprecipitated DCP2 used in the assay); and (b) the authors show only weak changes in relative RNA levels immunoprecipitated by DCP2 with versus without DCP1 (~2-3 fold change in Fig 3H, where expression of the EVH1 domain, previously shown in this manuscript to fully rescue the DCP1 KO decapping defects in cells, looks to be almost within error of the control in terms of increasing RNA binding). If DCP1 pivotally regulates decapping activity by enhancing RNA binding to DCP2, why is no difference in in vitro decapping activity observed in the absence of DCP1, and very little change observed in the amounts of RNA immunoprecipitated by DCP2 with the addition of the DCP1 EVH1 domain?

      In the revised manuscript and in their response to initial reviews, the authors rightly point out that in vivo effects may not always be fully reflected by or recapitulated in in vitro experiments due to the lack of cellular cofactors and simpler environment for the in vitro experiment, as compared to the complex environment in the cell. I fully agree with this of course! And further completely agree with the authors that this highlights the critical importance of in cell experiments to investigate biological functions and mechanisms! However, because the in vitro kinetic and IP/binding data both suggest that the DCP1 EVH1 domain has minimal to no effects on RNA decapping or binding affinity, while the in cell data suggest the EVH1 domain alone is sufficient to rescue large decapping defects in DCP1a/b KO cells (and that all the decapping cofactors tested were dispensable for this), I would argue there is insufficient evidence here to make a claim that (maybe weakly) enhanced RNA binding induced by DCP1 is what is regulating the cellular decapping activity. Maybe there are as-yet-untested cellular cofactors that bind to the EVH1 domain of DCP1 that change either RNA recruitment or the kinetics of RNA decapping in cells; we can't really tell from the presented data so far. Furthermore, even if it is the case that the EVH1 domain modestly enhances RNA binding to DCP2, the authors haven't shown that this effect is what actually regulates the large change in DCP2 activity upon DCP1 KO observed in the cell.

      Overall, while I absolutely appreciate that there are many possible reasons for the differences observed in the in vitro versus in cell RNA decapping and binding assays, because this discrepancy between those data exists, it seems difficult to draw any clear conclusions about the actual mechanisms by which DCP1 helps regulate RNA decapping by DCP2. For example, in the cell it could be that DCP1 enhances RNA binding, or recruits unidentified cofactors that themselves enhance RNA binding, or that DCP1 allosterically enhances DCP2-mediated decapping kinetics, or a combination of these, etc; my point is that without in vitro data that clearly support one of those mechanisms and links this mechanism back to cellular DCP2 decapping activity (for example, in cell data that show EVH1 mutants that impair RNA binding fail to rescue DCP1 KO decapping defects), it's difficult to attribute the observed in cell effects of DCP1a/b KO and rescue by the EVH1 domain directly to enhancement of RNA binding (precisely because, as the authors describe, the decapping process and regulation may be very complex in the cell!).

      This contradiction between the in vitro and in-cell decapping data undercuts one of the main mechanistic takeaways from the first half of the paper; I still think this conclusion is overstated in the revised manuscript.

      Additional minor comment:

      • Related to point (1) above, the kinetic analysis presented in Fig 2C shows that the large majority of transcript is mostly decapped at the first 5 minute timepoint; it may be that DCP2-mediated decapping activity is actually different in vitro with or without DCP1, but that this is being missed because the reaction is basically done in less than 5 minutes under the conditions being assayed (i.e. these are basically endpoint assays under these conditions). It may be that if kinetics were done under conditions to slow down the reaction somewhat (e.g. lower Dcp2 concentration, lower temperatures), so that more of the kinetic behavior is captured, the apparent discrepancy between in vitro and in-cell data would be much less. Indeed, previous studies have shown that in yeast, Dcp1 strongly activates the catalytic step (kcat) of decapping by ~10-fold, and reduces the KM by only ~2 fold (Floor et al, NSMB 2010). It might be beneficial to use purified proteins here, if possible, to better control reaction conditions.

      In their response to initial reviews, the authors comment that they tried to purify human DCP2 from E coli, but were unable to obtain active enzyme in this way. Fair enough! I will only comment that just varying the relative concentration of immunoprecipitated DCP2 would likely be enough to slow down the reaction and see if activity differences are seen in different kinetic regimes, without the need to obtain fully purified / recombinant Dcp2.

    1. Reviewer #1 (Public review):

      Summary

      Das and Menon describe an analysis of a large open-source iEEG dataset (UPENN-RAM). From encoding and recall phases of memory tasks, they analyzed power and phase-transfer entropy as a measure of directed information flow in regions across a hypothesized tripartite network system. The anterior insula (AI) was found to have heightened high gamma power during encoding and retrieval, which corresponded to suppression of high gamma power in medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) during encoding but not recall. In contrast, directed information flow from (but not to) AI to mPFC and PCC is high during both time periods when PTE is analyzed with broadband but not narrowband activity. They claim that these findings significantly advance an understanding of how network communication facilitates cognitive operations during memory tasks, and that the AI of the salience network (SN) is responsible for influencing both the frontoparietal network (FPN) and default-mode network (DMN) during memory encoding and retrieval.

      I find this question interesting and important and agree with the authors that iEEG presents a unique opportunity to investigate the temporal dynamics within network nodes. Their findings convey intriguing information about the structure and order of communication between network regions during on-task cognition in general (though, perhaps not specific to memory - see Weaknesses), with the AI of the SN ostensibly playing an important role in possibly influencing the DMN and FPN.

      Strengths

      - The authors present results from an impressively-sized iEEG sample. For reader context, this type of invasive human data is difficult and time-consuming to collect and many similar studies in high-level journals include 5-20 participants, typically not all of whom have electrodes in all regions of interest. It is excellent that they have been able to leverage open-source data in this way.<br /> - Preprocessing of iEEG data also seems sensible and appropriate based on field standards.<br /> - The authors tackle the replication issues inherent in much of the literature by replicating findings across task contexts, demonstrating that the principles of network communication evidenced by their results generalize in multiple task memory contexts. Again, the number of iEEG patients who have multiple tasks' worth of data is impressive.<br /> - Though the revised manuscript presents a broader and more novel investigation of the tripartite network's role in memory encoding and retrieval (as opposed to cognitive control of memory) the authors now thoroughly review the literature motivating this investigation of open-source data.

      Weaknesses

      - As the authors discuss, it is currently unclear if the directed information flow from AI to DMN and FPN nodes truly arises from memory-associated processes as opposed to more general attentional and cognitive demands, especially given that information flow does not relate meaningfully to task performance (whether memory retrieval is successful or not). I also note this is a concern because - though the authors have now demonstrated that information flow is increased compared to an off-task baseline - influences of AI on DMN or FPN were not increased relative to baseline epochs during the task in the original preprint version, again suggesting these effects may not be specific to the memory component of the analyzed tasks. The authors have thoughtfully noted in the Discussion several ways that experimental design can be improved in future studies to address this limitation.

    1. Reviewer #1 (Public review):

      The authors survey the ultrastructural organization of glutamatergic synapses by cryo-ET and image processing tools using two complementary experimental approaches. The first approach employs so-called "ultra-fresh" preparations of brain homogenates from a knock-in mouse expressing a GFP-tagged version of PSD-95, allowing Peukes and colleagues to specifically target excitatory glutamatergic synapses. In the second approach, direct in-tissue (using cortical and hippocampal regions) targeting of the glutamatergic synapses employing the same mouse model is presented. In order to ascertain whether the isolation procedure causes any significant changes in the ultrastructural organization (and possibly synaptic macromolecular organization) the authors compare their findings using both of these approaches. The quantitation of the synaptic cleft height reveals an unexpected variability, while the STA analysis of the ionotropic receptors provides insights into their distribution with respect to the synaptic cleft.

      The main novelty of this study lies in the continuous claims by the authors that the sample preservation methods developed here are superior to any others previously used. This leads them as well to systematically downplay or directly ignore a substantial body of previous cryo-ET studies of synaptic structure. Without comparisons with the cryo-ET literature, it is very hard to judge the impact of this work in the field. Furthermore, the data does not show any better preservation in the so-called "ultra-fresh" preparation than in the literature, perhaps to the contrary as synapses with strangely elongated vesicles are often seen. Such synapses have been regularly discarded for further analysis in previous synaptosome studies (e.g. Martinez-Sanchez 2021). Whilst the targeting approach using a fluorescent PSD95 marker is novel and seems sufficiently precise, the authors use a somewhat outdated approach (cryo-sectioning) to generate in-tissue tomograms of poor quality. To what extent such tomograms can be interpreted in molecular terms is highly questionable. The authors also don't discuss the physiological influence of 20% dextran used for high-pressure freezing of these "very native" specimens.

      Lastly, a large part of the paper is devoted to image analysis of the PSD which is not convincing (including a somewhat forced comparison with the fixed and heavy-metal staining room temperature approach). Despite being a technically challenging study, the results fall short of expectations.

    2. Reviewer #2 (Public review):

      Summary:

      The authors set out to visualize the molecular architecture of the adult forebrain glutamatergic synapses in a near-native state. To this end, they use a rapid workflow to extract and plunge-freeze mouse synapses for cryo-electron tomography. In addition, the authors use knockin mice expression PSD95-GFP in order to perform correlated light and electron microscopy to clearly identify pre- and synaptic membranes. By thorough quantification of tomograms from plunge- and high-pressure frozen samples, the authors show that the previously reported 'post-synaptic density' does not occur at high frequency and therefore not a defining feature of a glutamatergic synapse.

      Subsequently, the authors are able to reproduce the frequency of post-synaptic density when preparing conventional electron microscopy samples, thus indicating that density prevalence is an artifact of sample preparation. The authors go on to describe the arrangement of cytoskeletal components, membraneous compartments, and ionotropic receptor clusters across synapses.

      Demonstrating that the frequency of the post-synaptic density in prior work is likely an artifact and not a defining feature of glutamatergic synapses is significant. The descriptions of distributions and morphologies of proteins and membranes in this work may serve as a basis for the future of investigation for readers interested in these features.

      Strengths:

      The authors perform a rigorous quantification of the molecular density profiles across synapses to determine the frequency of the post-synaptic density. They prepare samples using two cryogenic electron microscopy sample preparation methods, as well as one set of samples using conventional electron microscopy methods. The authors can reproduce previous reports of the frequency of the post-synaptic density by conventional sample preparation, but not by either of the cryogenic methods, thus strongly supporting their claim.

    3. Reviewer #3 (Public review):

      Summary:

      The authors use cryo-electron tomography to thoroughly investigate the complexity of purified, excitatory synapses. They make several major interesting discoveries: polyhedral vesicles that have not been observed before in neurons; analysis of the intermembrane distance, and a link to potentiation, essentially updating distances reported from plastic-embedded specimen; and find that the postsynaptic density does not appear as a dense accumulation of proteins in all vitrified samples (less than half), a feature which served as a hallmark feature to identify excitatory plastic-embedded synapses.

      Strengths:

      (1) The presented work is thorough: the authors compare purified, endogenously labeled synapses to wild-type synapses to exclude artifacts that could arise through the homogenation step, and, in addition, analyse plastic embedded, stained synapses prepared using the same quick workflow, to ensure their findings have not been caused by way of purification of the synapses. Interestingly, the 'thick lines of PSD' are evident in most of their stained synapses.

      (2) I commend the authors on the exceptional technical achievement of preparing frozen specimens from a mouse within two minutes.

      (3) The approaches highlighted here can be used in other fields studying cell-cell junctions.

      (4) The tomograms will be deposited upon publication which will enable neurobiologists and researchers from other fields to carry on data evaluation in their field of expertise since tomography is still a specialized skill and they collected and reconstructed over 100 excellent tomograms of synapses, which generates a wealth of information to be also used in future studies.

      (5) The authors have identified ionotropic receptor positions and that they are linked to actin filaments, and appear to be associated with membrane and other cytosolic scaffolds, which is highly exciting.

      (6) The authors achieved their aims to study neuronal excitatory synapses in great detail, were thorough in their experiments, and made multiple fascinating discoveries. They challenge dogmas that have been in place for decades and highlight the benefit of implementing and developing new methods to carefully understand the underlying molecular machines of synapses.

      Weaknesses:

      The authors show informative segmentations in their figures but none have been overlayed with any of the tomograms in the submitted videos. It would be helpful for data evaluation to a broad audience to be able to view these together as videos to study these tomograms and extract more information. Deposition of segmentations associated with the tomgrams would be tremendously helpful to Neurobiologists, cryo-ET method developers, and others to push the boundaries.

      Impact on community:

      The findings presented by Peukes et al. pertaining to synapse biology change dogmas about the fundamental understanding of synaptic ultrastructure. The work presented by the authors, particularly the associated change of intermembrane distance with potentiation and the distinct appearance of the PSD as an irregular amorphous 'cloud' will provide food for thought and an incentive for more analysis and additional studies, as will the discovery of large membranous and cytosolic protein complexes linked to ionotropic receptors within and outside of the synaptic cleft, which are ripe for investigation. The findings and tomograms available will carry far in the synapse fields and the approach and methods will move other fields outside of neurobiology forward. The method and impactful results of preparing cryogenic, unlabeled, unstained, near-native synapses may enable the study of how synapses function at high resolution in the future.

    1. Joint Public Review:

      Summary

      Based on i) the documented role of FMNL1 proteins in IS formation; ii) their ability to regulate F-actin dynamics; iii) the implication of PKCdelta in MVB polarization to the IS and FMNL1beta phosphorylation; and iv) the homology of the C-terminal DAD domain of FMNL1beta with FMNL2, where a phosphorylatable serine residue regulating its auto-inhibitory function had been previously identified, the authors have addressed the role of S1086 in the FMNL1beta DAD domain in F-actin dynamics, MVB polarization and exosome secretion, and investigated the potential implication of PKCdelta, which they had previously shown to regulate these processes, in FMNL1beta S1086 phosphorylation. They demonstrate that FMNL1beta is indeed phosphorylated on S1086 in a PKCdelta-dependent manner and that S1086-phosphorylated FMNL1beta acts downstream of PKCdelta to regulate centrosome and MVB polarization to the IS and exosome release. They provide evidence that FMNL1beta accumulates at the IS where it promotes F-actin clearance from the IS center, thus allowing for MVB secretion.

      Strengths

      The work is based on a solid rationale, which includes previous findings by the authors establishing a link between PKCdelta, FMNL1beta phosphorylation, synaptic F-actin clearance and MVB polarization to the IS. The authors have thoroughly addressed the working hypotheses using robust tools. Among these, of particular value is an expression vector that allows for simultaneous RNAi-based knockdown of the endogenous protein of interest (here all FMNL1 isoforms) and expression of wild-type or mutated versions of the protein as YFP-tagged proteins to facilitate imaging studies. The imaging analyses, which are the core of the manuscript, have been complemented by immunoblot and immunoprecipitation studies, as well as by the measurement of exosome release (using a transfected MVB/exosome reporter to discriminate exosomes secreted by T cells).

      Weaknesses

      As stated in the title of the article, the main findings have been obtained in clones of Jurkat cells and have not been confirmed in primary T cells.

    1. Reviewer #1 (Public review):

      Summary:

      This is an important contribution to the field of molecular embryology of the lung. The authors introduce a novel mesenchymally expressed molecule Svep1. Knocking it out in mice produces a profoundly hypoplastic phenotype which can be rescued in vitro. Svep1 interacts with the FGF signaling complex to control differentiation and expression of smooth muscle in lung mesenchyme, thereby affecting proximal-distal patterning of the airway branches by acting as a putative branch suppressor.

      Strengths:

      The study shows strong evidence in mouse knockouts, in vitro embryonic lung culture as well as gene expression and in vitro rescue studies that confirm a key role for Svep1. It is a beautiful piece of work and an important contribution to our understanding of early lung branching morphogenesis.

      Weaknesses:

      Claiming a possible therapeutic role for this gene is a bit far-fetched at the present state of the art.

    2. Reviewer #2 (Public review):

      Summary:

      In an effort to elucidate the role of the ECM protein Svep1 in lung development, Foxworth and colleagues have generated a Svep1 mutant (lacking exon 8). Based on their developmental analyses of branching morphogenesis and expression of epithelial, mesenchymal, and mesothelial markers in these mutants, the authors conclude that Svep1 is essential for normal lung growth, morphogenesis, and patterning. They propose that the Svep1 protein regulates, in part, FGF9 signalling. Overall, the paper demonstrates that the ECM is important for lung development and tries to implicate the ECM in the regulation of epithelial-mesenchymal interactions during lung development.

      Strengths:

      The strengths of this paper are the careful spatiotemporal characterization of 1) lung growth 2) branching morphogenesis 3) epithelial marker expression. The differential perturbation of growth and branching morphogenesis along the D-V axis and the progressive perturbation of branching morphogenesis are both very interesting and noteworthy phenotypes.

      Weaknesses:

      The weakness of this paper is that it does not present a convincing explanation for how Svep1 regulates any of the phenotypes described. In this regard, a demonstration of a genetic interaction between Svep1 and FGF9 mutants or a careful characterization of a tissue-specific knockdown of Svep1, could be insightful. In addition, a comparison of the phenotype of Svep1 mutants and the phenotypes of other mutants affecting ECM components would be worthwhile.

      A minor weakness is that the title of the paper is not fully supported by the data presented. While the defects in the morphogenesis of the distal lung in Svep1 mutants presage a defect in alveolar differentiation, this cannot be formally demonstrated since the animals die soon after birth.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Zhang et al. analyzed 17 specimens of Cindarella eucalla with 3D technology and discussed the anatomical findings, the relationship to other artiopods, and the ecology of the animal. The results are excellent and the findings are very interesting. However, the discussion needs to be extended, as the point the authors are trying to make is not always clear. I also recommend some restructuring of the discussion. Overall this is an important manuscript, and I'm looking forward to reading the edited version.

      Strengths:

      The analyses, the 3D data is excellent and provides new information.

      Weaknesses:

      The discussion - the authors provide information for the findings, but do not discuss them in detail. More information is needed.

    2. Reviewer #2 (Public review):

      Summary:

      Zhang et al. present very well-illustrated specimens of the artiopodan Cinderella eucalla from the Chengjiang Biota. Multiple specimens are shown with preserved appendages, which is rare for artiopodans and will greatly help our understanding of this taxon. The authors use CT scanning to reveal the ventral organization of this taxon. The description of the taxon needs some modification, specifically expansion of the gut and limb morphology. The conclusion that Cinderella was a fast-moving animal is very weak, comparisons with extant fast animals and possibly FEA analyses are necessary to support such a claim. Although the potential insights provided by such well-preserved fossils could be valuable, the claims made are tenuous and based on the available evidence presented herein.

      Strengths:

      The images produced through CT scanning specimens reveal the very fine detail of the appendages and are well illustrated. Specimens preserve guts and limbs, which are informative both for the phylogenetic position and ecology of this taxon. The limbs are very well preserved, with protopodite, exopodite, and endopodites visible. Addressing the weaknesses below will make the most of this compelling data that demonstrates the morphology of the limbs well.

      Weaknesses:

      Although this paper includes very well-illustrated fossils, including new information on the eyes, guts, and limbs of Cinderella, the data are not fully explained, and the conclusions are weakly supported.

      The authors suggest the preservation of complex ramifying diverticular, but it should be better illustrated and the discussion of the gut diverticulae should be longer, especially as gut morphology can provide insights into the feeding strategy.

      The conclusion that Cinderella eucalla was fast, sediment feeding in a muddy environment, is not well supported. These claims seem to be tenuously made without any evidence to support them. The authors should add a new section in the discussion focused on feeding ecology where they explicitly compare the morphology to suspension-feeding artiopodans to justify whether it fed that way or not. To further explore feeding, the protopodite morphology needs to be more carefully described and compared to other known taxa. The function of endites on the endopodite to stir up sediment for particle feeding in a muddy environment would also need to be more thoroughly discussed and compared with modern analogs. The impact of their findings is not highlighted in the discussion, which is currently more of a review of what has been previously said and should focus more on what insights are provided by the great fossils illustrated by the authors.

      The authors argue that their data supports fast escaping capabilities, but it is not clear how they reached that conclusion based on the data available. Is there a way this can be further evaluated? The data is impressive, so including comparisons with extant taxa that display fast escaping strategies would help the authors make their case more compelling. The authors also claim that the limbs of Cinderella are strong, again this conclusion is unclear. Comparison with the limbs of other taxa to show their robustness would be useful. To actually test how these limbs deal with the force and strain applied to them by a sudden burst of movement, the authors could conduct Finite Element Analyses.

    3. Reviewer #3 (Public review):

      This paper provides an interesting description of the ventral parts of the Cambrian xandarellid Cindarella eucalla, derived from exceptionally preserved specimens of the Chengjiang Biota. These morphological data are useful for our broad understanding and future research on Xandarellida, and are generally well-represented in the description and accompanying figures. The strengths of this work rest in this morphological description of exceptional fossil material, and this is generally well supported. In addition, the authors put this description in the context of the morphology of other xandarellids and Cambrian arthropod groups, with most of these parallels being useful and reasonably supported, though in several places homology is assumed and this currently lacks evidence. The manuscript goes on to use these morphological data and comparisons to other groups (particularly trilobites) to make suggestions for the ecology of Cindarella eucalla and other xandarellids. The majority of my comments on this work relate to this latter aim - the ecological conclusions drawn are generally derived through morphological comparisons, where a specific morphology has been suggested as an adaption to a particular ecological function in another extinct arthropod group. However, the original suggestions for ecological function are untested, and so remain hypotheses. Despite this, they are frequently presented as truisms to enable ecological conclusions to be drawn for Cindarella eucalla. I have listed my comments and queries on the study below for the authors to address or respond to, and I hope they are useful to the authors.

      Comments:

      There are a number of ecological and functional morphology conclusions stated that seem put too strongly to be considered sufficiently supported by the evidence given. These relate to both the description of C. eucalla, and comparisons to other extinct arthropod taxa (notably trilobites). Many of these latter statements are assumptions of functional morphology, and should not be repeated as truisms, rather than they represent suggested functions and ecologies based on the known morphological descriptions. This aspect occurs throughout the article, and, for me, is the primary concern.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, a screening platform is presented for rapid and cost-effective screening of candidate genes involved in Fragile Bone Disorders. The authors validate the approach of using crispants, generating FO mosaic mutants, to evaluate the function of specific target genes in this particular condition. The design of the guide RNAs is convincingly described, while the effectiveness of the method is evaluated to 60% to 92% of the respective target genes being presumably inactivated. Thus, injected F0 larvae can be directly used to investigate the consequences of this inactivation.

      Skeletal formation is then evaluated at 7dpf and 14dpf, first using a transgenic reporter line revealing fluorescent osteoblasts, and second using alizarin-red staining of mineralized structures. In general, it appears that the osteoblast-positive areas are more often affected in the crispants compared to the mineralized areas, an observation that appears to correlate with the observed reduced expression of bglap, a marker for mature osteoblasts, and the increased expression of col1a1a in more immature osteoblasts.

      Finally, the injected fish (except two lines that revealed high mortality) are also analyzed at 90dpf, using alizarin red staining and micro-CT analysis, revealing an increased incidence of skeletal deformities in the vertebral arches, fractures, as well as vertebral fusions and compressions for all crispants except those for daam2. Finally, the Tissue Mineral Density (TMD) as determined by micro-CT is proposed as an important marker for investigating genes involved in osteoporosis.

      Taken together, this manuscript is well presented, the data are clear and well analyzed, and the methods are well described. It makes a compelling case for using the crispant technology to screen the function of candidate genes in a specific condition, as shown here for bone disorders.

      Strengths:

      Strengths are the clever combination of existing technologies from different fields to build a screening platform. All the required methods are comprehensively described.

      Weaknesses:

      One may have wished to bring one or two of the crispants to the stage of bona fide mutants, to confirm the results of the screening, however, this is done for some of the tested genes as laid out in the discussion.

    2. Reviewer #2 (Public review):

      Summary:

      More and more genes and genetic loci are being linked to bone fragility disorders like osteoporosis and osteogenesis imperfecta through GWAS and clinical sequencing. In this study, the authors seek to develop a pipeline for validating these new candidate genes using crispant screening in zebrafish. Candidates were selected based on GWAS bone density evidence (4 genes) or linkage to OI cases plus some aspect of bone biology (6 genes). NGS was performed on embryos injected with different gRNAs/Cas9 to confirm high mutagenic efficacy and off-target cutting was verified to be low. Bone growth, mineralization, density, and gene expression levels were carefully measured and compared across crispants using a battery of assays at three different stages.

      Strengths:

      (1) The pipeline would be straightforward to replicate in other labs, and the study could thus make a real contribution towards resolving the major bottleneck of candidate gene validation.

      (2) The study is clearly written and extensively quantified.

      (3) The discussion attempts to place the phenotypes of different crispant lines into the context of what is already known about each gene's function.

      (4) There is added value in seeing the results for the different crispant lines side by side for each assay.

      Weaknesses:

      (1) The study uses only well-established methods and is strategy-driven rather than question/hypothesis-driven.

      (2) Some of the measurements are inadequately normalized and not as specific to bone as suggested:

      (a) The measurements of surface area covered by osteoblasts or mineralized bone (Figure 1) should be normalized to body size. The authors note that such measures provide "insight into the formation of new skeletal tissue during early development" and reflect "the quantity of osteoblasts within a given structure and [is] a measure of the formation of bone matrix." I agree in principle, but these measures are also secondarily impacted by the overall growth and health of the larva. The surface area data are normalized to the control but not to the size/length of each fish - the esr1 line in particular appears quite developmentally advanced in some of the images shown, which could easily explain the larger bone areas. The fact that the images in Figure S5 were not all taken at the same magnification further complicates this interpretation.

      (b) Some of the genes evaluated by RT-PCR in Figure 2 are expressed in other tissues in addition to bone (as are the candidate genes themselves); because whole-body samples were used for these assays, there is a nonzero possibility that observed changes may be rooted in other, non-skeletal cell types.

      (3) Though the assays evaluate bone development and quality at several levels, it is still difficult to synthesize all the results for a given gene into a coherent model of its requirement.

      (4) Several additional caveats to crispant analyses are worth noting:

      (a) False negatives, i.e. individual fish may not carry many (or any!) mutant alleles. The crispant individuals used for most assays here were not directly genotyped, and no control appears to have been used to confirm successful injection. The authors therefore cannot rule out that some individuals were not, in fact, mutagenized at the loci of interest, potentially due to human error. While this doesn't invalidate the results, it is worth acknowledging the limitation.

      (b) Many/most loci identified through GWAS are non-coding and not easily associated with a nearby gene. The authors should discuss whether their coding gene-focused pipeline could be applied in such cases and how that might work.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript "Crispant analysis in zebrafish as a tool for rapid functional screening of disease-causing genes for bone fragility" describes the use of CRISPR gene editing coupled with phenotyping mosaic zebrafish larvae to characterize functions of genes implicated in heritable fragile bone disorders (FBDs). The authors targeted six high-confident candidate genes implicated in severe recessive forms of FBDs and four Osteoporosis GWAS-implicated genes and observed varied developmental phenotypes across all crispants, in addition to adult skeletal phenotypes.

      A major strength of the paper is the streamlined method that produced significant phenotypes for all candidate genes tested.

      A major weakness is a lack of new insights into underlying mechanisms that may contribute to disease phenotypes, nor any clear commonalities across gene sets. This was most evident in the qRT-PCR analysis of select skeletal developmental genes, which all showed varied changes in fold and direction, but with little insight into the implications of the results.

      Ultimately, the authors were able to show their approach is capable of connecting candidate genes with perturbation of skeletal phenotypes. It was surprising that all four GWAS candidate genes (which presumably were lower confidence) also produced a result. These authors have previously demonstrated that crispants recapitulate skeletal phenotypes of stable mutant lines for a single gene, somewhat reducing the novelty of the study.

    1. Reviewer #1 (Public review):

      Summary:

      In the submitted manuscript, Solomon et al carefully detail shifts in tissue-specific myeloid populations associated with trained immunity using intraperitoneal BCG injection as a model for induction. They define the kinetics of shifts in myeloid populations within the spleen and the transcriptional response associated with IP BCG exposure. In lineage tracing experiments, they demonstrate that tissue-resident macrophages, red-pulp macrophages (RPM) that are rapidly depleted after BCG exposure, are replenished from recruited monocytes and expansion of tissue-resident cells; they use transcriptional profiling to characterize those cells. In contrast to previous descriptions of BCG-driven immune training, they do not find BCG in the bone marrow in their model, suggesting that there is not direct training of myeloid precursor populations in the bone marrow. They then link the observed trained immunity phenotype (restriction of heterologous infection with ST) with early activation of STAT1 through IFN-γ.

      Strengths:

      The work includes careful detaining of shifts and origins of myeloid populations within tissue associated with trained immunity and is a meaningful advance for the field. Given that the temporality of exposure relative to trained immunity phenotypes is a major focus of the work, there are some additional experiments that would make the work stronger.

      Weaknesses:

      (1) The contribution of persistent BCG in spleen to the observed trained immunity phenotypes is not clear: The trained immunity phenotypes are interpreted as being driven by the early (within days) response to BCG exposure. While the fedratinib data generally support this interpretation, the authors show that BCG remains present in spleen albeit at low levels all the way out to 60 days post exposure. Given that the focus in the paper is on tissue-specific immune training, it would be helpful to know whether the ongoing presence of BCG at low levels in the profiled tissue contributes to the trained immunity phenotypes observed.

      (2) Unclear temporality of STAT1/IFN-γ requirement for the trained immunity phenotype: The data demonstrate that STAT1/IFN-γ are required at the earliest time points post-BCG exposure for trained immunity to be initiated. Related to the point about BCG above, it would be helpful to understand whether this is a specifically time-limited requirement when trained immunity is first induced, or whether ongoing signaling through this axis is required for maintenance of the observed trained immunity phenotypes.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Solomon and colleagues demonstrate that trained immunity induced by BCG can reprogram myeloid cells within localised tissue, which can sustain prolonged protective effects. The authors further demonstrate an activation of STAT1-dependent pathways.

      Strengths:

      The main strength of this paper is the in-depth investigation of cell populations affected by BCG training, and how their transcriptome changes at different time points post-training. Through use of flow cytometry and sequencing methods, the authors identify a new cell population derived from classical monocytes. They also show that long-term trained immunity protection in the spleen is dependent on resident cells. Through sequencing, drug and recombinant inhibition of IFNg pathways, the authors reveal STAT1-dependent responses are required for changes in the myeloid population upon training, and recruitment of trained monocytes.

      Weaknesses:

      A significant amount of work has already been performed for this study. No significant weaknesses found.

    1. Reviewer #1 (Public review):

      Summary:

      Here, the authors are proposing a role for miR-196, a microRNA that has been shown to bind and enhance the degradation of mRNA targets in the regulation of cell processes, and has a novel role in allowing the emergence of CD19+ cells in cells in which Ebf1, a critical B-cell transcription factor, has been genetically removed.

      Strengths:

      That over-expression of mR-195 can allow the emergence of CD19+ cells missing Ebf1 is somewhat novel.

      Their data does perhaps support to a degree the emergence of a transcriptional network that may bypass the absence of Ebf1, including the FOXO1 transcription factor, but this data is not strong or definitive.

      Weaknesses:

      It is unclear whether this observation is in fact physiological. When the authors analyse a knockout model of miR-195, there is not much of a change in the B-cell phenotype. Their findings may therefore be an artefact of an overexpression system.

      The authors have provided insufficient data to allow a thorough appraisal of the step-wise molecular changes that could account for their observed phenotype.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigate miRNA miR-195 in the context of B-cell development. They demonstrate that ectopic expression of miR-195 in hematopoietic progenitor cells can, to a considerable extent, override the consequences of deletion of Ebf1, a central B-lineage defining transcription factor, in vitro and upon short-term transplantation into immunodeficient mice in vivo. In addition, the authors demonstrate that the reverse experiment, genetic deletion of miR-195, has virtually no effect on B-cell development. Mechanistically, the authors identify Foxo1 phosphorylation as one pathway partially contributing to the rescue effect of miR-195. An additional analysis of epigenetics by ATACseq adds potential additional factors that might also contribute to the effect of ectopic expression of miR-195.

      Strengths:

      The authors employ a robust assay system, Ebf1-KO HPC, to test for B-lineage promoting factors. The manuscript overall takes on an interesting perspective rarely employed for the analysis of miRNA by overexpressing the miRNA of interest. Ideally, this approach may reveal, if not the physiological function of this miRNA, the role of distinct pathways in developmental processes.

      Weaknesses:

      At the same time, this approach constitutes a major weakness: It does not reveal information on the physiological role of miR-195. In fact, the authors themselves demonstrate in their KO approach, that miR-195 has virtually no role in B-cell development, as has been demonstrated already in 2020 by Hutter and colleagues. While the authors cite this paper, unfortunately, they do so in a different context, hence omitting that their findings are not original.

      Conceptually, the authors stress that a predominant function of miRNA (in contrast to transcription factors, as the authors suggest) lies in fine-tuning. However, there appears to be a misconception. Misregulation of fine-tuning of gene expression may result in substantial biological effects, especially in developmental processes. The authors want to highlight that miR-195 is somewhat of an exception in that regard, but this is clearly not the case. In addition to miR-150, as referenced by the authors, also the miR-17-92 or miR-221/222 families play a significant role in B-cell development, their absence resulting in stage-specific developmental blocks, and other miRNAs, such as miR-155, miR-142, miR-181, and miR-223 are critical regulators of leukocyte development and function. Thus, while in many instances a single miRNA moderately affects gene expression at the level of an individual target, quite frequently targets converge in common pathways, hence controlling critical biological processes.

      The paper has some methodological weaknesses as well: For the most part, it lacks thorough statistical analysis, and only representative FACS plots are provided. Many bar graphs are based on heavy normalization making the T-tests employed inapplicable. No details are provided regarding the statistical analysis of microarrays. Generation of the miR-195-KO mice is insufficiently described and no validation of deletion is provided. Important controls are missing as well, the most important one being a direct rescue of Ebf1-KO cells by re-expression of Ebf1. This control is critical to quantify the extent of override of Ebf1-deficiency elicited by miR-195 and should essentially be included in all experiments. A quantitative comparison is essential to support the authors' main conclusion highlighted in the title of the manuscript. As the manuscript currently stands, only negative controls are provided, which, given the profound role of Ebf1, are insufficient, because many experiments, such as assessment of V(D)J recombination, IgM surface expression, or class-switch recombination, are completely negative in controls. In addition, the authors should also perform long-term reconstitution experiments. While it is somewhat surprising that the authors obtained splenic IgM+ B cells after just 10 days, these experiments would be certainly much more informative after longer periods of time. Using "classical" mixed bone marrow chimeras using a combination of B-cell defective (such as mb1/mb1) bone marrow and reconstituted Ebf1-KO progenitors would permit much more refined analyses.

      With regard to mechanism, the authors show that the Foxo1 phosphorylation pathway accounts for the rescue of CD19 expression, but not for other factors, as mentioned in the discussion. The authors then resort to epigenetics analysis, but their rationale remains somewhat vague. It remains unclear how miR-195 is linked to epigenetic changes.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Miyatake et al. present the interesting finding that ectopic expression of miR-195 in EBF1-deficient hematopoietic progenitor cells can partially rescue their developmental block and allow B cells to progress to a B220+ CD19+ cells stage. Notably, this is accompanied by an upregulation of B-cell-specific genes and, correspondingly, a downregulation of T, myeloid, and NK lineage-related genes, suggesting that miR-195 expression is at least in part equivalent to EBF1 activity in orchestrating the complex gene regulatory network underlying B cell development. Strengthening this point, ATAC sequencing of miR-195-expressing EBF1-deficient B220+CD19+ cells and a comparison of these data to public datasets of EBF1-deficient and -proficient cells suggest that miR-195 indirectly regulates gene expression and chromatin accessibility of some, but not all regions regulated by EBF1.

      Mechanistically, the authors identify a subset of potential target genes of miR-195 involved in MAPK and PI3K signalling. Dampening of these pathways has previously been demonstrated to activate FOXO1, a key transcription factor for early B cells downstream of EBF1. Accordingly, the authors hypothesize that miR-195 exerts its function through FOXO1. Supporting this claim, also exogenous FOXO1 expression is able to promote the development of EBF1-deficient cells to the B220+CD19+ stage and thus recapitulates the miR-195 phenotype.

      Strengths:

      The strength of the presented study is the detailed assessment of the altered chromatin accessibility in response to ectopic miR-195 expression. This provides insight into how miR-195 impacts the gene regulatory network that governs B-cell development and allows the formation of mechanistic hypotheses.

      Weaknesses:

      The key weakness of this study is that its findings are based on the artificial and ectopic expression of a miRNA out of its normal context, which in my opinion strongly limits the biological relevance of the presented work.

      While the authors performed qPCRs for miR-195 on different B cell populations and show that its relative expression peaks in early B cells, it remains unclear whether the absolute miR-195 expression is sufficiently high to have any meaningful biological activity. In fact, other miRNA expression data from immune cells (e.g. DOI 10.1182/blood-2010-10-316034 and DOI 10.1016/j.immuni.2010.05.009) suggest that miR-195 is only weakly, if at all, expressed in the hematopoietic system.

      The authors support their finding by a CRISPR-derived miR-195 knockout mouse model which displays mild, but significant differences in the hematopoietic stem cell compartment and in B cell development. However, they fail to acknowledge and discuss a lymphocyte-specific miR-195 knockout mouse that does not show any B cell defects in the bone marrow or spleen and thus contradicts the authors' findings (DOI 10.1111/febs.15493). Of note, B-1 B cells in particular have been shown to be elevated upon loss of miR-15-16-1 and/or miR-15b-16-2, which contradicts the data presented here for loss of the family member miR-195.

      A second weakness is that some claims by the authors appear overstated or at least not fully backed up by the presented data. In particular, the findings that miR-195-expressing cells can undergo VDJ recombination, express the pre-BCR/BCR and class switch needs to be strengthened. It would be beneficial to include additional controls to these experiments, e.g. a RAG-deficient mouse as a reference/negative control for the ddPCR and the surface IgM staining, and cells deficient in class switching for the IgG1 flow cytometric staining.

      Moreover, the manuscript would be strengthened by a more thorough investigation of the hypothesis that miR-195 promotes the stabilization and activity of FOXO1, e.g. by comparing the authors' ATACseq data to the FOXO1 signature.

    1. Reviewer #1 (Public review):

      Summary:

      Perlee et al. sought to generate a zebrafish line where CRISPR-based gene editing is exclusively limited to the melanocyte lineage, allowing assessment of cell-type restricted gene knockouts. To achieve this, they knocked in Cas9 to the endogenous mitfa locus, as mitfa is a master regulator of melanocyte development. The authors use multiple candidate genes - albino, sox10, tuba1a, ptena/ptenb, tp53 - to demonstrate their system induces lineage-restricted gene editing. This method allows researchers to bypass embryonic lethal and non-cell autonomous phenotypes emerging from whole body knockout (sox10, tuba1a), drive directed phenotypes, such as depigmentation (albino), and induce lineage-specific tumors, such as melanomas (ptena/ptenb, tp53, when accompanied with expression of BRAFV600E). While the genetic approaches are solid, the argued increase in efficiency of this model compared to current tools was untested, and therefore unable to be assessed. Furthermore, the mechanistic explanations proposed to underlie their phenotypes are mostly unfounded, as discussed further in the Weaknesses section. Despite these concerns, there is still a clear use for this genetic methodology and its implementation will be of value to many in vivo researchers.

      Strengths:

      The strongest component of this manuscript is the genetic control offered by the mitfa:Cas9 system and the ability to make stable, lineage-specific knockouts in zebrafish. This is exemplified by the studies of tuba1a, where the authors nicely show non-cell autonomous mechanisms have obfuscated the role of this gene in melanocyte development. In addition, the mitfa:Cas9 system is elegantly straightforward and can be easily implemented in many labs. Mostly, the figures are clean, controls are appropriate, and phenotypes are reproducible. The invented method is a welcomed addition to the arsenal of genetic tools used in zebrafish.

      Weaknesses:

      The major weaknesses of the manuscript include the overly bold descriptions of the value of the model and the superficial mechanistic explanations for each biological vignette.

      The authors argue that a major advantage of this system is its high efficiency. However, no direct comparison is made with other tools that achieve the same genetic control, such as MAZERATI. This is a missed opportunity to provide researchers the ability to evaluate these two similar genetic approaches. In addition, Fig.1 shows that not all melanocytes express Cas9. This is a major caveat that goes unaddressed. It is of paramount importance to understand the percentage of mitfa+ cells that express Cas9. The histology shown is unclear and too zoomed out of a scale to make any insightful conclusions, especially in Fig.S1. It would also be beneficial to see data regarding Cas9 expression in adult melanocytes, which are distinct from embryonic melanocytes in zebrafish. Moreover, this system still requires the injection of a plasmid encoding gRNAs of interest, which will yield mosaicism. A prime example of this discrepancy is in Fig.6, where sox10 is clearly still present in "sox10 KO" tumors.

      The authors argue that their model allows rapid manipulation of melanocyte gene expression. Enthusiasm for the speed of this model is diminished by minimal phenotypes in the F0, as exemplified in Fig.2. Although the authors say >90% of fish have loss of pigmentation, this is misleading as the phenotype is a very weak, partial loss. Only in the F1 generation do robust phenotypes emerge, which takes >6 months to generate. How this is more efficient than other tools that currently exist is unclear and should be discussed in more detail.

      In Figure 3, the authors find that melanocyte-specific knockout of sox10 leads to only a 25% reduction in melanocytes in the F1 generation. This is in contradiction to prior literature cited describing sox10 as indispensable for melanocyte development. In addition, the authors argue that sox10 is required for melanocyte regeneration. This claim is not accurate, as >50% of melanocytes killed upon neocuproine treatment can regenerate. This data would indicate that sox10 is required for only a subset of melanocytes to develop (Fig.3C) and for only a subset to regenerate (Fig.3G). This is an interesting finding that is not discussed or interrogated further.

      Tumor induction by this model is weak, as indicated by the tumor curves in Figs.5,6. This might be because these fish are mitfa heterozygous. Whereas the avoidance of mitfa overexpression driven by other models including MAZERATI is a benefit of this system, the effect of mitfa heterozygosity on tumor incidence was untested. This is an essential question unaddressed in the manuscript.

      In Fig.6, the authors recapitulate previous findings with their model, showing sox10 KO inhibits tumor onset. The tumors that do develop are argued to be highly invasive, have mesenchymal morphology, and undergo phenotypic switching from sox10 to sox9 expression. The data presented do not sufficiently support these claims. The histology is not readily suggestive of invasive, mesenchymal melanomas. Sox10 is still present in many cells and sox9 expression is only found in a small subset (<20%). Whether sox10-null cells are the ones expressing sox9 is untested. If sox9-mediated phenotypic switching is the major driver of these tumors, the authors would need to knockout sox9 and sox10 simultaneously and test whether these "rare" types of tumors still emerge. Additional histological and genetic evaluation is required to make the conclusions presented in Fig.6. It feels like a missed opportunity that the authors did not attempt to study genes of unknown contribution to melanoma with their system.

      Overall, this manuscript introduces a solid method to the arsenal of zebrafish genetic tools but falls short of justifying itself as a more efficient and robust approach than what currently exists. The mechanisms provided to explain observed phenotypes are tenuous. Nonetheless, the mitfa:Cas9 approach will certainly be of value to many in vivo biologists and lays the foundation to generate similar methods using other tissue-specific regulators and other Cas proteins.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript describes a genetic tool utilizing mutant mitfa-Cas9 expressing zebrafish to knockout genes to analyze their function in melanocytes in a range of assays from developmental biology to tumorigenesis. Overall, the data are convincing and the authors cover potential caveats from their model that might impact its utility for future work.

      Strengths:

      The authors do an excellent job of characterizing several gene deletions that show the specificity and applicability of the genetic mitfa-Cas9 zebrafish to studying melanocytes.

      Weaknesses:

      Variability across animals not fully analyzed.

    3. Reviewer #3 (Public review):

      Summary:

      Perlee et al. present a method for generating cell-type restricted knockouts in zebrafish, focusing on melanocytes. For this method, the authors knock-in a Cas9 encoding sequence into the mitfa locus. This mitfaCas9 line has restricted Cas9 expression, allowing the authors to generate melanocyte-specific knockouts rapidly by follow-up injection of sgRNA expressing transposon vectors.

      The paper presents some interesting vignettes to illustrate the utility of their approach. These include 1) a derivation of albino mutant fish as a demonstration of the method's efficiency, 2) an interrogation and novel description of tuba1a as a potential non-autonomous contributor to melanocyte dispersion, and 3) the generation of sox10 deficient melanoma tumors that show "escape" of sox10 loss through upregulation of sox9. The latter two examples highlight the usefulness of cell-type targeted knockouts (Body-wide sox10 and tuba1a loss elicit developmental defects). Additionally, the tumor models involve highly multiplexed sgRNAs for tumor initiation which is nicely facilitated by the stable Cas9.

      Strengths:

      The approach is clever and could prove very useful for studying melanocytes and other cell types. As the authors hint at in their discussion, this approach would become even more powerful with the generation of other Cas9-restricted lineages so a single sgRNA construct can be screened across many lineages rapidly (or many sgRNA and fish lines screened combinatorially).

      The biological findings used to demonstrate the power of the approach are interesting in their own right. If it proves true, tuba1a's non-autonomous effects on melanosome dispersion are striking, and this example demonstrates very nicely how one could use Perlee et al.'s approach to search for other non-autonomous mechanisms systematically. Similarly, the observation of the sox9 escape mechanism with sox10 loss is a beautiful demonstration of the relevance of SOX10/SOX9's reciprocal regulation in vivo. This system would be a very nice model for further interrogating mechanisms/interventions surrounding Sox10 in melanoma.

      Finally, the figure presentation is very nice. This work involves complex genetic approaches including multiple fish generations and multiplexed construct injections. The vector diagrams and breeding schemes in the paper make everything very clear/"grok-able," and the paper was enjoyable to read.

      Weaknesses:

      The mitfa-driven GFP on their sgRNA-expressing cassette is elegant, but it makes one wonder why the endogenous knock-in is necessary. It would strengthen the motivation of the work if the authors could detail the potential advantages and disadvantages of their system compared to expressing Cas9 with a lineage-specific promoter from a transposon in their introduction or discussion.

      Related to the above - is mitfa haplosufficient? If the mitfaCas9/+ fish have any notable phenotypes, it would be worth noting for others interested in using this approach to study melanoma and pigmentation.

      A core weakness (and also potential strength) of the system is that introduced edits will always be non-clonal (Fig 2H/I). The activity of individual sgRNAs should always be validated in the absence of any noticeable phenotype to interpret a negative result. Additionally, caution should be taken when interpreting results from rare events involving positive outgrowth (like tumorogenesis) to account for the fact many cells in the population might not have biallelic null alleles (i.e., 100% of the gene product removed).

      Along those lines: in my opinion, the tuba1a results are the most provocative finding in the paper, but they lack key validation. With respect to cutting activity, the Alt-R and transgenic sgRNA expression approaches are not directly comparable. Since there is no phenotype in the melanocyte specific tuba1a knockouts, the authors must confirm high knockout efficiency with this set of reagents before making the claim there is a non-autonomous phenotype. This can be achieved with GFP+ sorting and NGS like they performed with their albino melanocytes.

      The whole-body tuba1a knockout phenotype is expected to be pleiotropic, and this expectation might mask off-target effects. Controls for knockout specificity should be included. For instance, confidence in the claims would greatly increase if the dispersed melanosome phenotype could be recovered with guide-resistant tuba1a re-expression and if melanocyte-restricted tuba1a re-expression failed to rescue. As a less definitive but adequate alternative, the authors could also test if another guide or a morpholino against tuba1a phenocopies the described Alt-R edited fish.

      I have similar questions about the sox10 escapers, but these suggestions are less critical for supporting the authors claims (especially given the nice staining). Are the sox10 tumors relatively clonal with respect to sox10 mutations? And are the sox10 tumor mutations mostly biallelic frameshifts or potential missense mutations/single mutations that might not completely remove activity? I am particularly curious as SOX10 doesn't seem to be completely absent (and is still very high in some nuclei) in the immunohistochemistry.

    1. Nevertheless, the very fact that I am going through my notes reflects a new habit I am trying to build, of setting time aside every week, and sometimes more often, deliberately to tend the oldest notes I have and the notes I created or edited in the past week. Old notes take longer, because I have to check old links and decide what to do if they have rotted away. Those notes also need to be reshaped in line with zettelkasten principles. That means deciding on primary tags, considering internal links, splitting the atoms of long notes and so on. At times it frustrates me, but when it goes well I do see structure emerging and with it new thoughts and new directions to follow.

      This is reminiscent of the idea that indigenous peoples regularly met at annual feasts to not only celebrate, but to review over their memory palaces and perform their rituals as a means of reviewing and strengthening their memories and ideas.


      Appropriate context for this: https://www.jeremycherfas.net/blog/a-garden-with-a-water-feature

    1. Reviewer #1 (Public review):

      Summary:

      This study takes a detailed approach to understanding the effect of menopausal hormone therapy (MHT) in the brain aging of females. Neuroimaging data from the UK Biobank is used to explore brain aging and shows an unexpected effect of current MHT use and poorer brain health outcomes relative to never users. There is considerable debate about the benefits of MHT and estrogens in particular for brain health, and this analysis illustrates that the effects are certainly not straightforward and require greater consideration.

      Strengths:

      (1) The detailed approach to obtaining important information about MHT use from primary care records. Prior studies have suggested that factors such as estrogen/progestin type, route of administration, duration, and timing of use relative to menopause onset can contribute to whether MHT benefits brain health.

      (2) Consideration of type of menopause (spontaneous, or surgical) in the analysis, as well as sensitivity diagnoses to rule out the effect being driven by those with clinical conditions.

      (3) The incorporation of the brain age estimate along with hippocampal volume to address brain health.

      (4) The complex data are also well explained and interpretations are reasonable.

      (5) Limitations of the UK Biobank data are acknowledged

      Weaknesses:

      (1) Lifestyle factors are listed and the authors acknowledge group differences (at least between current users and never users of MHT). I was not able to find these analyses showing these differences.

      (2) The distribution of women who were not menopausal was unequal across groups, and while the authors acknowledge this, one wonders to what extent this explains the observed findings.

      (3) While the interpretations are reasonable, and relevant theories (healthy cell & critical window) are mentioned, the discussion is missing a more zoomed-out perspective of the findings. While I appreciate wanting to limit speculation, the reader is left having to synthesize a lot of complex details on their own. A particularly difficult finding to reconcile is under what conditions these women benefit from MHT and when do they not (and why that may be).

    2. Reviewer #2 (Public review):

      Summary:<br /> In this observational study, Barth et al. investigated the association between menopausal hormone therapy and brain health in middle- to older-aged women from the UK Biobank. The study evaluated detailed MHT data (never, current, or past user), duration of mHT use (age first/last used), history of hysterectomy with or without bilateral oophorectomy, APOEE4 genotype, and brain characteristics in a large, population-based sample. The researchers found that current mHT use (compared to never-users), but not past use, was associated with a modest increase in gray and white matter brain age gap (GM and WM BAG) and a decrease in hippocampal volumes. No significant association was found between the age of mHT initiation and brain measures among mHT users. Longer duration of use and older age at last MHT use post-menopause were associated with higher GM and WM BAG, larger WMH volumes, and smaller hippocampal volumes. In a sub-sample, after adjusting for multiple comparisons, no significant associations were found between detailed mHT variables (formulations, route of administration, dosage) and brain measures. The association between mHT variables and brain measures was not influenced by APOEE4 allele carrier status. Women with a history of hysterectomy with or without bilateral oophorectomy had lower GM BAG compared to those without such a history. Overall, these observational data suggest that the association between mHT use and brain health in women may vary depending on the duration of use and surgical history.

      Strengths:

      The study has several strengths, including a large, population-based sample of women in the UK, and comprehensive details of demographic variables such as menopausal status, history of oophorectomy/hysterectomy, genetic risk factors for Alzheimer's disease (APOE ε4 status), age at mHT initiation, age at last use, duration of mHT, and brain imaging data (hippocampus and WMH volume).

      In a sub-sample, the study accessed detailed mHT prescription data (formulations, route of administration, dosage, duration), allowing the researchers to study how these variables were associated with brain health outcomes. This level of detail is generally missing in observational studies investigating the association of mHT use with brain health.

      Weaknesses:

      While the study has many strengths, it also has some weaknesses. As highlighted in an editorial by Kantarci & Manson (2023), women with symptoms such as subjective cognitive problems, sleep disturbances, and elevated vasomotor symptoms combined with sleep disturbances tend to seek mHT more frequently than those without these symptoms. The authors of this study have also indicated that the need of mHT use which might be associated with these symptoms may be indicators of preexisting neurological changes, potentially reflecting worse brain health scores, including higher BAG and lower hippocampal volume and/or higher WMH. However, among current users, how many of these women have these symptoms could not be reported in the study. Women with these vasomotor symptoms who are using mHT are more likely to stay longer in the healthcare system compared with those without these symptoms and no MHT use history. The authors noted that the UK Biobank lacks detailed information on menopausal symptoms and perimenopausal staging, limiting the study's ability to understand how these variables influence outcomes.

      Earlier observational studies have reported conflicting results regarding the association between mHT use and the risk of dementia and brain health. Contrary to some observational studies, three randomized trials (WHI, KEEPS, ELITE) (Espeland et al 2013, Gleason et al 2015; Henderson et al 2016) demonstrated neither beneficial nor harmful effects of mHT (with varying doses and formulations) when initiated closer to menopause (<5 years). While strong efforts were made to run proper statistical analyses to investigate the association between mHT use and brain health, these results reflect mainly associations, but not causal relationships as also stated by the authors.

      Furthermore, observational studies have intrinsic limitations, such as a lack of control over switching mHT doses and formulations, a lack of laboratory measures to confirm mHT use, and reliance on self-reported data, which may not always be reliable. The authors caution that these findings should not guide individual-level decisions regarding the benefits versus risks of mHT use. However, the study raises new questions that should be addressed by randomized clinical trials to investigate the varying effects of MHT on brain health and dementia risk.

    3. Reviewer #3 (Public review):

      In this study Barth et al. present results of detailed analyses of the relationships between menopausal hormone therapy (MHT), APOE ε4 genotype, and measures of anatomical brain age in women in the UK Biobank. While past studies have investigated the links between some of these variables (including works by the authors themselves), this new study adds more detailed MHT variables, surgical status, and additional brain aging measures. The UK biobank sample is large, but it is a population cohort and many of the MHT measures are self-reported (as the authors point out). However, the authors present a solid analysis of the available information which shows associations between MHT user status, length of MHT use, as well as surgical status with brain age. However, as the authors themselves state, the results do not unequivocally support the neuroprotective or adverse effect of MHT on the brain. I think this work strengthens the case for the need of better-designed longitudinal studies investigating the effect of MHT on the brain in the peri/post-menopausal stage.

      Strengths:

      The authors addressed the statistical analyses rigorously. For example, multiple testing corrections, outlier removal, and sensitivity analysis were performed carefully. Ample background information is provided in the introduction allowing even individuals not familiar with the field to understand the motivation behind the work. The discussion section also does a great job of addressing open questions and limitations. Very detailed results of all statistical tests are provided either in the main text or in the supplementary information.

      Weaknesses:

      For me, the biggest weakness was the presentation of the results. As many variables are involved and past studies have investigated several of these questions, it would have helped to better clarify the analysis and questions that are addressed by this study in particular and what sets this work apart from past studies. The information is present in the manuscript but better organization might have helped. For example, a figure depicting the key questions near the beginning of the manuscript would have been very helpful for me. The Tables also contain a lot of information but I wonder if there might be a way to capture the most relevant information more succinctly (either in Table format or in a figure) for the main text.<br /> Another concern I had was the linear models investigating the effects of these MHT variables on the brain age gap. The authors have included "age" as one of the parameters in this analysis. I wonder if adding a quadratic age factor age2 in the model might have improved the fit since many brain phenotypes tend to show quadratic brain age effects in the 40 to 80-year age range.

    1. Reviewer #1 (Public review):

      Summary:

      This paper seeks to understand the upstream regulation and downstream effectors of glycolysis in retinal progenitor cells, using mouse retinal explants as the main model system. The paper presents evidence that high glycolysis in retinal progenitor cells is required for their proliferation and timely differentiation into photoreceptors. Retinal glycolysis increases after the deletion of Pten. The authors suggest that high glycolysis controls cell proliferation and differentiation by promoting intracellular alkalinization, beta-catenin acetylation and stabilization, and consequent activation of the canonical Wnt pathway.

      Strengths:

      (1) The experiments showing that PFKFB3 overexpression is sufficient to increase the proliferation of retinal progenitors (which are already highly dividing cells) and photoreceptor differentiation are striking and the result is unanticipated. It suggests that glycolytic flux is normally limiting for proliferation in embryos.

      (2) Likewise the result that an increase in pH from 7.4 to 8.0 is sufficient to increase proliferation implies that pH regulation may have instructive roles in setting the tempo of retinal development and embryonic cell proliferation. Similarly, the results show that acetate supplementation increases proliferation (I think this result should be moved to the main figures).

      Weaknesses:

      (1) Epistatic experiments to test if changes in pH mediate the effects of glycolysis on photoreceptor differentiation, or if Wnt activation is the main downstream effector of glycolysis in controlling differentiation are not presented.

      (2) It is likely that metabolism changes ex vivo vs in vivo, and therefore stable isotope tracing experiments in the explants may not reflect in vivo metabolism.

      (3) The retina at P0 is composed of both progenitors and differentiated cells. It is not clear if the results of the RNA-seq and metabolic analysis reflect changes in the metabolism of progenitors, or of mature cells, or changes in cell type composition rather than direct metabolic changes in a specific cell type.

      (4) The biochemical links between elevated glycolysis and pH and beta-catenin stability are unclear. White et al found that higher pH decreased beta-catenin stability (JCB 217: 3965) in contrast to the results here. Oginuma et al found that inhibition of glycolysis or beta-catenin acetylation does not affect beta-catenin stability (Nature 584:98), again in contrast to these results. Another paper showed that acidification inhibits Wnt signaling by promoting the expression of a transcriptional repressor and not via beta-catenin stability (Cell Discovery 4:37). There are also additional papers showing increased pH can promote cell proliferation via other mechanisms (e.g. Nat Metab 2:1212). It is possible that there is organ-specificity in these signaling pathways however some clarification of these divergent results is warranted.

      (5) The gene expression analysis is not completely convincing. E.g. the expression of additional glycolytic genes should be shown in Figure 1. It is not clear why Hk1 and Pgk1 are specifically shown, and conclusions about changes in glycolysis are difficult to draw from the expression of these two genes. The increase in glycolytic gene expression in the Pten-deficient retina is generally small.

      (6) Is it possible that glycolytic inhibition with 2DG slows down the development and production of most newly differentiated cells rather than specifically affecting photoreceptor differentiation?

      (7) Are the prematurely-born cells caused by PFKFB3 overexpression photoreceptors as assessed by morphology or markers (in addition to position)?

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Hanna et al., addresses the question of energy metabolism in the retina, a neuronal tissue with an inordinately high energy demand. Paradoxically, the retina appears to employ to a large extent glycolysis to satisfy its energetic needs, even though glycolysis is far less efficient than oxidative phosphorylation (OXPHOS). The focus of the present study is on the early development of the retina and the retinal progenitor cells (RPCs) that proliferate and differentiate to form the seven main classes of retinal neurons. The authors use different genetic and pharmacological manipulations to drive the metabolism of RPCs or the retina towards higher or lower glycolytic activity. The results obtained suggest that increased glycolytic activity in early retinal development produces a more rapid differentiation of RPCs, resulting in a more rapid maturation of photoreceptors and photoreceptor segment growth. The study is significant in that it shows how metabolic activity can determine cell fate decisions in retinal neurons.

      Strengths:

      This study provides important findings that are highly relevant to the understanding of how early metabolism governs the development of the retina. The outcomes of this study could be relevant also for human diseases that affect early retinal development, including retinopathy of maturity where an increased oxygenation likely causes a disturbance of energy metabolism.

      Weaknesses:

      The restriction to only relatively early developmental time points makes it difficult to assess the consequences of the different manipulations on the (more) mature retina. Notably, it is conceivable that early developmental manipulations, while producing relevant effects in the young post-natal retina, may "even out" and may no longer be visible in the mature, adult retina.

    3. Reviewer #3 (Public review):

      Summary:

      This study examines the metabolic regulation of progenitor proliferation and differentiation in the developing retina. The authors observe dynamic changes in glycolytic gene expression in retinal progenitors and use various strategies to test the role of glycolysis. They find that elevated glycolysis in Pten-cKO retinas results in alteration of RPC fate, while inhibition of glycolysis has converse effects. They specifically test the role of elevated glycolysis using dominant active cytoPFKB3, which demonstrates the selective effects of elevated glycolysis on progenitor proliferation and rod differentiation. They then show that elevated glycolysis modulates both pHi and Wnt signaling, and provide evidence that these pathways impact proliferation and differentiation of progenitors, particularly affecting rod photoreceptor differentiation.

      Strengths:

      This is a compelling and rigorous study that provides an important advance in our understanding of metabolic regulation of retina development, addressing a major gap in knowledge. A key strength is that the study utilizes multiple genetic and pharmacological approaches to address how both increased or decreased glycolytic flux affect retinal progenitor proliferation and differentiation. They discover elevated Wnt signaling pathway genes in Pten cKO retina, revealing a potential link between glycolysis and Wnt pathway activation. Altogether the study is comprehensive and adds to the growing body of evidence that regulation of glycolysis plays a key role in tissue development.

      Weaknesses:

      (1) Following the expression of cytoPFKB3, which results in increased glycolytic flux, BrDU labeling was performed at e12.5 and increased labeled cells were detected in the outer nuclear layer. However whether these are cones or rods is not established. The rest of the analysis is focused on the precocious maturation of rhodopsin-labeled outer segments, and the major conclusions emphasize rod photoreceptor differentiation. Therefore it is unclear whether there is an effect on cone differentiation for either Pten cKO or cytoPFKB3 transgenic retina. It is also not established whether rods are born precociously. Presumably, this would be best detected by BrDU labeling at later embryonic stages.

      (2) The authors find that there is upregulation of multiple Wnt pathway components in Pten cKO retina. They further show that inhibiting Wnt signaling phenocopies the effects of reducing glycolysis. However, they do not test whether pharmacological inhibition of Wnt signaling reverses the effects of high glycolytic activity in Pten cKO retinas. Thus the argument that Wnt is a key downstream effector pathway regulating rod photoreceptor differentiation is weak.

      (3) The use of sodium acetate to force protein acetylation is quite non-specific and will have effects beyond beta-catenin acetylation (which the authors acknowledge). Thus it is a stretch to state that "forced activation of beta-catenin acetylation" mimics the impact of Pten loss/high glycolytic activity in RPCs since the effects could be due to acetylation of other proteins.

    1. Reviewer #1 (Public review):

      Summary:

      Siddiqui et al., investigate the question of how bacterial metabolism contributes to the attraction of C. elegans to specific bacteria. They show that C. elegans prefers three bacterial species when cultured in a leucine-enriched environment. These bacterial species release more isoamyl alcohol, a known C. elegans attractant, when cultured with leucine supplement than without leucine supplement. The study shows correlative evidence that isoamyl alcohol is produced from leucine by the Ehrlich pathway. In addition, they show that SRD-12 is likely a receptor for isoamyl alcohol because a null mutant of this receptor exhibits lower chemotaxis to isoamyl alcohol and lower preference for leucine-enriched bacteria.

      Strengths:

      (1) This study takes a creative approach to examine the question of what specific volatile chemicals released by bacteria may signify to C. elegans by examining both bacterial metabolism and C. elegans preference behavior. Although C. elegans has long been known to be attracted to bacterial metabolites, this study may be one of the first to examine the role of a specific bacterial metabolic pathway in mediating attraction.

      (2) A strength of the paper is the identification of SRD-12 as a likely receptor for isoamyl alcohol. The ligands for very few olfactory receptors have been identified in C. elegans and so this is a significant addition to the field. The srd-12 null mutant strain will likely be a useful reagent for many labs examining olfactory and foraging behaviors.

      Weaknesses:

      (1) The authors write that the leucine metabolism via the Ehrlich pathway is required for the production of isoamyl alcohol by three bacteria (CEent1, JUb66, BIGb0170), but their evidence for this is correlation and not causation. They write that the gene ilvE is a bacterial homolog of the first gene in the yeast Ehrlich pathway (it would be good to include a citation for this) and that the gene is present in these three bacterial strains. In addition, they show that this gene, ilvE, is upregulated in CEent1 bacteria upon exposure to leucine. To show causation, they need to knockout ilvE from one of these strains, show that the bacteria does not have increased isoamyl alcohol production when cultured on leucine, and that the bacteria is no longer attractive to C. elegans.

      (2) The authors examine three bacterial strains that C. elegans showed increased preference when grown with leucine supplementation vs. without leucine supplementation. However, there also appears to be a strong preference for another strain, JUb0393, when grown on plus leucine (Figure 1B). It would be good to include statistics and criteria for selecting the three strains.

      3. Although the behavioral evidence that srd-12 gene encodes a receptor for isoamyl alcohol is compelling, it does not meet the standard for showing that it is an olfactory receptor in C. elegans. To show it is indeed a likely receptor one or more of the following should be done:<br /> (a) Calcium imaging of AWC neurons in response to isoamyl alcohol in the receptor mutant with the expectation that the response would be reduced or abolished in the mutant compared to wildtype.<br /> (b)"A receptor swap" experiment where the SRD-12 receptor is expressed in AWB repulsive neuron in SRD-12 receptor mutant background with the expectation that with receptor swap C. elegans will now be repulsed from isoamyl alcohol in chemotaxis assays (experiment from Sengupta et al., 1996 odr-10 paper).

      (4) The authors conclude that C. elegans cannot detect leucine in chemotaxis assays. It is important to add the method for how leucine chemotaxis assay was done in order to interpret these results. Because leucine is not volatile if leucine is put on the plates immediately before the worms are added (as in a traditional odor chemotaxis assay), there is no leucine gradient for the worm to detect. It would be good to put leucine on the plate several hours before worms are introduced so worms have the possibility to be able to detect the gradient of leucine (for example, see Wakabayashi et al., 2009).

      (5) The bacterial preference assay entitled "odor-only assay" is a misleading name. In the assay, C. elegans is exposed to both volatile chemicals (odors) and non-volatile chemicals because the bacteria are grown on the assay plate for 12 hours before the worms are introduced to the assay plate. In that time, the bacteria is likely releasing non-volatile metabolites into the plate which may affect the worm's preference. A true odor-only assay would have the bacteria on the lid and the worms on the plate.

      (6) The findings of the study should be discussed more in the context of prior literature. For example, AWC neurons have been previously shown to be involved in bacterial preference (Harris et al., 2014; Worthy et al., 2018). In addition, CeMbio bacterial strains (the strains examined in this study) have been previously shown to release isoamyl alcohol (Chai et al. 2024).

    2. Reviewer #2 (Public review):

      Summary:

      Siddiqui et al. show that C. elegans prefers certain bacterial strains that have been supplemented with the essential amino acid (EEA) leucine. They convincingly show that some leucine enriched bacteria stimulate the production of isoamyl alcohol (IAA). IAA is an attractive odorant that is sensed by the AWC. The authors an identify a receptor, SRD-12, that is expressed in the AWC chemosensory neurons and is required for chemotaxis to IAA. The authors propose that IAA is a predominant olfactory cue that determines diet preference in C. elegans. Since leucine is an EAA, the authors propose that worm IAA sensing allows the animal provides a proxy mechanism to identify EAA rich diets.

      Strengths:

      The authors propose IAA as a predominant olfactory cue that determines diet preference in C. elegans providing molecular mechanism underlying diet selection. They show that wild isolates of C. elegans have a strong chemotactic response to IAA indicating that IAA is an ecologically relevant odor for the worm. The paper is well written, and the presented data are convincing and well organized. This is an interesting paper that connects chemotactic response with bacterially produced odors and thus provides an understanding of how animals adapt their foraging behavior through the perception of molecules that may indicate the nutritional value.

      Weaknesses:

      Major:

      While I do like the way the authors frame C. elegans IAA sensing as mechanisms to identify leucine (EAA) rich diets it is not fully clear whether bacterial IAA production is a proxy for bacterial leucine levels.

      (1) Can the authors measure leucine (or other EAA) content of the different CeMbio strains? This would substantiate the premise in the way they frame this in the introduction. While the authors convincingly show that leucine supplementation induces IAA production in some strains, it is not clear if there are lower leucine levels in the different in non-preferred strains.

      (2) It is not clear whether the non-preferred bacteria in Figure 1A and 1B have the ability to produce IAA. To substantiate the claim that C. elegans prefers CEent1, JUb66, and BIGb0170 due to their ability to generate IAA from leucine, it would measure IAA levels in non-preferred bacteria (+ and - leucine supplementation). If the authors have these data it would be good to include this.

      (3) The authors would strengthen their claim if they could show that deletion or silencing ilvE enzyme reduces IAA levels and eliminates the increased preference upon leucine supplementation.

      (4) While the three preferred bacteria possess the ilvE gene, it is not clear whether this enzyme is present in the other non-preferred bacterial strains. As far as I know, the CeMbio strains have been sequenced so it should be easy to determine if the non-preferred bacteria possess the capacity to make IAA. Does the expression of ilvE in e.g. E. coli increase its preference index or are the other genes in the biosynthesis pathway missing?

      (5) It is strongly implied that leucine-rich diets are beneficial to the worm. Do the authors have data to show the effect on leucine supplementation on C. elegans healthspan, life-span or broodsize?

      Other comments:

      Page 6. Figure 2c. While the authors' conclusions are correct based on AWC expts. it would be good at this stage to include the possibility that odors that enriched in the absence of leucine may be aversive.

      Page 6. IAA increases 1.2-4 folds upon leucine supplementation. If the authors perform a chemotaxis assay with just IAA with 1-2-4 fold differences do you get the shift in preference index as seen with the bacteria? i.e. is the difference in IAA concentration sufficient to explain the shift in bacterial PI upon leucine supplementation? Other attractants such as Acetoin and isobutanol go up in -Leu conditions.

      Page 14-15. The authors identify a putative IAA receptor based on expression studies. I compliment the authors for isolating two CRISPR deletion alleles. They show that the srd-12 mutants have obvious defects in IAA chemotaxis. Very few ligand-odorant receptors combinations have been identified so this is an important discovery. CenGen data indicate that srd-12 is expressed in a limited set of neurons. Did the authors generate a reporter to show the expression of srd-12? This is a simple experiment that would add to the characterization of the SRD-12 receptor. Rescue experiments would be nice even though the authors have independent alleles. To truly claim that SRD-12 is the ligand for IAA and activates the AWC neurons would require GCamp experiments in the AWC neuron or heterologous expression system. I understand that GCamp imaging might not be part of the regular arsenal of the lab but it would be a great addition (even in collaboration with one of the many labs that do this regularly). Comparing AWC activity using GCaMP in response IAA-producing bacteria with high leucine levels in both wild-type and SRD-12-deficient backgrounds, would further support their narrative. I leave that to the authors.

      Minor:

      Page 4 "These results suggested that worms can forage for diets enriched in specific EAA, leucine...." More precise at this stage would be to state " These results indicated that worms can forage for diets supplemented with specific EAA...".

      Page 5."these findings suggested that worms not only rely on odors to choose between two bacteria but also to find leucine enriched bacteria" This statement is not clear to me and doesn't follow the data in Fig. S2. Preferred diets in odorant assays are the IAA producing strains.

      Page 5. Figure S2A provides nice and useful data that can be part of the main Figure 1.

    3. Reviewer #3 (Public review):

      Summary:

      The authors first tested whether EAA supplementation increases olfactory preference for bacterial food for a variety of bacterial strains. Of the EAAs, they found only leucine supplementation increased olfactory preference (within a bacterial strain), and only for 3 of the bacterial strains tested. Leucine itself was not found to be intrinsically attractive.

      They determined that leucine supplementation increases isoamyl alcohol (IAA) production in the 3 preferred bacterial strains. They identify the biochemical pathway that catabolizes leucine to IAA, showing that a required enzyme for this pathway is upregulated upon supplementation.

      Consistent with earlier studies, they find that AWC olfactory neuron is primarily responsible for increased preference for IAA-producing bacteria.

      Testing volatile compounds produced by bacteria and identified by GC/MS, and identified several as attractive, most of them require AWC for the full effect. Adaptation assays were used to show that odorant levels produced by bacterial lawns were sufficient to induce olfactory adaptation, and adaptation to IAA reduced chemotaxis to leucine-supplemented lawns. They then showed that IAA attractiveness is conserved across wild strains, while other compounds are more variable, suggesting IAA is a principal foraging cue.

      Finally, using the CeNGEN database, they developed a list of candidate IAA receptors. Using behavioral tests, they show that mutation of srd-12 greatly impairs IAA chemotaxis without affecting locomotion or attraction to another AWC-sensed odor, PEA.

      Comments

      This study will be of great interest in the field of C. elegans behavior, chemical senses and chemical ecology, and understanding of the sensory biology of foraging.

      Strengths:

      The identification of a receptor for IAA is an excellent finding. The combination of microbial metabolic chemistry and the use of natural bacteria and nematode strains makes an extremely compelling case for the ecological and adaptive relevance of the findings.

      Weaknesses:

      AWC receives synaptic input from other chemosensory neurons, and thus could potentially mediate navigation behaviors to compounds detected in whole or in part by those neurons. Language concluding detection by AWC should be moderated (e.g. p9 "worms sense an extensive repertoire...predominantly using AWC") unless it has been demonstrated.

      srd-12 is not exclusively expressed in AWC. Normally, cell-specific rescue or knockdown would be used to demonstrate function in a specific cell. The authors should provide such a demonstration or explain why they are confident srd-12 acts in AWC.

      A comparison of AWC's physiological responses between WT and srd-12, preferably in an unc-13 background, would be nice. Even further, the expression of srd-12 in a different neuron type and showing that it confers responsiveness to IAA (in this case, inhibition) would be very convincing.

    1. Reviewer #1 (Public review):

      Summary:

      This study has as its goal to determine how the structure and function of the circuit that stabilizes gaze in the larval zebrafish depends on the presence of the output cells, the motor neurons. A major model of neural circuit development posits that the wiring of neurons is instructed by their postsynaptic cells, transmitting signals retrogradely on which cells to contact and, by extension, where to project their axons. Goldblatt et al. remove the motor neurons from the circuit by generating null mutants for the phox2a gene. The study then shows that, in this mutant that lacks the isl1-labelled extraocular motor neurons, the central projection neurons have 1) largely normal responses to vestibular input; 2) normal gross morphology; 3) minimally changed transcriptional profiles. From this, the authors conclude that the wiring of the circuit is not instructed by the output neurons, refuting the major model.

      Strengths:

      I found the manuscript to be exceptionally well-written and presented, with clear and concise writing and effective figures that highlight key concepts. The topic of neural circuit wiring is central to neuroscience, and the paper's findings will interest researchers across the field, and especially those focused on motor systems.

      The experiments conducted are clever and of a very high standard, and I liked the systematic progression of methods to assess the different potential effects of removing phox2a on circuit structure and function. Analyses (including statistics) are comprehensive and appropriate and show the authors are meticulous and balanced in most of the conclusions that they draw. Overall, the findings are interesting and should leave little doubt about the paper's main conclusions.

      Weaknesses:

      All conclusions are supported by the data, and the characterisation of the effects of the main manipulation in the study, removing phox2a to take out the extra-ocular motor neurons, is extensive. I cannot see weaknesses that affect the conclusions in this manuscript.

      The study raises interesting questions that could be addressed in future work, which would further explain how the projection neurons develop. While the cells that would have been extraocular motor neurons are still there in phox2a mutants, they can no longer be called motor neurons as they lack expression of vachta and isl1. It would therefore be interesting to see what an alternative manipulation, e.g., the physical removal of the motor neurons using laser ablation, would have. Furthermore, the motor neurons are dispensable for the projection neurons' wiring, but the projection neurons innervate several other cell types that could affect their development. A future project could determine the precise contribution of each postsynaptic population on the projection neurons' development.

    2. Reviewer #2 (Public review):

      Summary:

      This study was designed to test the hypothesis that motor neurons play a causal role in circuit assembly of the vestibulo-ocular reflex circuit, which is based on the retrograde model proposed by Hans Straka. This circuit consists of peripheral sensory neurons, central projection neurons, and motor neurons. The authors hypothesize that loss of extraocular motor neurons, through CRISPR/Cas9 mutagenesis of the phox2a gene, will disrupt sensory selectivity in presynaptic projection neurons if the retrograde model is correct.

      Account of the major strengths and weaknesses of the methods and results:

      The work presented is impressive in both breadth and depth, including the experimental paradigms. Overall, the main results were that the loss of function paradigm to eliminate extraocular motor neurons did not 1) alter the normal functional connections between peripheral sensory neurons and central projection neurons, 2) affect the position of central projection neurons in the sensorimotor circuit, or 3) significantly alter the transcriptional profiles of central projection neurons. Together, these results strongly indicate that retrograde signals from motor neurons are not required for the development of the sensorimotor architecture of the vestibulo-ocular circuit.

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The results of this study showed that extraocular motor neurons were not required for central projection neuron specification in the vestibulo-ocular circuit, which countered the prevailing retrograde hypothesis proposed for circuit assembly. A concern is that the results presented may be limited to this specific circuit and may not be generalizable to other circuit assemblies, even to other sensorimotor circuits.

      Discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      As mentioned above, this study sheds valuable new insights into the developmental organization of the vestibulo-ocular circuit. However, different circuits likely utilize various mechanisms, extrinsic or intrinsic (or both), to establish proper functional connectivity. So, the results shown here, although they begin to explain the developmental organization of the vestibulo-ocular circuit, whether generalizable to other circuits is debatable. At a minimum, this study provides a starting point for the examination of the patterning of connections in this and other sensorimotor circuits.

    3. Reviewer #3 (Public review):

      In this manuscript by Goldblatt et al. the authors study the development of a well-known sensorimotor system, the vestibulo-ocular reflex circuit, using Danio rerio as a model. The authors address whether motor neurons within this circuit are required to determine the identity, upstream connectivity and function of their presynaptic partners, central projection neurons. They approach this by generating a CRISPR-mediated knockout line for the transcription factor phox2a, which specifies the fate of extraocular muscle motor neurons. After showing that phox2a knockout ablates these motor neurons, the authors show that functionally, morphologically, and transcriptionally, projection neurons develop relatively normally.

      Overall, the authors present a convincing argument for the dispensability of motor neurons in the wiring of this circuit, although their claims about the generalizability of their findings to other sensorimotor circuits should be tempered. The study is comprehensive and employs multiple methods to examine the function, connectivity and identity of projection neurons.

      Comments on the revised version:

      The authors have addressed all my previous concerns.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors describe the participation of the Hes4-BEST4-Twist axis in controlling the process of epithelial-mesenchymal transition (EMT) and the advancement of colorectal cancers (CRC). They assert that this axis diminishes the EMT capabilities of CRC cells through a variety of molecular mechanisms. Additionally, they propose that reduced BEST4 expression within tumor cells might serve as an indicator of an adverse prognosis for individuals with CRC.

      The revised manuscript and figures still need further improvement because some of the authors' claims are difficult to understand from a scientific perspective.

      Strengths:

      • Exploring the correlation between the Hes4-BEST4-Twist1 axis, EMT, and the advancement of CRC is a novel perspective and gives readers a fresh standpoint.<br /> • The potential role of BEST4 in EMT through the Hes4-BEST4-Twist1 axis, rather than through its channel function, is also a novel perspective.<br /> • The whole transcriptome sequence analysis (Figure 5) showing low expression of BEST4 in CRC samples will be of broad interest to cancer specialists as well as cell biologists although further corroborative data is essential to strengthen these findings (See Weaknesses).

      Weaknesses:

      • The authors employed three kinds of CRC cell lines, but not untransformed cells such as intestinal epithelial organoids which are commonly used in recent research. Since all the data from in vitro and in vivo experiments are generated from CRC cell lines with forced expression of proteins of interest, the authors' claim may not reflect a common biological process.<br /> • Most of experiments were performed to show changes in EMT markers, but not EMT itself.<br /> • The in vivo and in vitro data supporting the whole transcriptome sequence analysis (Figure 5) is mostly insufficient. Since BEST4 is a marker of a subset of terminally differentiated colonocytes, its lower expression in CRC compared to adjacent normal tissue could be within the range of common expectations.<br /> • Some experiments do not appear to have a direct relevance to their claims.

      Major comments:

      • The authors employed three kinds of CRC cell lines, but not untransformed cells such as intestinal epithelial organoids which are commonly used in recent research. Please include this limitation of the study in the discussion section with other possible limitations.<br /> • Some experiments do not appear to have direct relevance to their claims. Figure 1A-1F and 2E-2H relate to cell proliferation or viability of CRC cell lines, but not to EMT. The focus of this study should be on EMT, but the summary sentence for Figure 1 (Line 118-119) says "inhibitory effects of BEST4 on CRC development". This sentence, along with some others (such as Line 262-263), seems to be deviating. Cancer development and EMT are distinct biological processes, so please revise the manuscript with this in mind.<br /> • The context around Line 194-197, "Additionally, the knockdown of endogenous BEST4 in Hes4-expressing HCT116 cells substantially decreased Flag-Hes4 coprecipitation from the nuclear protein lysates, while Myc-Twist1 expression remained constant, as determined by co-IP with antibodies to Flag or My (Figure 4E; Figure 4-figure supplement 1C)." is difficult to follow.<br /> • The in vivo and in vitro data supporting the whole transcriptome sequence analysis (Figure 5) are mostly insufficient. Since BEST4 is a marker of a subset of terminally differentiated colonocytes, its lower expression in CRC compared to adjacent normal tissue could be within the range of common expectations.<br /> • As the reviewer #2 mentioned, the quality of some figures is quite suboptimal. It is not due to their pixel size, but rather due to other factors, such as the inconsistencies of aspect ratios. Improvement of the overall quality is needed. Figure legends also need improvements.<br /> • The formatting of genes and proteins is inconsistent. Please correct it according to the general formatting guidelines.

    2. Reviewer #2 (Public review):

      Summary:

      Using in vitro and in vivo approaches, the authors first demonstrate that BEST4 inhibits intestinal tumor cell growth and reduces their metastatic potential, possibly via downstream regulation of TWIST1.

      They further show that HES4 positively upregulates BEST4 expression, with direct interaction with BEST4 promoter region and protein. The authors further expand on this with results showing that negative regulation of TWIST1 by HES4 requires BEST4 protein, with BEST4 required for TWIST1 association with HES4. Reduction of BEST1 expression was shown in CRC tumor samples, with correlation of BEST4 mRNA levels with different clinicopathological factors such as sex, tumor stage and lymph node metastasis, suggesting a tumor-suppressive role of BEST4 for intestinal cancer.

      Strengths:

      • Good quality western blot data<br /> • Multiple approaches were used to validate the findings<br /> • Logical experimental progression for readability<br /> • Human patient data / In vivo murine model / Multiple cell lines were used, which supports translatability/reproducibility of findings

      Weaknesses:

      • Figure quality should still be improved<br /> • The discussion should still be improved

    1. Reviewer #2 (Public Review):

      Summary:

      This article mainly explores the neural circuit mechanism of recovery of consciousness after midazolam administration and proves that the LC-VLPO NEergic neural circuit helps to promote the recovery of midazolam, and this effect is mainly caused by α1 adrenergic receptors. (α1-R) mediated.

      Strengths:

      This article uses innovative methods such as optogenetics and fiber optic photometry in the experimental methods section to make the stimulation of neuronal cells more precise and the stimulation intensity more accurate in experimental research. In addition, fiber optic photometry adds confidence to the results of calcium detection in mouse neuronal cells.

      This article explains the results from the entire system down to cells, and then cells gradually unfold to explain the entire mechanism. The entire explanation process is logical and orderly. At the same time, this article conducted a large number of rescue experiments, which greatly increased the credibility of the experimental conclusions.

      Throughout the full text and all conclusions, this article has elucidated the neural circuit mechanism of recovery of consciousness after midazolam administration and successfully verified that the LC-VLPO NEergic neural circuit helps promote the recovery of midazolam.

      The conclusions of this article are crucial to ameliorate the complications of its abuse. It will pinpoint relevant regions involved in midazolam response and provide a perspective to help elucidate the dynamic changes in neural circuits in the brain during altered consciousness and suggest a promising approach towards the goal of timely recovery from midazolam. New research avenues.

      At the same time, this article also has important clinical translation significance. The application of clinical drug midazolam and animal experiments have certain guiding significance for subsequent related clinical research.

      Comments on revised version: I have no further questions for this manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      Tobón and Moser reveal a remarkable amount of presynaptic diversity in the fundamental Ca dependent exocytosis of synaptic vesicles at the afferent fiber bouton synapse onto the pilar or mediolar sides of single inner hair cells of mice. These are landmark findings with profound implications for understanding acoustic signal encoding and presynaptic mechanisms of synaptic diversity at inner hair cell ribbon synapses. The paper will have an immediate and long-lasting impact in the field of auditory neuroscience.

      Main findings: 1) Synaptic delays and jitter of masker responses are significantly shorter (synaptic delay: 1.19 ms) at high SR fibers (pilar) than at low SR fibers (mediolar; 2.57 ms). 2) Masked evoked EPSC are significantly larger in high SR than in low SR. 3) Quantal content and RRP size are 14 vesicles in both high and low SR fibers. 4) Depression is faster in high SR synapses suggesting they have a higher release probability and tighter Ca nanodomain coupling to docked vesicles. 5) Recovery of master-EPSCs from depletion is similar for high and low SR synapses, although there is a slightly faster rate for low SR synapses that have bigger synaptic ribbons, which is very interesting. 6) High SR synapses had larger and more compact (monophasic) sEPSCs, well suited to trigger rapidly and faithfully spikes. 7) High SR synapses exhibit lower voltage (~sound pressure in vivo) dependent thresholds of exocytosis.

      Great care was taken to use physiological external pH buffers and physiological external Ca concentrations. Paired recordings were also performed at higher temperatures with IHCs at physiological resting membrane potentials and in more mature animals than previously done for paired recordings. This is extremely challenging because it becomes increasingly difficult to visualize bouton terminals when myelination becomes more prominent in the cochlear afferents. In addition, perforated patch recordings were used in the IHC to preserve its intracellular milieu intact and thus extend the viability of the IHCs. The experiments are tour-de-force and reveal several novel aspects of IHC ribbon synapses. The data set is rich and extensive. The analysis is detailed and compelling.

    2. Reviewer #2 (Public review):

      Summary:

      The study by Jaime-Tobon & Moser is a truly major effort to bridge the gap between classical observations on how auditory neurons respond to sounds and the synaptic basis of these phenomena. The so-called spiral ganglion neurons (SGNs) are the primary auditory neurons connecting the brain with hair cells in the cochlea. They all respond to sounds increasing their firing rates, but also present multiple heterogeneities. For instance, some present a low threshold to sound intensity, whereas others have high threshold. This property inversely correlates with the spontaneous rate, i.e., the rate at which each neuron fires in the absence of any acoustic input. These characteristics, along with others, have been studied by many reports over years. However, the mechanisms that allow the hair cells-SGN synapses to drive these behaviors are not fully understood.

      The level of experimental complexity described in this manuscript is unparalleled, producing data that is hardly found elsewhere. The authors provide strong proof for heterogeneity in transmitter release thresholds at individual synapses and they do so in an extremely complex experimental settings. In addition, the authors found other specific differences such as in synaptic latency and max EPSCs. A reasonable effort is put in bridging these observations with those extensively reported in in vivo SGNs recordings. Similarities are many and differences are not particularly worrying as experimental conditions cannot be perfectly matched, despite the authors' efforts in minimizing them.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Jaime Tobon and Moser uses patch-clamp electrophysiology in cochlear preparations to probe the pre- and post-synaptic specializations that give rise to diverse activity of spiral ganglion afferent neurons (SGN). The experiments are quite an achievement! They use paired recordings from pre-synaptic cochlear inner hair cells (IHC) that allow precise control of voltage and therefore calcium influx, with post-synaptic recordings from type I SGN boutons directly opposed to the IHC for both presynaptic control of membrane voltage and post-synaptic measurement of synaptic function with great temporal resolution.

      Any of these techniques by themselves are challenging, but the authors do them in pairs, at physiological temperatures, and in hearing animals, all of which combined make these experiments a real tour de force. The data is carefully analyzed and presented, and the results are convincing. In particular, the authors demonstrate that post-synaptic features that contribute to the spontaneous rate (SR) of predominantly monophasic post-synaptic currents (PSCs), shorter EPSC latency, and higher PSC rates are directly paired with pre-synaptic features such as a lower IHC voltage activation and tighter calcium channel coupling for release to give a higher probability of release and subsequent increase in synaptic depression. Importantly, IHCs paired with Low and High SR afferent fibers had the same total calcium currents, indicating that the same IHC can connect to both low and high SR fibers. These fibers also followed expected organizational patterns, with high SR fibers primarily contacting the pillar IHC face and low SR fibers primarily contacting the modiolar face. The authors also use in vivo-like stimulation paradigms to show different RRP and release dynamics that are similar to results from SGN in vivo recordings. Overall, this work systematically examines many features giving rise to specializations and diversity of SGN neurons.

    1. Reviewer #1 (Public review):

      Summary:

      The circuit mechanism underlying the formation of grid cell activity and the organization of grid cells in the medial entorhinal cortex (MEC) is still unclear. To understand the mechanism, the current study investigated synaptic interactions between stellate cells (SC) and PV+ interneurons (IN) in layer 2 of the MEC by combing optogenetic activations and paired patch-clamp recordings. The results convincingly demonstrated highly structured interactions between these neurons: specific and direct excitatory-inhibitory interactions existed at the scale of grid cell phase clusters, and indirect interactions occurred at the scale of grid modules.

      Strengths:

      Overall, the manuscript is very well written, the approaches used are clever, and the data were thoroughly analyzed. The study conveyed important information towards understanding the circuit mechanism that shapes grid cell activity. It is important not only for the field of MEC and grid cells, but also for broader fields of continuous attractor network and neural circuit.

      Weaknesses:

      The study largely relies on the fact that ramp-like wide field optogenetic stimulation and focal optogenetic activation both drove asynchronous action potentials in SCs, and therefore, if a pair of PV+ INs exhibited correlated activity, they should receive common inputs. While the asynchronization of action potentials during ramp-like wide field optogenetics was shown in Figure 2 Figure Supplement 1, the asynchronization during focal optogenetic activation was not confirmed in the current experimental setting. More data and statistical analysis in this aspect would strengthen the foundation of this study.

    2. Reviewer #3 (Public review):

      Summary:

      This paper presents convincing data from technically demanding dual whole cell patch recordings of stellate cells in medial entorhinal cortex slice preparations during optogenetic stimulation of PV+ interneurons. The authors show that the patterns of postsynaptic activation are consistent with dual recorded cell close to each other receiving shared inhibitory input and sending excitatory connections back to the same PV neurons, supporting a circuitry in which clusters of stellate cells and PV+IN interact with each other with much weaker interactions between clusters. These data are important to our understanding of the dynamics of functional cell responses in the entorhinal cortex. The experiments and analysis are quite complex and would benefit from some revisions to enhance clarity.

      Strengths:

      These are technically demanding experiments, but the authors show quite convincing differences in the correlated response of cell pairs that are close to each other in contrast to an absence of correlation in other cell pairs at a range of relative distances. This supports their main point of demonstrating anatomical clusters of cells receiving shared inhibitory input.

      Weaknesses:

      The overall technique is complex, but the authors have made every effort to present this in a clear manner. In addition, due to this being a slice preparation they cannot directly relate the inhibitory interactions to the functional properties of grid cells which was possible in a complementary approach using 2-photon in vivo imaging by Heys, Rangarajan and Dombeck, 2014.

    1. Reviewer #1 (Public review):

      Summary:

      Guglielmo et al. characterized addiction-like behaviors in more than 500 outbred heterogeneous stock (HS) rats using extended access to cocaine self-administration (6 h/daily) and analyzed individual differences in escalation of intake, progressive-ratio (PR) responding, continued use despite adverse consequence (contingent foot shocks), and irritability-like behavior during withdrawal. By principal component analysis, they found that escalation of intake, progressive ratio responding, and continued use despite adverse consequences loaded onto the same factor, whereas irritability-like behaviors loaded onto a separate factor. Characterization of rats in four categories of resilient, mild, moderate, and severe addiction-like phenotypes showed that females had higher addiction-like behaviors, particularly due to a lower number of resilient individuals, than males. The authors suggest that escalation of intake, continued use despite adverse consequences, and progressive ratio responding are highly correlated measures of the same psychological construct and that a significant proportion of males, but not females may be resilient to addiction-like behaviors. The amount of work in this study is impressive, and the results are interesting.

      Strengths: Large dataset. Males and females included.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper by de Guglielmo and colleagues, the authors were interested in analyzing addiction-like behaviors using a very large number of heterogeneous outbred rats in order to determine the relationships among these behaviors. The paper used both males and females on the order of hundreds of rats, allowing for detailed and complex statistical analyses of the behaviors. The rats underwent cocaine self-administration, first via 2-hour access and then via 6-hour access. The rats also underwent a test of punishment resistance in which footshocks were administered a portion of the times a lever was pressed. The authors also conducted a progressive ratio test to determine the break point for "giving up" pressing the lever and a bottle-brush test to determine the rats "irritability". Ultimately, principal component analysis revealed that escalation of intake during 6-hour access, punishment resistance, and breakpoint all loaded onto the same principal component. Moreover, the authors also identified a subgroup of "resilient" rats that qualitatively differed from the "vulnerable" rats and also identified sex differences in their work.

      Strengths:

      The use of heterogeneous rats and the use of so many rats are major strengths for this paper. Moreover, the statistical analyses are particular strengths as they enabled the identification of the three measures as likely reflecting a single underlying construct. The behavioral methods themselves are also strong, as the authors used behavioral measures commonly used in the field that will enable comparison with the field at large. In general, the results support the conclusions and provide a wealth of data to the field. The addition of effect sizes is also a strength, as this provides critical information to other researchers.

      Additionally, the changes made to the manuscript are another strength, as the authors clearly took the reviewers' points seriously and made strong efforts incorporate the reviewers' ideas.

      The manuscript also uses both males and females and provides a good analysis of how findings differed by sex as well as how large the effect sizes were for those differences.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, the authors apply TDCS to awake and anesthetized macaques to determine the effect of this modality on dynamic connectivity measured by fMRI. The question is to understand the extent to which TDCS can influence conscious or unconscious states. Their target was the PFC. During the conscious states, the animals were executing a fixation task. Unconsciousness was achieved by administering a constant infusion of propofol and a continuous infusion of the muscle relaxant cisatracurium. They observed the animals while awake receiving anodal or cathodal hd-TDCS applied to the PFC. During the cathodal stimulation, they found disruption of functional connectivity patterns, enhanced structure-function correlations, a decrease in Shannon entropy, and a transition towards patterns that were more commonly anatomically based. In contrast under propofol anesthesia anodal hd-TDCS stimulation appreciably altered the brain connectivity patterns and decreased the correlation between structure and function. The PFC stimulations altered patterns associated with consciousness as well as those associated with unconsciousness.

      Strengths:

      The authors carefully executed a set of very challenging experiments that involved applying tDCS in awake and anesthetized non-human primates while conducting functional imaging.

      Weaknesses:

      The authors show that tDCS can alter functional connectivity measured by fMRI but they do not make clear what their studies teach the reader about the effects of tDCS on the brain during different states of consciousness. No important finding is stated contrary to what is stated in the abstract. It is also not clear what the work teaches us about how tDCS works nor is it clear what are the "clinical implications for disorders of consciousness." The deep anesthesia is akin to being in a state of coma. This was not discussed.

      While the authors have executed a set of technically challenging experiments, it is not clear what they teach us about how tDCS works, normal brain neurophysiology, or brain pathological states such as disorders of consciousness.

    2. Reviewer #2 (Public review):

      General comments:

      The authors investigated the effects of tDCS on brain dynamics in awake and anesthetized monkeys using functional MRI. They claim that cathodal tDCS disrupts the functional connectivity pattern in awake monkeys while anodal tDCS alters brain patterns in anesthetized monkeys. This study offers valuable insight into how brain states can influence the outcomes of noninvasive brain stimulation. However, there are several aspects of the methods and results sections that should be improved to clarify the findings.

      Major comments

      (1) For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is not correct, as placing the anode on the left hemisphere would result in much lower EF in the right DLPFC compared to placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to focally stimulate the targeted regions. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      (2) For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.

      (3) The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that noninvasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      (4) The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      (5) Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS varies depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately.

    3. Reviewer #3 (Public review):

      Summary:

      This study used transcranial direct current stimulation administered using small 'high-definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess the neuromodulatory effects of stimulation. The authors report on the modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some possible support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys. However, the reported findings need to be considered carefully against several important methodological limitations.

      Strengths:

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness.

      Weaknesses:

      The lack of a sham stimulation condition is a significant limitation, for instance, how can the authors be sure that results were not affected by drowsiness or fatigue as a result of the experimental procedure?

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, a potential confound here relates to the possibility that the initial 1 mA stimulation block might have caused plasticity-related changes in neural activity that could have interfered with the following 2 mA block due to the lack of a sufficient wash-out period. Hence, I am not sure any findings from the 2 mA block can really be interpreted as completely separate from the initial 1 mA stimulation period, given that they were administered consecutively. Several previous studies have shown that same-day repeated tDCS stimulation blocks can influence the effects of neuromodulation (e.g., Bastani and Jaberzadeh, 2014, Clin Neurophysiol; Monte-Silva et al., J. Neurophysiology).

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is problematic, as it is likely to have resulted in stimulation over different brain regions. The authors state that "Because of the small size of the monkey's head, we expected that tDCS stimulation with these two symmetrical montages would result in nearly equivalent electric fields across the monkey's head and produce roughly similar effects on brain activity"; however, I am not totally convinced of this, and it really would need E-field models to confirm. It is also more likely that there would in fact be notable differences in the brain regions stimulated as the authors used HD-tDCS electrodes, which are generally more focal.

      Given the very small sample size, I think it is also important to consider the possibility that some results might also be impacted by individual differences in response to stimulation. For instance, in the discussion (page 9, paragraph 2) the authors contrast findings observed in awake animals versus anaesthetised animals. However, different monkeys were examined for these two conditions, and there were only two monkeys in each group (monkeys J and Y for awake experiments [both male], and monkeys R and N [male and female] for the anaesthesia condition). From the human literature, it is well known that there is a considerable amount of inter-individual variability in response to stimulation (e.g., Lopez-Alonso et al., 2014, Brain Stimulation; Chew et al., 2015, Brain Stimulation), therefore I wonder if some of these differences could also possibly result from differences in responsiveness to stimulation between the different monkeys? At the end of the paragraph, the authors also state "Our findings also support the use of tDCS to promote rapid recovery from general anesthesia in humans...and suggest that a single anodal prefrontal stimulation at the end of the anesthesia protocol may be effective." However, I'm not sure if this statement is really backed-up by the results, which failed to report "any behavioural signs of awakening in the animals" (page 7)?

    1. Reviewer #1 (Public review):

      Wang et al. studied an old, still unresolved problem: Why are reaching movements often biased? Using data from a set of new experiments and from earlier studies, they identified how the bias in reach direction varies with movement direction, and how this depends on factors such as the hand used, the presence of visual feedback, the size and location of the workspace, the visibility of the start position and implicit sensorimotor adaptation. They then examined whether a visual bias, a proprioceptive bias, a bias in the transformation from visual to proprioceptive coordinates and/or biomechanical factors could explain the observed patterns of biases. The authors conclude that biases are best explained by a combination of transformation and visual biases.

      A strength of this study is that it used a wide range of experimental conditions with also a high resolution of movement directions and large numbers of participants, which produced a much more complete picture of the factors determining movement biases than previous studies did. The study used an original, powerful, and elegant method to distinguish between the various possible origins of motor bias, based on the number of peaks in the motor bias plotted as a function of movement direction. The biomechanical explanation of motor biases could not be tested in this way, but this explanation was excluded in a different way using data on implicit sensorimotor adaptation. This was also an elegant method as it allowed the authors to test biomechanical explanations without the need to commit to a certain biomechanical cost function.

      The main weakness of the study is that it rests on the assumption that the number of peaks in the bias function is indicative of the origin of the bias. Specifically, it is assumed that a proprioceptive bias leads to a single peak, a transformation bias to two peaks, and a visual bias to four peaks, but these assumptions are not well substantiated. Especially the assumption that a transformation bias leads to two peaks is questionable. It is motivated by the fact that biases found when participants matched the position of their unseen hand with a visual target are consistent with this pattern. However, it is unclear why that task would measure only the effect of transformation biases, and not also the effects of visual and proprioceptive biases in the sensed target and hand locations. Moreover, it is not explained why a transformation bias would lead to this specific bias pattern in the first place. Also, the assumption that a visual bias leads to four peaks is not well substantiated as one of the papers on which the assumption was based (Yousif et al., 2023) found a similar pattern in a purely proprioceptive task. Another weakness is that the study looked at biases in movement direction only, not at biases in movement extent. The models also predict biases in movement extent, so it is a missed opportunity to take these into account to distinguish between the models.

      Overall, the authors have done a good job mapping out reaching biases in a wide range of conditions, revealing new patterns in one of the most basic tasks, but unambiguously determining the origin of these biases remains difficult, and the evidence for the proposed origins is incomplete. Nevertheless, the study will likely have a substantial impact on the field, as the approach taken is easily applicable to other experimental conditions. As such, the study can spark future research on the origin of reaching biases.

    2. Reviewer #2 (Public review):

      Summary:

      This work examines an important question in the planning and control of reaching movements - where do biases in our reaching movements arise and what might this tell us about the planning process? They compare several different computational models to explain the results from a range of experiments including those within the literature. Overall, they highlight that motor biases are primarily caused by errors in the transformation between eye and hand reference frames. One strength of the paper is the large number of participants studied across many experiments. However, one weakness is that most of the experiments follow a very similar planar reaching design - with slicing movements through targets rather than stopping within a target. Moreover, there are concerns with the models and the model fitting. This work provides valuable insight into the biases that govern reaching movements, but the current support is incomplete.

      Strengths:

      The work uses a large number of participants both with studies in the laboratory which can be controlled well and a huge number of participants via online studies. In addition, they use a large number of reaching directions allowing careful comparison across models. Together these allow a clear comparison between models which is much stronger than would usually be performed.

      Weaknesses:

      Although the topic of the paper is very interesting and potentially important, there are several key issues that currently limit the support for the conclusions. In particular I highlight:

      Almost all studies within the paper use the same basic design: slicing movements through a target with the hand moving on a flat planar surface. First, this means that the authors cannot compare the second component of a bias - the error in the direction of a reach which is often much larger than the error in reaching direction. Second, there are several studies that have examined biases in three-dimensional reaching movements showing important differences to two-dimensional reaching movements (e.g. Soechting and Flanders 1989). It is unclear how well the authors' computational models could explain the biases that are present in these much more common-reaching movements.

      The model fitting section is under-explained and under-detailed currently. This makes it difficult to accurately assess the current model fitting and its strength to support the conclusions. If my understanding of the methods is correct, then I have several concerns. For example, the manuscript states that the transformation bias model is based on studies mapping out the errors that might arise across the whole workspace in 2D. In contrast, the visual bias model appears to be based on a study that presented targets within a circle (but not tested across the whole workspace). If the visual bias had been measured across the workspace (similar to the transformation bias model), would the model and therefore the conclusions be different? There should be other visual bias models theoretically possible that might fit the experimental data better than this one possible model. Such possibilities also exist for the other models.

      Although the authors do mention that the evidence against biomechanical contributions to the bias is fairly weak in the current manuscript, this needs to be further supported. Importantly both proprioceptive models of the bias are purely kinematic and appear to ignore the dynamics completely. One imagines that there is a perceived vector error in Cartesian space whereas the other imagines an error in joint coordinates. These simply result in identical movements which are offset either with a vector or an angle. However, we know that the motor plan is converted into muscle activation patterns which are sent to the muscles, that is, the motor plan is converted into an approximation of joint torques. Joint torques sent to the muscles from a different starting location would not produce an offset in the trajectory as detailed in Figure S1, instead, the movements would curve in complex patterns away from the original plan due to the non-linearity of the musculoskeletal system. In theory, this could also bias some of the other predictions as well. The authors should consider how the biomechanical plant would influence the measured biases.

    3. Reviewer #3 (Public review):

      The authors make use of a large dataset of reaches from several studies run in their lab to try to identify the source of direction-dependent radial reaching errors. While this has been investigated by numerous labs in the past, this is the first study where the sample is large enough to reliably characterize isometries associated with these radial reaches to identify possible sources of errors.

      The sample size is impressive, but the authors should include confidence intervals and ideally, the distribution of responses across individuals along with average performance across targets. It is unclear whether the observed "averaged function" is consistently found across individuals, or if it is mainly driven by a subset of participants exhibiting large deviations for diagonal movements. Providing individual-level data or response distributions would be valuable for assessing the ubiquity of the observed bias patterns and ruling out the possibility that different subgroups are driving the peaks and troughs. It is possible that the Transformation or some other model (see below) could explain the bias function for a substantial portion of participants, while other participants may have different patterns of biases that can be attributable to alternative sources of error.

      The different datasets across different experimental settings/target sets consistently show that people show fewer deviations when making cardinal-directed movements compared to movements made along the diagonal when the start position is visible. This reminds me of a phenomenon referred to as the oblique effect: people show greater accuracy for vertical and horizontal stimuli compared to diagonal ones. While the oblique effect has been shown in visual and haptic perceptual tasks (both in the horizontal and vertical planes), there is some evidence that it applies to movement direction. These systematic reach deviations in the current study thus may reflect this epiphenomenon that applies across modalities. That is, estimating the direction of a visual target from a visual start position may be less accurate, and may be more biased toward the horizontal axis, than for targets that are strictly above, below, left, or right of the visual start position. Other movement biases may stem from poorer estimation of diagonal directions and thus reflect more of a perceptual error than a motor one. This would explain why the bias function appears in both the in-lab and on-line studies although the visual targets are very different locations (different planes, different distances) since the oblique effects arise independent of plane, distance, or size of the stimuli.

      When the start position is not visible like in the Vindras study, it is possible that this oblique effect is less pronounced; masked by other sources of error that dominate when looking at 2D reach endpoint made from two separate start positions, rather than only directional errors from a single start position. Or perhaps the participants in the Vindras study are too variable and too few (only 10) to detect this rather small direction-dependent bias.

      A bias in estimating visual direction or visual movement vector is a more realistic and relevant source of error than the proposed visual bias model. The Visual Bias model is based on data from a study by Huttenlocher et al where participants "point" to indicate the remembered location of a small target presented on a large circle. The resulting patterns of errors could therefore be due to localizing a remembered visual target, or due to relative or allocentric cues from the clear contour of the display within which the target was presented, or even movements used to indicate the target. This may explain the observed 4-peak bias function or zig-zag pattern of "averaged" errors, although this pattern may not even exist at the individual level, especially given the small sample size. The visual bias source argument does not seem well-supported, as the data used to derive this pattern likely reflects a combination of other sources of errors or factors that may not be applicable to the current study, where the target is continuously visible and relatively large. Also, any visual bias should be explained by a coordinates centre on the eye and should vary as a function of the location of visual targets relative to the eyes. Where the visual targets are located relative to the eyes (or at least the head) is not reported.

      The Proprioceptive Bias Model is supposed to reflect errors in the perceived start position. However, in the current study, there is only a single, visible start position, which is not the best design for trying to study the contribution. In fact, my paradigms also use a single, visual start position to minimize the contribution of proprioceptive biases, or at least remove one source of systematic biases. The Vindras study aimed to quantify the effect of start position by using two sets of radial targets from two different, unseen start positions on either side of the body midline. When fitting the 2D reach errors at both the group and individual levels (which showed substantial variability across individuals), the start position predicted most of the 2D errors at the individual level - and substantially more than the target direction. While the authors re-plotted the data to only illustrate angular deviations, they only showed averaged data without confidence intervals across participants. Given the huge variability across their 10 individuals and between the two target sets, it would be more appropriate to plot the performance separately for two target sets and show confidential intervals (or individual data). Likewise, even the VT model predictions should differ across the two targets set since the visual-proprioceptive matching errors from the Wang et al study that the model is based on, are larger for targets on the left side of the body.

      I am also having trouble fully understanding the V-T model and its associated equations, and whether visual-proprioception matching data is a suitable proxy for estimating the visuomotor transformation. I would be interested to first see the individual distributions of errors and a response to my concerns about the Proprioceptive Bias and Visual Bias models.

    1. Reviewer #1 (Public review):

      Summary:

      The authors test the "OHC-fluid-pump" hypothesis by assaying the rates of kainic acid dispersal both in quiet and in cochleae stimulated by sounds of different levels and spectral content. The main result is that sound (and thus, presumably, OHC contractions and expansions) results in faster transport along the duct. OHC involvement is corroborated using salicylate, which yielded results similar to silence. Especially interesting is the fact that some stimuli (e.g. tones) seem to provide better/faster pumping than others (e.g. noise), ostensibly due to the phase profile of the resulting cochlear traveling-wave response.

      Strengths:

      The experiments appear well controlled and the results are novel and interesting. Some elegant cochlear modeling that includes coupling between the organ of Corti and the surrounding fluid as well as advective flow supports the proposed mechanism.

      Weaknesses:

      It's not clear whether the effect size (e.g., the speed of sound-induced pumping relative to silence) is large enough to have important practical applications (e.g., for drug delivery). The authors should comment on the practical requirements and limitations.

      Although helpful so far as it goes, the modeling could be taken much further to help understand some of the more interesting aspects of the data and to obtain testable predictions. In particular, the authors should systematically explore the level effects they find experimentally and determine whether the model can replicate the finding that different sounds produce different results (e.g. noise vs tone).

      The model should also be used to relate the model's flow rates more quantitatively to the properties of the traveling wave (e.g., its phase profile).

      Finally, the model should be used to investigate differences between active and passive OHCs (e.g., simulating the salicylate experiment by disabling the model's OHCs).

      The manuscript would be stronger if the authors discussed ways to test their hypothesis that OHC motility serves a protective effect by pumping fluid. For example, do animals held in quiet after noise exposure (TTS) take longer to recover?

    2. Reviewer #2 (Public review):

      Summary:

      Recent cochlear micromechanical measurements in living animals demonstrated outer hair cell-driven broadband vibration of the reticular lamina that contradicts frequency-selective cochlear amplification. The authors hypothesized that motile outer hair cells can drive cochlear fluid circulation. This hypothesis was tested by observing the effects of acoustic stimuli and salicylate, an outer hair cell motility blocker, on kainic acid-induced changes in the cochlear nucleus activities. It was found that acoustic stimuli can reduce the latency of the kainic acid effect, and a low-frequency tone is more effective than broadband noise. Salicylate reduced the effect of acoustic stimuli on kainic acid-induced changes. The authors also developed a computational model to provide the physical basis for interpreting experimental results. It was concluded that experimental data and simulations coherently indicate that broadband outer hair cell action is for cochlear fluid circulation.

      Strengths:

      The major strengths of this study include its high significance and the combination of electrophysiological recording of the cochlear nucleus responses with computational modeling. Cochlear outer hair cells have been believed to be responsible for the exceptional sensitivity, sharp tuning, and huge dynamic range of mammalian hearing. Recent observation of the broadband reticular lamina vibration contradicts frequency-specific cochlear amplification. Moreover, there is no effective noninvasive approach to deliver the drugs or genes to the cochlea for treating sensorineural hearing loss, one of the most common auditory disorders. These important questions were addressed in this study by observing outer hair cells' roles in the cochlear transport of kainic acid. The well-established electrophysiological method for recording cochlear nucleus responses produced valuable new data, and the purposely developed computational model significantly enhanced the interpretation of the data.

      The authors successfully tested their hypothesis, and both the experimental and modeling results support the conclusion that active outer hair cells can drive cochlear fluid circulation in the living cochlea.<br /> Findings from this study will help auditory scientists understand how the outer hair cells contribute to cochlear amplification and normal hearing.

      Weaknesses:

      While the statement "The present study provides new insights into the nonselective outer hair cell action (in the second paragraph of Discussion)" is well supported by the results, the authors should consider providing a prediction or speculation of how this hair cell action enhances cochlear sensitivity. Such discussion would help the readers better understand the significance of the current work.

    3. Reviewer #3 (Public review):

      Summary:

      This study reveals that sound exposure enhances drug delivery to the cochlea through the non-selective action of outer hair cells. The efficiency of sound-facilitated drug delivery is reduced when outer hair cell motility is inhibited. Additionally, low-frequency tones were found to be more effective than broadband noise for targeting substances to the cochlear apex. Computational model simulations support these findings.

      Strengths:

      The study provides compelling evidence that the broad action of outer hair cells is crucial for cochlear fluid circulation, offering a novel perspective on their function beyond frequency-selective amplification. Furthermore, these results could offer potential strategies for targeting and optimizing drug delivery throughout the cochlear spiral.

      Weaknesses:

      The primary weakness of this paper lies in the surgical procedure used for drug administration through the round window. Opening the cochlea can alter intracochlear pressure and disrupt the traveling wave from sound, a key factor influencing outer hair cell activity. However, the authors do not provide sufficient details on how they managed this issue during surgery. Additionally, the introduction section needs further development to better explain the background and emphasize the significance of the work.

    1. Reviewer #1 (Public review):

      Summary:

      In the abstract and throughout the paper, the authors boldly claim that their evidence, from the largest set of data ever collected on inattentional blindness, supports the views that "inattentionally blind participants can successfully report the location, color, and shape of stimuli they deny noticing", "subjects retain awareness of stimuli they fail to report", and "these data...cast doubt on claims that awareness requires attention." If their results were to support these claims, this study would overturn 25+ years of research on inattentional blindness, resolve the rich vs. sparse debate in consciousness research, and critically challenge the current majority view in cognitive science that attention is necessary for awareness.

      Unfortunately, these extraordinary claims are not supported by extraordinary (or even moderately convincing) evidence. At best, the results support the more modest conclusion: If sub-optimal methods are used to collect retrospective reports, inattentional blindness rates will be overestimated by up to ~8% (details provided below in comment #1). This evidence-based conclusion means that the phenomenon of inattentional blindness is alive and well as it is even robust to experiments that were specifically aimed at falsifying it. Thankfully, improved methods already exist for correcting the ~8% overestimation of IB rates that this study successfully identified.

      Comments:

      (1) In experiment 1, data from 374 subjects were included in the analysis. As shown in figure 2b, 267 subjects reported noticing the critical stimulus and 107 subjects reported not noticing it. This translates to a 29% IB rate, if we were to only consider the "did you notice anything unusual Y/N" question. As reported in the results text (and figure 2c), when asked to report the location of the critical stimulus (left/right), 63.6% of the "non-noticer" group answered correctly. In other words, 68 subjects were correct about the location while 39 subjects were incorrect. Importantly, because the location judgment was a 2-alternative-forced-choice, the assumption was that if 50% (or at least not statistically different than 50%) of the subjects answered the location question correctly, everyone was purely guessing. Therefore, we can estimate that ~39 of the subjects who answered correctly were simply guessing (because 39 guessed incorrectly), leaving 29 subjects from the non-noticer group who may have indeed actually seen the location of the stimulus. If these 29 subjects are moved to the noticer group, the corrected rate of IB for experiment 1 is 21% instead of 29%. In other words, relying only on the "Y/N did you notice anything" question leads to an overestimate of IB rates by 8%. This modest level of inaccuracy in estimating IB rates is insufficient for concluding that "subjects retain awareness of stimuli they fail to report", i.e. that inattentional blindness does not exist.

      In addition, this 8% inaccuracy in IB rates only considers one side of the story. Given the data reported for experiment 1, one can also calculate the number of subjects who answered "yes, I did notice something unusual" but then reported the incorrect location of the critical stimulus. This turned out to be 8 subjects (or 3% of the "noticer" group). Some would argue that it's reasonable to consider these subjects as inattentionally blind, since they couldn't even report where the critical stimulus they apparently noticed was located. If we move these 8 subjects to the non-noticer group, the 8% overestimation of IB rates is reduced to 6%.

      The same exercise can and should be carried out on the other 4 experiments, however, the authors do not report the subject numbers for any of the other experiments, i.e., how many subjects answered Y/N to the noticing question and how many in each group correctly answered the stimulus feature question. From the limited data reported (only total subject numbers and d' values), the effect sizes in experiments 2-5 were all smaller than in experiment 1 (d' for the non-noticer group was lower in all of these follow-up experiments), so it can be safely assumed that the ~6-8% overestimation of IB rates was smaller in these other four experiments. In a revision, the authors should consider reporting these subject numbers for all 5 experiments.

      (2) Because classic IB paradigms involve only one critical trial per subject, the authors used a "super subject" approach to estimate sensitivity (d') and response criterion (c) according to signal detection theory (SDT). Some readers may have issues with this super subject approach, but my main concern is with the lack of precision used by the authors when interpreting the results from this super subject analysis.

      Only the super subject had above-chance sensitivity (and it was quite modest, with d' values between 0.07 and 0.51), but the authors over-interpret these results as applying to every subject. The methods and analyses cannot determine if any individual subject could report the features above-chance. Therefore, the following list of quotes should be revised for accuracy or removed from the paper as they are misleading and are not supported by the super subject analysis:

      "Altogether this approach reveals that subjects can report above-chance the features of stimuli (color, shape, and location) that they had claimed not to notice under traditional yes/no questioning" (p.6)

      "In other words, nearly two-thirds of subjects who had just claimed not to have noticed any additional stimulus were then able to correctly report its location." (p.6)

      "Even subjects who answer "no" under traditional questioning can still correctly report various features of the stimulus they just reported not having noticed, suggesting that they were at least partially aware of it after all." (p.8)

      "Why, if subjects could succeed at our forced-response questions, did they claim not to have noticed anything?" (p.8)

      "we found that observers could successfully report a variety of features of unattended stimuli, even when they claimed not to have noticed these stimuli." (p.14)

      "our results point to an alternative (and perhaps more straightforward) explanation: that inattentionally blind subjects consciously perceive these stimuli after all... they show sensitivity to IB stimuli because they can see them." (p.16)

      "In other words, the inattentionally blind can see after all." (p.17)

      (3) In addition to the d' values for the super subject being slightly above zero, the authors attempted an analysis of response bias to further question the existence of IB. By including in some of their experiments critical trials in which no critical stimulus was presented, but asking subjects the standard Y/N IB question anyway, the authors obtained false alarm and correct rejection rates. When these FA/CR rates are taken into account along with hit/miss rates when critical stimuli were presented, the authors could calculate c (response criterion) for the super subject. Here, the authors report that response criteria are biased towards saying "no, I didn't notice anything". However, the validity of applying SDT to classic Y/N IB questioning is questionable.

      For example, with the subject numbers provided in Box 1 (the 2x2 table of hits/misses/FA/CR), one can ask, 'how many subjects would have needed to answer "yes, I noticed something unusual" when nothing was presented on the screen in order to obtain a non-biased criterion estimate, i.e., c = 0?' The answer turns out to be 800 subjects (out of the 2761 total subjects in the stimulus-absent condition), or 29% of subjects in this condition.

      In the context of these IB paradigms, it is difficult to imagine 29% of subjects claiming to have seen something unusual when nothing was presented. Here, it seems that we may have reached the limits of extending SDT to IB paradigms, which are very different than what SDT was designed for. For example, in classic psychophysical paradigms, the subject is asked to report Y/N as to whether they think a threshold-level stimulus was presented on the screen, i.e., to detect a faint signal in the noise. Subjects complete many trials and know in advance that there will often be stimuli presented and the stimuli will be very difficult to see. In those cases, it seems more reasonable to incorrectly answer "yes" 29% of the time, as you are trying to detect something very subtle that is out there in the world of noise. In IB paradigms, the stimuli are intentionally designed to be highly salient (and unusual), such that with a tiny bit of attention they can be easily seen. When no stimulus is presented and subjects are asked about their own noticing (especially of something unusual), it seems highly unlikely that 29% of them would answer "yes", which is the rate of FAs that would be needed to support the null hypothesis here, i.e., of a non-biased criterion. For these reasons, the analysis of response bias in the current context is questionable and the results claiming to demonstrate a biased criterion do not provide convincing evidence against IB.

      (4) One of the strongest pieces of evidence presented in the entire paper is the single data point in Figure 3e showing that in Experiment 3, even the super subject group that rated their non-noticing as "highly confident" had a d' score significantly above zero. Asking for confidence ratings is certainly an improvement over simple Y/N questions about noticing, and if this result were to hold, it could provide a key challenge to IB. However, this result hinges on a single data point, it was not replicated in any of the other 4 experiments, and it can be explained by methodological limitations. I strongly encourage the authors (and other readers) to follow up on this result, in an in-person experiment, with improved questioning procedures.

      In the current Experiment 3, the authors asked the standard Y/N IB question, and then asked how confident subjects were in their answer. Asking back-to-back questions, the second one with a scale that pertains to the first one (including a tricky inversion, e.g., "yes, I am confident in my answer of no"), may be asking too much of some subjects, especially subjects paying half-attention in online experiments. This procedure is likely to introduce a sizeable degree of measurement error.

      An easy fix in a follow-up study would be to ask subjects to rate their confidence in having noticed something with a single question using an unambiguous scale:

      On the last trial, did you notice anything besides the cross?

      (1) I am highly confident I didn't notice anything else<br /> (2) I am confident I didn't notice anything else<br /> (3) I am somewhat confident I didn't notice anything else<br /> (4) I am unsure whether I noticed anything else<br /> (5) I am somewhat confident I noticed something else<br /> (6) I am confident I noticed something else<br /> (7) I am highly confident I noticed something else

      If we were to re-run this same experiment, in the lab where we can better control the stimuli and the questioning procedure, we would most likely find a d' of zero for subjects who were confident or highly confident (1-2 on the improved scale above) that they didn't notice anything. From there on, the d' values would gradually increase, tracking along with the confidence scale (from 3-7 on the scale). In other words, we would likely find a data pattern similar to that plotted in Figure 3e, but with the first data point on the left moving down to zero d'. In the current online study with the successive (and potentially confusing) retrospective questioning, a handful of subjects could have easily misinterpreted the confidence scale (e.g., inverting the scale) which would lead to a mixture of genuine high-confidence ratings and mistaken ratings, which would result in a super subject d' that falls between zero and the other extreme of the scale (which is exactly what the data in Fig 3e shows).

      One way to check on this potential measurement error using the existing dataset would be to conduct additional analyses that incorporate the confidence ratings from the 2AFC location judgment task. For example, were there any subjects who reported being confident or highly confident that they didn't see anything, but then reported being confident or highly confident in judging the location of the thing they didn't see? If so, how many? In other words, how internally (in)consistent were subjects' confidence ratings across the IB and location questions? Such an analysis could help screen-out subjects who made a mistake on the first question and corrected themselves on the second, as well as subjects who weren't reading the questions carefully enough. As far as I could tell, the confidence rating data from the 2AFC location task were not reported anywhere in the main paper or supplement.

      (5) In most (if not all) IB experiments in the literature, a partial attention and/or full attention trial (or set of trials) is administered after the critical trial. These control trials are very important for validating IB on the critical trial, as they must show that, when attended, the critical stimuli are very easy to see. If a subject cannot detect the critical stimulus on the control trial, one cannot conclude that they were inattentionally blind on the critical trial, e.g., perhaps the stimulus was just too difficult to see (e.g., too weak, too brief, too far in the periphery, too crowded by distractor stimuli, etc.), or perhaps they weren't paying enough attention overall or failed to follow instructions. In the aggregate data, rates of noticing the stimuli should increase substantially from the critical trial to the control trials. If noticing rates are equivalent on the critical and control trials one cannot conclude that attention was manipulated.

      It is puzzling why the authors decided not to include any control trials with partial or full attention in their five experiments, especially given their online data collection procedures where stimulus size, intensity, eccentricity, etc. were uncontrolled and variable across subjects. Including such trials could have actually helped them achieve their goal of challenging the IB hypothesis, e.g., excluding subjects who failed to see the stimulus on the control trials might have reduced the inattentional blindness rates further. This design decision should at least be acknowledged and justified (or noted as a limitation) in a revision of this paper.

      (6) In the discussion section, the authors devote a short paragraph to considering an alternative explanation of their non-zero d' results in their super subject analyses: perhaps the critical stimuli were processed unconsciously and left a trace such that when later forced to guess a feature of the stimuli, subjects were able to draw upon this unconscious trace to guide their 2AFC decision. In the subsequent paragraph, the authors relate these results to above-chance forced-choice guessing in blindsight subjects, but reject the analogy based on claims of parsimony.

      First, the authors dismiss the comparison of IB and blindsight too quickly. In particular, the results from experiment 3, in which some subjects adamantly (confidently) deny seeing the critical stimulus but guess a feature at above-chance levels (at least at the super subject level and assuming the online subjects interpreted and used the confidence scale correctly), seem highly analogous to blindsight. Importantly, the analogy is strengthened if the subjects who were confident in not seeing anything also reported not being confident in their forced-choice judgments, but as mentioned above this data was not reported.

      Second, the authors fail to mention an even more straightforward explanation of these results, which is that ~8% of subjects misinterpreted the "unusual" part of the standard IB question used in experiments 1-3. After all, colored lines and shapes are pretty "usual" for psychology experiments and were present in the distractor stimuli everyone attended to. It seems quite reasonable that some subjects answered this first question, "no, I didn't see anything unusual", but then when told that there was a critical stimulus and asked to judge one of its features, adjusted their response by reconsidering, "oh, ok, if that's the unusual thing you were asking about, of course I saw that extra line flash on the left of the screen". This seems like a more parsimonious alternative compared to either of the two interpretations considered by the authors: (1) IB does not exist, (2) super-subject d' is driven by unconscious processing. Why not also consider: (3) a small percentage of subjects misinterpreted the Y/N question about noticing something unusual. In experiments 4-5, they dropped the term "unusual" but do not analyze whether this made a difference nor do they report enough of the data (subject numbers for the Y/N question and 2AFC) for readers to determine if this helped reduce the ~8% overestimate of IB rates.

      (7) The authors use sub-optimal questioning procedures to challenge the existence of the phenomenon this questioning is intended to demonstrate. A more neutral interpretation of this study is that it is a critique on methods in IB research, not a critique on IB as a manipulation or phenomenon. The authors neglect to mention the dozens of modern IB experiments that have improved upon the simple Y/N IB questioning methods. For example, in Michael Cohen's IB experiments (e.g., Cohen et al., 2011; Cohen et al., 2020; Cohen et al., 2021), he uses a carefully crafted set of probing questions to conservatively ensure that subjects who happened to notice the critical stimuli have every possible opportunity to report seeing them. In other experiments (e.g., Hirschhorn et al., 2024; Pitts et al., 2012), researchers not only ask the Y/N question but then follow this up by presenting examples of the critical stimuli so subjects can see exactly what they are being asked about (recognition-style instead of free recall, which is more sensitive). These follow-up questions include foil stimuli that were never presented (similar to the stimulus-absent trials here), and ask for confidence ratings of all stimuli. Conservative, pre-defined exclusion criteria are employed to improve the accuracy of their IB-rate estimates. In these and other studies, researchers are very cautious about trusting what subjects report seeing, and in all cases, still find substantial IB rates, even to highly salient stimuli. The authors should consider at least mentioning these improved methods, and perhaps consider using some of them in their future experiments.

    2. Reviewer #2 (Public review):

      In this study, Nartker et al. examine how much observers are conscious of using variations of classic inattentional blindness studies. The key idea is that rather than simply asking observers if they noticed a critical object with one yes/no question, the authors also ask follow-up questions to determine if observers are aware of more than the yes/no questions suggest. Specifically, by having observers make forced choice guesses about the critical object, the authors find that many observers who initially said "no" they did not see the object can still "guess" above chance about the critical object's location, color, etc. Thus, the authors claim, that prior claims of inattentional blindness are mistaken and that using such simple methods has led numerous researchers to overestimate how little observers see in the world. To quote the authors themselves, these results imply that "inattentionally blind subjects consciously perceive these stimuli after all... they show sensitivity to IB stimuli because they can see them."

      Before getting to a few issues I have with the paper, I do want to make sure to explicitly compliment the researchers for many aspects of their work. Getting massive amounts of data, using signal detection measures, and the novel use of a "super subject" are all important contributions to the literature that I hope are employed more in the future.

      Main point 1: My primary issue with this work is that I believe the authors are misrepresenting the way people often perform inattentional blindness studies. In effect, the authors are saying, "People do the studies 'incorrectly' and report that people see very little. We perform the studies 'correctly' and report that people see much more than previously thought." But the way previous studies are conducted is not accurately described in this paper. The authors describe previous studies as follows on page 3:

      "Crucially, however, this interpretation of IB and the many implications that follow from it rest on a measure that psychophysics has long recognized to be problematic: simply asking participants whether they noticed anything unusual. In IB studies, awareness of the unexpected stimulus (the novel shape, the parading gorilla, etc.) is retroactively probed with a yes/no question, standardly, "Did you notice anything unusual on the last trial which wasn't there on previous trials?". Any subject who answers "no" is assumed not to have any awareness of the unexpected stimulus.

      If this quote were true, the authors would have a point. Unfortunately, I do not believe it is true. This is simply not how many inattentional blindness studies are run. Some of the most famous studies in the inattentional blindness literature do not simply as observes a yes/no question (e.g., the invisible gorilla (Simons et al. 1999), the classic door study where the person changes (Simons and Levin, 1998), the study where observers do not notice a fight happening a few feet from them (Chabris et al., 2011). Instead, these papers consistently ask a series of follow-up questions and even tell the observers what just occurred to confirm that observers did not notice that critical event (e.g., "If I were to tell you we just did XYZ, did you notice that?"). In fact, after a brief search on Google Scholar, I was able to relatively quickly find over a dozen papers that do not just use a yes/no procedure, and instead as a series of multiple questions to determine if someone is inattentionally blind. In no particular order some papers (full disclosure: including my own):

      (1) Most et al. (2005) Psych Review<br /> (2) Drew et al. (2013) Psych Science<br /> (3) Drew et al. (2016) Journal of Vision<br /> (4) Simons et al. (1999) Perception<br /> (5) Simons and Levin (1998) Perception<br /> (6) Chabris et al. (2011) iPerception<br /> (7) Ward & Scholl (2015) Psych Bulletin and Review<br /> (8) Most et al. (2001) Psych Science<br /> (9) Todd & Marois (2005) Psych Science<br /> (10) Fougnie & Marois (2007) Psych Bulletin and Review<br /> (11) New and German (2015) Evolution and Human Behaviour<br /> (12) Jackson-Nielsen (2017) Consciousness and cognition<br /> (13) Mack et al. (2016) Consciousness and cognition<br /> (14) Devue et al. (2009) Perception<br /> (15) Memmert (2014) Cognitive Development<br /> (16) Moore & Egeth (1997) JEP:HPP<br /> (17) Cohen et al. (2020) Proc Natl Acad Sci<br /> (18). Cohen et al. (2011) Psych Science

      This is a critical point. The authors' key idea is that when you ask more than just a simple yes/no question, you find that other studies have overestimated the effects of inattentional blindness. But none of the studies listed above only asked simple yes/no questions. Thus, I believe the authors are mis-representing the field. Moreover, many of the studies that do much more than ask a simple yes/no question are cited by the authors themselves! Furthermore, as far as I can tell, the authors believe that if researchers do these extra steps and ask more follow-ups, then the results are valid. But since so many of these prior studies do those extra steps, I am not exactly sure what is being criticized.

      To make sure this point is clear, I'd like to use a paper of mine as an example. In this study (Cohen et al., 2020, Proc Natl Acad Sci USA) we used gaze-contingent virtual reality to examine how much color people see in the world. On the critical trial, the part of the scene they fixated on was in color, but the periphery was entirely in black and white. As soon as the trial ended, we asked participants a series of questions to determine what they noticed. The list of questions included:

      (1) "Did you notice anything strange or different about that last trial?"<br /> (2) "If I were to tell you that we did something odd on the last trial, would you have a guess as to what we did?"<br /> (3) "If I were to tell you we did something different in the second half of the last trial, would you have a guess as to what we did?"<br /> (4) "Did you notice anything different about the colors in the last scene?"<br /> (5) We then showed observers the previous trial again and drew their attention to the effect and confirmed that they did not notice that previously.<br /> In a situation like this, when the observers are asked so many questions, do the authors believe that "the inattentionally blind can see after all?" I believe they would not say that and the reason they would not say that is because of the follow-up questions after the initial yes/no question. But since so many previous studies use similar follow-up questions, I do not think you can state that the field is broadly overestimating inattentional blindness. This is why it seems to me to be a bit of a straw-man: most people do not just use the yes/no method.

      Main point 2: Let's imagine for a second that every study did just ask a yes/no question and then would stop. So, the criticism the authors are bringing up is valid (even though I believe it is not). I am not entirely sure that above chance performance on a forced choice task proves that the inattentionally blind can see after all. Could it just be a form of subliminal priming? Could there be a significant number of participants who basically would say something like, "No I did not see anything, and I feel like I am just guessing, but if you want me to say whether the thing was to the left or right, I will just 100% guess"? I know the literature on priming from things like change and inattentional blindness is a bit unclear, but this seems like maybe what is going on. In fact, maybe the authors are getting some of the best priming from inattentional blindness because of their large sample size, which previous studies do not use.<br /> I'm curious how the authors would relate their studies to masked priming. In masked priming studies, observers say the did not see the target (like in this study) but still are above chance when forced to guess (like in this study). Do the researchers here think that that is evidence of "masked stimuli are truly seen" even if a participant openly says they are guessing?

      Main point 3: My last question is about how the authors interpret a variety of inattentional blindness findings. Previous work has found that observers fail to notice a gorilla in a CT scan (Drew et al., 2013), a fight occurring right in front of them (Chabris et al., 2011), a plane on a runway that pilots crash into (Haines, 1991), and so forth. In a situation like this, do the authors believe that many participants are truly aware of these items but simply failed to answer a yes/no question correctly? For example, imagine the researchers made participants choose if the gorilla was in the left or right lung and some participants who initially said they did not notice the gorilla were still able to correctly say if it was in the left or right lung. Would the authors claim "that participant actually did see the gorilla in the lung"? I ask because it is difficult to understand what it means to be aware of something as salient as a gorilla in a CT scan, but say "no" you didn't notice it when asked a yes/no question. What does it mean to be aware of such important, ecologically relevant stimuli, but not act in response to them and openly say "no" you did not notice them?

      Overall: I believe there are many aspects of this set of studies that are innovative and I hope the methods will be used more broadly in the literature. However, I believe the authors misrepresent the field and overstate what can be interpreted from their results. While I am sure there are cases where more nuanced questions might reveal inattentional blindness is somewhat overestimated, claims like "the inattentionally blind can see after all" or "Inattentionally blind subjects consciously perceive thest stimuli after all" seem to be incorrect (or at least not at all proven by this data).

    3. Reviewer #3 (Public review):

      Summary:

      Authors try to challenge the mainstream scientific as well as popularly held view that Inattentional Blindness (IB) signifies subjects having no conscious awareness of what they report not seeing (after being exposed to unexpected stimuli). They show that even when subjects indicate NOT having seen the unexpected stimulus, they are at above chance level for reporting features such as location, color or movement of these stimuli. Also, they show that 'not seen' responses are in part due to a conservative bias of subjects, i.e. they tend to say no more than yes, regardless of actual visibility. Their conclusion is that IB may not (always) be blindness, but possibly amnesia, uncertainty etc.

      Strengths:

      A huge pool of (25.000) subjects is used. They perform several versions of the IB experiments, both with briefly presented stimuli (as the classic Mack and Rock paradigm), as well as with prolonged stimuli moving over the screen for 5 seconds (a bit like the famous gorilla version), and all these versions show similar results, pointing in the same direction: above chance detection of unseen features, as well as conservative bias towards saying not seen.

      Weaknesses:

      Results are all significant but effects are not very strong, typically a bit above chance. Also, it is unclear what to compare these effects to, as there are no control experiments showing what performance would have been in a dual task version where subjects have to also report features etc for stimuli that they know will appear in some trials

      There are quite some studies showing that during IB, neural processing of visual stimuli continues up to high visual levels, for example, Vandenbroucke et al 2014 doi:10.1162/jocn_a_00530 showed preserved processing of perceptual inference (i.e. seeing a kanizsa illusion) during IB. Scholte et al 2006 doi: 10.1016/j.brainres.2005.10.051 showed preserved scene segmentation signals during IB. Compared to the strength of these neural signatures, the reported effects may be considered not all that surprising, or even weak.

    1. Reviewer #1 (Public review):

      Summary:

      Rossi et al. asked whether gait adaptation is solely a matter of slow perceptual realignment or if it also involves fast/flexible stimulus-response mapping mechanisms. To test this, they conducted a series of split-belt treadmill experiments with ramped perturbations, revealing behavior indicative of a flexible, automatic stimulus-response mapping mechanism.

      Strengths:

      (1) The study includes a perceptual test of leg speed, which correlates with the perceptual realignment component of motor aftereffects. This indicates that there are motor performances that are not accounted for by perceptual re-alignment.

      (2) They study incorporates qualitatively distinct, hypothesis-driven models of adaptation and proposes a new framework that integrates these various mechanisms.

      Weaknesses:

      (1) The study could benefit from considering other alternative models. As the authors noted in their discussion, while the descriptive models explain some patterns of behaviour/aftereffects, they don't currently account for how these mechanisms influence the initial learning process itself.

      a. For example, the pattern of gait asymmetric might differ for perceptual realignment (a smooth, gradual process), structural learning (more erratic, involving hypothesis testing/reasoning to understand the perturbation, see (Tsay et al. 2024) for a recent review on Reasoning), and stimulus-response mapping (possibly through a reinforcement based trial-and-error approach). If not formally doing a model comparison, the manuscript might benefit from clearly laying out the behavioural predictions for how these different processes shape initial learning.

      b. Related to the above, the authors noted that the absence of difference during initial learning suggests that the differences in Experiment 2 in the ramp-up phase are driven by two distinct processes: structural learning and memory-based processes. If the assumptions about initial learning are not clear, this logic of this conclusion is hard to follow.

      c. The authors could also test a variant of the dual-rate state-space model with two perceptual realignment processes where the constraints on retention and learning rate are relaxed. This model would be a stronger test for two perceptual re-alignment processes: one that is flexible and another that is rigid, without mandating that one be fast learning and fast forgetting, and the other be slow learning and slow forgetting.

      (2) The authors claim that stimulus-response mapping operates outside of explicit/deliberate control. While this could be true, the survey questions may have limitations that could be more clearly acknowledged.

      a. Specifically, asking participants at the end of the experiments to recall their strategies may suffer from memory biases (e.g., participants may be biased by recent events, and forget about the explicit strategies early in the experiment), be susceptible to the framing of the questions (e.g., participants not being sure what the experimenter is asking and how to verbalize their own strategy), and moreover, not clear what is the category of explicit strategies one might enact here which dictates what might be considered "relevant" and "accurate".

      b. The concept of perceptual realignment also suggests that participants are somewhat aware of the treadmill's changing conditions; therefore, as a thought experiment, if the authors have asked participants throughout/during the experiment whether they are trying different strategies, would they predict that some behaviour is under deliberate control?

      (3) The distinction between structural and memory-based differences in the two subgroups was based on the notion that memory-based strategies increase asymmetry. However, an alternative explanation could be that unfamiliar perturbations, due to the ramping up, trigger a surprise signal that leads to greater asymmetry due to reactive corrections to prevent one's fall - not because participants are generalizing from previously learned representations (e.g., (Iturralde & Torres-Oviedo, 2019)).

      Further contextualization:

      Recognizing the differences in dependent variables (reaching position vs. leg speed/symmetry in walking), could the Proprioceptive/Perceptual Re-alignment model also apply to gait adaptation (Tsay et al., 2022; Zhang et al., 2024)? Recent reaching studies show a similar link between perception and action during motor adaptation (Tsay et al., 2021) and have proposed a model aligning with the authors' correlations between perception and action. The core signal driving implicit adaptation is the discrepancy between perceived and desired limb position, integrating forward model predictions with proprioceptive/visual feedback.

      References

      Iturralde, P. A., & Torres-Oviedo, G. (2019). Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration. eNeuro, 6(2). https://doi.org/10.1523/ENEURO.0358-18.2019

      Tsay, Jonathan S., Hyosub E. Kim, Samuel D. McDougle, Jordan A. Taylor, Adrian Haith, Guy Avraham, John W. Krakauer, Anne G. E. Collins, and Richard B. Ivry. 2024. "Fundamental Processes in Sensorimotor Learning: Reasoning, Refinement, and Retrieval." ELife 13 (August). https://doi.org/10.7554/eLife.91839.

      Tsay, Jonathan S., Hyosub E. Kim, Darius E. Parvin, Alissa R. Stover, and Richard B. Ivry. 2021. "Individual Differences in Proprioception Predict the Extent of Implicit Sensorimotor Adaptation." Journal of Neurophysiology, March. https://doi.org/10.1152/jn.00585.2020.

      Tsay, Jonathan S., Hyosub Kim, Adrian M. Haith, and Richard B. Ivry. 2022. "Understanding Implicit Sensorimotor Adaptation as a Process of Proprioceptive Re-Alignment." ELife 11 (August). https://doi.org/10.7554/eLife.76639.

      Zhang, Zhaoran, Huijun Wang, Tianyang Zhang, Zixuan Nie, and Kunlin Wei. 2024. "Perceptual Error Based on Bayesian Cue Combination Drives Implicit Motor Adaptation." ELife. https://doi.org/10.7554/elife.94608.1.

    2. Reviewer #2 (Public review):

      Recent findings in the field of motor learning have pointed to the combined action of multiple mechanisms that potentially contribute to changes in motor output during adaptation. A nearly ubiquitous motor learning process occurs via the trial-by-trial compensation of motor errors, often attributed to cerebellar-dependent updating. This error-based learning process is slow and largely unconscious. Additional learning processes that are rapid (e.g., explicit strategy-based compensation) have been described in discrete movements like goal-directed reaching adaptation. However, the role of rapid motor updating during continuous movements such as walking has been either under-explored or inconsistent with those found during the adaptation of discrete movements. Indeed, previous results have largely discounted the role of explicit strategy-based mechanisms for locomotor learning. In the current manuscript, Rossi et al. provide convincing evidence for a previously unknown rapid updating mechanism for locomotor adaptation. Unlike the now well-studied explicit strategies employed during reaching movements, the authors demonstrate that this stimulus-response mapping process is largely unconscious. The authors show that in approximately half of subjects, the mapping process appears to be memory-based while the remainder of subjects appear to perform structural learning of the task design. The participants that learned using a structural approach had the capability to rapidly generalize to previously unexplored regions of the perturbation space.

      One result that will likely be particularly important to the field of motor learning is the authors' quite convincing correlation between the magnitude of proprioceptive recalibration and the magnitude error-based updating. This result beautifully parallels results in other motor learning tasks and appears to provide a robust marker for the magnitude of the mapping process (by means of subtracting off the contribution of error-based motor learning). This is a fascinating result with implications for the motor learning field well beyond the current study.

      A major strength of this manuscript is the large sample size across experiments and the extent of replication performed by the authors in multiple control experiments.

      Finally, I commend the authors on extending their original observations via Experiment 2. While it seems that participants use a range of mapping mechanisms (or indeed a combination of multiple mapping mechanisms), future experiments may be able to tease apart why some subjects use memory versus structural mapping. A future ability to push subjects to learn structurally-based mapping rules has the potential to inform rehabilitation strategies.

      Overall, the manuscript is well written, the results are clear, and the data and analyses are convincing. The manuscript's weaknesses are minor, mostly related to the presentation of the results and modeling.

      Weaknesses:

      The overall weaknesses in the manuscript are minor and can likely be addressed with textual changes.

      (1) A key aspect of the experimental design is the speed of the "ramp down" following the adaptation period. If the ramp-down is too slow, then no after-effects would be expected even in the alternative recalibration-only/error-based only hypothesis. How did the authors determine the appropriate rate of ramp-down? Do alternative choices of ramp-down rates result in step length asymmetry measures that are consistent with the mapping hypothesis?

      (2) Overall, the modeling as presented in Figure 3 (Equation 1-3) is a bit convoluted. To my mind, it would be far more useful if the authors reworked Equations 1-3 and Figure 3 (with potential changes to Figure 2) so that the motor output (u) is related to the stride rather than the magnitude of the perturbation. There should be an equation relating the forward model recalibration (i.e., Equation 1) to the fraction of the motor error on a given stride, something akin to u(k+1) = r * (u(k) - p(k)). This formulation is easier to understand and commonplace in other motor learning tasks (and likely what the authors actually fit given the Smith & Shadmehr citation and the derivations in the Supplemental Materials). Such a change would require that Figure 3's independent axes be changed to "stride," but this has the benefit of complementing the presentation that is already in Figure 5.

    3. Reviewer #3 (Public review):

      Summary:

      In this work, Rossi et al. use a novel split-belt treadmill learning task to reveal distinct sub-components of gait adaptation. The task involved following a standard adaptation phase with a "ramp-down" phase that helped them dissociate implicit recalibration and more deliberate SR map learning. Combined with modeling and re-analysis of previous studies, the authors show multiple lines of evidence that both processes run simultaneously, with implicit learning saturating based on intrinsic learning constraints and SR learning showing sensitivity to a "perceptual" error. These results offer a parallel with work in reaching adaptation showing both explicit and implicit processes contributing to behavior; however, in the case of gait adaptation the deliberate learning component does not appear to be strategic but is instead a more implicit SR learning processes.

      Strengths:

      (1) The task design is very clever and the "ramp down" phase offers a novel way to attempt to dissociate competing models of multiple processes in gait adaptation.

      (2) The analyses are thorough, as is the re-analysis of multiple previous data sets.

      (3) The querying of perception of the different relative belt speeds is a very nice addition, allowing the authors to connect different learning components with error perception.

      (4) The conceptual framework is compelling, highlighting parallels with work in reaching but also emphasizing differences, especially w/r/t SR learning versus strategic behaviors. Thus the discovery of an SR learning process in gait adaptation would be both novel and also help conjoin different siloed subfields of motor learning research.

      Weaknesses:

      (1) The behavior in the ramp-down phase does indeed appear to support multiple learning processes. However, I may have missed something, but I have a fundamental worry about the specific modeling and framing of the "SR" learning process. If I correctly understand, the SR process learns by adjusting to perceived L/R belt speed differences (Figure 7). What is bugging me is why that process would not cause the SR system to still learn something in the later parts of the ramp-down phase when the perceived speed differences flip (Figure 4). I do believe this "blunted learning" is what the SR component is actually modeled with, given this quote in the caption to Figure 7: "When the perturbation is perceived to be opposite than adaptation, even if it is not, mapping is zero and the Δ motor output is constant, reflecting recalibration adjustments only." It seems a priori odd and perhaps a little arbitrary to me that a SR learning system would just stop working (go to zero) just because the perception flipped sign. Or for that matter "generalize" to a ramp-up (i.e., just learn a new SR mapping just like the system did at the beginning of the first perturbation). What am I missing that justifies this key assumption? Or is the model doing something else? (if so that should be more clearly described).

      (2) A more minor point, but given the sample size it is hard to be convinced about the individual difference analysis for structure learning (Figure 5). How clear is it that these two groups of subjects are fully separable and not on a continuum? The lack of clusters in another data set seems like a somewhat less than convincing control here.

    1. Reviewer #1 (Public Review):

      In this work, the authors aimed to understand how titins derived from different nuclei within the syncytium are organized and integrated after cell fusion during skeletal muscle development and remodeling. The authors developed mCherry titin knock-in mice with the fluorophore mCherry inserted into titin's Z-disk region to track the titin during cell fusion. The results suggested that titin exhibited homogenous distribution after cell fusion. The authors also probed on how titin behaves during muscle injury by implantation of titin-eGFP myoblasts into adult mCherry-titin mice. Interestingly, titin is retained at the proximal nucleus and does not diffuse across the whole syncytium in this system. The findings of the study are novel and interesting. The experimental approaches are appropriate. The results are described well. However, the manuscript needs revisions to enhance its clarity.

      (1) In this work, the authors have not described the statistical analysis appropriately. In most of the figures, significance levels are not described. The information on the biological and technical replicates is missing in almost all the figures. This information is critical for understanding the strength of the experimentation.<br /> (2) The in vivo experiments are underpowered. The authors have used only 3 animals in the cardiotoxin injury experiment and eliminated another 3 animals from the analysis. How did they determine insufficient myoblast integration?<br /> (3) Similarly, the in vitro imaging experiments, especially the in vitro titin mobility assays used only 3 cells (Fig 2b) or 6-9 cells (Fig 2c-2e). The number of cells imaged is insufficient to derive a valid conclusion. What is the variability in the results between cells? Whether all the cells behave similarly in titin mobility assays?<br /> (4) Figure 1c-e, Figure 2a, Figure 3, Figure 4, Figure 5, Figure 6- please describe the replicates and also if possible, quantify the data and present them as separate figures.<br /> (5) Figure 2- the authors excluded samples with an obvious decrease in cell quality during imaging from the analysis. How do the authors assess the cell quality? Simply by visual examination? Or were the samples that did not show fluorescence recovery eliminated? I am wondering what percentage of cells showed poor cell quality. How do they avoid the bias? I recommend that the authors include these cells also for the analysis of data presented in Figures 2b, 2c, and 2f.<br /> (6) It is unclear how the authors identified the different stages of cell fusion in the microscopy images i.e. early fusion, distribution, and complete distribution.

    2. Reviewer #2 (Public Review):

      The titin protein, a large component of striated muscle, plays a crucial role in the formation of the sarcomere during muscle development. As myocytes merge, titin integrates into the sarcomere structure, creating a stable myofilament system. The authors of the present study have shed light on the intricate process of myofilament assembly and disassembly, which is made possible by tracking labeled sarcomere components. In this study, they introduced the mCherry marker into titin's Z-disk to investigate its role in skeletal muscle development and remodeling. Their findings demonstrate that the integration of titin into the sarcomere is tightly regulated, with its unexpected mobility aiding in the uniform distribution of titin post-cell fusion. This distribution is crucial for the formation and maturation of skeletal muscle syncytium. In adult mice with mCherry-labeled titin, treating muscle injuries by introducing titin-eGFP myoblasts illustrates how myocytes integrate, fuse, and contribute to a seamless myofilament system across cell boundaries. The manuscript is well written, and the study is very novel.

    3. Reviewer #3 (Public Review):

      Hüttemeister et. al. describe a study where researchers utilized a genetic modification technique to knockin a red fluorescence protein variant mCherry into titin, a giant muscle protein, at the Z-disk in order to investigate skeletal muscle development and remodeling. The study revealed that titin's integration into the sarcomere is tightly regulated during muscle development, and its mobility allows for a homogeneous distribution of titin after cell fusion, which is crucial for syncytium formation and skeletal muscle maturation. Furthermore, in adult mice with mCherry-tagged titin, the researchers observed the process of muscle injury treatment by implanting myoblasts containing titin tagged with another fluorescent protein, eGFP. This experiment provided insights into how myocytes integrate, fuse, and contribute to the continuous myofilament system across cell boundaries during muscle regeneration. Interestingly, the behavior of titin proteins differed between immature primary cells and adult muscle tissue. The manuscripts point our interesting observation that develop treatment protocols that target the early postnatal patient or consider in utero cell therapy approaches based on controlling the ratio of therapeutic to diseased cells. though the approach is very interesting, the paper is very qualitative in its approaches. Community will benefit from better quantification of data as most of them are microscopic data that requires quantification.

    1. Reviewer #1 (Public Review):

      Lactobacillus plantarum is a beneficial bacterium renowned for its positive physiological effects and probiotic functions. Fu et al. conducted an investigation into the involvement of this bacterium in host purine metabolism. Initially, they employed microbiomics to analyze changes in L. plantarum within a hyperuricemia model, followed by isolation of the bacterium from this model. The gene map associated with purine nucleoside metabolism was determined through whole-genome analysis. Metabolic shifts in L. plantarum under nucleoside-enriched conditions were assessed using HPLC and metabolomics, while underlying mechanisms were explored through gene knockout experiments. Finally, the efficacy of L. plantarum was validated in hyperuricemia models involving goslings and mice. The authors presented their findings coherently and logically, addressing key questions using appropriate methodologies and yielding significant and innovative results. The authors demonstrated that host-derived Lactobacillus plantarum alleviates host hyperuricemia by influencing purine metabolism. However, their study primarily focused on this bacterium without delving deeper into the mechanisms underlying hyperuricemia beyond verification through two models. Nevertheless, these findings are sufficient to support their conclusion effectively. Additionally, further research is warranted to investigate the metabolites of Lactobacillus plantarum.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Purine nucleoside metabolism in intestinal flora is integral to the purine nucleoside metabolism in the host. This study identified the iunH gene in Lactobacillus plantarum that regulates its purine nucleoside metabolism. Oral gavage of Lactobacillus plantarum and subsequent analysis showed it maintains homeostasis of purine nucleoside metabolism in the host.

      Strengths:<br /> This study presents sufficient evidence for the role of Lactobacillus plantarum in alleviating hyperuricaemia, combining microbiomics, whole genomics, in vitro bacterial culture, and metabolomics. These results suggest the iunH gene of Lactobacillus plantarum is crucial in host purine nucleoside metabolism. The experimental design is robust, and the data are of high quality. This study makes significant contributions to the fields of hyperuricaemia, purine nucleoside metabolism, and Lactobacillus plantarum investigation.

      Weaknesses:<br /> A key limitation of this manuscript is the absence of an in-depth study on the alleviation metabolism of Lactobacillus plantarum. Notable questions include: What overall metabolic changes occur in a purine nucleoside-enriched environment? How do the metabolites of Lactobacillus plantarum vary? Do these metabolites influence host purine nucleoside metabolism? These areas merit further investigation.

    3. Reviewer #3 (Public Review):

      Fu et al. present a multi-model study using goose and mouse that investigates the protective effects of Lactobacillus plantarum against hyperuricaemia. They highlight this strain's significance and clarify its role in responding to intestinal nucleoside levels and affecting uric acid metabolism through modulation of host signaling pathways.

      Strengths:<br /> (1) Fu et al. created two animal models for validation, yielding more reliable and extensive data. In addition, the in vitro tests were repeatedly tested by a multitude of methods, proving to be convincing.<br /> (2) This study integrates microbiomics, whole genomics, in vitro bacterial culture, and metabolomics, providing a wealth of data and valuable insights for future research.

      Weakness:<br /> Fu et al. clearly described the role of Lactobacillus plantarum, but it is also important to explore its other mechanisms influencing uric acid metabolism in the host. While changes in hepatic and renal uric acid metabolism were confirmed, the gut's role in this process deserves investigation, particularly regarding whether Lactobacillus plantarum or its metabolites act within the gut. The authors have effectively conveyed the story outlined in the article's title, and the remainder can be explored later. In addition, further discussion is needed to highlight how this strain of Lactobacillus plantarum differs from other Lactobacillus strains or how it innovatively functions differ from some literature reported.

    1. Reviewer #1 (Public review):

      Theoretical principles of viscous fluid mechanics are used here to assess likely mechanisms of transport in the ER. A set of candidate mechanisms are evaluated, making good use of imaging to represent ER network geometries. Evidence is provided that contraction of peripheral sheets provides a much more credible mechanism than contraction of individual tubules, junctions or perinuclear sheets.

      The work has been conducted carefully and comprehensively, making good use of underlying physical principles. There is good discussion of the role of slip; sensible approximations (low volume fraction, small particle size, slender geometries, pragmatic treatment of boundary conditions) allow tractable and transparent calculations; clear physical arguments, including an analysis of energy budgets, provide useful bounds; stochastic and deterministic features of the problem are well integrated.

    1. Reviewer #1 (Public review):

      Summary:

      This paper by Watanabe et al described an expression system that can express the paired heavy and light chains of IgG antibodies from single cell B cells. In addition, they used FACS sorting for specific antigen to screen/select the specific populations for more targeted cloning of mAb genes. By staining with multiple antigens, they were able to zoom in to cross-reactive antibodies.

      Strengths:

      A highly efficient process which combines selection/screening with dua expression of both antibody chains. It is particularly suitable for isolation of cross-reactive antibodies against conserved epitopes of different antigens, such as surface proteins of related viruses.

      Weaknesses:

      (1) The overall writing is very difficult to follow and the authors need to work on significant re-writing<br /> (2) The paper in its current form really lacks detail and it is not possible for readers to repeat or follow their methods. For example: a) It is not clear whether the authors checked the serum to see if the mice were producing antibodies before they sacrificed them to harvest spleen/blood i.e. using ELISA? b) How long after administration of the second dose were the mice sacrificed? c) What cell types are taken for single B cell sorting? Splenocytes or PBMC? These are just some of the questions which need to be addressed.<br /> (3) According to the authors, 77 clones were sorted from the PR8+ and H2+ double positive quadrant. It is surprising that after transfection and re-analysing of bulk antibody presenting EXPI cells on FACS from, only 13 clones (or 8 clones? - unclear) seemed to be truly cross reactive. If that is the case, the approach is not as efficient as the authors claimed.

      The authors have adequately addressed the issues raised

    2. Reviewer #2 (Public review):

      Summary:

      Watanabe, Takashi et al. investigated the use of the Golden Gate dual-expression vector system to enhance the modern standard for rapid screening of recombinant monoclonal antibodies. The presented data builds upon modern techniques that currently use multiple expression vectors to express heavy and light chain pairs. In a single vector, they express the linked heavy and light chain variable genes with a membrane-bound Ig which allows for rapid and more affordable cell-based screening. The final validation of H1 and H2 strain influenza screening resulted in 81 "H1+", 48 "H2+", and 9 "cross" reactive clones. The kinetics of some of the soluble antibodies were tested via SPR and validated with a competitive inhibition with classical well-characterized neutralizing clones.

      Strengths:

      In this study, Watanabe, Takashi et al. further develop and refine the methodologies for the discovery of monoclonal antibodies. They elegantly merge newer technologies to speed up turnaround time and reduce the cost of antibody discovery. Their data supports the feasibility of their technique.

      This study will have an impact on pandemic preparedness and antibody-based therapies.

      Weaknesses:

      Limitations of this new technique are as follows: there is a significant loss of cells during FACs, transfection and cloning efficiency are critical to success, and well-based systems limit the number of possible clones (as the author discussed in the conclusions).

    1. Reviewer #1 (Public review):

      Summary:

      This work sought to demonstrate that gut microbiota dysbiosis may promote the colonization of mycobacteria, and they tried to prove that Nos2 down-regulation was a key mediator of such gut-lung pathogenesis transition.

      Strengths:

      They did large-scale analysis of RNAs in lungs to analyze the gene expression of mice upon gut dysbiosis in MS-infected mice. This might help provide overview of gene pathways and critical genes for lung pathology in gut dysbiosis. This data is somewhat useful and important for the TB field.

      Weaknesses:

      (1) They did not use wide-type Mtb strain (e.g. H37Rv) to develop mouse TB infection models, and this may lead to the failure for establishment of TB granuloma and other TB pathology icons.<br /> (2) The usage of in vitro assays based on A542 to examine the regulation function of Nos2 expression on NO and ROS may not be enough. A542 is not the primary Mtb infection target in the lungs.<br /> (3) They did not examine the lung pathology upon gut dysbiosis to examine the true significance of increased colonization of Mtb.<br /> (4) Most of the studies are based on MS-infected mouse models with lack of clinical significance.

    1. Reviewer #2 (Public Review):

      Olszyński et al. claim that they identified a "new-type" ultrasonic vocalization around 44 kHz that occurs in response to prolonged fear conditioning (using foot-shocks of relatively high intensity, i.e. 1 mA) in rats. Typically, negative 22-kHz calls and positive 50-kHz calls are distinguished in rats, commonly by using a frequency threshold of 30 or 32 kHz. Olszyński et al. now observed so-called "44-kHz" calls in a substantial number of subjects exposed to 10 tone-shock pairings, yet call emission rate was low (according to Fig. 1G around 15%, according to the result text around 7.5%). They also performed playback experiments and concluded that "the responses to 44-kHz aversive calls presented from the speaker were either similar to 22-kHz vocalizations or in-between responses to 22-kHz and 50-kHz playbacks".

      Strengths: Detailed spectrographic analysis of a substantial data set of ultrasonic vocalizations recorded during prolonged fear conditioning, combined with playback experiments.

    1. Reviewer #1 (Public review):

      Devakinandan et al. present a revised version of their manuscript. Their scRNA-seq data is a valuable resource to the community, and they further validate their findings via in situ hybridizations and electron microscopy. Overall, they have addressed my major concerns. I only have two minor comments.

      (1) The authors note in Figure 4I, and K that because the number of C2 V2Rs or H2-Mv receptors increased while the normalized expression of Gnao1 remained constant (and likewise for V1Rs and Gnai2 in Figure 4-S4C) that their results are unlikely to be capturing doublets. I'm not sure that this is the case. If the authors added together two V2R cells the total count of every gene might double, but the normalized expression of Gnao1 would remain the same. To address this concern, the authors should also show the raw counts for Gnao1 as well as the total number of UMIs for these cells.

      (2) As requested, the authors have now added a colorbar to the pseudocolored images in Figures 7. However, this colorbar still doesn't have any units. Can the authors add some units, or clarify in the methods how the raw data relates to the colors (e.g. is it mapped linearly, at a logscale, with gamma or other adjustments, etc.)? Moreover, it's also unclear what the dots in the backgrounds of plots like Figure 7E mean. Are they pixels? Showing the individual lines, the average for each animal, or omitting them entirely, might make more sense.

    2. Reviewer #2 (Public review):

      Summary:

      The study focuses on the vomeronasal organ, the peripheral chemosensory organ of the accessory olfactory system, by employing single-cell transcriptomics. The author analyzed the mouse vomeronasal organ, identifying diverse cell types through their unique gene expression patterns. Developmental gene expression analysis revealed that two classes of sensory neurons diverge in their maturation from common progenitors, marked by specific transient and persistent transcription factors. A comparative study between major neuronal subtypes, which differ in their G-protein sensory receptor families and G-protein subunits (Gnai2 and Gnao1, respectively), highlighted a higher expression of endoplasmic reticulum (ER) associated genes in Gnao1 neurons. Moreover, distinct differences in ER content and ultrastructure suggest some intriguing roles of ER in Gnao1-positive vomeronasal neurons. This work is likely to provide useful data for the community and is conceptually novel with the unique role of ER in a subset of vomeronasal neurons.

      Strengths:

      (1) The study identified diverse cell types based on unique gene expression patterns, using single-cell transcriptomic.

      (2) The analysis suggest that two classes of sensory neurons diverge during maturation from common progenitors, characterized by specific transient and persistent transcription factors.

      (3) A comparative study highlighted differences in Gnai2- and Gnao1-positive sensory neurons.

      (4) Higher expression of endoplasmic reticulum (ER) associated genes in Gnao1 neurons.

      (5) Distinct differences in ER content and ultrastructure suggest unique roles of ER in Gnao1-positive vomeronasal neurons.

      (6) The research provides conceptually novel on the unique role of ER in a subset of vomeronasal neurons, offering valuable insights to the community.

      Comments on latest version:

      In the revised manuscript, the authors have thoroughly addressed all of this reviewer's concerns.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Devakinandan and colleagues have undertaken a thorough characterization of the cell types of the mouse vomeronasal organ, focusing on the vomeronasal sensory neurons (VSNs). VSNs are known to arise from a common pool of progenitors that differentiate into two distinct populations characterized by the expression of either the G protein subunit Gnao1 or Gnai2. Using single-cell RNA sequencing followed by unsupervised clustering of the transcriptome data, the authors identified three Gnai2+ VSN subtypes and a single Gnao1+ VSN type. To study VSN developmental trajectories, Devakinandan and colleagues took advantage of the constant renewal of the neuronal VSN pool, which allowed them to harvest all maturation states. All neurons were re-clustered and a pseudotime analysis was performed. The analysis revealed the emergence of two pools of Gap43+ clusters from a common lineage, which differentiate into many subclusters of mature Gnao1+ and Gnai2+ VSNs. By comparing the transcriptomes of these two pools of immature VSNs, the authors identified a number of differentially expressed transcription factors in addition to known markers. Next, by comparing the transcriptomes of mature Gnao1+ and Gnai2+ VSNs, the authors report an enrichment of ER-related genes in Gnao1+ VSNs. Using electron microscopy, they found that this enrichment was associated with specific ER morphology in Gnao1+ neurons. Finally, the authors characterized chemosensory receptor expression and co-expression (as well as H2-Mv proteins) in mature VSNs, which recapitulated known patterns.

      Strengths:

      The data presented here provide new and interesting perspectives on the distinguishing features between Gnao1+ and Gnai2+ VSNs. These features include newly identified markers, such as transcription factors, as well as an unsuspected ER-related peculiarity in Gnao1+ neurons, consisting in a hypertrophic ER and an enrichment in ER-related genes. In addition, the authors provide a comprehensive picture of specific co-expression patterns of V2R chemoreceptors and H2-Mv genes.

      Importantly, the authors provide a browser (scVNOexplorer) for anyone to explore the data, including gene expression and co-expression, number and proportion of cells, with a variety of graphical tools (violin plots, feature plots, dot plots, ...).

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Liu, Jiang, Diao et.al. investigated the role of GSDMD in psoriasis-like skin inflammation in mice. The authors have used full-body GSDMD knock-out mice and Gsdm floxed mice crossed with the S100A8- Cre. In both mice, the deficiency of GSDMD ameliorated the skin phenotype induced by the imiquimod. The authors also analyzed RNA sequencing data from the psoriatic patients to show an elevated expression of GSDMD in the psoriatic skin.

      Overall, this is a potentially interesting study, however, the manuscript in its current format is not completely a novel study.

      Strengths:

      It has the potential to unravel the new role of neutrophils.

      Weaknesses:

      The main claims are only partially supported and have scope to improve

    2. Reviewer #2 (Public review):

      Summary:

      The authors describe elevated GSDMD expression in psoriatic skin, and knock-out of GSDMD abrogates psoriasis-like inflammation.

      Strengths:

      The study is well conducted with transgenic mouse models. Using mouse-models with GSDMD knock-out showing abrogating inflammation, as well as GSDMD fl/fl mice without neutrophils having a reduced phenotype.

      I fear that some of the conclusions cannot be drawn by the suggested experiments. My major concern would be the involvement of other inflammasome and GSDMD bearing cell types, esp. Keratinocytes (KC), which could be an explanation why the experiments in Fig 4 still show inflammation.

      Weaknesses:

      The experiments do not entirely support the conclusions towards neutrophils.

      Specific questions/comments:

      Fig 1b: mainly in KC and Neutrophils?

      Fig 2a: PASI includes erythema, scaling, thickness and area. Guess area could be trick, esp. in an artificial induced IMQ model (WT) vs. the knock-out mice.

      Fig 2d: interesting finding. I thought that CASP-1 is cleaving GSDMD. Why would it be downregulated?

      Line 313: as mentioned before (see Fig 1b). KC also show a stron GSDMD staining positivity and are known producers of IL-1b and inflammasome activation. Guess here the relevance of KC in the whole model needs to be evaluated.

      Fig 4i - guess here the conclusion would be that neutrophils are important for the pathogenesis in the IMQ model, which is true. This experiment does not support that this is done by pyroptosis.

    1. Joint Public Reviews:

      De Waele et al. framed the mass-spectrum-based prediction of antimicrobial resistance (AMR) prediction as a drug recommendation task. Neural networks were trained on the recently available DRIAMS database of MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry data and their associated antibiotic susceptibility profiles (Weis et al. 2022). Weis et al. (2022) also introduced the benchmark models which take as the input a single species and are trained to predict resistance to a single drug. Instead here, a pair of drugs and spectrum are fed to two neural network models to predict a resistance probability. In this manner, knowledge from different drugs and species can be shared through the model parameters. Questions asked: What is the best way to encode the drugs? Does the dual neural network outperform the single spectrum-drug network?

      The authors showed consistent performance of their strategy to predict antibiotic susceptibility for different spectrum and antibiotic representations (i.e., embedders). Remarkably, the authors showed how small datasets collected at one location can improve the performance of a model trained with limited data collected at a second location. The authors also showed that species-specific models (trained in multiple antibiotic resistance profiles) outperformed both the single recommender model and the individual species-antibiotic combination models.

      Strengths:

      • A single antimicrobial resistance recommender system could potentially facilitate the adoption of MALDI-TOF based antibiotic susceptibility profiling into clinical practices by reducing the number of models to be considered, and the efforts that may be required to periodically update them.<br /> • The authors tested multiple combinations of embedders for the mass spectra and antibiotics while using different metrics to evaluate the performance of the resulting models. Models trained using different spectrum embedder-antibiotic embedder combinations had remarkably good performance for all tested metrics. The average ROC AUC scores for global and species-specific evaluations were above 0.8.<br /> • Authors developed species-specific recommenders as an intermediate layer between the single recommender system and single species-antibiotic models. This intermediate approach achieved maximum performance (with one type of the species-specific recommender achieving a 0.9 ROC AUC), outlining the potential of this type of recommenders for frequent pathogens.<br /> • Authors showed that data collected in one location can be leveraged to improve the performance of models generated using a smaller number of samples collected at a different location. This result may encourage researchers to optimize data integration to reduce the burden of data generation for institutions interested in testing this method.

      Weaknesses:

      • Authors do not offer information about the model features associated with resistance. While reviewers understand that it is difficult to map mass spectra to specific pathways or metabolites, mechanistic insights are much more important in the context of AMR than in the context of bacterial identification. For example, this information may offer additional antimicrobial targets. Thus, authors should at least identify mass spectra peaks highly associated with resistance profiles. Are those peaks consistent across species? This would be a key step towards a proteomic survey of mechanisms of AMR. See previous work on this topic (Hrabak et al. 2013, Torres-Sangiao et al. 2022).

      References:

      Hrabak et al. (2013). Clin Microbiol Rev 26. doi: 10.1128/CMR.00058-12.<br /> Torres-Sangiao et al. (2022). Front Med 9. doi: 10.3389/fmed.2022.850374.<br /> Weis et al. (2022). Nat Med 28. doi: 10.1038/s41591-021-01619-9.

    1. Reviewer #2 (Public review):

      Most neurodegenerative diseases are characterized by the self-templated misfolding of a particular protein in a manner that enables progressive spread throughout the central nervous system. In diseases including Parkinson's disease (PD) and multiple system atrophy (MSA), the protein a-synuclein misfolds into unique strains, which use this self-replicating mechanism to encode disease-specific information. Previous research suggests that a major contributor to the lack of successful clinical trials across neurodegenerative diseases is the lack of disease-relevant strains used in preclinical testing. While MSA patient samples are known to replicate efficiently in cell and mouse models of disease, Lewy body disease (LBD) patient samples do not. To overcome this obstacle, the seeding amplification assay (SAA) uses recombinant a-synuclein to amplify the misfolded protein structure present in a human patient sample. The resulting fibrils are then widely used by many laboratories as a model of PD. In this manuscript, Lee et al., set out to compare the strain properties of a-synuclein fibrils isolated from LBD and MSA patient samples with the resulting amplified fibrils following SAA. Using orthogonal biochemical and structural approaches to strengthen their analyses, the authors report that the SAA-amplified fibrils do not recapitulate the disease-relevant strains present in the patient samples. Moreover, their data suggest that regardless of which strain is used to seed the SAA reaction, the same strain is generated. These results clearly demonstrate that the SAA-amplified material is likely not disease-relevant. SAA fibrils are broadly used throughout academic and pharmaceutical laboratories. They are used in ongoing drug discovery efforts and recombinant fibrils broadly inform much of what is known about a-synuclein strain biology in LBD patients. The implications of the reported work are, therefore, expansive. These findings add to the growing ledger of reasons that the use of SAA fibrils in research should be halted until improved methods for amplification with high fidelity are developed.

    1. Reviewer #1 (Public review):

      Summary:

      Assessment of cardiac LEC transcriptomes post-MI may yield new targets to improve lymphatic function. scRNAseq is a valid approach as cardiac LECs are rare compared to blood vessel endothelial cells.

      Strengths:

      Extensive bioinformatics approaches employed by the group

      Weaknesses:

      Too few cells included in scRNAseq data set and the spatial transcriptomics data that was exploited has little relevance, or rather specificity, for cardiac lymphatics. This study seems more a collection of preliminary transcriptomic data than a true scientific report to help advance the field.

    2. Reviewer #2 (Public review):

      Summary:

      This study integrated single-cell sequencing and spatial transcriptome data from mouse heart tissue at different time points post-MI. They identified four transcriptionally distinct subtypes of lymphatic endothelial cells and localized them in space. They observed that LECs subgroups are localized in different zones of infarcted heart with functions. Specifically, they demonstrated that LEC ca III may be involved in directly regulating myocardial injuries in the infarcted zone concerning metabolic stress, while LEC ca II may be related to the rapid immune inflammatory responses of the border zone in the early stage of MI. LEC ca I and LEC collection mainly participate in regulating myocardial tissue edema resolution in the middle and late stages post-MI. Finally, cell trajectory and Cell-Chat analyses further identified that LECs may regulate myocardial edema through Aqp1, and likely affect macrophage infiltration through the galectin9-CD44 pathway. The authors concluded that their study revealed the dynamic transcriptional heterogeneity distribution of LECs in different regions of the infarcted heart and that LECs formed different functional subgroups that may exert different bioeffects in myocardial tissue post-MI.

      Strengths:

      The study addresses a significant clinical challenge, and the results are of great translational value. All experiments were carefully performed, and their data support the conclusion.

      Weaknesses:

      (1) Language expression must be improved. Many incomplete sentences exist throughout the manuscript. A few examples: Line 70-71: In order to further elucidate the effects and regulatory mechanisms of the lymphatic vessels in the repair process of myocardial injury following MI. Line 71-73. This study, integrated single-cell sequencing and spatial transcriptome data from mouse heart tissue at different time points after MI from publicly available data (E-MTAB-7895, GSE214611) in the ArrayExpress and gene expression omnibus (GEO) databases. Line 88-89: Since the membrane protein LYVE1 can present lymphatic vessel morphology more clearly than PROX1.<br /> (2) The type of animal models (i.e., permeant MI or MI plus reperfusion) included in ArrayExpress and gene expression omnibus (GEO) databases must be clearly defined as these two models may have completely different effects on lymphatic vessel development during post-MI remodeling.<br /> (3) Line 119-120: Caution must be taken regarding Cav1 as a lymphocyte marker because Cav1 is expressed in all endothelial cells, not limited to LEC.<br /> (4) Figure 1 legend needs to be improved. RZ, BZ, and IZ need to be labeled in all IF images. Day 0 images suggest that RZ is the tissue section from the right ventricle. Was RZ for all other time points sampled from the right ventricular tissue section?<br /> (5) The discussion section needs to be improved and better focused on the findings from the current study.

    1. Reviewer #1 (Public Review):

      Tsai and Seymen et al. investigate associations between RTE expression and methylation and age and inflammation, using multiple public datasets. The text of the manuscript has been polished and the phrasing of several findings has been made clearer and more precise. The authors also provided ample discussion to the prior reviewer comments in their rebuttal, including new analyses.

    2. Reviewer #2 (Public Review):

      Summary:

      Yi-Ting Tsai and colleagues conducted a systematic analysis of the correlation between the expression of retrotransposable elements (RTEs) and aging, using publicly available transcriptional and methylome microarray datasets of blood cells from large human cohorts, as well as single-cell transcriptomics. Although DNA hypomethylation was associated with chronological age across all RTE biotypes, the authors did not find a correlation between the levels of RTE expression and chronological age. However, expression levels of LINEs and LTRs positively correlated with DNA demethylation, and inflammatory and senescence gene signatures, indicative of "biological age". Gene set variation analysis showed that the inflammatory response is enriched in the samples expressing high levels of LINEs and LTRs. In summary, the study demonstrates that RTE expression correlates with "biological" rather than "chronological" aging.

      Strengths:

      The question the authors address is both relevant and important to the fields of aging and transposon biology.

      Comments on latest version:

      The authors introduced the analysis of RNA-seq data, addressing the key concerns raised by Reviewer #1 and myself. They also adopted more explicit terminology in their latest version, reducing ambiguity. The RNA-seq analysis demonstrating that the expression of different transposon groups is not associated with chronological aging is convincing, though, in my opinion, it still lacks granularity.

      I have two minor points:

      (1) Previously, I have mentioned the following:

      "The authors pool signals from RTEs by class or family, despite the fact that these groups include subfamilies and members with very different properties and harmful potentials. For example, while older subfamilies might be expressed through readthrough transcription, certain members of younger groups could be autonomously reactivated and cause inflammation... The aggregation of signals from different RTE biotypes may obscure potential reactivation of smaller groups or specific subfamilies."

      The authors responded that they would lose statistical power by studying RTE subfamilies with limited microarray probes, which is a fair point. However, the suggested analysis could have been conducted using the RNA-seq data they explored in the second round of revision. Choosing not to leverage RNA-seq to increase the granularity of their analysis is a matter of choice. In my opinion, however, the authors could have acknowledged in the discussion that some smaller yet potentially influential RTE species may be masked by their global approach.

      (2) Previously, I mentioned that 10x scRNA-seq is not ideal for analysing RTEs and requested a classical UMAP plot to visualize RTE expression across cell populations. The authors argued that they could only achieve sufficient statistical power by quantifying RTE classes through cumulative read counts for each cell type, which I accept. However, they divided cells into "high" and "low" BAR gene signature groups. I am surprised that the comparison of BAR signature expression between these groups was not presented using standard visualization methods commonly applied in scRNA-seq data analysis.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors aimed to identify which regions of DVL2 contribute to its endogenous/basal clustering, as well as the relevance of such domains to condensate/phase separation and WNT activation.

      Strengths:

      A strength of the study is the focus on endogenous DVL2 to set up the research questions, as well as the incorporation of various techniques to tackle it. I found also quite interesting that DVL2-CFR addition to DVL1 increased its MW in density gradients.

      Weaknesses:

      The authors have addressed important drawbacks regarding the overexpression experiments, most notably by including DVL tKO cells in collaboration with Vita. I think that this part has clearly improved.

      Unfortunately, I still stand with my key concern: at this stage in the field, with many papers on DVL over expression, there is a clear need to address how endogenous DVL behaves. While the attempts to o/e low levels of DVL mutants in tKO cells are useful for validation experiments, the manuscript does not -in my opinion - address the requirements of DVL2 condensation for WNT signalling. Of note, several of the described effects are partial, including in tKO cells, often indicating that the targeted domains contribute, but are not required, for these processes. I understand that generating endogenous tagged lines or targeting specific endogenous domains is not trivial. But, as indicated in both initial reviews, I think that monitoring endogenous proteins is required to fully address the proposed research question.

      In my opinion, the current manuscript A) shows that endogenous DVL2 forms large complexes in a higher proportion as DVL1/3, B) identifies and describes a couple of motifs that contribute to clustering and signalling in overexpressed DVL, including in tKO cells* C) shows that one of those motifs (CFR) rewires o/e DVL1 into behaving similarly as DVL2.

      *On a minor note, I am not sure how DVL tKO cells partially react to Wnt3a in Figure 7G

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript the authors describe a new pipeline to measure changes in vasculature diameter upon opt-genetic stimulation of neurons.<br /> The work is useful to better understand the hemodynamic response on a network /graph level.

      Strengths:

      The manuscript provides a pipeline that allows to detect changes in the vessel diameter as well as simultaneously allows to locate the neurons driven by stimulation.<br /> The resulting data could provide interesting insights into the graph level mechanisms of regulating activity dependent blood flow.

      Weaknesses:

      (1) The manuscript contains (new) wrong statements and (still) wrong mathematical formulas.<br /> (2) The manuscript does not compare results to existing pipelines for vasculature segmentation (opensource or commercial).<br /> Comparing performance of the pipeline to a random forest classifier (illastik) on images that are not preprocessed (i.e. corrected for background etc.) seems not a particularly useful comparison.<br /> (3) The manuscript does not clearly visualize performance of the segmentation pipeline (e.g. via 2d sections, highlighting also errors etc.). Thus, it is unclear how good the pipeline is, under what conditions it fails or what kind of errors to expect.<br /> (4) The pipline is not fully open-source due to use of matlab. Also, the pipeline code was not made available during review contrary to the authors claims (the provided link did not lead to a repository). Thus, the utility of the pipeline was difficult to judge.

      Detailed remarks to the revision and new manuscript:

      - Generalizability: The authors addressed the point of generalizability by applying the pipeline to other data sets. This demonstrates that their pipeline can be applied to other data sets and makes it more useful.<br /> However, from the visualizations it's unclear to see the performance of the pipeline, where the pipelines fails etc. The 3d visualizations are not particularly helpful in this respect .<br /> In addition, the dice measure seems quite low, indicating roughly 20-40% of voxels do not overlap between inferred and ground truth. I did not notice this high discrepancy earlier. A through discussion of the errors appearing in the segmentation pipeline would be necessary in my view to better asses the quality of the pipeline.

    2. Reviewer #2 (Public review):

      The authors have addressed most of my concerns sufficiently. There are still a few serious concerns I have. Primarily, the temporal resolution of the technique still makes me dubious about nearly all of the biological results. It is good that the authors have added some vessel diameter time courses generated by their model. But I still maintain that data sampling every 42 seconds - or even 21 seconds - is problematic. First, the evidence for long vascular responses is lacking. The authors cite several papers:

      Alarcon-Martinez et al. 2020 show and explicitly state that their responses (stimulus-evoked) returned to baseline within 30 seconds. The responses to ischemia are long lasting but this is irrelevant to the current study using activated local neurons to drive vessel signals.<br /> Mester et al. 2019 show responses that all seem to return to baseline by around 50 seconds post-stimulus.<br /> O'Herron et al. 2022 and Hartmann et al. 2021 use opsins expressed in vessel walls (not neurons as in the current study) and directly constrict vessels with light. So this is unrelated to neuronal activity-induced vascular signals in the current study.

      There are other papers including Vazquez et al 2014 (PMID: 23761666) and Uhlirova et al 2016 (PMID: 27244241) and many others showing optogenetically-evoked neural activity drives vascular responses that return back to baseline within 30 seconds. The stimulation time and the cell types labeled may be different across these studies which can make a difference. But vascular responses lasting 300 seconds or more after a stimulus of a few seconds are just not common in the literature and so are very suspect - likely at least in part due to the limitations of the algorithm.

      Another major issue is that the time courses provided show that the same vessel constricts at certain points and dilates later. So where in the time course the data is sampled will have a major effect on the direction and amplitude of the vascular response. In fact, I could not find how the "response" window is calculated. Is it from the first volume collected after the stimulation - or an average of some number of volumes? But clearly down-sampling the provided data to 42 or even 21 second sampling will lead to problems. If the major benefit to the field is the full volume over large regions that the model can capture and describe, there needs to be a better way to capture the vessel diameter in a meaningful way.

      It still seems possible that if responses are bi-phasic, then depth dependencies of constrictors vs dilators may just be due to where in the response the data are being captured - maybe the constriction phase is captured in deeper planes of the volume and the dilation phase more superficially. This may also explain why nearly a third of vessels are not consistent across trials - if the direction the volume was acquired is different across trials, different phases of the response might be captured.

      I still have concerns about other aspects of the responses but these are less strong. Particularly, these bi-phasic responses are not something typically seen and I still maintain that constrictions are not common. The authors are right that some papers do show constriction. Leaving out the direct optogenetic constriction of vessels (O'Herron 2022 & Hartmann 2021), the Alarcon-Martinez et al. 2020 paper and others such as Gonzales et al 2020 (PMID: 33051294) show different capillary branches dilating and constricting. However, these are typically found either with spontaneous fluctuations or due to highly localized application of vasoactive compounds. I am not familiar with data showing activation of a large region of tissue - as in the current study - coupled with vessel constrictions in the same region. But as the authors point out, typically only a few vessels at a time are monitored so it is possible - even if this reviewer thinks it unlikely - that this effect is real and just hasn't been seen.

      I also have concerns about the spatial resolution of the data. It looks like the data in Figure 7 and Supplementary Figure 7 have a resolution of about 1 micron/pixel. It isn't stated so I may be wrong. But detecting changes of less than 1 micron, especially given the noise of an in vivo prep (brain movement and so on), might just be noise in the model. This could also explain constrictions as just spurious outputs in the model's diameter estimation. The high variability in adjacent vessel segments seen in Figure 6C could also be explained the same way, since these also seem biologically and even physically unlikely.

      I still think the difference in distance-to-nearest-neuron between dilators and constrictors is insignificant. These points were not addressed - the difference in neuronal density between cortical layers and the ~ 5 micron difference in this parameter between dilators and constrictors. Given the concerns raised above, there is very little confidence in even knowing which vessels constricted and which dilated.

      All-in-all, I think this is potentially a very useful pipeline for automating numerous tasks which are very time consuming and vulnerable to subjective judgements (which leads to reproducibility problems and others). However, I think the challenge of capturing large volumes at high speed and with high resolution is very real and hasn't been adequately accomplished for the claims the authors want to make about their data. It is encouraging that with the right technology, such data could be captured and this pipeline would be excellent for processing it. But given the limitations in the data collection here, I think that many of the biological claims are hard to fully accept.

    1. Reviewer #1 (Public review):

      Summary:

      This is a detailed description of the role of PKCδ in Drosophila learning and memory. The work is based on a previous study (Placais et al. 2017) that has already shown that for the establishment of long-term memory, the repetitive activity of MP1 dopaminergic neurons via the dopamine receptor DAMB is essential to increase mitochondrial energy flux in the mushroom body. In this paper, the role of PKCδ is now introduced. PKCδ is a molecular link between the dopaminergic system and the mitochondrial pyruvate metabolism of mushroom body Kenyon cells. For this purpose, the authors establish a genetically encoded FRET-based fluorescent reporter of PKCδ-specific activity, δCKAR.

      Strengths:

      This is a thorough study on the long-term memory of Drosophila. The work is based on the extensive, high-quality experience of the senior authors. This is particularly evident in the convincing use of behavioral assays and imaging techniques to differentiate and explore various memory phases in Drosophila. The study also establishes a new reporter to measure the activity of PKCδ - the focus of this study - in behaving animals. The authors also elucidate how recurrent spaced training sessions initiate a molecular gating mechanism, linking a dopaminergic punishment signal with the regulation of mitochondrial pyruvate metabolism. This advancement will enable a more precise molecular distinction of various memory phases and a deeper comprehension of their formation in the future.

      Weaknesses:

      The study offers novel insights into the molecular mechanisms underlying long-term memory formation and presents no apparent weaknesses in either content or methodology.

    2. Reviewer #2 (Public review):

      Summary

      This study deepens the former authors' investigations of the mechanisms involved in gating the long-term consolidation of an associative memory (LTM) in Drosophila melanogaster. After having previously found that LTM consolidation 1. costs energy (Plaçais and Préat, Science 2013) provided through pyruvate metabolism (Plaçais et al., Nature Comm 2017) and 2. is gated by the increased tonic activity in a type of dopaminergic neurons ('MP1 neurons') following only training protocol relevant for LTM, i.e. interspaced in time (Plaçais et al., Nature Neuro 2012), they here dig into the intra-cell signalling triggered by dopamine input and eventually responsible for the increased mitochondria activity in Kenyon Cells. They identify a particular PKC, PKCδ, as a major molecular interface in this process and describe its translocation to mitochondria to promote pyruvate metabolism, specifically after spaced training.

      Methodological approach

      To that end, they use RNA interference against the isozyme PKCδ, in a time-controlled way and in the whole Kenyon cells populations or in the subpopulation forming the α/β lobe. This knock-down decreased the total PKCδ mRNA level in the brain by ca. 30%, and is enough to observe decreased in flies performances for LTM consolidation. Using Pyronic, a sensor for pyruvate for in vivo imaging, and pharmacological disruption of mitochondrial function, the authors then show that PKCδ knock-down prevents high level of pyruvate from accumulating in the Kenyon cells at the time of LTM consolidation, pointing towards a role of PKCδ in promoting pyruvate metabolism. They further identify the PDH kinase PDK as a likely target for PKCδ since knocking down both PKCδ and PDK led to normal LTM performances, likely counterbalancing PKCδ knock-down alone.

      To understand the timeline of PKCδ activation and to visualise its mitochondrial translocation in subpart of Mushroom body lobes they imported in fruitfly the genetically-encoded FRET reporters of PKCδ, δCKAR and mitochondria-δCKAR (Kajimoto et al 2010). They show that PKCδ is activated to the sensor's saturation only after spaced training, and not other types of training that are 'irrelevant' for LTM. Further, adding thermogenetic activation of dopaminergic neurons and RNA interference against Gq-coupled dopamine receptor to FRET imaging, they identify that a dopamine-triggered cascade is sufficient for the elevated PKCδ-activation.

      Strengths and weaknesses

      The authors use a combination of new fluorescent sensors and behavioral, imaging, and pharmacological protocols they already established to successfully identify the molecular players that bridge the requirement for spaced training/dopaminergic neurons MP1 oscillatory activity and the increased metabolic activity observed during long-term memory consolidation.<br /> The study is dense in new exciting findings and each methodological step is carefully designed. The experiments one could think of to make this link have been done in this study and the results seem solid.<br /> The discussion is well conducted, with interesting parallel with mammals, where the possibility that this process takes place as well is yet unknown.

      Impact

      Their findings should interest a large audience:<br /> They discover and investigate a new function for PKCδ in regulating memory processes in neurons in conjunction with other physiological functions, making this molecule a potentially valid target for neuropathological conditions. They also provide new tools in drosophila to measure PKCδ activation in cells. They identify the major players for lifting the energetic limitations preventing the formation of a long-term memory.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use the teleost medaka as an animal model to study the effect of seasonal changes in day-length on feeding behaviour and oocyte production. They report a careful analysis of how day-length affects female medakas and a thorough molecular genetic analysis of genes potentially involved in this process. They show a detailed analysis of two genes and include a mutant analysis of one gene to support their conclusions

      Strengths:

      The authors pick their animal model well and exploit the possibilities to examine in this laboratory model the effect of a key environmental influence, namely the seasonal changes of day-length. The phenotypic changes are carefully analysed and well-controlled. The mutational analysis of the agrp1 by a ko-mutant provides important evidence to support the conclusions. Thus this report exceeds previous findings on the function of agrp1 and npyb as regulators of food-intake and shows how in medaka these genes are involved in regulating the organismal response to an environmental change. It thus furthers our understanding of how animals react to key exogenous stimuli for adaptation.

      Weaknesses:

      The authors are too modest when it comes to underscoring the importance of their findings. Previous animal models used to study the effect of these neuropeptides on feeding behaviour have either lost or were most likely never sensitive to seasonal changes of day length. Considering the key importance of this parameter on many aspects of plant and animal life it could be better emphasised that a suitable animal model is at hand that permits this.<br /> The molecular characterization of the agrp1 ko-mutant that the authors have generated lacks some details that would help to appreciate the validity of the mutant phenotype. Additional data would help in this respect.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigated the mechanisms behind breeding season-dependent feeding behavior using medaka, a well-known photoperiodic species, as a model. Through a combination of molecular, cellular, and behavioral analyses, including tests with mutants, they concluded that AgRP1 plays a central role in feeding behavior, mediated by ovarian estrogenic signals.

      Strengths:

      This study offers valuable insights into the neuroendocrine mechanisms that govern breeding season-dependent feeding behavior in medaka. The multidisciplinary approach, which includes molecular and physiological analyses, enhances the scientific contribution of the research.

      Weaknesses:

      While medaka is an appropriate model for studying seasonal breeding, the results presented are insufficient to fully support the authors' conclusions.

      Specifically, methods and data analyses are incomplete in justifying the primary claims:<br /> - the procedure for the food intake assay is unclear;<br /> - the sample size is very small;<br /> - the statistical analysis is not always adequate.

      Additionally, the discussion fails to consider the possible role of other hormones that may be involved in the feeding mechanism.

    3. Reviewer #3 (Public review):

      Summary:

      Understanding the mechanisms whereby animals restrict the timing of their reproduction according to day length is a critical challenge given that many of the most relevant species for agriculture are strongly photoperiodic. However, the principal animal models capable of detailed genetic analysis do not respond to photoperiod so this has inevitably limited progress in this field. The fish model medaka occupies a uniquely powerful position since its reproduction is strictly restricted to long days and it also offers a wide range of genetic tools for exploring, in depth, various molecular and cellular control mechanisms.

      For these reasons, this manuscript by Tagui and colleagues is particularly valuable. It uses the medaka to explore links bridging photoperiod, feeding behaviour, and reproduction. The authors demonstrate that in female, but not male medaka, photoperiod-induced reproduction is associated with an increase in feeding, presumably explained by the high metabolic cost of producing eggs on a daily basis during the reproductive period. Using RNAseq analysis of the brain, they reveal that the expression of the neuropeptides agrp and npy that have been previously implicated in the regulation of feeding behaviour in mice are upregulated in the medaka brain during exposure to long photoperiod conditions. Unlike the situation in mice, these two neuropeptides are not co-expressed in medaka neurons, and food deprivation in medaka led to increases in agrp but also a decrease in npy expression. Furthermore, the situation in fish may be more complicated than in mice due to the presence of multiple gene paralogs for each neuropeptide. Exposure to long-day conditions increases agrp1 expression in medaka as the result of increases in the number of neurons expressing this neuropeptide, while the increase in npyb levels results from increased levels of expression in the same population of cells. Using ovariectomized medaka and in situ hybridization assays, the authors reveal that the regulation of agrp1 involves estrogen acting via the estrogen receptor esr2a. Finally, a loss of agrp1 function mutant is generated where the female mutants fail to show the characteristic increase in feeding associated with long-day enhanced reproduction as well as yielding reduced numbers of eggs during spawning.

      Strengths:

      This manuscript provides important foundational work for future investigations aiming to elucidate the coordination of photoperiod sensing, feeding activity, and reproduction function. The authors have used a combination of approaches with a genetic model that is particularly well suited to studying photoperiodic-dependent physiology and behaviour. The data are clear and the results are convincing and support the main conclusions drawn. The findings are relevant not only for understanding photopriodic responses but also provide more general insight into links between reproduction and feeding behaviour control.

      Weaknesses:

      Some experimental models used in this study, namely ovariectomized female fish and juvenile fish have not been analysed in terms of their feeding behaviour and so do not give a complete view of the position of this feeding regulatory mechanism in the context of reproduction status. Furthermore, the scope of the discussion section should be expanded to speculate on the functional significance of linking feeding behaviour control with reproductive function.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Shibata describes a method to assess rapidly fluctuating CpG sites (fCpGs) from single-cell methylation sequencing (sc-MeSeq) data. Assuming that fCpGs are largely consistent over time with changes induced by inheritable events during replication, the author infers lineage relationships in available brain-derived sc-MeSeq. Supplementing current lineage tracing through genomic and mitochondrial mosaic variants is an interesting concept that could supplement current work or allow additional lineage analysis in existing data.

      However, the author failed to convincingly show the power of fCpG analysis to determine lineages in the human brain. While the correlation with cellular division and distinction of cell types appears plausible and strong, the application to detect specific lineages is less convincing. Aspects of this might be due to a lack of clarity in presentation and erroneous use of developmental concepts. However, without addressing these problems it is challenging for a reader to come to the same conclusions as the author.

      On the flip side, this novel application of fCpGs will allow the re-use of existing sc-MeSeq to infer additional features that were previously unavailable, once the biological relevance has been further elucidated.

      Strengths:

      (1) Novel re-analysis application of methylation data to infer the status of fCpGs and the use as a lineage marker.

      (2) Application of this method to an innovative existing data set to benchmark this framework against existing developmental knowledge.

      Weaknesses:

      (1) Insufficient clarity when presenting results (this includes an incredible shortness of the methods section making an informed assessment very difficult). This makes it hard to fully grasp and evaluate the presented results.

      (2) Inconsistent or erroneous use of neurodevelopmental concepts which hinders appropriate interpretation of the results.

      (3) Lack of consideration for alternative explanations for the observed data (i.e., considering fCpGs as a cellular division clock that diverges over 'time').

    2. Reviewer #2 (Public review):

      The manuscript by Shibata proposed a potentially interesting idea that variation in methylcytosine across cells can inform cellular lineage in a way similar to single nucleotide variants (SNVs). The work builds on the hypothesis that the "replication" of methylcytosine, presumably by DNMT1, is inaccurate and produces stochastic methylation variants that are inherited in a cellular lineage. Although this notion can be correct to some extent, it does not account for other mechanisms that modulate methylcytosines, such as active gain of methylation mediated by DNMT3A/B activity and activity demethylation mediated by TET activity. In some cases, it is known that the modulation of methylation is targeted by sequence-specific transcription factors. In other words, inaccurate DNMT1 activity is only one of the many potential ways that can lead to methylation variants, which fundamentally weakens the hypothesis that methylation variants can serve as a reliable lineage marker. With that being said (being skeptical of the fundamental hypothesis), I want to be as open-minded as possible and try to propose some specific analyses that might better convince me that the author is correct. However, I suspect that the concept of methylation-based lineage tracing cannot be validated without some kind of lineage tracing experiment, which has been successfully demonstrated for scRNA-seq profiling but not yet for methylation profiling (one example is Delgado et al., nature. 2022).

      (1) The manuscript reported that fCpG sites are predominantly intergenic. The author should also score the overlap between fCpG sites and putative regulatory elements and report p-values. If fCpG sites commonly overlap with regulatory elements, that would increase the possibility that these sites being actively regulated by enhancer mechanisms other than maintenance methyltransferase activity.

      (2) The overlap between fCpG and regulatory sequence is a major alternative explanation for many of the observations regarding the effectiveness of using fCpG sites to classify cell types correctly. One would expect the methylation level of thousands of enhancers to be quite effective in distinguishing cell types based on the published single-cell brain methylome works.

      (3) The methylation level of fCpG sites is higher in hindbrain structures and lower in forebrain regions. This observation was interpreted as the hindbrain being the "root" of the methylation barcodes and, through "progressive demethylation" produced the methylation states in the forebrain. This interpretation does not match what is known about methylation dynamics in mammalian brains, in particular, there is no data supporting the process of "progressive demethylation". In fact, it is known that with the activation of DNMT3A during early postnatal development in mice or humans (Lister et al., 2013. Science), there is a global gain of methylation in both CH and CG contexts. This is part of the broader issue I see in this manuscript, which is that the model might be correct if "inaccurate mC replication" is the only force that drives methylation dynamics. But in reality, active enzymatic processes such as the activation of DNMT3A have a global impact on the methylome, and it is unclear if any signature for "inaccurate mC replication" survives the de novo methylation wave caused by DNMT3A activity.

      (3) Perhaps one way the author could address comment 3 is to analyze methylome data across several developmental stages in the same brain region, to first establish that the signal of "inaccurate mC replication" is robust and does not get erased during early postnatal development when DNMT3A deposits a large amount of de novo methylation.

      (4) The hypothesis that methylation barcodes are homogeneous among progenitor cells and more polymorphic in derived cells is an interesting one. However, in this study, the observation was likely an artifact caused by the more granular cell types in the brain stem, intermediate granularity in inhibitory cells, and highly continuous cell types in cortical excitatory cells. So, in other words, single-cell studies typically classify hindbrain cell types that are more homogenous, and cortical excitatory cells that are much more heterogeneous. The difference in cell type granularity across brain structures is documented in several whole-brain atlas papers such as Yao et al. 2023 Nature part of the BICCN paper package.

      (5) As discussed in comment 2, the author needs to assess whether the successful classification of cell types (brain lineage) using fCpG was, in fact, driven by fCpG sites overlapping with cell-type specific regulatory elements.

      (6) In Figure 5E, the author tried to address the question of whether methylation barcodes inform lineage or post-mitotic methylation remodeling. The Y-axis corresponds to distances in tSNE. However, tSNE involves non-linear scaling, and the distances cannot be interpreted as biological distances. PCA distances or other types of distances computed from high-dimensional data would be more appropriate.

    3. Reviewer #3 (Public review):

      Summary:

      In the manuscript entitled "Human Brain Barcodes", the author sought to use single-cell CpG methylation information to trace cell lineages in the human brain.

      Strengths:

      Tracing cell lineages in the human brain is important but technically challenging. Lineage tracing with single-cell CpG methylation would be interesting if convincing evidence exists.

      Weaknesses:

      As the author noted, "DNA methylation patterns are usually copied between cell division, but the replication errors are much higher compared to base replication". This unstable nature of CpG methylation would introduce significant problems in inferring the true cell lineage. The unreliable CpG methylation status also raises the question of what the "Barcodes" refer to in the title and across this study. Barcodes should be stable in principle and not dynamic across cell generations, as defined in Reference#1. It is not convincing that the "dynamic" CpG methylation fits the "barcodes" terminology. This problem is even more concerning in the last section of results, where CpG would fluctuate in post-mitotic cells.

    1. Reviewer #1 (Public review):

      Summary:

      This theoretical paper addresses how to optimize reward-rate-maximizing decisions in certain foraging-style environments. It presents a series of equations and graphical illustrations for quantities such as reward rates and time-related costs that a decision maker could estimate as a basis for such decisions. One of the main takeaways is that if the hypothetical agent underweights the time spent outside a focal reward pursuit relative to the time spent within it, this can predict a broadly realistic pattern of impatience in two alternative intertemporal choices paired with well-calibrated take-it-or-leave-it decisions. Another takeaway is that if the optimally estimated subjective value of a reward pursuit is plotted as a function of a range of temporal durations, the result resembles a hyperbolic discounting function and is affected in empirically realistic ways by the magnitude and sign of the reward. Thus, the rate-maximization framework might lead to a hypothesis about the basis for the magnitude and sign effects in discounting.

      Strengths:

      The paper makes a useful contribution by broadening the application of reward-rate maximization to time-related decision scenarios. The paper's breadth of scope includes applying the same framework to accept/reject decisions and multi-alternative discounting decisions. The figures take a creative approach to illustrating the internal quantities in the model. It's particularly useful that the paper gives consideration to internal distortions that could give rise to documented anomalies in decision behavior.

      Weaknesses:

      (1) Although there are many citations acknowledging relevant previous work, there often isn't a very granular attribution of individual previous findings to their sources. In the results section, it's sometimes ambiguous when the paper is recapping established background and when it is breaking new ground. For example, around equation 8 in the results (sv = r - rho*t), it would be good to refer to previous places where versions of this equation have been presented. Offhand, McNamara 1982 (Theoretical Population Biology) is one early instance and Fawcett et al. 2012 (Behavioural Processes) is a later one. Line 922 of the discussion seems to imply this formulation is novel here.

      (2) The choice environments that are considered in detail in the paper are very simple. The simplicity facilitates concrete examples and visualizations, but it would be worth further consideration of whether and how the conclusions generalize to more complex environments. The paper considers "forgo" scenario in which the agent can choose between sequences of pursuits like A-B-A-B (engaging with option B at all opportunities, which are interleaved with a default pursuit A) and A-A-A-A (forgoing option B). It considers "choice" scenarios where the agent can choose between sequences like A-B-A-B and A-C-A-C (where B and C are larger-later and smaller-sooner rewards, either of which can be interleaved with the default pursuit). Several forms of additional complexity would be valuable to consider. One would be a greater number of unique pursuits, not repeated identically in a predictable sequence, akin to a prey-selection paradigm. It seems to me this would cause t_out and r_out (the time and reward outside of the focal prospect) to be policy-dependent, making the 'apportionment cost' more challenging to ascertain. Another relevant form of complexity would be if there were variance or uncertainty in reward magnitudes or temporal durations or if the agent had the ability to discontinue a pursuit such as in patch-departure scenarios.

      (3) I had a hard time arriving at a solid conceptual understanding of the 'apportionment cost' around Figure 5. I understand the arithmetic, but it would help if it were possible to formulate a more succinct verbal description of what makes the apportionment cost a useful and meaningful quality to focus on. I think Figure 6C relates to this, but I had difficulty relating the axis labels to the points, lines, and patterned regions in the plot. I also was a bit confused by how the mathematical formulation was presented. As I understood it, the apportionment cost essentially involves scaling the rest of the SV expression by t_out/(t_in + t_out). The way this scaling factor is written in Figure 5C, as 1/(1 + (1/t_out)t_in), seems less clear than it could be. Also, the apportionment cost is described in the text as being subtracted from SV rather than as a multiplicative scaling factor. It could be written as a subtraction, by subtracting a second copy of the rest of the SV expression scaled by t_in/(t_in + t_out). But that shows the apportionment cost to depend on the opportunity cost, which is odd because the original motivation on line 404 was to resolve the lack of independence between terms in the SV expression.

      (4) In the analysis of discounting functions (line 664 and beyond), the paper doesn't say much about the fact that many discounting studies take specific measures to distinguish true time preferences from opportunity costs and reward-rate maximization. In many of the human studies, delay time doesn't preclude other activities. In animal studies, rate maximization can serve as a baseline against which to measure additional effects of temporal discounting. This is an important caveat to claims about discounting anomalies being rational under rate maximization (e.g., line 1024).

      (5) The paper doesn't feature any very concrete engagement with empirical data sets. This is ok for a theoretical paper, but some of the characterizations of empirical results that the model aims to match seem oversimplified. An example is the contention that real decision-makers are optimal in accept/reject decisions (line 816 and elsewhere). This isn't always true; sometimes there is evidence of overharvesting, for example.

      (6) Related to the point above, it would be helpful to discuss more concretely how some of this paper's theoretical proposals could be empirically evaluated in the future. Regarding the magnitude and sign effects of discounting, there is not a very thorough overview of the several other explanations that have been proposed in the literature. It would be helpful to engage more deeply with previous proposals and consider how the present hypothesis might make unique predictions and could be evaluated against them. A similar point applies to the 'malapportionment hypothesis' although in this case there is a very helpful section on comparisons to prior models (line 1163). The idea being proposed here seems to have a lot in common conceptually with Blanchard et al. 2013, so it would be worth saying more about how data could be used to test or reconcile these proposals.

    2. Reviewer #2 (Public review):

      Summary:

      This paper from Sutlief et al. focuses on an apparent contradiction observed in experimental data from two related types of pursuit-based decision tasks. In "forgo" decisions, where the subject is asked to choose whether or not to accept a presented pursuit, after which they are placed into a common inter-trial interval, subjects have been shown to be nearly optimal in maximizing their overall rate of reward. However, in "choice" decisions, where the subject is asked which of two mutually-exclusive pursuits they will take, before again entering a common inter-trial interval, subjects exhibit behavior that is believed to be sub-optimal. To investigate this contradiction, the authors derive a consistent reward-maximizing strategy for both tasks using a novel and intuitive geometric approach that treats every phase of a decision (pursuit choice and inter-trial interval) as vectors. From this approach, the authors are able to show that previously reported examples of sub-optimal behavior in choice decisions are in fact consistent with a reward-maximizing strategy. Additionally, the authors are able to use their framework to deconstruct the different ways the passage of time impacts decisions, demonstrating that time cost contains both an opportunity cost and an apportionment cost, as well as examining how a subject's misestimation of task parameters impacts behavior.

      Strengths:

      The main strength of the paper lies in the authors' geometric approach to studying the problem. The authors chose to simplify the decision process by removing the highly technical and often cumbersome details of evidence accumulation that are common in most of the decision-making literature. In doing so, the authors were able to utilize a highly accessible approach that is still able to provide interesting insights into decision behavior and the different components of optimal decision strategies.

      Weaknesses:

      While the details of the paper are compelling, the authors' presentation of their results is often unclear or incomplete:

      (1) The mathematical details of the paper are correct but contain numerous notation errors and are presented as a solid block of subtle equation manipulations. This makes the details of the authors' approach (the main contribution of the paper to the field) highly difficult to understand.

      (2) One of the main contributions of the paper is the notion that time cost in decision-making contains an apportionment cost that reflects the allocation of decision time relative to the world. The authors use this cost to pose a hypothesis as to why subjects exhibit sub-optimal behavior in choice decisions. However, the equation for the apportionment cost is never clearly defined in the paper, which is a significant oversight that hampers the effectiveness of the authors' claims.

      (3) Many of the paper's figures are visually busy and not clearly detailed in the captions (for example, Figures 6-8). Because of the geometric nature of the authors' approach, the figures should be as clean and intuitive as possible, as in their current state, they undercut the utility of a geometric argument.

      (4) The authors motivate their work by focusing on previously-observed behavior in decision experiments and tell the reader that their model is able to qualitatively replicate this data. This claim would be significantly strengthened by the inclusion of experimental data to directly compare to their model's behavior. Given the computational focus of the paper, I do not believe the authors need to conduct their own experiments to obtain this data; reproducing previously accepted data from the papers the authors' reference would be sufficient.

      (5) While the authors reference a good portion of the decision-making literature in their paper, they largely ignore the evidence-accumulation portion of the literature, which has been discussing time-based discounting functions for some years. Several papers that are both experimentally-(Cisek et al. 2009, Thurs et al. 2012, Holmes et al. 2016) and theoretically-(Drugowitsch et al. 2012, Tajima et al. 2019, Barendregt et al. 22) driven exist, and I would encourage the authors to discuss how their results relate to those in different areas of the field.

    3. Reviewer #3 (Public review):

      Summary:

      The goal of the paper is to examine the objective function of total reward rate in an environment to understand the behavior of humans and animals in two types of decision-making tasks: (1) stay/forgo decisions and (2) simultaneous choice decisions. The main aims are to reframe the equation of optimizing this normative objective into forms that are used by other models in the literature like subjective value and temporally discounted reward. One important contribution of the paper is the use of this theoretical analysis to explain apparent behavioral inconsistencies between forgo and choice decisions observed in the literature.

      Strengths:

      The paper provides a nice way to mathematically derive different theories of human and animal behavior from a normative objective of global reward rate optimization. As such, this work has value in trying to provide a unifying framework for seemingly contradictory empirical observations in literature, such as differentially optimal behaviors in stay-forgo v/s choice decision tasks. The section about temporal discounting is particularly well motivated as it serves as another plank in the bridge between ecological and economic theories of decision-making.

      Weaknesses:

      One broad issue with the paper is readability. Admittedly, this is a complicated analysis involving many equations that are important to grasp to follow the analyses that subsequently build on top of previous analyses.

      But, what's missing is intuitive interpretations behind some of the terms introduced, especially the apportionment cost without referencing the equations in the definition so the reader gets a sense of how the decision-maker thinks of this time cost in contrast with the opportunity cost of time.

      Re-analysis of some existing empirical data through the lens of their presented objective functions, especially later when they describe sources of error in behavior.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Shan, Guo, Zhang, Chen et al., shows a raft of interesting data including the first cryo-EM structures of human PIEZO1. Clearly, the molecular basis of PIEZO channel inactivation is of great interest and as such this manuscript provides some valuable extra information that may help to ultimately build a molecular picture of PIEZO channel inactivation. However, the current manuscript though does not provide any compelling evidence for a detailed mechanism of PIEZO inactivation.

      Strengths:

      This manuscript documents the first cryo-EM structures of human PIEZO1 and the gain of function mutants associated with hereditary anaemia. It is also the first evidence showing that PIEZO1 gain of function mutants are also regulated by the auxiliary subunit MDFIC.

      Weaknesses:

      While the structures are interesting and clear differences can be seen in the presence of the auxiliary subunit MDFIC the major conclusions and central tenets of the paper, especially a role for pore lipids in inactivation, lack data to support them. The post-translational modification of PIEZOs auxiliary subunit MDFIC is not modelled as a covalent interaction.

    2. Reviewer #2 (Public review):

      Summary:

      Mechanically activated ion channels PIEZOs have been widely studied for their role in mechanosensory processes like touch sensation and red blood cell volume regulation. PIEZO in vivo roles are further exemplified by the presence of gain-of-function (GOF) or loss-of-function (LOF) mutations in humans that lead to disease pathologies. Hereditary xerocytosis (HX) is one such disease caused due to GOF mutation in Human PIEZO1, which are characterized by their slow inactivation kinetics, the ability of a channel to close in the presence of stimulus. But how these mutations alter PIEZO1 inactivation or even the underlying mechanisms of channel inactivation remains unknown. Recently, MDFIC (myoblast determination family inhibitor proteins) was shown to directly interact with mouse PIEZO1 as an auxiliary subunit to prolong inactivation and alter gating kinetics. Furthermore, while lipids are known to play a role in the inactivation and gating of other mechanosensitive channels, whether this mechanism is conserved in PIEZO1 is unknown. Thus, the structural basis for PIEZO1 inactivation mechanism, and whether lipids play a role in these mechanisms represent important outstanding questions in the field and have strong implications for human health and disease.

      To get at these questions, Shan et al. use cryogenic electron microscopy (Cryo-EM) to investigate the molecular basis underlying differences in inactivation and gating kinetics of PIEZO1 and human disease-causing PIEZO1 mutations. Notably, the authors provide the first structure of human PIEZO1 (hPIEZO1), which will facilitate future studies in the field. They reveal that hPIEZO1 has a more flattened shape than mouse PIEZO1 (mPIEZO1) and has lipids that insert into the hydrophobic pore region. To understand how PIEZO1 GOF mutations might affect this structure and the underlying mechanistic changes, they solve structures of hPIEZO1 as well as two HX-causing mild GOF mutations (A1988V and E756del) and a severe GOF mutation (R2456H). Unable to glean too much information due to poor resolution of the mutant channels, the authors also attempt to resolve MCFIC-bound structures of the mutants. These structures show that MDFIC inserts into the pore region of hPIEZO1, similar to its interaction with mPIEZO1, and results in a more curved and contracted state than hPIEZO1 on its own. The authors use these structures to hypothesize that differences in curvature and pore lipid position underlie the differences in inactivation kinetics between wild-type hPIEZO1, hPIEZO1 GOF mutations, and hPIEZO1 in complex with MDFIC.

      Strengths:

      This is the first human PIEZO1 structure. Thus, these studies become the stepping stone for future investigations to better understand how disease-causing mutations affect channel gating kinetics.

      Weaknesses:

      Many of the hypotheses made in this manuscript are not substantiated with data and are extrapolated from mid-resolution structures.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors used structural biology approaches to determine the molecular mechanism underlying the inactivation of the PIEZO1 ion channel. To this end, the authors presented structures of human PIEZO1 and its slow-inactivating mutants. The authors also determined the structures of these PIEZO1 constructs in complexes with the auxiliary subunit MDFIC, which substantially slows down PIEZO1 inactivation. From these structures, the authors suggested an anti-correlation between the inactivation kinetics and the resting curvature of PIEZO1 in detergent. The authors also observed a unique feature of human PIEZO1 in which the lipid molecules plugged the channel pore. The authors proposed that these lipid molecules could stabilize human PIEZO1 in a prolonged inactivated state.

      Strengths:

      Notedly, this manuscript reported the first structures of a human PIEZO1 channel, its channelopathy mutants, and their complexes with MDFIC. The evidence that lipid molecules could occupy the channel pore of human PIEZO1 is solid. The authors' proposals to correlate PIEZO1 resting curvature and pore-resident lipid molecules with the inactivation kinetics are novel and interesting.

      Weaknesses:

      However, in my opinion, additional evidence is needed to support the authors' proposals.

      (1) The authors determined the apo structure of human PIEZO1, which showed a more flattened architecture than that of the mouse PIEZO1. Functionally, the inactivation kinetics of human PIEZO1 is faster than its mouse counterpart. From this observation (and some subsequent observations such as the complex with MDFIC), the authors proposed the anti-correlation between curvature and inactivation kinetics. However, the comparison between human and mouse PIEZO1 structure might not be justified. For example, the human and mouse structures were determined in different detergent environments, and the choice of detergent could influence the resting curvature of the PIEZO structures.

      (2) Related to point 1), the 3.7 Ã… structure of the A1988V mutant presented by the authors showed a similar curvature as the WT but has a slower inactivating kinetics.

      (3) Related to point 1), the authors stated that human PIEZO1 might not share the same mechanism as mouse PIEZO1 due to its unique properties. For example, MDFIC only modifies the curvature of human PIEZO1, and lipid molecules were only observed in the pore of the human PIEZO1. Therefore, it may not be justified to draw any conclusions by comparing the structures of PIEZO1 from humans and mice.

      (4) Related to point 1), it is well established that PIEZO1 opening is associated with a flattened structure. If the authors' proposal were true, in which a more flattened structure led to faster inactivation, we would have the following prediction: more opening is associated with faster inactivation. In this case, we would expect a pressure-dependent increase in the inactivation kinetics. Could the authors provide such evidence, or provide other evidence along this direction?

      (5) In Figure S2, the authors showed representative experiments of the inactivation kinetics of PIEZO1 using whole-cell poking. However, poking experiments have high cell-to-cell variability. The authors should also show statics of experiments obtained from multiple cells.

      (6) In Figure 2 and Figure 5, when the authors show the pore diameter, it could be helpful to also show the side chain densities of the pore lining residues.

      (7) The authors observed pore-plugging lipids in slow inactivating conditions such as channelopathy mutations or in complex with MDFIC. The authors propose that these lipid molecules stabilize a "deep resting state" of PIEZO1, making it harder to open and harder to inactivate once opened. This will lead to the prediction that the slow-inactivating conditions will lead to a higher activation threshold, such as the mid-point pressure in the activation curve. Is this true?

    1. Reviewer #1 (Public review):

      Summary:

      The concept that trained immunity, as defined, can be beneficial to subsequent immune challenges is important in the broad context of health and disease. The significance of this manuscript is the finding that trained immunity is actually a two-edged sword, herein, detrimental in the context of LPS-induced Acute Lung Injury that is mediated by AMs.

      Strengths:

      Several lines of evidence in different mouse models support this conclusion. The postulation that differences in immune responses in individuals are linked to differences in the mycobiome and consequent B-glucan makeup is provocative.

      Weaknesses:

      The findings that the authors state are relevant to sepsis, are actually confined to a specific lung injury model and not classically-defined sepsis. In addition, the ontogeny of the reprogrammed AMs is uncertain. Links in the proposed signaling pathways need to be strengthened.

    2. Reviewer #2 (Public review):

      Summary:

      Prével et al. present an in vivo study in which they reveal an interesting aspect of β-glucan, a known inducer of enhanced immune responses termed trained immunity in sterile inflammation. The authors can show, that β-glucan's can reprogram alveolar macrophages (AMs) in the lungs through neutrophils and IFNγ signaling and independent of Dectin1. This reprogramming occurs at both transcriptional and metabolic levels. After β-glucan training, LPS-induced sterile inflammation exacerbated acute lung injury via enhanced immunopathology. These findings highlight a new aspect of β-glucan's role in trained immunity and its potential detrimental effects when enhanced pathogen clearance is not required.

      Strengths:

      (1) This manuscript is well-written and effectively conveys its message.

      (2) The authors provide important evidence that β-glucan training is not solely beneficial, but depending on the context can also enhance immunopathology. This will be important to the field for two reasons. It shows again, that trained immunity can also be harmful. Jentho et al. 2021 have already provided further evidence for this aspect. And it highlights anew that LPS application is an insufficient infection model.

      Weaknesses:

      (1) Only a little physiological data is provided by the in vivo models.

      (2) The effects in histology appear to be rather weak.

    1. Reviewer #1 (Public Review):

      Summary:

      This study investigates the hypoxia rescue mechanisms of neurons by non-neuronal cells in the brain from the perspective of exosomal communication between brain cells. Through multi-omics combined analysis, the authors revealed this phenomenon and logically validated this intercellular rescue mechanism under hypoxic conditions through experiments. The study proposed a novel finding that hemoglobin maintains mitochondrial function, expanding the conventional understanding of hemoglobin. This research is highly innovative, providing new insights for the treatment of hypoxic encephalopathy.

      Overall, the manuscript is well organized and written, however, there are some minor/major points that need to be revised before this manuscript is accepted.

      Major points:

      (1) Hypoxia can induce endothelial cells to release exosomes carrying hemoglobin, however, how neurons are able to actively take up these exosomes? It is possible for other cells to take up these exosomes also? This point needs to be clarified in this study.

      (2) The expression of hemoglobin in neurons is important for mitochondrial homeostasis, but its relationship with mitochondrial homeostasis needs to be further elucidated in the study.

    2. Reviewer #2 (Public Review):

      Summary:

      This is an interesting study with a lot of data. Some of these ideas are intriguing. But a few major points require further consideration.

      Major points:

      (1) What disease is this model of whole animal hypoxia supposed to mimic? If one is focused on the brain, can one just use a model of focal or global cerebral ischemia?

      (2) If this model subjects the entire animal to hypoxia, then other organs will also be hypoxic. Should one also detect endothelial upregulation and release of extracellular vesicles containing hemoglobin mRNA in non-CNS organs? Where do these vesicles go? Into blood?

      (3) What other mRNA are contained in the vesicles released from brain endothelial cells?

      (4) Where do the endothelial vesicles go? Only to neurons? Or to other cells as well?

      (5) Neurons can express endogenous hemoglobin. Is it useful to subject neurons to hypoxia and then see how much the endogenous mRNA goes up? How large is the magnitude of endogenous hemoglobin gene upregulation compared to the hypothesized exogenous mRNA that is supposed to be donated from endothelial vesicles?

      (6) Finally, it may be useful to provide more information and data to explain how the expression of this exogenous endothelial-derived hemoglobin binds to neuronal mitochondria to alter function.

    1. Reviewer #1 (Public review):

      The authors examine how probabilistic reversal learning is affected by dopamine by studying the effects of methamphetamine (MA) administration. Based on prior evidence that the effects of pharmacological manipulation depend on baseline neurotransmitter levels, they hypothesized that MA would improve learning in people with low baseline performance. They found this effect, and specifically found that MA administration improved learning in noisy blocks, by reducing learning from misleading performance, in participants with lower baseline performance. The authors then fit participants' behavior to a computational learning model and found that an eta parameter, responsible for scaling learning rate based on previously surprising outcomes, differed in participants with low baseline performance on and off MA.

      Questions:

      (1) It would be helpful to confirm that the observed effect of MA on the eta parameter is responsible for better performance in low baseline performers. If performance on the task is simulated for parameters estimated for high and low baseline performers on and off MA, does the simulated behavior capture the main behavioral differences shown in Figure 3?

      (2) In Figure 4C, it appears that the main parameter difference between low and high baseline performance is inverse temperature, not eta. If MA is effective in people with lower baseline DA, why is the effect of MA on eta and not IT?

      Also, this parameter is noted as temperature but appears to be inverse temperature as higher values are related to better performance. The exact model for the choice function is not described in the methods.

    2. Reviewer #2 (Public review):

      Summary:

      Kirschner and colleagues test whether methamphetamine (MA) alters learning rate dynamics in a validated reversal learning task. They find evidence that MA can enhance performance for low-performers and that the enhancement reflects a reduction in the degree to which these low-performers dynamically up-regulate their learning rates when they encounter unexpected outcomes. The net effect is that poor performers show more volatile learning rates (e.g. jumping up when they receive misleading feedback), when the environment is actually stable, undermining their performance over trials.

      Strengths:

      The study has multiple strengths including large sample size, placebo control, double-blind randomized design, and rigorous computational modeling of a validated task.

      Weaknesses:

      The limitations, which are acknowledged, include that the drug they use, methamphetamine, can influence multiple neuromodulatory systems including catecholamines and acetylcholine, all of which have been implicated in learning rate dynamics. They also do not have any independent measures of any of these systems, so it is impossible to know which is having an effect.

      Another limitation that the authors should acknowledge is that the fact that participants were aware of having different experiences in the drug sessions means that their blinding was effectively single-blind (to the experimenters) and not double-blind. Relatedly, it is difficult to know whether subjective effects of drugs (e.g. arousal, mood, etc.) might have driven differences in attention, causing performance enhancements in the low-performing group. Do the authors have measures of these subjective effects that they could include as covariates of no interest in their analyses?

    3. Reviewing Editor (Public Review):

      Summary:

      In this well-written paper, a pharmacological experiment is described in which a large group of volunteers is tested on a novel probabilistic reversal learning task with different levels of noise, once after intake of methamphetamine and once after intake of placebo. The design includes a separate baseline session, during which performance is measured. The key result is that drug effects on learning rate variability depend on performance in this separate baseline session.

      The approach and research question are important, the results will have an impact, and the study is executed according to current standards in the field. Strengths include the interventional pharmacological design, the large sample size, the computational modeling, and the use of a reversal-learning task with different levels of noise.

      (i) One novel and valuable feature of the task is the variation of noise (having 70-30 and 80-20 conditions). This nice feature is currently not fully exploited in the modeling of the task and the data. For example, recently reported new modeling approaches for disentangling two types of uncertainty (stochasticity vs volatility) could be usefully leveraged here (by Piray and Daw, 2021, Nat Comm). The current 'signal to noise ratio' analysis that is targeting this issue relies on separately assessing learning rates on true reversals and learning rates after misleading feedback, in a way that is experimenter-driven. As a result, this analysis cannot capture a latent characteristic of the subject's computational capacity.

      (ii) An important caveat is that all the drug x baseline performance interactions, including for the key computational eta parameter did not reach the statistical threshold, and only tended towards significance.

      (iii) Both the overlap and the differences between the current study and previous relevant work (that is, how this goes beyond prior studies in particular Rostami Kandroodi et al, which also assessed effects of catecholaminergic drug administration as a function of baseline task performance using a probabilistic reversal learning task) are not made explicit, particularly in the introduction.

      (iv) In the discussion, it is stated that the existing literature has, to date, overlooked baseline performance effects, but this is not true in the general sense, given that an accumulating number of studies have shown that the effects of drugs like MA depend on baseline performance on working memory tasks, which often but certainly not always correlates positively with performance on the task under study.

    1. Reviewer #1 (Public review):

      Summary:

      The current work explored the link between the pulvinar intrinsic organisation and its functional and structural connectivity patterns of the cortex using different dimensional reduction techniques. Overall they find relationships between pulvinar-cortical organization and cortico-cortical organization, and little evidence for clustered organization. Moreover, they investigate PET maps to understand how neurotransmitter/receptor distributions vary within the pulvinar and along its structural and functional connectivity axes.

      Strengths:

      There is a replication dataset and different modalities are compared against each other to understand the structural and functional organisation of the pulvinar complex.

      Weaknesses:

      (1) What is the motivation of the study and how does this work extend previous assessments of the organization of the complete thalamus within the gradient framework?

      (2) Why is the current atlas chosen for the delineation of the pulvinar and individualised maps not considered? Given the size of the pulvinar, more validation of the correctness of the atlas may be helpful.

      (3) Overall the study feels a little incremental and a repetition of what others have done already in the thalamus. It would be good to know how focussing only on the pulvinar changes interpretation, for example by comparing thalamic and pulvinar gradients?

      (4) Could it be that the gradient patterns stem from lacking anatomical and functional resolutions (or low SNR) therefore generating no sharp boundaries?

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to explore and better understand the complex topographical organization of the human pulvinar, a brain region crucial for various high-order functions such as perception and attention. They sought to move beyond traditional histological subdivisions by investigating continuous 'gradients' of cortical connections along the dorsoventral and mediolateral axes. Using advanced imaging techniques and a comprehensive PET atlas of neurotransmitter receptors, the study aimed to identify and characterize these gradients in terms of structural connections, functional coactivation, and molecular binding patterns. Ultimately, the authors targeted to provide a more nuanced understanding of pulvinar anatomy and its implications for brain function in both healthy and diseased states.

      Strengths:

      A key strength of this study lies in the authors' effort to comprehensively combine multimodal data, encompassing both functional and structural connectomics, alongside the analysis of major neurotransmitter distributions. This approach enabled a more nuanced understanding of the overarching organizational principles of the pulvinar nucleus within the broader context of whole-brain connectivity. By employing cortex-wide correlation analyses of multimodal embedding patterns derived from 'gradients,' which provide spatial maps reflecting the underlying connectomic and molecular similarities across voxels, the study offers a thorough characterization of the functional neuroanatomy of the pulvinar.

      Weaknesses:

      Despite its strengths, the current manuscript falls short in presenting the authors' unique perspectives on integrating the diverse biological principles derived from the various neuroimaging modalities. The findings are predominantly reported as correlations between different gradient maps, without providing the in-depth interpretations that would allow for a more comprehensive understanding of the pulvinar's role as a central hub in the brain's network. Another limitation of the study is the lack of clarity regarding the application of pulvinar and its subnuclei segmentation maps to individual brains prior to BOLD signal extraction and gradient reconstruction. This omission raises concerns about the precision and reproducibility of the findings, leaving their robustness less transparently evaluable.

    3. Reviewer #3 (Public review):

      Summary of the Study:

      The authors investigate the organization of the human pulvinar by analyzing DWI, fMRI, and PET data. The authors explore the hypothesis of the "replication principle" in the pulvinar.

      Strengths and Weaknesses of the Methods and Results:

      The study effectively integrates diverse imaging modalities to provide a view of the pulvinar's organization. The use of analysis techniques, such as diffusion embedding-driven gradients combined with detailed interpretations of the pulvinar, is a strength.

      Even though the study uses the best publicly available resolution possible with current MR-technology, the pulvinar is densely packed with many cell bodies, requiring even higher spatial resolution. In addition, the model order selection of gradients may vary with the acquired data quality. Therefore, the pulvinar's intricate organization needs further exploration with even higher spatial resolution to capture gradients closer to the biological organization of the pulvinar.

      Appraisal of the Study's Aims and Conclusions:

      The authors delineate the gradient organization of the pulvinar. The study provides a basis for understanding the pulvinar's role in mediating brain network communication.

      Impact and Utility of the Work:

      This work contributes to the field by offering insights into pulvinar organization.

    1. Reviewer #1 (Public review):

      Summary:

      The overall analysis and discovery of the common motif is important and exciting. Very few human/primate ribozymes have been published and this manuscript presents a detailed analysis of two of them. The minimized domains appear to be some of the smallest known self-cleaving ribozymes.

      Strengths:

      The manuscript is rooted in deep mutational analysis of the human OR4K15 and LINE1 ribozymes and subsequently in modeling of their active site based on the closely-related core of the TS ribozyme. The experiments support the HTS findings and provide convincing evidence that the ribozymes are structurally related to the core of the TS ribozyme, which has not been found in primates prior to this work.

    1. Reviewer #1 (Public review):

      Summary:

      The aim of the present work is to evaluate the role of BMP9 and BMP10 in liver by depleting Bmp9 and Bmp10 from the main liver cell types (endothelial cells (EC), hepatic stellate cells (HSC), Kupffer cells (KC) and hepatocytes (H)) using cell-specific cre recombinases. They show that HSCs are the main source of BMP9 and BMP10 in the liver. Using transgenic ALK1 reporter mice, they show that ALK1, the high affinity type 1 receptor for BMP9 and BMP10, is expressed on KC and EC. They have also performed bulk RNAseq analyses on whole liver, and cell-sorted EC and KC, and showed that loss of Bmp9 and Bmp10 decreased KC signature and that KC are replaced by monocyte-derived macrophages. EC derived from these Bmp9fl/flBmp10fl/flLratCre mice also lost their identity and transdifferentiated into continuous ECs. Liver iron metabolism and metabolic zonation were also affected in these mice. In conclusion, this work supports that BMP9 and BMP10 produced by HSC play a central role in mediating liver cell-cell crosstalk and liver homeostasis.

      Strengths:

      This work further supports the role of BMP9 and BMP10 in liver homeostasis. Using a specific HSC-Cre recombinase, the authors show for the first time that it is the BMP9 and BMP10 produced by HSC that play a central role in mediating liver cell-cell crosstalk to maintain a healthy liver. Although the overall message of the key role of BMP9 in liver homeostasis has been described by several groups, the role of hepatic BMP10 has not been studied before. Thus, one of the novelties of this work is to have used liver cell specific Cre recombinase to delete hepatic Bmp9 and Bmp10. The second novelty is the demonstration of the role of BMP9 and BMP10 in KC Differentiation/homeostasis which has already been slightly addressed by this group by knocking out ALK1, the high affinity receptor of BMP9 and BMP10 (Zhao et al. JCI, 2022).

      Weaknesses:

      This work remains rather descriptive and the molecular mechanisms are barely touched upon and could have been more explored.

    1. Reviewer #1 (Public review):

      The study by Korona and colleagues presents a rigorous experimental strategy for generating and maintaining a nearly complete set of monosomic yeast lines, thereby establishing a new standard for studying monosomes. Their careful approach in generating and handling monosome yeast lines, coupled with their use of high-throughput DNA sequencing and RNA sequencing, addresses concerns related to genomic instability and is commendable. However, I would like to express my concerns regarding the second part of the study, particularly the calculation of epistasis and the conclusion that vast positive epistatic effects have been observed. I believe that the conclusion of positive epistasis for fitness might be premature due to potential errors in estimating the expected fitness.

      The method used to calculate fitness expectation (1 + sum(di), where di = rDRi - 1) may be inappropriate. The logarithm transformation mentioned by the authors is designed to transform the exponential growth curve into a linear relation for estimating doubling rate, and thus the fitness expectation should be calculated as the product of rDRi values. As an illustration, if gene A exhibits a 20% reduction in fitness when halved (A/-) and gene B exhibits a 30% reduction (B/-), the expected fitness of A/- B/- should be 56%, rather than the 50% estimated in the study. In other words, the formula used by the authors could underestimate the fitness expectation.

      This issue is evident in Figure 2b, where negative values were obtained due to the use of an incorrect formula for estimating fitness expectations. It is worth noting that Figure 2a shows rDR values around one, indicating that no further logarithmic transformation was applied.

      While widespread positive epistasis in yeast has been reported by other studies (e.g., doi: 10.1038/ng.524, but not to the extent reported in this study), the conclusion of the current study might not be sufficiently supported. I recommend that the authors revisit their calculation methods to provide a more convincing conclusion on the presence of positive epistasis for fitness in their dataset. Overall, I appreciate the authors' efforts in this study but believe that addressing these concerns is essential for strengthening the validity of their findings.

      Comments on revised version:

      The authors have adequately addressed all my previous concerns during revision.

    2. Reviewer #2 (Public review):

      This study examines monosomies in yeast in comparison to synthetic lethals resulting from combinations of heterozygous gene deletions that individually have a detrimental effect. The survival of monosomies, albeit with detrimental growth defects, is interpreted as positive epistasis for fitness. Gene expression was examined in monosomies in an attempt to gain insight into why monosomies can survive when multiple heterozygous deletions on the respective chromosome do not. In the RNAseq experiments, many genes were interpreted to be increased in expression and some were interpreted as reduced. Those with the apparent strongest increase were the subunits of the ribosome and those with the apparent strongest decreases were subunits of the proteasome.

      The initiation and interpretation of the results were apparently performed in a vacuum of a century of work on genomic balance. Classical work in the flowering plant Datura and in Drosophila found that changes in chromosomal dosage would modulate phenotypes in a dosage sensitive manner (for references see Birchler and Veitia, 2021, Cytogenetics and Genome Research 161: 529-550). In terms of molecular studies, the most common modulation across the genome for monosomies is an upregulation (Guo and Birchler, Science 266: 1999-2002; Shi et al. 2021, The Plant Cell 33: 917-939).

      It was also apparently performed in a vacuum of results of evolutionary genomics that indicate the classes of genes for which dosage causes fitness consequences. It was from yeast genomics that it was realized that there is a difference in the fate of duplicate genes that are members of molecular complexes following whole genome duplications (WGD) versus small segmental duplications (SSD) with longer retention times from WGD than other genes and an underrepresentation in small scale duplications (e.g. Papp et al. 2003, Nature 424: 194-197; Hakes et al 2007, Genome Biol 8: R209). This pattern arises from negative fitness consequences of deletion of some but not all members of a complex after WGD or the overexpression of individual subunits after SSD (Defoort et al., 2019 Genome Biol Evol 11: 2292-2305; Shi et al., 2020, Mol Biol Evol 37: 2394-2413). In order for this pattern to occur, there must be a reasonably close relationship between mRNA and the respective protein levels. This pattern of retention and underrepresentation has been found throughout eukaryotes (e.g. Tasdighian et al 2017, Plant Cell 29: 2766-2785) indicating that yeast is not an outlier in its behavior.

      In the present yeast study, not only are there apparent increases for ribosomal subunits but also for many genes in the GAAC pathway, the NCR pathway, and Msn2p. The word "apparent" is used because RNAseq studies can only determine relative changes in gene expression (Loven et al., 2012, Cell 151: 476-482). Because aneuploidy can change the transcriptome size in general (Yang et al., 2021, The Plant Cell 33: 1016-1041), it is possible and maybe probable that this occurs in yeast monosomies as well. If there is an increase in the general transcriptome size, then there might not be as much reduction of the proteosome subunits as claimed and the increases might be somewhat less than indicated.

      Indeed, the authors claim that there is an increased cell volume in the monosomies. Given that cell volume correlates very well with the total transcriptome size (Loven et al., 2012, Cell 151: 476-482; Sun et al 2020, Current Biol 30: 1217-1230; Swaffer et al., 2023, Cell 186: 5254-5268), it could well be that there is an increased transcriptome size in the monosomies. Thus, the interpretation of the relative changes from RNAseq is compromised.

      It should be noted that contrary to the claims of the cited paper of Torres et al 2007 (Science 317: 916-924), a reanalysis of the data indicated that yeast disomies have many modulated genes in trans with downregulated genes being more common (Hou et al, 2018, PNAS 115: E11321-E11330). The claim of Torres et al that there are no global modulations in trans is counter to the knowledge that transcription factors are typically dosage sensitive and have multiple targets across the genome. The inverse effect trend is also true of maize disomies (Yang et al., 2021, The Plant Cell 33: 1016-1041), maize trisomies (Shi et al., 2021), Arabidopsis trisomies (Hou et al. 2018), Drosophila trisomies (Sun et al. 2013, PNAS 110: 7383-7388; Sun et al., 2013, PNAS 110: 16514-16519; Zhang et al., 2021, Scientific Reports 11: 19679; Zhang et al., genes 12: 1606) and human trisomies (Zhang et al., 2024, genes 15: 637). Taken as a whole it would seem to suggest that there are many inverse relationships of global gene expression with chromosomal dosage in both yeast disomies and monosomies.

      In a similar vein, the authors cite Muenzner et al 2024, Nature 630 149-157 that there is an attenuation of protein levels from aneuploid chromosomes while the mRNA levels correlate with gene dosage. This interpretation also seems to have been made in a vacuum of the evolutionary genomics data noted above and there was no consideration of transcriptome size change in the aneuploids. Also, Muenzner et al make the remarkable suggestion that there is degradation of overproduced proteins from hyperploidy, but for monosomies there is greater degradation of the proteins from the remainder of the genome.

      To clarify the claims of this study, it would be informative to produce distributions of the various ratios of individual gene expression in monosomy versus diploid as performed by Hou et al. 2018. This will better express the trends of up and down regulation across the genome and whether there are any genes on the varied chromosome that are dosage compensated. The authors claim in the Abstract that "There is no evidence of increased (compensatory) gene expression on the monosomic chromosomes", but then note after describing the increased cell volume of monosomies that this observation likely signals an increased transcriptome size: "Indeed, one explanation for the observed epistasis for viability could be an ample overproduction of all transcripts, so that even those halved by monosomy are sufficiently abundant". It is not clear to this reviewer what conclusions can be made from this work other than the empirical observation that monosomy does not reflect the cumulative effect of multiple haplo-insufficiencies of individual heterozygous deletions and that there are some RELATIVE changes in gene expression, but it is unclear what the ABSOLUTE PER CELL expression is across the whole genome. Clarifying this issue would be important for understanding the nature of any epistasis and fitness consequences.

    3. Reviewer #3 (Public review):

      The current study examined 13 monosomic yeast strains that lost different individual chromosomes. By comparing the fitness of monosomic strains and several heterozygous deletion strains, the authors observed strong positive epistasis for fitness. The transcriptomes of monosomic strains indicated that general gene-dose compensation is not the reason for fitness gains. On the other hand, gene expression of ribosomal proteins was up-regulated and proteasome subunit expression was down-regulated in all tested monosomic strains. The authors speculated that overexpression in combination with decreased degradation of the insufficient proteins might explain the positive epistasis observed in monosomic strains. This study investigates an important biological question and has some interesting results. However, I have some reservations about the data interpretations listed below.

      (1) In Figure 3b (and line 179), the authors stated that those haploinsufficient genes were not transcribed at elevated rates, but almost half of them are in reddish colors (indicating that the expression is higher than 1-fold). Obviously, many haploinsufficient genes are up-regulated in monosomic strains. What the data really show is that the level of overexpression is not correlated with the fitness effect of the deletion (since all the p values are not significant). The authors need to correct their conclusions.<br /> (2) Why are some monosomic strains removed from the transcriptomics analysis, especially when the chromosome IV and XV strains show very strong positive epistasis? The authors need to provide an explanation here.<br /> (3) The authors stated that diploidy observed in chromosome VII and XIII strains were due to endoreplication after losing the marked chromosomes (lines 97 and 117). Isn't chromosome missegregation an equally possible explanation? Since monosomic cells are generated by chromosome missegregation during mitosis, another chromosome missegregation event may occur to rescue the fitness (or viability) of monosomic cells in these strains.

      Comments for the revised version:

      The authors have addressed all my previous concerns and I have no further questions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors set out to study whether the cooling agent binding site in TRPM8, which is located between the S1-S4 and the TRP domain, is conserved within the TRPM family of ion channels. They specifically chose the TRPM4 channel as the model system, which is directly activated by intracellular Ca2+. Using electrophysiology, the authors characterized and compared the Ca2+ sensitivity and the voltage-dependence of TRPM4 channels in the absence and presence of synthetic cooling agonist icilin. They also analyzed the mutational effects of residues (A867G and R901H; equivalent mutations in TRPM8 were shown involved in icilin sensitivity) on Ca2+ sensitivity and voltage-dependence of TRPM4 in the absence and presence of Ca2+. Based on the results as well as structure/sequence alignment, the authors concluded that icilin likely binds to the same pocket in TRPM4 and suggested that this cooling agonist binding pocket is conserved in TRPM channels.

      Strengths:

      The authors gave a very thorough introduction of the TRPM channels. They have nicely characterized the Ca2+ sensitivity and the voltage-dependence of TRPM4 channels and demonstrated icilin potentiates the Ca2+ sensitivity and diminishes the outward rectification of TRPM4. These results indicate icilin modulates TRPM4 activation by Ca2+.

      The authors have incorporated additional data analysis and control experiments in the revised manuscript to strengthen their findings. They have well addressed the concerns raised by reviewers in the responses.

      Weaknesses:

      The study is conducted based on an assumption that TRPM4 activation is controlled by Ca2+ binding to a single site in the S1-S4 pocket in each subunit, and the second Ca2+ site in the cytoplasmic MHRs is simplified.

      Despite the technical reasons presented by the authors in the rebuttal, the conclusion of this study can be strengthened if more cooling compounds- the most well-studied natural cooling agonist menthol, and/or other cooling agonists such as WS-12 and/or C3-are tested for their effects on TRPM4 and several other TRPM channels.

    1. Reviewer #1 (Public review):

      In this manuscript, Yang et al report a novel regulatory role of SIRT4 in the progression of kidney fibrosis. The authors showed that in the fibrotic kidney, SIRT4 exhibited an increased nuclear localization. Deletion of Sirt4 in renal tubule epithelium attenuated the extent of kidney fibrosis following injury, while overexpression of SIRT4 aggravates kidney fibrosis. Employing a battery of in vitro and in vivo experiments, the authors demonstrated that SIRT4 interacts with U2AF2 in the nucleus upon TGF-β1 stimulation or kidney injury and deacetylates U2AF2 at K413, resulting in elevated CCN2 expression through alternative splicing of Ccn2 gene to promote kidney fibrosis. The authors further showed that the translocation of SIRT4 is through the BAX/BAK pore complex and is dependent on the ERK1/2-mediated phosphorylation of SIRT4 at S36, and consequently the binding of SIRT4 to importin α1. This fundamental work substantially advances our understanding of the progression of kidney fibrosis and uncovers a novel SIRT4-U2AF2-CCN2 axis as a potential therapeutic target for kidney fibrosis.

      Comment on revised version:

      In the new version of the manuscript, the authors have addressed most of my concerns . Overall, the authors have done an extensive, well-performed study. The results are convincing, and the conclusions are mostly well supported by the data. The message is interesting to a wider community working on kidney fibrosis, protein acetylation and SIRT4 biology. This work substantially advances our understanding of the mechanism of kidney fibrosis and uncovers a novel SIRT4-U2AF2-CCN2 axis as a potential therapeutic target for kidney fibrosis.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Yang et al. presents a novel and significant investigation into the role of SIRT4 For CCN2 expression in response to TGF-β by modulating U2AF2-mediated alternative splicing and its impact on the development of kidney fibrosis.

      Strengths:

      The authors' main conclusion is that SIRT4 plays a role in kidney fibrosis by regulating CCN2 expression via pre-mRNA splicing. Additionally, the study reveals that SIRT4 translocates from the mitochondria to the cytoplasm through the BAX/BAK pore under TGF-β stimulation. In the cytoplasm, TGF-β activated the ERK pathway and induced the phosphorylation of SIRT4 at Ser36, further promoting its interaction with importin α1 and subsequent nuclear translocation. In the nucleus, SIRT4 was found to deacetylate U2AF2 at K413, facilitating the splicing of CCN2 pre-mRNA to promote CCN2 protein expression. Overall, the findings are fully convincing. The current study, to some extent, shows potential importance in this field.

    3. Reviewer #3 (Public review):

      Summary:

      Yang et al reported in this paper that TGF-beta induces SIRT4 activation, TGF-beta activated SIRT4 then modulates U2AF2 alternative splicing, U2AF2 in turn causes CCN2 for expression. The mechanism is described as this: mitochondrial SIRT4 transport into the cytoplasm in response to TGF-β stimulation, phosphorylated by ERK in the cytoplasm, and pathway and then undergo nuclear translocation by forming the complex with importin α1. In the nucleus, SIRT4 can then deacetylate U2AF2 at K413 to facilitate the splicing of CCN2 pre-mRNA to promote CCN2 protein expression. Moreover, they used exosomes to deliver Sirt4 antibodies to mitigate renal fibrosis in a mouse model. TGF-beta has been widely reported for its role in fibrosis induction.

      Strengths:

      TGF-beta induction of SIRT4 translocation from mitochondria to nuclei for epigenetics or gene regulation remains largely unknown. The findings presented here that SIRT4 is involved in U2AF2 deacetylation and CCN2 expression are interesting.

      Comments on revised version:

      I went through the revised manuscript and the letter from the authors. I have no further concerns.

    1. Reviewer #1 (Public review):

      Summary:

      The authors want to determine the role of the sperm hook of the house mouse sperm in movement through the uterus. They use transgenic lines with fluorescent labels to sperm proteins, and they cross these males to C57BL/6 females in pathogen-free conditions. They use 2-photon microscopy on ex vivo uteri within 3 hours of mating and the appearance of a copulation plug. There are a total of 10 post-mating uteri that were imaged with 3 different males. They provide 10 supplementary movies that form that basis for some of the quantitative analysis in the main body figures. Their data suggest that the role of the sperm hook is to facilitate movement along the uterine wall.

      Strengths:

      Ex vivo live imaging of fluorescently labeled sperm with 2-photon microscopy is a powerful tool for studying the behavior of sperm.

      Weaknesses:

      The paper is descriptive and the data are correlations.

      The authors cannot directly test their proposed function of the sperm hook in sliding and preventing backward slipping.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a well-written and detailed manuscript showing important results on the molecular profile of 4 different cohorts of female patients with lung cancer.

      Strengths:

      The authors used several different methods to identify potential novel targets for therapeutic interventions.

      Weaknesses:

      Statistical test results need to be provided in comparisons between cohorts. This was addressed by the authors in the revisions.

    2. Reviewer #2 (Public Review):

      New comments are added after authors responses to my initial comments.

      Summary:

      Zhang et al. performed a proteogenomic analysis of lung adenocarcinoma (LUAD) in 169 female never-smokers from the Xuanwei area (XWLC) in China. These analyses reveal that XWLC is a distinct subtype of LUAD and that BaP is a major risk factor associated with EGFR G719X mutations found in the XWLC cohort. Four subtypes of XWLC were classified with unique features based on multi-omics data clustering.

      Strengths:

      The authors made great efforts in performing several large-scale proteogenomic analyses and characterizing molecular features of XWLCs. Datasets from this study will be a valuable resource to further explore the etiology and therapeutic strategies of air-pollution-associated lung cancers, particularly for XWLC.

      Weaknesses:

      [...]

      (2) Importantly, while providing the large datasets, validating key findings is minimally performed, and surprisingly there is no interrogation of XWLC drug response/efficacy based on their findings, which makes this manuscript descriptive and incomplete rather than conclusive. For example, testing the efficacy of XWLC response to afatinib combined with other drugs targeting activated kinases in EGFR G719X mutated XWLC tumors would be one way to validate their datasets and new therapeutic options.

      Response: We appreciate your suggestion. In reference to testing the efficacy of XWLC response to afatinib combined with drugs targeting kinases, we have planned to establish PDX and organoid models to validate the effectiveness of our therapeutic approach. Due to the extended timeframe required, we intend to present these results in a subsequent study.

      Comments: All conclusions in the manuscript made by authors are based on interpretations of large-scale multi-omics data, which should be properly validated by other approaches and methods. Without validation, these are all speculations and any conclusions without supporting evidence are not acceptable. This reviewer suggested an example of validation experiment, and Reviewer #3 also pointed out several data that need to be validated. However, authors do not agree to perform any of these validation experiments without reasonable justification.

      (3) The authors found MAD1 and TPRN are novel therapeutic targets in XWLC. Are these two genes more frequently mutated in one subtype than the other 3 XWLC subtypes? How these mutations could be targeted in patients?

      Response: Thank you for your question. We have investigated the TPRN and MAD1 mutations in our dataset, identifying five TPRN mutations and eight MAD1 mutations. Among the TPRN mutations, XWLC_0046 and XWLC_0017 belong to the MCII subtype, XWLC_0012 belongs to the MCI subtype, and the subtype of the other three samples is undetermined, resulting in mutation frequencies of 1/16, 2/24, 0/15, and 0/13, respectively. Similarly, for the MAD1 mutations, XWLC_0115, XWLC_0021, and XWLC_0047 belong to the MCII subtype, XWLC_0055 containing two mutations belongs to the MCI subtype, and the subtype of the other three samples is undetermined, resulting in mutation frequencies of 1/16, 3/24, 0/15, and 0/13 across subtypes, respectively. Fisher's test did not reveal significant differences between the subtypes. For targeting novel therapeutic targets such as MAD1 and TPRN, we propose a multi-step approach. Firstly, we advocate for conducting functional in vivo and in vitro experiments to verify their roles during cancer progression. Secondly, we suggest conducting small molecule drug screening based on the pharmacophore of these proteins, which may lead to the identification of potential therapeutic drugs. Lastly, we recommend testing the efficacy of these drugs to further validate their potential as effective treatments.

      Comments: Please properly incorporate the above explanation into the main text.

      (4) In Figures 2a and b: while Figure 2a shows distinct genomic mutations among each LC cohort, Figure 2b shows similarity in affected oncogenic pathways (cell cycle, Hippo, NOTCH, PI3K, RTK-RAS, and WNT) between XWLC and TNLC/CNLC. Considering that different genomic mutations could converge into common pathways and biological processes, wouldn't these results indicate commonalities among XWLC, TNLC, and CNLC? How about other oncogenic pathways not shown in Figure 2b?

      Response: Thank you for your question. Based on the data presented in Fig. 2a, which encompasses all genomic mutations, it appears that the mutation landscape of XWLC bears the closest resemblance to TSLC (Fig. 2a). However, when considering oncogenic pathways (Fig. 2b) and genes (Fig. 2c), there is a notable disparity between the two cohorts. These findings suggest that while XWLC and TSLC exhibit similarities in terms of genomic mutations, they possess distinct characteristics in terms of oncogenic pathways and genes.<br /> Regarding the oncogenic signaling pathways, we referred to ten well-established pathways identified from TCGA cohorts. These members of oncogenic pathways are likely to serve as cancer drivers (functional contributors) or therapeutic targets, as highlighted by Sanchez-Vega et al. in 2018(Sanchez-Vega et al., 2018).

      Comments: It is unclear to this reviewer how authors defined "distinct characteristics" in terms of oncogenic pathways and genes. Would 10-20% differences in "Fraction of samples affected" in Fig2b be sufficient to claim significance? How could authors be sure whether mutations in genes involved in each oncogenic pathway are activating or inactivating mutations (rather than benign, thus non-affecting mutations)?

      [...]

      (6) Supplementary Table 11 shows a number of mutations at the interface and length of interface between a given protein-protein interaction pair. Such that, it does not provide what mutation(s) in a given PPI interface is found in each LC cohort. For example, it fails to provide whether MAD1 R558H and TPRN H550Q mutations are found significantly in each LC cohort.

      Response: We appreciate your careful review. In Supplementary Table 11, we have provided significant onco_PPI data for each LC cohort, focusing on enriched mutations at the interface of two proteins. Our emphasis lies on onco_PPI rather than individual mutations, as any mutation occurring at the interface could potentially influence the function of the protein complex. Thus, our Supplementary Table 11 exclusively displays the onco_PPI rather than mutations. MAD1 R558H and TPRN H550Q were identified through onco_PPI analysis, and subsequent extensive literature research led us to focus specifically on these mutations.

      Comments: Are authors referring to Table S9 (Onco_PPIs identified in four cohorts) instead of Supplementary Table 11? There is no Table 11 among submitted files. In Table S9, the Column N (length of protein product of gene1) does not make sense: MYO1C (8152), TP53 (3924), EGFR (12961). These should not be the number of amino acids residues of each protein. Then, what do these numbers mean?

      (7) Figure 7c and d are simulation data not from an actual binding assay. The authors should perform a biochemical binding assay with proteins or show that the mutation significantly alters the interaction to support the conclusion.

      Response: We appreciate your suggestion. The relevant experiments are currently in progress, and we anticipate presenting the corresponding data in a subsequent study.

      Comments: The suggested experiment is to support the simulated data. Again, without supporting experimental results, authors could not make a conclusion simply based on simulated data. Where else could the supporting experimental results be presented?

    1. Reviewer #1 (Public review):

      Summary:

      Arman Angaji and his team delved into the intricate world of tumor growth and evolution, utilizing a blend of computer simulations and real patient data from liver cancer.

      Strengths:

      Their analysis of how mutations and clones are distributed within tumors revealed an interesting finding: tumors don't just spread from their edges as previously believed. Instead, they expand both from within and the edges simultaneously, suggesting a unique growth mode. This mode naturally indicates that external forces may play a role in cancer cells dispersion within the tumor. Moreover, their research hints at an intriguing phenomenon - the high death rate of progenitor cells and extremely slow pace in growth in the initial phase of tumor expansion. Understanding this dynamic could significantly impact our comprehension of cancer development.

      Weaknesses:

      It's important to note, however, that this study relies on specific computer models, metrics derived from inferred clones, and a limited number of patient data. While the insights gained are promising, further investigation is essential to validate these findings. Nonetheless, this work opens up exciting avenues for comprehending the evolution of cancers.

      Comments on revised submission:

      The authors have effectively addressed my concerns. This revision is excellent.

    2. Reviewer #2 (Public review):

      Summary:

      The article uses a cell-based model to investigate how mutations and cells spread throughout a tumour. The paper uses published data and the proposed model to understand how growth and death mechanisms lead to the observed data. This work provides an insight into the early stages of tumour development. From the work provided here, the results are solid, showing a thorough analysis. The article is well written and presents a very suitable and rigorous analysis to describe the data. The authors did a particularly nice job of the discussion and decision of their "metrics of interest", though this is not the main aim of this work.

      Strengths:

      Due to the particularly nice and tractable cell-based model, the authors are able to perform a thorough analysis to compare the published data to that simulated with their model. They then used their computational model to investigate different growth mechanisms of volume growth and surface growth. With this approach, the authors are able to compare the metric of interest (here, the direction angle of a new mutant clone, the dispersion of mutants throughout the tumour) to quantify how the different growth models compare to the observed data. The authors have also used inference methods to identify model parameters based on the data observed. The authors performed a rigorous analysis and have chosen the metrics in an appropriate manner to compare the different growth mechanisms.

      Context:

      Improved mechanistic understanding into the early developmental stages of tumours will further assist in disease treatment and quantification. Understanding how readily and quickly a tumour is evolving is key to understanding how it will develop and progress. This work provides a solid example as to how this can be achieved with data alongside simulated models.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript provides a solid advance to the scavenger receptor field by reporting the crystal structures of the domains of SCARF1 that bind modified LDL such as oxidized LDL and acylated LDL. The crystal packing reveals a new interface for homodimerization of SCARF1. The authors characterize SCARF1 binding to modified LDL using flow cytometry, ELISA, and fluorescent microscopy. They identify a positively-charged surface on the structure that they predict will bind the LDLs, and they support this hypothesis with several mutant constructs in binding experiments.

      Strengths:

      The authors have crystallized domains of an understudied scavenger receptor and used the structure to identify a putative binding site for modified LDL particles. An especially strong set of experiments are binding studies with chimeras of SCARF1 and SCARF2, where they show gain-of-function results (binding of modified LDLs) by SCARF2, a related protein that does not normally bind modified LDLs. The paper is a straightforward set of experiments that identify the likely binding site of modified LDL on SCARF1

      Weaknesses:

      In the current revision, the authors addressed my technical concerns.<br /> Two remaining considerations that may limit the broader impact of this paper are 1) that it does not explain the structural basis for specificity of the binding of SCARF1 to various lipoproteins (i.e. why SCARF1 binds oxLDL and AcLDL but not LDL or HDL) and 2) a lack of a biological assay to interpret the functional consequences of the SCARF1 mutants. These may be addressed in future work.

    1. Reviewer #1 (Public review):

      The authors have tried to identify the plausible Na+ entry pathway in an important SLC6 member GAT1, using computational approaches to assess residence times of the ions as they enter the vestibule of GAT1. The authors identify a patch of negative residues in TM6a and implicate them for being important to attract the Na+ ions during their movement towards the binding sites Na1 and Na2. Besides this they also suggest that sodium binding at site 1 is flexible and at times can occupy the primary binding site when the substrate is not available. Na2 site as other literature also suggests is demonstrated to be vital for the stability of the outward-open state.

      Studies of ion permeation are challenging given that the states are challenging to trap through structural studies and computational methods are vital for understanding these steps. The authors suggest that two negatively charged residues are vital to attract Na+ ions to the vestibule. Using a combination of simulations and PCA analysis the authors identify the importance of Na+ binding at site 2 that stabilises the outward-open state and the flexibility observed in Na1 site for ion binding which happens alongside substrate in the GABA bound state. The study reconfirms earlier observations in the SLC6 family that Na2 site is critical for conformational transitions and Na1 site is substrate dependent in amino acid transporters.<br /> One of the challenges in such studies is to conclusively establish the presence of additional Na+ sites or regions of ion-binding with experimental structures as they are nearly impossible to trap. Such studies using simulations therefore become the only resort to understand such phenomena.

      The work is likely to further provide insights into the transport mechanism of GAT1 and lends credence to some structural studies where the sodium at site1 is displaced but the ion remains proximal to the bound substrate.

    1. Reviewer #1 (Public review):

      In their paper, Kang et al. investigate rigidity sensing in amoeboid cells, showing that, despite their lack of proper focal adhesions, amoeboid migration of single cells is impacted by substrate rigidity. In fact, many different amoeboid cell types can durotax, meaning that they preferentially move towards the stiffer side of a rigidity gradient.

      The authors observed that NMIIA is required for durotaxis and, buiding on this observation, they generated a model to explain how durotaxis could be achieved in the absence of strong adhesions. According to the model, substrate stiffness alters the diffusion rate of NMAII, with softer substrates allowing for faster diffusion. This allows for NMAII accumulation at the back, which, in turn, results in durotaxis.

      The authors responded to all my comments and I have nothing to add. The evidence provided for durotaxis of non adherent (or low-adhering) cells is strong. I am particularly impressed by the fact that amoeboid cells can durotax even when not confined. I wish to congratulate the authors for the excellent work, which will fuel discussion in the field of cell adhesion and migration.

    2. Reviewer #2 (Public review):

      Summary:

      The authors developed an imaging-based device, that provides both spatial confinement and stiffness gradient, to investigate if and how amoeboid cells, including T cells, neutrophils and Dictyostelium can durotax. Furthermore, the authors showed that the mechanism for the directional migration of T cells and neutrophils depends on non-muscle myosin IIA (NMIIA) polarized towards the soft-matrix-side. Finally, they developed a mathematical model of an active gel that captures the behavior of the cells described in vitro.

      Strengths:

      The topic is intriguing as durotaxis is essentially thought to be a direct consequence of mechanosensing at focal adhesions. To the best of my knowledge, this is the first report on amoeboid cells that are not dependent on FAs to exert durotaxis. The authors developed an imaging-based durotaxis device that provides both spatial confinement and stiffness gradient and they also utilized several techniques such as quantitative fluorescent speckle microscopy and expansion microscopy. The results of this study have well-designed control experiments and are therefore convincing.

      Weaknesses:

      Overall this study is well performed but there are still some minor issues I recommend the authors address:<br /> (1) When using NMIIA/NMIIB knockdown cell lines to distinguish the role of NMIIA and NMIIB in amoeboid durotaxis, it would be better if the authors take compensatory effects into account.<br /> (2) The expansion microscopy assay is not clearly described and some details are missed such as how the assay is performed on cells under confinement.<br /> (3) In this study, an active gel model was employed to capture experimental observations. Previously, some active nematic models were also considered to describe cell migration, which is controlled by filament contraction. I suggest the authors provide a short discussion on the comparison between the present theory and those prior models.<br /> (4) In the present model, actin flow contributes to cell migration while myosin distribution determines cell polarity. How does this model couple actin and myosin together?

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript "FABP4-mediated lipid accumulation and lipolysis in tumor-associated macrophages promote breast cancer metastasis", Yorek, et al. provide a novel mechanism explaining how unsaturated fatty acids induce macrophages to accumulate lipid droplets, which when contained in tumor-associated macrophages (TAMs) are associated with increased metastasis in breast cancer. The authors conclude that unsaturated fatty acids are transported into macrophages by the chaperone FABP4 where they induce C/EBPalpha expression and transcriptional activity resulting in upregulation of enzymes involved in triacylglycerol and lipid droplet biosynthesis. The resulting accumulation of lipid droplets in macrophages creates a store of fatty acids that can subsequently be released through FABP4-dependent lipolysis and thereby stimulate the migration of nearby breast cancer cells. While generally well-written and developed, there are a few concerns about the rigor of experimental evidence that supports some conclusions, including the existence of a FABP4-C/EBPalpha pathway. Overall, the mechanism identified is a valuable contribution to our understanding of how tumor-associated macrophages may influenced by available metabolites to promote the aggressiveness of certain cancers. FABP4 has the potential to be used as a novel biomarker of macrophage-induced cancer aggressiveness and/or a therapeutic target to prevent metastasis.

      Strengths:

      (1) The study is logically organized and provides extensive evidence in support of the overall model proposed.

      (2) Multiple complementary techniques are used to identify and quantify lipid droplets.

      (3) Primary macrophages and macrophage cell lines are used and provide consistent data.

      (4) Knock-down and knock-out cells are used to assess the contributions of FABP4 and C/EBPalpha to gene expression.

      (5) Public gene expression data (GEO, TCGA) is used effectively throughout.

      Weaknesses:

      (1) After Figure 1, a single saturated (palmitic acid; PA) and a single unsaturated (linoleic acid; LA) fatty acid are used for the remaining studies, bringing into question whether effects are in fact the result of a difference in saturation vs. other potential differences.

      (2) While primary macrophages are used in several mechanistic studies, tumor-associated macrophages (TAMs) are not used. Rather, correlative evidence is provided to connect mechanistic studies in macrophage cell lines and primary macrophages to TAMs.

      (3) C/EBPalpha and FABP4 clearly regulate LA-induced changes in gene expression. However, whether these two key proteins act in parallel or as a pathway is not resolved by presented data.

      (4) It is very interesting that FABP4 regulates both lipid droplet formation and lipolysis, yet is unclear if the regulation of lipolysis is direct or if the accumulation of lipid droplets - likely plus some other signal(s) - induces upregulation of lipolysis genes.

      (5) In several places increased expression of genes coding for enzymes with known functions in lipid biology is conflated with an increase in the lipid biology process the enzymes mediate. Additional evidence would be needed to show these processes are in fact increased in a manner dependent on increased enzyme expression.

    2. Reviewer #2 (Public review):

      The manuscript by Yorek et al explores the role of fatty acids, particularly unsaturated fatty acids, in lipid droplet accumulation and lipolysis in tumor-associated macrophages (TAMs). Using flow cytometry, immunofluorescent imaging, and TEM, the authors observed that unsaturated fatty acids, such as linoleic acids (LA), tend to induce lipid droplet accumulation in the ER of macrophages, but not in the lysosomes. This phenomenon led them to examine the key enzymes involved in lipid droplet/TAG biosynthesis, where they found incubation of LA upregulates GPAT/DGAT and C/EBPα. In vitro studies, data from public databases, single-cell RNA sequencing of splenic macrophages, and more show that FABP4 emerges as an important mediator for C/EBPα activation. This is further confirmed by FABP4-knockout macrophages, where lipid accumulation and utilization of unsaturated fatty acids were compromised in macrophages through inhibition of LA-induced lipolysis. Using the co-culture system and immunohistochemical analysis, they found that the high FABP4 expression in TAMs, which are observed in metastatic breast cancer tissue, promotes breast cancer cell migration in vitro.

      This study is important since the impact of tumor microenvironment is crucial for the development of breast cancer. The individual experiments are well-designed and structured. However, the logic connecting to the next step is a bit difficult to follow, especially when combined with incomplete statistical analysis in some figures, making the conclusion less convincing. For instance, the comparison of macrophage FABP4 expression between breast cancer patients with or without metastasis illustrates the importance of FABP4 expression in metastasis, yet there is no examination of the expression of other key enzymes in the lipolysis or lipid biosynthesis pathway nor there is any correlation with parameters that would reflect patients' consumption of fatty acids. Similarly, an in vivo study comparing FABP4 knockout mice with or without unsaturated fatty acids would yield more compelling evidence. The statistical analysis was largely focused on the sets of unsaturated fatty acids when data from both types of fatty acids were present. In some cases, significant changes are observed in the sets of saturated fat, but there is no explanation of why only the data from unsaturated fats are important for investigation.

      Overall, there is solid evidence for the importance of FABP4 expression in TAMs on metastatic breast cancer as well as lipid accumulation by LA in the ER of macrophages. A stronger rationale for the exclusive contribution of unsaturated fatty acids to the utilization of TAMs in breast cancer and a more detailed description and statistical analysis of data will strengthen the findings and resulting claims.

    3. Reviewer #3 (Public review):

      Summary:

      Regulated metabolism has only recently been recognized as a key component of cancer biology, and even more recently recognized as a significant modulator of the tumor microenvironment (TME). TAMs in the TME play a major role in supporting cancer cell survival and growth/spread, as well as generating an immunosuppressive ME to suppress anti-tumor immunity. Specific regulation of lipid metabolism in this context, in particular how lipids are stored and subsequently mobilized for metabolism, is largely unexplored - especially in the immunological components of the TME.

      In this manuscript, the authors build on their previous observations that the fatty acid-binding protein FABP4 plays an important role in macrophage function and that FABP4 expression in tumor associated macrophages (TAM) promotes breast cancer progression. They demonstrate:

      (1) Unlike saturated fatty acids (FA), unsaturated FA promotes lipid droplet (LD) accumulation in murine macrophages. LD is the primary intracellular storage depot for FA.

      (2) Unsaturated FA activates the FABP4-C/EBPalpha axis to upregulate transcription of the enzymes involved in the synthesis of neutral triacylglycerol (TAG) is an essential step in the formation of the neutral lipid core of LD. It should be noted that the authors speculate that UFA-activated FABP4 translocates to the nucleus to activate PPARgamma, which is known to induce C/EBPalpha expression, but do not directly test the involvement of PPARgamma in this axis.

      (3) FABP4 deficiency compromises unsaturated FA-mediated lipid accumulation and utilization in murine macrophages.

      (4) FABP4-mediated lipid metabolism in macrophages (TAMS) contributes to breast cancer metastasis, in in-vitro of tumor migration induced by murine macrophages and in correlative studies from human patient breast cancer biopsies.

      From these studies, the manuscript concludes that FABP4 plays a pivotal role in mediating lipid droplet formation and lipolysis in TAM, which provides lipids to breast cancer cells that contribute to their growth and metastasis.

      These are significant findings, as they provide new insight into the mechanistic regulation of TAM biology via regulation of lipid metabolism, as well as define new biomarkers and potential novel therapeutic targets.

      The findings are strong in the studies that mechanistically define the role of FAB4 in lipid accumulation and utilization in murine macrophages. However, evidence is less compelling regarding TAM biology and human breast cancer in 3 main areas:

      First, while there is clear in vitro evidence that co-cultured murine macrophages genetically deficient in FABP4 (or their conditioned media) do not enhance breast cancer cell motility and invasion, these macrophages are not bonafide TAM - which may have different biology. The use of actual TAM in these experiments would be more compelling. Perhaps more importantly, there is no in vivo data in tumor-bearing mice that macrophage deficiency of FABP4 affects tumor growth or metastasis - which are doable experiments given the availability of the FABP4 KO mice.

      Second, no data is presented that the mechanisms/biology that are elegantly demonstrated in the murine macrophages also occur in human macrophages - which would be foundational to translating these findings into human breast cancer. It seems like straightforward in vitro studies in human monocytes/macrophages could be done to recapitulate the main characteristics seen in the murine macrophages.

      Third, while the data from the human breast cancer specimens is very intriguing, it is difficult to ascertain how accurate IHC is in determining that the CD163+ cells (TAM) are in fact the same cells expressing FABP4 - which is the central premise of these studies. Demonstrating that IHC has the resolution to do this would be important. Additionally, the in vitro characterization of FABP4 expression in human macrophages would also add strength to these findings.

      In summary, the strengths of this manuscript are the significance of metabolic regulation of the immune tumor microenvironment (TME), and the careful mechanistic delineation of FABP4 involvement in mediating lipid droplet formation and lipolysis in murine macrophages. The weaknesses of the work are the lack of direct experimental evidence that human macrophages behave in the same way as murine macrophages, the incomplete characterization of the role of FABP4 expression in TAM in modulating tumor growth in vivo (in murine models), and whether it can be definitively determined that FABP4 is being primarily expressed in the CD163+ macrophages in human breast cancer samples.

      Strengths:

      (1) Regulated metabolism has only recently been recognized as a key component of cancer biology, and even more recently recognized as a significant modulator of the tumor microenvironment (TME). TAMs in the TME play a major role in supporting cancer cell survival and growth/spread, as well as generating an immunosuppressive ME to suppress anti-tumor immunity.

      (2) Regulation of lipid metabolism in this context is largely unexplored, especially in the immunological components of the TME.

      (3) The work builds on the authors' previous work on the role of FABP4 plays an important role in macrophage function including FABP4 expression in TAM promotes breast cancer progression (Hao et al, Cancer Res 2018). This paper identified FABP4-expressing macrophages as being pro-tumorigenic via upregulation of IL-6STAT3 signaling.

      (4) The careful and thorough mechanistic delineation of FABP4 involvement in mediating lipid droplet formation and lipolysis in murine macrophages.

      (5) The intriguing observations that FABP4-mediated lipid metabolism in macrophages contributes to breast cancer metastasis, in in vitro of tumor migration induced by murine macrophages and in correlative studies from human patient breast cancer biopsies that CD163+ cell numbers (putatively TAM) and FABP4 expression was associated with increased metastatic disease and poor overall survival.

      (6) Identification of FABP4 both a prognostic biomarker and a potential therapeutic target to modulate the pro-tumor immune TME.

      Weaknesses:

      (1) While the authors speculate that UFA-activated FABP4 translocates to the nucleus to activate PPARgamma, which is known to induce C/EBPalpha expression, they do not directly test involvement of PPARgamma in this axis.

      (2) While there is clear in vitro evidence that co-cultured murine macrophages genetically deficient in FABP4 (or their conditioned media) do not enhance breast cancer cell motility and invasion, these macrophages are not bonafide TAM - which may have different biology. Use of actual TAM in these experiments would be more compelling. Perhaps more importantly, there is no in vivo data in tumor bearing mice that macrophage-deficiency of FABP4 affects tumor growth or metastasis.

      (3) Related to this, the authors find FABP4 in the media and propose that macrophage secreted FABP4 is mediating the tumor migration - but don't do antibody neutralizing experiments to directly demonstrate this.

      (4) No data is presented that the mechanisms/biology that are elegantly demonstrated in the murine macrophages also occurs in human macrophages - which would be foundational to translating these findings into human breast cancer.

      (5) While the data from the human breast cancer specimens is very intriguing, it is difficult to ascertain how accurate IHC is in determining that the CD163+ cells (TAM) are in fact the same cells expressing FABP4 - which is central premise of these studies. Demonstration that IHC has the resolution to do this would be important. Additionally, the in vitro characterization of FABP4 expression in human macrophages would also add strength to these findings.

    1. Reviewer #1 (Public review):

      Summary:

      The authors show that the Gαs-stimulated activity of human membrane adenylyl cyclases (mAC) can be enhanced or inhibited by certain unsaturated fatty acids (FA) in an isoform-specific fashion. Thus, with IC50s in the 10-20 micromolar range, oleic acid affects 3-fold stimulation of membrane-preparations of mAC isoform 3 (mAC3) but it does not act on mAC5. Enhanced Gαs-stimulated activities of isoforms 2, 7, and 9, while mAC1 was slightly attenuated, but isoforms 4, 5, 6, and 8 were unaffected. Certain other unsaturated octadecanoic FAs act similarly. FA effects were not observed in AC catalytic domain constructs in which TM domains are not present. Oleic acid also enhances the AC activity of isoproterenol-stimulated HEK293 cells stably transfected with mAC3, although with lower efficacy but much higher potency. Gαs-stimulated mAC1 and 4 cyclase activity were significantly attenuated in the 20-40 micromolar by arachidonic acid, with similar effects in transfected HEK cells, again with higher potency but lower efficacy. While activity mAC5 was not affected by unsaturated FAs, neutral anandamide attenuated Gαs-stimulation of mAC5 and 6 by about 50%. In HEK cells, inhibition by anandamide is low in potency and efficacy. To demonstrate isoform specificity, the authors were able to show that membrane preparations of a domain-swapped AC bearing the catalytic domains of mAC3 and the TM regions of mAC5 are unaffected by oleic acid but inhibited by anandamide. To verify in vivo activity, in mouse brain cortical membranes 20 μM oleic acid enhanced Gαs-stimulated cAMP formation 1.5-fold with an EC50 in the low micromolar range.

      Strengths:

      (1) A convincing demonstration that certain unsaturated FAs are capable of regulating membrane adenylyl cyclases in an isoform-specific manner, and the demonstration that these act at the AC transmembrane domains.

      (2) Confirmation of activity in HEK293 cell models and towards endogenous AC activity in mouse cortical membranes.

      (3) Opens up a new direction of research to investigate the physiological significance of FA regulation of mACs and investigate their mechanisms as tonic or regulated enhancers or inhibitors of catalytic activity.

      (4) Suggests a novel scheme for the classification of mAC isoforms.

      Weaknesses:

      (1) Important methodological details regarding the treatment of mAC membrane preps with fatty acids are missing.

      (2) It is not evident that fatty acid regulators can be considered as "signaling molecules" since it is not clear (at least to this reviewer) how concentrations of free fatty acids in plasma or endocytic membranes are hormonally or otherwise regulated.

    2. Reviewer #2 (Public review):

      Summary:

      The authors extend their earlier findings with bacterial adenylyl cyclases to mammalian enzymes. They show that certain aliphatic lipids activate adenylyl cyclases in the absence of stimulatory G proteins and that lipids can modulate activation by G proteins. Adding lipids to cells expressing specific isoforms of adenylyl cyclases could regulate cAMP production, suggesting that adenylyl cyclases could serve as 'receptors'.

      Strengths:

      This is the first report of lipids regulating mammalian adenylyl cyclases directly. The evidence is based on biochemical assays with purified proteins, or in cells expressing specific isoforms of adenylyl cyclases.

      Weaknesses:

      It is not clear if the concentrations of lipids used in assays are physiologically relevant. Nor is there evidence to show that the specific lipids that activate or inhibit adenylyl cyclases are present at the concentrations required in cell membranes. Nor is there any evidence to indicate that this method of regulation is seen in cells under relevant stimuli.

    3. Reviewer #3 (Public review):

      Summary:

      Landau et al. have submitted a manuscript describing for the first time that mammalian adenylyl cyclases can serve as membrane receptors. They have also identified the respective endogenouse ligands which act via AC membrane linkers to modify and control Gs-stimulated AC activity either towards enhancement or inhibition of ACs which is family and ligand-specific. Overall, they have used classical assays such as adenylyl cyclase and cAMP accumulation assays combined with molecular cloning and mutagenesis to provide exceptionally strong biochemical evidence for the mechanism of the involved pathway regulation.

      Strengths:

      The authors have gone the whole long classical way from having a hypothesis that ACs could be receptors to a series of MS studies aimed at ligand indentification, to functional studies of how these candidate substances affect the activity of various AC families in intact cells. They have used a large array of techniques with a paper having clear conceptual story and several strong lines of evidence.

      Weaknesses:

      (1) At the beginning of the results section, the authors say "We have expected lipids as ligands". It is not quite clear why these could not have been other substances. It is because they were expected to bind in the lipophilic membrane anchors? Various lipophilic and hydrophilic ligands are known for GPCR which also have transmembrane domains. Maybe 1-2 additional sentences could be helpful here.

      (2) In stably transfected HEK cells expressing mAC3 or mAC5, they have used only one dose of isoproterenol (2.5 uM) for submaximal AC activation. The reference 28 provided here (PMID: 33208818) did not specifically look at Iso and endogenous beta2 adrenergic receptors expressed in HEK cells. As far as I remember from the old pharmacological literature, this concentration is indeed submaximal in receptor binding assays but regarding AC activity and cAMP generation (which happen after signal amplification with a so-called receptor reserve), lower Iso amounts would be submaximal. When we measure cAMP, these are rather 10 to 100 nM but no more than 1 uM at which concentration response dependencies usually saturate. Have the authors tried lower Iso concentrations to prestimulate intracellular cAMP formation? I am asking this because, with lower Iso prestimulation, the subsequent stimulatory effects of AC ligands could be even greater.

      (3) The authors refer to HEK cell models as "in vivo". I agree that these are intact cells and an important model to start with. It would be very nice to see the effects of the new ligands in other physiologically relevant types of cells, and how they modulate cAMP production under even more physiological conditions. Probably, this is a topic for follow-up studies.

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The authors have achieved their aims to a very high degree, their results do nicely support their conclusions. There is only one point (various classical GPCR concentrations, please see above) that would be beneficial to address.

      Without any doubt, this is a groundbreaking study that will have profound implications in the field for the next years/decades. Since it is now clear that mammalian adenylyl cyclases are receptors for aliphatic fatty acids and anandamide, this will change our view on the whole signaling pathway and initiate many new studies looking at the biological function and pathophysiological implications of this mechanism. The manuscript is outstanding.

    1. Reviewer #1 (Public review):

      Summary:

      The paper demonstrated through a comprehensive multi-omics study of the oviduct that the transcriptomic and proteomic landscape of the oviduct at 4 different preimplantation periods was dynamic during natural fertilization, pseudopregnancy, and superovulation using three independent cell/tissue isolation and analytical techniques. This work is very important for understanding oviductal biology and physiology. In addition, the authors have made all the results available in a web search format, which will maximize the public's access and foster and accelerate research in the field.

      Strengths:

      (1) The manuscript addresses an important and interesting question in the field of reproduction: how does the oviduct at different regions adapt to the sperm and embryos for facilitating fertilization and preimplantation embryo development and transport?

      (2) Authors used cutting-edge techniques: Integrated multi-modal datasets followed by in vivo confirmation and machine learning prediction.

      (3) RNA-seq, scRNA-seq, and proteomic results are immediately available to the scientific community in a web search format.

      (4) Substantiated results indicate the source of inflammatory responses was the secretory cell population in the IU region when compared to other cell types; sperm modulate inflammatory responses in the oviduct; the oviduct displays immuno-dynamism.

      Weaknesses:

      (1) The rationale for using the superovulation model is not clear. The oviductal response to sperm and embryos can be studied by comparing mating with normal and vasectomized mice and comparing pregnancy vs pseudopregnancy (induced by mating with vasectomized males). Superovulation causes supraphysiological hormone levels and other confounding conditions.

      (2) This study involves a very complex dataset with three different models at four time points. If possible, it would be very informative to generate a graphic abstract/summary of their major findings in oviductal responses in different models and time points

      (3) The resolution of Figures 3A-3C in the submitted file was not high enough to assess the authors' conclusion.

      (4) The authors need to double-check influential transcription factors identified by machine learning. Apparently, some of them (such as Anxa2, Ift88, Ccdc40) are not transcription factors at all.

    2. Reviewer #2 (Public review):

      The manuscript investigates oviductal responses to the presence of gametes and embryos using a multi-omics and machine learning-based approach. By applying RNA sequencing (RNA-seq), single-cell RNA sequencing (sc-RNA-seq), and proteomics, the authors identified distinct molecular signatures in different regions of the oviduct, proximal versus distal. The study revealed that sperm presence triggers an inflammatory response in the proximal oviduct, while embryo presence activates metabolic genes essential for providing nutrients to the developing embryos. Overall, this study offers valuable insights and is likely to be of great interest to reproductive biologists and researchers in the field of oviduct biology. However, further investigation into the impact of sperm on the immune cell population in the oviduct is necessary to strengthen the overall findings.

    1. Reviewer #1 (Public review):

      Summary:

      This work seeks to provide genetic evidence for a role for beta-adrenergic receptors that regulate heart rate and blood flow on cavernous malformation development using a zebrafish model, and to extend information regarding beta-adrenergic drug blockade in cavernous malformation development, with the idea that these drugs may be useful therapeutically.

      Strengths:

      The work shows that genetic loss of a specific beta-adrenergic receptor in zebrafish, adrb1, prevents embryonic venous malformations and CCM in adult zebrafish brains. Two drugs, propranolol and metoprolol, also blunt CCM in the adult fish brain. These findings are predicted to potentially impact the treatment of human CCM, and they increase understanding of the factors leading to CCM.

      Weaknesses:

      There are minor weaknesses that detract slightly from enthusiasm, including poor annotation of the Figure panels and lack of a baseline control for the study of Klf2 expression (Figure 4).

    2. Reviewer #2 (Public review):

      Summary:

      Previously, the authors developed a zebrafish model for cerebral cavernous malformations (CCMs) via CRISPR/Cas9-based mosaic inactivation of the ccm2 gene. This model yields CCM-like lesions in the caudal venous plexus of 2 days post-fertilization embryos and classical CNS cavernomas in 8-week fish that depend, like the mouse model, on the upregulation of the KLF2 transcription factor. Remarkably, the morpholino-based knockdown of the gene encoding the Beta1 adrenergic receptor or B1AR (adrb1; a hemodynamic regulator) in fish and treatment with the anti-adrenergic S enantiomer of propranolol in both fish and mice reduce the frequency and size of CMM lesions.

      In the present study, the authors aim to test the model that adrb1 is required for CCM lesion development using adrb1 mutant fish (rather than morpholino-mediated knockdown and pharmacological treatments with the anti-adrenergic S enantiomer of propranolol or a racemic mix of metoprolol (a selective B1AR antagonist).

      Strengths:

      The goal of the work is important, and the findings are potentially highly relevant to cardiovascular medicine.

      Weaknesses:

      (1) The following figures do not report sample sizes, making it difficult to assess the validity of the findings: Figures 1B and D (the number of scored embryos is missing), Figures 2G and 3B (should report both the number of fish and lesions scored, with color-coding to label the lesions corresponding to individual fish in which they where found).

      (2) Figure 4 has a few caveats. First, the use of adrb1 morphants (rather than morphants) is at odds with the authors' goal of using genetic validation to test the involvement of adrb1 in CCM2-induced lesion development.

      Second, the authors should clarify if they have validated that the tnnt (tnnt2a) morpholino phenocopies tnnt2a mutants in the context in which they are using it (this reviewer found that the tnnt2a morpholino blocks the heartbeat just like the mutant, but induces additional phenotypes not observed in the mutants).

      Third, the data in Figure 4E is from just two embryos per treatment, a tiny sample size. Furthermore, judging from the number of points in the graph, only a few endothelial PCV cells appear to have been sampled per embryo. Also, judging from the photos and white arrowheads and arrows (Figure 4A-D), only the cells at the ventral side of the vessel were scored (if so, the rationale behind this choice requires clarification).

      Fourth, it is unclear whether and how the Tg(kdrl:mcherry)is5 endothelial reporter was used to mask the signals from the klf2a reporter. The reviewer knows by experience that accuracy suffers if a cytosolic or cell membrane signal is used to mask a nuclear green signal.

      Finally, the text and legend related to Figure 4 could be more explicit. What do the authors mean by a mosaic pattern of endothelial nuclear EGFP intensity, and how is that observation reflected in graph 4E? When I look at the graph, I understand that klf2a is decreased in C-D compared to A-B. Are some controls missing? Suppose the point is to show mosaicism of Klf2a levels upon ccm2 CRISPR. Don't you need embryos without ccm2 CRISPR to show that Klf2a levels in those backgrounds have average levels that vary within a defined range and that in the presence of ccm2 mosaicism, some cells have values significantly outside that range? Also, in 4A-D, what are the white arrowheads and arrows? The legend does not mention them.

      Given the practical relevance of the findings to cardiovascular medicine, increasing the strength of the evidence would greatly enhance the value of this work.

    1. Reviewer #1 (Public review):

      Summary:

      Ma et al. show that melanoma cells induce an EMT-like state in nearby keratinocytes and that when this state is induced experimentally by Twist-overexpression the resulting alteration in keratinocytes is inhibitory for melanoma invasion. These conclusions are based on experiments in vivo with zebrafish and, in vitro, with human cells. The work is carefully done and provides new insights into the interactions between melanoma cells and their environment.

      Strengths:

      The use of both zebrafish and human cells adds confidence that findings are relevant to human melanomas while also further demonstrating the utility of the zebrafish system for discovering important new features of melanoma biology that could ultimately have clinical impacts. The work also combines a nice suite of approaches including different models for induced melanomagenesis in zebrafish, single-cell RNA-sequencing, and more. Some of the final observations are intriguing as well, especially the possibility of EMT-induced melanocyte-keratinocyte interactions via Jam3 expression; it will be interesting to see if this is indeed a mechanism for restraining melanoma invasion. The paper is clearly written and the inferences are appropriate for the results obtained. Overall the work makes a solid contribution to our understanding of important, but too often neglected, roles of the tumor microenvironment in promoting or inhibiting tumor progression and outcome.

      Weaknesses:

      No critical weaknesses were noted.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Ma et. al. utilizes a zebrafish melanoma model, single-cell RNA sequencing (scRNA-seq), a mammalian in vitro co-culture system, and quantitative PCR (Q-PCR) gene expression analysis to investigate the role keratinocytes might play within the melanoma microenvironment. Convincing evidence is presented from scRNA-seq analysis showing that a small cluster of melanoma-associated keratinocytes upregulates the master EMT regulator, transcription factor, Twist1a. To investigate how Twist-expressing keratinocytes might influence melanoma development, the authors use an in vivo zebrafish model to induce melanoma initiation while overexpressing Twist in keratinocytes through somatic transgene expression. This approach reveals that Twist overexpression in keratinocytes suppresses invasive melanoma growth. Using a complementary in vitro human cell line co-culture model, the authors demonstrate reduced migration of melanoma cells into the keratinocyte monolayer when keratinocytes overexpress Twist. Further scRNA-seq analysis of zebrafish melanoma tissues reveals that in the presence of Twist-expressing keratinocytes, subpopulations of melanoma cells show altered gene expression, with one unique melanoma cell cluster appearing more terminally differentiated. Finally, the authors use computational methods to predict putative receptor-ligand pairs that might mediate the interaction between Twist-expressing keratinocytes and melanoma cells.

      Strengths:

      The scRNA-seq approach reveals a small proportion of keratinocytes undergoing EMT within melanoma tissue. The use of a zebrafish somatic transgenic model to study melanoma initiation and progression provides an opportunity to manipulate host cells within the melanoma microenvironment and evaluate their impact on tumour progression. Solid data demonstrate that Twist-expressing keratinocytes can constrain melanoma invasive development in vivo and reduce melanoma cell migration in vitro, establishing that Twist-overexpressing keratinocytes can suppress at least one aspect of tumour progression.

      Weaknesses:

      While the scRNA-seq analysis of melanoma tissue and RT-PCR analysis of EMT gene expression in isolated keratinocytes provide evidence that a subpopulation of host keratinocytes upregulates Twist and other EMT marker genes and potentially undergoes EMT, the in vivo evidence for keratinocyte EMT within the melanoma microenvironment is based on cell morphology in a single image without detailed characterization and quantification. No EMT marker gene expression was examined in melanoma tissue sections to determine the proportion and localization of Twist+ve keratinocytes within the melanoma microenvironment.

      The scRNA-seq UMAP suggests the proportion of EMT keratinocytes within the melanoma microenvironment is very small, raising questions about their precise location and significance within the tumour microenvironment. Although both in vivo and in vitro evidence demonstrates that Twist-expressing keratinocytes can suppress melanoma progression, the conditions modelled by the authors involve over-expression of Twist in all keratinocytes, which do not naturally occur within the melanoma microenvironment and, therefore, might not be relevant to naturally occurring melanoma progression. The author did not test whether blocking EMT through down-regulation of Twist in keratinocytes may influence melanoma development, which would establish the role of Twist expression keratinocytes in the melanoma microenvironment.

      To address the potential mechanism by which Twist-expressing keratinocytes suppress melanoma progression, a second scRNA-seq analysis was conducted. However, this analysis is not adequately presented to provide strong evidence for proposed mechanisms for how Twist-expressing keratinocytes suppress melanoma cell invasion. CellChat analysis was used to attempt to identify receptor-ligand pairs that might mediate keratinocyte-melanoma cell interaction, but the interactions between tumour-associated keratinocytes (TAK) and melanoma cells were not included in the analysis. Furthermore, although genetic reporters were used to label both keratinocytes and melanoma cells, no images showing the detailed distribution and positional information of these cells within melanoma tissue are presented in the report. None of the gene expression changes detected through Q-PCR or scRNA-seq were validated using immunostaining or in situ hybridization.

      Overall, the data presented in this report draw attention to a less-studied host cell type within the tumour microenvironment, the keratinocytes, which, similar to well-studied immune cells and fibroblasts, could play important roles in either promoting or constraining melanoma development.

      Counterintuitively, the authors show that Twist-expressing EMT keratinocytes can constrain melanoma progression. While the detailed mechanisms remain to be uncovered, this is an interesting observation.

    3. Reviewer #3 (Public review):

      Summary:

      In this study the authors use the zebrafish model and in vitro co-cultures with human cell lines, to study how keratinocytes modulate the early stages of melanoma development/migration. The authors demonstrate that keratinocytes undergo an EMT-like transformation in the presence of melanoma cells which leads to a reduction in melanoma cell migration. This EMT transformation occurs via Twist; and resulted in an improvement in OS in zebrafish melanoma models. Authors suggest that the limitation of melanoma cell migration by Twist-overexpressing keratinocytes was through altered cell-cell interactions (Jam3b) that caused a physical blockage of melanoma cell migration.

      Strengths:

      The authors describe a new cross-talk between melanoma and its major initial microenvironment: the keratinocytes and how instructed by melanoma cells keratinocytes undergo an EMT transformation, which then controls melanoma migration.

      Overall, the paper is very well written, and the results are clearly organized and presented.

      Weaknesses:

      (1) To really show their last point it would be important to CRISPR KO Jam3b in melanoma with twist OE keratinocytes, in vivo or in vitro.

      (2) The use of patient biopsies from early-stage melanomas vs healthy tissue to assess if there is a similar alteration of morphology of adjacent keratinocytes and an increase in vimentin in human samples would strengthen the author's findings.

      (3) The cell-cell junctions and borders between cells (melanoma/ keratinocytes) should be characterized better, with cellular and sub-cellular resolution. Since melanocytes can "touch" with their dendrites ~40 keratinocytes - can authors expand and explain better their model? Can this explain that in some images we cannot observe a direct interface between the cells?

    1. Reviewer #1 (Public review):

      In this study, Hama et al. explored the molecular regulatory mechanisms underlying the formation of the ULK1 complex. By employing the AlphaFold structural prediction tool, they showed notable differences in the complex formation mechanisms between ULK1 in mammalian cells and Atg1 in yeast cells. Their findings revealed that in mammalian cells, ULK1, ATG13, and FIP200 form a complex with a stoichiometry of 1:1:2. These predicted interaction regions were validated through both in vivo and in vitro assays, enhancing our understanding of the molecular mechanisms governing ULK1 complex formation in mammalian cells. Importantly, they identified a direct interaction between ULK1 and FIP200, which is crucial for autophagy. However, some aspects of this manuscript require further clarification, validation, and correction by the authors.

    2. Reviewer #2 (Public review):

      Summary:

      This is important work that helps to uncover how the process of autophagy is initiated - via structural analyses of the initiating ULK1 complex. High-resolution structural details and a mechanistic insight of this complex have been lacking and understanding how it assembles and functions is a major goal of a field that impacts many aspects of cell and disease biology. While we know components of the ULK1 complex are essential for autophagy, how they physically interact is far from clear. The work presented makes use of AlphaFold2 to structurally predict interaction sites between the different subunits of the ULK1 complex (namely ULK1, ATG13, and FIP200). Importantly, the authors go on to experimentally validate that these predicted sites are critical for complex formation by using site-directed mutagenesis and then go on to show that the three-way interaction between these components is necessary to induce autophagy in cells.

      Strengths:

      The data are very clear. Each binding interface of ATG13 (ATG13 with FIP300/ATG13 with ULK1) is confirmed biochemically with ITC and IP experiments from cells. Likewise, IP experiments with ULK1 and FIP200 also validate interaction domains. A real strength of the work in in their analyses of the consequences of disrupting ATG13's interactions in cells. The authors make CRISPR KI mutations of the binding interface point mutants. This is not a trivial task and is the best approach as everything is monitored under endogenous conditions. Using these cells the authors show that ATG13's ability to interact with both ULK1 and FIP200 is essential for a full autophagy response.

      Weaknesses:

      I think a main weakness here is the failure to acknowledge and compare results with an earlier preprint that shows essentially the same thing (https://doi.org/10.1101/2023.06.01.543278). Arguably this earlier work is much stronger from a structural point of view as it relies not only on AlphaFold2 but also actual experimental structural determinations (and takes the mechanisms of autophagy activation further by providing evidence for a super complex between the ULK1 and VPS34 complexes). That is not to say that this work is not important, as in the least it independently helps to build a consensus for ULK1 complex structure. Another weakness is that the downstream "functional" consequences of disrupting the ULK1 complex are only minimally addressed. The authors perform a Halotag-LC3 autophagy assay, which essentially monitors the endpoint of the process. There are a lot of steps in between, knowledge of which could help with mechanistic understanding. Not in the least is the kinase activity of ULK1 - how is this altered by disrupting its interactions with ATG13 and/or FIP200?

    3. Reviewer #3 (Public review):

      In this study, the authors employed the protein complex structure prediction tool AlphaFold-Multimer to obtain a predicted structure of the protein complex composed of ULK1-ATG13-FIP200 and validated the structure using mutational analysis. This complex plays a central role in the initiation of autophagy in mammals. Previous attempts at resolving its structure have failed to obtain high-resolution structures that can reveal atomic details of the interactions within the complex. The results obtained in this study reveal extensive binary interactions between ULK1 and ATG13, between ULK1 and FIP200, and between ATG13 and FIP200, and pinpoint the critical residues at each interaction interface. Mutating these critical residues led to the loss of binary interactions. Interestingly, the authors showed that the ATG13-ULK1 interaction and the ATG13-FIP200 interaction are partially redundant for maintaining the complex.

      The experimental data presented by the authors are of high quality and convincing. However, given the core importance of the AlphaFold-Multimer prediction for this study, I recommend the authors improve the presentation and documentation related to the prediction, including the following:

      (1) I suggest the authors consider depositing the predicted structure to a database (e.g. ModelArchive) so that it can be accessed by the readers.

      (2) I suggest the authors provide more details on the prediction, including explaining why they chose to use the 1:1:2 stoichiometry for ULK1-ATG13-FIP200 and whether they have tried other stoichiometries, and explaining why they chose to use the specific fragments of the three proteins and whether they have used other fragments.

      (3) I suggest the authors present the PAE plot generated by AlphaFold-Multimer in Figure S1. The PAE plot provides valuable information on the prediction.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors have tried to dissect the functions of Proteasome activator 28γ (PA28γ) which is known to activate proteasomal function in an ATP-independent manner. Although there are multiple works that have highlighted the role of this protein in tumours, this study specifically tried to develop a correlation with Complement C1q binding protein (C1QBp) that is associated with immune response and energy homeostasis.

      Strengths:

      The observations of the authors hint that beyond PA28y's association with the proteasome, it might also stabilize certain proteins such as C1QBP which influences energy metabolism.

      Weaknesses:

      The strength of the work also becomes its main drawback. That is, how PA28y stabilizes C1QBP or how C1QBP elicits its pro-tumourigenic role under PA28y OE.<br /> In most of the experiments, the authors have been dependent on the parallel changes in the expression of both the proteins to justify their stabilizing interaction. However, this approach is indirect at best and does not confirm the direct stabilizing effect of this interaction. IP experiments do not indicate direct interaction and have some quality issues. The upregulation of C1QBP might be indirect at best. It is quite possible that PA28y might be degrading some secondary protein/complex that is responsible for C1QBP expression. Since the core idea of the work is PA28y direct interaction with C1QBP stabilizing it, the same should be demonstrated in a more convincing manner.

      In all of the assays, C1QBP has been detected as doublet. However, the expression pattern of the two bands varies depending on the experiment. In some cases, the upper band is intensely stained and in some the lower bands. Do C1QBP isoforms exist and are they differentially regulated depending on experiment conditions/tissue types?

      Problems with the background of the work: Line 76. This statement is far-fetched. There are presently a number of works of literature that have dealt with the metabolic programming of OSCC including identification of specific metabolites. Moreover, beyond the estimation of OCR, the authors have not conducted any experiments related to metabolism. In the Introduction, the significance of this study and how it will extend our understanding of OSCC needs to be elaborated.

    2. Reviewer #2 (Public review):

      Summary:

      The authors tried to determine how PA28g functions in oral squamous cell carcinoma (OSCC) cells. They hypothesized it may act through metabolic reprogramming in the mitochondria.

      Strengths:

      They found that the genes of PA28g and C1QBP are in an overlapping interaction network after an analysis of a genome database. They also found that the two proteins interact in coimmunoprecipitation and pull-down assays using the lysate from OSCC cells with or without expression of the exogenous genes. They used truncated C1QBP proteins to map the interaction site to the N-terminal 167 residues of C1QBP protein. They observed the levels of the two proteins are positively correlated in the cells. They provided evidence for the colocalization of the two proteins in the mitochondria, the effect on mitochondrial form and function in vitro and in vivo OSCC models, and the correlation of the protein expression with the prognosis of cancer patients.

      Weaknesses:

      Many data sets are shown in figures that cannot be understood without more descriptions, either in the text or the legend, e.g., Figure 1A. Similarly, many abbreviations are not defined.

      Some of the pull-down and coimmunoprecipitation data do not support the conclusion about the PA28g-C1QBP interaction. For example, in Appendix Figure 1B the Flag-C1QBP was detected in the Myc beads pull-down when the protein was expressed in the 293T cells without the Myc-PA28g, suggesting that the pull-down was not due to the interaction of the C1QBP and PA28g proteins. In Appendix Figure 1C, assume the SFB stands for a biotin tag, then the SFB-PA28g should be detected in the cells expressing this protein after pull-down by streptavidin; however, it was not. The Western blot data in Figure 1E and many other figures must be quantified before any conclusions about the levels of proteins can be drawn.

      The immunoprecipitation method is flawed as it is described. The antigen (PA28g or C1QBP) should bind to the respective antibody that in turn should binds to Protein G beads. The resulting immunocomplex should end up in the pellet fraction after centrifugation and be analyzed further by Western blot for coprecipitates. However, the method in the Appendix states that the supernatant was used for the Western blot.

      To conclude that PA28g stabilizes C1QBP through their physical interaction in the cells, one must show whether a protease inhibitor can substitute PA28q and prevent C1QBP degradation, and also show whether a mutation that disrupts the PA28g-C1QBP interaction can reduce the stability of C1QBP. In Figure 1F, all cells expressed Myc-PA28g. Therefore, the conclusion that PA28g prevented C1QBP degradation cannot be reached. Instead, since more Myc-PA28g was detected in the cells expressing Flag-C1QBP compared to the cells not expressing this protein, a conclusion would be that the C1QBP stabilized the PA28g. Figure 1G is a quantification of Western blot data that should be shown.

      The binding site for PA28g in C1QBP was mapped to the N-terminal 167 residues using truncated proteins. One caveat would be that some truncated proteins did not fold correctly in the absence of the sequence that was removed. Thus, the C-terminal region of the C1QBP with residues 168-283 may still bind to the PA29g in the context of full-length protein. In Figure 1I, more Flag-C1QBP 1-167 was pulled down by Myc-PA28g than the full-length protein or the Flag-C1QBP 1-213. Why?

      The interaction site in PA28g for C1QBP was not mapped, which prevents further analysis of the interaction. Also, if the interaction domain can be determined, structural modeling of the complex would be feasible using AlphaFold2 or other programs. Then, it is possible to test point mutations that may disrupt the interaction and if so, the functional effect

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the role of HSPA2 during mouse preimplantation development. Knocking down HSPA2 in zygotes, the authors describe lower chances of developing into blastocysts, which show a reduced number of inner cell mass cells. They find that HSPA2 mRNA and protein levels show some heterogeneity among blastomeres at the 4-cell stage and propose that HSPA2 could contribute to skewing their relative contribution to embryonic lineages. To test this, the authors try to reduce HSPA2 expression in one of the 2-cell stage blastomere and propose that it biases their contribution to towards extra-embryonic lineages. To explain this, the authors propose that HSPA2 would interact with CARM1, which controls chromatin accessibility around genes regulating differentiation into embryonic lineage.

      Strengths:

      (1) The study offers simple and straightforward experiments with large sample sizes.

      (2) Unlike most studies in the field, this research often relies on both mRNA and protein levels to analyse gene expression and differentiation.

      Weaknesses:

      (1) Image and statistical analyses are not well described.

      (2) The functionality of the overexpression construct is not validated.

      (3) Tracking of KD cells in embryos injected at the 2-cell stage with GFP is unclear.

      (4) A key rationale of the study relies on measuring small differences in the levels of mRNA and proteins using semi-quantitative methods to compare blastomeres. As such, it is not possible to know whether those subtle differences are biologically meaningful. For example, the lowest HSPA2 level of the embryo with the highest level is much higher than the top cell from the embryo with the lowest level. What does this level mean then? Does this mean that some blastomeres grafted from strong embryos would systematically outcompete all other blastomeres from weaker embryos? That would be very surprising. I think the authors should be more careful and consider the lack of quantitative power of their approach before reaching firm conclusions. Although to be fair, the authors only follow a long trend of studies with the same intrinsic flaw of this approach.

      (5) Some of the analyses on immunostaining do not take into account that this technique only allows for semi-quantitative measurements and comparisons.<br /> a) Some of the microscopy images are shown with an incorrect look-up table.<br /> b) Some of the schematics are incorrect and misleading.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Gao et al. use RNA-seq to identify Hspa2 as one of the earliest transcripts heterogeneously distributed between blastomeres. Functional studies are performed using siRNA knockdown showing Hspa2 may bias cells toward the ICM lineage via interaction with the known methyltransferase CARM1.

      Strengths:

      This study tackles an important question regarding the origins of the first cell fate decision in the preimplantation embryo. It provides novelty in its identification of Hspa2 as a heterogeneous transcript in the early embryo and proposes a plausible mechanism showing interactions with Carm1. Multiple approaches are used to validate their functional studies (FISH, WB, development rates, proteomics). Given only 4 other transcripts/RNA have been identified at or before the 4-cell stage (LincGET, CARM1, PRDM14, HMGA1), this would be an important addition to our understanding of how TE vs ICM fate is established.

      Weaknesses:

      The RNA-seq results leading the authors to focus on Hspa2 are not included in the manuscript. This dataset would serve as an important resource but is neither included nor discussed. Nor is it mentioned whether Hspa2 was identified in prior RNA-seq embryos studies (for example Deng Science 2014).

      In addition, the functional studies are centered on Hspa2 knockdown at the zygote (1-cell) stage, which would largely target maternal transcript. Given the proposed mechanism relies on Hspa2 heterogeneity post-ZGA (late 2-cell stage), the knockdown studies don't necessarily test this and thus don't provide direct support to the authors' conclusions. The relevance of the study would be improved if the authors could show that zygotic knockdown leads to symmetric Hspa2 levels at the late 2-cell and/or 4-cell stage. It may be possible that zygotic knockdown leads to lower global Hspa2 levels, but that asymmetry is still generated at the 4-cell stage.

      Furthermore, the authors show that Hspa2 knockdown at the 1-cell stage lowers total Carm1 levels at the 4-cell stage. However, it is unclear how total abundance within the embryo alters lineage specification within blastomeres. The authors go on to propose a plausible mechanism involving Hspa2 and Carm1 interaction, but do not discuss how expression levels may be involved.

    1. Reviewer #1 (Public review):

      Summary:

      This is a comprehensive study that clearly and deeply investigates the function of GATA6 in human early cardiac development.

      Strengths:

      This study combines hESC engineering, differentiation, detailed gene expression, genome occupancy, and pathway modulation to elucidate the role of GATA6 in early cardiac differentiation. The work is carefully executed and the results support the conclusions. The use of publicly available data is well integrated throughout the manuscript. The RIME experiments are excellent.

      Weaknesses:

      Much has been known about GATA6 in mesendoderm development, and this is acknowledged by the authors.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Bisson et al describes the role of GATA6 to regulate cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation using human embryonic stem cells (hESCs). The authors found that GATA6 loss-of-function hESC exhibits early defects in mesendoderm and lateral mesoderm patterning stages. Using RNA-seq and CUT&RUN assays the genes of the Wnt and BMP programs were found to be affected by the loss of GATA6 expression. Modulating Wnt and BMP during early cardiac differentiation can partially rescue CPC and CM defects in GATA6 hetero- and homozygous mutant hESCs.

      Strengths:

      The studies performed were rigorous and the rationale for the experimental design was logical. The results obtained were clear and supported the conclusions that the authors made regarding the role of GATA6 on Wnt and BMP pathway gene expression.

      Weaknesses:

      Given the wealth of studies that have been performed in this research area previously, the amount of new information provided in this study is relatively modest. Nevertheless, the results and quite clear and should make a strong contribution to the field.

    3. Reviewer #3 (Public review):

      In this study, Bison et al. analyzed the role of the GATA6 transcription factor in patterning the early mesoderm and generating cardiomyocytes, using human embryonic stem cell differentiation assays and patient-derived hiPSCs with heart defects associated with mutations in the GATA6 gene. They identified a novel role for GATA6 in regulating genes involved in the WNT and BMP pathways -findings not previously noted in earlier analyses of GATA6 mutant hiPSCs during early cardiac mesoderm specification (Sharma et al., 2020). Modulation of the WNT and BMP pathways may partially rescue early cardiac mesoderm defects in GATA6 mutant hESCs. These results provide significant insights into how GATA6 loss-of-function and heterozygous mutations contribute to heart defects.

      I have the following comments:

      (1) Throughout the manuscript, Bison et al. alternate between different protocols to generate cardiomyocytes, which creates some confusion (e.g., Figure 1 vs. Supplemental Figure 2A). The authors should provide a clear justification for using alternative protocols.

      (2) The authors should characterise the mesodermal identity and cardiomyocyte subtypes generated with the activin/BMP-induction protocol thoroughly and clarify whether defects in the expression of BMP and WNT-related gene affect the formation of specific cardiomyocyte subtypes in a chamber-specific manner. This analysis is important, as Sharma et al. suggested a role for GATA6 in orchestrating outflow tract formation, and Bison et al. similarly identified decreased expression of NRP1, a gene involved in outflow tract septation, in their GATA6 mutant cells.

      (3) The authors developed an iPSC line derived from a congenital heart disease (CHD) patient with an atrial septal defect and observed that these cells generate cTnnT+ cells less efficiently. However, it remains unclear whether atrial cardiomyocytes (or those localised specifically at the septum) are being generated using the activin/BMP-induction protocol and the patient-derived iPSC line.

      (4) The authors should also justify the necessity of using the patient-derived line to further analyse GATA6 function.

      (5) Figure 3 suggests an enrichment of paraxial mesoderm genes in the context of GATA6 loss-of-function, which is intriguing given the well-established role of GATA6 in specifying cardiac versus pharyngeal mesoderm lineages in model organisms. Could the authors expand their analysis beyond GO term enrichment to explore which alternative fates GATA6 mutant cells may acquire? Additionally, how does the potential enrichment of paraxial mesoderm, rather than pharyngeal mesoderm, relate to the initial mesodermal induction from their differentiation protocol? Could the authors also rule out the possibility of increased neuronal cell fates?

    1. Reviewer #1 (Public Review):

      In the current manuscript, the authors use theoretical and analytical tools to examine the possibility of neural projections to engage ensembles of synaptic clusters in active dendrites. The analysis is divided into multiple models that differ in the connectivity parameters, speed of interactions, and identity of the signal (electric vs. second messenger). They first show that random connectivity almost ensures the representation of presynaptic ensembles. As expected, this convergence is much more likely for small group sizes and slow processes, such as calcium dynamics. Conversely, fast signals (spikes and postsynaptic potentials) and large groups are much less likely to recruit spatially clustered inputs. Dendritic nonlinearity in the postsynaptic cells was found to play a highly important role in distinguishing these clustered activation patterns, both when activated simultaneously and in sequence. The authors tackled the difficult issue of noise, showing a beneficiary effect when noise 'happens' to fill in gaps in a sequential pattern but degraded performance at higher background activity levels. Last, the authors simulated selectivity to chemical and electrical signals. While they find that longer sequences are less perturbed by noise, in more realistic activation conditions, the signals are not well resolved in the soma.

      While I think the premise of the manuscript is worth exploring, I have a number of reservations regarding the results.

      (1) In the analysis, the authors made a simplifying assumption that the chemical and electrical processes are independent. However, this is not the case; excitatory inputs to spines often trigger depolarization combined with pronounced calcium influx; this mixed signaling could have dramatic implications on the analysis, particularly if the dendrites are nonlinear (see below)

      (2) Sequence detection in active dendrites is often simplified to investigating activation in a part of or the entirety of individual branches. However, the authors did not do that for most of their analysis. Instead, they treat the entire dendritic tree as one long branch and count how many inputs form clusters. I fail to see why simplification is required and suspect it can lead to wrong results. For example, two inputs that are mapped to different dendrites in the 'original' morphology but then happen to fall next to each other when the branches are staggered to form the long dendrites would be counted as neighbors.

      (3) The simulations were poorly executed. Figures 5 and 6 show examples but no summary statistics. The authors emphasize the importance of nonlinear dendritic interactions, but they do not include them in their analysis of the ectopic signals! I find it to be wholly expected that the effects of dendritic ensembles are not pronounced when the dendrites are linear.

      To provide a comprehensive analysis of dendritic integration, the authors could simulate more realistic synaptic conductances and voltage-gated channels. They would find much more complicated interactions between inputs on a single site, a sliding temporal and spatial window of nonlinear integration that depends on dendritic morphology, active and passive parameters, and synaptic properties. At different activation levels, the rules of synaptic integration shift to cooperativity between different dendrites and cellular compartments, further complicated by nonlinear interactions between somatic spikes and dendritic events.

      While it is tempting to extend back-of-the-napkin calculations of how many inputs can recruit nonlinear integration in active dendrites, the biological implementation is very different from this hypothetical. It is important to consider these questions, but I am not convinced that this manuscript adequately addressed the questions it set out to probe, nor does it provide information that was unknown beforehand.

    2. Reviewer #2 (Public Review):

      Summary:

      If synaptic input is functionally clustered on dendrites, nonlinear integration could increase the computational power of neural networks. But this requires the right synapses to be located in the right places. This paper aims to address the question of whether such synaptic arrangements could arise by chance (i.e. without special rules for axon guidance or structural plasticity), and could therefore be exploited even in randomly connected networks. This is important, particularly for the dendrites and biological computation communities, where there is a pressing need to integrate decades of work at the single-neuron level with contemporary ideas about network function.

      Using an abstract model where ensembles of neurons project randomly to a postsynaptic population, back-of-envelope calculations are presented that predict the probability of finding clustered synapses and spatiotemporal sequences. Using data-constrained parameters, the authors conclude that clustering and sequences are indeed likely to occur by chance (for large enough ensembles), but require strong dendritic nonlinearities and low background noise to be useful.

      Strengths:

      (1) The back-of-envelope reasoning presented can provide fast and valuable intuition. The authors have also made the effort to connect the model parameters with measured values. Even an approximate understanding of cluster probability can direct theory and experiments towards promising directions, or away from lost causes.

      (2) I found the general approach to be refreshingly transparent and objective. Assumptions are stated clearly about the model and statistics of different circuits. Along with some positive results, many of the computed cluster probabilities are vanishingly small, and noise is found to be quite detrimental in several cases. This is important to know, and I was happy to see the authors take a balanced look at conditions that help/hinder clustering, rather than to just focus on a particular regime that works.

      (3) This paper is also a timely reminder that synaptic clusters and sequences can exist on multiple spatial and temporal scales. The authors present results pertaining to the standard `electrical' regime (~50-100 µm, <50 ms), as well as two modes of chemical signaling (~10 µm, 100-1000 ms). The senior author is indeed an authority on the latter, and the simulations in Figure 5, extending those from Bhalla (2017), are unique in this area. In my view, the role of chemical signaling in neural computation is understudied theoretically, but research will be increasingly important as experimental technologies continue to develop.

      Weaknesses:

      (1) The paper is mostly let down by the presentation. In the current form, some patience is needed to grasp the main questions and results, and it is hard to keep track of the many abbreviations and definitions. A paper like this can be impactful, but the writing needs to be crisp, and the logic of the derivation accessible to non-experts. See, for instance, Stepanyants, Hof & Chklovskii (2002) for a relevant example.

      It would be good to see a restructure that communicates the main points clearly and concisely, perhaps leaving other observations to an optional appendix. For the interested but time-pressed reader, I recommend starting with the last paragraph of the introduction, working through the main derivation on page 7, and writing out the full expression with key parameters exposed. Next, look at Table 1 and Figure 2J to see where different circuits and mechanisms fit in this scheme. Beyond this, the sequence derivation on page 15 and biophysical simulations in Figures 5 and 6 are also highlights.

      (2) I wonder if the authors are being overly conservative at times. The result highlighted in the abstract is that 10/100000 postsynaptic neurons are expected to exhibit synaptic clustering. This seems like a very small number, especially if circuits are to rely on such a mechanism. However, this figure assumes the convergence of 3-5 distinct ensembles. Convergence of inputs from just 2 ensembles would be much more prevalent, but still advantageous computationally. There has been excitement in the field about experiments showing the clustering of synapses encoding even a single feature.

      (3) The analysis supporting the claim that strong nonlinearities are needed for cluster/sequence detection is unconvincing. In the analysis, different synapse distributions on a single long dendrite are convolved with a sigmoid function and then the sum is taken to reflect the somatic response. In reality, dendritic nonlinearities influence the soma in a complex and dynamic manner. It may be that the abstract approach the authors use captures some of this, but it needs to be validated with simulations to be trusted (in line with previous work, e.g. Poirazi, Brannon & Mel, (2003)).

      (4) It is unclear whether some of the conclusions would hold in the presence of learning. In the signal-to-noise analysis, all synaptic strengths are assumed equal. But if synapses involved in salient clusters or sequences were potentiated, presumably detection would become easier? Similarly, if presynaptic tuning and/or timing were reorganized through learning, the conditions for synaptic arrangements to be useful could be relaxed. Answering these questions is beyond the scope of the study, but there is a caveat there nonetheless.

  2. Sep 2024
    1. Reviewer #1 (Public review):

      Summary

      In this manuscript, Day et al. present a high-throughput version of expansion microscopy to increase the throughput of this well-established super-resolution imaging technique. Through technical innovations in liquid handling with custom-fabricated tools and modifications to how the expandable hydrogels are polymerized, the authors show robust ~4-fold expansion of cultured cells in 96-well plates. They go on to show that HiExM can be used for applications such as drug screens by testing the effect of doxorubicin on human cardiomyocytes. Interestingly, the effects of this drug on changing DNA organization were only detectable by ExM, demonstrating the utility of HiExM for such studies.

      Overall, this is a very well-written manuscript presenting an important technical advance that overcomes a major limitation of ExM - throughput. As a method, HiExM appears extremely useful and the data generally support the conclusions.

      Strengths

      Hi-ExM overcomes a major limitation of ExM by increasing the throughput and reducing the need for manual handling of gels. The authors do an excellent job of explaining each variation introduced to HiExM to make this work and thoroughly characterize the impressive expansion isotropy. The dox experiments are generally well-controlled and the comparison to an alternative stressor (H2O2) significantly strengthens the conclusions.

      Weaknesses

      (1) It is still unclear to me whether or not cells that do not expand remain in the well given the response to point 1. The authors say the cells are digested and washed away but then say that there is a remaining signal from the unexpanded DNA in some cases. I believe this is still a concern that potential users of the protocol should be aware of.

      (2) Regarding the response to point 9, I think this information should be included in the manuscript, possibly in the methods. It is important for others to have a sense of how long imaging may take if they were to adopt this method.

    2. Reviewer #2 (Public review):

      Summary:

      In the present work, the authors present an engineering solution to sample preparation in 96-well plates for high-throughput super resolution microscopy via Expansion Microscopy. This is not a trivial problem, as the well cannot be filled with the gel, which would prohibit expansion of the gel. They thus engineered a device that can spot a small droplet of hydrogel solution and keep it in place as it polymerises. It occupies only a small portion space at the center of each well, the gel can expand into all directions and imaging and staining can proceed by liquid handling robots and an automated microscope.

      Strengths:

      In contrast to Reference 8, the authors system is compatible with standard 96 well imaging plates for high-throughput automated microscopy and automated liquid handling for most parts of the protocol. They thus provide a clear path towards high throughput exM and high throughout super resolution microscopy, which is a timely and important goal.

      Addition upon revision:

      The authors addressed this reviewer's suggestions.

    3. Reviewer #3 (Public review):

      Summary:

      Day et al. introduced high-throughput expansion microscopy (HiExM), a method facilitating the simultaneous adaptation of expansion microscopy for cells cultured in a 96-well plate format. The distinctive features of this method include: 1) the use of a specialized device for delivering a minimal amount (~230 nL) of gel solution to each well of a conventional 96-well plate, and 2) the application of the photochemical initiator, Irgacure 2959, to successfully form and expand toroidal gel within each well.

      Addition upon revision:

      Overall, the authors have adequately addressed most of the concerns raised. There are a few minor issues that require attention.

      Minor comments:

      Figure S10: There appears to be a discrepancy in the panel labeling. The current labels are E-H, but it is unclear whether panels A-D exist. Also, this reviewer thought that panels G and H would benefit from statistical testing to strengthen the conclusions. As a general rule for scientific graph presentation, the y-axis of all graphs should start at zero unless there is a compelling reason not to do so.

    1. Joint Public Review:

      TRPML1 functions as a lysosomal ion channel whose variants are associated with lysosomal storage disorder mucolipidosis type IV. Understanding the structure and function of sites involved in the allosteric control TRPML1 may provide new molecular moieties to target with prototypic drugs.

      Gan et al provide the first high resolution cryo-EM structure of a mutant (Y404W) TRPML1 channel in the open state without any activating ligands. This new structure demonstrates how a mutation at a site some distance away from the pore can influence channel gating. The authors provide compelling electrophysiology evidence which supports the proposed Y404W gain of function effect.

      The authors propose an allosteric mechanism whereby the engineered W404 sidechain provides extra van der Waals contacts within a pocket surrounded by helices of the voltage sensor-like domain (VSLD) and causes S4 bending which in turn opens the pore through the S4-S5 linker. Conversely, the authors functionally demonstrate that an alanine mutation at this site causes a loss of function. Although the authors do not provide a structure of the Y404A mutant, they propose that the alanine substitution disrupts the sidechain packing and likely destabilizes the open conformation.

      TRPML1 channels are regulated by PIP2 species in the cell. In the lysosomal membrane, PI(3,5)P2 activates the channel, whereas in the plasma membrane PI(4,5)P2 inhibits it. Towards understanding its lipid regulation, the authors solve a cryo-EM structure of TRPML1 bound to PI(4,5)P2 in the closed state and provide functional evidence that PI(4,5)P2 occupancy inhibits TRPML1 currents.

      Within this same structure, the authors observe a density which may be attributed to sphingomyelin (or possibly phosphocholine). Using electrophysiology on WT and Y404W channels, the authors report an antagonist effect of sphingomyelin on TRPML1 currents.

      Taken together, the study provides convincing evidence for a gating (opening/closing) mechanism of the TRPML1 pore which can be allosterically regulated by altered side-chain packing and by lipid interactions within the VSLD.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Meissner and colleagues described a novel take on a classic social cognition paradigm developed for marmosets. The classic pull task is a powerful paradigm that has been used for many years across numerous species, but its analog approach has several key limitations. As such, it has not been feasible to adopt the task for neuroscience experiments. Here the authors capture the spirit of the classic task but provide several fundamental innovations that modernize the paradigm - technically and conceptually. By developing the paradigm for marmosets, the authors leverage the many advantages of this primate model for studies of social brain functions and their particular amenability to freely-moving naturalistic approaches.

      Strengths:

      The current manuscript describes one of the most exciting paradigms in primate social cognition to be developed in many years. By allowing for freely-moving marmosets to engage in high numbers of trials, while precisely quantifying their visual behavior (e.g. gaze) and recording neural activity this paradigm has the potential to usher in a new wave of research on the cognitive and neural mechanisms underlying primate social cognition and decision-making. This paradigm is an elegant illustration of how naturalistic questions can be adapted to more rigorous experimental paradigms. Overall, I thought the manuscript was well written and provided sufficient details for others to adopt this paradigm.

    2. Reviewer #2 (Public Review):

      Summary:

      This important work by Meisner et al., developed an automated apparatus (MarmoAPP) to collect a wide array of behavioral data (lever pulling, gaze direction, vocalizations) in marmoset monkeys, with the goal of modernizing collection of behavioral data to coincide with the investigation of neurological mechanisms governing behavioral decision making in an important primate neuroscience model. The authors show a variety of "proof-of-principle" concepts that this apparatus can collect a wide range of behavioral data, with higher behavioral resolution than traditional methods. For example, the authors highlight that typical behavioral experiments on primate cooperation provide around 10 trials per session, while using their approach the authors were able to collect over 100 trials per 20-minute session with the MarmoAAP.

      Overall the authors argue that this approach has a few notable advantages:

      (1) It enhances behavioral output which is important for measuring small or nuanced effects/changes in behavior;

      (2) Allows for more advanced analyses given the higher number of trials per session;

      (3) Significantly reduces the human labor of manually coding behavioral outcomes and experimenter interventions such as reloading apparatuses for food or position;

      (4) Allows for more flexibility and experimental rigor in measuring behavior and neural activity simultaneously.

      Strengths:

      The paper is well-written and the MarmoAPP appears to be highly successful at integrating behavioral data across many important contexts (cooperation, gaze, vocalizations), with the ability to measure significantly many more behavioral contexts (many of which the authors make suggestions for).

      The authors provide substantive information about the design of the apparatus, how the apparatus can be obtained via a long list of information Apparatus parts and information, and provide data outcomes from a wide number of behavioral and neurological outcomes. The significance of the findings is important for the field of social neuroscience and the strength of evidence is solid in terms of the ability of the apparatus to perform as described, at least in marmoset monkeys. The advantage of collecting neural and freely-behaving behavioral data concurrently is a significant advantage.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors set out to devise a system for the neural and behavioral study of socially cooperative behaviors in nonhuman primates (common marmosets). They describe instrumentation to allow for a "cooperative pulling" paradigm, the training process, and how both behavioral and neural data can be collected and analyzed. This is a valuable approach to an important topic, as the marmoset stands as a great platform to study primate social cognition. Given that the goals of such a methods paper are to (a) describe the approach and instrumentation, (b) show the feasibility of use, and (c) quantitatively compare to related approaches, the work is easily able to meet those criteria. My specific feedback on both strengths and weaknesses is therefore relatively limited in scope and depth.

      Strengths:

      The device is well-described, and the authors should be commended for their efforts in both designing this system but also in "writing it up" so that others can benefit from their R&D.

      The device appears to generate more repetitions of key behavior than other approaches used in prior work (with other species).

      The device allows for quantitative control and adjustment to control behaviour.

      The approach also supports the integration of markerless behavioral analysis as well as neurophysiological data.

    1. Reviewer #1 (Public review):

      Summary:

      Understanding large-scale neural activity remains a formidable challenge in neuroscience. While several methods have been proposed to discover the assemblies from such large-scale recordings, most of previous studies do not explicit modeling the temporal dynamics. This study is an attempt to uncover the temporal dynamics of assemblies using a tool that have been establish in other domains.

      The authors previously introduced the compositional Restricted Boltzmann Machine (cRBM) to identify neuron assemblies in zebrafish brain activity. Building upon this, they now employ the Recurrent Temporal Restricted Boltzmann Machine (RTRBM) to elucidate the temporal dynamics within these assemblies. By introducing recurrent connections between hidden units, RTRBM could retrieve neural assemblies and their temporal dynamics from simulated and zebrafish brain data.

      Strengths:

      The RTRBM has been previously used in other domains. Training the model has been already established. This study is an application of such model to neuroscience. Overall, the paper is well-structured and the methodology is robust, the analysis is solid to support the authors claim.

      Weaknesses:

      The overall degree of advance is very limited. The performance improvement by RTRBM compared to their cRBM is marginal, and insights into assembly dynamics are limited.

      (1) The biological insights from this method are constrained. Though the aim is to unravel neural ensemble dynamics, the paper lacks in-depth discussion on how this method enhances our understanding of zebrafish neural dynamics. For example, the dynamics of assemblies can be analyzed using various tools such as dimensionality reduction methods once we have identified them using cRBM. What information can we gain by knowing the effective recurrent connection between them? It would be more convincing to show this in real data.

      (2) Including predicted and measured neural activity traces could aid readers in evaluating model efficacy. The current version only contains comparison of the statistics, such as mean and covariance.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors propose an extension to some of the last author's previous work, where a compositional restricted Boltzmann machine was considered as a generative model of neuron-assembly interaction. They augment this model by recurrent connections between the Boltzmann machine's hidden units, which allow them to explicitly account for temporal dynamics of the assembly activity. Since their model formulation does not allow the training towards a compositional phase (as in the previous model), they employ a transfer learning approach according to which they initialise their model with a weight matrix that was pre-trained using the earlier model so as to essentially start the actually training in a compositional phase. Finally, they test this model on synthetic and actual data of whole-brain light-sheet-microscopy recordings of spontaneous activity from the brain of larval zebrafish.

      Strengths:

      This work introduces a new model for neural assembly activity. Importantly, being able to capture temporal assembly dynamics is an interesting feature that goes beyond many existing models. While this work clearly focuses on the method (or the model) itself, it opens up an avenue for experimental research where it will be interesting to see if one can obtain any biologically meaningful insights considering these temporal dynamics when one is able to, for instance, relate them to development or behaviour.

      Weaknesses:

      For most of the work, the authors present their RTRBM model as an improvement over the earlier cRBM model. Yet, when considering synthetic data, they actually seem to compare with a "standard" RBM model. This seems odd considering the overall narrative and that when considering whole-brain zebrafish data, the comparisons were made between RTRBM and cRBM models. For that, the RTRBM model was initialised with the cRBM weight matrix to overcome the fact that RTRBM alone does not seem to converge to a compositional phase, so to cite the latter as reason does not really make sense.

      Furthermore, whether the clusters shown in Figure 3E can indeed be described as "spatially localized" is debatable. Especially in view of clusters 3 and 4, this seems a stretch. If receptive fields are described as "spatially localized", arguably, one would expect that they are contained in some small (compared to the overall size of the brain) or specific anatomical brain region. However, this is clearly not the case here.

      In addition, the performance comparison for the temporal dynamics of the hidden units actually suggests that the RTRBM (significantly) underperforms where the text says (Line 235f) it outperforms the cRBM model.

    1. Reviewer #1 (Public Review):

      Summary:

      This study provides valuable insights into the therapeutic effects of two parathyroid hormone (PTH) analogs on bone regeneration and osseointegration. The research is methodologically sound, employing a robust animal model and a comprehensive array of analytical techniques, including micro-CT, histological/histomorphometric analyses, and serum biochemical analysis.

      Strengths:

      The use of a large animal model, which closely mimics postmenopausal osteoporosis in humans, enhances the study's relevance to clinical applications. The study is well-structured, with clear objectives, detailed methods, and a logical flow from introduction to conclusion. The findings are significant, demonstrating the potential of rhPTH(1-34) and dimeric R25CPTH(1-34) in enhancing bone regeneration, particularly in the context of osteoporosis.

      Weaknesses:

      There are no major weaknesses.

    2. Reviewer #2 (Public Review):

      Summary:

      This article explores the regenerative effects of recombinant PTH analogues on osteogenesis.

      Strengths:

      Although PTH has known to induce the activity of osteoclasts, accelerating bone resorption, paradoxically its intermittent use has become a common treat for osteoporosis. Previous studies successfully demonstrated this phenomenon in vivo, but most of them used rodent animal models, inevitably having a limitation. In this article, the authors tried to address this, using a beagle model, and assessed the osseointegrative effect of recombinant PTH analogues. As a result, the authors clearly observed the regenerative effects of PTH analogues, and compared the efficacy, using histologic, biochemical, and radiologic measurement for surgical-endocrinal combined large animal models. The data seem to be solid, and has potential clinical implications.

      Weaknesses:

      All the issues that I raised have been resolved in the revision process.

      Overall, this paper is well-written and has clarity and consistency for a broader readership.

    3. Reviewer #3 (Public Review):

      Summary:

      The work submitted by Dr. Jeong-Oh Shin and co-workers aims to investigate the therapeutic efficacy of rhPTH(1-34) and R25CPTH(1-34) on bone regeneration and osseointegration of titanium implants using a postmenopausal osteoporosis animal model.

      In my opinion the findings presented are not strongly supported by the provided data since the methods utilized do not allow to significantly support the primary claims.

      Strengths:

      Strengths include certain good technologies utilized to perform histological sections (i.e. the EXAKT system).

      Weaknesses:

      Certain weaknesses continue to significantly lower the enthusiasm for this work. Most important: the limited number of samples/group. In fact, as presented, the work has an n=4 for each treatment group. This limited number of samples/group significantly impairs the statistical power of the study. In addition, the implants were surgically inserted following a "conventional implant surgery", implying that no precise/guided insertion was utilized. This weakness is, in my opinion, particularly significant since the amount of bone osteointegration may greatly depend on the bucco-lingual positioning of each implant at the time of the surgical insertion (which should, therefore, be precisely standardized across all animals and for all surgical procedures).

    1. Reviewer #1 (Public review):

      Summary:

      This paper presents a mechanistic study of rDNA origin regulation in yeast by SIR2. Each of the ~180 tandemly repeated rDNA gene copies contains a potential replication origin. Early-efficient initiation of these origins is suppressed by Sir2, reducing competition with origins distributed throughout the genome for rate-limiting initiation factors. Previous studies by these authors showed that SIR2 deletion advances replication timing of rDNA origins by a complex mechanism of transcriptional de-repression of a local PolII promoter causing licensed origin proteins (MCMcomplexes) to re-localize (slide along the DNA) to a different (and altered) chromatin environment. In this study, they identify a chromatin remodeler, FUN30, that suppresses the sir2∆ effect, and remarkably, results in a contraction of the rDNA to about one-quarter it's normal length/number of repeats, implicating replication defects of the rDNA. Through examination of replication timing, MCM occupancy and nucleosome occupancy on the chromatin in sir2, fun30, and double mutants, they propose a model where nucleosome position relative to the licensed origin (MCM complexes) intrinsically determines origin timing/efficiency. While their interpretations of the data are largely reasonable and can be interpreted to support their model, a key weakness is the connection between Mcm ChEC signal disappearance and origin firing. While the cyclical chromatin association-dissociation of MCM proteins with potential origin sequences may be generally interpreted as licensing followed by firing, dissociation may also result from passive replication and as shown here, displacement by transcription and/or chromatin remodeling. Moreover, linking its disappearance from chromatin in the ChEC method with such precise resolution needs to be validated against an independent method to determine the initiation site(s). Differences in rDNA copy number and relative transcription levels also are not directly accounted for, obscuring a clearer interpretation of the results. Nevertheless, this paper makes a valuable advance with the finding of Fun30 involvement, which substantially reduces rDNA repeat number in sir2∆ background. The model they develop is compelling and I am inclined to agree, but I think the evidence on this specific point is purely correlative and a better method is needed to address the initiation site question. The authors deserve credit for their efforts to elucidate our obscure understanding of the intricacies of chromatin regulation. At a minimum, I suggest their conclusions on these points of concern should be softened and caveats discussed. Statistical analysis is lacking for some claims.

      Strengths are the identification of FUN30 as suppressor, examination of specific mutants of FUN30 to distinguish likely functional involvement. Use of multiple methods to analyze replication and protein occupancies on chromatin. Development of a coherent model.

      Weaknesses are failure to address copy number as a variable; insufficient validation of ChEC method relationship to exact initiation locus; lack of statistical analysis in some cases.

      Review of revised version and response letter:

      In the response, the authors make some improvements by better quantifying 2D gels, adding some missing statistical analyses, analyzing the effect of fun30 on rDNA replication in strains with reduced rDNA copy number, and using ChIP-seq of MCMs to support the ChEC-seq data. However, these additions do not address the main issue that is at the heart of their model: where initiation precisely occurs and whether the location is altered in the mutant(s). Thus, mechanistic insight is limited.

      Under the section "Addressing Alternative Explanations", the authors claim that processes like transcription and passive replication cannot affect the displaced complex specifically. Why? They are not on same DNA (as mentioned in the Fig 1 legend).

      The model in Fig 7 implies that initiation sites are different in WT versus the mutants and this determines their timing/efficiency. But they also suggest that the same site might be used with different efficiencies in this response. I agree that both are possibilities and are not resolved.

      Supporting their model requires better resolution to determine the actual replication initiation site. While this may be challenging, it should be feasible with methods to map nascent strands like DNAscent, or Okazaki fragment mapping.

      The 2D gel analysis of strains with reduced rDNA copy numbers adequately addresses the copy number variable with regard to the replication effect.

      Overall, the paper is improved by providing additional data and improved analysis. The paper nicely characterizes the effect of Fun30. The model is reasonable but remains lacking in precise details of mechanism.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors follow up on their previous work showing that in the absence of the Sir2 deacetylase the MCM replicative helicase at the rDNA spacer region is repositioned to a region of low nucleosome occupancy. Here they show that the repositioned displaced MCMs have increased firing propensity relative to non-displaced MCMs. In addition, they show that activation of the repositioned MCMs and low nucleosome occupancy in the adjacent region depend on the chromatin remodeling activity of Fun30.

      Strengths:

      The paper provides new information on the role of a conserved chromatin remodeling protein in regulation of origin firing and in addition provides evidence that not all loaded MCMs fire and that origin firing is regulated at a step downstream of MCM loading.

      Weaknesses:

      The relationship between the authors results and prior work on the role of Sir2 (and Fob1) in regulation of rDNA recombination and copy number maintenance is not explored, making it difficult to place the results in a broader context. Sir2 has previously been shown to be recruited by Fob1, which is also required for DSB formation and recombination-mediated changes in rDNA copy number. Are the changes that the authors observe specifically in fun30 sir2 cells related to this pathway? Is Fob1 required for the reduced rDNA copy number in fun30 sir2 double mutant cells?

    3. Reviewer #3 (Public review):

      Summary:

      Heterochromatin is characterized by low transcription activity and late replication timing, both dependent on the NAD-dependent protein deacetylase Sir2, the founding member of the sirtuins. This manuscript addresses the mechanism by which Sir2 delays replication timing at the rDNA in budding yeast. Previous work from the same laboratory (Foss et al. PLoS Genetics 15, e1008138) showed that Sir2 represses transcription-dependent displacement of the Mcm helicase in the rDNA. In this manuscript, the authors show convincingly that the repositioned Mcms fire earlier and that this early firing partly depends on the ATPase activity of the nucleosome remodeler Fun30. Using read-depth analysis of sorted G1/S cells, fun30 was the only chromatin remodeler mutant that somewhat delayed replication timing in sir2 mutants, while nhp10, chd1, isw1, htl1, swr1, isw2, and irc5 had no effect. The conclusion was corroborated with orthogonal assays including two-dimensional gel electrophoresis and analysis of EdU incorporation at early origins. Using an insightful analysis with an Mcm-MNase fusion (Mcm-ChEC), the authors show that the repositioned Mcms in sir2 mutants fire earlier than the Mcm at the normal position in wild type. This early firing at the repositioned Mcms is partially suppressed by Fun30. In addition, the authors show Fun30 affects nucleosome occupancy at the sites of the repositioned Mcm, providing a plausible mechanism for the effect of Fun30 on Mcm firing at that position. However, the results from the MNAse-seq and ChEC-seq assays are not fully congruent for the fun30 single mutant. Overall, the results support the conclusions providing a much better mechanistic understanding how Sir2 affects replication timing at rDNA,

      Strengths

      (1) The data clearly show that the repositioned Mcm helicase fires earlier than the Mcm in the wild type position.<br /> (2) The study identifies a specific role for Fun30 in replication timing and an effect on nucleosome occupancy around the newly positioned Mcm helicase in sir2 cells.

      Weaknesses

      (1) It is unclear which strains were used in each experiment.<br /> (2) The relevance of the fun30 phospho-site mutant (S20AS28A) is unclear.<br /> (3) For some experiments (Figs. 3, 4, 6) it is unclear whether the data are reproducible and the differences significant. Information about the number of independent experiments and quantitation is lacking. This affects the interpretation, as fun30 seems to affect the +3 nucleosome much more than let on in the description.

    1. Reviewer #1 (Public review):

      This manuscript describes soluble Uric Acid (sUA) as an endogenous inhibitor of CD38, affecting CD38 activity and NAD+ levels both in vitro and in vivo. Importantly, the inhibition constants calculated supports the claim that sUA inhibits CD38 under physiological conditions. These findings are of extreme importance to understand the regulation of an enzyme that has been shown to be the main NAD+/NMN-degrading enzyme in mammals, which impacts several metabolic processes and has major implications to understanding aging diseases. The manuscript is well written, the figures are self explanatory, and in the experiments presented, the data is very solid. The authors discuss the main limitations of the study, especially in regard to the in vivo results. As a whole, I believe that this is a very interesting manuscript that will be appreciated by the scientific community and that opens a lot of new questions in the field of metabolism and aging.

      During the revision process, the authors have performed new experiments to respond to relevant questions raised by the reviewers. In other cases, they have made changes in the text to improve the manuscript.

      I believe that this manuscript in its current form is a mature and relevant set of findings that deserve attention and future developments.

    2. Reviewer #2 (Public review):

      Summary:

      This is an interesting work where Wen et al. aimed to shed light on the mechanisms driving the protective role of soluble uric acid (sUA) toward avoiding excessive inflammation. They present biochemical data to support that sUA inhibits the enzymatic activity of CD38 (Figures 1 and 2). In a mouse model of acute response to sUA and using mice deficient in CD38, they find evidence that sUA increases the plasma levels of nicotinamide nucleotides (NAD+ and NMN) (Figure 3) and that sUA reduces the plasma levels of inflammasome-driven cytokines IL-1b and IL-18 in response to endotoxin, both dependent on CD38 (Figure 4). Their work is an important advance in the understanding of the physiological role of sUA, with mechanistic insight that can have important clinical implications.

      Strengths:

      The authors present evidence from different approaches to support that sUA inhibits CD38, impacts NAD+ levels, and regulates inflammatory responses through CD38.

      Weaknesses:

      The authors investigate macrophages as the cells affected by sUA in promoting immunoregulation, proposing that sUA's inhibition of CD38 and the resulting increase in NAD+ promotes inflammasome inhibition through a previously established mechanism of NLRP3 regulation by NAD+-dependent sirtuins. However, they were unable to validate their in vivo findings using murine bone marrow-derived macrophages, a standard model for assessing inflammasome activation, due to the low uptake of sUA in these cells. Pharmacological blockage in THP-1 cells provides mechanistic evidence that sUA inhibits NLRP3-mediated secretion of IL-1β through CD38, but genetic evidence and direct assessment of the activation of inflammasome components would be necessary to fully validate the model.

    3. Reviewer #3 (Public review):

      Summary:

      In the present manuscript, the authors propose that soluble Uric acid (sUA) is an enzymatic inhibitor of the NADase CD38 and that it controls levels of NAD modulating inflammatory response. Although interesting the studies are at this stage preliminary and validation is needed.

      Strengths:

      The study characterizes the potential relevance of sUA in NAD metabolism.

      Comment on revised version:

      The authors have responded the majority of my criticism.

    1. Reviewer #1 (Public review):

      Summary:

      In previous work, the authors described necrosis-induced apoptosis (NiA) as a consequence of induced necrosis. Specifically, experimentally induced necrosis in the distal pouch of larval wing imaginal discs triggers NiA in the lateral pouch. In this manuscript, the authors confirmed this observation and found that while necrosis can kill all areas of the disc, NiA is limited to the pouch and to some extent to the notum, but is excluded from the hinge region. Interestingly and unexpectedly, signaling by the Jak/Stat and Wg pathways inhibits NiA. Further characterization of NiA by the authors reveals that NiA also triggers regenerative proliferation which can last up to 64 hours following necrosis induction. This regenerative response to necrosis is significantly stronger compared to discs ablated by apoptosis. Furthermore, the regenerative proliferation induced by necrosis is dependent on the apoptotic pathway because RNAi targeting the RHG genes is sufficient to block proliferation. However, NiA does not promote proliferation through the previously described apoptosis-induced proliferation (AiP) pathway, although cells at the wound edge undergo AiP. Further examination of the caspase levels in NiA cells allowed the authors to group these cells into two clusters: some cells (NiA) undergo apoptosis and are removed, while others referred to as Necrosis-induced Caspase Positive (NiCP) cells survive despite caspase activity. It is the NiCP cells that repair cellular damage including DNA damage and that promote regenerative proliferation. Caspase sensors demonstrate that both groups of cells have initiator caspase activity, while only the NiA cells contain effector caspase activity. Under certain conditions, the authors were also able to visualize effector caspase activity in NiCP cells, but the level was low, likely below the threshold for apoptosis. Finally, the authors found that loss of the initiator caspase Dronc blocks regenerative proliferation, while inhibiting effector caspases by expression of p35 does not, suggesting that Dronc can induce regenerative proliferation following necrosis in a non-apoptotic manner. This last finding is very interesting as it implies that Dronc can induce proliferation in at least two ways in addition to its requirement in AiP.

      Strengths:

      This is a very interesting manuscript. The authors demonstrate that epithelial tissue that contains a significant number of necrotic cells is able to regenerate. This regenerative response is dependent on the apoptotic pathway which is induced at a distance from the necrotic cells. Although regenerative proliferation following necrosis requires the initiator caspase Dronc, Dronc does not induce a classical AiP response for this type of regenerative response. In future work, it will be very interesting to dissect this regenerative response pathway genetically.

      Weaknesses:<br /> No weaknesses were identified.

    2. Reviewer #2 (Public review):

      Summary / Strengths:

      In this manuscript, Klemm et al., build on past published findings (Klemm et al., 2021) to characterize caspase activation in distal cells following necrotic tissue damage within the Drosophila wing imaginal disc. Previously in Klemm et al., 2021, the authors describe necrosis-induced-apoptosis (NiA) following the development of a genetic system to study necrosis that is caused by the expression of a constitutive active GluR1 (Glutamate/Ca2+ channel), and they discovered that the appearance of NiA cells were important for promoting regeneration.

      In this manuscript, the authors aim to investigate how tissues regenerate following necrotic cell death. They find that:<br /> (1) the cells of the wing pouch are more likely to have non-autonomous caspase activation than other regions within the wing imaginal disc (hinge and notum),<br /> (2) two signaling pathways that are known to be upregulated during regeneration, Wnt (wingless) and JAK/Stat signaling, act to prevent additional NiA in pouch cells, and may explain the region specificity,<br /> (3) the presence of NiA cells promotes regenerative proliferation in late stages of regeneration,<br /> (4) not all caspase-positive cells are cleared from the epithelium (these cells are then referred to as Necrosis-induced Caspase Positive (NiCP) cells), these NiCP cells continue to live and promote proliferation in adjacent cells,<br /> (5) the caspase Dronc is important for creating NiA/NiCP cells and for these cells to promote proliferation. Animals heterozygous for a Dronc null allele show a decrease in regeneration following necrotic tissue damage.

      The study has the potential to be broadly interesting due to the insights into how tissues differentially respond to necrosis as compared to apoptosis to promote regeneration.

      Weaknesses:

      However, here are some of my current concerns for the manuscript in its current version:

      (1) The presence of cells with activated caspase that don't die (NiCP cells) is an interesting biological phenomenon but is not described until Figure 5. How does the existence of NiCP cells impact the earlier findings presented? Is late proliferation due to NiA, NiCP, or both? Does Wg and JAK/STAT signaling act to prevent the formation of both NiA and NiCP cells or only NiA cells? Moreover, the authors are able to specifically manipulate the wound edge (WE) and lateral pouch cells (LP), but don't show how these manipulations within these distinct populations impact regeneration. The authors provide evidence that driving UAS-mir(RHG) throughout the pouch, in the LP or the WE all decrease the amount of NiA/NiCP in Figure 3G-O, but no data on final regenerative outcomes for these manipulations is presented (such as those presented for Dronc-/+ in Fig 7M). The manuscript would be greatly enhanced by quantification of more of the findings, especially in describing if the specific manipulations that impacted NiA /NiCP cells disrupt end-point regeneration phenotypes.

      (2) How fast does apoptosis take within the wing disc epithelium? How many of the caspase(+) cells are present for the whole 48 hours of regeneration? Are new cells also induced to activate caspase during this time window? The author presented a number of interesting experiments characterizing the NiCP cells. For the caspase sensor GC3Ai experiments in Figure 5, is there a way to differentiate between cells that have maintained fluorescent CG3Ai from cells that have newly activated caspase? What is the timeline for when NiA and NiCP are specified? In addition, what fraction of NiCP cells contribute to the regenerated epithelium? Additional information about the temporal dynamics of NiA and NiCP specification/commitment would be greatly appreciated.

      (3) The notum also does not express developmental JAK/STAT, yet little NiA was observed within the notum. Do the authors have any additional insights into the differential response between the pouch and notum? What makes the pouch unique? Are NiA/NiCP cells created within other imaginal discs and other tissues? Are they similarly important for regenerative responses in other contexts?

    3. Reviewer #3 (Public review):

      The manuscript "Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity" by Klemm et al. is an exploration of what happens to a group of cells that experience caspase activation after necrosis occurs some distance away from the cells of interest. These experiments have been conducted in the Drosophila wing imaginal disc, which has been used extensively to study the response of a developing epithelium to damage and stress. The authors revise and refine their earlier discovery of apoptosis initiated by necrosis, here showing that many of those presumed apoptotic cells do not complete apoptosis. Thus, the most interesting aspect of the paper is the characterization of a group of cells that experience mild caspase activation in response to an unknown signal, followed by some effector caspase activation and DNA damage, but that then recover from the DNA damage, avoid apoptosis, and proliferate instead. Many questions remain unanswered, including the signal that stimulates the mild caspase activation, and the mechanism through which this activation stimulates enhanced proliferation.

      The authors should consider answering additional questions, clarifying some points, and making some minor corrections:

      Major concerns affecting the interpretation of experimental results:

      Expression of STAT92E RNAi had no apparent effect on the ability of hinge cells to undergo NiA, leading the authors to conclude that other protective signals must exist. However, the authors have not shown that this STAT92E RNAi is capable of eliminating JAK/STAT signaling in the hinge under these experimental conditions. Using a reporter for JAK/STAT signaling, such as the STAT-GFP, as a readout would confirm the reduction or elimination of signaling. This confirmation would be necessary to support the negative result as presented.

      Similarly, the authors should confirm that the Zfh2 RNAi is reducing or eliminating Zfh2 levels in the hinge under these experimental conditions, before concluding that Zfh2 does not play a role in stopping hinge cells from undergoing NiA.

      EdU incorporation was quantified by measuring the fluorescence intensity of the pouch and normalizing it to the fluorescence intensity of the whole disc. However, the images show that EdU fluorescence intensity of other regions of the disc, especially the notum, varied substantially when comparing the different genetic backgrounds (for example, note the substantially reduced EdU in the notum of Figure 3 B' and B'). Indeed, it has been shown that tissue damage can lead to suppression of proliferation in the notum and elsewhere in the disc, unless the signaling that induces the suppression is altered. Therefore, the normalization may be skewing the results because the notum EdU is not consistent across samples, possibly because the damage-induced suppression of proliferation in the notum is different across the different genetic backgrounds.

      The authors expressed p35 to attempt to generate "undead cells". They take an absence of mitogen secretion or increased proliferation as evidence that undead cells were not generated. However, there could be undead cells that do not stimulate proliferation non-autonomously, which could be detected by the persistence of caspase activity in cells that do not complete apoptosis. Indeed, expressing p35 and observing sustained effector caspase activation could help answer the later question of what percentage of this cell population would otherwise complete apoptosis (NiA, rescued by p35) vs reverse course and proliferate (NiCP, unaffected by p35).

      It is unclear if the authors' model is that the NiCP cells lead to autonomous or non-autonomous cell proliferation, or both. Could the lineage-tracing experiments and/or the experiments marking mitosis relative to caspase activity answer this question?

      Many of the conclusions rely on single images. Quantification of many samples should be included wherever possible.

      Why does the reduction of Dronc appear to affect regenerative growth in females but not males?

    1. Reviewer #1 (Public review):

      Summary:

      This work develops a simple, rapid, low-cost methodology for assembling combinatorially complete microbial consortia using basic laboratory equipment. The motivation behind this work is to make the study of microbial community interactions more accessible to laboratories that lack specialized equipment such as robotic liquid handlers or microfluidic devices. The method was tested on a library of Pseudomonas aeruginosa strains to demonstrate its practicality and effectiveness. It provided a means to explore the complex functional interactions within microbial communities and identify optimal consortia for specific functions, such as biomass production.

      Strengths:

      The primary strength of this manuscript lies in its accessibility and practicality. The method proposed by the authors allows any laboratory with standard equipment, such as multichannel pipettes and 96-well plates, to readily construct all possible combinations of microbial consortia from a given set of species. This greatly enhances access to full factorial designs, which were previously limited to labs with advanced technology.

      Another strength of the manuscript is the measurement and analysis of the biomass of all possible combinations of 8 strains of P. aeruginosa. This analysis provides a concrete example of how the authors' new methodology can be used to identify the best-performing communities and map pairwise and higher-order functional interactions.

      Notably, the authors do exceptionally well in providing a thorough description of the methodology, including detailed protocols and an R script for customizing the method to different experimental needs. This enhances the reproducibility and adaptability of the methodology, making it a valuable resource for researchers wishing to adopt this methodology.

      Weaknesses:

      While the methodology is robust and well-presented, there are some limitations that should be acknowledged more thoroughly. First, the method's scalability is an important factor. The authors indicate that it should be effective for up to 10-12 species, but there is no discussion of what sets this scale: time, amount of labor, consumables, the likelihood of error, sample volume, etc. Second, this methodology is tailored to construct communities where the abundance of each strain is identical in each combination. Therefore, combinations with a different number of strains also differ in the total initial amount of microbial cells. Second, variations in the initial proportions of the same set of strains cannot be readily explored. Third, the manuscript only discusses how to construct the combinations, and not how to assay them afterward (e.g. for community function, interspecific interactions, etc'). While details on how to achieve these goals are clearly outside the scope of this work, the use of biomass as an example function may obfuscate this caveat, which should be stated more explicitly.

    2. Reviewer #2 (Public review):

      Summary:

      A simple and effective method for combinatorial assembly of microbes in synthetic communities of <12 species.

      Strengths:

      Overall this manuscript is a useful contribution. The efficiency of the method and clarity of the presentation is a strength. It is well-written and easy to follow. The figures are great, the pedagogical narrative is crisp. I can imagine the method being used in lots of other contexts too.

      Weaknesses:

      The authors could better clarify what HOIs mean. They could address challenges with assaying community function. However, neither of these "weaknesses" affects the primary goal of the paper which is methodological.

    3. Reviewer #3 (Public review):

      The authors developed a useful methodology for generating all combinations of multiple reagents using standard lab equipment. This methodology has clear uses for studying microbial ecology as they demonstrated. The methodology will likely be useful for other types of experiments that require exhaustive testing of all possible combinations of a given set of reagents (e.g., drug-drug antagonism and synergy).

      The authors provided a useful R script that generates a detailed experimental protocol for building the desired combination from any number of reagents. The produced document is useful and has clear instructions. The output of the computer script will be strengthened if graphical output is also provided (similar to the one provided in Figure 1C).

      The authors show that the error rate of the method doesn't go up with the number of combinations using dyes (Figure 2).

      The authors demonstrate the value of their methodology for studying interactions within microbial consortia by assembling all possible combinations of eight strains of Pseudomonas aeruginosa. The value of their methodology for this application is well-founded. However, it is also unclear why specific experimental choices were made for this application. It is unclear why authors continue to show the absorbance measurements of strain assemblies over the entire wavelength spectrum and not just for ABS 600 nm (Figures 3 and 4). It is also unclear why the authors provided information on the "sum of the three spectra" as this reference line is meaningless and not a reasonable null model for estimating how well specific strain combinations will grow together.

      Figure 5 illustrates the various analysis types that can be performed on the data collected from growing combinations of eight Pseudomonas aeruginosa strains. It is a very informative figure since it provides a "roadmap" on the various ways in which the dataset produced can be explored. The information in Figures 5 and S6 will likely be very useful for a wide audience.

    1. Reviewer #1 (Public review):

      Summary:

      Odor- and taste-sensing are mediated by two different systems, the olfactory and gustatory systems, and have different behavioral roles. In this study, Wei et al. challenge this dichotomy by showing that odors can activate gustatory receptor neurons (GRNs) in Drosophila to promote feeding responses, including the proboscis extension response (PER) that was previously thought to be driven only by taste. While previous studies suggested that odors can promote PER to appetitive tastants, Wei et al. go further to show that odors alone cause PER, this effect is mediated through sweet-sensing GRNs, and sugar receptors are required. The study also shows that odor detection by bitter-sensing GRNs suppresses PER. The authors' conclusions are supported by behavioral assays, calcium imaging, electrophysiological recordings, and genetic manipulations. The observation that both attractive and aversive odors promote PER leaves an open question as to why this effect is adaptive. Overall, the study sheds new light on chemosensation and multimodal integration by showing that odor and taste detection converge at the level of sensory neurons, a finding that is interesting and surprising while also being supported by another recent study (Dweck & Carlson, Sci Advances 2023).

      Strengths:

      (1) The main finding that odors alone can promote PER by activating sweet-sensing GRNs is interesting and novel.

      (2) The study uses video tracking of the proboscis to quantify PER rather than manual scoring, which is typically used in the field. The tracking method is less subjective and provides a higher-resolution readout of the behavior.

      (3) The study uses calcium imaging and electrophysiology to show that odors activate GRNs. These represent complementary techniques that measure activity at different parts of the GRN (axons versus dendrites, respectively) and strengthen the evidence for this conclusion.

      (4) Genetic manipulations show that odor-evoked PER is primarily driven by sugar GRNs and sugar receptors rather than olfactory neurons. This is a major finding that distinguishes this work from previous studies of odor effects on PER and feeding (e.g., Reisenman & Scott, 2019; Shiraiwa, 2008) that assumed or demonstrated that odors were acting through olfactory neurons.

      Weaknesses/Limitations:

      1) The authors may want to discuss why PER to odors alone has not been previously reported, especially as they argue that this is a broad effect evoked by many different odors. Previous studies testing the effect of odors on PER only observed odor enhancement of PER to sugar (Oh et al., 2021; Reisenman & Scott, 2019; Shiraiwa, 2008) and some of these studies explicitly show no effect of odor alone or odor with low sugar concentration; regardless, the authors likely would have noticed if PER to odor alone had occurred. Readers of this paper may also be aware of unpublished studies failing to observe an effect of PER on odor alone (including studies performed by this reviewer and unrelated work by other colleagues in the field), which of course the authors are not expected to directly address but may further motivate the authors to provide possible explanations.

      (2) Many of the odor effects on behavior or neuronal responses were only observed at very high concentrations. Most effects seemed to require concentrations of at least 10-2 (0.01 v/v), which is at the high end of the concentration range used in olfactory studies (e.g., Hallem et al., 2004), and most experiments in the paper used a far higher concentration of 0.5 v/v. It is unclear whether these are concentrations that would be naturally encountered by flies.

      (3) The calcium imaging data showing that sugar GRNs respond to a broad set of odors contrasts with results from Dweck & Carlson (Sci Adv, 2023) who recorded sugar neurons with electrophysiology and observed responses to organic acids, but not other odors. This discrepancy is not discussed.

      (4) Related to point #1, it would be useful to see a quantification of the percent of flies or trials showing PER for the key experiments in the paper, as this is the standard metric used in most studies and would help readers compare PER in this study to other studies. This is especially important for cases where the authors are claiming that odor-evoked PER is modulated in the same way as previously shown for sugar (e.g., the effect of starvation in Figure S4).

      (5) Given the novelty of the finding that odors activate sugar GRNs, it would be useful to show more examples of GCaMP traces (or overlaid traces for all flies/trials) in Figure 3. Only one example trace is shown, and the boxplots do not give us a sense of the reliability or time course of the response. A related issue is that the GRNs appear to be persistently activated long after the odor is removed, which does not occur with tastes. Why should that occur? Does the time course of GRN activation align with the time course of PER, and do different odors show differences in the latency of GRN activation that correspond with differences in the latency of PER (Figure S1A)?

      (6) Several controls are missing, and in some cases, experimental and control groups are not directly compared. In general, Gal4/UAS experiments should include comparisons to both the Gal4/+ and UAS/+ controls, at least in cases where control responses vary substantially, which appears to be the case for this study. These controls are often missing, e.g. the Gal4/+ controls are not shown in Figure 2C-G and the UAS/+ controls are not shown in Figure 2J-L (also, the legend for the latter panels should be revised to clarify what the "control" flies are). For the experiments in Figure S5, the data are not directly compared to any control group. For several other experiments, the control and experimental groups are plotted in separate graphs (e.g., Figure 2C-G), and they would be easier to visually compare if they were together. In addition, for each experiment, the authors should denote which comparisons are statistically significant rather than just reporting an overall p-value in the legend (e.g., Figure 2H-L).

      (7) Additional controls would be useful in supporting the conclusions. For the Kir experiments, how do we know that Kir is effective, especially in cases where odor-evoked PER was not impaired (e.g., Orco/Kir)? The authors could perform controls testing odor aversion, for example. For the Gr5a mutant, few details are provided on the nature of the control line used and whether it is in the same genetic background as the mutant. Regardless, it would be important to verify that the Gr5a mutant retains a normal sense of smell and shows normal levels of PER to stimuli other than sugar, ruling out more general deficits. Finally, as the method of using DeepLabCut tracking to quantify PER was newly developed, it is important to show the accuracy and specificity of detecting PER events compared to manual scoring.

      (8) The authors' explanation of why both attractive and aversive odors promote PER (lines 249-259) did not seem convincing. The explanation discusses the different roles of smell and taste but does not address the core question of why it would be adaptive for an aversive odor, which flies naturally avoid, to promote feeding behavior.