Reviewer #2 (Public Review):
Summary:
In this work, the authors present a biologically plausible, efficient E-I spiking network model and study various aspects of the model and its relation to experimental observations. This includes a derivation of the network into two (E-I) populations, the study of single-neuron perturbations and lateral-inhibition, the study of the effects of adaptation and metabolic cost, and considerations of optimal parameters. From this, they conclude that their work puts forth a plausible implementation of efficient coding that matches several experimental findings, including feature-specific inhibition, tight instantaneous balance, a 4 to 1 ratio of excitatory to inhibitory neurons, and a 3 to 1 ratio of I-I to E-I connectivity strength. It thus argues that some of these observations may come as a direct consequence of efficient coding.
Strengths:
While many network implementations of efficient coding have been developed, such normative models are often abstract and lacking sufficient detail to compare directly to experiments. The intention of this work to produce a more plausible and efficient spiking model and compare it with experimental data is important and necessary in order to test these models.
In rigorously deriving the model with real physical units, this work maps efficient spiking networks onto other more classical biophysical spiking neuron models. It also attempts to compare the model to recent single-neuron perturbation experiments, as well as some long-standing puzzles about neural circuits, such as the presence of separate excitatory and inhibitory neurons, the ratio of excitatory to inhibitory neurons, and E/I balance. One of the primary goals of this paper, to determine if these are merely biological constraints or come from some normative efficient coding objective, is also important.
Though several of the observations have been reported and studied before (see below), this work arguably studies them in more depth, which could be useful for comparing more directly to experiments.
Weaknesses:
Though the text of the paper may suggest otherwise, many of the modeling choices and observations found in the paper have been introduced in previous work on efficient spiking models, thereby making this work somewhat repetitive and incremental at times. This includes the derivation of the network into separate excitatory and inhibitory populations, discussion of physical units, comparison of voltage versus spike-timing correlations, and instantaneous E/I balance, all of which can be found in one of the first efficient spiking network papers (Boerlin et al. 2013), as well as in subsequent papers. Metabolic cost and slow adaptation currents were also presented in a previous study (Gutierrez & Deneve 2019). Though it is perfectly fine and reasonable to build upon these previous studies, the language of the text gives them insufficient credit.
Furthermore, the paper makes several claims of optimality that are not convincing enough, as they are only verified by a limited parameter sweep of single parameters at a time, are unintuitive and may be in conflict with previous findings of efficient spiking networks. This includes the following. Coding error (RMSE) has a minimum at intermediate metabolic cost (Figure 5B), despite the fact that intuitively, zero metabolic cost would indicate that the network is solely minimizing coding error and that previous work has suggested that additional costs bias the output. Coding error also appears to have a minimum at intermediate values of the ratio of E to I neurons (effectively the number of I neurons) and the number of encoded variables (Figures 6D, 7B). These both have to do with the redundancy in the network (number of neurons for each encoded variable), and previous work suggests that networks can code for arbitrary numbers of variables provided the redundancy is high enough (e.g., Calaim et al. 2022). Lastly, the performance of the E-I variant of the network is shown to be better than that of a single cell type (1CT: Figure 7C, D). Given that the E-I network is performing a similar computation as to the 1CT model but with more neurons (i.e., instead of an E neuron directly providing lateral inhibition to its neighbor, it goes through an interneuron), this is unintuitive and again not supported by previous work. These may be valid emergent properties of the E-I spiking network derived here, but their presentation and description are not sufficient to determine this.
Alternatively, the methodology of the model suggests that ad hoc modeling choices may be playing a role. For example, an arbitrary weighting of coding error and metabolic cost of 0.7 to 0.3, respectively, is chosen without mention of how this affects the results. Furthermore, the scaling of synaptic weights appears to be controlled separately for each connection type in the network (Table 1), despite the fact that some of these quantities are likely linked in the optimal network derivation. Finally, the optimal threshold and metabolic constants are an order of magnitude larger than the synaptic weights (Table 1). All of these considerations suggest one of the following two possibilities. One, the model has a substantial number of unconstrained parameters to tune, in which case more parameter sweeps would be necessary to definitively make claims of optimality. Or two, parameters are being decoupled from those constrained by the optimal derivation, and the optima simply corresponds to the values that should come out of the derivation.