10,000 Matching Annotations
  1. Sep 2025
    1. Reviewer #1 (Public review):

      Summary:

      This study investigates plasticity effects in brain function and structure from training in navigation and verbal memory.

      The authors used a longitudinal design with a total of 75 participants across two sites. Participants were randomised to one of three conditions: verbal memory training, navigation training, or a video control condition. The results show behavioural effects in relevant tasks following the training interventions. The central claim of the paper is that network-based measures of task-based activation are affected by the training interventions, but structural brain metrics (T2w-derived volume and diffusion-weighted imaging microstructure) are not impacted by any of the training protocols tested.

      Strengths:

      (1) This is a well-designed study which uses two training conditions, an active control, and randomisation, as appropriate. It is also notable that the authors combined data acquisition across two sites to reach the needed sample size and accounted for it in their statistical analyses quite thoroughly. In addition, I commend the authors on using pre-registration of the analysis to enhance the reproducibility of their work.

      (2) Some analyses in the paper are exhaustive and compelling in showcasing the presence of longitudinal behavioural effects, functional activation changes, and lack of hippocampal volume changes. The breadth of analysis on hippocampal volume (including hippocampal subfields) is convincing in supporting the claim regarding a lack of volumetric effect in the hippocampus.

      Comments on revisions:

      All my comments have been addressed. The evidence regarding lack of a volumetric effect at the whole-brain level now seems more robust. Many details are now clearer, particularly regarding the the volumetric analyses methods and the rationale and timeline of preregistration.

      Minor comment:

      I appreciate that there are limited possibilities with the available Diffusion-Weighted Imaging data. However, I would recommend the authors remove mentions of "white matter connectivity" in the Abstract and elsewhere, which are misleading if no tractography or voxel-wise analyses are performed.

    1. Reviewer #1 (Public Review):

      Summary:

      Previous research from the Margoliash laboratory has demonstrated that the intrinsic electrophysiological properties of one class of projection neurons in the song nucleus HVC, HVCX neurons, are similar within birds and differ between birds in a manner that relates to the bird's song. The current study builds on this research by addressing how intrinsic properties may relate to the temporal structure of the bird's song and by developing a computational model for how this can influence sequence propagation of activity within HVC during singing.

      First, the authors identify that the duration of the song motif is correlated with the duration of song syllables and particularly the length of harmonic stacks within the song. They next found positive correlations between some of the intrinsic properties, including firing frequency, sag ratio, and rebound excitation area with the duration of the birds' longest harmonic syllable and some other measure of motif duration. These results were extended by examining measures of firing frequency and sag ratio between two groups of birds that were experimentally raised to learn songs that only differed by the addition of a long terminal harmonic stack in one of the groups. Lastly, the authors present an HH-based model elucidating how the timing and magnitude of rebound excitation of HVCX neurons can function to support previously reported physiological network properties of these neurons during singing.

      Strengths:

      By trying to describe how intrinsic properties (IPs) may relate to the structure of learned behavior and providing a potentially plausible model (see below for more on this) for how differences in IPs can relate to sequence propagation in this neural network, this research is addressing an important and challenging issue. An understanding of how cell types develop IPs and how those IPs relate to the function and output of a network is a fundamental issue. Tackling this in the zebra finch HVC is an elegant approach because it provides a quantifiable and reliable behavior that is explicitly tied to the neurons that the authors are studying. Nonetheless, this is a difficult problem, and kudos to the authors for trying to unravel this.

      Correlations between harmonic stack durations and song durations are well-supported and interesting. This provides a new insight that can and will likely be used by other research groups in correlating neuronal activity patterns to song behavior and motif duration. Additionally, correlations between IPs associated with rebound excitation are also well supported in this study.

      The HH-model presented is important because it meaningfully relates how high or low rebound excitation can set the integration time window for HVCX neurons. Further, the synaptic connectivity of this model provides at least one plausible way in how this functions to permit the bursting activity of HVCX neurons during singing (and potentially during song playback experiments in sleeping birds). Thus, this model will be useful to the field for understanding how this network activity intersects with 'learned' IPs in an important class of neurons in this circuit.

      Comments on revised version:

      The authors have adequately addressed my previous concerns.

    1. Reviewer #1 (Public review):

      Summary:

      This paper proposes a new model of perceptual habituation and tests it over two experiments with both infants and adults. The model combines a neural network for visual processing with a Bayesian rational model for attention (i.e., looking time) allocation. This Bayesian framework allows the authors to measure elegantly diverse factors that might drive attention, such as expected information gain, current information gain, and surprise. The model is then fitted to infant and adult participants' data over two experiments, which systematically vary the amount of habituation trials (Experiment 1) and the type of dishabituation stimulus (familiarity, pose, number, identity and animacy). Results show that a model based on (expected) information gain performs better than a model based on surprise. Additionally, while novelty preference is observed when exposure to familiar stimuli is elevated, no familiarity preference is observed when exposure to familiar stimuli is low or intermediate, which is in contrast with past work.

      Strengths:

      There are three key strengths of this work:

      (1) It integrates a neural network model with a Bayesian rational learner, thus bridging the gap between two fields that have often been disconnected. This is rarely seen in the cognitive science field, but the advantages are very clear from this paper: It is possible to have computational models that not only process visual information, but also actively explore the environment based on overarching attentional processes.

      (2) By varying parametrically the amount of stimulus exposure and by testing the effects of multiple novel stimulus types, this work allowed the authors to put classical theories of habituation to the test on much finer scales than previous research has done.

      (3) The Bayesian model allows the authors to test what specific aspects are different in infants and adults, showing that infants display greater values for the noise parameter.

      Weaknesses:

      This model pertains visual habituation. What drives infants' (dis)engagement of attention more broadly, for example, when learning the probabilistic structures of the environment around them (e.g., language, action prediction) may follow different principles and dynamics.

    1. Reviewer #1 (Public review):

      Summary:

      This is a manuscript describing outbreaks of Pseudomonas aeruginosa ST 621 in a facility in the US using genomic data. The authors identified and analysed 254 P. aeruginosa ST 621 isolates collected from a facility from 2011 to 2020. The authors described the relatedness of the isolates across different locations, specimen types (sources), and sampling years. Two concurrently emerged subclones were identified from the 254 isolates. The authors predicted that the most recent common ancestor for the isolates can be dated back to approximately 1999 after the opening of the main building of the facility in 1996. Then the authors grouped the 254 isolates into two categories: 1) patient-to-patient; or 2) environment-to-patient using SNP thresholds and known epidemiological links. Finally, the authors described the changes of resistance gene profiles, virulence genes, cell wall biogenesis and signaling pathway genes of the isolates over the sampling years.

      Strengths:

      The major strength of this study is the utilisation of genomic data to comprehensively describe the characteristics of a long-term Pseudomonas aeruginosa ST 621 outbreak in a facility. This fills the data gap of a clone that could be clinically important but easily missed from microbiology data alone.

      Weaknesses:

      As the authors highlighted in the Discussion section, a limitation of this study is that there is potential sampling bias due to partial sampling of clinical P. aeruginosa isolates. However, the work is still important to showcase the potential benefits of applying genomic sequencing techniques to support infection prevention controls in hospital settings. The limitation on potential sampling bias could inspire further work to explore an optimal clinical isolate sampling framework for genomic analyses to support outbreak investigation. The other limitation that the authors have highlighted in the Discussion session is the lack of epidemiology data to support the interpretation of the inferred patient-to-patient and environment-to-patient transmissions, which emphasised the importance of metadata to complement genomic data analysis in outbreak investigation for future studies.

      Impact of the work:

      First, the work adds to the growing evidence implicating sinks as long-term reservoirs for important MDR pathogens, with direct infection control implications. Moreover, the work could potentially motivate investments in generating and integrating genomic data into routine surveillance. The comprehensive descriptions of the Pseudomonas aeruginosa ST 621 clones outbreak is a great example to demonstrate how genomic data can provide additional information about long-term outbreaks that otherwise could not be detected using microbiology data alone. Moreover, identifying the changes in resistance genes and virulence genes over time would not be possible without genomic data. Finally, this work provided additional evidence for the existence of long-term persistence of Pseudomonas aeruginosa ST 621 clones, which likely occur in other similar settings.

      Comments on revisions:

      The paper would be further strengthened from an additional timeline indicating when routine surveillance was introduced and examples of actions or changes guided by the surveillance data that resulted in decrease in ST 621 transmission. This additional information would be useful to support the final statement in the Abstract suggesting "Since initial identification, extensive infection control efforts guided by routine, near real- time surveillance have proved successful at slowing transmission."

    1. Reviewer #1 (Public review):

      This report addresses a compelling topic. The authors demonstrate that tetanic stimulation of the auditory thalamus induces cortical long-term potentiation (LTP), which can be elicited by either electrical or optical stimulation of the thalamus or by noise bursts. They further show that thalamocortical LTP is abolished when thalamic CCK is knocked down or when cortical CCK receptors are blocked. Notably, in 18-month-old mice, thalamocortical LTP was largely absent but could be restored by cortical application of CCK. The authors conclude that CCK is a critical contributor to thalamocortical plasticity and may enhance this form of plasticity in aged subjects.

      The findings presented in this report are valuable and advance our understanding of thalamocortical plasticity.

    1. Reviewer #1 (Public review):

      Summary:

      This study utilized publicly available Hi-C data to ensemble a comprehensive set of breast cancer cell lines (luminal, Her2+, TNBC) with varying metastatic features to answer whether breast cancer cells would acquire organ-specific feature at the 3D genome level to metastasize to that specific organ. The authors focused on lung metastasis and included several controls as the comparison including normal mammary lines, normal lung epithelial lines, and lung cancer cell lines. Due to the lower resolution at 250KB binning size, the authors only addressed the compartments (A for active compartment and B for inactive compartment) not the other 3D organization of the genome. They started by performing clustering and PCA analysis for the compartment identity and discovered that this panel of cell lines could be well separated based on Her2 and epithelial-mesenchymal features according to the compartment identity. While correlating with the transcriptomic changes, the authors noticed the existence of concordance and divergence between the compartment changes and transcriptomic changes. The authors then switched gear to tackle the core question in metastatic organotropism to the lung. They discovered a set of "lung permissive compartment changes" and concluded that "lung metastatic breast cancer cell lines acquire lung-like genome architecture" and "organotropic 3D genome changes match target organ more than an unrelated organ". To prove the latter point, the authors enlisted additional non-breast cancer cell line (prostate cancer) in the setting of brain metastasis. This is a piece of pure dry computational work without wet bench experiments.

      Strengths:

      The authors embarked on an ambitious journey to seek for the answer regarding 3D genome changes predisposing metastatic organotropism. The authors succeeded in the assembly of a comprehensive panel of breast cancer cell lines and the aggregation of the 3D genome structure data to conduct a hypothesis driven computation analysis. The authors also achieved in including proper controls representing normal non-cancerous epithelium and the end organ of interest. The authors did well in the citation of relevant references in 3D genome organization and EMT.

    1. Reviewer #1 (Public review):

      Summary

      The manuscript by K.H. Lee et al. presents Spyglass, a new open-source framework for building reproducible pipelines in systems neuroscience. The framework integrates the NWB (Neurodata Without Borders) data standard with the DataJoint relational database system to organize and manage analysis workflows. It enables the construction of complete pipelines, from raw data acquisition to final figures. The authors demonstrate their capabilities through examples, including spike sorting, LFP filtering, and sharp-wave ripple (SWR) detection. Additionally, the framework supports interactive visualizations via integration with Figurl, a platform for sharing neuroscience figures online.

      Strengths:

      Reproducibility in data analysis remains a significant challenge within the neuroscience community, posing a barrier to scientific progress. While many journals now require authors to share their data and code upon publication, this alone does not ensure that the code will execute properly or reproduce the original results. Recognizing this gap, the authors aim to address the community's need for a robust tool to build reproducible pipelines in systems neuroscience.

      Weaknesses:

      The issues identified here may serve as a foundation for future development efforts.

      (1) User-friendliness:

      The primary concern is usability. The manuscript does not clearly define the intended user base within a modern systems neuroscience lab. Improving user experience and lowering the barrier to entry would significantly enhance the framework's potential for broad adoption. The authors provide an online example notebook and a local setup notebook. However, the local setup process is overly complex, with many restrictive steps that could discourage new users. A more streamlined and clearly documented onboarding process is essential. Additionally, the lack of Windows support represents a practical limitation, particularly if the goal is widespread adoption across diverse research environments.

      (2) Dependency management and long-term sustainability:

      The framework depends on numerous external libraries and tools for data processing. This raises concerns about long-term maintainability, especially given the short lifespan of many academic software projects and the instability often associated with Python's backward compatibility. It would be helpful for the authors to clarify how flexible and modular the pipeline is, and whether it can remain functional if upstream dependencies become deprecated or change substantially.

      (3) Extensibility for custom pipelines:

      A further limitation is the insufficient documentation regarding the creation of custom pipelines. It is unclear how a user could adapt Spyglass to implement their own analysis workflows, especially if these differ from the provided examples (e.g., spike sorting, LFP analysis that are very specific to the hippocampal field). A clearer explanation or example of how to extend the framework for unrelated or novel analyses would greatly improve its utility and encourage community contributions.

      (4) Flexibility vs. Standardization:

      The authors may benefit from more explicitly defining the intended role of the framework: is Spyglass designed as a flexible, general-purpose tool for developing custom data analysis pipelines, or is its primary goal to provide a standardized framework for freezing and preserving pipelines post-publication to ensure reproducibility? While both goals are valuable, attempting to fully support both may introduce unnecessary complexity and result in a tool that is not well-suited for either purpose. The manuscript briefly touches on this tradeoff in the introduction, and the latter-pipeline preservation-may be the more natural fit for the package. If so, this intended use should be clearly communicated in the documentation to help users understand its scope and strengths.

      Impact:

      This work represents a significant milestone in advancing reproducible data analysis pipelines in neuroscience. Beyond reproducibility, the integration of cloud-based execution and shareable, interactive figures has the potential to transform how scientific collaboration and data dissemination are conducted. The authors are at the forefront of this shift, contributing valuable tools that push the field toward more transparent and accessible research practices.

    1. Reviewer #1 (Public review):

      Summary:

      This paper aims to characterise the physiological and computational underpinnings of the accumulation of intermittent glimpses of sensory evidence.

      Strengths:

      (1) Elegant combination of electroencephalography and computational modelling.

      (2) The authors describe results of two separate experiments, with very similar results, in effect providing an internal replication.

      (3) Innovative task design, including different gap durations.

      Weaknesses:

      (1) The authors introduce the CPP as tracking an intermediary (motor-independent) evidence integration process, and the MBL as motor preparation that maintains a sustained representation of the decision variable. It would help if the authors could more directly and quantitatively assess whether their current data are in line with this. That is, do these signals exhibit key features of evidence accumulation (slope proportional to evidence strength, terminating at a common amplitude that reflects the bound)? Additionally, plotting these signals report locked (to the button press) would help here. What do the results mean for the narrative of this paper?

      (2) The novelty of this work lies partly in the aim to characterize how the CPP and MBL interact (page 5, line 3-5). However, this analysis seems to be missing. E.g., at the single-trial level, do relatively strong CPP pulses predict faster/larger MBL? The simulations in Figure 5 are interesting, but more could be done with the measured physiology.

      (3) The focus on CPP and MBL is hypothesis-driven but also narrow. Since we know only a little about the physiology during this "gaps" task, have the authors considered computing TFRs from different sensor groupings (perhaps in a supplementary figure?).

      (4) The idea of a potential bound crossing during P1 is elegant, albeit a little simplistic. I wonder if the authors could more directly show a physiological signature of this. For example, by focusing on the MBL or occipital alpha split by the LL, LH, HL and HH conditions, and showing this pulse- as well as report-locked. Related, a primacy effect can also be achieved by modelling (i) self-excitation of the current one-dimensional accumulator, or (ii) two competing accumulators that produce winner-take-all dynamics. Is it possible to distinguish between these models, either with formal model comparison or with diagnostic physiological signatures?

      (5) The way the authors specify the random effects of the structure of their mixed linear models should be specified in more detail. Now, they write: "Where possible, we included all main effects of interest as random effects to control for interindividual variability." This sounds as if they started with a model with a full random effect structure and dropped random components when the model would not converge. This might not be sufficiently principled, as random components could be dropped in many different orders and would affect the results. Do all main results hold when using classical random effects statistics on subject-wise regression coefficients?

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates whether prediction error extends beyond lower-order sensory-motor processes to include higher-order cognitive functions. Evidence is drawn from both task-based and resting-state fMRI, with the addition of resting-state EEG-fMRI to examine power spectral correlates. The results partially support the existence of dissociable connectivity patterns: stronger ventral-dorsal connectivity is associated with high prediction error, while posterior-anterior connectivity is linked to low prediction error. Furthermore, spontaneous switching between these connectivity patterns was observed at rest and correlated with subtle intersubject behavioral variability.

      Strengths:

      Studying prediction error from the lens of network connectivity provides new insights into predictive coding frameworks. The combination of various independent datasets to tackle the question adds strength, including two well-powered fMRI task datasets, resting-state fMRI interpreted in relation to behavioral measures, as well as EEG-fMRI.

      Weaknesses:

      Major:

      (1) Lack of multiple comparisons correction for edge-wise contrast:

      The analysis of connectivity differences across three levels of prediction error was conducted separately for approximately 22,000 edges (derived from 210 regions), yet no correction for multiple comparisons appears to have been applied. Then, modularity was applied to the top 5% of these edges. I do not believe that this approach is viable without correction. It does not help that a completely separate approach using SVMs was FDR-corrected for 210 regions.

      (2) Lack of spatial information in EEG:

      The EEG data were not source-localized, and no connectivity analysis was performed. Instead, power fluctuations were averaged across a predefined set of electrodes based on a single prior study (reference 27), as well as across a broader set of electrodes. While the study correlates these EEG power fluctuations with fMRI network connectivity over time, such temporal correlations do not establish that the EEG oscillations originate from the corresponding network regions. For instance, the observed fronto-central theta power increases could plausibly originate from the dorsal anterior cingulate cortex (dACC), as consistently reported in the literature, rather than from a distributed network. The spatially agnostic nature of the EEG-fMRI correlation approach used here does not support interpretations tied to specific dorsal-ventral or anterior-posterior networks. Nonetheless, such interpretations are made throughout the manuscript, which overextends the conclusions that can be drawn from the data.

    1. Reviewer #1 (Public review):

      Summary:

      Overall, this is an interesting paper. The authors have found multiple experimental knobs to perturb a mechanical wave behavior driven by pilli feedback. The authors framed this as nonreciprocal interactions - while I can see how nonreciprocity could play a role - what about mechanical feedback? Phenomenological models are fine, but a lack of mechanistic understanding is a weakness. I think it will be more interesting to frame the model based on potential mechanochemical feedback to understand microscopic mechanisms. Regardless, more can be done to better constrain the model through finding knobs to explain experimental observations (in Figures 3, 4, 5, and 7).

      Strengths:

      The report of mechanical waves in bacterial collectives. The mechanism has potential application in a multicellular context, such as morphogenesis.

      Weaknesses:

      My most serious concern is about left-right symmetry breaking. I fail to see how the data in Figure 6 shows LR symmetry breaking. All they show is in-out directionality, which is a boundary condition. LR SM means breaking of mirror symmetry - the pattern cannot be superimposed on its mirror image using only rigid body transformations (translation and rotation) - as far as I am aware, this condition is not satisfied in this pattern-forming system.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes a behavioral platform "BuzzWatch" and its application in long-term behavioral monitoring. The study tested the system with different mosquito species and Aedes aegypti colonies and monitored behavioral response to blood feeding, change in photoperiod, and host-cue application at different times of the day.

      Strengths:

      BuzzWatch is a novel, custom-built behavioral system that can be used to monitor time-of-day-specific and long-term mosquito behaviors. The authors provide detailed documentation of the construction of the assay and custom flight tracking algorithm on a dedicated website, making them accessible to other researchers in the field. The authors performed a wide range of experiments using the BuzzWatch system and discovered differences in midday activity level among Aedes aegypti colonies, and reversible change in the daily activity profile post-blood-feeding.

      Weaknesses:

      The authors report the population metric "fraction flying" as their main readout of the daily activity profile. It is worth explaining why conventional metrics like travel distance/activity level are not reported. Alternatively, these metrics could be shown, considering the development and implementation of a flight trajectory tracking pipeline in this paper.

      The authors defined the sugar-feeding index using occupancy on the sugar feeder. However, the correlation between landing on the sugar feeder and active sugar feeding is not mentioned or tested in this paper. Is sugar feeding always observed when mosquitoes land on the sugar feeder? Do they leave the sugar feeding surface once sugar feeding is complete? One can imagine that texture preference and prolonged occupancy may lead to inaccurate reporting of sugar feeding. While occupancy on the sugar feeder is an informative behavioral readout, its link with sugar feeding activity (consumption) needs to be evaluated. Otherwise, the authors should discuss the caveats that this method presents explicitly to avoid overinterpretation of their results.

      Throughout the manuscript, the authors mentioned existing mosquito activity monitoring systems and their drawbacks. However, many of these statements are misleading and sometimes incorrect. The authors claim that beam-break monitors are "limited to counting active versus inactive states". Though these systems provide indirect readouts that may underreport activity, the number of beam-breaks in a time interval is correlated with activity level, as is commonly used and reported in Drosophila and mosquitoes and a number of reports in mosquitoes an updated LAM system with larger behavioral arenas and multiple infrared beams. The authors also mentioned the newer, camera-based alternatives to beam-break monitors, but again referred to these systems as "only detecting activity when a moving insect blocks a light beam"; however, these systems actually use video tracking (e.g., Araujo et al. 2020).

      The fold change in behavior presented in Figure 4D is rather confusing. Under the two different photoperiods, it is not clear how an hourly comparison is justified (i.e., comparing the light-on activity in the 20L4D condition with scotophase activity in the 12L12D condition). The same point applies to Figure 4H.

      The behavioral changes after changing photoperiod (Figure 4) require a control group (12L12D throughout) to account for age-related effects. This is controlled for the experiment in Figure 3 but not for Figure 4.

    1. Reviewer #1 (Public review):

      Summary:

      The temporal regulation of neuronal specification and its molecular mechanisms are important problems in developmental neurobiology. This study focuses on Kenyon cells (KCs), which form the mushroom body in Drosophila melanogaster, in order to address this issue. Building on previous findings, the authors examine the role of the transcription factor Eip93F in the development of late-born KCs. The authors revealed that Eip93F controls the activity of flies at night through the expression of the calcium channel Ca-α1T. Thus, the study clarifies the molecular machinery that controls temporal neuronal specification and animal behavior.

      Strengths:

      The convincing results are based on state-of-the-art molecular genetics, imaging, and behavioral analysis.

      Weaknesses:

      Temporal mechanisms of neuronal specification are found in many nervous systems. However, the relationship between the temporal mechanisms identified in this study and those in other systems remains unclear.

    1. Reviewer #1 (Public review):

      This study provides a thorough analysis of Nup107's role in Drosophila metamorphosis, demonstrating that its depletion leads to developmental arrest at the third larval instar stage due to disruptions in ecdysone biosynthesis and EcR signaling. Importantly, the authors establish a novel connection between Nup107 and Torso receptor expression, linking it to the hormonal cascade regulating pupariation.

      The authors have addressed most of the concerns raised in my initial review, particularly those outlined in the public comments. However, I note that they have not directly responded to several specific points raised in the "Author Recommendations" section. That said, a key mechanistic question remains unresolved and deserves further experimental or at least conceptual clarification.

      It has been previously shown that Nup107 regulates the nuclear translocation of dpERK (Kim et al., 2010). This observation may provide a mechanistic explanation for the developmental arrest observed upon Nup107 depletion in the prothoracic gland (PG). Given that PG growth and ecdysone biosynthesis are driven by several receptor tyrosine kinases, it is plausible that loss of Nup107 impairs dpERK nuclear translocation, thereby functionally shutting down RTK-dependent transcriptional responses, including those activating Halloween gene expression. This model is supported by the finding that activated Ras (rasV12) can rescue the arrest, likely by generating sufficiently high levels of dpERK such that some fraction enters the nucleus despite impaired translocation. This hypothesis may explain the discrepancy between the complete developmental arrest observed upon Nup107 depletion and the developmental delay seen in Torso mutants.

      Similarly, the rescue by Torso, but not EGFR, may reflect differences in receptor activation thresholds. It has been proposed that Torso overexpression might leads to ligand-independent dimerization and constitutive activity, whereas EGFR overexpression may remain ligand-dependent and thus insufficient under compromised dpERK transport conditions. A critical experiment to validate this model would be to examine dpERK localization in PG cells upon Nup107 depletion. This would help establish whether defective nuclear import of dpERK underlies the observed developmental arrest. Even if technically challenging, the authors should at least discuss this hypothesis explicitly in the revised manuscript.

      In addition, it has been shown that TGFβ/Activin signaling regulates Torso expression in the prothoracic gland (PG). Therefore, it is plausible that this pathway may also be affected by impaired nuclear translocation of downstream effectors due to Nup107 depletion. This raises the possibility that Nup107 plays a broad regulatory role, impacting multiple signaling cascades-such as RTK and TGFβ/Activin pathways-by controlling the nuclear import of their key effectors.

    1. Reviewer #1 (Public review):

      This well-conceived manuscript investigates the mechanisms that shape the chromatin landscape following fertilization, using the Drosophila embryo as a model system. Importantly, the authors revisit conflicting data using new approaches and analysis to show that the silent H3K27me3 mark deposited by PRC2 is established de novo in the embryo in coordination with the slowing of the nuclear division cycle and activation of zygotic transcription. Unexpectedly, they demonstrate that the transcription factor GAF is not required for the deposition of this mark, but that the well-studied pioneer factor Zelda, which is required for widespread gene expression, is required for H3K27me3 deposition at a subset of regions. The experiments are rigorously performed, and interpretations are clear. Strengths of this manuscript include the rigor of the experimental design, careful analysis, and well-supported conclusions. Some additional citations, analysis, and broadening of the Discussion section to include additional models and data would further strengthen this manuscript.

    1. Reviewer #2 (Public review):

      In their study, Avraham-Davidi et al. combined scRNA-seq and spatial mapping studies to profile two preclinical mouse models of colorectal cancer: Apcfl/fl VilincreERT2 (AV) and Apcfl/fl LSL-KrasG12D Trp53fl/fl Rosa26LSL-tdTomato/+ VillinCreERT2 (AKPV). In the first part of the manuscript, the authors describe the analysis of the normal colon and dysplastic lesions induced in these models following tamoxifen injection. They highlight broad variations in immune and stromal cell composition within dysplastic lesions, emphasizing the infiltration of monocytes and granulocytes, the accumulation of IL-17+gdT cells and the presence of a distinct group of endothelial cells. A major focus the study is the remodeling of the epithelial compartment, where most significant changes are observed. Using no-negative matrix factorization, the authors identify molecular programs of epithelial cell functions, emphasizing stemness, Wnt signaling, angiogenesis and inflammation as majors features associated with dysplastic cells. They conclude that findings from scRNA-seq analyses in mouse models are transposable to human CRC. In the second part of the manuscript, the authors aim to provide the spatial contexture for their scRNA-seq findings using Slide-seq and TACCO. They demonstrate that dysplastic lesions are disorganized and contain tumor-specific regions, which contextualize the spatial proximity between specific cell states and gene programs. Finally, they claim that these spatial organizations are conserved in human tumors and associate region-based gene signatures with patient outcome in public datasets. Overall, the data were collected and analyzed using solid and validated methodology to offer a useful resource to the community.

      Main comments:

      (1) Clarity. The manuscript would benefit from a substantial reorganization to improve clarity and accessibility for a broad readership. The text could be shortened and the number of figure panels reduced to emphasize the novel contributions of this work while minimizing extensive discussions on general and expected findings, such as tissue disorganization in dysplastic lesions. Additionally, figure panels are not consistently introduced in the correct order, and some are not discussed at all (e.g., Fig. S1D; Fig. 3C is introduced before Fig. 3A; several panels in Fig. 4 are not discussed). The annotation of scRNA-seq cell states is insufficiently explained, with no corresponding information about associated genes provided in the figures or tables. Multiple annotations are used to describe cell groups (e.g., TKN01 = γδ T and CD8 T, TKN05 = γδT_IL17+), but these are not jointly accessible in the figures, making the manuscript challenging to follow. It is also not clear what is the respective value of the two mouse models and timepoints of tissue collection in the analysis.

      (2) Novelty. While the study is of interest, it does not present major findings that significantly advance the field or motivate new directions and hypotheses. Many conclusions related to tissue composition and patient outcomes, such as the epithelial programs of Wnt signaling, angiogenesis, and stem cells, are well-established and not particularly novel. Greater exploration of the scRNA-seq data beyond cell type composition could enhance the novelty of the findings. For instance, several tumor microenvironment clusters uniquely detected in dysplastic lesions (e.g., Mono2, Mono3, Gran01, Gran02) are identified, but no further investigation is conducted to understand their biological programs, such as applying nNMF as was done for epithelial cells. Additional efforts to explore precise tissue localization and cellular interactions within tissue niches would provide deeper insights and go beyond the limited analyses currently displayed in the manuscript.

      (3) Validation. Several statements made by the authors are insufficiently supported by the data presented in the manuscript and should be nuanced in the absence of proper validation. For example: 1.) RNA velocity analyses: The conclusions drawn from these analyses are speculative and need further support. 2.) Annotations of epithelial clusters as dysplastic: These annotations could have been validated through morphological analyses and staining on FFPE slides. 3.) Conservation of mouse epithelial programs in human tumors: The data in Figure S5B does not convincingly demonstrate enrichment of stem cell program 16 in human samples. This should be more explicitly stated in the text, given the emphasis placed on this program by the authors. 4.) Figure S6E: Cluster Epi06 is significantly overrepresented in spatial data compared to scRNA-seq, yet the authors claim that cell type composition is largely recapitulated without further discussion, which reduces confidence in other conclusions drawn.<br /> Furthermore, stronger validation of key dysplastic regions (regions 6, 8, and 11) in mouse and human tissues using antibody-based imaging with markers identified in the analyses would have considerably strengthened the study. Such validation would better contextualize the distribution, composition, and relative abundance of these regions within human tumors, increasing the significance of the findings and aiding the generation of new pathophysiological hypotheses.

      Comments on revisions:

      The authors have improved the clarity of the manuscript and responded adequately to all my initial comments.<br /> I don't have any other comments. Congratulations to the authors on this work.

    1. Reviewer #1 (Public review):

      Summary:

      Taber et al report the biochemical characterization of 7 mutations in PHD2 that induce erythrocytosis. Their goal is to provide a mechanism for how these mutations cause the disease. PHD2 hydroxylates HIF1a in the presence of oxygen at two distinct proline residues (P564 and P402) in the "oxygen degradation domain" (ODD). This leads to the ubiquitylation of HIF1a by the VHL E3 ligase and its subsequent degradation. Multiple mutations have been reported in the EGLN1 gene (coding for PHD2), which are associated with pseudohypoxic diseases that include erythrocytosis. Furthermore, 3 mutations in PHD2 also cause pheochromocytoma and paraganglioma (PPGL), a neuroendocrine tumour. These mutations likely cause elevated levels of HIF1a, but their mechanisms are unclear. Here, the authors analyze mutations from 152 case reports and map them on the crystal structure. They then focus on 7 mutations, which they clone in a plasmid and transfect into PHD2-KO to monitor HIF1a transcriptional activity via a luciferase assay. All mutants show impaired activation. Some mutants also impaired stability in pulse chase turnover assays (except A228S, P317R, and F366L). In vitro purified PHD2 mutants display a minor loss in thermal stability and some propensity to aggregate. Using MST technology, they show that P317R is strongly impaired in binding to HIF1a and HIF2a, whereas other mutants are only slightly affected. Using NMR, they show that the PHD2 P317R mutation greatly reduces hydroxylation of P402 (HIF1a NODD), as well as P562 (HIF1a CODD), but to a lesser extent. Finally, BLI shows that the P317R mutation reduces affinity for CODD by 3-fold, but not NODD.

      Strengths:

      (1) Simple, easy-to-follow manuscript. Generally well-written.

      (2) Disease-relevant mutations are studied in PHD2 that provide insights into its mechanism of action.

      (3) Good, well-researched background section.

      Weaknesses:

      (1) Poor use of existing structural data on the complexes of PHD2 with HIF1a peptides and various metals and substrates. A quick survey of the impact of these mutations (as well as analysis by Chowdhury et al, 2016) on the structure and interactions between PHD2 peptides of HIF1a shows that the P317R mutation interferes with peptide binding. By contrast, F366L will affect the hydrophobic core, and A228S is on the surface, and it's not obvious how it would interfere with the stability of the protein.

      (2) To determine aggregation and monodispersity of the PHD2 mutants using size-exclusion chromatography (SEC), equal quantities of the protein must be loaded on the column. This is not what was done. As an aside, the colors used for the SEC are very similar and nearly indistinguishable.

      (3) The interpretation of some mutants remains incomplete. For A228S, what is the explanation for its reduced activity? It is not substantially less stable than WT and does not seem to affect peptide hydroxylation.

      (4) The interpretation of the NMR prolyl hydroxylation is tainted by the high concentrations used here. First of all, there is a likely a typo in the method section; the final concentration of ODD is likely 0.18 mM, and not 0.18 uM (PNAS paper by the same group in 2024 reports using a final concentration of 230 uM). Here, I will assume the concentration is 180 uM. Flashman et al (JBC 2008) showed that the affinity of the NODD site (P402; around 10 uM) for PHD2 is 10-fold weaker than CODD (P564, around 1 uM). This likely explains the much faster kinetics of hydroxylation towards the latter. Now, using the MST data, let's say the P317R mutation reduces the affinity by 40-fold; the affinity becomes 400 uM for NODD (above the protein concentration) and 40 uM for CODD (below the protein concentration). Thus, CODD would still be hydroxylated by the P317R mutant, but not NODD.

      (5) The discrepancy between the MST and BLI results does not make sense, especially regarding the P317R mutant. Based on the crystal structures of PHD2 in complex with the ODD peptides, the P317R mutation should have a major impact on the affinity, which is what is reported by MST. This suggests that the MST is more likely to be valid than BLI, and the latter is subject to some kind of artefact. Furthermore, the BLI results are inconsistent with previous results showing that PHD2 has a 10-fold lower affinity for NODD compared to CODD.

      (6) Overall, the study provides some insights into mutants inducing erythrocytosis, but the impact is limited. Most insights are provided on the P317R mutant, but this mutant had already been characterized by Chowdhury et al (2016). Some mutants affect the stability of the protein in cells, but then no mechanism is provided for A228S or F366L, which have stabilities similar to WT, yet have impaired HIF1a activation.

      Comments on revision:

      While the authors have addressed my concerns regarding the SEC experiments and the structural interpretation of most mutants, I remain unconvinced by their interpretation of the P317R mutant and affinity measurements. The BLI and MST data remain inconsistent for P317R binding to CODD, and the authors' response is essentially that the fluorescent labeling of P317R (but not other mutants) uniquely interferes with binding to the NODD/CODD peptides, which does not make a lot of sense. The fluorescent labeling target lysine residues; while there are lysine in PHD2 in proximity to the peptide binding site, labeling these sites would affect binding to all mutants, not only P317R (which does not introduce any new labeling site). Furthermore, the authors did not really address the discrepancy with the observations by Flashman et al (2008) that NODD binds more weakly than CODD, which is inconsistent with their BLI results. Another point that makes me doubt the validity of the BLI results is the poor fit of the sensorgrams and the slow dissociation kinetics, which is inconsistent with the relatively low affinity in the 2-6 uM range.

    1. Reviewer #2 (Public review):

      Summary:

      The authors show that a combination of arginine methyltransferase inhibitors synergize with PARP inhibitors to kill ovarian and triple negative cancer cell lines in vitro and in vivo using preclinical mouse models.

      Strengths and weaknesses

      The experiments are well-performed, convincing and have the appropriate controls (using inhibitors and genetic deletions) and use statistics.

      They identify the DNA damage protein ERCC1 to be reduced in expression with PRMT inhibitors. As ERCC1 is known to be synthetic lethal with PARPi, this provides a mechanism for the synergy. They use cell lines only for their study in 2D as well as xenograph models.

      Comments on revisions:

      The authors have addressed by final concerns.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript entitled "Molecular dynamics of the matrisome across sea anemone life history", Bergheim and colleagues report the prediction, using an established sequence analysis pipeline, of the "matrisome" - that is, the compendium of genes encoding constituents of the extracellular matrix - of the starlet sea anemone Nematostella vectensis. Re-analysis of an existing scRNA-Seq dataset allowed the authors to identify the cell types expressing matrisome components and different developmental stages. Last, the authors apply time-resolved proteomics to provide experimental evidence of the presence of the extracellular matrix proteins at three different stages of the life cycle of the sea anemone (larva, primary polyp, adult) and show that different subsets of matrisome components are present in the ECM at different life stages with, for example, basement membrane components accompanying the transition from larva to primary polyp and elastic fiber components and matricellular proteins accompanying the transition from primary polyp to the adult stage.

      Strengths:

      The ECM is a structure that has evolved to support the emergence of multicellularity and different transitions that have accompanied the complexification of multicellular organisms. Understanding the molecular makeup of structures that are conserved throughout evolution is thus of paramount importance.

      The in-silico predicted matrisome of the sea anemone has the potential to become an essential resource for the scientific community to support big data annotation efforts and better understand the evolution of the matrisome and of ECM proteins, an important endeavor to better understand structure/function relationships. Toward this goal, the authors provide a comprehensive list with extensive annotations and cross-referencing of the 551 genes encoding matrisome proteins in the sea anemone genome.

      This study is also an excellent example of how integrating datasets generated using different -omic modalities can shed light on various aspects of ECM metabolism, from identifying the cell types of origins of matrisome components using scRNA-Seq to studying ECM dynamics using proteomics.

      Weakness:

      - Prior proteomic studies on the ECM of vertebrate organisms have shown the importance of allowing certain post-translational modifications during database search to ensure maximizing peptide-to-spectrum matching and accurately evaluating protein quantification. Such PTMs include the hydroxylation of lysines and prolines that are collagen-specific PTMs. Multiple reports have shown that omitting these PTMs while analyzing LC-MS/MS data would lead to underestimating the abundance of collagens and the misidentification of certain collagens. While the authors in their response state that the inclusion of these PTMs only led to a modest increase in protein identification, they do not comment on the impact of including these PTMs on PSMs or protein abundance (precursor ion intensity).

    1. Reviewer #1 (Public review):

      Summary:

      The study examines how pyruvate, a key product of glycolysis that influences TCA metabolism and gluconeogenesis, impacts cellular metabolism and cell size. It primarily utilizes the Drosophila liver-like fat body, which is composed of large post-mitotic cells that are metabolically very active. The study focuses on the key observations that over-expression of the pyruvate importer MPC complex (which imports pyruvate from the cytoplasm into mitochondria) can reduce cell size in a cell-autonomous manner. They find this is by metabolic rewiring that shunts pyruvate away from TCA metabolism and into gluconeogenesis. Surprisingly, mTORC and Myc pathways are also hyper-active in this background, despite the decreased cell size, suggesting a non-canonical cell size regulation signaling pathway. They also show a similar cell size reduction in HepG2 organoids. Metabolic analysis reveals that enhanced gluconeogenesis suppresses protein synthesis. Their working model is that elevated pyruvate mitochondrial import drives oxaloacetate production and fuels gluconeogenesis during late larval development, thus reducing amino acid production and thus reducing protein synthesis.

      Strengths:

      The study is significant because stem cells and many cancers exhibit metabolic rewiring of pyruvate metabolism. It provides new insights into how the fate of pyruvate can be tuned to influence Drosophila biomass accrual, and how pyruvate pools can influence the balance between carbohydrate and protein biosynthesis. Strengths include its rigorous dissection of metabolic rewiring and use of Drosophila and mammalian cell systems to dissect carbohydrate:protein crosstalk.

      Comments on revised version:

      The study remains an important dissection of how metabolic compartmentalization can influence cell size. It nicely uses Drosophila and a variety of metabolic approaches. The various pathway analyses and rigorous quantitation are strengths.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes a chemical screen for activators of the eIF2 kinase GCN2 (EIF2AK4) in the integrated stress response (ISR). Recently, reported inhibitors of GCN2 and other protein kinases have been shown at certain concentrations to paradoxically activate GCN2. The study uses CHO cells and ISR reporter screens to identify a number of GCN2 activator compounds, including a potent "compound 20." These activators have implications for the development of new therapies for ISR-related diseases. For example, although not directly pursued in this study, these GCN2 activators could be helpful for the treatment of PVOD, which is reported for patients with certain GCN2 loss-of-function mutations. The identified activators are also suggested to engage with the GCN2 directly and can function while devoid of GCN1, a co-activator of GCN2.

      Strengths:

      The manuscript appears to be a largely rigorous study that flows in a logical manner. The topic is interesting and significant.

      Weaknesses:

      Portions of the manuscript are not fully clear. There are some experimental presentation and design concerns that should be addressed to support the stated conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Raiola et al. conducted a quantitative analysis of tissue deformation during the formation of the primitive heart tube from the cardiac crescent in mouse embryos. Using the tools developed to analyze growth, anisotropy, strain, and cell fate from time-lapse imaging data of mouse embryos, the authors elucidated the compartmentalization of tissue deformation during heart tube formation and ventricular expansion. This paper describes how each region of the cardiac tissue changes to form the heart tube and ventricular chamber, contributing to our understanding of the earliest stages of cardiac development.

      Strengths:

      In order to understand tissue deformation in cardiac formation, it is commendable that the authors effectively utilized time-lapse imaging data, a data pipeline, and in silico fate mapping.

      The study clarifies the compartmentalization of tissue deformation by integrating growth, anisotropy, and strain patterns in each region of the heart.

      Weaknesses:

      The significance of the compartmentalization of tissue deformation for the heart tube formation remains unclear.

    1. Reviewer #1 (Public review):

      Summary:

      The authors demonstrate the stereoselective role of D-serine in 1C metabolism, showing that D-serine competes with L-serine and inhibits mitochondrial L-serine transport. They observe expression of 1C metabolites in their metabolomics approach in primary cortical neurons treated with L-serine, D-serine, and a mixture of both. Their conclusions are based on the reduction in levels of glycine, polyamines, and their intermediates and formate. Single-cell RNA sequencing of N2a cells showed that cells treated with D-serine enhanced expression of genes associated with mitochondrial functions, such as respiratory chain complex assembly, and mitochondrial functions, with downregulation of genes related to amino acid transport, cellular growth, and neuron projection extension. Their work demonstrates that D-serine inhibits tumor cell proliferation and induces apoptosis in neural progenitor cells, highlighting the importance of D-serine in neurodevelopment.

      Strengths:

      D-amino acids are a marvel of nature. It is fascinating that nature decided to make two versions of the same molecule, in this case, an amino acid. While the L-stereoisomer plays well-known roles in biology, the D-stereoisomer seems to function in obscurity. Research into these novel signaling molecules is gathering momentum, with newer stereoisomers being discovered. D-serine has been the most well-studied among the different stereoisomers, and we still continue to learn about this novel neurotransmitter. The roles of these molecules in the context of metabolism is not well studied. The authors aim to elucidate the metabolic role of D-serine in the context of neuronal maturation with implications for 1C metabolism and in cell proliferation. The metabolic role of these molecules is just beginning to be uncovered, especially in the context of mammalian biology. This is the strength of the manuscript. The authors have done important work in prior publications elucidating the role of D-amino acids. The advancement of the field of D-amino acids in mammalian biology is significant, as not much is known. The presentation of RNA seq data is a valuable resource to the community, however, with caveats as mentioned below.

      Weaknesses:

      The following are some of the issues that come out in a critical reading of the manuscript. Addressing these would only strengthen and clarify the work.

      (1) Kinetic assessment of D-serine versus L-serine: While the authors mention that D-serine is not a good substrate for SHMT2 compared to L-serine, the kinetic data are presented for only D-serine. In a substrate comparison with an enzyme, data must be presented for L-serine as well to make the conclusion about substrate specificity and affinity. Since the authors talk about one versus another substrate, there needs to be a kinetic comparison of both with Km (affinity). (Ref Figure 2 panel).

      (2) Molecular Dynamics simulations, while a good first step in modeling interactions at the active site, rely on force fields. These force fields are approximations and do not represent all interactions occurring in the natural world. Setting up the initial conditions in the simulations can impact the final results in non-equilibrium scenarios. The basic question here is this: Is the simulated trajectory long enough so that the system reaches thermodynamic equilibrium and the measured properties converge? Prior studies have shown mixed results with the conclusion that properties of biological systems tend to converge in multi-second trajectories (not nanosecond scales as reported by the authors) and transition rates to low probability conformations require more time. (Ref Figure 2C).

      (3) The authors use N2a cell line to demonstrate D-serine burden on primary cortical neurons. N2a is an immortalized cell line, and its properties are very different from primary neurons. The authors need to mention a rationale for the use of an immortalized cell line versus primary neurons. The transcriptomic profile of an immortalized cell line is different compared to a primary cell. Hence, the response to D-serine may vary between the two different cell types.

      (4) In Figure 4D, the authors mention that D-serine activates the cleavage of caspase 3. Figure 4D shows only cleaved caspase 3 as a single band. They need to show the full blot that contains the cleaved fragments along with the major caspase 3 band.

      (5) In Figure panel 4, the authors use neural progenitor cells (NPCs). They need to demonstrate that the population they are working with is NPCs and not primary neurons. There must be a figure panel staining for NPC markers like SOX2 and PAX6. Also, Figure S5 needs to be properly labeled. It is confusing from the legend what panels B-E refer to? Also, scale bars are not indicated.

      (6) In Supplementary Figure panel 7F, the authors mention phosphatidyl L-serine and phosphatidyl D-serine. A chromatogram of the two species would clarify their presence as they used 2D-HPLC. On an MS platform, these 2 species are not distinguishable. Including a chromatogram of the 2 species would be helpful to the readers.

      (7) The authors mention about enantiomeric shift of serine metabolism during neural development, which appears to be a discussion of prior published data from Hubbard et al, 2013, Burk et al, 2020, and Bella et a,l 2021 in Supplementary Figure panels 8 A-E. This should not be presented as a figure panel, as it gives the false impression that the authors have performed the experiment, which is clearly not the case. However, its discussion can well serve as part of the manuscript in the discussion section.

      (8) The entire presentation of the section on enantiomeric shift of serine metabolism during neural development (lines 274-312) is a discussion and should be part of the discussion section and not in the results section. This is misleading.

      (9) The discussion section is not well written. There is no mention of recent work related to D-serine that has a direct bearing on its metabolic properties. In the discussion section, paragraph 1, the authors mention that their work demonstrates the selective synthesis of D-serine in mature neurons as opposed to neural progenitor cells. This concept has been referred to in prior publications:

      (a) Spatiotemporal relationships among D-serine, serine racemase, and D-amino acid oxidase during mouse postnatal development. PMID:14531937.

      (b) D-cysteine is an endogenous regulator of neural progenitor cell dynamics in the mammalian brain. PMID:34556581.

      (10) In the abstract, in lines 101 and 102, the authors mention "how D-serine contributes to cellular metabolism beyond neurotransmission remains largely unknown". In 2023, a paper in Stem Cell Reports by Roychaudhuri et al (PMID:37352848) showed that D and L-serine availability impacts lipid metabolism in the subventricular zone in mice, affecting proliferative properties of stem-cell derived neurons using a comprehensive lipidomics approach. There is no mention of this work even in the discussion section, as it bears directly on L and D-serine availability in neurons, which the authors are investigating. In the discussion section in lines 410-411, the authors mention the role of D-serine in neurogenesis, but surprisingly don't refer to the above reference. The role of D-serine in neurogenesis has been demonstrated in the Sultan et al (lines 855-857) and Roychaudhuri et al references.

      (11) Both D-serine and the structurally similar stereoisomer D-cysteine (sulfur versus oxygen atom) have a bearing on 1C metabolism and the folate cycle. With reference to the folate cycle, Roychaudhuri et al in 2024 (PMID:39368613) have shown in rescue experiments in mice that supplementing a higher methionine diet provides folate cycle precursors to rescue the high insulin phenotype in SR-deficient mice. Since 1C metabolism is being discussed in this manuscript, the authors seem to overlook prior work in the field and not include it in their discussion, even when it is the same enzyme (SR) that synthesizes both serine and cysteine. Since the field of D-amino acid research is in its infancy, the authors must make it a point to include prior work related to D-serine at least, and not claim that it is not known. The known D-stereoisomers are not many, hence any progress in the area must include at least a discussion of the other structurally related stereoisomers.

      (12) Racemases (serine and aspartate) in general are promiscuous enzymes and known to synthesize other stereoisomers in addition to D-serine, D-cysteine, and D-aspartate. A few controls, like D-aspartate, D-cysteine, or even D-alanine must be included in their study to demonstrate the specific actions of D-serine, especially in the N2a cell treatment experiments. Cysteine and Serine are almost identical in structure (sulfur versus oxygen atom), and both are synthesized by serine racemase (published). Cysteine has also been very recently shown to inhibit tumor growth and neural progenitor cell proliferation. (PMIDs: 40797101 and 34556581). How the authors' work relates to the existing findings must be discussed, and this would put things in perspective for the reader.

    1. Reviewer #1 (Public review):

      Summary:

      Plasmodesmata are channels that allow cell-cell communication in plants; based on the functional similarities between facilitated transport within plasmodesmata and into the nucleus, the authors speculate that nuclear pore complex proteins might be involved in plasmodesmata function. In this manuscript, they localize nuclear pore complex proteins to plasmodesmata using proteomics and heterologous overexpression. They also document a possible plasmodesmata transport defect in a mutant affecting one nuclear pore complex protein.

      Strengths:

      The main strength of this manuscript is the interesting and novel hypothesis. This work could open exciting new directions in our understanding of plasmodesmata function and cell-cell communication in plants. They also localized many NUPs (12/35 Arabidopsis NUPs).

      Weaknesses:

      The main weakness of this manuscript is that the data are incomplete. While the authors appropriately and frequently acknowledge caveats to their data, two controls are essential to interpret the results that fluorescently-tagged NUPs localize to the plasmodesmata: (1) assessment of the expression level of these fluorescently-tagged NUPs to determine whether the plasmodesmata localization might be an overexpression artefact; (2) assessment of the function of the fluorescently-tagged NUPs, either by molecular complementation of a knockout mutant phenotype or by biochemical methods to test whether the fluorescently-tagged NUP incorporates into nuclear pore complexes. Conducting these experiments for even one fluorescently-tagged NUP would substantially strengthen this manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a comprehensive study on the developing synthetic gene circuits targeting mutant RAS expressing cells. The aim of this study is to use these RAS targeting circuits as cancer cell classifiers and enable the selective expression of an output protein in correlation with RAS activity. The system is based on the bacterial two-component system NarX/NarL. A RAS-binding domain is fused to a NarX mutant either defective in the ATP binding (N509A) or the phosphorylation site (H399Q). Nanocluster formation of RAS-GTP reconstitutes an active histidine kinase sensor dimer that phosphorylates the response regulator NarL thus leading to the expression of an output protein. The integration of RAS-dependent MAPK responsive elements to express the RAS sensor components generates RAS circuits with an extended dynamic range between mutant and wild-type RAS. The selectivity of the RAS circuits is confirmed in a set of cancer cell lines expressing endogenous levels of mutant or wild-type RAS or oncogenes affecting RAS signaling upstream or downstream. Expression of the suicide gene HSV thymidine kinase as an outcome protein kills RAS-driven cancer cells demonstrating the functionality of the system.

      Strengths:

      This proof-of-concept study convincingly demonstrates the potential of synthetic gene circuits to target oncogenic RAS in tumor cell lines, act as RAS mutant cell classifier, and induce the killing of RAS-driven cells.

      Weaknesses:

      A therapeutic strategy based on of this four-plasmid system may be difficult to implement in RAS-driven solid cancers. However, potential solutions are discussed.

    1. Reviewer #1 (Public review):

      Summary:

      The presented study by Centore and colleagues investigates the inhibition of BAF chromatin remodeling complexes. The study is well written and includes comprehensive datasets, including compound screens, gene expression analysis, epigenetics, as well as animal studies. This is an important piece of work for the uveal melanoma research field, and sheds light on a new inhibitor class, as well as a mechanism that might be exploited to target this deadly cancer for which no good treatment options exist.

      Strengths:

      This is a comprehensive and well-written study.

      Weaknesses:

      There are minimal weaknesses.

    1. Reviewer #1 (Public review):

      The manuscript "Heterozygote advantage cannot explain MHC diversity, but MHC diversity can explain heterozygote advantage" explores two topics. First, it is claimed that the recently published conclusion by Mattias Siljestam and Claus Rueffler (in the following referred to as [SR] for brevity) that heterozygote advantage explains MHC diversity does not withstand even a very slight change in ecological parameters. Second, a modified model that allows an expansion of the MHC gene family shows that homozygotes outperform heterozygotes. This is an important topic and could be of potential interest to readers if the conclusions are valid and non-trivial.

      Let me first comment on the second part of the manuscript that describes the fitness advantage of the 'gene family expansion'. I think this, by itself, is a totally predictable result. It appears obvious that with no or a little fitness penalty, it becomes beneficial to have MHC-coding genes specific to each pathogen. A more thorough study that takes into account a realistic (most probably non-linear in gene number) fitness penalty, various numbers of pathogens that could grossly exceed the self-consistent fitness limit on the number of MHC genes, etc, could be more informative. Yet, as I understood the narrative of the manuscript, the expansion of the gene family serves as a mere counter-example to the disputed finding of [SR], rather than a systematic study of the eco-evolutionary consequences of this process.

      Now to the first part of the manuscript, which claims that the point made in [RS] is not robust and breaks down under a small change in the parameters. An addition or removal of one of the pathogens is reported to affect "the maximum condition", a key ecological characteristic of the model, by an enormous factor 10^43, naturally breaking down all the estimates and conclusions made in [RS]. This observation is not substantiated by any formulas, recipes for how to compute this number numerically, or other details, and is presented just as a self-standing number in the text. The only piece of information given in the manuscript is that, unlike in [SR], the adjustable parameter c_{max} is kept constant when the number of pathogens is changed.

      In my opinion, the information provided in the manuscript does not allow one to conclude anything about the relevance and the validity of its main claim. At the same time, the simulations done in [SR] are described with a fair amount of detail. Which allows me to assume that the conclusions made in [SR] are fairly robust and, in particular, have been demonstrated not to be too sensitive to changes in the main "suspect', c_{max}. Let me briefly justify my point.

      First, it follows from Eqs (4,5) in the main text and (A12-A13) in the Appendix that c_{max} and K do not independently affect the dynamics of the model, but it's rather their ratio K/c_max that matters. It can be seen by dividing the numerator and denominator of (5) by c_max. Figure 3 shows the persistent branching for 4 values of K that cover 4 decades. As it appears from the schemes in the top row of Figure 3, those simulations are done for the same positions and widths/virulences of pathogens. So the position of x* should be the same in all 4 cases, presumably being at the center of pathogens, (x*,x*) = (0,0). According to the definition of x* given in the Appendix after Eqs (A12-A13), this means that c_max remains the same in all 4 cases. So one can interpret the 4 scenarios shown in Figure 3 as corresponding not to various K, but to various c_max that varied inversely to K. That is, the results would have been identical to those shown in Figure 3 if K were kept constant and c_max were multiplied by 0.1, 1, 10, and 100, or scaled as 1/K. This begs the conclusion that the branching remains robust to changes in c_max that span 4 decades as well.

      Naturally, most, if not all, the dynamics will break down if one of the ecological characteristics changes by a factor of 10^43, as it is reported in the submitted manuscript. As I wrote above, there is no explanation behind this number, so I can only guess that such a number is created by the removal or addition of a pathogen that is very far away from the other pathogens. Very far in this context means being separated in the x-space by a much greater distance than 1/\nu, the width of the pathogens' gaussians. Once again, I am not totally sure if this was the case, but if it were, some basic notions of how models are set up were broken. It appears very strange that nothing is said in the manuscript about the spatial distribution of the pathogens, which is crucial to their effects on the condition c. In [SP], it is clearly shown where the pathogens are.

      Another argument that makes me suspicious in the utility of the conclusions made in the manuscript and plays for the validity of [SP] is the adaptive dynamics derivation of the branching conditions. It is confirmed by numerics with sufficient accuracy, and as it stands in its simple form of the inequality between two widths, the branching condition appears to be pretty robust with respect to reasonable changes in parameters.

      Overall, I strongly suspect that an unfortunately poor setup of the model reported in the manuscript has led to the conclusions that dispute the much better-substantiated claims made in [SD].

    1. Reviewer #1 (Public review):

      Summary:

      Laura Morano and colleagues have performed a screen to identify compounds that interfere with the formation of TopBP1 condensates. TopBP1 plays a crucial role in the DNA damage response, and specifically the activation of ATR. They found that the GSK-3b inhibitor AZD2858 reduced the formation of TopBP1 condensates and activation of ATR and its downstream target CHK1 in colorectal cancer cell lines treated with the clinically relevant irinotecan active metabolite SN-38. This inhibition of TopBP1 condensates by AZD2858 was independent from its effect on GSK-3b enzymatic activity. Mechanistically, they show that AZD2858 thus can interfere with intra-S-phase checkpoint signaling, resulting in enhanced cytostatic and cytotoxic effects of SN-38 (or SN-38+Fluoracil aka FOLFIRI) in vitro in colorectal carcinoma cell lines.

      Comments on latest version:

      The requested plots are in figure S7 of the latest manuscript version, and look convincing. My last point is now adequately addressed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use Dyngo-4a, a known Dynami inhibitor to test its influence on caveolar assembly and surface mobility. They investigate whether it incorporates into membranes with Quartz-Crystal Microbalance, they investigate how it is organized in membranes using simulations. Finally, they use lipid-packing sensitive dyes to investigate lipid packing in the presence of Dyngo-4a, membrane stiffness using AFM and membrane undulation using fluorescence microscopy. They also use a measure they call "caveola duration time" to claim that something happens to caveolae after Dyngo-4a addition and using this parameter, they do indeed see an increase in it in response to Dyngo-4a, which is reduced back to the baseline after addition of cholesterol.

      Overall, the authors claim: 1) Dyngo-4a inserts into the membrane and this 2) results in "a dramatic dynamin-independent inhibition of caveola scission". 3) Dyngo-4a was inserted and positioned at the level of cholesterol in the bilayer and 4) Dyngo-4a-treatment resulted in decreased lipid packing in the outer leaflet of the plasma membrane 5) but Dyngo-4a did not affect caveola morphology, caveolae-associated proteins, or the overall membrane stiffness 6) acute addition of cholesterol counteracts the block in caveola scission caused by Dyngo-4a.

      Overall, in this reviewers opinion, claims 1, 3, 4, 5 are well-supported by the presented data from electron and live cell microscopy, QCM-D and AFM.

      However, there is no convincing assay for caveolar endocytosis presented besides the "caveola duration" which although unclearly described seems to be the time it takes in imaging until a caveolae is not picked up by the tracking software anymore in TIRF microscopy.

      Since the main claim of the paper is a mechanism of caveolar endocytosis being blocked by Dyngo-4a, a true caveolar internalization assay is required to make this claim. This means either the intracellular detection of not surface connected caveolar cargo or the quantification of caveolar movement from TIRF into epifluorescence detection in the fluorescence microscope. Otherwise, the authors could remove the claim and just claim that caveolar mobility is influenced.

      Significance:

      A number of small molecule inhibitors for the GTPase dynamics exist, that are commonly used tools in the investigation of endocytosis. This goes as far that the use of some of these inhibitors alone is considered in some publications as sufficient to declare a process to be dynamin-dependent. However, this is not correct, as there are considerable off-target effects, including the inhibition of caveolar internalization by a dynamin-independent mechanism. This is important, as for example the influence of dynamin small molecule inhibitors on chemotherapy resistance is currently investigated (see for example Tremblay et al., Nature Communications, 2020).

      The investigation of the true effect of small molecules discovered as and used as specific inhibitors and their offside effects is extremely important and this reviewer applauds the effort. It is important that inhibitors are not used alone, but other means of targeting a mechanism are exploited as well in functional studies. The audience here thus is besides membrane biophysicists interested in the immediate effect of the small molecule Dyngo-4a also cell biologists and everyone using dynamic inhibitors to investigate cellular function.

      Comments on revised version:

      Please include the promised data on caveolar internalization and remove the above mentioned claim on membrane undulations from the text.

    1. Reviewer #1 (Public review):

      Summary:

      This study uses a novel DNA origami nanospring to measure the stall force and other mechanical parameters of the kinesin-3 family member, KIF1A, using light microscopy. The key is to use SNAP tags to tether a defined nanospring between a motor-dead mutant of KIF5B and the KIF1A to be integrated. The mutant KIF5B binds tightly to a subunit of the microtubule without stepping, thus creating resistance to the processive advancement of the active KIF1A. The nanospring is conjugated with 124 Cy3 dyes, which allows it to be imaged by fluorescence microscopy. Acoustic force spectroscopy was used to measure the relationship between the extension of the NS and force as a calibration. Two different fitting methods are described to measure the length of the extension of the NS from its initial diffraction-limited spot. By measuring the extension of the NS during an experiment, the authors can determine the stall force. The attachment duration of the active motor is measured from the suppression of lateral movement that occurs when the KIF1A is attached and moving. There are numerous advantages of this technology for the study of single molecules of kinesin over previous studies using optical tweezers. First, it can be done using simple fluorescence microscopy and does not require the level of sophistication and expense needed to construct an optical tweezer apparatus. Second, the force that is experienced by the moving KIF1A is parallel to the plane of the microtubule. This regime can be achieved using a dual beam optical tweezer set-up, but in the more commonly used single-beam set-up, much of the force experienced by the kinesin is perpendicular to the microtubule. Recent studies have shown markedly different mechanical behaviors of kinesin when interrogated by the two different optical tweezer configurations. The data in the current manuscript are consistent with those obtained using the dual-beam optical tweezer set-up. In addition, the authors study the mechanical behavior of several mutants of KIF1A that are associated with KIF1A-associated neurological disorder (KAND).

      Strengths:

      The technique should be cheaper and less technically challenging than optical tweezer microscopy to measure the mechanical parameters of molecular motors. The method is described in sufficient detail to allow its use in other labs. It should have a higher throughput than other methods.

      Weaknesses:

      The experimenter does not get a "real-time" view of the data as it is collected, which you get from the screen of an optical tweezer set-up. Rather, you have to put the data through the fitting routines to determine the length of the nanospring in order to generate the graphs of extension (force) vs time. No attempts were made to analyze the periods where the motor is actually moving to determine step-size or force-velocity relationships.

    1. Reviewer #1 (Public review):

      Summary:

      It is well known that autophagosomes/autolysosomes move along microtubules. However, as these previous studies did not distinguish between autophagosomes and autolysosomes, it remains unknown whether autophagosomes begin to move after fusion with lysosomes or even before fusion. In this manuscript, the authors show using fusion-deficient vps16a RNAi cells that both pre-fusion autophagosomes and lysosomes can move along the microtubules towards the minus end. This was confirmed in snap29 RNAi cells. By screening motor proteins and Rabs, the authors found that autophagosomal traffic is primarily regulated by the dynein-dynactin system and can be counter-regulated by kinesins. They also show that Rab7-Epg5 and Rab39-ema interactions are important for autophagosome trafficking.

      Strengths:

      This study uses reliable Drosophila genetics and high-quality fluorescence microscopy. The data are properly quantified and statistically analyzed. It is a reasonable hypothesis that gathering pre-fusion autophagosomes and lysosomes in close proximity improves fusion efficiency.

      Weaknesses:

      (1) This study investigates the behavior of pre-fusion autophagosomes and lysosomes using fusion-incompetent cells (e.g., vps16a RNAi cells). However, the claim that these cells are truly fusion-incompetent relies on citations from previous studies. Since this is a foundational premise of the research, it should be rigorously evaluated before interpreting the data. It's particularly awkward that the crucial data for vps16a RNAi is only presented at the very end of Figure 10-S1; this should be among the first data shown (the same for SNAP29). It would be important to determine the extent to which autophagosomes and lysosomes are fusing (or tethered in close proximity), within each of these cell lines.

      (2) In the new Figures 8 and 9, the authors analyze autolysosomes without knocking down Vps16A (i.e., without inhibiting fusion). However, as this reviewer pointed out in the previous round, it is highly likely that both autophagosomes and autolysosomes are present in these cells. This is particularly relevant given that the knockdown of dynein-dynactin, Rab7, and Epg5 only partially inhibits the fusion of autophagosomes and lysosomes (Figure 10H). If the goal is to investigate the effects of fusion, it would be more appropriate to analyze autolysosomes and autophagosomes separately. The authors mention that they can differentiate these two structures based on the size of mCherry-Atg8a structures. If this is the case, they should perform separate analyses for both autophagosomes and autolysosomes.

      (3) This is also a continued Issue from the previous review. The authors suggest that autophagosome movement is crucial for fusion, based on the observed decrease in fusion rates in Rab7 and Epg5 knockdown cells (Fig. 10). However, this conclusion is not well supported. It is known that Rab7 and Epg5 are directly involved in the fusion process itself. Therefore, the possibility that the observed decrease is simply due to a direct defect in fusion, rather than an impairment of movement, has not been ruled out.

      (4) The term "autolysosome maturation" appears multiple times, yet its meaning remains unclear. Does it refer to autolysosome formation (autophagosome-lysosome fusion), or does it imply a further maturation process occurring after autolysosome formation? This is not a commonly used term in the field, so it requires a clear definition.

      (5) In Figure 1-S1D, the authors state that the disappearance of the mCherry-Atg8a signal after atg8a RNAi indicates that the observed structures are not non-autophagic vacuoles. This reasoning is inappropriate. Naturally, knocking down Atg8 will abolish its signal, regardless of the nature of the vacuoles. This does not definitively distinguish autophagic from non-autophagic structures.

    1. Reviewer #1 (Public review):

      In this manuscript, the authors employ a combined proteomic and genetic approach to identify the glycoprotein QC factor malectin as an important protein involved in promoting coronavirus infection. Using proteomic approaches, they show that the non-structural protein NSP2 and malectin interact in the absence of viral infection, but not in the presence of viral infection. However, both NSP2 and malectin engage the OST complex during viral infection, with malectin also showing reduced interactions with other glycoprotein QC proteins. Malectin KD reduce replication of coronaviruses, including SARS-COV2. Collectively, these results identify Malectin as a glycoprotein QC protein involved in regulating coronavirus replication that could potentially be targeted to mitigate coronavirus replication.

      In the revised manuscript, the authors have addressed many of my comments from the previous submission. Notably, they've provided some additional mechanistic data, focused primarily on the activation of different stress signaling pathways, to help define malectin impacts viral replication, although this is mostly suggests that activation of these pathways may not be the main mechanism of malectin-dependent reductions in viral replication. Regardless, I'm sure this mechanism will be the focus of continued efforts on this project. They have also addressed other concerns related to interactions between OST and malectin, as well as the curious interactions between non-structural proteins with both ER and mitochondrial proteins. Overall, the authors have been responsive to my comments and comments from other reviewers, and the manuscript has been improved. It will be a good addition to eLife.

    1. Reviewer #1 (Public review):

      Summary:

      The authors were attempting to identify the molecular and cellular basis for why modulators of the HR pathway, specifically PARPi, are not effective in CDK12 deleted or mutant prostate cancers and they seek to identify new therapeutic agents to treat this subset of metastatic prostate cancer patients. Overall, this is an outstanding manuscript with a number of strengths and in my opinion represents a significant advance in the field of prostate cancer biology and experimental therapeutics.

      Strengths:

      The patient data cohort size and clinical annotation from Figure 1 are compelling and comprehensive in scope. The associations between tandem duplications and amplifications of oncogenes that have been well-credentialed to be drivers of cancer development and progression are fascinating and the authors identify that in those that have AR amplification for example, there is evidence for AR pathway activation. The association between CDK12 inactivation and various specific gene/pathway perturbations is fascinating and is consistent with previously published studies - it would be interesting to correlate these changes with cell line-based studies in which CDK12 is specifically deleted or inhibited with small molecules to see how many pathways/gene perturbations are shared between the clinical samples and cell and mouse models with CDK12 perturbation. The short-term inhibitor studies related to changes in HRD genes and protein expression with CDK12/13 inhibition are fascinating and suggest differential pathway effects between short inhibition of CDK12/13 and long-term loss of CDK12. The in vivo studies with the inhibitor of CDK12/13 are intriguing but not definitive

      Weaknesses:

      Given that there are different mutations identified at different CDK12 sites as illustrated in Figure 1B it would be nice to know which ones have been functionally classified as pathogenic and for which ones that the pathogenicity has not been determined. This would be especially interesting to perform in light of the differences in the LOH scores and WES data presented - specifically, are the pathogenic mutations vs the mutations for which true pathogenicity is unknown more likely to display LOH or TD? For the cell inhibition studies with the CDK12/13 inhibitor, more details characterizing the specificity of this molecule to these targets would be useful. Additionally, could the authors perform short-term depletion studies with a PROTAC to the target or short shRNA or non-selected pool CRISPR deletion studies of CDK12 in these same cell lines to complement their pharmacological studies with genetic depletion studies? Also perhaps performing these same inhibitor studies in CDK12/13 deleted cells to test the specificity of the molecule would be useful. Additionally, expanding these studies to additional prostate cancer cell lines or organdies models would strengthen the conclusions being made. More information should be provided about the dose and schedule chosen and the rationale for choosing those doses and schedules for the in vivo studies proposed should be presented and discussed. Was there evidence for maximal evidence of inhibition of the target CDK12/13 at the dose tested given the very modest tumor growth inhibition noted in these studies?

    1. Reviewer #1 (Public review):

      Summary:

      Hurtado et al. show that Sox9 is essential for retinal integrity, and its null mutation causes the loss of the outer nuclear layer (ONL). The authors then show that this absence of the ONL is due to apoptosis of photoreceptors and a reduction in the numbers of other retinal cell types such as ganglion cells, amacrine cells and horizontal cells. They also describe that Müller Glia undergoes reactive gliosis by upregulating the Glial Fibrillary Acidic Protein. The authors then show that Sox9+ progenitors proliferate and differentiate to generate the corneal cells through Sox9 lineage-tracing experiments. They validate Sox9 expression and characterize its dynamics in limbal stem cells using an existing single-cell RNA sequencing dataset. Finally, the authors show that Sox9 deletion causes progenitor cells to lose their clonogenic capacity by comparing the sizes of control and Sox9-null clones. Overall, Hurtado et al. underline the importance of Sox9 function in retinal cells.

      Strengths:

      The authors have characterized a myriad of striking phenotypes due to Sox9 deletion in the retina and limbal stem cells which will serve as a basis for future studies.

      Weaknesses:

      Hurtado et al. highlight the importance of Sox9 in the retina and limbal stem cells by describing several affects of Sox9 depletion in the adult eye. However, it is unclear how or where Sox9 precisely acts as a mechanistic investigation of the transcription factor's role in this tissue is lacking.

    1. Reviewer #1 (Public review):

      Summary:

      This work computationally characterized the threat-reward learning behavior of mice in a recent study (Akiti et al.), which had prominent individual differences. The authors constructed a Bayes-adaptive Markov decision process model, and fitted the behavioral data by the model. The model assumed (i) hazard function staring from a prior (with free mean and SD parameters) and updated in a Bayesian manner through experience (actually no real threat or reward was given in the experiment), (ii) risk-sensitive evaluation of future outcomes (calculating lower 𝛼 quantile of outcomes with free 𝛼 parameter), and (iii) heuristic exploration bonus. The authors found that (i) brave animals had more widespread hazard priors than timid animals and thereby quickly learned that there was in fact little real threat, (ii) brave animals may also be less risk-aversive than timid animals in future outcome evaluation, and (iii) the exploration bonus could explain the observed behavioral features, including the transition of behavior from the peak to steady-state frequency of bout. Overall, this work is a novel interesting analysis of threat-reward learning, and provides useful insights for future experimental and theoretical work. However, there are several issues that I think need to be addressed.

      Strengths:

      - This work provides a normative Bayesian account for individual differences in braveness/timidity in reward-threat learning behavior, which complements the analysis by Akiti et al. based on model-free threat reinforcement learning.

      - Specifically, the individual differences were characterized by (i) the difference in the variance of hazard prior and potentially also (ii) the difference in the risk-sensitivity in evaluation of future returns.

      Weakness:

      - Theoretically the effect of prior is diluted over experience whereas the effect of biased (risk-aversive) evaluation persists, but these two effects could not be teased apart in the fitting analysis of the current data.

      - It is currently unclear how (whether) the proposed model corresponds to neurobiological (rather than behavioral) findings, different from the analysis by Akiti et al.

      Comments on revisions:

      The authors have adequately replied to all the concerns that I raised in my review of the original manuscript. I do not have any remaining concern, and I am now more convinced that this work provides novel important insights and stimulates future experimental and theoretical examinations.

    1. Editorial note: To ensure a thorough evaluation of the revised manuscript, we invited a third reviewer to assess whether the authors had sufficiently addressed the concerns raised in the initial round of peer review. This additional reviewer confirmed that the authors responded partially to the original reviewers requests. While he/she also provided a set of new comments, these do not alter the original assessment or editorial decision regarding the manuscript. For transparency and completeness, the additional comments are included below.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Li and coworkers present experiments generated with human induced pluripotent stem cells (iPSCs) differentiated to astrocytes through a three-step protocol consisting of neural induction/midbrain patterning, switch to expansion of astrocytic progenitors, and terminal differentiation to astroglial cells. They used lineage tracing with a LMX1A-Cre/AAVS1-BFP iPSCs line, where the initial expression of LMX1A and Cre allows the long-lasting expression of BFP, yielding BFP+ and BFP- populations, that were sorted when in the astrocytic progenitor expansion. BFP+ showed significantly higher number of cells positive to NFIA and SOX9 than BFP- cells, at 45 and 98 DIV. However, no significant differences in other markers such as AQP4, EAAT2, GFAP (which show a proportion of less than 10% in all cases) and S100B were found between BFP-positive or -negative, at these differentiation times. Intriguingly, non-patterned astrocytes produced higher proportions of GFAP positive cells than the midbrain-induced and then sorted populations. BFP+ cells have enhanced calcium responses after ATP addition, compared to BFP- cells. Single-cell RNA-seq of early and late cells from BFP- and BFP+ populations were compared to non-patterned astrocytes and neurons differentiated from iPSCs. Bioinformatic analyses of the transcriptomes resulted in 9 astrocyte clusters, 2 precursor clusters and one neuronal cluster. DEG analysis between BFP+ and BFP- populations showed some genes enriched in each population, which were subject to GO analysis, resulting in biological processes that are different for BFP+ or BFP- cells.

      Strengths:

      The manuscript tries to tackle an important aspect in Neuroscience, namely the importance of patterning in astrocytes. Regionalization is crucial for neuronal differentiation and the presented experiments constitute a trackable system to analyze both transcriptional identities and functionality on astrocytes.

      Weaknesses:

      The presented results have several fundamental issues, to be resolved, as listed in the following major points:

      (1) It is very intriguing that GFAP is not expressed in late BFP- nor in BFP+ cultures, when authors designated them as mature astrocytes.<br /> (2) In Fig. 2D, authors need to change the designation "% of positive nuclei".<br /> (3) In Fig. 2E, the text describes a decrease caused by 2APB on the rise elicited by ATP, but the graph shows an increase with ATP+2APB. However, in Fig. 2F, the peak amplitude for BFP+ cells is higher in ATP than in ATP+2APD, which is mentioned in the text, but this is inconsistent with the graph in 2E.<br /> (4) The description of Results in the single-cell section is confusing, particularly in the sorted CD49 and unsorted cultures. Where do these cells come from? Are they BFP-, BFP+, unsorted for BFP, or non-patterned? Which are the "all three astrocyte populations"? A more complete description of the "iPSC-derived neurons" is required in this section to allow the reader to understand the type and maturation stage of neurons, and if they are patterned or not.<br /> (5) A puzzling fact is that both BFP- and BFP- cells have similar levels of LMX1A, as shown in Fig. S6F. How do authors explain this observation?<br /> (6) In Fig. 3B, the non-patterned cells cluster away from the BFP+ and BFP-; on the other hand, early and late BFP- are close and the same is true for early and late BFP+. A possible interpretation of these results is that patterned astrocytes have different paths for differentiation, compared to non-patterned cells. If that can be implied from these data, authors should discuss the alternative ways for astrocytes to differentiate.<br /> (7) Fig. 3D shows that cluster 9 is the only one with detectable and coincident expression of both S100B and GFAP expression. Please discuss why these widely-accepted astrocyte transcripts are not found in the other astrocytes clusters. Also, Sox9 is expressed in neurons, astrocyte precursors and astrocytes. Why is that?<br /> (8) Line 337, Why authors selected a log2 change of 0.25? Typically, 1 or a higher number is used to ensure at least a 2-fold increase, or a 50% decrease. A volcano plot generated by the comparison of BFP+ with BFP- cells would be appropriate. The validation of differences by immunocytochemistry, between BFP+ and BFP-, is inconclusive. The staining is blur in the images presented in Fig. S8C. Quantification of the positive cells, without significant background signal, in both populations is required.<br /> (9) Lines 349-351: BFP+ cells did not show higher levels of transcripts for LMX1A nor FOXA2. This fact jeopardizes the claim that these cells are still patterned. In the same line, there are not significant differences with cortical astrocytes, indicating a wider repertoire of the initially patterned cells, that seems to lose the midbrain phenotype. Furthermore, common DGE shared by BFP- and BFP+ cells when compared to non-patterned cells indicate that after culture, the pre-pattern in BFP+ cells is somehow lost, and coincides with the progression of BFP- cells.<br /> (10) For the GO analyses, How did authors select 1153 genes? The previous section mentioned 287 genes unique for BFP+ cells. The Results section should include a rationale for performing a wider search for the enriched processes.<br /> (11) For Fig. 4C and 4D, both p values and the number of genes should be indicated in the graph. I would advise to select the 10 or 15 most significant categories, these panels are very difficult to read. Whereas the listed processes for BFP+ have a relation to Parkinson disease, the ones detected for BFP- cells are related to extracellular matrix and tissue development. Does it mean that BFP+ cells have impaired formation of this matrix, or defective tissue development? This is in contradiction of enhanced calcium responses of BFP+ cells compared to BFP- cells.<br /> (12) Both the comparison between midbrain and cortical astrocytes in Fig. S8A, and the volcano plot in S8B do not show consistent changes. For example, RCAN2 in Fig. S8A has the same intensity for cortical and midbrain cells, but is marked as an enriched gene in midbrain in the p vs log2FC graph in Fig. S8B.

    1. Reviewer #1 (Public review):

      This study elucidates the molecular linkage between the mobilization of damaged rDNA from the nucleolus to its periphery and the subsequent repair process by HDR. The authors demonstrate that the nucleolar adaptor protein Treacle mediates rDNA mobilization, and the MDC1-RNF8-RNF168 pathway coordinates the recruitment of the BRCA1-PALB2-BRCA2 complex and RAD51 loading. This stepwise regulation appears to prevent aberrant recombination events between rDNA repeats. This work provides compelling evidence for the recruitment of the Treacle-TOPBP1-NBS1 complex to rDNA DSBs and demonstrates the critical role of MDC1 in the rDNA damage response. There are some issues with the over-interpretation of results as described subsequently. Some aspects could be strengthened, for example, a potential role of the RAP80-Abraxas axis, the origin of the repair synthesis (HDR vs. NHEJ)

    1. Reviewer #1 (Public review):

      The authors present an approach that uses the transformer architecture to model epistasis in deep mutational scanning datasets. This is an original and very interesting idea. Applying the approach to 10 datasets, they quantify the contribution of higher-order epistasis, showing that it varies quite extensively.

      Suggestions:

      (1) The approach taken is very interesting, but it is not particularly well placed in the context of recent related work. MAVE-NN, LANTERN, and MoCHI are all approaches that different labs have developed for inferring and fitting global epistasis functions to DMS datasets. MoCHI can also be used to infer multi-dimensional global epistasis (for example, folding and binding energies) and also pairwise (and higher order) specific interaction terms (see 10.1186/s13059-024-03444-y and 10.1371/journal.pcbi.1012132). It doesn't distract from the current work to better introduce these recent approaches in the introduction. A comparison of the different capabilities of the methods may also be helpful. It may also be interesting to compare the contributions to variance of 1st, 2nd, and higher-order interaction terms estimated by the Epistatic transformer and MoCHI.

      (2) https://doi.org/10.1371/journal.pcbi.1004771 is another useful reference that relates different metrics of epistasis, including the useful distinction between biochemical/background-relative and background-averaged epistasis.

      (3) Which higher-order interactions are more important? Are there any mechanistic/structural insights?

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses adaptive sampling simulations to understand the impact of mutations on the specificity of the enzyme PDC-3 β-lactamase. The authors argue that mutations in the Ω-loop can expand the active site to accommodate larger substrates.

      Strengths:

      The authors simulate an array of variants and perform numerous analyses to support their conclusions.

      The use of constant pH simulations to connect structural differences with likely functional outcomes is a strength.

      Weaknesses:

      I would like to have seen more error bars on quantities reported (e.g., % populations reported in the text and Table 1).

    1. Reviewer #1 (Public review):

      Summary:

      The study is methodologically solid and introduces a compelling regulatory model. However, several mechanistic aspects and interpretations require clarification or additional experimental support to strengthen the conclusions.

      Strengths:

      (1) The manuscript presents a compelling structural and biochemical analysis of human glutamine synthetase, offering novel insights into product-induced filamentation.

      (2) The combination of cryo-EM, mutational analysis, and molecular dynamics provides a multifaceted view of filament assembly and enzyme regulation.

      (3) The contrast between human and E. coli GS filamentation mechanisms highlights a potentially unique mode of metabolic feedback in higher organisms.

      Weaknesses:

      (1) The mechanism underlying spontaneous di-decamer formation in the absence of glutamine is insufficiently explored and lacks quantitative biophysical validation.

      (2) Claims of decamer-only behavior in mutants rely solely on negative-stain EM and are not supported by orthogonal solution-based methods.

    1. Reviewer #1 (Public review):

      Summary:

      Frelih et al. investigated both periodic and aperiodic activity in EEG during working memory tasks. In terms of periodic activity, they found post-stimulus decreases in alpha and beta activity, while in terms of aperiodic activity, they found a bi-phasic post-stimulus steepening of the power spectrum, which was weakly predictive of performance. They conclude that it is crucial to properly distinguish between aperiodic and periodic activity in event-related designs as the former could confound the latter. They also add to the growing body of research highlighting the functional relevance of aperiodic activity in the brain.

      Strengths:

      This is a well-written, timely paper that could be of interest to the field of cognitive neuroscience, especially to researchers investigating the functional role of aperiodic activity. The authors describe a well-designed study that looked at both the oscillatory and non-oscillatory aspects of brain activity during a working memory task. The analytic approach is appropriate, as a state-of-the-art toolbox is used to separate these two types of activity. The results support the basic claim of the paper that it is crucial to properly distinguish between aperiodic and periodic activity in event-related designs as the former could confound the latter. They also add to the growing body of research highlighting the functional relevance of aperiodic activity in the brain. Commendably, the authors include replications of their key findings on multiple independent data sets.

      Comments on the previous version:

      The authors have addressed several of the weaknesses I noted in my original review, specifically, they softened their claims regarding the theta findings, while simultaneously strengthening these findings with additional analyses (using simulations as well as a new measure of rhythmicity, the phase autocorrelation function, pACF). Most of the other suggested control analyses were also implemented. While I believe the fact that the participants in the main sample were not young adults could be made even more explicit, and the potential interaction between age and aperiodic changes could be unpacked a little in the discussion, the age of the sample is definitely addressed upfront.

    1. Reviewer #1 (Public review):

      The authors tried to quantify the difference between human complex traits by calculating genetic overlap scores between a pair of traits. Sherlock-II was devised to integrate GWAS with eQTL signals. The authors claim that Sherlock-II is superior to the previous version (robustness, accuracy, etc). It appears that their framework provides a reasonable solution to this important question, although the study needs further clarification and improvements.

      (1) Sherlock-II incorporates GWAS and eQTL signals to better quantify genetic signals for a given complex trait. However, this approach is based on the hypothesis that "all GWAS signals confer association to complex trait via eQTL", which is not true (PMID: 37857933). This should be acknowledged (through mentioning in the text) and incorporated into the current setup (through differential analysis - for example, with or without eQTL signals, or with strong colocalization only).

      (2) When incorporating eQTL, why did the authors use the top p-value tissues for eQTL? This approach seems simpler and probably more robust. But many eQTLs are tissue-specific. Therefore, it would also be important to know if eQTLS from appropriate tissues were incorporated instead.

      (3) One of the main examples is the novel association between Alzheimer's disease and breast cancer. Although the authors provided a molecular clue underlying the association, it is still hard to comprehend the association easily, as the two diseases are generally known to be exclusive to each other. This is probably because breast cancer GWAS is performed for germline variants and does not consider the contribution of somatic variants.

      (4) It would help readers understand the story better if a summary figure of the entire process were provided. The current Figure 1 does not fulfil that role.

      (5) Figure 2 is not very informative. The readers would want to know more quantitative information rather than a heatmap-style display. Is there directionality to the relationship, or is it always unidirectional?

      (6) In Figure 3, readers may want to know more specific information. For example, what gene signals are really driving the hypoxia signal in Alzheimer's disease vs breast cancer? And what SNP signals are driving these gene-level signals?

    1. Reviewer #1 (Public review):

      Summary:

      This work aims to elucidate the molecular mechanisms affected in hypoxic conditions, causing reduced cortical interneuron migration. They use human assembloids as a migratory assay of subpallial interneurons into cortical organoids and show substantially reduced migration upon 24 hours of hypoxia. Bulk and scRNA-seq show adrenomedullin (ADM) up-regulation, as well as its receptor RAMP2, confirmed atthe protein level. Adding ADM to the culture medium after hypoxic conditions rescues the migration deficits, even though the subtype of interneurons affected is not examined. However, the authors demonstrate very clearly that ineffective ADM does not rescue the phenotype, and blocking RAMP2 also interferes with the rescue. The authors are also applauded for using 4 different cell lines and using human fetal cortex slices as an independent method to explore the DLXi1/2GFP-labelled iPSC-derived interneuron migration in this substrate with and without ADM addition (after confirming that also in this system ADM is up-regulated). Finally, the authors demonstrate PKA-CREB signalling mediating the effect of ADM addition, which also leads to up-regulation of GABAreceptors. Taken together, this is a very carefully done study on an important subject - how hypoxia affects cortical interneuron migration. In my view, the study is of great interest.

      Strengths:

      The strengths of the study are the novelty and the thorough work using several culture methods and 4 independent lines.

      Weaknesses:

      The main weakness is that other genes regulated upon hypoxia are not confirmed, such that readers will not know until which fold change/stats cut-off data are reliable.

    1. Reviewer #1 (Public review):

      Summary:

      Inhibitory hM4Di and excitatory hM3Dq DREADDs are currently the most commonly utilized chemogenetic tools in the field of nonhuman primate research, but there is a lack of available information regarding the temporal aspects of virally-mediated DREADD expression and function. Nagai et al. investigated the longitudinal expression and efficacy of DREADDs to modulate neuronal activity in the macaque model. The authors demonstrate that both hM4Di and hM3Dq DREADDs reach peak expression levels after approximately 60 days and that stable expression was maintained for up to two years for hM4Di and at least one year for hM3Dq DREADDs. During this period, DREADDs effectively modulated neuronal activity, as evidenced by a variety of measures, including behavioural testing, functional imaging, and/or electrophysiological recording. Notably, some of the data suggest that DREADD expression may decline after two-three years. This is a novel finding and has important implications for the utilization of this technology for long-term studies, as well as its potential therapeutic applications. Lastly, the authors highlight that peak DREADD expression may be significantly influenced by the presence of fused or co-expressed protein tags, emphasizing the importance of careful design and selection of viral constructs for neuroscientific research. This study represents a critical step in the field of chemogenetics, setting the scene for future development and optimization of this technology.

      Strengths:

      The longitudinal approach of this study provides important preliminary insights into the long-term utility of chemogenetics, which has not yet been thoroughly explored.

      The data presented are novel and inclusive, relying on well-established in vivo imaging methods as well as behavioral and immunohistochemical techniques. The conclusions made by the authors are generally supported by a combination of these techniques. In particular, the utilization of in vivo imaging as a non-invasive method is translationally relevant and likely to make an impact in the field of chemogenetics, such that other researchers may adopt this method of longitudinal assessment in their own experiments. Rigorous standards have been applied to the datasets, and the appropriate controls have been included where possible.

      The number of macaque subjects (20) from which data was available is also notable. Behavioral testing was performed in 11 subjects, FDG-PET in 5, electrophysiology in 1, and [11C]DCZ-PET in 15. This is an impressive accumulation of work that will surely be appreciated by the growing community of researchers using chemogenetics in nonhuman primates.

      The implication that chemogenetic effects can be maintained for up to 1.5-2 years, followed by a gradual decline beyond this period, is an important development in knowledge. The limited duration of DREADD expression may present an obstacle in the translation of chemogenetic technology as a potential therapeutic tool, and it will be of interest for researchers to explore whether this limitation can be overcome. This study therefore represents a key starting point upon which future research can build.

      Weaknesses:

      None.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript assesses the differences between young and aged chondrocytes. Through transcriptomic analysis and further assessments in chondrocytes, GATA4 was found to be increased in aged chondrocyte donors compared to young. Subsequent mechanistic analysis with lentiviral vectors, siRNAs, and a small molecule were used to study the role of GATA4 in young and old chondrocytes. Lastly, an in vivo study was used to assess the effect of GATA4 expression on osteoarthritis progression in a DMM mouse model.

      Strengths:

      This work linked the over expression of GATA4 to NF-kB signaling pathway activation, alterations to the TGF-b signaling pathway, and found that GATA4 increased the progression of OA compared to the DMM control group. Indicating that GATA4 contributes to the onset and progression of OA in aged individuals.

      Comments on revised version:

      Great work! All my concerns have been well addressed.

    1. Reviewer #1 (Public review):

      In this work, Rios-Jimenez and Zomer et al have developed a 'zero-code' accessible computational framework (BEHAV3D-Tumour Profiler) designed to facilitate unbiased analysis of Intravital imaging (IVM) data to investigate tumour cell dynamics (via the tool's central 'heterogeneity module' ) and their interactions with the tumour microenvironment (via the 'large-scale phenotyping' and 'small-scale phenotyping' modules). A key strength is that it is designed as an open-source modular Jupyter Notebook with a user-friendly graphical user interface and can be implemented with Google Colab, facilitating efficient, cloud-based computational analysis at no cost. In addition, demo datasets are available on the authors GitHub repository to aid user training and enhance the usability of the developed pipeline.

      To demonstrate the utility of BEHAV3D-TP, they apply the pipeline to timelapse IVM imaging datasets to investigate the in vivo migratory behaviour of fluorescently labelled DMG cells in tumour bearing mice. Using the tool's 'heterogeneity module' they were able to identify distinct single-cell behavioural patterns (based on multiple parameters such as directionality, speed, displacement, distance from tumour edge) which was used to group cells into distinct categories (e.g. retreating, invasive, static, erratic). They next applied the framework's 'large-scale phenotyping' and 'small-scale phenotyping' modules to investigate whether the tumour microenvironment (TME) may influence the distinct migratory behaviours identified. To achieve this, they combine TME visualisation in vivo during IVM (using fluorescent probes to label distinct TME components) or ex vivo after IVM (by large-scale imaging of harvested, immunostained tumours) to correlate different tumour behavioural patterns with the composition of the TME. They conclude that this tool has helped reveal links between TME composition (e.g. degree of vascularisation, presence of tumour-associated macrophages) and the invasiveness and directionality of tumour cells, which would have been challenging to identify when analysing single kinetic parameters in isolation.<br /> While the analysis provides only preliminary evidence in support of the authors conclusions on DMG cell migratory behaviours and their relationship with components of the tumour microenvironment, conclusions are appropriately tempered in the absence of additional experiments and controls.

      The authors also evaluated the BEHAV3D TP heterogeneity module using available IVM datasets of distinct breast cancer cell lines transplanted in vivo, as well as healthy mammary epithelial cells to test its usability in non-tumour contexts where the migratory phenotypes of cells may be more subtle. This generated data is consistent with that produced during the original studies, as well as providing some additional (albeit preliminary) insights above that previously reported. Collectively, this provides some confidence in BEHAV3D TP's ability to uncover complex, multi-parametric cellular behaviours that may be missed using traditional approaches.

      While the tool does not facilitate the extraction of quantitative kinetic cellular parameters (e.g. speed, directionality, persistence and displacement) from intravital images, the authors have developed their tool to facilitate the integration of other data formats generated by open-source Fiji plugins (e.g. TrackMate, MTrackJ, ManualTracking) which will help ensure its accessibility to a broader range of researchers. Overall, this computational framework appears to represent a useful and comparatively user-friendly tool to analyse dynamic multi-parametric data to help identify patterns in cell migratory behaviours, and to assess whether these behaviours might be influenced by neighbouring cells and structures in their microenvironment.

      When combined with other methods, it therefore has the potential to be a valuable addition to a researcher's IVM analysis 'tool-box'.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses molecular dynamics simulations to understand how forces felt by the intracellular domain are coupled to opening of the mechanosensitive ion channel NOMPC. The concept is interesting - as the only clearly defined example of an ion channel that opens due to forces on a tethered domain, the mechanism by which this occur are yet to be fully elucidated. The main finding is that twisting of the transmembrane portion of the protein - specifically via the TRP domain that is conserved within the broad family of channels- is required to open the pore. That this could be a common mechanism utilised by a wide range of channels in the family, not just mechanically gated ones, makes the result significant. It is intriguing to consider how different activating stimuli can produce a similar activating motion within this family. While the authors do not see full opening of the channel, only an initial dilation, this motion is consistent with partial opening of structurally characterized members of this family.

      Strengths:

      Demonstrating that rotation of the TRP domain is the essential requirement for channel opening would have significant implcaitions for other members of this channel family.

      Weaknesses:

      The manuscript centres around 3 main computational experiments. In the first, a compression force is applied on a truncated intracellular domain and it is shown that this creates both a membrane normal (compression) and membrane parallel (twisting) force on the TRP domain. This is a point that was demonstrated in the authors prior eLife paper - so the point here is to quantify these forces for the second experiment.

      The second experiment is the most important in the manuscript. In this, forces are applied directly to two residues on the TRP domain with either a membrane normal (compression) or membrane parallel (twisting) direction, with the magnitude and directions chosen to match that found in the first experiment. Only the twisting force is seen to widen the pore in the triplicate simulations, suggesting that twisting, but not compression can open the pore. This result is intriguing and there appears to be a significant difference between the dilation of pore with the two force directions. When the forces are made of similar magnitude, twisting still has a larger effect than forces along the membrane normal.

      The second important consideration is that the study never sees full pore opening, rather a widening that is less than that seen in open state structures of other TRP channels and insufficient for rapid ion currents. This is something the authors acknowledge in their prior manuscript Twist may be the key to get this dilation, but we don't know if it is the key to full pore opening. Structural comparison to open state TRP channels supports that this represents partial opening along the expected pathway of channel gating.

      Experiment three considers the intracellular domain and determines the link between compression and twisting of the intracellular AR domain. In this case, the end of the domain is twisted and it is shown that the domain compresses, the converse to the similar study previously done by the authors in which compression of the domain was shown to generate torque.

    1. Reviewer #1 (Public review):

      Summary:

      This paper attempts to measure the complex changes of consciousness in the human brain as a whole. Inspired by the perturbational complexity index (PCI) from classic research, authors introduce simulation PCI (𝑠𝑃𝐶𝐼) of a time series of brain activity as a measure of consciousness. They first use large-scale brain network modeling to explore its relationship with the network coupling and input noise. Then the authors verify the measure with empirical data collected in previous research.

      Strengths:

      The conceptual idea of the work is novel. The authors measure the complexity of brain activity from the perspective of dynamical systems. They provide a comparison of the proposed measure with four other indexes. The text of this paper is very concise, supported by experimental data and theoretical model analysis.

      Comments on revisions:

      The manuscript is in good shape after revision. I would suggest that the author open-source the code and data in this study.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript "Synaptotagmin 1 and Synaptotagmin 7 promote MR1-mediated presentation of Mycobacterium tuberculosis antigens", authored by Kim et al., showed that the calcium-sensing trafficking proteins Synaptotagmin (Syt) 1 and Syt7 specifically promote (are critical for) MAIT cell activation in response to Mtb-infected bronchial epithelial cell line BEAS-2B (Fig. 1) and monocyte-like cell line THP-1 (Figure 3) . This work also showed co-localization of Syt1 and Syt7 with Rab7a and Lamp1, but not with Rab5a (Figure 5). Loss of Syt1 and Syt7 resulted in a larger area of MR1 vesicles (Figure 6f) and an increased number of MR1 vesicles in close proximity to an Auxotrophic Mtb-containing vacuoles during infection (Figure 7ab). Moreover, flow organellometry was used to separate phagosomes from other subcellular fractions and identify enrichment of auxotrophic Mtb-containing vacuoles in fractions 42-50, which were enriched with Lamp1+ vacuoles or phagosomes (Figures 7e-f).

      Strengths:

      This work nicely associated Syt1 and Syt7 with late endocytic compartments and Mtb+ vacuoles. Gene editing of Syt1 and Syt7 loci of bronchial epithelial and monocyte-like cells supported Syt1 and Syt7 facilitated maintaining a normal level of antigen presentation for MAIT cell activation in Mtb infection. Imaging analyses further supported that Syt1 and Syt7 mutants enhanced the overlaps of MR1 with Mtb fluorescence, and the MR1 proximity with Mtb-infected vacuoles, suggesting that Syt1 and Syt7 proteins help antigen presentation in Mtb infection for MAIT activation.

      Weaknesses:

      Additional data are needed to support the conclusion, "identify a novel pathway in which Syt1 and Syt7 facilitate the translocation of MR1 from Mtb-containing vacuoles" and some pieces of other evidence may be seen by some to contradict this conclusion.

    1. Reviewer #1 (Public review):

      This study by Thapliyal and Glauser investigates the neural mechanisms that contribute to the progressive suppression of thermonociceptive behavior that is induced under conditions of starvation. Several previous studies have demonstrated that when starved, C. elegans alters its preferences for a variety of sensory cues, including CO2, temperature, and odors, in order to prioritize food seeking over other behavioral drives. The varied mechanisms that underlie the ability of internal states to alter behavioral responses are not fully understood, however there is growing evidence for a role by neuropeptidergic signaling as well as capacity for functionally distinct microcircuits, formed by distinct internal states, to trigger similar behavior outcomes.

      Within the physiological range of C. elegans (~15-25C), starvation triggers a profound reduction in temperature-driven thermotaxis behaviors. This reduction involves the recruitment of the amphid sensory neuron pair AWC. The AWC neurons primarily act to sense appetitive chemosensory cues, however under starvation conditions begin to display temperature responses that previous studies have linked to the reduction in thermotaxis navigation. Here, Thapliyal and Glauser investigate the impact of starvation on thermonociceptive responses, innate escape behaviors that are triggered by exposure to noxious temperatures above 26C or rapid thermal stimuli below 26C. They compare the strength of thermonociceptive behaviors, specifically heat-triggered reversals, in worms experiencing either early food deprivation (1 hour off food) or prolonged starvation (6 hours off food). Their experiments demonstrate a progressive loss of heat-triggered reversals that is mediated by AWC and ASI neurons, as well as both glutamateric and neuropeptidergic signaling.

      At the level of neural activity, this study reports that the transition from early food deprivation to prolonged starvation reconfigures the temperature-driven activity of AWC neurons from largely deterministic to stochastic. This finding is interesting in light of previous work that reported the opposite transition (from stochastic to deterministic) in temperature-driven AWC responses when comparing well-fed worms to those kept from food for 3 hours. This study also identifies neural and genetic mechanisms that contribute to differences in thermonociceptive responses at +1 versus +6 hours starvation; confusingly, these mechanisms are partially distinct from those that contribute to differences in negative thermotaxis behaviors in well-fed and +3 hours starvation worms (Takeishi et al 2020). A limitation of this manuscript is that these differences are not particularly acknowledged or addressed, other than the hypothesis that independent mechanisms underlie negative thermotaxis versus thermonociceptive stimuli. However, this suggestion is not experimentally verified. Multiple additional aspects of this study make the results difficult to synthesize with existing knowledge, including 1) differences in - and insufficient discussion of - the magnitude and kinetics of thermal stimuli; 2) this study's use of "heating power" rather than temperature values when presenting behavioral results; 3) the use of +1 hours starvation as a baseline instead of well-fed worms. Indeed, this last point reflects a noticeable experimental result that differs from previous studies, namely that at room temperature the basal movements of well-fed and starved worms are not different. Such a surprisingly result warrants further quantification of worm mobility in general and could have prompted a set of experiments directly testing previously published thermal conditions, to demonstrate that the new effects reported arise specifically from the use of thermonociceptive stimuli, as hypothesized. Finally, a previous report (Yeon et al 2021) demonstrated differences in the impact of chronic versus acute neural silencing on starvation-dependent plasticity in the context of negative thermotaxis. We therefore wonder whether similar developmental compensation impacts the neural circuits that contribute to starvation-dependent plasticity in the thermonociceptive responses.

      A weakness of this manuscript is that the introduction is insufficiently scholarly in terms of citations and the description of current knowledge surrounding the impact of internal state on sensory behavior, particularly given previous work on the impact of feeding state on thermosensory behavioral plasticity (Takeshi et al 2020, Yeon et al 2021) and chemosensory valence (Banerjee et al 2023, Rengarajan et al 2019, etc). Similarly, the authors commanding knowledge of the distinction between thermotaxis navigation (especially negative thermotaxis) and thermonociceptive behaviors could be communicated in more depth and clarity to the readers, in order to contextualize this study's new findings within the previous literature.

      Nevertheless, this study represents a solid addition to the growing evidence that C. elegans sensory behaviors are strongly impacted by internal states, and that neuropeptigergic signaling plays a key role in mediating behavioral plasticity. To that end, the authors have provided solid evidence of their claims.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, the authors develop a method to re-analyze published data measuring the transcription dynamics of developmental genes within Drosophila embryos. Using a simple framework, they identify periods of transcriptional activity from traces of MS2 signal and analyze several parameters of these traces. In the five data sets they analyzed, the authors find that each transcriptional "burst" has a largely invariant duration, both across spatial positions in the embryo and across different enhancers and genes, while the time between transcriptional bursts varies more. However, they find that the best predictor of the mean transcription levels at different spatial positions in the embryo is the "activity time" -- the total time from the first to the last transcriptional burst in the observed cell cycle.

      Strengths:

      (1) The algorithm for analyzing the MS2 transcriptional traces is clearly described and appropriate for the data.

      (2) The analysis of the four transcriptional parameters -- the transcriptional burst duration, the time between bursts, the activity time, and the polymerase loading rate is clearly done and logically explained, allowing the reader to observe the different distributions of these values and the relationship between each of these parameters and the overall expression output in each cell. The authors make a convincing case that the activity time is the best predictor of a cell's expression output.

      (3) The figures are clearly presented and easy to follow.

      Weaknesses:

      (1) The strength of the relationship between the different transcriptional parameters and the mean expression output is displayed visually in Figures 5 and 7, but is not formally quantified. Given that the tau_off times seem more correlated to mean activity for some enhancers (e.g., rho) than others (e.g., sna SE), the quantification might be useful.

      (2) There are some mechanistic details that are not discussed in depth. For example, the authors observe that the accumulation and degradation of the MS2 signal have similar slopes. However, given that the accumulation represents the transcription of MS2 loops, while the degradation represents diffusion of nascent transcripts away from the site of transcription, there is no mechanistic expectation for this. The degradation of signal seems likely to be a property of the mRNA itself, which shouldn't vary between cells or enhancer reporters, but the accumulation rate may be cell- or enhancer-specific. Similarly, the activity time depends both on the time of transcription onset and the time of transcription cessation. These two processes may be controlled by different transcription factor properties or levels and may be interesting to disentangle.

      (3) There are previous analyses of the eve stripe dynamics, which the authors cite, but do not compare the results of their work to the previous work in depth.

    1. Reviewer #1 (Public review):

      Summary:

      The authors state the study's goal clearly: "The goal of our study was to understand to what extent animal individuality is influenced by situational changes in the environment, i.e., how much of an animal's individuality remains after one or more environmental features change." They use visually guided behavioral features to examine the extent of correlation over time and in a variety of contexts. They develop new behavioral instrumentation and software to measure behavior in Buridan's paradigm (and variations thereof), the Y-maze, and a flight simulator. Using these assays, they examine the correlations between conditions for a panel of locomotion parameters. They propose that inter-assay correlations will determine the persistence of locomotion individuality.

      Strengths:

      The OED defines individuality as "the sum of the attributes which distinguish a person or thing from others of the same kind," a definition mirrored by other dictionaries and the scientific literature on the topic. The concept of behavioral individuality can be characterized as: (1) a large set of behavioral attributes, (2) with inter-individual variability, that are (3) stable over time. A previous study examined walking parameters in Buridan's paradigm, finding that several parameters were variable between individuals, and that these showed stability over separate days and up to 4 weeks (DOI: 10.1126/science.aaw718). The present study replicates some of those findings, and extends the experiments from temporal stability to examining correlation of locomotion features between different contexts.

      The major strength of the study is using a range of different behavioral assays to examine the correlations of several different behavior parameters. It shows clearly that the inter-individual variability of some parameters is at least partially preserved between some contexts, and not preserved between others. The development of high-throughput behavior assays and sharing the information on how to make the assays is a commendable contribution.

      Weaknesses:

      The definition of individuality considers a comprehensive or large set of attributes, but the authors consider only a handful. In Supplemental Fig. S8, the authors show a large correlation matrix of many behavioral parameters, but these are illegible and are only mentioned briefly in Results. Why were five or so parameters selected from the full set? How were these selected? Do the correlation trends hold true across all parameters? For assays in which only a subset of parameters can be directly compared, were all of these included in the analysis, or only a subset?

      The correlation analysis is used to establish stability between assays. For temporal re-testing, "stability" is certainly the appropriate word, but between contexts it implies that there could be 'instability'. Rather, instead of the 'instability' of a single brain process, a different behavior in a different context could arise from engaging largely (or entirely?) distinct context-dependent internal processes, and have nothing to do with process stability per se. For inter-context similarities, perhaps a better word would be "consistency".

      The parameters are considered one-by-one, not in aggregate. This focuses on the stability/consistency of the variability of a single parameter at a time, rather than holistic individuality. It would appear that an appropriate measure of individuality stability (or individuality consistency) that accounts for the high-dimensional nature of individuality would somehow summarize correlations across all parameters. Why was a multivariate approach (e.g. multiple regression/correlation) not used? Treating the data with a multivariate or averaged approach would allow the authors to directly address 'individuality stability', along with the analyses of single-parameter variability stability.

      The correlation coefficients are sometimes quite low, though highly significant, and are deemed to indicate stability. For example, in Figure 4C top left, the % of time walked at 23{degree sign}C and 32{degree sign}C are correlated by 0.263, which corresponds to an R2 of 0.069 i.e. just 7% of the 32{degree sign}C variance is predictable by the 23{degree sign}C variance. Is it fair to say that 7% determination indicates parameter stability? Another example: "Vector strength was the most correlated attention parameter... correlations ranged... to -0.197," which implies that 96% (1 - R2) of Y-maze variance is not predicted by Buridan variance. At what level does an r value not represent stability?

      The authors describe a dissociation between inter-group differences and inter-individual variation stability, i.e. sometimes large mean differences between contexts, but significant correlation between individual test and retest data. Given that correlation is sensitive to slope, this might be expected to underestimate the variability stability (or consistency). Is there a way to adjust for the group differences before examining correlation? For example, would it be possible to transform the values to in-group ranks prior to correlation analysis?

      What is gained by classifying the five parameters into exploration, attention, and anxiety? To what extent have these classifications been validated, both in general, and with regard to these specific parameters? Is increased walking speed at higher temperature necessarily due to increased 'explorative' nature, or could it be attributed to increased metabolism, dehydration stress, or a heat-pain response? To what extent are these categories subjective?

      The legends are quite brief and do not link to descriptions of specific experiments. For example, Figure 4a depicts a graphical overview of the procedure, but I could not find a detailed description of this experiment's protocol.

      Using the current single-correlation analysis approach, the aims would benefit from re-wording to appropriately address single-parameter variability stability/consistency (as distinct from holistic individuality). Alternatively, the analysis could be adjusted to address the multivariate nature of individuality, so that the claims and the analysis are in concordance with each other.

      The study presents a bounty of new technology to study visually guided behaviors. The Github link to the software was not available. To verify successful transfer or open-hardware and open-software, a report would demonstrate transfer by collaboration with one or more other laboratories, which the present manuscript does not appear to do. Nevertheless, making the technology available to readers is commendable.

      The study discusses a number of interesting, stimulating ideas about inter-individual variability, and presents intriguing data that speaks to those ideas, albeit with the issues outlined above.

      While the current work does not present any mechanistic analysis of inter-individual variability, the implementation of high-throughput assays sets up the field to more systematically investigate fly visual behaviors, their variability, and their underlying mechanisms.

      Comments on revisions:

      While the incorporation of a hierarchical mixed model (HMM) appears to represent an improvement over their prior single-parameter correlation approach, it's not clear to me that this is a multivariate analysis. They write that "For each trait, we fitted a hierarchical linear mixed-effects model in Matlab (using the fit lme function) with environmental context as a fixed effect and fly identity (ID) as a random intercept... We computed the intraclass correlation coefficient (ICC) from each model as the between-fly variance divided by total variance. ICC, therefore, quantified repeatability across environmental contexts."

      Does this indicate that HMM was used in a univariate approach? Can an analysis of only five metrics of several dozen total metrics be characterized as 'holistic'?

      Within Figure 10a, some of the metrics show high ICC scores, but others do not. This suggests that the authors are overstating the overall persistence and/or consistency of behavioral individuality. It is clear from Figure S8 that a large number of metrics were calculated for each fly, but it remains unclear, at least to me, why the five metrics in Figure 10a are justified for selection. One is left wondering how rare or common is the 0.6 repeatability of % time walked among all the other behavioral metrics. It appears that a holistic analysis of this large data set remains impossible.

      The authors write: "...fly individuality persists across different contexts, and individual differences shape behavior across variable environments, thereby making the underlying developmental and functional mechanisms amenable to genetic dissection." However, presumably the various behavioral features (and their variability) are governed by different brain regions, so some metrics (high ICC) would be amenable to the genetic dissection of individuality/variability, while others (low ICC) would not. It would be useful to know which are which, to define which behavioral domains express individuality, and could be targets for genetic analysis, and which do not. At the very least, the Abstract might like to acknowledge that inter-context consistency is not a major property of all or most behavioral metrics.

      I hold that inter-trial repeatability should rightly be called "stability" while inter-context repeatability should be called "consistency". In the current manuscript, "consistency" is used throughout the manuscript, except for the new edits, which use "stability". If the authors are going to use both terms, it would be preferable if they could explain precisely how they define and use these terms.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Mahajan et.al introduce two innovative macroscopic measures-intrachromosomal gene correlation length (𝓁∗) and transition energy barrier-to investigate chromatin structural dynamics associated with aging and age-related syndromes such as Hutchinson-Gilford Progeria Syndrome (HGPS) and Werner Syndrome (WRN). The authors propose a compelling systems-level approach that complements traditional biomarker-driven analyses, offering a more holistic and quantitative framework to assess genome-wide dysregulation. The concept of 𝓁∗ as a spatial correlation metric to capture chromatin disorganization is novel and well-motivated. The use of autocorrelation on distance-binned gene expression adds depth to the interpretation of chromatin state shifts. The energy landscape framework for gene state transitions is an elegant abstraction, with the notion of "irreversibility" providing a thermodynamic interpretation of transcriptional dysregulation. The application to multiple datasets (Fleischer, Line-1) and pathological states adds robustness to the analysis. The consistency of chromosome 6 (and to some extent chromosomes 16 and X) emerging as hotspots aligns well with known histone cluster localization and disease-relevant pathways. The manuscript does an excellent job of integrating transcriptomic trends with known epigenetic hallmarks of aging, and the proposed metrics can be used in place of traditional techniques like PCA in capturing structural transcriptome features. However, a direct correlation with ATACseq/ HiC data with the present analysis will be more informative.

      Strengths:

      Novel inclusion of statistical metrics that can help in systems-level studies in aging and chromatin biology.

      Weaknesses:

      (1) In the manuscript, the authors mention "While it may be intuitive to assume that highly expressed genes originate from euchromatin, this cannot be conclusively stated as a complete representation of euchromatin genes, nor can LAT be definitively linked to heterochromatin". What percentage of LAT can be linked to heterochromatin? What is the distribution of LAT and HAT in the euchromatin?

      (2) In Figure 2, the authors observe "that the signal from the HAT class is the stronger between two and the signal from the LAT class, being mostly uniform, can be constituted as background noise." Is this biologically relevant? Are low-abundance transcripts constitutively expressed? The authors should discuss this in the Results section.

      (3) The authors make a very interesting observation from Figure 3: that ASO-treated LINE-1 appears to be more effective in restoring HGPS cell lines closer to wild-type compared to WRN.. This can be explained by the difference in the basal activity of L1 elements in the HGPS vs WRN cell types. The authors should comment on this.

      (4) The authors report that "from the results on Fleicher dataset is the magnitude of the difference in similarity distance is more pronounced in 𝓁∗ than in gene expression." Does this mean that the alterations in gene distance and chromatin organization do not result in gene expression change during aging?

      (5) "In Fleischer dataset, as evident in Figure 4a, although changes in the heterochromatin are not identical for all chromosomes shown by the different degrees of variation of 𝓁∗ in each age group." The authors should present a comprehensive map of each chromosome change in gene distance to better explain the above statement.

      (6) While trends in 𝓁∗ are discussed at both global and chromosome-specific levels, stronger statistical testing (e.g., permutation tests, bootstrapping) would lend greater confidence, especially when differences between age groups or treatment states are modest.

      (7) While the transition energy barrier is an insightful conceptual addition, further clarification on the mathematical formulation and its physical assumptions (e.g., energy normalization, symmetry conditions) would improve interpretability. Also, in between Figures 7 and 8, the authors first compare the energy barrier of Chromosome 1 and then for all other chromosomes. What is the rationale for only analyzing chromosome 1? How many HAT or LAT are present there?

    1. Reviewer #1 (Public review):

      Summary

      This manuscript presents an updated version of rsatoolbox, a Python package for performing Representational Similarity Analysis (RSA) on neural data. The authors provide a comprehensive and well-integrated framework that incorporates a range of state-of-the-art methodological advances. The updated version extends the toolbox's capabilities.

      The paper outlines a typical RSA workflow in five steps:

      (1) Importing data and estimating activity patterns.

      (2) Estimating representational geometries (computing RDMs).

      (3) Comparing RDMs.

      (4) Performing inferential model comparisons.

      (5) Handling multiple testing across space and time.

      For each step, the authors describe methodological advances and best practices implemented in the toolbox, including improved measures of representational distances, evaluators for representational models, and statistical inference methods.

      While the relative impact of the manuscript is somewhat limited to the new contributions in this update (which are nonetheless very useful), the general toolbox - here thoroughly described and discussed - remains an invaluable contribution to the field and is well-received by the cognitive and computational neuroscience communities.

      Strengths:

      A key strength of the work is the breadth and integration of the implemented methods. The updated version introduces several new features, such as additional comparators and dissimilarity estimators, that closely follow recent methodological developments in the field. These enhancements build on an already extensive set of functionalities, offering seamless support for RSA analyses across a wide variety of data sources, including deep neural networks, fMRI, EEG, and electrophysiological recordings.

      The toolbox also integrates effectively with the broader open-source ecosystem, providing compatibility with BIDS formats and outputs from widely used neuroscience software. This integration will make it easier for researchers to incorporate rsatoolbox into existing workflows. The documentation is extensive, and the scope of functionality - from dissimilarity estimation to statistical inference - is impressive.

      For researchers already familiar with RSA, rsatoolbox offers a coherent environment that can streamline analyses, promote methodological consistency, and encourage best practices.

      Weaknesses:

      While I enjoyed reading the manuscript - and even more so exploring the toolbox - I have some comments for the authors. None of these points is strictly major, and I leave it to the authors' discretion whether to act on them, but addressing them could make the manuscript an even more valuable resource for those approaching RSA.

      (1) While several estimators and comparators are implemented, Figure 4 appears to suggest that only a subset should be used in practice. This raises the question of whether the remaining options are necessary, and under what circumstances they might be preferable. Although it is likely that different measures are suited to different scenarios, this is not clearly explained in the manuscript. As presented, a reader following the manuscript's guidance might rely on only a few of the available comparators and estimators without understanding the rationale. It would be helpful if the authors could provide practical examples illustrating when one measure might be preferred over another, and how different measures behave under varying conditions-for instance, in what situations the user should choose manifold similarity versus Bures similarity?

      (2) The comparison to other RSA tools is minimal, making it challenging to place rsatoolbox in the broader landscape of available resources. Although the authors mention some existing RSA implementations, they do not provide a detailed comparison of features or performance between their toolbox and alternatives.

      (3) Finally, given the growing interest in comparing neural network models with brain data, a more detailed discussion of how the toolbox can be applied to common questions in this area would be a valuable addition.

    1. Reviewer #1 (Public review):

      This is an interesting and timely computational study using molecular dynamics simulation as well as quantum mechanical calculation to address why tyrosine (Y), as part of an intrinsically disordered protein (IDP) sequence, has been observed experimentally to be stronger than phenylalanine (F) as a promoter for biomolecular phase separation. Notably, the authors identified the aqueous nature of the condensate environment and the corresponding dielectric and hydrogen bonding effects as a key to understand the experimentally observed difference. This principle is illustrated by the difference in computed transfer free energy of Y- and F-containing pentapeptides into solvent with various degrees of polarity. The elucidation offered by this work is important. The computation appears to be carefully executed, the results are valuable, and the discussion is generally insightful. However, there is room for improvement in some parts of the presentation in terms of accuracy and clarity, including, e.g., the logic of the narrative should be clarified with additional information (and possibly additional computation), and the current effort should be better placed in the context of prior relevant theoretical and experimental works on cation-π interactions in biomolecules and dielectric properties of biomolecular condensates. Accordingly, this manuscript should be revised to address the following, with added discussion as well as inclusion of references mentioned below.

      (1) Page 2, line 61: "Coarse-grained simulation models have failed to account for the greater propensity of arginine to promote phase separation in Ddx4 variants with Arg to Lys mutations (Das et al., 2020)". As it stands, this statement is not accurate, because the cited reference to Das et al. showed that although some coarse-grained model, namely the HPS model of Dignon et al., 2018 PLoS Comput did not capture the Arg to Lys trend, the KH model described in the same Dignon et al. paper was demonstrated by Das et al. (2020) to be capable of mimicking the greater propensity of Arg to promote phase separation than Lys. Accordingly, a possible minimal change that would correct the inaccuracy of this statement in the manuscript would be to add the word "Some" in front of "coarse-grained simulation models ...", i.e., it should read "Some coarse-grained simulation models have failed ...". In fact, a subsequent work [Wessén et al., J Phys Chem B 126: 9222-9245 (2022)] that applied the Mpipi interaction parameters (Joseph et al., 2021, already cited in the manuscript) showed that Mpipi is capable of capturing the rank ordering of phase separation propensity of Ddx4 variants, including a charge scrambled variant as well as both the Arg to Lys and the Phe to Ala variants (see Fig.11a of the above-cited Wessén et al. 2022 reference). The authors may wish to qualify their statements in the introduction to take note of these prior results. For example, they may consider adding a note immediately after the next sentence in the manuscript "However, by replacing the hydrophobicity scales ... (Das et al., 2020)" to refer to these subsequent findings in 2021-2022.

      (2) Page 8, lines 285-290 (as well as the preceding discussion under the same subheading & Fig.4): "These findings suggest that ... is not primarily driven by differences in protein-protein interaction patterns ..." The authors' logic in terms of physical explanation is somewhat problematic here. In this regard, "Protein-protein interaction patterns" appears to be a straw man, so to speak. Indeed, who (reference?) has argued that the difference in the capability of Y and F in promoting phase separation should be reflected in the pairwise amino acid interaction pattern in a condensate that contains either only Y (and G, S) and only F (and G, S) but not both Y and F? Also, this paragraph in the manuscript seems to suggest that the authors' observation of similar contact patterns in the GSY and GSF condensates is "counterintuitive" given the difference in Y-Y and F-F potentials of mean force (Joseph et al., 2021); but there is nothing particularly counterintuitive about that. The two sets of observations are not mutually exclusive. For instance, consider two different homopolymers, one with a significantly stronger monomer-monomer attraction than the other. The condensates for the two different homopolymers will have essentially the same contact pattern but very different stabilities (different critical temperatures), and there is nothing surprising about it. In other words, phase separation propensity is not "driven" by contact pattern in general, it's driven by interaction (free) energy. The relevant issue here is total interaction energy or critical point of the phase separation. If it is computationally feasible, the authors should attempt to determine the critical temperatures for the GSY condensate versus the GSF condensate to verify that the GSY condensate has a higher critical temperature than the GSF condensate. That would be the most relevant piece of information for the question at hand.

      (3) Page 9, lines 315-316: "...Our ε [relative permittivity] values ... are surprisingly close to that derived from experiment on Ddx4 condensates (45{plus minus}13) (Nott et al., 2015)". For accuracy, it should be noted here that the relative permittivity provided in the supplementary information of Nott et al. was not a direct experimental measurement but based on a fit using Flory-Huggins (FH), but FH is not the most appropriate theory for polymer with long-spatial-range Coulomb interactions. To this reviewer's knowledge, no direct measurement of relative permittivity in biomolecular condensates has been made to date. Explicit-water simulation suggests that relative permittivity of Ddx4 condensate with protein volume fraction ≈ 0.4 can have relative permittivity ≈ 35-50 (Das et al., PNAS 2020, Fig.7A), which happens to agree with the ε = 45{plus minus}13 estimate. This information should be useful to include in the authors' manuscript.

      (4) As for the dielectric environment within biomolecular condensates, coarse-grained simulation has suggested that whereas condensates formed by essentially electric neutral polymers (as in the authors' model systems) have relative permittivities intermediate between that of bulk water and that of pure protein (ε = 2-4, or at most 15), condensates formed by highly charge polymers can have relative permittivity higher than that of bulk water [Wessén et al., J Phys Chem B 125:4337-4358 (2021), Fig.14 of this reference]. In view of the role of aromatic residues (mainly Y and F) in the phase separation of IDPs such as A1-LCD and LAF-1 that contain positively and negatively charged residues (Martin et al., 2020; Schuster et al., 2020, already cited in the manuscript), it should be useful to address briefly how the relationship between the relative phase-separation promotion strength of Y vs F and dielectric environment of the condensate may or may not be change with higher relative permittivities.

      (5) The authors applied the dipole moment fluctuation formula (Eq.2 in the manuscript) to calculate relative permittivity in their model condensates. Does this formula apply only to an isotropic environment? The authors' model condensates were obtained from a "slab" approach (p.4) and thus the simulation box has a rectangular geometry. Did the authors apply their Eq.2 to the entire simulation box or only to the central part of the box with the condensate (see, e.g., Fig.3C in the manuscript). If the latter is the case, is it necessary to use a different dipole moment formula that distinguishes between the "parallel" and "perpendicular" components of the dipole moment (see, e.g., Eq.16 in the above-cited Wessén et al. 2021 paper). A brief added comments will be useful.

      (6) With regard to the general role of Y and F in the phase separation of biomolecules containing positively charged Arg and Lys residues, the relative strength of cation-π interactions (cation-Y vs cation-F) should be addressed (in view of the generality implied by the title of the manuscript), or at least discussed briefly in the authors' manuscript if a detailed study is beyond the scope of their current effort. It has long been known that in the biomolecular context, cation-Y is slightly stronger than cation-F, whereas cation-tryptophan (W) is significantly stronger than either cation-Y and cation-F [Wu & McMahon, JACS 130:12554-12555 (2008)]. Experimental data from a study of EWS (Ewing sarcoma) transactivation domains indicated that Y is a slightly stronger promoter than F for transcription, whereas W is significantly stronger than either Y or F [Song et al., PLoS Comput Biol 9:e1003239 (2013)]. In view of the subsequent general recognition that "transcription factors activate genes through the phase-separation capacity of their activation domain" [Boija et al., Cell 175:1842-1855.e16 (2018)] which is applicable to EWS in particular [Johnson et al., JACS 146:8071-8085 (2024)], the experimental data in Song et al. 2013 (see Fig.3A of this reference) suggests that cation-Y interactions are stronger than cation-F interactions in promoting phase separation, thus generalizing the authors' observations (which focus primarily on Y-Y, Y-F and F-F interactions) to most situations in which cation-Y and cation-F interactions are relevant to biomolecular condensation.

      (7) Page 9: The observation of a weaker effective F-F (and a few other nonpolar-nonpolar) interaction in a largely aqueous environment (as in an IDP condensate) than in a nonpolar environment (as in the core of a folded protein) is intimately related to (and expected from) the long-recognized distinction between "bulk" and "pair" as well as size dependence of hydrophobic effects that have been addressed in the context of protein folding [Wood & Thompson, PNAS 87:8921-8927 (1990); Shimizu & Chan, JACS 123:2083-2084 (2001); Proteins 49:560-566 (2002)]. It will be useful to add a brief pointer in the current manuscript to this body of relevant resource in protein science.

      Comments on revisions:

      The authors have largely addressed my previous concerns and the manuscript has been substantially improved. Nonetheless, it will benefit the readers more if the authors had included more of the relevant references provided in my previous review so as to afford a broader and more accurate context to the authors' effort. This deficiency is particularly pertinent for point number 6 in my previous report about cation-pi interactions. The authors have now added a brief discussion but with no references on the rank ordering of Y, F, and W interactions. I cannot see how providing additional information about a few related works could hurt. Quite the contrary, having the references will help readers establish scientific connections and contribute to conceptual advance.

    1. Reviewer #1 (Public review):

      Summary

      In the presented paper, Lu and colleagues focus on how items held in working memory bias someone's attention. In a series of three experiments, they utilized a similar paradigm in which subjects were asked to maintain two colored squares in memory for a short and variable time. After this delay, they either tested one of the memory items or asked subjects to perform a search task.

      In the search task, items could share colors with the memory items, and the authors were interested in how these would capture attention, using reaction time as a proxy. The behavioral data suggest that attention oscillates between the two items. At different maintenance intervals, the authors observed that items in memory captured different amounts of attention (attentional capture effect).

      This attentional bias fluctuates over time at approximately the theta frequency range of the EEG spectrum. This part of the study is a replication of Peters and colleagues (2020).

      Next, the authors used EEG recordings to better understand the neural mechanisms underlying this process. They present results suggesting that this attentional capture effect is positively correlated with the mean amplitude of alpha power. Furthermore, they show that the weighted phase lag index (wPLI) between the alpha and theta bands across different electrodes also fluctuates at the theta frequency.

      Strengths

      The authors focus on an interesting and timely topic: how items in working memory can bias our attention. This line of research could improve our understanding of the neural mechanisms underlying working memory, specifically how we maintain multiple items and how these interact with attentional processes. This approach is intriguing because it can shed light on neuronal mechanisms not only through behavioral measures but also by incorporating brain recordings, which is definitely a strength.<br /> Subjects performed several blocks of experiments, ranging from 4 to 30, over a few days depending on the experiment. This makes the results - especially those from behavioral experiments 2 and 3, which included the most repetitions - particularly robust.

      Weaknesses

      One of the main EEG results is based on the weighted phase lag index (wPLI) between oscillations in the alpha and theta bands. In my opinion, this is problematic, as wPLI measures the locking of oscillations at the same frequency. It quantifies how reliably the phase difference stays the same over time. If these oscillations have different frequencies, the phase difference cannot remain consistent. Even worse, modeling data show that even very small fluctuations in frequency between signals make wPLI artificially small (Cohen, 2015).

      In response authors stated : "Additionally, the present study referenced previous research by using the wPLI index as a measure of cross-frequency coupling strength31,64-66"<br /> Unfortunately, after checking those publications, we can see that in paper 31 there is no mention of "wPLI" or "PLV." In 64 and 65, the authors use wPLI, but only to measure same-frequency coherence, whereas cross-frequency coupling is computed by phase-amplitude coupling or cross-frequency coupling also known as n:m-PS. In 66, I cannot find any cross-frequency results, only cross-species analysis. This is very problematic, as it indicates that the authors included references in their rebuttal without verifying their relevance.<br /> 31 de Vries, I. E. J., van Driel, J., Karacaoglu, M. & Olivers, C. N. L. Priority Switches in Visual Working Memory are Supported by Frontal Delta and Posterior Alpha Interactions. Cereb Cortex 28, 4090-4104, doi:10.1093/cercor/bhy223 (2018).64 Delgado-Sallent, C. et al. Atypical, but not typical, antipsychotic drugs reduce hypersynchronized prefrontal-hippocampal circuits during psychosis-like states in mice: Contribution of 5-HT2A and 5-HT1A receptors. Cerebral Cortex 32, 870 3472-3487 (2022). 65 Siebenhühner, F. et al. Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings. PLoS Biology 18, e3000685 (2020). 66 Zhang, F. et al. Cross-Species Investigation on Resting State Electroencephalogram. Brain Topogr 32, 808-824, doi:10.1007/s10548-019-00723-x (2019).

      Another result from the electrophysiology data shows that the attentional capture effect is positively correlated with the mean amplitude of alpha power. In the presented scatter plot, it seems that this result is driven by one outlier. Unfortunately, Pearson correlation is very sensitive to outliers, and the entire analysis can be driven by an extreme case. I extracted data from the plot and obtained a Pearson correlation of 0.4, similar to what the authors report. However, the Spearman correlation, which is robust against outliers, was only 0.13 (p = 0.57) indicating a non-significant relationship.

      Cohen, M. X. (2015). Effects of time lag and frequency matching on phase based connectivity. Journal of Neuroscience Methods, 250, 137-146

    1. Joint Public Review:

      Marshall et al describe the effects of altering metabotropic glutamate receptor 5 activity on activity of D1 receptor expressing spiny projection neurons in dorsolateral striatum focusing on two states - locomotion and rest. The authors examine effects of dSPN-specific constitutive mGlu5 deletion in several motor tests to arrive at this finding. Effects of inhibiting the degradation of the endocannabinoid 2-arachidonoyl glycerol are also examined. Overall, this is a valuable study that provides solid new information of relevance to movement disorders and possibly psychosis.

      The combination of in vivo cellular calcium imaging, pharmacology, receptor knockout and movement analysis is effectively used. The main findings do not involve gross firing rates or numbers of active neurons, but rather are revealed by specialized measures involving Jaccard coefficient and an assessment of coactivity. The authors conclude that mGlu5 expressed in dSPNs contributes to movement through effects on clustered spatial coactivity of dSPNs. More specifically, reduced mGluR5 increases coactivity during rest (defined as low velocity periods) but not during locomotion periods. The authors observe a role for mGlu5 expression in dSPNs in modulating the frequency of mEPSCs, suggesting a role in presynaptic neurotransmitter release. Some data suggesting the story may be different in the other major SPN subpopulation (iSPNs) are also presented but these studies are relatively underdeveloped leaving some ambiguity as to how cell-selective the findings are. In addition, an occlusion experiment in which the pharmacological mGluR5 agents are delivered to the dSPN mGluR5 KO to clarify if other sites of action are involved beyond the proposed D1-expressing neurons is missing. Finally, the authors present a working model that sets the stage for future experimentation. Overall, this study provides an important and detailed assessment of mGluR5 contributions to striatal circuit function and behavior.

      Remaining concerns include:

      (1) To clarify that dSPNs are sole site of action, it is necessary to examine effects of the mGlu5 NAM in the dSPN mGlu5 cKO mice. If the effects of the two manipulations occluded one another this would certainly support the hypothesis that the drug effects are mediated by receptors expressed in dSPNs. A similar argument can be made for examining effects of the JNJ PAM in the cKO mice.

      (2) There is a concern that the D1 Cre line used (Ey262), which may also target cortical neurons expands the interpretation of the study beyond the striatal populations. Further discussion of this point, particularly in the interpretation of the mGluR5 cKO experiments, would provide a better understanding of the contribution of the paper.

      (3) The use of CsF-based whole-cell internal solutions has caused concern in some past studies due to possible interference with G-protein, phosphatase and channel function (https://www.sciencedirect.com/science/article/abs/pii/S1044743104000296, https://www.jneurosci.org/content/jneuro/6/10/2915.full.pdf). It is reassuring the DHPG-induced LTD was still observable with this solution. However, it might be worth examining this plasticity with a different internal to ensure that the magnitude of the agonist effect is not altered by this manipulation.

      (4) Behavioral resolution of actions at low velocity that are termed "rest" are not explored in this study. Thus, a remaining ambiguity is whether the activities in rest include only periods of immobility or other low-velocity activities such as grooming or rearing.

    1. Reviewer #1 (Public review):

      This work addresses an important question in the field of Drosophila aggression and mating. Prior social isolation is known to increase aggression in males, manifesting as increased lunging, which is suppressed by group housing (GH). However, it is also known that single housed (SH) males, despite their higher attempts to court females, are less successful. Here, Gao et al., develop a modified aggression assay to address this issue by recording aggression in Drosophila males for 2 hours, with a virgin female immobilized by burying its head in the food. They found that while SH males frequently lunge in this assay, GH males switch to higher intensity but very low frequency tussling. Constitutive neuronal silencing and activation experiments implicate cVA sensing Or67d neurons in promoting high frequency lunging, similar to earlier studies, whereas Or47b neurons promote low frequency but higher intensity tussling. Optogenetic activation revealed that three pairs of pC1SS2 neurons increase tussling. Cell-type-specific DsxM manipulations combined with morphological analysis of pC1SS2 neurons and side-by-side tussling quantification link the developmental role of DsxM to the functional output of these aggression-promoting cells. In contrast, although optogenetic activation of P1a neurons in the dark did not increase tussling, thermogenetic activation under visible light drove aggressive tussling. Using a further modified aggression assay, GH males exhibit increased tussling and maintain territorial control, which could contribute to a mating advantage over SH males, although direct measures of reproductive success are still needed

      Strengths:

      Through a series of clever neurogenetic and behavioral approaches, the authors implicate specific subsets of ORNs and pC1 neurons in promoting distinct forms of aggressive behavior, particularly tussling. They have devised a refined territorial control paradigm, which appears more robust than earlier assays. This new setup is relatively clutter-free and could be amenable to future automation using computer vision approaches. The updated Figure 5, which combines cell-type-specific developmental manipulation of pC1SS2 neurons with behavioral output, provides a link between developmental mechanisms and functional aggression circuits. The manuscript is generally well written, and the claims are largely supported by the data.

      Weakness:

      All prior concerns have been addressed in the revised manuscript. The added 'Limitations of the study' section is a welcome and important clarification. Despite these limitations, the study provides valuable insights into the neural and behavioral mechanisms of Drosophila aggression.

    1. Reviewer #1 (Public review):

      Summary:

      This study provides compelling evidence suggesting that ghrelin, a molecule released in the surrounding of the major adult brain neurogenic niche (V-SVZ) by blood vessels with high blood flow controls the migration of newborn interneurons towards the olfactory bulbs.

      Strengths:

      This study is a tour de force as it provides a solid set of data obtained by time lapse recordings in vivo. The data demonstrate that the migration and guidance of newborn neurons relies on factors released by selective type of blood vessels.

      Weaknesses:

      Some intermediate conclusions are weak and may be reinforced by additional experiments.

      Comments on revisions: The manuscript has improved.

    1. Reviewer #1 (Public review):

      Summary:

      LRRK2 protein is familially linked to Parkinson's disease by the presence of several gene variants that all confer a gain-of-function effect on LRRK2 kinase activity.

      The authors examine the effects of BDNF stimulation in immortalized neuron-like cells, cultured mouse primary neurons, hIPSC-derived neurons, and brain tissue from genetically modified mice. They examine a LRRK2 regulatory phosphorylation residue, LRRK2 binding relationships, and measures of synaptic structure and function.

      Strengths:

      The study addresses an important research question: how does a PD-linked protein interact with other proteins, and contribute to responses to a well-characterized neuronal signalling pathway involved in the regulation of synaptic function and cell health.

      They employ a range of good models and techniques to fairly convincingly demonstrate that BDNF stimulation alters LRRK2 phosphorylation and binding to many proteins. IN this revised manuscript, aspects are well validated e.g., drebrin binding, but there is a disconnect between these findings and alterations to LRRK2 substrates. A convincing phosphoproteomic analysis of PD mutant Knock-in mouse brain is included. Overall the links between LRRK2, LRRK2 activity, and the changes to synaptic molecules, structures, and activity are intriguing.

      Weaknesses:

      The data sets remain disjointed, conclusions are sweeping, and not always in line with what the data is showing. Validation of 'omics' data is light. Some inconsistencies with the major conclusions are ignored. Several of the assays employed (western blotting especially) are underpowered, findings key to their interpretation are addressed in only one or other of the several models employed, and supporting observations are lacking.

      Main Conclusions of Abstract:

      (1) Increase in pLRRK2 Ser935 and pRAB after BDNF in SH-SY5Y & mouse neurons

      Well supported, but only for pLRRK2 in neurons, why not pERK pAkt & pRab?

      (2) Omics Proteome remodelling of LRRK2 interactome with BDNF & different in G2019S mouse neurons.

      Supports that the phosphoproteome of G2019S is different. Drebrin interaction with LRRK2 very well supported. Link between drebrin and LRRK2 activity somewhat supported (pS935 site), but the consequence (non-specific pRab8) not supported, as there is no evidence of a change in LRRK2 substrate(s).

      (3) Golgi 1 month LKO mouse altered dendritic spines, transient at 1m not older.

      Supported but very small transient change in spines, disconnected to other results (e.g., drebrin).

      (4) iPSC-derived neurons BDNF increases mEPSC frequency (transient at 70 not 50 or 90 days) in WT not KO "which appear to bypass this regulation through developmental compensation"

      Weak, not clear what is being bypassed.

      Main Conclusions Based on Old and New Figure / Data:

      (1) Increase in pLRRK2 Ser935 and pRAB after BDNF in SH-SY5Y & mouse neurons

      Well supported, but only for pLRRK2 in neurons, why not ERK Akt & Rab?

      (2) BDNF promotes LRRK2 interaction with "post-synaptic actin cytoskeleton components"

      Tone down, only one postsynaptic validated - drebrin strong BUT CONTRADICTORY; link between drebrin and LRRK2 activity (pS935 site) supported, consequence (non-specific pRab8) broken, no evidence of change in LRRK2 substrate.

      (3) LRRK2 G2019S striatal phosphoproteome is different from WT.

      It is different. Where is link to BDNF or Drebrin?

      (4) BDNF signaling is impaired in Lrrk2 knockout neurons

      TrkB changes seem higher in SHSY5Y. pAKT impaired, pERK not convincing. Primary neurons Akt slower but it and Erk mostly intact. MLi-2 did not block pAkt or pErk in WT or KO (higher in latter). Whatever is happening in KO, Mli-2 not really blocking effect in WT. If we are to assume that studying the KO was a means to understand LRRK2 function, the authors data should explain why we care if an effect is absent in LKO, if LRRK2 isn't doing the same job in WT?

      BDNF increases synaptic puncta in WT not LKO (which start higher?). Is this BDNF increase blocked by LRRK2 inhibition?

      (5) Postsynaptic structural changes in Lrrk2 knockout neurons

      Golgi impregnation shows some very small spine changes at 1m. Not sustained over age. mRNA changes are very small (10% not even a fold... very weak and should be written as so). Derbrin levels reduced clearly at 1m, but probably also at 4 & 18. Underpowered, disconnected time course from the spine changes.

      (6) An effect on "spontaneous electrical activity" at Div70

      Weak. What is so special at 70 days that means we should be confident in the differences, or be satisfied that the other time points are legitimately ignored? These are 10-11 cells from 3 cultures assayed at 3 time points but only one is presented (rest in supplement). This should be a 2 (time) or 3 way (+culture RM) ANOVA. As it stands, in WT there is a little - no activity at 50 days, little to no at 70 days, and variable to lots or none at 90. BDNF did nothing at 50 or 90 but may have at 70. In KO low activity stable at 50 & 70, tanks at 90. BDNF would seem to have a similar effect on KO at 90 as WT at 70, but as there are only 7 cells it remains inconclusive. Thus the conclusion that BDNF signalling is broken in LKO is not well supported by the ephys data, nor is the BDNF effect in WT cells (even at the 70 day time point) shown to be susceptible to LRRK2 inhibition.

    1. Reviewer #1 (Public review):

      Summary:

      In the submitted manuscript, Steinbach et al describe the formation of a detergent-resistant "cloud" around the Legionella-containing vacuole (LCV) that functions as a protective barrier. The authors show that formation of the "cloud" barrier is contingent upon the phosphoribosyl-ubiquitination activity of the SidE/SdeABC effector family, and is temporally regulated, with the assembly and subsequent disassembly of the "cloud" coinciding with replication and vacuolar expansion. The authors postulate a model of "cloud" barrier formation that relies upon a wave of initial ubiquitination by the SidC effector family, after which the SidE/SdeABC family expands the ubiquitination and forms cross-links that render the ubiquitin cloud resistant to harsh detergents. Additionally, Steinbach et al. also demonstrate that Rab5 is recruited to the LCV and remains associated for a considerable period.

      Strengths:

      This manuscript is very well written, with clear justification provided for experiments that make it very easy to follow along with the experimental logic. The figures have clearly been designed with much thought and are easy to interpret. Steinbach et al have also done a commendable job of addressing the previous reviewers' comments, even though some may suggest that some of these comments could be viewed as slightly unreasonable. This work would be of interest to both the Legionella and ubiquitin fields. Legionella researchers would potentially be interested to explore the proposed barrier model as the function for the ubiquitin "cloud," whereas ubiquitin researchers may be interested in exploring the mechanisms underlying SidE's crosslinking ability.

      Weaknesses:

      While the work is important and describes the physical nature of the ubiquitin cloud on the Legionella vacuole, it is somewhat descriptive in nature and does not dig deeply into what purpose this cloud serves. This is a complicated topic that will certainly stimulate additional research in this area.

    1. Reviewer #1 (Public review):

      Summary:

      This paper developed a model of chromosome mosaicism by using a new aneuploidy-inducing drug (AZ3146), and compared this to their previous work where they used reversine, to demonstrate the fate of aneuploid cells during murine preimplantation embryo development. They found that AZ3146 acts similarly to reversine in inducing aneuploidy in embryos, but interestingly showed that the developmental potential of embryos is higher in AZ3146-treated vs. reversine-treated embryos. This difference was associated with changes in HIF1A, p53 gene regulation, DNA damage, and fate of euploid and aneuploid cells when embryos were cultured in a hypoxic environment.

      Strengths:

      In the current study, the authors investigate the fate of aneuploid cells in the preimplantation murine embryo using a specific aneuploidy-inducing compound to generate embryos that were chimeras of euploid and aneuploid cells. The strength of the work is that they investigate the developmental potential and changes in gene expression profiles under normoxic and hypoxic culture conditions. Further, they also assessed how levels of DNA damage and DNA repair are altered in these culture conditions. They also assessed the allocation of aneuploid cells to the divergent cell lineages of the blastocyst stage embryo.

    1. Reviewer #1 (Public review):

      The authors note that it is challenging to perform diffusion MRI tractography consistently in both humans and macaques, particularly when deep subcortical structures are involved. The scientific advance described in this paper is effectively an update to the tracts that the XTRACT software supports. The changes to XTRACT are soundly motivated in theory (based on anatomical tracer studies) and practice (changes in seeding/masking for tractography).

    1. Reviewer #1 (Public review):

      The manuscript by Zhang et al describes the use of a protein language model (pLM) to analyse disordered regions in proteins, with a focus on those that may be important in biological phase separation. While the paper is relatively easy to read overall, my main comment is that the authors could perhaps make it clearer which observations are new, and which support previous work using related approaches. Further, while the link to phase separation is interesting, it is not completely clear which data supports the statements made, and this could also be made clearer.

      Major comments:

      (1) With respect to putting the work in a better context of what has previously been done before, this is not to say that there is not new information in it, but what the authors do is somewhat closely related to work by others. I think it would be useful to make those links more directly. Some examples:

      (1a) Alderson et al (reference 71) analysed in detail the conservation of IDRs (via pLDDT, which is itself related to conservation) to show, for example, that conserved residues fold upon binding. This analysis is very similar to the analysis used in the current study (using ESM2 as a different measure of conservation). Thus, the approach (pages 7-8) described as "This distinction allows us to classify disordered regions into two types: "flexible disordered" regions, which show high ESM2 scores and greater mutational tolerance, and "conserved disordered" regions, which display low ESM2 scores, indicating varying levels of mutational constraint despite a lack of stable folding." is fundamentally very similar to that used by Alderson et al. Thus, the result that "Given that low ESM2 scores generally reflect mutational constraint in folded proteins, the presence of region a among disordered residues suggests that certain disordered amino acids are evolutionarily conserved and likely functionally significant" is in some ways very similar to the results of that paper.

      (1b) Dasmeh et al (https://doi.org/10.1093/genetics/iyab184), Lu et al (https://doi.org/10.1371/journal.pcbi.1010238) and Ho & Huang (https://doi.org/10.1002/pro.4317) analysed conservation in IDRs, including aromatic residues and their role in phase separation

      (1c) A number of groups have performed proteomewide saturation scans using pLMs, including variants of the ESM family, including Meier (reference 89, but cited about something else) and Cagiada et al (https://doi.org/10.1101/2024.05.21.595203) that analysed variant effects in IDRs using a pLM. Thus, I think statements such as "their applicability to studying the fitness and evolutionary pressures on IDRs has yet to be established" should possibly be qualified.

      (2) On page 4, the authors write, "The conserved residues are primarily located in regions associated with phase separation." These results are presented as a central part of the work, but it is not completely clear what the evidence is.

      (3) It would be useful with an assessment of what controls the authors used to assess whether there are folded domains within their set of IDRs.

    1. Reviewer #1 (Public review):

      Summary:

      In this review, the author covered several aspects of the inflammation response, mainly focusing on the mechanisms controlling leukocyte extravasation and inflammation resolution.

      Strengths:

      This review is based on an impressive number of sources, trying to comprehensively present a very broad and complex topic.

      Weaknesses:

      (1) This reviewer feels that, despite the title, this review is quite broad and not centred on the role of the extracellular matrix.

      (2) The review will benefit from a stronger focus on the specific roles of matrix components and dynamics, with more informative subheadings.

      (3) The macrophage phenotype section doesn't seem well integrated with the rest of the review (and is not linked to the ECM).

      (4) Table 1 is difficult to follow. It could be reformatted to facilitate reading and understanding

      (5) Figure 2 appears very complex and broad.

      (6) Spelling and grammar should be thoroughly checked to improve the readability.

    1. Reviewer #1 (Public Review):

      Summary:

      The work used open peer reviews and followed them through a succession of reviews and author revisions. It assessed whether a reviewer had requested the author include additional citations and references to the reviewers' work. It then assessed whether the author had followed these suggestions and what the probability of acceptance was based on the authors decision.

      Strengths and weaknesses:

      The work's strengths are the in-depth and thorough statistical analysis it contains and the very large dataset it uses. The methods are robust and reported in detail. However, this is also a weakness of the work. Such thorough analysis makes it very hard to read! It's a very interesting paper with some excellent and thought provoking references but it needs to be careful not to overstate the results and improve the readability so it can be disseminated widely. It should also discuss more alternative explanations for the findings and, where possible, dismiss them.

    1. Reviewer #1 (Public review):

      This study presents an exploration of PPGL tumour bulk transcriptomics and identifies three clusters of samples (labeled as subtypes C1-C3). Each subtype is then investigated for the presence of somatic mutations, metabolism-associated pathways and inflammation correlates, and disease progression.

      The proposed subtype descriptions are presented as an exploratory study. The proposed potential biomarkers from this subtype are suitably caveated, and will require further validation in PPGL cohorts together with a mechanistic study.

      The first section uses WGCNA (a method to identify clusters of samples based on gene expression correlations) to discover three transcriptome-based clusters of PPGL tumours.

      The second section inspects a previously published snRNAseq dataset, and labels some of the published cells as subtypes C1, C2, C3 (Methods could be clarified here), among other cells labelled as immune cell types. Further details about how the previously reported single-nuclei were assigned to the newly described subtypes C1-C3 require clarification.

      The tumour samples are obtained from multiple locations in the body (Figure 1A). It will be important to see further investigation of how the sample origin is distributed among the C1-C3 clusters, and whether there is a sample-origin association with mutational drivers and disease progression.

    1. Reviewer #1 (Public review):

      The manuscript by Zhang et al describes the use of a protein language model (pLM) to analyse disordered regions in proteins, with a focus on those that may be important in biological phase separation. This is an interesting study that supports, complements and extends previous related analyses on the conservation and mutational tolerance of disordered regions, with a particular focus on disordered regions in proteins that are found in condensates.

    1. Reviewer #1 (Public review):

      Summary:

      In this descriptive study, Tateishi et al. report a Tn-seq based analysis of genetic requirements for growth and fitness in 8 clinical strains of Mycobacterium intracellulare Mi), and compare the findings with a type strain ATCC13950. The study finds a core set of 131 genes that are essential in all nine strains, and therefore are reasonably argued as potential drug targets. Multiple other genes required for fitness in clinical isolates have been found to be important for hypoxic growth in the type strain.

      Strengths:

      The study has generated a large volume of Tn-seq datasets of multiple clinical strains of Mi from multiple growth conditions, including from mouse lungs. The dataset can serve as an important resource for future studies on Mi, which despite being clinically significant remains a relatively understudied species of mycobacteria.

      Weaknesses:

      The primary claim of the study that the clinical strains are better adapted for hypoxic growth is yet to be comprehensively investigated. However, this reviewer thinks such an investigation would require a complex experimental design and perhaps forms an independent study.

    1. Reviewer #1 (Public review):

      Summary:

      The present study evaluates the role of visual experience in shaping functional correlations between human extrastriate visual cortex and frontal regions. The authors used fMRI to assess "resting-state" temporal correlations in three groups: sighted adults, congenitally blind adults, and neonates. Previous research has already demonstrated differences in functional correlations between visual and frontal regions in sighted compared to early blind individuals. The novel contribution of the current study lies in the inclusion of an infant dataset, which allows for an assessment of the developmental origins of these differences.

      The main results of the study reveal that correlations between prefrontal and visual regions are more prominent in the blind and infant groups, with the blind group exhibiting greater lateralization. Conversely, correlations between visual and somato-motor cortices are more prominent in sighted adults. Based on these data, the authors conclude that visual experience plays an instructive role in shaping these cortical networks. This study provides valuable insights into the impact of visual experience on the development of functional connectivity in the brain.

      Strengths:

      The dissociations in functional correlations observed among the sighted adult, congenitally blind, and neonate groups provide strong support for the main conclusion regarding postnatal experience-driven shaping of visual-frontal connectivity.

      The inclusion of neonates offers a unique and valuable developmental anchor for interpreting divergence between blind and sighted adults. This is a major advance over prior studies limited to adult comparisons.

      Convergence with prior findings in the blind and sighted adult groups reinforces the reliability and external validity of the present results.

      The split-half reliability analysis in the infant data increases confidence in the robustness of the reported group differences.

      Weaknesses:

      The manuscript risks overstating a mechanistic distinction between sighted and blind development by framing visual experience as "instructive" and blindness as "reorganizing." Similarly, the binary framing of visual experience and blindness as independent may oversimplify shared plasticity mechanisms.

      The interpretation of changes in temporal correlations as altered neural communication does not adequately consider how shifts in shared variance across networks may influence these measures without reflecting true biological reorganization.

      The discussion does not substantively engage with the longstanding debate over whether sensory experience plays an instructive or permissive role in cortical development.

      The relationship between resting-state and task-based findings in blindness remains unclear.

    1. Reviewer #1 (Public review):

      Summary:

      The work by Fisher et al describes the role of novel RSPO mimetics in the activation of WNT signaling and hepatocyte regeneration. However, the results of the experiments and weaknesses of the methods used do not support the conclusions of the authors that the new therapy can promote liver regeneration in alcohol-induced liver cirrhosis.

      Strengths:

      Similarly to its precursor, aASGR1-RSPO2-RA-IgG, SZN-043 can upregulate Wnt target genes and promote hepatocyte proliferation in the liver.

      Comments on revisions:

      The authors responded to all my comments and concerns.

    1. Joint Public Review:

      This study employs single-cell RNA sequencing to investigate how electroacupuncture (EA) stimulation alters the transcriptional profiles of central nervous system cell types following blood-brain barrier (BBB) opening. The authors seek to characterize changes in gene expression and pathway activities across diverse neural cells in response to electroacupuncture (EA) stimulation using high-resolution transcriptomics. This approach has the potential to elucidate the cellular mechanisms underlying EA stimulation and their implications for therapeutic intervention. The work engages with a timely and biologically significant question regarding noninvasive stimulation methods to manipulate BBB permeability. However, no in vivo/in vitro functional assays are provided to validate the changes in BBB permeability or cytokine release in the tested models. The experimental rationale remains inadequately explained, and key details regarding the magnitude, duration, and spatial distribution of BBB opening in this system are still lacking.

    1. Reviewer #1 (Public review):

      Summary:

      The authors analyzed the expression of ATAD2 protein in post-meiotic stages and characterized the localization of various testis-specific proteins in the testis of the Atad2 knockout (KO). By cytological analysis as well as the ATAC sequencing, the study showed that increased levels of HIRA histone chaperone, accumulation of histone H3.3 on post-meiotic nuclei, defective chromatin accessibility and also delayed deposition of protamines. Sperm from the Atad2 KO mice reduces the success of in vitro fertilization. The work was performed well, and most of the results are convincing. However, this manuscript does not suggest a molecular mechanism for how ATAD2 promotes the formation of testis-specific chromatin.

      Strengths:

      The paper describes the role of ATAD2 AAA+ ATPase in the proper localization of sperm-specific chromatin proteins such as protamine, suggesting the importance of the DNA replication-independent histone exchanges with the HIRA-histone H3.3 axis.

      Weaknesses:

      (1) Some results lack quantification.

      (2) The work was performed well, and most of the results are convincing. However, this manuscript does not suggest a molecular mechanism for how ATAD2 promotes the formation of testis-specific chromatin.

    1. Reviewer #1 (Public review):

      Summary:

      Desveaux et al. describe human mAbs targeting protein from the Pseudomonas aeruginosa T3SS, discovered by employing single cell B cell sorting from cystic fibrosis patients. The mAbs were directed at the proteins PscF and PcrV. They particularly focused on two mAbs binding the T3SS with the potential of blocking activity. The supplemented biochemical analysis was crystal structures of P3D6 Fab complex. They also compared the blocking activity with mAbs that were described in previous studies, using an assay that evaluated the toxin injection. They conducted mechanistic structure analysis and found that these mAbs might act through different mechanisms by preventing PcrV oligomerization and disrupting PcrVs scaffolding function.

      The antibiotic resistance crisis requires the development of new solutions to treat infections cause by MDR bacteria. The development of antibacterial mAbs holds great potential. In that context, this report is important as it paves the way for the development of additional mAbs targeting various pathogens that harbor the T3SS. In this report the authors present a comparative study of their discovered mAbs vs. a commercial mAb currently in clinical testing resulting in valuate data with applicative implications. The authors investigated the mechanism of action of the mAbs using advanced methods and assays for characterization of antibody and antigen interaction, underlining the effort to determine the discovered mAbs suitability for downstream application.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated the elasticity of controllability by developing a task that manipulates the probability of achieving a goal with a baseline investment (which they refer to as inelastic controllability) and the probability that additional investment would increase the probability of achieving a goal (which they refer to as elastic controllability). They found that a computational model representing the controllability and elasticity of the environment accounted better for the data than a model representing only the controllability. They also found that prior biases about the controllability and elasticity of the environment was associated with a composite psychopathology score. The authors conclude that elasticity inference and bias guide resource allocation.

      Strengths:

      This research takes a novel theoretical and methodological approach to understanding how people estimate the level of control they have over their environment, and how they adjust their actions accordingly. The task is innovative and both it and the findings are well-described (with excellent visuals). They also offer thorough validation for the particular model they develop. The research has the potential to theoretically inform understanding of control across domains, which is a topic of great importance.

      Weaknesses:

      In its revised form, the manuscript addresses most of my previous concerns. The main remaining weakness pertains to the analyses aimed at addressing my suggesting of Bayesian updating as an alternative to the model proposed by the authors. My suggestion was to assume that people perform a form of function approximation to relate resource expenditure to success probability. The authors performed a version of this where people were weighing evidence for a few canonical functions (flat, step, linear), and found that this model underperforms theirs. However, this Bayesian model is quite constrained in its ability to estimate the function relating resources. A more robust test would be to assume a more flexible form of updating that is able to capture a wide range of distributions (e.g., using basis functions, gaussian processes, or nonparametric estimators); see, e.g., work by Griffiths on human function learning). The benefit of testing this type of model is that it would make contact with a known form of inference that individuals engage in across various settings, and therefore could offer a more parsimonious and generalizable account of function learning, whereby learning of resource elasticity is a special case. I defer to the authors as to whether they'd like to pursue this direction, but if not I think it's still important that they acknowledge that they are unable to rule out a more general process like this as an alternative to their model. This also pertains to inferences about individual differences, which currently hinge on their preferred model being the most parsimonious.

    1. Reviewer #1 (Public review):

      Summary:

      This study addresses the important question of how top-down cognitive processes affect tactile perception in autism - specifically, in the Fmr1-/y genetic mouse model of autism. Using a 2AFC tactile task in behaving mice, the study investigated multiple aspects of perceptual processing, including perceptual learning, stimulus categorization and discrimination, as well as the influence of prior experience and attention.

      Strengths:

      The experiments seem well performed, with interesting results. Thus, this study can/will advance our understanding of atypical tactile perception and its relation to cognitive factors in autism.

      Weaknesses:

      Certain aspects of the analyses (and therefore the results) are unclear, which makes the manuscript difficult to understand. Clearer presentation, with the addition of more standard psychometric analyses, and/or other useful models (like logistic regression) would improve this aspect. The use of d' needs better explanation, both in terms of how and why these analyses are appropriate (and perhaps it should be applied for more specific needs rather than as a ubiquitous measure).

    1. Reviewer #1 (Public review):

      Summary:

      This study generated 3D cell constructs from endometrial cell mixtures that were seeded in the Matrigel scaffold. The cell assemblies were treated with hormones to induce a "window of implantation" (WOI) state. Although many bioinformatic analyses point in this direction, there are major concerns that must be addressed.

      Strengths:

      The addition of 3 hormones to enhance the WOI state (although not clearly supported in comparison to the secretory state).

      Comments on revisions:

      The authors did their best to revise their study according to the Reviewers' comments. However, the study remains unconvincing, incomplete and at the same time still too dense and not focused enough.

    1. Reviewer #1 (Public review):

      This manuscript reports a dual-task experiment intended to test whether language prediction relies on executive resources, using surprisal-based measures of predictability and an n-back task to manipulate cognitive load. While the study addresses a question under debate, the current design and modeling framework fall short of supporting the central claims. Key components of cognitive load, such as task switching, word prediction vs integration, are not adequately modeled. Moreover, the weak consistency in replication undermines the robustness of the reported findings. Below unpacks each point.

      Cognitive load is a broad term. In the present study, it can be at least decomposed into the following components:

      (1) Working memory (WM) load: news, color, and rank.

      (2) Task switching load: domain of attention (color vs semantics), sensorimotor rules (c/m vs space).

      (3) Word comprehension load (hypothesized against): prediction, integration.

      The components of task switching load should be directly included in the statistical models. Switching of sensorimotor rules may be captured by the "n-back reaction" (binary) predictor. However, the switching of attended domains and the interaction between domain switching and rule complexity (1-back or 2-back) were not included. The attention control experiment (1) avoided useful statistical variation from the Read Only task, and (2) did not address interactions. More fundamentally, task-switching components should be directly modeled in both performance and full RT models to minimize selection bias. This principle also applies to other confounding factors, such as education level. While missing these important predictors, the current models have an abundance of predictors that are not so well motivated (see later comments). In sum, with the current models, one cannot determine whether the reduced performance or prolonged RT was due to affecting word prediction load (if it exists) or merely affecting the task switching load.

      The entropy and surprisal need to be more clearly interpreted and modeled in the context of the word comprehension process. The entropy concerns the "prediction" part of the word comprehension (before seeing the next word), whereas surprisal concerns the "integration" part as a posterior. This interpretation is similar to the authors writing in the Introduction that "Graded language predictions necessitate the active generation of hypotheses on upcoming words as well as the integration of prediction errors to inform future predictions [1,5]." However, the Results of this study largely ignored entropy (treating it as a fixed effect) and only focus on surprisal without clear justification.

      In Table S3, with original and replicated model fitting results, the only consistent interaction is surprisal x age x cognitive load [2-back vs. Reading Only]. None of the two-way interactions can be replicated. This is puzzling and undermines the robustness of the main claims of this paper.

    1. Reviewer #1 (Public review):

      Summary:

      The researchers sought to determine whether Ptbp1, an RNA-binding protein formerly thought to be a master regulator of neuronal differentiation, is required for retinal neurogenesis and cell fate specification. They used a conditional knockout mouse line to remove Ptbp1 in retinal progenitors and analyzed the results using bulk RNA-seq, single-cell RNA-seq, immunohistochemistry, and EdU labeling. Their findings show that Ptbp1 deletion has no effect on retinal development, since no defects were found in retinal lamination, progenitor proliferation, or cell type composition. Although bulk RNA-seq indicated changes in RNA splicing and increased expression of late-stage progenitor and photoreceptor genes in the mutants, and single-cell RNA-seq detected relatively minor transcriptional shifts in Müller glia, the overall phenotypic impact was low. As a result, the authors conclude that Ptbp1 is not required for retinal neurogenesis and development, thus contradicting prior statements about its important role as a master regulator of neurogenesis. They argue for a reassessment of this stated role. While the findings are strong in the setting of the retina, the larger implications for other areas of the CNS require more investigation. Furthermore, questions about potential reimbursement from Ptbp2 warrant further research.

      Strengths:

      This study calls into doubt the commonly held belief that Ptbp1 is a critical regulator of neurogenesis in the CNS, particularly in retinal development. The adoption of a conditional knockout mouse model provides a reliable way for eliminating Ptbp1 in retinal progenitors while avoiding the off-target effects often reported in RNAi experiments. The combination of bulk RNA-seq, scRNA-seq, and immunohistochemistry enables a thorough examination of molecular and cellular alterations at both embryonic and postnatal stages, which strengthens the study's findings. Furthermore, using publicly available RNA-Seq datasets for comparison improves the investigation of splicing and expression across tissues and cell types. The work is well-organized, with informative figure legends and supplemental data that clearly show no substantial phenotypic changes in retinal lamination, proliferation, or cell destiny, despite identified transcriptional and splicing modifications.

      Weaknesses:

      The retina-specific method raises questions regarding whether Ptbp1 is required in other CNS locations where its neurogenic roles were first proposed. The claim that Ptbp1 is "fully dispensable" for retinal development may be toned down, given the transcriptional and splicing modifications identified. The possibility of subtle or transitory impacts, such as ectopic neuron development followed by cell death, is postulated, but not completely investigated. Furthermore, as the authors point out, the compensating potential of increased Ptbp2 warrants additional exploration. Although the study performs well in transcriptome and histological analyses, it lacks functional assessments (such as electrophysiological or behavioral testing) to determine if small changes in splicing or gene expression affect retinal function. While 864 splicing events have been found, the functional significance of these alterations, notably the 7% that are neuronal-enriched and the 35% that are rod-specific, has not been thoroughly investigated. The manuscript might be improved by describing how these splicing changes affect retinal development or function.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors aim to elucidate the mechanisms by which grid cells in the medial entorhinal cortex generate predictive representations of spatial location. To address this, they built a computational model integrating intrinsic neuronal dynamics with structured network connectivity. Specifically, they combine a conductance-based single-cell model incorporating biologically realistic HCN channels with a continuous attractor network that reflects known properties of grid cell circuitry. Their simulations show that HCN conductance can shift grid fields forward by approximately 5% of their diameter, consistent with experimental observations in layer II grid cells. Additionally, by introducing asymmetry in the connectivity of interneurons, the model produces larger forward shifts, which parallel properties observed in layer III grid cells. Together, these two mechanisms provide a unified framework for explaining layer-specific predictive coding in the entorhinal cortex.

      Strengths:

      A major strength of the study lies in its conceptual contribution. The authors propose two distinct mechanisms to generate forward-shifted grid fields for predictive coding. One mechanism is intrinsic and depends on the time constants associated with HCN channels. The other is network-based and results from asymmetries in interneuron connectivity. These two mechanisms correspond to different observed properties of grid cells in layer II and layer III, respectively. The modeling is based on previously validated frameworks of continuous attractor network models (e.g., Burak & Fiete; Kang & DeWeese), but it incorporates several novel features, including the incorporation of biophysically realistic HCN channels, a network architecture that excludes stellate-stellate connections and relies on interneurons, and asymmetric interneuron connectivity.

      Weaknesses:

      One of the proposed mechanisms for predictive coding, namely asymmetric interneuron connectivity, is a novel idea. However, this type of connectivity has not yet been demonstrated experimentally in the medial entorhinal cortex. Therefore, the biological plausibility of this mechanism remains uncertain and will need to be evaluated in future empirical studies.

    1. Reviewer #1 (Public review):

      Summary:

      This paper addresses an important and topical issue: how temporal context - at various time scales - affects various psychophysical measures, including reaction times, accuracy and localization. It offers interesting insights, with separate mechanisms for different phenomena, which are well discussed.

      Strengths:

      The paradigm used is original and effective. The analyses are rigorous.

      Comments on revised version:

      I think the authors have dealt adequately with my issues, none of which were fundamental.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Zung et al. describes a curated library of genetic lines labeling a class of important neurons called Descending Neurons in the fruit fly, Drosophila melanogaster. These neurons are especially important in their critical role in relaying information from the brain to motor circuits within the ventral nerve cord - the insect analogy of the vertebrate spinal cord. The authors screened through a vast resource of Gal4 lines to generate 500 new genetic lines that allow for the precise labeling of 190 (40%) of all Descending Neurons. The tools introduced here will allow researchers to perform precise circuit dissection of the exact roles these neurons play in linking the brain to the ventral nerve cord.

      Strengths:

      This manuscript represents an important follow-up to the author's 2018 paper in the extension of the genetic toolkit from 178 genetic lines that target 65 Descending Neuron (DN) classes to 806 lines that target 190 DN classes. The presentation of this toolkit is comprehensive with confocal images, informative classifications of lines based on specificity/consistency, and identification of the neuron types - when possible - in the EM dataset.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    1. Reviewer #1 (Public review):

      SARS-CoV-2 encodes a macrodomain (Mac1) within the nsp3 protein that removes ADP-ribose groups from proteins. However, its role during infection is not well understood. Evidence suggests that Mac1 antagonizes the host interferon response by counteracting the wave of ADP ribosylation that occurs during infection. Indeed, several PARPs are interferon-stimulated genes. While multiple targets have been proposed, the mechanistic links between ADP ribosylation and a robust antiviral response remain unclear.

      Genetic inactivation of Mac1 abrogates viral replication in vivo, suggesting that small-molecule inhibitors of Mac1 could be developed into antivirals to treat COVID-19 and other emerging coronaviruses. The authors report a potent and selective small molecule inhibitor targeting Mac1 (AVI-4206) that demonstrates efficacy in human airway organoids and animal models of SARS-CoV-2 infection. While these results are compelling and provide proof of concept for the therapeutic targeting of Mac1, I am particularly intrigued by the potential of this compound as a probe to elucidate the mechanistic connections between infection-induced ADP ribosylation and the host antiviral response.

      The precise function of Mac1 remains unclear. Given its presence in multiple viruses, it likely acts on a fundamental host immune pathway(s). AVI-4206, while promising as a lead compound for the development of antivirals targeting coronaviruses, could also be a valuable tool for uncovering the function of the Mac1 domain. This may lead to fundamental insights into the host immune response to viral infection.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript, by Xu and Peng, et al. investigates whether co-expression of 2 T cell receptor (TCR) clonotypes can be detected in FoxP3+ regulatory CD4+ T cells (Tregs) and if it is associated with identifiable phenotypic effects. This paper presents data reanalyzing publicly available single-cell TCR sequencing and transcriptional analysis, convincingly demonstrating that dual TCR co-expression can be detected in Tregs, both in peripheral circulation as well as among Tregs in tissues. They then compare metrics of TCR diversity between single-TCR and dual TCR Tregs, as well as between Tregs in different anatomic compartments, finding the TCR repertoires to be generally similar though with dual TCR Tregs exhibiting a less diverse repertoire and some moderate differences in clonal expansion in different anatomic compartments. Finally, they examine the transcriptional profile of dual TCR Tregs in these datasets, finding some potential differences in expression of key Treg genes such as Foxp3, CTLA4, Foxo3, Foxo1, CD27, IL2RA, and Ikzf2 associated with dual TCR-expressing Tregs, which the authors postulate implies a potential functional benefit for dual TCR expression in Tregs.

      Strengths:

      This report examines an interesting and potentially biologically significant question, given recent demonstrations that dual TCR co-expression is a much more common phenomenon than previously appreciated (approximately 15-20% of T cells) and that dual TCR co-expression has been associated with significant effects on the thymic development and antigenic reactivity of T cells. This investigation leverages large existing datasets of single-cell TCRseq/RNAseq to address dual TCR expression in Tregs. The identification and characterization of dual TCR Tregs is rigorously demonstrated and presented, providing convincing new evidence of their existence.

      Weaknesses:

      The existence of dual TCR expression by Tregs has previously been demonstrated in mice and humans, limiting the novelty of the reported findings. The presented results should be considered in the context of these prior important findings. The focus on self-citation of their previous work, using the same approach to measure dual TCR expression in other datasets. limits the discussion of other more relevant and impactful published research in this area. Also, Reference #7 continues to list incorrect authors. The authors do not present a balanced or representative description of the available knowledge about either dual TCR expression by T cells or TCR repertoires of Tregs.

      The approach used follows a template used previously by this group for re-analysis of existing datasets generated by other research groups. The descriptions and interpretations of the data as presented are still shallow, lacking innovative or thoughtful approaches that would potentially be innovation or provide new insight.

      This demonstration of dual TCR Tregs is notable, though the authors do not compare the frequency of dual TCR co-expression by Tregs with non-Tregs. This limits interpreting the findings in the context of what is known about dual TCR co-expression in T cells. The response to this criticism in a previous review is considered non-responsive and does not improve the data or findings.

      Comparison of gene expression by single- and dual TCR Tregs is of interest, but as presented is difficult to interpret. The interpretations of the gene expression analyses are somewhat simplistic, focusing on single-gene expression of some genes known to have function in Tregs. However, the investigators continue to miss an opportunity to examine larger patterns of coordinated gene expression associated with developmental pathways and differential function in Tregs (Yang. 2015. Science. 348:589; Li. 2016. Nat Rev Immunol. Wyss. 2016. 16:220; Nat Immunol. 17:1093; Zenmour. 2018. Nat Immunol. 19:291). No attempt to define clusters is made. No comparison is made of the proportions of dual TCR cells in transcriptionally-defined clusters. The broad assessment of key genes by single- and dual TCR cells is conceptually interesting, but likely to be confounded by the heterogeneity of the Treg populations. This would need to be addressed and considered to make any analyses meaningful.

      The study design, re-analysis of existing datasets generated by other scientific groups, precludes confirmation of any findings by orthogonal analyses.

    1. Reviewer #1 (Public review):

      Summary:

      This work proposes a new approach to analyse cell-count data from multiple brain regions. Collecting such data can be expensive and time-intensive, so, more often than not, the dimensionality of the data is larger than the number of samples. The authors argue that Bayesian methods are much better suited to correctly analyse such data compared to classical (frequentist) statistical methods. They define a hierarchical structure, partial pooling, in which each observation contributes to the population estimate to more accurately explain the variance in the data. They present two case studies in which their method proves more sensitive in identifying regions where there are significant differences between conditions, which otherwise would be hidden.

      Strengths:

      The model is presented clearly, and the advantages of the hierarchical structure are strongly justified. Two alternative ways are presented to account for the presence of zero counts. The first involves the use of a horseshoe prior, which is the more flexible option, while the second involves a modified Poisson likelihood, which is better suited to datasets with a large number of zero counts, perhaps due to experimental artifacts. The results show a clear advantage of the Bayesian method for both case studies.<br /> The code is freely available, and it does not require a high-performance cluster to execute for smaller datasets. As Bayesian statistical methods become more accessible in various scientific fields, the whole scientific community will benefit from the transition away from p-values. Hierarchical Bayesian models are an especially useful tool that can be applied to many different experimental designs. However, while conceptually intuitive, their implementation can be difficult. The authors provide a good framework with room for improvement.

      Weaknesses:

      As with any Bayesian model, the choice of prior can significantly influence the results. The authors explain how the methodology can be adapted to different data properties, though selecting an appropriate prior or likelihood may not always be straightforward. They propose a 'standard workflow' as an alternative to traditional approaches, which could and should be used alongside established methods while Bayesian techniques continue to evolve and improve.

    1. Reviewer #1 (Public review):

      Summary

      Xu et al. use transcriptomic comparisons of mouse cochlear and vestibular hair to show that the vestibular hair cells alone are enriched in gene expression for proteins necessary for cilia motility and to further argue that such motility is a normal function of the kinocilia.

      Background:

      Cilia are prominent in sensory receptors, including vertebrate photoreceptors, olfactory neurons, and mechanosensitive hair cells of the inner ear and lateral line. Cilia can be motile or nonmotile depending on their axonemal structure: motile cilia require dynein and the inner 2 singlet microtubules of the 9+2 array. Primary cilia, present early in development, are considered to have sensory functions and to be nonmotile (Mill et al., Nature Rev Gen 2023).

      In hair cells, the kinocilium anchors and polarizes the mechanosensitive hair bundle of specialized microvilli. The kinocilium matures from the primary cilium of a newborn hair cell; behind it, the bundle of mechanosensory microvilli rises in a descending staircase of rows. During maturation of the mammalian cochlea, all hair cells lose the kinocilium, though not the associated basal body. The consensus for many years has been that most vertebrate kinocilia, and especially mammalian kinocilia, are nonmotile, based largely on the lack of spontaneous motility in excised mammalian vestibular organs, but also on the impression that the rare examples of spontaneous beating motility even in non-mammalian hair cells are associated with deterioration of the preparation (Rüsch & Thurm 1990).

      Strengths

      In comparing RNA expression across the 4 major types of mouse hair cells - 2 cochlear and 2 vestibular - Xu et al. noted that some ciliary genes related to motility are expressed by vestibular but not cochlear hair cells. They curated the ciliary genes into types known to be associated with different aspects of beating motility, and also investigated the expression of genes typical of primary cilia, which are considered to have sensory and cell signaling functions and to be nonmotile. They add immunostaining to back up some of the RNA data, and also evaluate relative expression by neonatal mouse cochlear and vestibular hair cells from a published dataset. The focus on kinociliary genes is an appropriate use of the comparative expression data for cochlear and vestibular hair cells, and the paper overall is readable and interesting. The transcriptome data are rounded off by comparing the authors' results in adult hair cells with published neonatal mouse cochlear and vestibular transcriptomes.

      Weaknesses:

      (1) Data:

      a) The main weakness in the data is the lack of functional and anatomical data from mouse hair bundles. While the authors compensate in part for this difficulty with bullfrog crista bundles, those data are also fragmentary - one TEM and 2 exemplar videos. Much of the novelty of the EM depends on the different appearance of stretches of a single kinocilium - can we be sure of the absence of the central microtubule singlets at the ends?

      b) While it was a good idea to compare ciliary motility expression in published P2 datasets for mouse cochlear and vestibular hair cells for comparison with the authors' adult hair cell data, the presentation is too superficial to assess (Figure 6C-E; text from line 336) - it is hard to see the basis for concluding that motility genes are specifically lower in P2 cochlear hair cells than vestibular hair cells. Visually, it is striking that CHCs have much darker bands for about 10 motility-related genes.

      (2) Interpretation:

      The authors take the view that kinociliary motility is likely to be normally present but is rare in their observations because the conditions are not right. But while others have described some (rare) kinociliary motility in fish organs (Rusch & Thurm 1990), they interpreted its occurrence as a sign of pathology. Indeed, in this paper, it is not clear, or even discussed, how kinociliary motility would help with mechanosensitivity in mature hair bundles. Rather, the presence of an autonomous rhythm would actively interfere with generating temporally faithful representations of the head motions that drive vestibular hair cells.

      Could kinociliary beating play other roles, possibly during development - for example, by interacting with forming accessory structures (but see Whitfield 2020) or by activating mechanosensitivity cell-autonomously, before mature stimulation mechanisms are in place? Then a latent capacity to beat in mature vestibular hair cells might be activated by stressful conditions, as speculated regarding persistent Piezo channels that are normally silent in mature cochlear hair cells but may reappear when TMC channel gating is broken (Beurg and Fettiplace 2017). While these are highly speculative thoughts, there is a need in the paper for more nuanced consideration of whether the observed motility is normal and what good it would do.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na+/K+-ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na+/K+-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of Na+/K+-ATPase electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.

      (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na+/K+-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.

      (3) The study several interesting compensatory mechanisms, such as sodium leak channels and extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Comments on revisions:proposes

      The revised manuscript is notably improved.

    1. Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential drug-interacting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

      Comments on revised version:

      I'm satisfied with the authors' response and the public review does not need further changes.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors explore a novel mechanism linking aging to chromosome mis-segregation and aneuploidy in yeast cells. They reveal that, in old yeast mother cells, chromosome loss occurs through asymmetric partitioning of chromosomes to daughter cells, a process coupled with the inheritance of an old Spindle Pole Body. Remarkably, the authors identify that remodeling of the nuclear pore complex (NPC), specifically the displacement of its nuclear basket, triggers these asymmetric segregation events. This disruption also leads to the leakage of unspliced pre-mRNAs into the cytoplasm, highlighting a breakdown in RNA quality control. Through genetic manipulation, the study demonstrates that removing introns from key chromosome segregation genes is sufficient to prevent chromosome loss in aged cells. Moreover, promoting pre-mRNA leakage in young cells mimics the chromosome mis-segregation observed in old cells, providing further evidence for the critical role of nuclear envelope integrity and RNA processing in aging-related genome instability.

      Strengths:

      The findings presented are not only intriguing but also well-supported by robust experimental data, highlighting a previously unrecognized connection between nuclear envelope integrity, RNA processing, and genome stability in aging cells, deepening our understanding of the molecular basis of chromosome loss in aging.

      Weaknesses:

      The authors have satisfactorily addressed my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      The authors demonstrate with a simple stochastic model that the initial composition of the community is important in achieving a target frequency during the artificial selection of a community.

      Strengths:

      To my knowledge, the intra-collective selection during artificial selection has not been seriously theoretically considered. However, in many cases, the species dynamics during the incubation of each selection cycle is important and relevant to the outcome of the artificial selection experiment. Stochasticity from birth and death (demographic stochasticity) plays a big role in these species' abundance dynamics. This work uses a simple framework to tackle this idea meticulously.

      This work may or may not be related to hysteresis (path dependency). If this is true, maybe it would be nice to have a discussion paragraph talking about how this may be the case. Then, this work would even attract the interest of people studying dynamical systems.

      Weaknesses:

      (1) Connecting structure and function.<br /> In typical artificial selection literature, most of them select the community based on collective function. Here in this paper, the authors are selecting a target composition. Although there is a schematic cartoon illustrating the relationship between collective function (y-axis) and the community composition in the main figure 1, there is no explicit explanation or justification of what may be the origin of this relationship. I think giving the readers a naïve idea about how this structure-function relationship arises in the introduction section would help. This is because the conclusion of this paper is that the intra-collective selection makes it hard to artificially select for a community that has an intermediate frequency of f (or s). If there is really evidence or theoretical derivation from this framework that indeed the highest function comes from the intermediate frequency of f, then the impact of this paper would increase because the conclusions of this stochastic model could allude to the reasons for the prevalent failures of artificial selection in literature.

      (2) Explain intra-collective and inter-collective selection better for readers.<br /> The abstract, the introduction, and the result section use these terms or intra-collective and inter-collective selection without much explanation. For the wide readership of eLife, a clear definition in the beginning would help the audience grasp the importance of this paper, because these concepts are at the core of this work.

      (3) Achievable target frequency strongly depending on the degree of demographic stochasticity.<br /> I would expect that the experimentalists would find these results interesting and would want to consider these results during their artificial selection experiments. The main figure 4 indicates that the Newborn size N0 is a very important factor to consider during the artificial selection experiment. This would be equivalent to how much bottleneck you impose on the artificial selection process in every iteration step (i.e., the ratio of serial dilution experiment). However, with a low population size, all target frequencies can be achieved, and therefore in these regimes, the initial frequency now does not matter much. It would be great for the authors to provide what the N0 parameter actually means during the artificial selection experiments. Maybe relative to some other parameter in the model. I know this could be very hard. But without this, the main result of this paper (initial frequency matters) cannot be taken advantage of by the experimentalists.

      (4) Consideration of environmental stochasticity.<br /> The success (gold area of Figure 2d) in this framework mainly depends on the size of the demographic stochasticity (birth-only model) during the intra-collective selection. However, during experiments, a lot of environmental stochasticity appears to be occurring during artificial selection. This may be out of the scope of this study. But it would definitely be exciting to see how much environmental stochasticity relative to the demographic stochasticity (variation in the Gaussian distribution of F and S) matters in succeeding in achieving the target composition from artificial selection.

      (5) Assumption about mutation rates<br /> If setting the mutation rates to zero does not change the result of the simulations and the conclusion, what is the purpose of having the mutation rates \mu? Also, is the unidirectional (S -> F -> FF) mutation realistic? I didn't quite understand how the mutations could fit into the story of this paper.

      (6) Minor points<br /> In Figure 3b, it is not clear to me how the frequency difference for the Intra-collective and the Inter-collective selection is computed.<br /> In Figure 5b, the gold region (success) near the FF is not visible. Maybe increase the size of the figure or have an inset for zoom-in. Why is the region not as big as the bottom gold region?

      Comments on revisions:

      I thank the authors for addressing many points raised by the reviewers. Overall, the readability of the manuscript has improved with more context provided around why they were solving this specific problem. However, I've found many of the responses to be too terse. It would have been nicer if there had been more discussion and description of the thought process that led up to the conclusions they made for each comment or question. Instead, many of the responses only showed the screenshot of the text they added.

      Most of my comments or questions were answered. Below are my comments on some of the authors' responses.

      (2) Explain intra-collective and inter-collective selection better for readers.<br /> In the Abstract and Introduction, you've added more sentences about the intra-collective or inter-collective selection. However, these are either making analogies to the waterfall or just describing the result of the intra/inter-collective selection. I would still appreciate a proper definition of those terms, which is paramount for readers to understand the entire paper.

      (4) Consideration of environmental stochasticity.<br /> I think providing the reason 'why' the paper focuses on demographic stochasticity and not environmental stochasticity will greatly justify the paper's work. For example, citing papers that actually performed artificial selection and pointing out that your model captures the stochasticity from those kinds of experiments would be great.

      (5) Assumption about mutation rates.<br /> It would be great if you could add a citation in the added sentence to support your claim: "This scenario is encountered in biotechnology: .....".

    1. Reviewer #1 (Public review):

      Summary:

      The present work studies the coevolution of HIV-1 and the immune response in clinical patient data. Using the Marginal Path Likelihood (MPL) framework, they infer selection coefficients for HIV mutations from time-series data of virus sequences as they evolve in a given patient.

      Strengths:

      The authors analyze data from two human patients, consisting of HIV population sequence samples at various points in time during the infection. They inferred selection coefficients from the observed changes in sequence abundance using MPL. Most beneficial mutations appear in viral envelop proteins. The authors also analyze SHIV samples in rhesus macaques, and find selection coefficients that are compatible with those found in the corresponding human samples.

      The manuscript is well written and organized.

      Comments on revisions:

      In their revised version the authors have addressed most of these points satisfactorily.

    1. Reviewer #1 (Public review):

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

    1. Reviewer #1 (Public review):

      The authors describe a massively parallel reporter assays (MPRA) screen focused at identifying polymorphisms in 5' and 3' UTRs that affect translation efficiency and thus might have a functional impact on cells. The topic is of timely interest, and indeed, several related efforts have recently been published and preprinted (e.g., https://pubmed.ncbi.nlm.nih.gov/37516102/ and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635273/). This study has several major issues with the results and their presentation.

      Major comments:

      • The main issue remains that it appears that the screen has largely failed, and the reasons for that remain unclear, which make it difficult to interpret how useful is the resulting data. The authors mention batch effects as a potential contributor. The authors start with a library that includes ~6,000 variants, which makes it a medium-size MPRA. But then, only 483 pairs of WT/mutated UTRs yield high confidence information, which is already a small number for any downstream statistical analysis, particularly since most don't actually affect translation in the reporter screen setting (which is not unexpected). It is unclear why >90% of the library did not give high-confidence information. The profiles presented as base-case examples in Fig. 2B don't look very informative or convincing. All the subsequent analysis is done on a very small set of UTRs that have an effect, and it is unclear to this reviewer how these can yield statistically significant and/or biologically-relevant associations.

      • From the variants that had an effect, the authors go on to carry out some protein-level validations, and see some changes, but it is not clear if those changes are in the same direction was observed in the screen. In their rebuttal the authors explain that they largely can not infer directionality of changes form the screen, which further limits its utility.

      • It is particularly puzzling how the authors can build a machine learning predictor with >3,000 features when the dataset they use for training the model has just a few dozens of translation-shifting variants.

      Comments on revisions:

      It appears that the authors have extracted the information they could from the problematic dataset they obtained. Repeating the experiments in a cleaner setting, obtaining data for the >6000 UTRs they intended will allow the authors to achieve the goals they set out to achieve in establishing the screen.

    1. Reviewer #1 (Public review):

      Summary:

      In their current study, Cummings et al have approached this fundamental biochemical problem using a combination of purified enzyme-substrate reactions, MS/MS and microscopy in vitro to provide key insights into the hierarchy of generating polyglycylation in cilia and flagella. They first establish that TTLL8 is a monoglycylase, with the potential to add multiple mono glycine residues on both α- and β-tubulin. They then go on to establish that the monoglycylation is essential for TTLL10 binding and catalytic activity, which progressively reduces as the level of polyglycylation increases. This provides an interesting mechanism of how level of polyglycylation is regulated in the absence of a deglycylase. Finally, the authors also establish that for efficient TTLL10 activity, it is not just monoglycylation, but also polyglutamylation that is necessary, giving a key insight into how both these modifications interact with each other to ensure there is a balanced level of PTMs on the axonemes for efficient cilia function.

      Strengths:

      The manuscript is well written, and experiments are succinctly planned and outlined. The experiments used provide the conclusions to what the authors were hypothesising and provide some new novel possible mechanistic insights into the whole process of regulation of tubulin glycylation in motile cilia.

      Weaknesses:

      There were some weaknesses in the initial submission of the manuscript, but the authors have addressed these in their revised version either by giving clear explanations in the text or through additional experiments.

    1. Reviewer #1 (Public review):

      Summary:

      Mou and Ji investigate the relationship between firing rates in the anterior cingulate cortex (ACC) and CA1 neurons during observational learning. They found trajectory-selective responses in the ACC, coordinated activity between ACC and CA1 place cells for specific trajectories, and reactivation of these ensembles during sharp-wave ripples (SWRs), particularly during hippocampal replay events. The study is methodologically sound, the data are clearly presented, and the conclusions are well supported. The work is both novel and highly relevant to our understanding of social learning. Compared to the previous version of the paper, they have added substantial characterization of neuronal properties related to their firing during the task and replay events. I believe that the authors have therefore addressed most of my concerns and recommend the paper for publication as is.

      Strengths:

      The study is well designed, the data presented is very clear and the conclusions are appropriate regarding their results. The study is novel and of high relevance for the understanding of social learning.

      Weaknesses:

      All previous weaknesses have been addressed.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a deep learning framework for predicting T cell receptor (TCR) binding to antigens (peptide-MHC) using a combination of data augmentation techniques to address class imbalance in experimental datasets, and introduces both peptide-specific and pan-specific models for TCR-MHC-I binding prediction. The authors leverage a large, curated dataset of experimentally validated TCR-MHC-I pairs and apply a data augmentation strategy based on generative modeling to generate new TCR sequences. The approach is evaluated on benchmark datasets, and the resulting models demonstrate improved accuracy and robustness.

      Strengths:

      The most significant contribution of the manuscript lies in its data augmentation approach to mitigate class imbalance, particularly for rare but immunologically relevant epitope classes. The authors employ a generative strategy based on two deep learning architectures:

      (1) a Restricted Boltzmann Machine (RBM) and

      (2) a BERT-based language model, which is used to generate new CDR3B sequences of TCRs that are used as synthetic training data for creating a class balance of TCR-pMHC binding pairs.

      The distinction between peptide-specific (HLA allele-specific) and pan-specific (generalized across HLA alleles) models is well-motivated and addresses a key challenge in immunogenomics: balancing specificity and generalizability. The peptide-specific models show strong performance on known HLA alleles, which is expected, but the pan-specific model's ability to generalize across diverse HLA types, especially those not represented in training, is critical.

      Weaknesses:

      The paper would benefit from a more rigorous analysis of the biological validity of the augmented data. Specifically, how do the synthetic CDR3B sequences compare to real CDR3B in terms of sequence similarity, motif conservation? The authors should provide a quantitative assessment (via t-SNE or UMAP projections) of real vs. augmented sequences, or by measuring the overlap in known motif positions, before and after augmentation. Without such validation, the risk of introducing "hallucinated" sequences that distort model learning remains a concern. Moreover, it would strengthen the argument if the authors demonstrated that performance gains are not merely due to overfitting on synthetic data, but reflect genuine generalization to unseen real data. Ultimately, this can only be performed through elaborate experimental wet-lab validation experiments, which may be outside the scope of this study.

      While generative modeling for sequence data is increasingly common, the choice of RBM, which is a relatively older architecture, could benefit from stronger justification, especially given the emergence of more powerful and scalable alternatives (e.g., ProGen, ESM, or diffusion-based models). While BERT was used, it will be valuable in the future to explore other architectures for data augmentation.

      The manuscript would be more compelling if the authors performed a deeper analysis of the pan-specific model's behavior across HLA supertypes and allele groups. Are the learned representations truly "pan" or merely a weighted average of the most common alleles? The authors should assess whether the pan-specific model learns shared binding motifs (anchor residue preferences) and whether these features are interpretable through attention maps. A failure to identify such patterns would raise concerns about the model's interpretability and biological relevance.

      The exclusive focus on CDR3β for TCR modeling is biologically problematic. TCRs are heterodimers composed of α and β chains, and both CDR1, CDR2, and CDR3 regions of both chains contribute to antigen recognition. The CDR3β loop is often more diverse and critical, but CDR3α and the CDR1/2 loops also play significant roles in binding affinity and specificity. By generating only CDR3B sequences and not modeling the full TCR αβ heterodimer, the authors risk introducing a systematic bias toward β-chain-dominated recognition, which will not reflect the full complexity of TCR-peptide-MHC interactions.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Guin and colleagues establish a microscopy-based CRISPR screen to find new factors involved in global chromatin organization. As a proxy of global chromatin organization, they use centromere clustering in two different cell lines. They find 52 genes whose CRISPR depletion leads to centromere clustering defects in both cell lines. Using cell cycle synchronisation, they demonstrate that centromeres-redistribution upon depletion of these hits necessitates cell cycle progression through mitosis.

      Strengths:

      This manuscript explores the mechanisms of global chromatin organization, which is a scale of chromatin organization that remains poorly understood. The imaging-based CRISPR screen is very elegant, and the use of appropriate positive and negative controls reinforces the solidity of the findings.

      Weaknesses:

      Although the data are generally solid and well interpreted, a control showing that protein depletion works properly in cell-cycle arrested cells is lacking, both when using siRNAs and degron-based depletion.

    1. Reviewer #1 (Public review):

      Multiple waves of follicles have been proven to exist in multiple species, and different waves of follicles contribute differently to oogenesis and fertility. This work characterizes the wave 1 follicles in mouse comprehensively and compares different waves of follicles regarding their cellular and molecular features. Elegant mouse genetics methods are applied to provide lineage tracing of the wave 1 folliculogenesis, together with sophisticated microscopic imaging and analyses. Single-cell RNA-seq is further applied to profile the molecular features of cells in mouse ovaries from week 2 until week 6. While extensive details about the wave 1 follicles, especially the atresia process, are provided, the authors also identified another group of follicles located in the medullary-cortical boundary, which could also be labeled by the FoxL2-mediated lineage tracing method. The "boundary" or "wave 1.5" follicles are proposed by the authors to be the earliest wave 2 follicles, which contribute to the early fertility of puberty mice, instead of the wave 1 follicles, which undergo atresia with very few oocytes generated. The wave 1 follicle atresia, which degrades most oocytes, on the other hand, expands the number of theca cells and generates the interstitial gland cells in the medulla, where the wave 1 follicles are located. These gland cells likely contribute to the generation of androgen and estrogen, which shape oogenesis and animal development. By comparing scRNA-seq data from cells collected from week 2 until week 6 ovaries, the author profiled the changes in numbers of different cells and identified key genes that differ between wave 1 and wave 2 follicles, which could potentially be another driver of different waves of folliculogenesis. In summary, the authors provide a high amount of new results with good quality that illustrate the molecular and cellular features of different waves of mouse follicles, which could be further reused by other researchers in related fields. The findings related to the boundary follicles could potentially bring many new findings related to oogenesis.

      This paper is overall well-written with solid and intriguing conclusions that are well supported. The reviewer only has some minor comments for the authors' consideration that could potentially help with the readability of the paper.

      (1) The authors identify the wave 1.5 follicles at the medullary-cortex boundary, which begin to develop shortly after 2 weeks. Since the authors already collected scRNA-seq data from week 2 until week 6, could any special gene expression patterns be identified that make wave 1.5 follicle cells different from wave 1 and wave 2?

      (2) Are Figures 1C and 1E Z projections from multiple IF slices? If so, please provide representative IF slice(s) from Figures 1C and 1E and clearly label wave 1 and wave 2 follicles to better illustrate how the wave 1 follicles are clarified and quantified.

      (3) For Figure 3D, please also provide an image showing the whole ovary section, like in Figures 3A and 3C, to better illustrate the localization and abundance of different cells.

      (4) In Figure 4H, expressions of HSD3B1 and PLIN1 seem to be detected in almost all medulla cells. Does this mean all medulla cells gain gland cell features? Or there is only a subset of the medulla cells that are actively expressing these 2 proteins. Please provide image(s) with higher magnification to show more clearly how the expression of these 2 proteins differs among different cells.

      (5) Figure 5: The authors discussed cell number changes for different types of cells from week 2 to week 6. A table, or some plots, visualizing numbers of different cell types, instead of just providing original clusters in Dataset S6, at different time points, would make the changes easier to observe.

      (6) Figure S7: It would be more helpful to directly show the number of wave 1 follicles.

      (7) Did the fluorescence cryosection staining (Line 587 - 595) use the same buffers as in the whole-mount staining (Line 575 - 586)? Please clarify.

      (8) In Line 618, what tissue samples were collected? Please point out clearly.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have conducted the largest to date Mendelian Randomization (MR) analysis of the association between genetically predicted measures of adiposity and risk of head and neck cancer (HNC) overall and by subsites within HNC. MR uses genetic predictors of an exposure, such as gene variants associated with high BMI or tobacco use, rather than data from individual physical exams or questionnaires and if it can be done in its idealized state, there should be no problems with confounding. Traditional epidemiologic studies have reported a variety of associations between BMI (and a few other measures of adiposity) and risk of HNC that typically differs by the smoking status of the subjects. Those findings are controversial given the complex relationship between tobacco and both BMI and HNC risk. Tobacco smokers are often thinner than no-smokers so this could create an artificial ('confounded') association that may not be fully adjusted away in risk models. The findings of a BMI-HNC association are often attributed to residual confounding and this seems ripe for an MR approach if suitable genetic instrumental variables can be created. Here the authors built a variety of genetic instrumental variables for BMI and other measures of adiposity as well as two instrumental variables for smoking habits and then tested their hypotheses in a large case-controls set of HNC and controls with genetic data.

      The authors found that the genetic model for BMI was associated with HNC risk in simple models, but this association disappeared when using models that better accounted for pleiotropy, the condition when genetic variants are associated with more than one trait such as both BMI and tobacco use. When they used both adiposity and tobacco use genetic instruments in a single model, there was a strong association with genetically predicted tobacco use (as is expected) but there was no remaining association with genetic predictors of adiposity. They conclude that high BMI/adiposity is not a risk factor for HNC.

      Strengths:

      The primary strength was the expansive use of a variety of different genetic instruments for BMI/adiposity/body size along with employing a variety of MR model types, several of which are known to be less sensitive to pleiotropy. They also used the largest case-control sample size to date.

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR and the addition of those models is therefore quite important as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result and in that case, they are more limited in their ability to test their hypothesis as these models do not show a robust BMI instrumental variable association.

      Comments on the revised manuscript:

      After the first round of review, the authors have improved the manuscript by (1) adding the requested power calculations and adding text to help the reader integrate that additional information; (2) adding the main effects for the tobacco instruments; (3) updating the comparison of their results to the prior literature; (4) and some other edits to the text. They have declined to include the smoking stratified estimates and provide a rationale for this decision that references the potential for collider bias. While true that yet another bias might be introduced, that gets added to the list and the careful reader would know that. Many important questions in cancer etiology can only be addressed via observational approaches and each observational approach has the potential for a long list of biases. The best inference comes from integrating the totality of the data and realizing that most conclusions are subject to updating as we conduct more work and learn more.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use high-throughput gene editing technology in larval zebrafish to address whether microexons play important roles in the development and functional output of larval circuits. They find that individual microexon deletions rarely impact behavior, brain morphology, or activity, and raise the possibility that behavioral dysregulation occurs only with more global loss of microexon splicing regulation. Other possibilities exist: perhaps microexon splicing is more critical for later stages of brain development, perhaps microexon splicing is more critical in mammals, or perhaps the behavioral phenotypes observed when microexon splicing is lost are associated with loss of splicing in only a few genes.

      Strengths:

      - The authors provide a qualitative analysis of microexon inclusion during early zebrafish development

      - The authors provide comprehensive phenotyping of microexon mutants, addressing the role of individual microexons in the regulation of brain morphology, activity, and behavior.

    1. Reviewer #1 (Public review):

      This study aims to elucidate the mechanisms by which stress-induced α2A-adrenergic receptor (α2A-AR) internalization leads to cytosolic noradrenaline (NA) accumulation and subsequent neuronal dysfunction in the locus coeruleus (LC). While the manuscript presents an interesting but ambitious model involving calcium dynamics, GIRK channel rundown, and autocrine NA signaling, several key limitations undermine the strength of the conclusions.

      First, the revision does not include new experiments requested by reviewers to validate core aspects of the mechanism. Specifically, there is no direct measurement of cytosolic NA levels or MAO-A enzymatic activity to support the link between receptor internalization and neurochemical changes. The authors argue that such measurements are either not feasible or beyond the scope of the study, leaving a significant gap in the mechanistic chain of evidence.

      Second, the behavioral analysis remains insufficient to support claims of cognitive impairment. The use of a single working memory test following an anxiety test is inadequate to verify memory dysfunction behaviors. Additional cognitive assays, such as the Morris Water Maze or Novel Object Recognition, are recommended but not performed.

      Third, concerns regarding the lack of rigor in differential MAO-A expression in fluorescence imaging were not addressed experimentally. Instead of clarifying the issue, the authors moved the figure to supplementary data without providing further evidence (e.g., an enzymatic assay or quantitative reanalysis of Western blot, or re-staining of IF for MAO-A) to support their interpretation.

      Fourth, concerns regarding TH staining remain unresolved. In Figure S7, the α2A-AR signal appears to resemble TH staining, and vice versa, raising the possibility of labeling errors. It is recommended that the authors re-examine this issue by either double-checking the raw data or repeating the immunostaining to validate the staining.

      Overall, the manuscript offers a potentially interesting framework but falls short in providing the experimental rigor necessary to establish causality. The reliance on indirect reasoning and reorganizing existing data, rather than generating new evidence, limits the overall impact and interpretability of the study.

    1. Reviewer #1 (Public review):

      The authors previously reported that Heliconius, one genus of the Heliconiini butterflies, evolved to be efficient foragers to feed pollen of specific plants and have massively expanded mushroom bodies. Using the same image dataset, the authors segmented the central complex and associated brain regions and found that the volume of the central complex relative to the rest of the brain is largely conserved across the Heliconiini butterflies. By performing immunostaining to label a specific subset of neurons, the authors found several potential sites of evolutionary divergence in the central complex neural circuits, including the number of GABAergic ellipsoid body ring neurons and the innervation patterns of Allatostatin A expressing neurons in the noduli. These neuroanatomical data will be helpful to guide future studies to understand the evolution of the neural circuits for vector-based navigation.

      Strengths:

      The authors used a sufficiently large scale of dataset from 307 individuals of 41 species of Heliconiini butterflies to solidify the quantitative conclusions and present new microscopy data for fine neuroanatomical comparison of the central complex.

      Weaknesses:

      (1) Although the figures display a concise summary of anatomical findings, it would be difficult for non-experts to learn from this manuscript to identify the same neuronal processes in the raw confocal stacks. It would be helpful to have instructive movies to show a step-by-step guide for identification of neurons of interest, segmentations, and 3D visualizations (rotation) for several examples, including ER neurons (to supplement texts in line 347-353) and Allatostatin A neurons.

      (2) Related to (1), it was difficult for me to assess if the data in Figure 7 support the author's conclusions that ER neuron number increased in Heliconius Melpomene. By my understanding, the resolution of this dataset isn't high enough to trace individual axons and therefore authors do not rule out that the portion of "ER ring neurons" in Heliconius may not innervate the ER, as stated in Line 635 "Importantly, we also found that some ER neurons bypass the ellipsoid body and give rise to dense branches within distinct layers in the fan-shaped body (ER-FB)". If they don't innervate the ellipsoid body, why are they named as "ER neurons"?

      (3) Discussions around the lines 577-584 require the assumption that each ellipsoid body (EB) ring neuron typically arborises in a single microglomerulus to form a largely one-to-one connection with TuBu neurons within the bulb (BU), and therefore, the number of BU microglomeruli should provide an estimation of the number of ER neurons. Explain this key assumption or provide an alternative explanation.

      (4) The details of antibody information are missing in the Key resource table. Instead of citing papers, list the catalogue numbers and identifier for commercially available antibodies, and describe the antigen, and whether they are monoclonal or polyclonal. Are antigens conserved across species?

      (5) I did not understand why authors assume that foraging to feed on pollens is a more difficult cognitive task than foraging to feed on nectar. Would it be possible that they are equally demanding tasks, but pollen feeding allows Heliconius to pass more proteins and nucleic acids to their offspring and therefore they can develop larger mushroom bodies?

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors theoretically address the topic of interface resistance between a phase-separated condensate and the surrounding dilute phase. In a nutshell, "interface resistance" occurs if material in the dilute phase can only slowly pass through the interface region to enter the dense phase. There is some evidence from FRAP experiments that such a resistance may exist, and if it does, it could be biologically relevant insofar as the movement of material between dense and dilute phases can be rate-limiting for biological processes, including coarsening. The current study theoretically addresses interface resistance at two levels of description: first, the authors present a simple way of formulating interface resistance for a sharp interface model. Second, they derive a formula for interface resistance for a finite-width interface and present two scenarios where the interface resistance might be substantial.

      Strengths:

      The topic is of broad relevance to the important field of intracellular phase separation, and the work is overall credible.

      Weaknesses:

      There are a few problems with the study as presented - mainly that the key formula for the latter section has already been derived and presented in Reference 6 (notably also in this journal), and that the physical basis for the proposed scenarios leading to a large interface resistance is not clearly supported.

      (1) As noted, Equation 32 of the current study is entirely equivalent to Equation 8 of Reference 6, with a very similar derivation presented in Appendix 1 of that paper. In fact, Equation 8 in Reference 6 takes one more step by combining Equations 32 and 35 to provide a general expression for the interface resistance in an integral form. These prior results should be properly cited in the current work - the existing citations to Reference 6 do not make this overlap apparent.

      (2) The authors of the current study go on to examine cases where this shared equation (here Equation 32) might imply a large interface resistance. The examples are mathematically correct, but physically unsupported. In order to produce a substantial interface resistance, the current authors have to suppose that in the interface region between the dense and dilute phases, either there is a local minimum of the diffusion coefficient or a local minimum of the density. I am not aware of any realistic model that would produce either of these minima. Indeed, the authors do not present sufficient examples or physical arguments that would support the existence of such minima.

      In my view, these two issues limit the general interest of the latter portion of the current manuscript. While point 1 can be remedied by proper citation, point 2 is not so simple to address. The two ways the authors present to produce a substantial interface resistance seem to me to be mathematical exercises without a physical basis. The manuscript will improve if the authors can provide examples or compelling arguments for a minimum of either diffusion coefficient or density between the dense and dilute phases that would address point 2.

    1. Reviewer #1 (Public review):

      Summary:

      The authors used weighted ensemble enhanced sampling molecular dynamics (MD) to test the hypothesis that a double mutant of Abl favors the DFG-in state relative to the WT and therefore causes the drug resistance to imatinib.

      Strengths:

      The authors employed the state-of-the-art weighted ensemble MD simulations with three novel progress coordinates to explore the conformational changes the DFG motif of Abl kinase. The hypothesis regarding the double mutant's drug resistance is novel.

      Weaknesses:

      The study contains many uncertain aspects. A major revision is needed to strengthen the support for the conclusions.

      (1) Specifically, the authors need to define the DFG conformation using criteria accepted in the field, for example, see https://klifs.net/index.php.

      (2) Convergence needs to be demonstrated for estimating the population difference between different conformational states.

      (3) The DFG flip needs to be sampled several times to establish free energy difference.

      (4) The free energy plots do not appear to show an intermediate state as claimed.

      (5) The trajectory length of 7 ns in both Figure 2 and Figure 4 needs to be verified, as it is extremely short for a DFG flip that has a high free energy barrier.

      (6) The free energy scale (100 kT) appears to be one order of magnitude too large.

      (7) Setting the DFG-Asp to the protonated state is not justified, because in the DFG-in state, the DFG-Asp is clearly deprotonated.

      (8) Finally, the authors should discuss their work in the context of the enormous progress made in theoretical studies and mechanistic understanding of the conformational landscape of protein kinases in the last two decades, particularly with regard to the DFG flip.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to examine how the covariation between cognition (represented by a g-factor based on 12 features of 11 cognitive tasks) and mental health (represented by 133 diverse features) is reflected in MR-based neural markers of cognition, as measured through multimodal neuroimaging (structural, rsfMRI, and diffusion MR). To integrate multiple neuroimaging phenotypes across MRI modalities, they used a so-called stacking approach, which employs two levels of machine learning. First, they built a predictive model from each neuroimaging phenotype to predict a target variable. Next, in the stacking level, they used predicted values (i.e., cognition predicted from each neuroimaging phenotype) from the first level as features to predict the target variable. To quantify the contribution of the neural indicators of cognition explaining the relationship between cognition and mental health, they conducted commonality analyses. Results showed that when they stacked neuroimaging phenotypes within dwMRI, rsMRI, and sMRI, they captured 25.5%, 29.8%, and 31.6% of the predictive relationship between cognition and mental health, respectively. By stacking all 72 neuroimaging phenotypes across three MRI modalities, they enhanced the explanation to 48%. Age and sex shared substantial overlapping variance with both mental health and neuroimaging in explaining cognition, accounting for 43% of the variance in the cognition-mental health relationship.

      Strengths:

      (1) A big study population (UK Biobank with 14000 subjects).

      (2) The description of the methods (including Figure 1) is helpful in understanding the approach.

      (3) This revised manuscript is much improved compared to the previous version.

      Weaknesses:

      (1) Although the background and reason for the study are better described in this version of the manuscript, the relevance of the question is, in my opinion, still questionable. The authors aimed to determine whether neural markers of cognition explain the covariance between cognition and mental health and which of the 72 MRI-based features contribute to explaining most of the covariance. I would like to invite the authors to make a stronger case for the relevance, keeping the clinical and scientific relevance in mind (what would you explain to the clinician, what would you explain to the people with lived experience, and how can this knowledge contribute to innovation in mental health care?).

      (2) The discussion on the interpretation of the positive and negative PLRS loadings is not very convincing, and the findings are partly counterintuitive. For example (1) how to explain that distress has a positive loading and anxiety/trauma has a negative loading?; (2) how to explain that mental health features like wellbeing and happiness load in the same direction as psychosis and anxiety/trauma? From both a clinical and a neuroscientific perspective, this is hard to interpret.

      (3) The analysis plan has not been preregistered (e.g. at OSF).

      Note: the computational aspects of the methods fall beyond my expertise.

    1. Reviewer #1 (Public review):

      Summary:

      The experiment is interesting and well executed and describes in high detail fish behaviour in thermally stratified waters. The evidence is strong but the experimental design cannot distinguish between temperature and vertical position of the treatments.

      Strengths:

      High statistical power, solid quantification of behaviour.

      Weaknesses:

      A major issue with the experimental design is the vertical component of the experiment. Many thermal preference and avoidance experiments are run using horizontal division in shuttlebox systems or in annular choice flumes. These remove the vertical stratification component so that hot and cold can be compared equally, without the vertical layering as a confounding factor. The method chosen, with its vertical stratification, is inherently unable to control for this effect because warm water is always above, and cold water is always below. This complicates the interpretations.

    1. Reviewer #2 (Public review):

      Summary:

      Egawa et al describe the developmental timeline of the assembly of nodes of Ranvier in the chick brainstem auditory circuit. In this unique system, the spacing between nodes varies significantly in different regions of the same axon from early stages, which the authors suggest is critical for accurate sound localization. Egawa et al set out to determine which factors regulate this differential node spacing. They do this by using immunohistological analyses to test the correlation of node spacing with morphological properties of the axons, and properties of oligodendrocytes, glial cells that wrap axons with the myelin sheaths that flank the nodes of Ranvier. They find that axonal structure does not vary significantly, but that oligodendrocyte density and morphology varies in the different regions traversed by these axons, which suggests this is a key determinant of the region-specific differences in node density and myelin sheath length. They also find that differential oligodendrocyte density is partly determined by secreted neuronal signals, as (presumed) blockage of vesicle fusion with tetanus toxin reduced oligodendrocyte density in the region where it is normally higher. Based on these findings, the authors propose that oligodendrocyte morphology, myelin sheath length, and consequently nodal distribution are primarily determined by intrinsic oligodendrocyte properties rather than neuronal factors such as activity.

      Major comments:

      (1) The authors should test the efficiency of TeNT to validate that vesicular release is indeed inhibited from expressing neurons. Additionally, the authors should clarify if their TeNT expression system results in the whole tract being silenced, or results in sparse vesicular release inhibition in only a few neurons.

      (2) The authors should revise their statistical analyses throughout, and supply additional information to explain the rationale for the statistical tests used, including e.g. data normality, paired sampling, number of samples/independent biological replicates.

      (3) The main finding of the study is that the density of nodes differs between two regions of the chicken auditory circuit, probably due to morphological differences in the respective oligodendrocytes. Can the authors discuss if this finding is likely to be specific to the avian auditory circuit?

      (4) The study shows a correlation between node spacing and oligodendrocyte density, but the authors did not manipulate oligodendrocyte density per se (i.e. cell-autonomously). The authors should either include such experiments, or discuss their value in supporting the interpretation of their results.

      (5) The authors should discuss very pertinent prior studies, in particular to contextualize their findings with (a) known neuron-autonomous modes of node formation prior to myelination, (b) known effects of vesicular fusion directly on myelinating capacity and oligodendrogenesis, (c) known correlation of myelin length and thickness with axonal diameter, (d) regional heterogeneity in the oligodendrocyte transcriptome.

      Significance:

      In our view the study tackles a fundamental question likely to be of interest to a specialized audience of cellular neuroscientists. This descriptive study is suggestive that in the studied system, oligodendrocyte density determines the spacing between nodes of Ranvier, but further manipulations of oligodendrocyte density per se are needed to test this convincingly.

    1. Reviewer #1 (Public review):

      Summary:

      The electrocardiogram (ECG) is routinely used to diagnose and assess cardiovascular risk. However, its interpretation can be complicated by sex-based and anatomical variations in heart and torso structure. To quantify these relationships, Dr. Smith and colleagues developed computational tools to automatically reconstruct 3D heart and torso anatomies from UK Biobank data. Their regression analysis identified key sex differences in anatomical parameters and their associations with ECG features, particularly post-myocardial infarction (MI). This work provides valuable quantitative insights into how sex and anatomy influence ECG metrics, potentially improving future ECG interpretation protocols by accounting for these factors.

      Strengths:

      (1) The study introduces an automated pipeline to reconstruct heart and torso anatomies from a large cohort (1,476 subjects, including healthy and post-MI individuals).

      (2) The 3-stage reconstruction achieved high accuracy (validated via Dice coefficient and error distances).

      (3) Extracted anatomical features enabled novel analyses of disease-dependent relationships between sex, anatomy, and ECG metrics.

      (4) Open-source code for the pipeline and analyses enhances reproducibility.

      Weaknesses:

      (1) The linear regression approach, while useful, may not fully address collinearity among parameters (e.g., cardiac size, torso volume, heart position). Although left ventricular mass or cavity volume was selected to mitigate collinearity, other parameters (e.g., heart center coordinates) could still introduce bias.

      (2) The study attributes residual ECG differences to sex/MI status after controlling for anatomical variables. However, regression model errors could distort these estimates. A rigorous evaluation of potential deviations (e.g., variance inflation factors or alternative methods like ridge regression) would strengthen the conclusions.

      (3) The manuscript's highly quantitative presentation may hinder readability. Simplifying technical descriptions and improving figure clarity (e.g., separating superimposed bar plots in Figures 2-4) would aid comprehension.

      (4) Given established sex differences in QTc intervals, applying the same analytical framework to explore QTc's dependence on sex and anatomy could have provided additional clinically relevant insights.

    1. Reviewer #1 (Public review):

      Summary:

      This is a high-quality and extensive study that reveals differences in the self-assembly properties of the full set of 109 human death fold domains (DFDs). Distributed amphifluoric FRET (DAmFRET) is a powerful tool that reveals the self-assembly behaviour of the DFDs, in non-seeded and seeded contexts, and allows comparison of the nature and extent of self-assembly. The nature of the barriers to nucleation is revealed in the transition from low to high AmFRET. Alongside analysis of the saturation concentration and protein concentration in the absence of seed, the subset of proteins that exhibited discontinuous transitions to higher-order assemblies was observed to have higher concentrations than DFDs that exhibited continuous transitions. The experiments probing the ~20% of DFDs that exhibit discontinuous transition to polymeric form suggest that they populate a metastable, supersaturated form in the absence of cognate signal. This is suggestive of a high intrinsic barrier to nucleation.

      Strengths:

      The differences in self-assembly behaviour are significant and likely identify mechanistic differences across this large family of signalling adapter domains. The work is of high quality, and the evidence for a range of behaviours is strong. This is an important and useful starting point since the different assembly mechanisms point towards specific cellular roles. However, understanding the molecular basis for these differences will require further analysis.

      An impressive optogenetic approach was engineered and applied to initiate self-assembly of CASP1 and CASP9 DFDs, as a model for apoptosome initiation in these two DFDs with differing continuous or discontinuous assembly properties. This comparison revealed clear differences in the stability and reversibility of the assemblies, supporting the hypothesis that supersaturation-mediated DFD assembly underlies signal amplification in at least some of the DFDs.

      The study reveals interesting correlations between supersaturation of DFD adapters in short- and long-lived cells, suggestive of a relationship between the mechanism of assembly and cellular context. Additionally, the comprehensive nature of the study provides strong evidence that the interactions are almost all homomeric or limited to members of the same DFD subfamily or interaction network. Similar approaches with bacterial proteins from innate immunity operons suggest that their polymerisation may be driven by similar mechanisms.

      Weaknesses:

      Only a limited investigation of assembly morphology was conducted by microscopy. There was a tendency for discontinuous structures to form fibrillar structures and continuous to populate diffuse or punctate structures, but there was overlap across all categories, which is not fully explored. The methodology used to probe oligomeric assembly and stability (SDD-AGE) does not justify the conclusions drawn regarding stability and native structure within the assemblies.

      The work identifies important differences between DFDs and clearly different patterns of association. However, most of the detailed analysis is of the DFDs that exhibit a discontinuous transition, and important questions remain about the majority of other DFDs and why some assemblies should be reversible and others not, and about the nature of signalling arising from a continuous transition to polymeric form.

      Some key examples of well-studied DFDs, such as MyD88 and RIPK,1 deserve more discussion, since they display somewhat surprising results. More detailed exploration of these candidates, where much is known about their structures and the nature of the assemblies from other work, could substantiate the conclusions here and transform some of the conclusions from speculative to convincing.

      The study concludes with general statements about the relationship between stochastic nucleation and mortality, which provide food for thought and discussion but which, as they concede, are highly speculative. The analogies that are drawn with batteries and privatisation will likely not be clearly understood by all readers. The authors do not discuss limitations of the study or elaborate on further experiments that could interrogate the model.

    1. Reviewer #1 (Public review):

      Summary:

      This work shows that a specific adenosine deaminase protein in Dictyostelium generates the ammonia that is required for tip formation during Dictyostelium development. Cells with an insertion in the adgf gene aggregate but do not form tips. A remarkable result, shown by several different ways, is that the adgf mutant can be rescued by exposing the mutant to ammonia gas. The authors also describe other phenotypes of the adgf mutant such as increased mound size, altered cAMP signaling, and abnormal cell type differentiation. It appears that the adgf mutant has defects the expression of a large number of genes, resulting in not only the tip defect but also the mound size, cAMP signaling, and differentiation phenotypes.

      Strengths:

      The data and statistics are excellent.

      Weaknesses:

      The key weakness is understanding why the cells bother to use a diffusible gas like ammonia as a signal to form a tip and continue development. The rescue of the mutant by adding ammonia gas to the entire culture indicates that ammonia conveys no positional information within the mound. By the time the cells have formed a mound, the cells have been starving for several hours, and desperately need to form a fruiting body to disperse some of themselves as spores, and thus need to form a tip no matter what. One can envision that the local ammonia concentration is possibly informing the mound that some minimal number of cells are present (assuming that the ammonia concentration is proportional to the number of cells), but probably even a miniscule fruiting body would be preferable to the cells compared to a mound. This latter idea could be easily explored by examining the fate of the adgf cells in the mound - do they all form spores? Do some form spores? Or perhaps the ADGF is secreted by only one cell type, and the resulting ammonia tells the mound that for some reason that cell type is not present in the mound, allowing some of the cells to transdifferentiate into the needed cell type. Thus elucidating if all or some cells produce ADGF would greatly strengthen this puzzling story.

      Comments on revisions:

      Looks better, but I think you answered my questions (listed as weaknesses in the public review) in the reply to the reviewer but not in the paper. I'd suggest carefully thinking about my questions and addressing them in the Discussion. You did however do all of the things in the paper that were listed as "Recommendations for the authors"

    1. Reviewer #1 (Public review):

      Summary:

      The paper sets out to examine the social recognition abilities of a 'solitary' jumping spider species. It demonstrates that based on vision alone spiders can habituate and dishabituate to the presence of conspecifics. The data support the interpretation that these spiders can distinguish between conspecifics on the basis of their appearance.

      Strengths:

      The study presents two experiments. The second set of data recapitulates the findings of the first experiment with a independent set of spiders, highlighting the strength of the results. The study also uses a highly quantitative approach to measuring relative interest between pairs of spiders based on their distance.

      Weaknesses:

      The study design is overly complicated, while missing key controls, and the data presented in the figures are not clearly connected to study. The discussion is challenging to understand and appears to make unsupported conclusions.

      (1) Study design: The study design is rather complicated and as a result it is difficult to interpret the results. The spiders are presented with the same individual twice in a row, called a habituation trial. Then a new individual is presented twice in a row. The first of these is a dishabituation trial and the second another habituation trial (but now habituating to a second individual). This done with three pairings and then this entire structure is repeated over three sessions. The data appear to show the strong effects of differences between habituation and dishabituation trials in the first session. The decrease in differential behavior between the so-called habituation and dishabituation trials in sessions 2 and 3 are explained as a consequence of the spiders beginning to habituate in general to all of the individuals. The claim that the spiders remember specific individuals is somewhat undercut because all of the 'dishabituation' trials in session 2 are toward spiders they already met for 14 minute previously but seemingly do not remember in session 2. In session 3 it is ambiguous what is happening because the spiders no longer differentiate between the trial types. This could be due to fatigue or familiarity. A second experiment is done to show that introducing a totally novel individual, recovers a large dishabituation response, suggesting that the lack of differences between 'habituation' and 'dishabituation' trials in session 3 is the result of general habituation to all of the spiders in the session rather than fatigue. As mentioned before, these data do support the claim that the spiders differentiate among individuals.

      The data from session 1 are easy to interpret. The data from sessions 2 and 3 are harder to understand, but these are the trials in which they meet an individual again after a substantial period of separation. Other studies looking at recognition in ants and wasps (cited by the authors) have done a 4 trial design in which focal animal A meets B in the first trial, then meet C in the second trial, meets B again in the third trial, and then meets D in the last trial. In that scenario trials 1, 2 and 4 are between unfamiliar individuals and trial 3 is between potentially familiar individuals. In both the ants and wasps, high aggression is seen in species with and without recognition on trial 1, with low aggression specifically for trials with familiar individuals in species with recognition. Across different tests, species or populations that lack recognition have shown a general reduction in aggression towards all individuals that becomes progressively less aggressive over time (reminiscent of the session 2 and 3 data) while others have maintained modest levels of aggression across all individuals. The 4 session design used in those other studies provides an unambiguous interpretation of the data, while controlling for 'fatigue'. That all trials in sessions 2 and 3 are always with familiar individuals make it challenging to understand how much the spiders are habituating to each other versus having some kind of associative learning of individual identity and behavior.

      The data presentation is also very complicated. How is it the case that a negative proportion of time is spent? The methods reveal that this metric is derived by comparing the time individuals spent in each region relative to the previous time they saw that individual. At the very least, data showing the distribution of distances from the wall would be much easier to interpret for the reader.

      (2) "Long-term social memory": It is not entirely clear what is meant by the authors when they say 'long-term social memory', though typically long-term memory refers to a form of a memory that require protein synthesis. While the precise timing of memory formation varies across species and contexts, a general rule is that long term memory should last for > 24 hours (e.g., Dreier et al 2007 Biol Letters). The longest time that spider are apart in this trial set up is something like an hour. There is no basis to claim that spiders have long term social memory as they are never asked to remember anyone after a long time apart. The odd phrasing of the 'long-term dishabutation' trial makes it seem that it is testing a long-term memory, but it is not. The spiders have never met. The fact that they are very habituated to one set of stimuli and then respond to a new stimulus is not evidence of long-term memory. To clearly test memory (which is the part really lacking from the design), the authors would need to show that spiders - upon the first instance of re-encountering a previously encountered individual are already 'habituated' to them but not to some other individuals. The current data suggest this may be the case, but it is just very hard to interpret given the design does not directly test memory of individuals in a clear and unambiguous manner.

      (3) Lack of a functional explanation and the emphasis on 'asociality': It is entirely plausible that recognition is pleitropic byproduct of the overall visual cognition abilities in the spiders. However, the discussion that discounts territoriality as a potential explanation is not well laid out. First, many species that are 'asocial' nevertheless defend territories. It is perhaps best to say such species are not group living, but they have social lives because they encounter conspecifics and need to interact with them. Indeed, there are many examples of solitary living species that show the dear enemy effect, a form of individual recognition, towards familiar territorial neighbors. The authors in this case note that territorial competition is mediated by the size of color of the chelicerae (seemingly a trait that could be used to distinguish among individuals). Apparently because previous work has suggested that territorial disputes can be mediated by a trait in the absence of familiarity has led them to discount the possibility that keeping track of the local neighbors in a potentially cannibalistic species could be a sufficient functional reason. In any event, the current evidence presented certainly does not warrant discounting that hypothesis.

      Comments on Revision:

      The authors have not actually addressed my points and their comments conflate discrimination with recognition. The extensive discussion about how babies are tested for discrimination tasks in their rebuttal misses the point. I believe that the data do show that the spiders discriminate between individuals but whether individuals are recognized (i.e., remembered) is less clear. The authors defend their convoluted study design, but it is overly complex and challenging to interpret the data as a result.

      The main issue with the design is that they do not actually test for any kind of memory of specific individuals after a substantial time of separation. Instead they show that a new individuals is still surprising/dishabituating. That is nice evidence for discrimination but does not show memory in a clear and unambiguous way.

      My comments and critique are unchanged since they didn't really change the paper. New experiments were needed and they didn't do any. Perhaps it is hard to get the spiders where they are? I don't really understand why they didn't do additional experiments as part of this revision.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to explore how interdisciplinarity and internationalization-two increasingly prominent characteristics of scientific publishing-have evolved over the past century. By constructing entropy-based indices from a large-scale bibliometric dataset (OpenAlex), they examine both long-term trends and recent dynamics in these two dimensions across a selection of leading disciplinary and multidisciplinary journals. Their goal is to identify field-specific patterns and structural shifts that can inform our understanding of how science has become more globally collaborative and intellectually integrated.

      Strengths and Weaknesses:

      The paper's primary strength lies in its comprehensive temporal scope and use of a rich, openly available dataset covering over 56 million articles. The interdisciplinary and internationalization indices are well-founded and allow meaningful comparisons across fields and time. Moreover, the distinction between disciplinary and multidisciplinary journals adds valuable nuance. However, some methodological choices, such as the use of a 5-year sliding window to compute trend values, are insufficiently justified and under-explained. The paper also does not fully address disparities in data coverage across disciplines and time, which may affect the reliability of historical comparisons. Finally, minor issues in grammar and clarity reduce the overall polish of the manuscript.

      Evaluation of Findings:

      Overall, the authors have largely succeeded in achieving their stated aims. The findings-such as the sharp rise in internationalization in fields like Physics, and the divergence in interdisciplinarity trends across disciplines-are clearly presented and generally well-supported by the data. The authors effectively demonstrate that scientific journals have not followed a uniform trajectory in terms of structural evolution. However, greater clarity in trend estimation methods and better acknowledgment of dataset limitations would help to further substantiate the conclusions and enhance their generalizability.

      Impact and Relevance:

      This study makes a timely and meaningful contribution to the fields of scientometrics, sociology of science, and science policy. Its combination of scale, historical depth, and field-level comparison offers a useful framework for understanding changes in scientific publishing practices. The entropy-based indicators are simple yet flexible, and the use of open bibliometric data enhances reproducibility and accessibility for future research. Policymakers, journal editors, and researchers interested in publication dynamics will likely find this work informative, and its methods could be applied or extended to other structural dimensions of scholarly communication.

    1. Reviewer #1 (Public review):

      Summary:

      This work investigated whether cytoplasmic poroelastic properties play an important role in cellular mechanical response over length scales and time scales relevant to cell physiology. Overall, the manuscript concludes that intracellular cytosolic flows and pressure gradients are important for cell physiology and that they act of time- and length-scales relevant to mechanotransduction and cell migration.

      Strengths:

      Their approach integrates both computational and experimental methods. The AFM deformation experiments combined with measuring z-position of beads is a challenging yet compelling method to determine poroelastic contributions to mechanical realization.

      The work is quite interesting and will be of high value to the field of cell mechanics and mechanotransduction.

      Weaknesses:

      The weaknesses I noted earlier were adequately addressed in the revised version.

    1. Reviewer #1 (Public review):

      The study presents significant findings on the role of mitochondrial depletion in axons and its impact on neuronal proteostasis. It effectively demonstrates how the loss of axonal mitochondria and elevated levels of eIF2β contribute to autophagy collapse and neuronal dysfunction. The use of Drosophila as a model organism and comprehensive proteome analysis adds robustness to the findings.

      In this revision, the authors have responded thoughtfully to previous concerns. In particular, they have addressed the need for a quantitative analysis of age-dependent changes in eIF2β and eIF2α. By adding western blot data from multiple time points (7 to 63 days), they show that eIF2β levels gradually increase until middle age, then decline. In milton knockdown flies, this pattern appears shifted, supporting the idea that mitochondrial defects may accelerate aging-related molecular changes. These additions clarify the temporal dynamics of eIF2β and improve the overall interpretation.

      Other updates include appropriate corrections to figures and quantification methods. The authors have also revised some of their earlier mechanistic claims, presenting a more cautious interpretation of their findings.

      Overall, this work provides new insights into how mitochondrial transport defects may influence aging-related proteostasis through eIF2β. The manuscript is now more convincing, and the revisions address the main points raised earlier. I find the updated version much improved.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang and colleagues examine neural representations underlying abstract navigation in the entorhinal cortex (EC) and hippocampus (HC) using fMRI. This paper replicates a previously identified hexagonal modulation of abstract navigation vectors in abstract space in EC in a novel task involving navigating in a conceptual Greeble space. In HC, the authors claim to identify a three-fold signal of the navigation angle. They also use a novel analysis technique (spectral analysis) to look at spatial patterns in these two areas and identify phase coupling between HC and EC. Finally, the authors propose an EC-HPC PhaseSync Model to understand how the EC and HC construct cognitive maps. While the wide array of techniques used is impressive and their creativity in analysis is admirable, overall, I found the paper a bit confusing and unconvincing. I recommend a significant rewrite of their paper to motivate their methods and clarify what they actually did and why. The claim of three-fold modulation in HC, while potentially highly interesting to the community, needs more background to motivate why they did the analysis in the first place, more interpretation as to why this would emerge in biology, and more care taken to consider alternative hypotheses seeped in existing models of HC function. I think this paper does have potential to be interesting and impactful, but I would like to see these issues improved first.

      General comments:

      (1) Some of the terminology used does not match the terminology used in previous relevant literature (e.g., sinusoidal analysis, 1D directional domain).

      (2) Throughout the paper, novel methods and ideas are introduced without adequate explanation (e.g., the spectral analysis and three-fold periodicity of HC).

    1. Reviewer #1 (Public review):

      Summary:

      The aim of the experiment reported in this paper is to examine the nature of the representation of a template of an upcoming target. To this end, participants were presented with compound gratings (consisting of tilted to the right and tilted to the left lines) and were cued to a particular orientation - red left tilt or blue right tilt (counterbalanced across participants). There two directly compared conditions: (i) no ping: where there was a cue, that was followed by a 5.5-7.5s delay, then followed by a target grating in which the cued orientation deviated from the standard 45 degrees; and (ii) ping condition in which all aspects were the same with the only difference that a ping (visual impulse presented for 100ms) was presented after the 2.5 seconds following the cue. There was also a perception task in which only the 45 degrees to the right or to the left lines were presented. It was observed that during the delay, only in the ping condition, were the authors able to decode orientation of the to be reported target using the cross-task generalization. Attention decoding, on the other hand, was decoded in both ping and non-ping conditions. It is concluded that the visual system has two different functional states associated with a template during preparation: a predominantly non-sensory representation for guidance and a latent sensory-like for prospective stimulus processing.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative -the cross-task decoding, the use of Mahalanobis distance as a function of representational similarity, the fact that the question is theoretically interesting, the excellent figures.

      Comments on revisions:

      I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      This study evaluates whether species can shift geographically, temporally, or both ways in response to climate change. It also teases out the relative importance of geographic context, temperature variability, and functional traits in predicting the shifts. The study system is large occurrence datasets for dragonflies and damselflies split between two time periods and two continents. Results indicate that more species exhibited both shifts than one or the other (or neither), and that geographic context and temperature variability were more influential than traits. The results have implications for future analyses (e.g. incorporating habitat availability) and for choosing winner and loser species under climate change. The results also seem to support climate vulnerability assessments for species that rely on geographic range size and geospatial climate data layers rather than more detailed information (like demographic rates, abundances, or traits) that may not be so readily available. The methodology would be useful for other taxa and study regions with strong participatory ("citizen") science and extensive occurrence data.

      Strengths:

      This is an organized and well written paper that builds on a popular topic and moves it forward. It has the right idea and approach, and the results are useful answers to the predictions and for conservation planning (i.e. identifying climate winners and losers). There is technical proficiency and analytical rigor driven by an understanding of the data and its limitations.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript explores behavioral responses of C. elegans to hydrogen sulfide, which is known to exert remarkable effects on animal physiology in a range of contexts. The possibility of genetic and precise neuronal dissection of responses to H2S motivates the study of responses in C. elegans. The revised manuscript does not seem to have significantly addressed what was lacking in the initial version.

      The authors have added further characterization of possible ASJ sensing of H2S by calcium imaging but ASJ does not appear to be directly involved. Genetic and parallel analysis of O2 and CO2 responsive pathways do not reveal further insights regarding potential mechanisms underlying H2S sensing. Gene expression analysis extends prior work. Finally, the authors have examined how H2S-evoked locomotory behavioral responses are affected in mutants with altered stress and detoxification response to H2S, most notably hif-1 and egl-9. These data, while examining locomotion, are more suggestive that observed effects on animal locomotion are secondary to altered organismal toxicity as opposed to specific behavioral responedse

      Overall, the manuscript provides a wide range of intriguing observations, but mechanistic insight or a synthesis of disparate data is lacking.

    1. Reviewer #1 (Public review):

      The revised manuscript addresses several reviewer concerns, and the study continues to provide useful insights into how ZIP10 regulates zinc homeostasis and zinc sparks during fertilization in mice. The authors have improved the clarity of the figures, shifted emphasis in the abstract more clearly to ZIP10, and added brief discussion of ZIP6/ZIP10 interactions and ZIP10's role in zinc spark-calcium oscillation decoupling. However, some critical issues remain only partially addressed.

      (1) Oocyte health confound: The use of Gdf9-Cre deletes ZIP10 during oocyte growth, meaning observed defects could result from earlier disruptions in zinc signaling rather than solely from the absence of zinc sparks at fertilization. The authors acknowledge this and propose transcriptome profiling as a future direction. However, since mRNA levels often do not accurately reflect protein levels and activity in oocytes, transcriptomics may not be particularly informative in this context. Proteomic approaches that directly assess the molecular effects of ZIP10 loss seem more promising. Although current sensitivity limitations make proteomics from small oocyte samples challenging, ongoing improvements in this area may soon allow for more detailed mechanistic insights.

      (2) ZIP6 context and focus: The authors clarified the abstract to emphasize ZIP10, enhancing narrative clarity. This revision is appropriate and appreciated.

      (3) Follicular development effects: The biological consequences of ZIP6 and ZIP10 knockout during folliculogenesis are still unknown. The authors now say these effects will be studied in the future, but this still leaves a major mechanistic gap unaddressed in the current version.

      (4) Zinc spark imaging and probe limitations: The addition of calcium imaging enhances the clarity of Figure 3. However, zinc fluorescence remains inadequate, and the authors depend solely on FluoZin-3AM, a dye known for artifacts and limited ability to detect subcellular labile zinc. The suggestion that C57BL/6J mice may differ from CD1 in vesicle appearance is plausible but does not fully address concerns about probe specificity and resolution. As the authors acknowledge, future studies with more selective probes would increase confidence in both the spatial and quantitative analysis of zinc dynamics.

      (5) Mechanistic insight remains limited: The revised discussion now recognizes the lack of detailed mechanistic understanding but does not significantly expand on potential signaling pathways or downstream targets of ZIP10. The descriptive data are useful, but the inability to pinpoint how ZIP10 mediates zinc spark regulation remains a key limitation. Again, proteomic profiling would probably be more informative than transcriptomic analysis for identifying ZIP10-dependent pathways once technical barriers to low-input proteomics are overcome.

      Overall, the authors have reasonably revised and clarified key points raised by reviewers, and the manuscript now reads more clearly. However, the main limitation, lack of mechanistic insight and the inability to distinguish between developmental and fertilization-stage roles of ZIP10, remains unresolved. These should be explicitly acknowledged when framing the conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      This study builds on earlier work showing that early-life odor exposure can trigger glial-mediated pruning of specific olfactory neuron terminals in Drosophila. Moving from indirect to direct functional imaging, the authors show that pruning during a narrow developmental window leads to long-lasting suppression of odor responses in one neuron type (Or42a) but not another (Or43b). The combination of calcium and voltage imaging with connectomic analysis is a strength, though the voltage imaging results are less straightforward to interpret and may not reflect synaptic output changes alone.

      Strengths:

      Biologically, one of the main strengths of this work is the direct comparison between two odor-responsive OSN types that differ in their long-term adaptation to early-life odor exposure. While Or42a OSNs undergo pruning and remain persistently suppressed into late adulthood, Or43b OSNs, which also respond to the same odor, show little lasting change. This contrast not only underscores the cell-type specificity of critical-period plasticity but also points to a potential role of inhibitory network architecture in determining susceptibility. The persistence of the Or42a suppression well beyond the developmental window provides compelling evidence that early glia-mediated pruning can imprint a stable, life-long functional state on selected sensory channels. By situating these functional outcomes within the context of detailed connectomic data, the study offers a framework for linking structural connectivity to long-term sensory coding stability or vulnerability.

      Weaknesses:

      The narrative begins with the absence of changes in PN dendrites and axons. While this establishes specificity, it is a relatively weak starting point compared to the novel OSN functional results. Calcium imaging with GCaMP, though widely used, is an indirect measure of synaptic function, and reduced signals could reflect changes in non-synaptic calcium influx as well as release probability. The interpretation of the voltage imaging results is also unclear: if suppression were solely due to impaired synaptic release, one might expect action potential-evoked voltage signals to remain unchanged. The reported changes raise the possibility of deficits in action potential initiation or propagation, which would shift the mechanistic explanation.

      The difference between Or42a and Or43b OSNs is attributed to varying inhibitory input densities from connectome data, but this remains speculative without functional tests such as manipulating GABA receptor expression in OSNs. In Or43b, there is essentially no strong phenotype, making it premature to ascribe the absence of suppression solely to inhibitory connectivity. Finally, the study does not connect circuit-level changes to behavioral outcomes; assays of odor-guided attraction or discrimination could place the findings in an organismal context. Some introduction material overlaps with the authors' 2024 paper, and the novelty of the present study could be signposted more clearly.

    1. Reviewer #1 (Public review):

      Summary:

      The authors performed an in-depth analysis of three mouse strains with different levels of susceptibility to metabolic disease. Transcriptomics analyses of relevant deep tissues revealed many strain-specific differences in response to diet. They used gene set enrichment analysis to highlight possible biological pathways that may be involved in obesity and its metabolic consequences. These results were then confirmed using public data in both mice and humans.

      Strengths:

      Overall, this is an interesting study into the biological basis of differing phenotypic outcomes in response to metabolic challenges. The findings uncover several pathways that may shed light on the etiology of obesity and the associated health risks, as well as offer potential therapeutic avenues to prevent them.

      Weaknesses:

      While the experimental design and analysis are mostly good, some aspects of the present paper could be improved.

      (1) Most results are insufficiently described. P-values are almost entirely absent in the main text. Sometimes the significance is indicated in the figures, and other times it is missing. For example, strains are sometimes described as having a higher XYZ, something that is never shown in the plots, and no p-value is ever given.

      (2) While the biological methods are meticulously described, statistical methods are barely mentioned in the methods section. For example, line 578, "multiple comparisons (...) were performed using the glht function of the multcomp package". What is this? What method does it use? And how was mediation analysis done? Line 575 mentions that models were compared, with no description of how this was done. Mentioning the package (or even function) is not sufficient. The package and function are an implementation; they are not the method. The actual method needs to be clearly mentioned and (at least minimally) described, in addition to having the reference for methods that are not ubiquitous (i.e., the Benjamin-Hochberg method is well-enough established to forgo this).

      (3) The methods should also be briefly introduced in the results section before describing the results of those methods.

      (4) The role of immune signaling pathways and associated phenotypes (e.g., monocyte fraction) is over-interpreted. While the differences shown are convincing, they do not convincingly show a role in either obesity or disease. The parsimonious explanation is that such changes happen as a consequence of dyslipidemia rather than a cause. It is possible that these pathways play a more direct role in this, but the authors do not present compelling evidence of this, and, failing this, the language in the text needs to be toned down.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Yamazaki et al. conducted multiple microscopy-based GFP localization screens, from which they identified proteins that are associated with PM/cell wall damage stress response. Specifically, the authors identified that bud-localized TMD-containing proteins and endocytotic proteins are associated with PM damage stress. The authors further demonstrated that polarized exocytosis and CME are temporally coupled in response to PM damage, and CME is required for polarized exocytosis and the targeting of TMD-containing proteins to the damage site. From these results, the authors proposed a model that CME delivers TMD-containing repair proteins between the bud tip and the damage site.

      Strengths:

      Overall, this is a well-written manuscript, and the experiments are well-conducted. The authors identified many repair proteins and revealed the temporal coordination of different categories of repair proteins. Furthermore, the authors demonstrated that CME is required for targeting of repair proteins to the damage site, as well as cellular survival in response to stress related to PM/cell wall damage. Although the roles of CME and bud-localized proteins in damage repair are not completely new to the field, this work does have conceptual advances by identifying novel repair proteins and proposing the intriguing model that the repairing cargoes are shuttled between the bud tip and the damaged site through coupled exocytosis and endocytosis.

      Weaknesses:

      While the results presented in this manuscript are convincing, they might not be sufficient to support some of the authors' claims. Especially in the last two result sessions, the authors claimed CME delivers TMD-containing repair proteins from the bud tip to the damage site. The model is no doubt highly possible based on the data, but caveats still exist. For example, the repair proteins might not be transported from one localization to another localization, but are degraded and resynthesized. Although the Gal-induced expression system can further support the model to some extent, I think more direct verification (such as FLIP or photo-convertible fluorescence tags to distinguish between pre-existing and newly synthesized proteins) would significantly improve the strength of evidence.

      Major experiment suggestions:

      (1) The authors may want to provide more direct evidence for "protein shuttling" and for excluding the possibility that proteins at the bud are degraded and synthesized de novo near the damage site. For example, if the authors could use FLIP to bleach bud-localized fluorescent proteins, and the damaged site does not show fluorescent proteins upon laser damage, this will strongly support the authors' model. Alternatively, the authors could use photo-convertible tags (e.g., Dendra) to differentiate between pre-existing repair proteins and newly synthesized proteins.

      (2) In line with point 1, the authors used Gal-inducible expression, which supported their model. However, the author may need to show protein abundance in galactose, glucose, and upon PM damage. Western blot would be ideal to show the level of full-length proteins, or whole-cell fluorescence quantification can also roughly indicate the protein abundance. Otherwise, we cannot assume that the tagged proteins are only expressed when they are growing in galactose-containing media.

      (3) Similarly, for Myo2 and Exo70 localization in CME mutants (Figure 4), it might be worth doing a western or whole-cell fluorescence quantification to exclude the caveat that CME deficiency might affect protein abundance or synthesis.

      (4) From the authors' model in Figure 7, it looks like the repair proteins contribute to bud growth. Does laser damage to the mother cell prevent bud growth due to the reduction of TMD-containing repair proteins at the bud? If the authors could provide evidence for that, it would further support the model.

      (5) Is the PM repair cell-cycle-dependent? For example, would the recruitment of repair proteins to the damage site be impaired when the cells are under alpha-factor arrest?

    1. Reviewer #1 (Public review):

      (1) In this study, the authors aimed at characterizing Huntington's Disease (HD) - related microstructural abnormalities in the basal ganglia and thalami as revealed using Soma and Neurite Density Imaging (SANDI) indices (apparent soma density, apparent soma size, extracellular water signal fraction, extracellular diffusivity, apparent neurite density, fractional anisotropy and mean diffusivity).

      (2) The study implements a novel biophysical diffusion model that extends up-to-date methodologies and presents a significant potential for quantifying neurodegenerative processes of the grey matter of the human brain in vivo. The authors comment on the usefulness of this technique in other pathologies, but they exemplify it only with multiple sclerosis. Further development of this, building evidence, should be provided.

      (3) The study found that HD-related neurodegeneration in the striatum accounted significantly for striatal atrophy and correlated with motor impairments. HD was associated with reduced soma density, increased apparent soma size, and extracellular signal fraction in the basal ganglia, but not in the thalami. Additionally, these effects were larger at the manifest stage.

      (4) The results of this work demonstrate the impact of HD on the basal ganglia and thalami, which can be further explored as a non-invasive biomarker of disease progression. Additionally, the study shows that SANDI can be used to explore grey matter microstructure in a variety of neurological conditions.

    1. Reviewer #3 (Public review):

      This is a fundamentally important study presenting cryo-EM structures of a human small conductance calcium-activated potassium (SK2) channel in the absence and presence of calcium, or with interesting pharmacological probes bound, including the bee toxin apamin, a small molecule inhibitor, and a small molecule activator. As efforts to solve structures of the wild-type hSK2 channel were unsuccessful, the authors engineered a chimera containing the intracellular domain of the SK4 channel, the subtype of SK channel that was successfully solved in a previous study (reference 13). The authors present many new and exciting findings, including opening of an internal gate (similar to SK4), for the first time resolving the S3-S4 linker sitting atop the outer vestibule of the pore and unanticipated plasticity of the ion selectivity filter, and the binding sites for apamin, one new small molecule inhibitor and another small molecule activator. Appropriate functional data are provided to frame interpretations arising from the structures of the chimeric protein; the data are compelling, the interpretations are sound, and the writing is clear. This high-quality study will be of interest to membrane protein structural biologists, ion channel biophysicists, and chemical biologists, and will be valuable for future drug development targeting SK channels.

      Comments on revisions:

      The authors have done a nice job of revising the manuscript to address the issues raised in the first round of review and I have no further suggestions.

    1. Reviewer #1 (Public review):

      While the structure of the melibiose permease in both outward and inward-facing forms has been solved previously, there remain unanswered questions regarding its mechanism. Hariharan et al set out to address this with further crystallographic studies complemented with ITC and hydrogen-deuterium exchange (HDX) mass spectrometry. They first report 4 different crystal structures of galactose derivatives to explore molecular recognition, showing that the galactose moiety itself is the main source of specificity. Interestingly, they observe a water-mediated hydrogen bonding interaction with the protein and suggest that this water molecule may be important in binding.

      The results from the crystallography appear sensible, though the resolution of the data is low, with only the structure with NPG better than 3Å. However, it is a bit difficult to understand what novel information is being brought out here and what is known about the ligands. For instance, are these molecules transported by the protein or do they just bind? They measure the affinity by ITC, but draw very few conclusions about how the affinity correlates with the binding modes. Can the protein transport the trisaccharide raffinose?

      The HDX also appears to be well done; however, in the manuscript as written, it is difficult to understand how this relates to the overall mechanism of the protein and the conformational changes that the protein undergoes.

    1. Reviewer #2 (Public review):

      General comment:

      This is a very valuable and unique comparative study. An excellent combination of scanning and histological data from three different species is presented. Obtaining the material for such a comparative study is never trivial. The study presents new data and thus provides the basis for an in-depth discussion about chondrichthyan mineralised skeletal tissues.

      Comments on previous revisions:

      The manuscript has been revised and improved and can be published. A very nice manuscript, indeed. My only recommendation (point of discussion, not a requirement) would still be to think about the claim of paedomorphosis in a holocephalan.

      Within the chondrichthyes, how distant holocephali are in relation to elasmobranchii remains uncertain, holocephali are quite a specialised group. Holocephali are also older than Batoidea and Selachii. As paedomorphosis is a derived character, I imagine it is difficult to establish that development in an extant holocephalan is derived compared to development in elasmobranchii. If this type of development would have been typical for the "older" holocephali it would not be paedomorphic. Also, the uncertainty how distant holocephali are from elasmobranchii makes it difficult to identify paedomorphosis with reference to chondrichthyes.

      [Editors note: the authors have made further revisions in response to the previous reviews.]

    1. Reviewer #1 (Public review):

      Summary:

      Participants learned a graph-based representation, but, contrary to the hypotheses, failed to show neural replay shortly after. This prompted a critical inquiry into temporally delayed linear modeling (TDLM)--the algorithm used to find replay. First, it was found that TDLM detects replay only at implausible numbers of replay events per second. Second, it detects replay-to-cognition correlations only at implausible densities. Third, there are concerning baseline shifts in sequenceness across participants. Fourth, spurious sequences arise in control conditions without a ground truth signal. Fifth, when reframing simulations previously published, similar evidence is apparent.

      Strengths:

      (1) This work is meticulous and meets a high standard of transparency and open science, with preregistration, code and data sharing, external resources such as a GUI with the task and material for the public.

      (2) The writing is clear, balanced, and matter-of-fact.

      (3) By injecting visually evoked empirical data into the simulation, many surface-level problems are avoided, such as biological plausibility and questions of signal-to-noise ratio.

      (4) The investigation of sequenceness-to-cognition correlations is an especially useful add-on because much of the previous work uses this to make key claims about replay as a mechanism.

      Weaknesses:

      Many of the weaknesses are not so much flaws in the analyses, but shortcomings when it comes to interpretation and a lack of making these findings as useful as they could be.

      (1) I found the bigger picture analysis to be lacking. Let us take stock: in other work, during active cognition, including at least one study from the Authors, TDLM shows significance sequenceness. But the evidence provided here suggests that even very strong localizer patterns injected into the data cannot be detected as replay except at implausible speeds. How can both of these things be true? Assuming these analyses are cogent, do these findings not imply something more destructive about all studies that found positive results with TDLM?

      (2) All things considered, TDLM seems like a fairly 'vanilla' and low-assumption algorithm for finding event sequences. It is hard to see intuitively what the breaking factor might be; why do the authors think ground truth patterns cannot be detected by this GLM-based framework at reasonable densities?

      (3) Can the authors sketch any directions for alternative methods? It seems we need an algorithm that outperforms TDLM, but not many clues or speculations are given as to what that might look like. Relatedly, no technical or "internal" critique is provided. What is it about TDLM that causes it to be so weak?

      Addressing these points would make this manuscript more useful, workable, and constructive, even if they would not necessarily increase its scientific breadth or strength of evidence.

    1. Reviewer #1 (Public review):

      Summary:

      The authors strived for an inventory of GPCRs and GPCR pathway component genes within the genomes of 23 choanoflagellates and other close relatives of metazoans.

      Strengths:

      The authors generated a solid phylogenetic overview of the GPCR superfamily in these species. Intriguingly, they discover novel GPCR families, novel assortments of domain combinations, novel insights into the evolution of those groups within the Opisthokonta clade. A particular focus is laid on adhesion GPCRs, for which the authors discover many hitherto unknown subfamilies based on Hidden Markov Models of the 7TM domain sequences, which were also reflected by combinations of extracellular domains of the homologs. In addition, the authors provide bioinformatic evidence that aGPCRs of choanoflagellates also contained a GAIN domain, which are self-cleavable thereby reflecting the most remarkable biochemical feat of aGPCRs.

      Weaknesses:

      The chosen classification scheme for aGPCRs may require reassessment and amendment by the authors in order to prevent confusion with previously issued classification attempts of this family.

    1. Reviewer #1 (Public review):

      Summary:

      Rolland and colleagues investigated the interaction between Vibrio bacteria and Alexandrium algae. The authors found a correlation between the abundance of the two in the Thau Lagoon and observed in the laboratory that Vibrio grows to higher numbers in the presence of the algae than in monoculture. Time-lapse imaging of Alexandrium in coculture with Vibrio enabled the authors to observe Vibrio bacteria in proximity to the algae and subsequent algae death. The authors further determine the mechanism of the interaction between the two and point out similarities between the observed phenotypes and predator-prey behaviours across organisms.

      Strengths:

      The study combines field work with mechanistic studies in the laboratory and uses a wide array of techniques ranging from co-cultivation experiments to genetic engineering, microscopy and proteomics. Further, the authors test multiple Vibrio and Alexandria species and claim a wide spread of the observed phenotypes.

      Weaknesses:

      In my view, the presentation of the data is in some cases not ideal. The phrasing of some conclusions (e.g., group-attacks and wolf-pack-hunting by the bacteria) is in my opinion too strong based on the herein provided data.

    1. Reviewer #1 (Public review):

      Summary

      In this manuscript, Singh, Wu and colleagues explore functional links between septins and the exocyst complex. The exocyst in a conserved octameric complex that mediates the tethering of secretory vesicles for exocytosis in eukaryotes. In fission yeast cells, the exocyst is necessary for cell division, where it localizes mostly at the rim of the division plane, but septins, which localize in a similar manner, are non-essential. The main findings of the work are that septins are required for the specific localization of the exocyst to the rim of the division plane, and the likely consequent localization of the glucanase Eng1 at this same location, where it is known to promote cell separation. In absence of septins, the exocyst still localizes to the division plane, but is not restricted to the rim. They also show some defect in the localization of secretory vesicles and glucan synthase cargo. They further show interactions between septins and exocyst subunits through coIP experiments.

      Strengths

      The septin, exocyst and Eng1 localization data are well supported, showing that the septin rim recruits the exocyst and (likely consequently) the Eng1 glucanase at this location. One important finding of the manuscript is that of a physical interaction between septins and exocyst subunits in co-immunoprecipitation experiments.

      Weaknesses

      While interactions are supported by coIP experiments, the AlphaFold-predicted septin-exocyst interactions are not very convincing and the predicted binding interfaces are not supported by mutation analysis. A further open question is whether septins interact with the intact exocyst complex or whether the interactions occur only with individual subunits. The two-hybrid and coIP data only show weak interactions with individual subunits, and some coIPs (for instance Sec3 and Exo70 with Spn1 and Spn4) are negative, suggesting that the exocyst complex may not remain intact in these experiments.

    1. Reviewer #1 (Public review):

      Summary:

      The authors make a bold claim that a combination of repetitive transcranial magnetic stimulation (intermittent theta burst-iTBS) and transcranial alternating current stimulation (gamma tACS) causes slight improvements in memory in a face/name/profession task.

      Strengths:

      The idea of stimulating the human brain non-invasively is very attractive because, if it worked, it could lead to a host of interesting applications. The current study aims to evaluate one such exciting application.

    1. Reviewer #1 (Public review):

      In this manuscript, Lau et al reported that KDM5 inhibition in luminal breast cancer cells results in R-loop-mediated DNA damage, reduced cell fitness and an increase in ISG and AP signatures as well as cell surface Major Histocompatibility Complex (MHC) class I, mediated by RNA:DNA hybrid activation of the CGAS/STING pathway.

      Their studies have shown that KDM5 inhibition/loss mediates a viral mimicry and DNA damage response through the generation of R-loops in genomic repeats. This is a different mechanism from the more well studied double-stranded RNA-induced "viral mimicry" response.

      More importantly, they have shown that KDM5 inhibition does not result in DNA damage or activation of the CGAS/STING pathway in normal breast epithelial cells, suggesting that KDM5 inhibitors may enable a wide therapeutic window in this setting, as compared to STING agonists or Type I Interferons.

      Their findings provide new insights into the interplay between epigenetic regulation of genomic repeats, R-loop formation, innate immunity, and cell fitness in the context of cancer evolution and therapeutic vulnerability.

      Comments on revised version:

      The authors have satisfactorily addressed my comments and revised the manuscript accordingly.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Shen et al. have improved upon the mitotic clone analysis tool MAGIC that their lab previously developed. MAGIC uses CRISPR/Cas9-mediated double-stranded breaks to induce mitotic recombination. The authors have replaced the sgRNA scaffold with a more effective scaffold to increase clone frequency. They also introduced modifications to positive and negative clonal markers to improve signal-to-noise and mark the cytoplasm of the cells instead of the nuclei. The changes result in increase in clonal frequencies and marker brightness. The authors also generated the MAGIC transgenics to target all chromosome arms and tested the clone induction efficacy.

      Strengths:

      MAGIC is a mitotic clone generation tool that works without prior recombination to special chromosomes (e.g., FRT). It can also generate mutant clones for genes for which the existing FRT lines could not be used (e.g., the genes that are between the FRT transgene and the centromere).

      This manuscript does a thorough job in describing the method and provides compelling data that support improvement over the existing method.

      Weaknesses:

      It would be beneficial to have a greater variety of clonal markers for nMAGIC. Currently, the only marker is BFP, which may clash with other genetic tools (e.g., some FRET probes) depending on the application. It would be nice to have far-red clonal markers.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Bobola et al reports single-nucleus expression analysis with some supporting spatial expression data of human embryonic and fetal cardiac outflow tracts compared to adult aortic valves. The transcription factor GATA6 is identified as a top regulator of one of the mesenchymal subpopulations, and potential interacting factors and downstream target genes are identified bioinformatically. Additional bioinformatic tools are used to describe cell lineage relationships and trajectories for developmental and adult cardiac cell types.

      Strengths:

      The studies of human tissue and extensive gene expression data will be valuable to the field.

      Weaknesses:

      (1) The expression data are largely confirmatory of previous studies in humans and mice. Thus, it is not clear what novel biological insights are being reported. While there is some novelty and impact in using human tissue, there are extensive existing publications and data sets in this area.

      (2) Major conclusions regarding spatial localization, differential gene expression, or cell lineage relationships based on bioinformatic data are not validated in the context of intact tissues.

      (3) The conclusions regarding lineage relationships are based on common gene expression in the current study and may not reflect cellular origins or lineage relationships that have previously been reported in genetic mouse models.

      (4) An additional limitation is the exclusive examination of adult aortic valve leaflets that represent only a subset of outflow tract derivatives in the mature heart. The conclusion, as stated in the title regarding adult derivatives of the outflow tract, is not accurate based on the limited adult tissue evaluated, exclusive bioinformatic approach, and lack of experimental lineage analysis of cell origins.

    1. Reviewer #1 (Public review):

      Summary:

      In the study by Wang et al. entitled "Dissecting organoid-bacteria interaction highlights decreased contractile force as a key factor for heart infection", a simple cardiac organoid (CO) model was established, by combining a heterologous mixture of patient-specific human induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (CMs) in combination with primary HUVECs (Human Umbilical Vein Endothelial Cells) and human mesenchymal stem cells (MSCs, representing stromal cells). This model was applied for investigating the interplay of COs' bacterial infections in vitro, aiming at revealing pathological mechanisms of bacterial infections of the heart in vivo, which may induce myocarditis and consequently heart failure in affected patients.

      Strengths:

      The paper is systematic, well written, and easy to follow.

      Based on their results, the authors state that: "In this study, by developing quantitative tools for analyzing bacterial-cardiac organoid interactions in a 3D, dynamic, clinically relevant setting, we discovered the significant role of cardiac contractility in preventing bacterial infection."

      In principle, the idea of establishing a simple yet functionally and physiologically relevant in vitro model and relevant analytical tools for enabling the study of complex pathological mechanisms of cardiovascular diseases is intriguing.

      Weaknesses:

      However, despite the combination of numerous analytical tools established and applied in the study, the work has substantial experimental limitations, indicating that the bold conclusions may represent a misinterpretation or overinterpretation of the findings.

      Key limitations and questions:

      (1) It seems that iPSCs from only one patient ("dilated cardiomyopathy (DCM) cells were derived from a 47-year-old Asian male with an LMNA gene mutation") were used in the study. Moreover, it seems that only one iPSC-line/clone from that DCM patient was used and compared to a single control iPSC line from a "healthy donor". Therefore, despite the different assays and experimental controls used in the study, there is a high risk that the observed phenomena reflect iPSC-line-/ clone-dependent effects, rather than revealing general pathophysiologic mechanisms. Thus, key experiments must be shown by cardiomyocytes/ cardiac organoids derived from additional independent iPSC-lines representing different patients and other non-diseased control lines as well. Moreover, it is established good experimental practice in the iPS cell field to generate and include isogenic iPSC controls i.e. iPSC lines of the same genetic background but with corrections of the hypothesised gene mutation underlying the respective e.g., cardiovascular disease.

      (2) In Figure 1 (A) immunohistochemical staining for cardiomyocytes for the cardiac marker Troponin is shown, apparently indicating successful cardiomyogenic differentiation of the applied hiPSC lines. In supplemental Figure S1, a flow cytometry analysis specific to cTnT is shown to reveal the CMs content resulting from the monolayer differentiation of respective iPSC lines. Already, the exemplified plots indicate that the CMs' content/ purity for DCM-CMs was notably lower compared to healthy cardiomyocytes (CM; control). This is an important issue, since the non-CMs ("contaminating bystander cells") may have a substantial effect on the functional (including contractile) properties of the COs.

      Interestingly, based on the method description, it seems that COs were generated from cryopreserved iPSC-CMs and iPSC-DCMs, including intermediate seeding and culture on Matrigel before COs formation. However, it remains unclear whether the CMs FACS analysis, which is apparently: "Representative FACS plots for analysis of the cell types in DCM monolayer culture after 33 days of differentiation" shows a CMs purity relevant to CO formation, or something different.

      The lineage phenotype of non-CMs in respective differentiations should also be clarified. Moreover, it should be noted in the results that the CMs content in COs is lower than the 6:2:2 (CM:ECs:MSC) ratio indicated by the authors, since the CMs purity is not 100%, and is particularly reduced in the iPSC-DCMs.

      Finally, to investigate the important latter questions of the "real CMs content" in COs, systematic technologies should be applied to quantify the lineage composition in COs (e.g. by IF staining for the 3 lineages plus DAPI, followed by COs clearance, confocal microscopy "3D stags" and automated, ImageJ-based quantitative cell counts for total cell number definition (see e.g. doi: 10.1038/s41596-024-00976-2) per CO, and quantification of respective lineage content as well.

      These questions are of key importance since the presence of non-CMs and their phenotype has profound consequences on the cardiac organoid model, its contractile/ biophysical properties, and, in general, on models' sensitivity to bacterial infections as well.

      (3) Figure 2: (F) Why is this figure (Confocal Observations) showing only healthy cardiac organoids (HCOs) but not DCM-COs?

      The overall quality of these pictures is poor and not informative regarding the structural identity and tissue composition of the COs, which actually is an important topic in the frame of the paper, as the 3D structure and tissue composition - and differences between HCOs and DCM-COs - are of key importance to their contractile properties.

      Moreover, the expective overlay of the cardiac markers alpha-actinin and MHC is not obvious from Figure 2F (see also comments on Figure 7, below).

      In Figure 2E: COs at later stages/days should be shown, in particular at that stage, which was used for the functional assays i.e., bacteria infections and contraction pattern monitoring.

      (4) Figure 7 (A) (B) - In the IF sections, it seems that there is no overlay between the expression of the cardiac marker MHC (seems to be expressed in the centre of COs only) and the cardiac markers alpha-actinin (which seems to be unexpectedly expressed in all cells on the sections) and Troponin (which seems to be vocally expressed on the outside, excluding the area of MHC expression).

      (F) Quantification of the mean area of gene expression, e.g., for MHC indicates a larger area after MHC expression; this seems to entirely contradict the IF pictures (in Figures 7 A-D) of MHC expression before and after infection. This contraction is deemed very critical to this reviewer as it may indicate that the IF staining, data analysis, and/or data interpretation in this part of the manuscript is poor, misleading, or simply wrong.

      (5) Overall, from the perspective of this reviewer, the CO-derived results do not reflect in a meaningful way the contractile and hydrodynamic conditions in the mouse heart or the human heart. Thus, it seems that the conclusions may rather represent a hypothesised outcome bias.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the cellular mechanisms underlying place field formation (PFF) in hippocampal CA1 pyramidal cells by performing in vivo two-photon calcium imaging in head-restrained mice navigating a virtual environment. Specifically, they sought to determine whether BTSP-like (behavioral time scale synaptic plasticity) events, characterized by large calcium transients, are the primary mechanism driving PFFs or if other mechanisms also play a significant role. Through their extensive imaging dataset, the authors found that while BTSP-like events are prevalent, a substantial fraction of new place fields are formed via non-BTSP-like mechanisms. They further observed that large calcium transients, often associated with BTSP-like events, are not sufficient to induce new place fields, indicating the presence of additional regulatory factors (possibly local dendritic spikes).

      Strengths

      The study makes use of a robust and extensive dataset collected from 163 imaging sessions across 45 mice, providing a comprehensive examination of CA1 place cell activity during navigation in both familiar and novel virtual environments. The use of two-photon calcium imaging allows the authors to observe the detailed dynamics of neuronal activity and calcium transients, offering insights into the differences between BTSP-like and non-BTSP-like PFF events. The study's ability to distinguish between these two mechanisms and analyze their prevalence under different conditions is a key strength, as it provides a nuanced understanding of how place fields are formed and maintained. The paper supports the idea that BTSP is not the only driving fore behind PFF, and other mechanisms are likely sufficient to drive PFF, and BTSP events may also be insufficient to drive PFF in some cases. The longer-than-usual virtual track used in the experiment allowed place cells to express multiple place fields, adding a valuable dimension to the dataset that is typically lacking in similar studies. Additionally, the authors took a conservative approach in classifying PFF events, ensuring that their findings were not confounded by noise or ambiguous activity.

      Weaknesses

      The stand out weakness of the paper is the lack of direct measures of BTSP events. Without direct confirmation that large calcium transients correspond to actual BTSP events (including associated complex spikes and calcium plateau potentials), concluding that BTSP is not necessary or sufficient for PFF formation is speculative (although I do believe it).

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Lu & Cui et al. observe that adult male zebrafish are more resistant to infection and disease following exposure to Spring Viremia of Carp Virus (SVCV) than female fish. The authors then attempt to identify some of the molecular underpinnings of this apparent sexual dimorphism and focus their investigations on a gene called cytochrome P450, family 17, subfamily A, polypeptide 2 (cyp17a2) because it was among the genes that they found to be more highly expressed in kidney tissue from males than in females. Their investigations lead them to propose a direct connection between cyp17a2 and modulation of interferon signaling as the key underlying driver of the difference between male and female susceptibility to SVCV.

      Strengths:

      Strengths of this study include the interesting observation of a substantial difference between adult male and female zebrafish in their susceptibility to SVCV, and also the breadth of experiments that were performed linking cyp17a2 to infection phenotypes and molecularly to the stability of host and virus proteins in cell lines. The authors place the infection phenotype in an interesting and complex context of many other sexual dimorphisms in infection phenotypes in vertebrates. This study succeeds in highlighting an unexpected factor involved in antiviral immunity that will be an important subject for future investigations of infection, metabolism, and other contexts.

      Weaknesses:

      Weaknesses of this study include an indirect connection between the majority of experiments and the proposed mechanism underlying the sexual dimorphism phenotype, widespread reliance on over-expression when investigating protein-protein interaction and localization, and an insufficient amount of description of the data presented in the figures. Specific examples of areas for clarification or improvement include:

      (1) Figure 10 outlines a mechanistic link between cyp17a2 and the sexual dimorphism the authors report for SVCV infection outcomes. The data presented on increased susceptibility of cyp17a2-/- mutant male zebrafish support this diagram, but this conclusion is fairly weak without additional experimentation in both males and females. The authors justify their decision to focus on males by stating that they wanted to avoid potential androgen-mediated phenotypes in the cpy17a2 mutant background (lines 152-156), but this appears to be speculation. It also doesn't preclude the possibility of testing the effects of increased cyp17a2 expression on viral infection in both males and females. This is of critical importance if the authors intend to focus the study on sexual dimorphism, which is how the introduction and discussion are currently structured.

      (2) The authors present data indicating an unexpected link between cyp17a2 and ubiquitination pathways. It is unclear how a CYP450 family member would carry out such activities, and this warrants much more attention. One brief paragraph in the discussion (starting at line 448) mentions previous implications of CYP450 proteins in antiviral immunity, but given that most of the data presented in the paper attempt to characterize cyp17a2 as a direct interactor of ubiquitination factors, more discussion in the text should be devoted to this topic. For example, are there any known domains in this protein that make sense in this context? Discussion of this interface is more relevant to the study than the general overview of sexual dimorphism that is currently highlighted in the discussion and throughout the text.

      (3) Figures 2-9 contain information that could be streamlined to highlight the main points the authors hope to make through a combination of editing, removal, and movement to supplemental materials. There is a consistent lack of clarity in these figures that could be improved by supplementing them with more text to accompany the supplemental figures. Using Figure 2 and an example, panel (A) could be removed as unnecessary, panel (B) could be exchanged for a volcano plot with examples highlighting why cyp17a2 was selected for further study and also the full dataset could be shared in a supplemental table, panel (C) could be modified to indicate why that particular subset was chosen for plotting along with an explanation of the scaling, panel (D) could be moved to supplemental because the point is redundant with panels (A) and (C), panel (E) could be presented as a heatmap, in panels (G) and (H) data from EPC cells could be moved to supplemental because it is not central to the phenotype under investigation, panels (J) to (L) and (N) to (P) could be moved to supplemental because they are redundant with the main points made in panels (M) and (Q). Similar considerations could be made with Figures 3-9

      (4) The data in Figure 3 (A)-(C) do not seem to match the description in the text. That is, the authors state that cyp17a2 overexpression increases interferon signaling activity in cells, but the figure shows higher increases in vector controls. Additionally, the data in panel (H) are not described. What genes were selected and why, and where are the data on the rest of the genes from this analysis? This should be shared in a supplemental table.

      (5) Some of the reagents described in the methods do not have cited support for the applications used in the study. For example, the antibody for TRIM11 (line 624, data in Figures 6 & 7) was generated for targeting the human protein. Validation for use of this reagent in zebrafish should be presented or cited. Furthermore, the accepted zebrafish nomenclature for this gene would be preferred throughout the text, which is bloodthirsty-related gene family, member 32.

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, Metz Reed and colleagues present an exceptionally thorough analysis of three-dimensional genome reorganization during breast cancer progression using the well-characterized MCF10 model system. The integration of high-resolution Micro-C contact maps with multi-omics profiling provides compelling insights into stage-specific dynamics of chromatin compartments, TAD boundaries, and looping events. The discovery that stable chromatin loops enable epigenetic reprogramming of cancer genes, while structural changes selectively drive metastasis-associated pathways, represents a significant conceptual advance. This work substantially deepens our understanding of genome topology in malignancy. To further enhance this impactful study, we offer the following constructive suggestions.

      Strengths:

      This work sets a benchmark for integrative 3D genomics in oncology. Its methodological sophistication and conceptual advances establish a new paradigm for studying nuclear architecture in disease.

      Weaknesses:

      Major Issues

      (1) Functional tests would strengthen the observed links between structure and gene changes. For example, the COL12A1 gene loop formation correlates with its increased expression. Disrupting this loop using CRISPR-dCas9 at chr6 position 75280 kb could prove whether the loop causes COL12A1 activation. Such experiments would turn strong correlations into clear mechanisms.

      (2) The H3K27ac looping idea needs deeper validation. Data suggests H3K27ac loss weakens loops without affecting CTCF. Testing how cohesin proteins interact with H3K27ac-modified sites would clarify this process. Degron systems could rapidly remove H3K27ac to observe real-time effects. Also, the AP-1 motifs found at dynamic loop sites deserve functional tests. Knocking down AP-1 factors might show if they control loop formation.

      (3) Connecting findings to patient data would boost clinical relevance. The MCF10 model is excellent for controlled studies. Checking if TAD boundary weakening occurs in actual patient metastases would show real-world importance. Comparing primary and metastatic tumor samples from the same patients could reveal new structural biomarkers. If tissue is scarce, testing cancer cells with added stroma cells might mimic tumor environment effects.

      Minor Issues

      Adding a clear definition for static loops would help readers. For example, state that static loops show less than 10 percent contact change across replicates. In the ABC model analysis, removing promoter regions from the enhancer list would focus results on true long-range interactions. Briefly noting why this study sees TAD weakening while other cancer types show different patterns would provide useful context.

    1. Reviewer #1 (Public review):

      Summary:

      The question of how central nervous system lamination defects affect functional integrity is an interesting yet debated topic. The authors investigated the role of afadin, a key adherens junction scaffolding protein, in retinal lamination and function using a retina-specific conditional knockout mouse model. Their findings show that the loss of Afadin caused severe outer retinal lamination defects, disrupting photoreceptor morphology, synapse numbers, and cell positioning, as demonstrated by histological analysis. Despite these structural impairments, retinal function was partially preserved: mERG detected small a- and b-waves, retinal ganglion cells responded to light, and behavioral tests confirmed residual visual function. This research offers new insights into the relationship between retinal lamination and neural circuit function, suggesting that altered retinal morphology does not completely eliminate the capacity for visual information processing.

      Strengths:

      The study effectively employs the well-organized laminar structure of the retina as an accessible model for investigating afadin's role in lamination within the central nervous system. High-quality histological, immunostaining, and electron microscopy images clearly reveal structural defects in the conditional knockout mice. The revised manuscript significantly enhances the findings by incorporating robust quantitative analyses of cell positioning, retinal thickness, and cell numbers, as well as new assessments of developmental defects. Additionally, new behavioral tests, including the optomotor response and visual cliff tests, have been introduced. Together with electrophysiological recordings, these additions compellingly demonstrate the partial preservation of visual function despite severe structural disruptions.

      Weaknesses:

      Overall, the study of the mechanisms remains weak. While the authors addressed concerns about molecular mechanisms by examining cell proliferation potentially related to Notch and Wnt signaling (Figure S6C, lines 868-870), the findings are largely negative (no significant changes in progenitor cell numbers), and the discussion of alternative pathways remains speculative.

    1. Reviewer #1 (Public review):

      I applaud the authors' for providing a thorough response to my comments from the first round of review. The authors' have addressed the points I raised on the interpretation of the behavioral results as well as the validation of the model (fit to the data) by conducting new analyses, acknowledging the limitations where required and providing important counterpoints. As a result of this process, the manuscript has considerably improved. I have no further comments and recommend this manuscript for publication.

    1. Reviewer #2 (Public review):

      Summary:

      Septin caging has emerged as one of the innate immune response of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains or even compare infections by clinical isolates.

      Strengths:

      The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

      Weaknesses:

      As the main aim of the manuscript is to described the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors attempt to devise general rules for aptamer design based on structure and sequence features. The main system they are testing is an aptamer targeting a viral sequence.

      Strengths:

      The method combines a series of well-established protocols, including docking, MD, and a lot of system-specific knowledge, to design several new versions of the Ta aptamer with improved binding affinity.

      Weaknesses:

      The approach requires a lot of existing knowledge and, importantly, an already known aptamer, which presumably was found with Selex. In addition, although the aptamer may have a stronger binding affinity, it is not clear if any of it has any additional useful properties such as stability, etc.

    1. Reviewer #1 (Public review):

      This is my first review of this manuscript. The authors included previous reviews for a different journal with a length of 90 and 39 pages; I did not review this reply in my assessment of the paper itself. Influenza prediction is not my area of expertise.

      A major concern is that the model is trained in the midst of the COVID-19 pandemic and its associated restrictions and validated on 2023 data. The situation before, during, and after COVID is fluid, and one may not be representative of the other. The situation in 2023 may also not have been normal and reflective of 2024 onward, both in terms of the amount of testing (and positives) and measures taken to prevent the spread of these types of infections. A further worry is that the retrospective prospective split occurred in October 2020, right in the first year of COVID, so it will be impossible to compare both cohorts to assess whether grouping them is sensible.

      The outcome of interest is the number of confirmed influenza cases. This is not only a function of weather, but also of the amount of testing. The amount of testing is also a function of historical patterns. This poses the real risk that the model confirms historical opinions through increased testing in those higher-risk periods. Of course, the models could also be run to see how meteorological factors affect testing and the percentage of positive tests. The results only deal with the number of positive (only the overall number of tests is noted briefly), which means there is no way to assess how reasonable and/or variable these other measures are. This is especially concerning as there was massive testing for respiratory viruses during COVID in many places, possibly including China.

      (1) Although the authors note a correlation between influenza and the weather factors. The authors do not discuss some of the high correlations between weather factors (e.g., solar radiation and UV index). Because of the many weather factors, those plots are hard to parse.

      (2) The authors do not actually compare the results of both methods and what the LSTM adds.

      Minor comments:

      (3) The methods are long and meandering. They could be cleaned up and shortened. E.g., there is no need for 30 lines on PCR testing; the study area should come before the study design. The authors discuss similar elements in multiple places; this whole section can be shortened considerably without affecting the content.

      (4) How reliable is the "Our Word in Data" website for subnational coverage of restrictions? Some of the authors are from Putian and should be able to confirm the accuracy for both studied areas.

      (5) Figure 2A is hard to parse; it would make more sense to plot these as line plots (y=count, x=month).

    1. Reviewer #1 (Public review):

      Summary:

      Nahas et al. investigated the roles of herpes simplex virus 1 (HSV-1) structural proteins using correlative cryo-light microscopy and soft X-ray tomography. The authors generated nine viral variants with deletions or mutations in genes encoding structural proteins. They employed a chemical fixation-free approach to study native-like events during viral assembly, enabling observation of a wider field of view compared to cryo-ET. The study effectively combined virology, cell biology, and structural biology to investigate the roles of viral proteins in virus assembly and budding.

      Strengths:

      (1) The study presented a novel approach to studying viral assembly in cellulo.

      (2) The authors generated nine mutant viruses to investigate the roles of essential proteins in nuclear egress and cytoplasmic envelopment.

      (3) The use of correlative imaging with cryoSIM and cryoSXT allowed for the study of viral assembly in a near-native state and in 3D.

      (4) The study identified the roles of VP16, pUL16, pUL21, pUL34, and pUS3 in nuclear egress.

      (5) The authors demonstrated that deletion of VP16, pUL11, gE, pUL51, or gK inhibits cytoplasmic envelopment.

      (6) The manuscript is well-written, clearly describing findings, methods, and experimental design.

      (7) The figures and data presentation are of good quality.

      (8) The study effectively correlated light microscopy and X-ray tomography to follow virus assembly, providing a valuable approach for studying other viruses and cellular events.

      (9) The research is a valuable starting point for investigating viral assembly using more sophisticated methods like cryo-ET with FIB-milling.

      (10) The study proposes a detailed assembly mechanism and tracks the contributions of studied proteins to the assembly process.

      (11) The study includes all necessary controls and tests for the influence of fluorescent proteins.

      Weaknesses:

      Overall, the manuscript does not have any major weaknesses, just a few minor comments, which were mostly solved in the revised version of the manuscript.

      Comments on the latest version:

      I reviewed the responses and the updated manuscript, and I am very pleased with how the authors have revised it. The manuscript was already strong, but with the addition of the summary table and the separated images, it is now excellent.

    1. Reviewer #1 (Public review):

      Filamentous fungi are established work horses in biotechnology with Aspergillus oryzae as a prominent example with a thousand-year of history. Still the cell biology and biochemical properties of the production strains is not well understood. The paper of the Takeshita group describes the change in nuclear numbers and correlate it to different production capacities. They used microfluidic devices to really correlate the production with nuclear numbers. In addition, they used microdissection to understand expression profile changes and found an increase of ribosomes. The analysis of two genes involved in cell volume control in S. pombe did not reveal conclusive answers to explain the phenomenon. It appears that it is a multi-trait phenotype. Finally, they identified SNPs in many industrial strains and tried to correlate them to the capability of increasing their nuclear numbers.

      The methods used in the paper range from high quality cell biology, Raman spectroscopy to atomic force and electron microscopy and from laser microdissection to the use of microfluidic devices to study individual hyphae.

      This is a very interesting, biotechnologically relevant paper with the application of excellent cell biology.

      Comments on revised version:

      The authors addressed all suggestions satisfactorily.

    1. Reviewer #1 (Public review):

      Overall, the manuscript reveals the role for actin polymerization to drive fusion of myoblasts during adult muscle regeneration. This pathway regulates fusion in many contexts, but whether it was conserved in adult muscle regeneration remained unknown. Robust genetic tools and histological analyses were used to convincingly support the claims.

    1. Reviewer #1 (Public review):

      Summary:

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The authors construct a detailed biophysical and morphological model of a single striatal medium spiny neuron, and endow excitatory and inhibitory synapses with dynamic synaptic plasticity mechanisms that are sensitive to (1) the presence or absence of a dopamine reward signal, and (2) spatiotemporal coincidence of synaptic activity in single dendritic branches. The latter coincidence is detected by voltage-dependent NMDA-type glutamate receptors, which can generate a type of dendritic spike referred to as a "plateau potential." In the absence of inhibitory plasticity, the proposed mechanisms result in good performance on a nonlinear classification task when specific input features are segregated and clustered onto individual branches, but reduced performance when input features are randomly distributed across branches. Interestingly, adding inhibitory plasticity improves classification performance even when input features are randomly distributed.

      Strengths:

      The integrative aspect of this study is its major strength. It is challenging to relate low-level details such as electrical spine compartmentalization, extrasynaptic neurotransmitter concentrations, dendritic nonlinearities, spatial clustering of correlated inputs, and plasticity of excitatory and inhibitory synapses to high-level computations such as nonlinear feature classification. Due to high simulation costs, it is rare to see highly biophysical and morphological models used for learning studies that require repeated stimulus presentations over the course of a training procedure. The study aspires to prove the principle that experimentally-supported biological mechanisms can explain complex learning.

      Weaknesses:

      The high level of complexity of each component of the model makes it difficult to gain an intuition for which aspects of the model are essential for its performance, or responsible for its poor performance under certain conditions. Stripping down some of the biophysical detail and comparing it to a simpler model may help better understand each component in isolation.

    1. Reviewer #1 (Public review):

      This revision of the computational study by Mondal et al addresses several issues that I raised in the previous round of reviews and, as such, is greatly improved. The manuscript is more readable, its findings are more clearly described, and both the introduction and the discussion sections are tighter and more to the point. And thank you for addressing the three timescales of half activation/inactivation parameters. It makes the mechanism clearer.

      Some issues remain that I bring up below.

      Comment:

      I still have a bone to pick with the claim that "activity-dependent changes in channel voltage-dependence alone are insufficient to attain bursting". As I mentioned in my previous comment, this is also the case for the gmax values (channel density). If you choose the gmax's to be in a reasonable range, then the statement above is simply cannot be true. And if, in contrast, you choose the activation/inactivation parameters to be unreasonable, then no set of gmax's can produce proper activity. So I remain baffled what exactly is the point that the authors are trying to make.

    1. Reviewer #1 (Public review):

      In this work, Ligneul and coauthors implemented diffusion-weighted MRS in young rats to follow longitudinally and in vivo the microstructural changes occurring during brain development. Diffusion-weighted MRS is here instrumental in assessing microstructure in a cell-specific manner, as opposed to the claimed gold-standard (manganese-enhanced MRI) that can only probe changes in brain volume. Differential microstructure and complexification of the cerebellum and the thalamus during rat brain development were observed non-invasively. In particular, lower metabolite ADC with increasing age were measured in both brain regions, reflecting increasing cellular restriction with brain maturation. Higher sphere (representing cell bodies) fraction for neuronal metabolites (total NAA, glutamate) and total creatine and taurine in the cerebellum compared to the thalamus were estimated, reflecting the unique structure of the cerebellar granular layer with a high density of cell bodies. Decreasing sphere fraction with age was observed in the cerebellum, reflecting the development of the dendritic tree of Purkinje cells and Bergmann glia. From morphometric analyses, the authors could probe non-monotonic branching evolution in the cerebellum, matching 3D representations of Purkinje cells expansion and complexification with age. Finally, the authors highlighted taurine as a potential new marker of cerebellar development.

      From a technical standpoint, this work clearly demonstrates the potential of diffusion-weighted MRS at probing microstructure changes of the developing brain non-invasively, paving the way for its application in pathological cases. Ligneul and coauthors also show that diffusion-weighted MRS acquisitions in neonates are feasible, despite the known technical challenges of such measurements, even in adult rats. They also provide all necessary resources to reproduce and build upon their work, which is highly valuable for the community.

      From a biological standpoint, claims are well supported by the microstructure parameters derived from advanced biophysical modelling of the diffusion MRS data.

      Specific strengths:

      (1) The interpretation of dMRS data in terms of cell-specific microstructure through advanced biophysical modelling (e.g. the sphere fraction, modelling the fraction of cell bodies versus neuronal or astrocytic processes) is a strong asset of the study, going beyond the more commonly used signal representation metrics such as the apparent diffusion coefficient, which lacks specificity to biological phenomena.

      (2) The fairly good data quality despite the complexity of the experimental framework should be praised: diffusion-weighted MRS was acquired in two brain regions (although not in the same animals) and longitudinally, in neonates, including data at high b-values and multiple diffusion times, which altogether constitutes a large-scale dataset of high value for the diffusion-weighted MRS community.

      (3) The authors have shared publicly data and codes used for processing and fitting, which will allow one to reproduce or extend the scope of this work to disease populations, and which goes in line with the current effort of the MR(S) community for data sharing.

      Specific weaknesses:

      Ligneul and coauthors have convincingly addressed and included my comments from the first and second round in their revised manuscript.

      I believe the following conceptual concerns, which are inherent to the nature of the study and do not require further adjustments of the manuscript, remain:

      (1) Metabolite compartmentation in one cell type or the other has often been challenged and is currently impossible to validate in vivo. Here, Ligneul and coauthors did not use this assumption a priori and supported their claims also with non-MR literature (eg. for Taurine), but the interpretation of results in that direction should be made with care.

      (2) Longitudinal MR studies of the developing brain make it difficult to extract parameters with an "absolute" meaning. Indirect assumptions used to derive such parameters may change with age and become confounding factors (brain structure, cell distribution, concentrations normalizing metabolites (here macromolecules), relaxation times...). While findings of the manuscript are convincing and supported with literature, the true underlying nature of such changes might be difficult to access.

      (3) Diffusion MRI in addition to diffusion MRS would have been complementary and beneficial to validate some of the signal contributions, but was unfeasible in the time constraints of experiments on young animals.

    1. Reviewer #3 (Public review):

      To summarize: The authors' overfilling hypothesis depends crucially on the premise that the very-quickly reverting paired-pulse depression seen after unusually short rest intervals of << 50 ms is caused by depletion of release sites whereas Dobrunz and Stevens (1997) concluded that the cause was some other mechanism that does not involve depletion. The authors now include experiments where switching extracellular Ca2+ from 1.2 to 2.5 mM increases synaptic strength on average, but not by as much as at other synapse types. They contend that the result supports the depletion hypothesis. I didn't agree because the model used to generate the hypothesis had no room for any increase at all, and because a more granular analysis revealed a mixed population with a subset where: (a) synaptic strength increased by as much as at standard synapses; and yet (b) the quickly reverting depression for the subset was the same as the overall population.

      The authors raise the possibility of additional experiments, and I do think this could clarify things if they pre-treat with EGTA as I recommended initially. They've already shown they can do this routinely, and it would allow them to elegantly distinguish between pv and pocc explanations for both the increases in synaptic strength and the decreases in the paired pulse ratio upon switching Ca2+ to 2.5 mM. Plus/minus EGTA pre-treatment trials could be interleaved and done blind with minimal additional effort.

      Showing reversibility would be a great addition too, because, in our experience, this does not always happen in whole-cell recordings in ex-vivo tissue even when electrical properties do not change. If the goal is to show that L2/3 synapses are less sensitive to changes in Ca2+ compared to other synapse types - which is interesting but a bit off point - then I would additionally include a positive control, done by the same person with the same equipment, at one of those other synapse types using the same kind of presynaptic stimulation (i.e. ChRs).

      Specific points (quotations are from the Authors' rebuttal)

      (1) Regarding the Author response image 1, I was instead suggesting a plot of PPR in 1.2 mM Ca2+ versus the relative increase in synaptic strength in 2.5 versus in 1.2 mM. This continues to seem relevant.

      (2) "Could you explain in detail why two-fold increase implies pv < 0.2?"

      a. start with power((2.5/(1 + (2.5/K1) + 1/2.97)),4) = 2*power((1.3/(1 + (1.3/K1) + 1/2.97)),4);

      b. solve for K1 (this turns out to be 0.48);

      c. then implement the premise that pv -> 1.0 when Ca2+ is high by calculating Max = power((C/(1 + (C/K1) + 1/2.97)),4) where C is [Ca] -> infinity.

      d. pv when [Ca] = 1.3. mM must then be power((1.3/(1 + (1.3/K1) + 1/2.97)),4)/Max, which is <0.2.

      Note that modern updates of Dodge and Rahamimoff typically include a parameter that prevents pv from approaching 1.0; this is the gamma parameter in the versions from Neher group.

      (3) "If so, we can not understand why depletion-dependent PPD should lead to PPF."

      When PPD is caused by depletion and pv < 0.2, the number of occupied release sites should not be decreased by more than one-fifth at the second stimulus so, without facilitation, PPR should be > 0.8. The EGTA results then indicate there should be strong facilitation, driving PPR to something like 1.2 with conservative assumptions. And yet, a value of < 0.4 is measured, which is a large miss.

      (4) Despite the authors' suggestion to the contrary, I continue to think there is a substantial chance that Ca2+-channel inactivation is the mechanism underlying the very quickly reverting paired-pulse depression. However, this is only one example of a non-depletion mechanism among many, with the main point being that any non-depletion mechanism would undercut the reasoning for overfilling. And, this is what Dobrunz and Stevens claimed to show; that the mechanism - whatever it is - does not involve depletion. The most effective way to address this would be affirmative experiments showing that the quickly reverting depression is caused by depletion after all. Attempting to prove that Ca2+-channel inactivation does not occur does not seem like a worthwhile strategy because it would not address the many other possibilities.

      (5) True that Kusick et al. observed morphological re-docking, but then vesicles would have to re-prime and Mahfooz et al. (2016) showed that re-priming would have to be slower than 110 ms (at least during heavy use at calyx of Held).

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the effects of aging on auditory system performance in understanding temporal fine structure (TFS), using both behavioral assessments and physiological recordings from the auditory periphery, specifically at the level of the auditory nerve. This dual approach aims to enhance understanding of the mechanisms underlying observed behavioral outcomes. The results indicate that aged animals exhibit deficits in behavioral tasks for distinguishing between harmonic and inharmonic sounds, which is a standard test for TFS coding. However, neural responses at the auditory nerve level do not show significant differences when compared to those in young, normal-hearing animals. The authors suggest that these behavioral deficits in aged animals are likely attributable to dysfunctions in the central auditory system, potentially as a consequence of aging.To further investigate this hypothesis, the study includes an animal group with selective synaptic loss between inner hair cells and auditory nerve fibers, a condition known as cochlear synaptopathy (CS). CS is a pathology associated with aging and is thought to be an early indicator of hearing impairment. Interestingly, animals with selective CS showed physiological and behavioral TFS coding similar to that of the young normal-hearing group, contrasting with the aged group's deficits. Despite histological evidence of significant synaptic loss in the CS group, the study concludes that CS does not appear to affect TFS coding, either behaviorally or physiologically.

      Strengths:

      This study addresses a critical health concern, enhancing our understanding of mechanisms underlying age-related difficulties in speech intelligibility, even when audiometric thresholds are within normal limits. A major strength of this work is the comprehensive approach, integrating behavioral assessments, auditory nerve (AN) physiology, and histology within the same animal subjects. This approach enhances understanding of the mechanisms underlying the behavioral outcomes and provides confidence in the actual occurrence of synapse loss and its effects.The study carefully manages controlled conditions by including five distinct groups: young normal-hearing animals, aged animals, animals with CS induced through low and high doses, and a sham surgery group. This careful setup strengthens the study's reliability and allows for meaningful comparisons across conditions. Overall, the manuscript is well-structured, with clear and accessible writing that facilitates comprehension of complex concepts.

      Weakness:

      The stimulus and task employed in this study are very helpful for behavioral research, and using the same stimulus setup for physiology is advantageous for mechanistic comparisons. However, I have some concerns about the limitations in auditory nerve (AN) physiology. Due to practical constraints, it is not feasible to record from a large enough population of fibers that covers a full range of best frequencies (BFs) and spontaneous rates (SRs) within each animal. This raises questions about how representative the physiological data are for understanding the mechanism in behavioral data. I am curious about the authors' interpretation of how this stimulus setup might influence results compared to methods used by Kale and Heinz (2010), who adjusted harmonic frequencies based on the characteristic frequency (CF) of recorded units. While, the harmonic frequencies in this study are fixed across all CFs, meaning that many AN fibers may not be tuned closely to the stimulus frequencies. If units are not responsive to the stimulus further clarification on detecting mistuning and phase locking to TFS effects within this setup would be valuable. Given the limited number of units per condition-sometimes as few as three for certain conditions-I wonder if CF-dependent variability might impact the results of the AN data in this study and discussing this factor can help with better understanding the results. While the use of the same stimuli for both behavioral and physiological recordings is understandable, a discussion on how this choice affects interpretation would be beneficial. In addition a 60 dB stimulus could saturate high spontaneous rate (HSR) AN fibers, influencing neural coding and phase-locking to TFS. Potentially separating SR groups, could help address these issues and improve interpretive clarity.

      A deeper discussion on the role of fiber spontaneous rate could also enhance the study. How might considering SR groups affect AN results related to TFS coding? While some statistical measures are included in the supplement, a more detailed discussion in the main text could help in interpretation.

      Although Figure S2 indicates no change in median SR, the high-dose treatment group lacks LSR fibers, suggesting a different distribution based on SR for different animal groups, as seen in similar studies on other species. A histogram of these results would be informative, as LSR fiber loss with CS-whether induced by ouabain in gerbils or noise in other animals-is well documented (e.g., Furman et al., 2013).

      Although ouabain effects on gerbils have been explored in previous studies, since these data is already seems to be recorded for the animal in this study, a brief description of changes in auditory brainstem response (ABR) thresholds, wave 1 amplitudes, and tuning curves for animals with cochlear synaptopathy (CS) in this study would be beneficial. This would confirm that ouabain selectively affects synapses without impacting outer hair cells (OHCs). For aged animals, since ABR measurements were taken, comparing hearing differences between normal and aged groups could provide insights into the pathologies besides CS in aged animals. Additionally, examining subject variability in treatment effects on hearing and how this correlates with behavior and physiology would yield valuable insights. If limited space maybe a brief clarification or inclusion in supplementary could be good enough.

      Another suggestion is to discuss the potential role of MOC efferent system and effect of anesthesia in reducing efferent effects in AN recordings. This is particularly relevant for aged animals, as CS might affect LSR fibers, potentially disrupting the medial olivocochlear (MOC) efferent pathway. Anesthesia could lessen MOC activity in both young and aged animals, potentially masking efferent effects that might be present in behavioral tasks. Young gerbils with functional efferent systems might perform better behaviorally, while aged gerbils with impaired MOC function due to CS might lack this advantage. A brief discussion on this aspect could potentially enhance mechanistic insights.

      Lastly, although synapse counts did not differ between the low-dose treatment and NH I sham groups, separating these groups rather than combining them with the sham might reveal differences in behavior or AN results, particularly regarding the significance of differences between aged/treatment groups and the young normal-hearing group.

    1. Reviewer #1 (Public review):

      Summary:

      The authors present a nanobody-based pulse-labeling system to track yeast NPCs. Transient expression of a nanobody targeting Nup84 (fused to NeonGreen or an affinity tag) permits selective visualization and biochemical capture of NPCs. Short induction effectively labels NPCs, and the resulting purifications match those from conventional Nup84 tagging. Crucially, when induction is repressed, dilution of the labeled pool through successive cell cycles allows the visualization of "old" NPCs (and potentially individual NPCs), providing a powerful view of NPC lifespan and turnover without permanently modifying a core scaffold protein.

      Strengths:

      (1) A brief expression pulse labels NPCs, and subsequent repression allows dilution-based tracking of older (and possibly single) NPCs over multiple cell cycles.

      (2) The affinity-purified complexes closely match known Nup84-associated proteins, indicating specificity and supporting utility for proteomics.

      Weaknesses:

      (1) Reliance on GAL induction introduces metabolic shifts (raffinose → galactose → glucose) that could subtly alter cell physiology or the kinetics of NPC assembly. Alternative induction systems (e.g., β-estradiol-responsive GAL4-ER-VP16) could be discussed as a way to avoid carbon-source changes.

      (2) While proteomics is solid, a comprehensive supplementary table listing all identified proteins (with enrichment and statistics) would enhance transparency.

      (3) Importantly, the authors note that the method is particularly useful "in conditions where direct tagging of Nup84 interferes with its function, while sub-stoichiometric nanobody binding does not." After this sentence, it would be valuable to add concrete examples, such as experiments examining NPC integrity in aging or stress conditions where epitope tags can exacerbate phenotypes. These examples will help readers identify situations in which this approach offers clear advantages.

    1. Reviewer #2 (Public review):

      Summary:

      In this contribution, the authors investigate the degree of alternative splicing across the evolutionary tree, and identify a trend of increasing alternative splicing as you move from the base of the tree (here, only prokaryotes are considered) towards the tips of the tree. In particular, the authors investigate how the degree of alternative splicing (roughly speaking, the number of different proteins made from a single ORF (open reading frame) via alternative splicing) relates to three genomic variables: the genome size, the gene content (meaning the fraction of the genome composed of ORFs), and finally, the coding percentage of ORFs, meaning the ratio between exons and total DNA in the ORF.

      The revised manuscript addresses the problems identified in the first round of reviews and now serves as a guide to understand how alternative splicing has evolved within different phyla, as opposed to making unsubstantiated claims about overall trends.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate how methicillin-resistant (MRSA) and sensitive (MSSA) Staphylococcus aureus adapt to a new host (C. elegans) in the presence or absence of a low dose of the antibiotic oxacillin. Using an "Evolve and Resequence" design with 48 independently evolving populations, they track changes in virulence, antibiotic resistance, and other fitness-related traits over 12 passages. Their key finding is that selection from both the host and the antibiotic together, rather than either pressure alone, results in the evolution of the most virulent pathogens. Genomically, they find that this adaptation repeatedly involves mutations in a small number of key regulatory genes, most notably codY, agr, and saeRS.

      Strengths:

      The main advantage of the research lies in its strong and thoroughly replicated experimental framework, enabling significant conclusions to be drawn based on the concept of parallel evolution. The study successfully integrates various phenotypic assays (virulence, growth, hemolysis, biofilm formation) with whole-genome sequencing, offering an extensive perspective on the adaptive landscape. The identification of certain regulatory genes as common targets of selection across distinct lineages is an important result that indicates a level of predictability in how pathogens adapt.

      Weaknesses:

      (1) The main limitation of the paper is that its findings on the function of specific genes are based on correlation, not cause-and-effect evidence. While the parallel evolution evidence is strong, the authors have not yet performed the definitive tests (i.e., reconstruction of ancestral genes) to ensure that the mutations identified in isolation are enough to account for the virulence or resistance changes observed. This makes the conclusions more like firm hypotheses, not confirmed facts.

      (2) In some instances, the claims in the text are not fully supported by the visual data from the figures or are reported with vagueness. For example, the display of phenotypic clusters in the PCA (Figure 6A) and the sweeping generalization about the effect of antibiotics on the mutation rates (Figure S5) can be more precise and nuanced. Such small deviations dilute the overall argument somewhat and must be corrected.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents an extensive body of work and an outstanding contribution to our understanding of the IFN type I and III system in chickens. The research started with the innovative approach of generating KO chickens that lack the receptor for IFNα/β (IFNAR1) or IFN-λ (IFNLR1). The successful deletion and functional loss of these receptors was clearly and comprehensively demonstrated in comparison to the WT. Moreover, the homozygous KO lines (IFNAR1-/- or IFNLR1-/- ) were found to have similar body weights, and normal egg production and fertility compared to their WT counterparts. These lines are a major contribution to the toolbox for the study of avian/chicken immunology.

      The significance of this contribution is further demonstrated by the use of these lines by the authors to gain insight into the roles of IFN type I and IFN-type III in chickens, by conducting in ovo and in vivo studies examining basic aspects of immune system development and function, as well as the responses to viral challenges conducted in ovo and in vivo.

      Based on solid, state-of the-art methods and convincing evidence from studies comparing various immune system related functions in the IFNAR1-/- or IFNLR1-/- lines to the WT, revealed that the deletion of IFNAR1 and/or IFNLR1 resulted in:<br /> (1) impaired IFN signaling and induction of anti-viral state;<br /> (2) modulation of immune cell profiles in the peripheral blood circulation and spleen;<br /> (3) modulation of the cecum microbiome;<br /> (4) reduced concentrations of IgM and IgY in the blood plasma before and following immunization with model antigen KLH, whereby also line differences in the time-course of the antibody production were observed;<br /> (5) decrease in MHCII+ macrophages and B cells in the spleen of IFNAR1 KO chickens, although the MHCII-expression per cell was not affected in this line; and<br /> (6) reduction in the response of αβ1 TCR+ T cells of IFNAR1 KO chickens as suggested by clonal repertoire analyses.

      These studies were then followed by examination of the role of type I and type III IFN in virus infection, using different avian influenza A virus strains as well as an avian gamma corona virus (IBV) in in ovo challenge experiments. These studies revealed: viral titers that reflect virus-species and strain-specific IFN responses; no differences in the secretion of IFN-α/β in both KO compared to the WT lines; a predominant role of type I IFN in inducing the interferon-stimulated gene (ISG) Mx; and that an excessive and unbalanced type I IFN response can harm host fitness (survival rate, length of survival) and contribute to immunopathology.

      Based on guidance from the in ovo studies, comprehensive in vivo studies were conducted on host-pathogen interactions in hens from the three lines (WT, IFNAR1 KO, or IFNLR1 KO). These studies revealed the early appearance of symptoms and poor survival of hens from the IFNR1 KO line challenged with H3N1 avian influenza A virus; efficient H#N1 virus replication in IFNAR1 KO hens, increased plasma concentrations of IFNα/β and mRNA expression of IFN-λ in spleens of the IFNAR1 KO hens; a pro-inflammatory role of IFN-λ in the oviduct of hens infected with H3N1 virus; increased proinflammatory cytokine expression in spleens of IFNAR1 KO hens, and Impairment of negative feedback mechanisms regulating IFN-α/β secretion in IFNAR1-KO hens and a significant decrease in this group's antiviral state; additionally it was demonstrated that IFN-α/β can compensate IFN-λ to induce an adequate antiviral state in the spleen during H3N1 infection, but IFN-λ cannot compensate for IFN-α/β signaling in the spleen.

      Strengths:

      (1) Both the methods and results from the comprehensive, well-designed, and well-executed experiments are considered excellent. The results are well and correctly described in the result narrative and well presented in both the manuscript and supplement Tables and Figures. Excellent discussion/interpretation of results.

      (2) The successful generation of the type I and type III IFN KO lines offers unprecedented insight and opens multiple new venues for exploring the IFN system in chickens. The new knowledge reported here is direct evidence of the high impact of this model system on effectively addressing a critical knowledge gap in avian immunology.

      (3) The thoughtful selection of highly relevant viruses to poultry and human health for the in ovo and in vivo challenge studies to examine and assess host-pathogen interactions in the IFNR KO and WT lines.

      (4) Making use of the unique opportunities in the chicken model to examine and evaluate the host's IFN system responses to various viral challenges in ovo, before conducting challenge studies in hens.

      (5) The new knowledge gained from the IFNAR1 and IFNLR1 KO lines will find much-needed application in developing more effective strategies to prevent health challenges like avian influenza and its devastating effects on poultry, humans, and other mammals.

      (6) The excellent cooperation and contributions of the co-authors and institutions.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors reveal that the availability of extracellular asparagine (Asn) represents a metabolic vulnerability for the activation and differentiation of naive CD4+ T cells. To deplete extracellular Asn, they employed two orthogonal approaches: activating naive CD4+ T cells in either PEGylated asparaginase (PEG-AsnASE)-treated medium or custom-formulated RPMI medium specifically lacking Asn. Importantly, they demonstrate that Asn depletion not only impaired metabolic reprogramming associated with CD4+ T cell activation but also reduced CD4+ helper T cell lineage-specific cytokine production, thereby ameliorating the severity of experimental autoimmune encephalomyelitis.

      Strengths:

      The experiments presented here are comprehensive and well-designed, providing compelling evidence for the conclusions. The conclusions will be important to the field.

      Weaknesses:

      (1) EAE is the prototypic T cell-mediated autoimmune disease model, and both Th1 and Th17 cells are implicated in its pathogenesis. In contrast, Th2 and Treg cells and their associated cytokines (such as IL-4 and IL-10) have been shown to play a role in the resolution of EAE, and potentially in the modulation of disease progression. Thus, it will be important to determine whether Asn depletion affects the differentiation of naive CD4+ T cells into corresponding subsets under Th2 and Treg polarization conditions, as well as the expression of lineage-specific transcription factors and cytokine production.

      (2) EAE is characterized by inflammation and demyelination in the central nervous system (CNS), leading to neurological deficits. Myelin destruction is directly correlated with the severity of the disease. For Figure 6, did the authors perform spinal cord histological analysis by hematoxylin and eosin (H&E) or Luxol fast blue (LFB) staining? This is important to rigorously examine pathological EAE symptoms.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Xu et al. reported base-resolution mapping of RNA pseudouridylation in five bacterial species, utilizing recently developed BID-seq. They detected pseudouridine (Ψ) in bacterial rRNA, tRNA, and mRNA, and found growth phase-dependent Ψ changes in tRNA and mRNA. They then focused on mRNA and conducted a comparative analysis of Ψ profiles across different bacterial species. Finally, they developed a deep learning model to predict Ψ sites based on RNA sequence and structure.

      Strengths:

      This is the first comprehensive Ψ map across multiple bacterial species, and systematically reveals Ψ profiles in rRNA, tRNA, and mRNA under exponential and stationary growth conditions. It provides a valuable resource for future functional studies of Ψ in bacteria.

      Weaknesses:

      Ψ is highly abundant on non-coding RNA such as rRNA and tRNA, while its level on mRNA is very low. The manuscript focuses primarily on mRNA, which raises questions about the data quality and the rigor of the analysis. Many conclusions in the manuscript are speculative, based solely on the sequencing data but not supported by additional experiments.

    1. Reviewer #1 (Public review):

      Summary:

      Alveolar macrophages (AMs) are key sentinel cells in the lungs, representing the first line of defense against infections. There is growing interest within the scientific community in the metabolic and epigenetic reprogramming of innate immune cells following an initial stress, which alters their response upon exposure to a heterologous challenge. In this study, the authors show that exposure to extracellular ATP can shape AM functions by activating the P2X7 receptor. This activation triggers the relocation of the potassium channel TWIK2 to the cell surface, placing macrophages in a heightened state of responsiveness. This leads to the activation of the NLRP3 inflammasome and, upon bacterial internalization, to the translocation of TWIK2 to the phagosomal membrane, enhancing bacterial killing through pH modulation. Through these findings, the authors propose a mechanism by which ATP acts as a danger signal to boost the antimicrobial capacity of AMs.

      Strengths:

      This is a fundamental study in a field of great interest to the scientific community. A growing body of evidence has highlighted the importance of metabolic and epigenetic reprogramming in innate immune cells, which can have long-term effects on their responses to various inflammatory contexts. Exploring the role of ATP in this process represents an important and timely question in basic research. The study combines both in vitro and in vivo investigations and proposes a mechanistic hypothesis to explain the observed phenotype.

      Weaknesses:

      First, the concept of training or trained immunity refers to long-term epigenetic reprogramming in innate immune cells, resulting in a modified response upon exposure to a heterologous challenge. The investigations presented demonstrate phenotypic alterations in AMs seven days after ATP exposure; however, they do not assess whether persistent epigenetic remodeling occurs with lasting functional consequences. Therefore, a more cautious and semantically precise interpretation of the findings would be appropriate.

      Furthermore, the in vivo data should be strengthened by additional analyses to support the authors' conclusions. The authors claim that susceptibility to Pseudomonas aeruginosa infection differs depending on the ATP-induced training effect. Statistical analyses should be provided for the survival curves, as well as additional weight curves or clinical assessments. Moreover, it would be appropriate to complement this clinical characterization with additional measurements, such as immune cell infiltration analysis (by flow cytometry), and quantification of pro-inflammatory cytokines in bronchoalveolar lavage fluid and/or lung homogenates.

      Moreover, the authors attribute the differences in resistance to P. aeruginosa infection to the ATP-induced training effect on AMs, based on a correlation between in vivo survival curves and differences in bacterial killing capacity measured in vitro. These are correlative findings that do not establish a causal role for AMs in the in vivo phenotype. ATP-mediated effects on other (i.e., non-AM) cell populations are omitted, and the possibility that other cells could be affected should be, at least, discussed. Adoptive transfer experiments using AMs would be a suitable approach to directly address this question.

    1. Joint Public Review:

      Summary from an earlier round of review:

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):- Women are less likely to submit their papers to highly influential journals (e.g., Nature, Science and PNAS).

      - Women are more likely to cite the demands of co-authors as a reason why they didn’t submit to highly influential journals.

      - Women are also more likely to say that they were advised not to submit to highly influential journals.

      The paper highlights an important point, namely that the submission behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists’ careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates - or a lack thereof - should not be automatically interpreted as as evidence for or against discrimination (broadly defined) in the peer review process.

      Editor’s note: This is the third version of this article.

      Comments made during the peer review of the second version, along with author’s responses to these comments, are available below. Revisions made in response to these comments include changing the colour scheme used for the figures to make the figures more accessible for readers with certain forms of colour blindness.

      Comments made during the peer review of the first version, along with author’s responses to these comments, are available with previous versions of the article.

    1. Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. Their comparisons to the original SpliceAI models are convincing on the grounds of model performance and their evaluation of how well the new models match the original's understanding of non-local mutation effects. However, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of the limitations of calibration.

      Strengths

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance and mutation effect estimation capabilities of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple well well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      Weaknesses

      (1) Their discussion of their package's calibration functionality does not adequately acknowledge the limitations of model calibration. This is problematic as this is a package intended for general use and users who are not experienced in modeling broadly and the subfield of model calibration specifically may not already understand these limitations. This could lead to serious errors and misunderstandings down the road. A model is not calibrated or uncalibrated in and of itself, only with respect to a specific dataset. In this case they calibrated with respect to the training dataset, a set of canonical transcript annotations. This is a perfectly valid and reasonable dataset to calibrate against. However, this is unlikely to be the dataset the model is applied to in any downstream use case, and this calibration is not guaranteed or expected to hold for any shift in the dataset distribution. For example, in the next section they use ISM based approaches to evaluate which sequence elements the model is sensitive to and their calibration would not be expected to hold for this set of predictions. This issue is particularly worrying in the case of their model because annotation of canonical transcript splice sites is a task that it is unlikely their model will be applied to after training. Much more likely tasks will be things such as predicting the effects of mutations, identification of splice sites that may be used across isoforms beyond just the canonical one, identification of regulatory sequences through ISM, or evaluation of human created sequences for design or evaluation purposes (such as in the context of an MPSA or designing a gene to splice a particular way), we would not expect their calibration to hold in any of these contexts. To resolve this issue, the authors should clarify and discuss this limitation in their paper (and in the relevant sections of the package documentation) to avoid confusing downstream users.

      (2) The clarity of their analysis of mutation effects could be improved with some minor adjustments. While they report median ISM importance correlation it would be helpful to see a histogram of the correlations they observed. Instead of displaying (and calculating correlations using) importance scores of only the reference sequence, showing the importance scores for each nucleotide at each position provides a more informative representation. This would also likely make the plots in 6B clearer.

    1. Reviewer #1 (Public review):

      This is an important, interesting, and in-depth study examining the role of Sp5/8 transcription factors in maintaining the neuromesodermal progenitor (NMP) niche. The authors first used Sp5/8 double conditional KO mouse embryos to establish that these factors function in the NMP niche to promote trunk elongation. They then conducted extensive single-cell analyses on embryos of various genetic mutant backgrounds to unravel the complex and intricate interactions between Wnt signaling and Sp5/8. The key conclusion from these experiments is that Sp5/8 function within an autoregulatory loop crucial for maintaining the NMP niche. The authors went on to identify and characterize a novel enhancer element downstream of the Wnt3a coding sequence, which mediates the effects of Sp5/8 on Wnt3a expression. Overall, the data presented are compelling and of high quality, and the study offers a prime example of how a relatively small set of signaling pathways and transcription factors can function in concert to impart robustness to developmental processes.

    1. Reviewer #1 (Public review):

      Summary:

      Using a combination of EEG and behavioural measurements, the authors investigate the degree to which processing of spatially-overlapping targets (coherent motion) and distractors (affective images) are sampled rhythmically and how this affects behaviour. They found that both target processing (via measurement of amplitude modulations of SSVEP amplitude to target frequency) and distractor processing (via MVPA decoding accuracy of bandpassed EEG relative to distractor SSVEP frequency) displayed a pronounced rhythm at ~1Hz, time-locked to stimulus onset. Furthermore, the relative phase of this target/distractor sampling predicted accuracy of coherent motion detection across participants.

      Strengths:

      - The authors are addressing a very interesting question with respect to sampling of targets and distractors, using neurophysiological measurements to their advantage in order to parse out target and distractor processing.<br /> - The general EEG analysis pipeline is sensible and well-described.<br /> - The main result of rhythmic sampling of targets and distractors is striking and very clear even on a participant-level.<br /> - The authors have gone to quite a lot of effort to ensure the validity of their analyses, especially in the Supplementary Material.<br /> - It is incredibly striking how the phase of both target and distractor processing are so aligned across trials for a given participant. I would have thought that any endogenous fluctuation in attention or stimulus processing like that would not be so phase aligned. I know there is literature on phase resetting in this context, the results seem very strong here and it is worth noting. The authors have performed many analyses to rule out signal processing artifacts, e.g. the sideband and beating frequency analyses.

      Weaknesses:

      - In general, the representation of target and distractor processing is a bit of a reach. Target processing is represented by SSVEP amplitude, which is going to most likely be related to the contrast of the dots, as opposed to representing coherent motion energy which is the actual target. These may well be linked (e.g. greater attention to the coherent motion task might increase SSVEP amplitude) but I would call it a limitation of the interpretation. Decoding accuracy of emotional content makes sense as a measure of distractor processing, and the supplementary analysis comparing target SSVEP amplitude to distractor decoding accuracy is duly noted. Overall, this limitation remains and has been noted in the Limitations section.<br /> - Then comparing SSVEP amplitude to emotional category decoding accuracy feels a bit like comparing apples with oranges. They have different units and scales and reflect probably different neural processes. Is the result the authors find not a little surprising in this context? This relationship does predict performance and is thus intriguing, but I think this methodological aspect needs to be discussed further. For example, is the phase relationship with behaviour a result of a complex interaction between different levels of processing (fundamental contrast vs higher order emotional processing)? Again, this has been noted in the Limitations section, but changing the data to z-scores doesn't really take care of the conceptual issue, i.e. that on-screen contrast changes would necessarily be distracting during emotional category decision-making.

    1. Reviewer #1 (Public review):

      Summary:

      This work presents an interesting circuit dissection of the neural system allowing a ctenophore to keep its balance and orientation in its aquatic environment by using a fascinating structure called the statocyst. By combining serial-section electron microscopy with behavioral recordings, the authors found a population of neurons that exists as a syncytium and could associate these neurons with specific functions related to controlling the beating of cilia located in the statocyst. The type A ANN neurons participate in arresting cilia beating, and the type B ANN neurons participate in resuming cilia beating and increasing their beating frequency.

      Moreover, the authors found that bridge cells are connected with the ANN neurons, giving them the role of rhythmic modulators.

      From these observations, the authors conclude that the control is coordination instead of feedforward sensory-motor function, a hypothesis that had been put forth in the past but could not be validated until now. They also compare it to the circuitry implementing a similar behavior in a species that belongs to a different phylum, where the nervous system is thought to have evolved separately.

      Therefore, this work significantly advances our knowledge of the circuitry implementing the control of the cilia that participate in statocyst function, which ultimately allows the animal to correct its orientation. It represents an example of systems neuroscience explaining how the nervous system allows an animal to solve a specific problem and puts it in an evolutionary perspective, showing a convincing case of convergent evolution.

      Strengths:

      The evidence for how the circuitry is connected is convincing. Pictures of synapses showing the direction of connectivity are clear, and there are good reasons to believe that the diagram inferred is valid, even though we can always expect that some connections are missing.

      The evidence for how the cilia change their beating frequency is also convincing, and the paradigm and recording methods seem pretty robust.

      The authors achieved their aims, and the results support their conclusions. This work impacts its field by presenting a mechanism by which ctenophores correct their balance, which will provide a template for comparison with other sensory systems.

      Weaknesses:

      The evidence supporting the claim that the neural circuitry presented here controls the cilia beating is more correlational because it only relies on the fact that the location of the two types of ANN neurons coincides with the quadrants that are affected in the behavioral recordings. Discussing ways by which causality could be established might be helpful.

      The explanation of the relevance of this work could be improved. The conclusion that the work hints at coordination instead of feedforward sensory-motor control is explained over only a few lines. The authors could provide a more detailed explanation of how the two models compete (coordination vs feedforward sensory-motor control), and why choosing one option over the other could provide advantages in this context.

      Since the fact that the ANN neurons form a syncytium is an important finding of this study, it would be useful to have additional illustrations of it. For instance, pictures showing anastomosing membranes could typically be added in Figure 2.

      Also, to better establish the importance of the study, it could be useful to explain why the balancers' cilia spontaneously beat in the first place (instead of being static and just acting as stretch sensors).

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript "Realistic coupling enables flexible macroscopic traveling waves in the mouse cortex" by Sun, Forger, and colleagues presents a novel computational framework for studying macroscopic traveling waves in the mouse cortex by integrating realistic brain connectivity data with large-scale neural simulations.

      The key contributions include:<br /> (1) developing an algorithm that combines spatial transcriptomic data (providing detailed neuron positions and molecular properties) with voxelized connectivity data from the Allen Brain Atlas to construct neuron-to-neuron connections across ~300,000 cortical neurons;<br /> (2) building a GPU-accelerated simulation platform capable of modeling this large-scale network with both excitatory and inhibitory Hodgkin-Huxley neurons;<br /> (3) extending phase-based analysis methods from 2D to 3D to quantify traveling wave activity in the realistic brain geometry; and<br /> (4) demonstrating that realistic Allen connectivity generates significantly higher levels of macroscopic traveling waves compared to simplified local or uniform connectivity patterns.

      The study reveals that wave activity depends non-monotonically on coupling strength and that slow oscillations (0.5-4 Hz) are particularly conducive to large-scale wave propagation, providing new insights into how anatomical connectivity enables flexible spatiotemporal dynamics across the cortex.

      Strengths:

      The authors leverage two existing dense datasets of spatial transcriptomic data and connection strength between pairwise voxels in the mouse cortex in a novel way, allowing for the computational model to capture molecular and functional properties of neurons as determined by their neurotransmitter profiles, rather than making arbitrary assignments of excitatory/inhibitory roles. Additionally, the author's expansion of 2D phase dynamics to 3D phase gradient analysis methods is important and can be widely applied to calcium imaging, LFP recordings, and likely other electrophysiological recordings.

      Weaknesses:

      Despite these important computational advancements, a few aspects of this model, particularly the inability to validate the model with experimental neural data, diminish my enthusiasm for this paper:

      (1) The model's Allen connectivity approach overlooks critical aspects of real cortical dynamics. Most importantly, it excludes subcortical structures, especially the thalamus, which drives cortical traveling waves through thalamocortical interactions. The authors' method of electrically stimulating all layer 4 neurons simultaneously to initiate waves is artificially crude and bears little resemblance to natural wave generation mechanisms.

      (2) The model handles voxel-to-voxel connections crudely when neurons have mixed excitatory/inhibitory properties and varying synaptic strengths. Real connectivity differs dramatically between neuron types (pyramidal cells vs. interneurons, across cortical layers), but the model only distinguishes excitatory and inhibitory neurons. Additionally, uniform synaptic weights ignore natural variations in connection strength based on neuron type, distance, and functional role. Integrating the updated thalamocortical dataset mentioned by the authors, even at regional resolution, would substantially improve the model.

      (3) While the authors bridge microscopic (single neuron) and mesoscopic (regional connectivity) data to study macroscopic (whole-cortex) waves, they don't integrate the distinct mechanisms operating at each scale. The framework demonstrates that realistic connectivity enables macroscopic waves but fails to connect how wave dynamics emerge and interact across spatial scales systematically.

      (4) Claims that Allen connectivity produces higher phase gradient directionality (PGD) than local connectivity appear limited to delta oscillations at very specific coupling strengths and applied currents. Few parameter combinations show significantly higher PGD for Allen connectivity, and these are generally low PGD values overall.

      (5) Broadly, it's unclear how this computational framework can study memory, learning, sleep, sensory processing, or disease states, given the disconnect between simulated intracellular voltages and the local field potentials or other electrophysiological measurements typically used to study cortical traveling waves. While computationally impressive, the practical research applications remain vague.

      (6) The paper needs a clearer explanation for why medium coupling (100%) eliminates waves in Allen connectivity (Figure 6) while stronger coupling (150%) restores them.

      (7) Does using a single connectivity parameter (ρ = 300) across all regions miss important regional differences in cortical connectivity density?

    1. Reviewer #1 (Public review):

      Summary: This study investigated how visuospatial attention influences the way people build simplified mental representations to support planning and decision-making. Using computational modeling and virtual maze navigation, the authors examined whether spatial proximity and the spatial arrangement of obstacles determine which elements are included in participants' internal models of a task. The study developed and tested an extension of the value-guided construal (VGC) model that incorporates features of spatial attention for selecting simpler task mental representation.

      Strengths:

      (1) Original Perspective: The study introduces an explicit attentional component to established models of planning, offering an approach that bridges perception, attention, and decision-making.

      (2) Methodological Approach: The combination of computational modeling, behavioral data, and eye-tracking provides converging measures to assess the relationship between attention and planning representations.

      (3) Cross-validated data: The study relies on the analysis of three separate datasets, two already published and an additional novel one. This allows for cross-validation of the findings and enhances the robustness of the evidence.

      (4) Focus on Individual Differences: Reports of how individual variability in attentional "spillover" correlates with the sparsity of task representations and spatial proximity add depth to the analysis.

      Weaknesses:

      (1) Clarity of the VGC model and behavioral task: The exposition of the VGC model lacks sufficient detail for non-expert readers. It is not clear how this model infers which maze obstacles are relevant or irrelevant for planning, nor how the maze tasks specifically operationalize "planning" versus other cognitive processes.

      The method for classifying obstacles as relevant or irrelevant to the task and connecting metacognitive awareness (i.e., participants' reports of noticing obstacles) to attentional capture is not well justified. The rationale for why awareness serves as a valid attention proxy, as opposed to behavioral or neurophysiological markers, should be clearer.

      (2) Attention framework: The account of attention is largely limited to the "spotlight" model. When solving a maze, participants trace the correct trail, following it mentally with their overt or covert attention. In this perspective, relevant concepts are also rooted in attention literature pertaining to object-based attention using tasks like curve tracing (e.g., Pooresmaeili & Roelfsema, 2014) and to mental maze solving (e.g., Wong & Scholl, 2024), which may be highly relevant and add nuance to the current work. This view of attention may be more pertinent to the task than models of simultaneously tracking multiple objects cited here. Prior work (notably from the Roelfsema group) indicates that attentional engagement in curve-tracing tasks may be a continuous, bottom-up process that progressively spreads along a trajectory, in time and space, rather than a "spotlight" that simply travels along the path. The spread of attention depends on the spatial proximity to distractors - a point that could also be pertinent to the findings here.

      Moreover, the tracing of a "solution" trail in a maze may be spontaneous and not only a top-down voluntary operation (Wong & Scholl, 2024), a finding that requires a more careful framing of the link to conscious perception discussed in the manuscript.

      Conceptualizing attention as a spatial spotlight may therefore oversimplify its role in navigation and planning. Perhaps the observed attentional modulation reflects a perceptual stage of building the trail in the maze rather than a filter for a later representation for more efficient decision making and planning. A fuller discussion of whether the current model and data can distinguish between these frameworks would benefit readers.

      (3) Lateralization of attention: The analysis considers whether relevant information is distributed bilaterally or unilaterally across the visual display, but does not sufficiently address evidence for attentional asymmetries across the left and right visual fields due to hemispheric specialization (e.g., Bartolomeo & Seidel Malkinson, 2019). Whether effects differ for left versus right hemifield arrangements is not made explicit in the presented findings.

      (4) Individual differences: Individual differences in attentional modulation are a strength of the work, but similar analyses exploring individual variation in lateralization effects could provide further insight, and the lack of such analyses may mask important effects.

      (5) Distinction between overt and covert attention: The current report at times equates eye movement patterns with the locus of attention. However, attention can be covertly shifted without corresponding gaze changes (see, for example, Pooresmaeili & Roelfsema, 2014).

      The implications for interpreting the relationship between eye movement, memory, and attention in this setting are not fully addressed. The potential dynamics of attention along a maze trajectory and their impact on lateralization analysis would benefit from further clarification.

      Appraisal of Aims and Results:

      The study sets out to determine how spatial attention shapes the construction of task representations in planning contexts. The authors provide evidence that spatial proximity and arrangement influence which environmental features are incorporated into internal models used for navigation, and that accounting for these effects improves model predictions. There is clear documentation of individual variation, with some participants showing greater attentional spillover and more sparse awareness profiles.

      However, some conceptual and methodological aspects would be clearer with greater engagement with the broader literature on attention dynamics, a more explicit justification of operational choices, and more targeted lateralization analyses.

    1. Reviewer #1 (Public review):

      This work provides a valuable toolkit for endogenous isolation of projection neuron subtypes. With further validation, it could present a solid method for low-input ribosome affinity purification using a ribosomal RNA (rRNA) antibody. The experimental evidence for the distinct ribosomal complexes is limited to this method and indirect support from complementary analyses of pre-existing data. However, with additional experimental data to support the specificity of ribosomal complex pulldown and confirmation of the putative ribosomal complex proteins of interest, the study would provide compelling evidence for translation regulation of neuronal development through compositional ribosome heterogeneity. This work would be of interest to neuroscientists, developmental biologists, and those studying translational networks underlying gene regulation.

      Strengths

      (1) This in vivo labeling of specific projection neurons and ribosomal rRNA affinity purification method accommodates a low input of <100K somata per replicate, which is useful for the study of neuronal subtypes with limited input. In principle, this set of techniques could work across different cell types with limited input, depending on the molecule used for cell type labeling.

      (2) The authors are also able to isolate endogenous neurons with minimal perturbation up to the point of collection, preserving the native state for the neuron in vivo as long as possible prior to processing.

      (3) This study identified over a dozen potential non-ribosomal proteins associated with SCPN ribosomal complexes, as well as a ribosomal protein enriched in CPN.

      Limitations

      (1) In this study, the authors address the advantages of their ribosomal complex isolation method in SCPN and CPN against RPL22-HA affinity purification. While this does show more pull-down of the ribosomal RNA by the Y10B rRNA antibody, the authors claim this method identifies cell-type-specific ribosomal complex proteins without demonstrating a positive control for the method's specificity. There are very limited experiments to truly delineate how "specific" this method is working and whether there could be contamination from other complexes bound by the antibody. I see this as the major limitation that should be addressed. To boost their claims of capturing cell-type-specific ribosomal complexes, the authors could consider applying their rRNA affinity purification pipeline to compare cell types with well-characterized ribosome-associated proteins, like mouse embryonic stem cells and HELA cells. The reviewer can completely appreciate the elegance in the neural characterization here, but it seems there needs to be a solid foothold on the specificity of the method, perhaps facilitated by cell types that can be more readily scaled up and tested.

      (2) The authors followed up on their differentially enriched ribosomal complex proteins by analyzing the ribosome association of these proteins in external datasets. While this analysis supports the ribosome-association of these proteins, there is limited experimental validation of physical association with the ribosome, much less any functional characterization. The reciprocal pulldown of PRKCE is promising; however, I would recommend orthogonal validation of several putative ribosomal complex proteins to increase confidence. Specifically, the authors could use sucrose gradient fractionation of SCPN and CPN, followed by a western blot to identify the putative interaction with the 80S monosome or polysomes. This would also provide evidence towards the pulldown capturing association with mature ribosome species, which is currently unclear. This experiment would provide substantial evidence for the direct association of these non-ribosomal proteins with subtype-specific ribosomal complexes.

      (3) The authors state interest in learning more about the differences underlying translational regulation of projection neuron development. This method only captures neuronal somata, which will only capture ribosomes in the main cell body. There are also ribosomes regulating local translation in the axons, which may also play a critical role in axonal circuit establishment and activity. These ribosomal complex interactions may also be rather transient and difficult to capture at only one developmental stage. Therefore, this method is currently limited to a single developmental snapshot of ribosomal complexes at P3 within the main cell body. It would be exciting to see the extended utility of this method to sample neurites and additional developmental stages to gain further resolution on the developmental translation regulation of these projection neurons.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors introduce a unique pipeline of techniques to identify cell-type-specific ribosomal complex compositions. With more validation, there is certainly potential for those studying neuronal translation to leverage this method in limited primary cells as an alternative to existing methods that do not rely on ribosomal protein tagging, such as ARC-MS (Bartsch et al., 2023), RAPIDASH (Susanto and Hung et al., 2024), and RAPPL (Nature Communications, 2025).

    1. Reviewer #1 (Public review):

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      * The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      * The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents succesfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the direction-of-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      * The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      * The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

      Weaknesses:

      * Authors have not yet provided convincing justification for the use of different echolocation phases during emergence and in cave behaviour. In the previous modelling paper cited for the details - here the bat-agents are performing a foraging task, and so the switch in echolocation phases is understandable. While flying with conspecifics, the lab's previous paper has shown what they call a 'clutter response' - but this is not necessarily the same as going into a 'buzz'-type call behaviour. As pointed out by another reviewer - the results of the simulations may hinge on the fact that bats are showing this echolocation phase-switching, and thus improving their echo-detection. This is not necessarily a major flaw - but something for readers to consider in light of the sparse experimental evidence at hand currently.

      * The decision to model direction-of-arrival with such high angular resolution (1-2 degrees) is not entirely justifiable - and the authors may wish to do simulation runs with lower angular resolution. Past experimental paradigms haven't really separated out target-strength as a confounding factor for angular resolution (e.g. see the cited Simmons et al. 1983 paper). Moreover, to this reviewer's reading of the cited paper - it is not entirely clear how this experiment provides source-data to support the DoA-SNR parametrisation in this manuscript. The cited paper has two array-configurations, both of which are measured to have similar received levels upon ensonification. A relationship between angular resolution and signal-to-noise ratio is understandable perhaps - and one can formulate such a relationship, but here the reviewer asks that the origin/justification be made clear. On an independent line, also see the recent contrasting results of Geberl, Kugler, Wiegrebe 2019 (Curr. Biol.) - who suggest even poorer angular resolution in echolocation.

    1. Reviewer #1 (Public review):

      Summary:

      The authors provide a detailed ultrastructural analysis of the larval pharyngeal sensory organs, including the dorsal pharyngeal sensilla, dorsal pharyngeal organ, ventral pharyngeal sensilla, and posterior pharyngeal sensilla. Using electron microscopy and 3D reconstruction, Richter et al., present a comprehensive mapping and classification of pharyngeal sensory structures, defining mthe orphological type of pharyngeal sensilla based on ultrastructure and generating a neuron-to-sensillum map. These findings significantly advance our understanding of internal larval sensory systems and establish a robust framework for future functional studies in coordination with external sensory systems.

      Strengths:

      The application of high-resolution electron microscopy and 3D imaging analysis successfully overcomes technical challenges associated with visualizing deep internal structures. This enables an unprecedented level of anatomical detail of the larval pharyngeal sensory system. Thus, the study complements and completes existing maps of larval sensory circuits, contributing a comprehensive neuroanatomical characterization of larval sensory input pathways. These insights will inform future studies on larval behavior, sensory processing, and may also have applied relevance for insect control strategies.

      Weaknesses:

      While the manuscript is concise, clearly written, and methodologically rigorous, it primarily addresses a specialized readership with expertise in insect neuroanatomy.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides important new evidence of the cognitive and neural mechanisms that give rise to feelings of shame and guilt, as well as their transformation into compensatory behavior. The authors use a well-designed interpersonal task to manipulate responsibility and harm, eliciting varying levels of shame and guilt in participants. The study combines behavioral, computational, and neuroimaging approaches to offer a comprehensive account of how these emotions are experienced and acted upon. Notably, the findings reveal distinct patterns in how harm and responsibility contribute to guilt and shame and how these factors are integrated into compensatory decision-making.

      Strengths:

      (1) Investigating both guilt and shame in a single experimental framework allows for a direct comparison of their behavioral and neural effects while minimizing confounds.

      (2) The study provides a novel contribution to the literature by exploring the neural bases underlying the conversion of shame into behavior.

      (3) The task is creative and ecologically valid, simulating a realistic social situation while retaining experimental control.

      (4) Computational modeling and fMRI analysis yield converging evidence for a quotient-based integration of harm and responsibility in guiding compensatory behavior.

      Weaknesses:

      (1) Post-experimental self-reports rely both on memory and on the understanding of the conceptual difference between the two emotions. Additionally, it is unclear whether the 16 scenarios were presented in random order; sequential presentation could have introduced contrast effects or demand characteristics.

      (2) In the neural analysis of emotion sensitivity, the authors identify brain regions correlated with responsibility-driven shame sensitivity and then use those brain regions as masks to test whether they were more involved in the responsibility-driven shame sensitivity than the other types of emotion sensitivity. I wonder if this is biasing the results. Would it be better to use a cross-validation approach? A similar issue might arise in "Activation analysis (neural basis of compensatory sensitivity)."

      Additional comments and questions:

      (1) Regarding the traits of guilt and shame, I appreciate using the scores from the subscales (evaluations and action tendencies) separately for the analyses (instead of a composite score). An issue with using the actions subscales when measuring guilt and shame proneness is that the behavioral tendencies for each emotion get conflated with their definitions, risking circularity. It is reassuring that the behavior evaluation subscale was significantly correlated with compensatory behavior (not only the action tendencies subscale). However, the absence of significant neural correlates for the behavior evaluation subscale raises questions: Do the authors have thoughts on why this might be the case, and any implications?

      (2) Regarding the computational model finding that participants seem to disregard self-interest, do the authors believe it may reflect the relatively small endowment at stake? Do the authors believe this behavior would persist if the stakes were higher? Additionally, might the type of harm inflicted (e.g., electric shock vs. less stigmatized/less ethically charged harm like placing a hand in ice-cold water) influence the weight of self-interest in decision-making?

      Taken together, the conclusions of the paper are well supported by the data. It would be valuable for future studies to validate these findings using alternative tasks or paradigms to ensure the robustness and generalizability of the observed behavioral and neural mechanisms.

    1. Reviewer #1 (Public review):

      Summary

      The authors previously published a study of RGC boutons in the dLGN in developing wild-type mice and developing mutant mice with disrupted spontaneous activity. In the current manuscript, they have broken down their analysis of RGC boutons according to the number of Homer/Bassoon puncta associated with each vGlut3 cluster.

      The authors find that, in the first post-natal week, RGC boutons with multiple active zones (mAZs) are about a third as common as boutons with a single active zone (sAZ). The size of the vGluT2 cluster associated with each bouton was proportional to the number of active zones present in each bouton. Within the author's ability to estimate these values (n=3 per group, 95% of results expected to be within ~2.5 standard deviations), these results are consistent across groups: 1) dominant eye vs. non-dominant eye, 2) wild-type mice vs. mice with activity blocked, and at 3) ages P2, P4, and P8. The authors also found that mAZs and sAZs also have roughly the same number (about 1.5) of sAZs clustered around them (within 1.5 um).

      However, the authors do not interpret this consistency between groups as evidence that active zone clustering is not a specific marker or driver of activity dependent synaptic segregation. Rather, the authors perform a large number of tests for statistical significance and cite the presence or absence of statistical significance as evidence that "Eye-specific active zone clustering underlies synaptic competition in the developing visual system (title)". I don't believe this conclusion is supported by the evidence.

      Strengths

      The source dataset is high resolution data showing the colocalization of multiple synaptic proteins across development. Added to this data is labeling that distinguishes axons from the right eye from axons from the left eye. The first order analysis of this data showing changes in synapse density and in the occurrence of multi-active zone synapses is useful information about the development of an important model for activity dependent synaptic remodeling.

      Weaknesses

      In my previous review I argued that it was not possible to determine, from their analysis, whether the differences they were reporting between groups was important to the biology of the system. The authors have made some changes to their statistics (paired t-tests) and use some less derived measures of clustering. However, they still fail to present a meaningfully quantitative argument that the observed group differences are important. The authors base most of their claims on small differences between groups. There are two big problems with this practice. First, the differences between groups appear too small to be biologically important. Second, the differences between groups that are used as evidence for how the biology works are generally smaller than the precision of the author's sampling. That is, the differences are as likely to be false positives as true positives.

      (1) Effect size. The title claims: "Eye-specific active zone clustering underlies synaptic competition in the developing visual system". Such a claim might be supported if the authors found that mAZs are only found in dominant-eye RGCs and that eye-specific segregation doesn't begin until some threshold of mAZ frequency is reached. Instead, the behavior of mAZs is roughly the same across all conditions. For example, the clear trend in Figure 4C and D is that measures of clustering between mAZ and sAZ are as similar as could reasonably be expected by the experimental design. However, some of the comparisons of very similar values produced p-values < 0.05. The authors use this fact to argue that the negligible differences between mAZ and sAZs explain the development of the dramatic differences in the distribution of ipsilateral and contralateral RGCs.

      (2) Sample size. Performing a large number of significance tests and comparing p-values is not hypothesis testing and is not descriptive science. At best, with large sample sizes and controls for multiple tests, this approach could be considered exploratory. With n=3 for each group, many comparisons of many derived measures, among many groups, and no control for multiple testing, this approach constitutes a random result generator.

      The authors argue that n=3 is a large sample size for the type of high resolution / large volume data being used. It is true that many electron microscopy studies with n=1 are used to reveal the patterns of organization that are possible within an individual. However, such studies cannot control individual variation and are, therefore, not appropriate for identifying subtle differences between groups.<br /> In response to previous critiques along these lines, the authors argue they have dealt with this issue by limiting their analysis to within-individual paired comparisons. There are several problems with their thinking in this approach. The main problem is that they did not change the logic of their arguments, only which direction they pointed the t-tests. Instead of claiming that two groups are different because p < 0.05, they say that two groups are different because one produced p < 0.05 and the other produced p > 0.05. These arguments are not statistically valid or biologically meaningful.

      To the best of my understanding, the results are consistent with the following model:

      • RGCs form mAZs at large boutons (known)

      • About a quarter of week-one RGC boutons are mAZs (new observation)

      • Vesicle clustering is proportional to active zone number (~new observation)

      • RGC synapse density increases during the first post-week (known)

      • Blocking activity reduces synapse density (known)

      • Contralateral eye RGCs for more and larger synapses in the lateral dLGN (known)

      • With n=3 and effect sizes smaller than 1 standard deviation, a statistically significant result is about as likely to be a false positive as a true positive.

      • A true-positive statistically significant result does is not evidence of a meaningful deviation from a biological model.

      Providing plots that show the number of active zones present in boutons across these various conditions is useful. However, I could find no compelling deviation from the above default predictions that would influence how I see the role of mAZs in activity dependent eye-specific segregation.

      Below are critiques of most of the claims of the manuscript.

      Claim (abstract): individual retinogeniculate boutons begin forming multiple nearby presynaptic active zones during the first postnatal week.

      Confirmed by data.

      Claim (abstract): the dominant-eye forms more numerous mAZ contacts,

      Misleading: The dominant-eye (by definition) forms more contacts than the non-dominant eye. That includes mAZ.

      Claim (abstract): At the height of competition, the non-dominant-eye projection adds many single active zone (sAZ) synapses

      Weak: While the individual observation is strong, it is a surprising deviation based on a single n=3 experiment in a study that performed twelve such experiments (six ages, mutant/wildtype, sAZ/mAZ)

      Claim (abstract): Together, these findings reveal eye-specific differences in release site addition during synaptic competition in circuits essential for visual perception and behavior.

      False: This claim is unambiguously false. The above findings, even if true, do not argue for any functional significance to active zone clustering.

      Claim (line 84): "At the peak of synaptic competition midway through the first postnatal week, the non-dominant-eye formed numerous sAZ inputs, equalizing the global synapse density between the two eyes"

      Weak: At one of twelve measures (age, bouton type, genotype) performed with 3 mice each, one density measure was about twice as high as expected.

      Claim (line 172): "In WT mice, both mAZ (Fig. 3A, left) and sAZ (Fig. 3B, left) inputs showed significant eye-specific volume differences at each age."

      Questionable: There appears to be a trend, but the size and consistency is unclear.

      Claim (line 175): "the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left)."

      Cherry picking. Twelve differences were measured with an n of 3, 3 each time. The biggest difference of the group was cited. No analysis is provided for the range of uncertainty about this measure (2.5 standard deviations) as an individual sample or as one of twelve comparisons.

      Claim (line 174): "In the middle of eye-specific competition at P4 in WT mice, the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left). In contrast, β2KO mice showed a smaller 1.1 fold difference at the same age (Fig. 3A, right panel). For sAZ synapses at P4, the magnitudes of eye-specific differences in VGluT2 volume were smaller: 1.35-fold in WT (Fig. 3B, left) and 0.41-fold in β2KO mice (Fig. 3B, right). Thus, both mAZ and sAZ input size favors the dominant eye, with larger eye-specific differences seen in WT mice (see Table S3)."

      No way to judge the reliability of the analysis and trivial conclusion: To analyze effect size the authors choose the median value of three measures (whatever the middle value is). They then make four comparisons at the time point where they observed the biggest difference in favor of their hypothesis. There is no way to determine how much we should trust these numbers besides spending time with the mislabeled scatter plots. The authors then claim that this analysis provides evidence that there is a difference in vGluT2 cluster volume between dominant and non-dominant RGCs and that that difference is activity dependent. The conclusion that dominant axons have bigger boutons and that mutants that lack the property that would drive segregation would show less of a difference is very consistent with the literature. Moreover, there is no context provided about what 1.35 or 1.1 fold difference means for the biology of the system.

      Claim (189): "This shows that vesicle docking at release sites favors the dominant-eye as we previously reported but is similar for like eye type inputs regardless of AZ number."

      Contradicts core claim of manuscript: Consistent with previous literature, there is an activity dependent relative increase in vGlut2 clustering of dominant eye RGCs. The new information is that that activity dependence is more or less the same in sAZ and mAZ. The only plausible alternative is that vGlut2 scaling only increases in mAZ which would be consistent with the claims of their paper. That is not what they found. To the extent that the analysis presented in this manuscript tests a hypothesis, this is it. The claim of the title has been refuted by figure 3.

      Claim (line 235): "For the non-dominant eye projection, however, clustered mAZ inputs outnumbered clustered sAZ inputs at P4 (Fig. 4C, bottom left panel), the age when this eye adds sAZ synapses (Fig. 2C)."

      Misleading: The overwhelming trend across 24 comparisons is that the sAZ clustering looks like mAZ clustering. That is the objective and unambiguous result. Among these 24 underpowered tests (n=3), there were a few p-values < 0.05. The authors base their interpretation of cell behavior on these crossings.

      Claim (line 328): "The failure to add synapses reduced synaptic clustering and more inputs formed in isolation in the mutants compared to controls."

      Trivially true: Density was lower in mutant.

      Claim (line 332): "While our findings support a role for spontaneous retinal activity in presynaptic release site addition and clustering..."

      Not meaningfully supported by evidence: I could not find meaningful differences between WT and mutant beside the already known dramatic difference in synapse density.

    1. Reviewer #1 (Public review):

      Summary:

      This computational study investigates the physical mechanisms underlying enhancer-promoter (E-P) interactions across genomic distances in Drosophila chromosomes, motivated by a previously published study that revealed unexpectedly frequent long-range contacts challenging classical polymer models. The authors performed coarse-grained polymer simulations testing three chromatin organization models: ideal polymers, loop extrusion, and compartmental segregation, comparing their predictions to experimental Hi-C contact maps, mean E-P distances, and two-locus mean-squared displacement dynamics. They found that compartmental segregation best captured both the structural and dynamic features observed experimentally, while neither ideal chains nor loop extrusion alone could reproduce all experimental observables. The combination of compartmental segregation with loop extrusion further improved agreement with experimental data, suggesting these mechanisms might be involved in Drosophila chromatin organization.

      Strengths:

      The paper has two primary strengths:

      (1) The simulations are based on biologically interpretable mechanisms (compartmentalization and loop extrusion), which may facilitate making specific experimentally testable predictions.

      (2) The work uses a systematic approach to increase model complexity by directly fitting to data, first establishing that simple models fail to capture the data until arriving at a more complex model that does capture the data.

      Weaknesses:

      I have two major concerns (detailed below) and multiple minor concerns.

      Major concerns:

      (1) While the upside of the mechanistic simulations is that they are interpretable, the downside is that specific choices for the considered mechanism were made, and conclusions drawn from it are necessarily biased by the initial choices. In this paper, only two mechanisms were considered: loop extrusion and compartmentalization. Yet, it is not clear why these are the most likely underlying mechanisms that might determine the chromosome dynamics. Indeed, previous work (not cited in this paper) showed that Drosophila chromosome structure is not determined by loop extrusion: https://elifesciences.org/articles/94070.

      This should be acknowledged, and the main reasons for choosing these particular mechanisms should be laid out. The conclusions of the paper must then necessarily always be seen under the caveat that only these two mechanisms were considered.

      (2) Even within the framework of the approach, insufficient evidence is given to support the title of the paper "Criticality-driven enhancer-promoter dynamics in Drosophila chromosomes" for two reasons:

      (a) The fact that the best-fit parameters are near a coil-globule transition does not mean that the resulting dynamics are criticality-driven. To claim criticality, one would usually expect much more direct evidence, such as diverging correlation lengths. Furthermore, it would need to be shown that the key features of the dynamics (which should be defined, presumably the static and dynamic exponents) indeed depend on the parameters being at this transition. i.e., when tuning the simulations away from this parameter point, does the behaviour disappear? Only in this case can it be claimed that the behaviour is driven by this phenomenon.

      (b) The results section actually contains no mention of the coil-globule transition, and it is not clear in what way the parameters are close to this transition.

      Thus, three things are necessary:

      (i) How the parameters are close to the transition needs to be explained in detail.

      (ii) The divergence of observed dynamics whenever the parameters are tuned away from the transition needs to be demonstrated.

      (iii) Even if 1 and 2 are fulfilled, a more careful title should be chosen, such as "Polymer simulations near the coil-globule transition are consistent with enhancer-promoter dynamics in Drosophila chromosomes."

      Many of the results in the figures and results section are rather repetitive and could be compressed. The main result of Figure 1 - that the data are not described by an ideal chain - was already fully shown and established in the original paper from which the data are taken. Figure 2 is a negative result with near-identical panels to Figure 3. Figure 4B is hard to interpret.

      The paper makes no concrete suggestions for new experiments to test the hypotheses formulated. Since the paper can only claim that the simulations are consistent with the data, it would significantly strengthen the paper if testable predictions could be made.

    1. Reviewer #1 (Public review):

      In this revised submission from Kapustin et al., the authors have made significant changes to the manuscript. Namely, the authors have addressed several of the major issues with the original submission, providing a more concrete link between fibronectin and the secretion of extracellular vesicles. Additionally, the authors have moderated some of the conclusions to better suit the rigor of the experimental results and limitations of their approach. Generally, the findings convey an interesting cell autonomous pathway in which smooth muscle cells sense fibronectin, which canonically is a proinflammatory substrate with activating properties in many tissues. Fibronectin-mediated integrin signaling stimulates secretion of small extracellular vesicles containing collagen VI which is deposited into the surrounding extracellular matrix. Collagen VI itself gleaned from extracellular vesicle secretion seems to further alter smooth muscle cell morphodynamics. For this later finding, much of the mechanism behind collagen VI vesicle loading and secretion has yet to be worked out. The authors provide evidence of extracellular vesicles containing collagen VI trapped in fibronectin in atherosclerotic plaques providing a nice validation of their in vitro findings in a diseased human cohort. Some limitations do still exist in the manuscript in its current form such as the assessment of the vesicle origins, contents and their association with the actin cytoskeleton; however, the rigor and execution are much improved from the preceding version. Overall, the pathobiology underlying vascular smooth muscle remodeling in disease states is a critical area of research that warrants further exploration.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines how two common psychiatric treatments, antidepressant medication and cognitive distancing, influence baseline levels and moment-to-moment changes in happiness, confidence, and engagement during a reinforcement learning task. Combining a probabilistic selection task, trial-by-trial affect ratings, psychiatric questionnaires, and computational modeling, the authors demonstrate that each treatment has distinct effects on affective dynamics. Notably, the results highlight the key role of affective biases in how people with mental health conditions experience and update their feelings over time, and suggest that interventions like cognitive distancing and antidepressant medication may work, at least in part, by shifting these biases.

      Strengths:

      (1) Addresses an important question: how common psychiatric treatments impact affective biases, with potential translational relevance for understanding and improving mental health interventions.

      (2) The introduction is strong, clear, and accessible, making the study approachable for readers less familiar with the underlying literature.

      (3) Utilizes a large sample that is broadly representative of the UK population in terms of age and psychiatric symptom history, enhancing generalizability.

      (4) Employs a theory-driven computational modeling framework that links learning processes with subjective emotional experiences.

      (5) Uses cross-validation to support the robustness and generalizability of model comparisons and findings.

      Weaknesses:

      The authors acknowledge the limitations in the discussion section.

      Additional questions:

      (1) Group Balance & Screening for Medication Use: How many participants in the cognitive distancing and control groups were taking antidepressant medication? Why wasn't medication use included as part of the screening to ensure both groups had a similar number of participants taking medication?

      (2) Assessment of the Practice of Cognitive Distancing: Is there a direct or more objective method to evaluate whether participants actively engaged in cognitive distancing during the task, and to what extent? Currently, the study infers engagement indirectly through the outcomes, but does not include explicit measures of participants' use of the technique. Would including self-report check-ins throughout the task, asking participants whether they were actively engaging in cognitive distancing, have been useful? However, including frequent self-report check-ins would increase procedural differences between groups, making perhaps the tasks less comparable beyond the intended treatment manipulation. Maybe incorporating a question at the end of the task, asking how much they engaged in cognitive distancing, could offer a useful measure of subjective engagement without overly disrupting the task flow.

      Conclusion:

      This study advances our understanding of the mechanisms underlying mental health interventions. The combination of computational modeling with behavioral and affective data offers a powerful framework for understanding how treatments influence affective biases and dynamics. These findings are of broad interest across clinical and mental health sciences, cognitive and affective research, and applied translational fields focused on improving psychological well-being.

    1. Reviewer #1 (Public review):

      Allodynia is commonly measured in the pain field using von Frey filaments, which are applied to a body region (usually hindpaw if studying rodents) by a human. While humans perceive themselves as being objective, as the authors noted, humans are far from consistent when applying these filaments. Not to mention, odors from humans, including of different sexes, can influence animal behavior. There is thus a major unmet need for a way to automate this tedious von Frey testing process, and to remove humans from the experiment. I have no major scientific concerns with the study, as the authors did an outstanding job of comparing this automated system to human experimenters in a rigorous and quantitative manner. They even demonstrated that their automated system can be used in conjunction with in vivo imaging techniques.

      While it is somewhat unclear how easy and inexpensive this device will be, I anticipate everyone in the pain field will be clamoring to get their hands on a system like this. And given the mechanical nature of the device, and propensity for mice to urinate on things, I also wonder how frequently the device breaks/needs to be repaired. Perhaps some details regarding cost and reliability of the device would be helpful to include, as these are the two things that could make researchers hesitant to adopt immediately.

      The only major technical concern, which is easy to address, is whether the device generates ultrasounic sounds that rodents can hear when idle or operational, across the ultrasonic frequencies that are of biological relevance (20-110 kHz). These sounds are generally alarm vocalizations and can create stress in animals, and/or serve as cues of an impending stimulus (if indeed they are produced by the device).

      Comments on revisions:

      Was Fig. 1 updated with the new apparatus design? i.e. to address issue of animal waste affecting function over time?

      I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is guided by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which has struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death processes. Unfortunately, though, the model shows little improvement over neutral models in predicting protein sequence evolution, although it can predict protein stability better than models assuming neutral evolution. It appears that more work is needed to determine exactly what aspects of protein sequence evolution are predictable under such non-neutral phylogenetic models.

      Major concerns:

      (1) The authors have clarified the mapping between birth-death model parameters and fitness, but how fitness is modeled still appears somewhat problematic. The authors assume the death rate = 1 - birth rate. So a variant with a birth rate b = 1 would have a death rate d = 0 and so would be immortal and never die, which does not seem plausible. Also I'm not sure that this would "allow a constant global (birth-death) rate" as stated in line 172, as selection would still act to increase the population mean growth rate r = b - d. It seems more reasonable to assume that protein stability affects only either the birth or death rate and assume the other rate is constant, as in the Neher 2014 model.

      (2) It is difficult to evaluate the predictive performance of protein sequence evolution. This is in part due to the fact that performance is compared in terms of percent divergence, which is difficult to compare across viral proteins and datasets. Some protein sequences would be expected to diverge more because they are evolving over longer time scales, under higher substitution rates or under weaker purifying selection. It might therefore help to normalize the divergence between predicted and observed sequences by the expected or empirically observed amount of divergence seen over the timescale of prediction.

      (3) Predictability may also vary significantly across different sites in a protein. For example, mutations at many sites may have little impact on structural stability (in which case we would expect poor predictive performance) while even conservative changes at other sites may disrupt folding. I therefore feel that there remains much work to be done here in terms of figuring out where and when sequence evolution might be predictable under these types of models, and when sequence evolution might just be fundamentally unpredictable due to the high entropy of sequence space.

    1. Reviewer #1 (Public review):

      Summary:

      This study is an evaluation of patient variants in the kidney isoform of AE1 linked to distal renal tubular acidosis. Drawing on observations in the mouse kidney, this study extends findings to autophagy pathways in a kidney epithelial cell line.

      Strengths:

      Experimental data are convincing and nicely done.

      Weaknesses:

      Some data are lacking or not explained clearly. Mutations are not consistently evaluated throughout the study, which makes it difficult to draw meaningful conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      Lysosomal damage is commonly found in many diseases including normal aging and age-related disease. However, the transcriptional programs activated by lysosomal damage has not been thoroughly characterized. This study aims to investigate lysosome damage-induced major transcriptional responses and the underlying signaling basis. The authors have convincingly shown that lysosomal damage activates a ubiquitination-dependent signaling axis involving TAB, TAK1, and IKK, which culminate in the activation of NF-kB and subsequent transcriptional upregulation of pro-inflammatory genes and pro-survival genes. Overall, the major aims of this study are successfully achieved.

      Strengths:

      This study is well-conceived and strictly executed, leading to clear and well-supported conclusions. Through unbiased transcriptomics and proteomics screens, the authors identifies NF-kB as a major transcriptional program activated upon lysosome damage. TAK1 activation by lysosome damage-induced ubiquitination is found to be essential for NF-kB activation and MAP kinase signaling. The transcriptional and proteomic changes are shown to be largely driven by TAK1 signaling. Finally, the TAK1-IKK signaling is shown to provide resistance to apoptosis during lysosomal damage response. The main signaling axis of this pathway has been convincingly demonstrated.

      Overall, this study identifies major transcriptional responses following lysosomal damage through unbiased approaches. It is important to consider the impact of these pathways in disease settings where lysosomal integrity is compromised.

      Comments on revisions:

      The authors have adequately addressed all previous comments. I have no further recommendations.

    1. Reviewer #1 (Public review):

      Summary:

      This study by Bushey et al., focuses on two newly released red-shifted anion-Channelrhodopsins (A1ACR and HfACR, referred as Ruby-ACRs) in Drosophila. Here, the authors use a combination of electrophysiology, calcium imaging, and behavioral analyses to demonstrate the advantages of Ruby-ACRs over previous optogenetic silencers like the green-shifted GtACR1 and the blue-shifted GtACR2: higher photocurrent, faster kinetics, and operating at a light spectrum range that prevents unwanted behavioral effects in the fly. The availability of these new red-shifted silencers constitutes a great addition to the Drosophila genetic toolkit.

      Strengths:

      (1) The authors generate both UAS and LexAop RubyACR reagents and test them in a variety of preparations (electrophysiological recordings, calcium imaging, different behavioral paradigms) that cover the breadth of the fly research environment.

      (2) The optical stimulation parameters are carefully measured and characterized. Especially impressive is that they managed to titrate over both wavelength and intensity across their various assays. This provides a comprehensive dataset to the community.

      (3) Tools are made available to the community through the stock center.

      Weaknesses:

      (1) The authors could better describe their construct and choice of parameters for the chosen construct. I am specifically wondering about the following points:

      a) Why use that particular backbone (not the most commonly used one across recent literature (pJFRC7 is more common).

      b) Why do the CsChrimson and GTACR1 have a Kir sequence in it, and why did the authors not put this in the RubyACRs? I would also prefer if authors don't refer to GtACR1 as GTACR-Kir in text (e.g., in line 72); instead, they should either refer to it as GtACR1 or GtACR1-kir-mVenus (based on the full genotype mentioned in their table at the end). Same for CsChrimson-kir. From what I understand, this is just a Kir trafficking sequence and not the entire Kir sequence, which can confuse the readers.

      c) Finally, I would also encourage authors to deposit plasmids on Addgene.

      (2) Figure 2 is interesting, but it is a bit unfortunate that there is a YFP baseline in most of the samples here (except Chrimson88; this should also be mentioned). I wonder how the YFP baseline impacts this data. Could the high intensity stimulation (red light) lead to bleaching of YFP or tdTomato that reduces the baseline in the green channel? All this also makes me wonder if authors tried tagging the RubyACRs with other fluorophores or non-fluorescent tags and how that impacted their functioning. Non-YFP-tagged versions would be more useful for applications involving GCaMP imaging.

      (3) Another point for Figure 2: Since RubyACRs seem to have such a broad activation range, I wonder how much the imaging light (920nm) impacts the baseline in these experiments. If there were plots without the red light stimulation and just varying imaging light intensity, that could be useful to the research community.

      (4) Also, for Figures 2C - D, in the methods authors indicate that the stimulation light intensities were progressively increased. Could this lead to desensitization of opsin? Wouldn't randomized intensities be a better way to do this? Perhaps it should be mentioned as a caveat.

      (5) In Figure 3E the bottom middle panel Vglut-Gal4,GtACR1 shows a major increase in walking at light onset. This seems very different than all other conditions, and I could not find any discussion of this. It would help if some explanation were provided for this.

    1. Reviewer #1 (Public review):

      Summary:

      Review of the manuscript titled " Mycobacterial Metallophosphatase MmpE acts as a nucleomodulin to regulate host gene expression and promotes intracellular survival".

      The study provides an insightful characterization of the mycobacterial secreted effector protein MmpE, which translocates to the host nucleus and exhibits phosphatase activity. The study characterizes the nuclear localization signal sequences and residues critical for the phosphatase activity, both of which are required for intracellular survival.

      Strengths:

      (1) The study addresses the role of nucleomodulins, an understudied aspect in mycobacterial infections.

      (2) The authors employ a combination of biochemical and computational analyses along with in vitro and in vivo validations to characterize the role of MmpE.

      Weaknesses:

      (1) While the study establishes that the phosphatase activity of MmpE operates independently of its NLS, there is a clear gap in understanding how this phosphatase activity supports mycobacterial infection. The investigation lacks experimental data on specific substrates of MmpE or pathways influenced by this virulence factor.

      (2) The study does not explore whether the phosphatase activity of MmpE is dependent on the NLS within macrophages, which would provide critical insights into its biological relevance in host cells. Conducting experiments with double knockout/mutant strains and comparing their intracellular survival with single mutants could elucidate these dependencies and further validate the significance of MmpE's dual functions.

      (3) The study does not provide direct experimental validation of the MmpE deletion on lysosomal trafficking of the bacteria.

      (4) The role of MmpE as a mycobacterial effector would be more relevant using virulent mycobacterial strains such as H37Rv.

    1. Reviewer #1 (Public review):

      From my reading, this study aimed to achieve two things:

      (1) A neurally-informed account of how Pieron's and Fechner's laws can apply in concert at distinct processing levels.

      (2) A comprehensive map in time and space of all neural events intervening between stimulus and response in an immediately-reported perceptual decision.

      I believe that the authors achieved the first point, mainly owing to a clever contrast comparison paradigm, but with good help also from a new topographic parsing algorithm they created. With this, they found that the time intervening between an early initial sensory evoked potential and an "N2" type process associated with launching the decision process varies inversely with contrast according to Pieron's law. Meanwhile, the interval from that second event up to a neural event peaking just before response increases with contrast, fitting Fechner's law, and a very nice finding is that a diffusion model whose drift rates are scaled by Fechner's law, fit to RT, predicts the observed proportion of correct responses very well. These are all strengths of the study.

      The second, generally stated aim above is, in the opinion of this reviewer, unconvincing and ill-defined. Presumably, the full sequence of neural events is massively task-dependent, and surely it is more in number than just three. Even the sensory evoked potential typically observed for average ERPs, even for passive viewing, would include a series of 3 or more components - C1, P1, N1, etc. So are some events being missed? Perhaps the authors are identifying key events that impressively demarcate Pieron- and Fechner-adherent sections of the RT, but they might want to temper the claim that they are finding ALL events. In addition, the propensity for topographic parsing algorithms to potentially lump together distinct processes that partially co-evolve should be acknowledged.

      To take a salient example, the last neural event seems to blend the centroparietal positivity with a more frontal midline negativity, some of which would capture the CNV and some motor-execution related components that are more tightly time-locked to, of course, the response. If the authors plotted the traditional single-electrode ERP at the frontal focus and centroparietal focus separately, they are likely to see very different dynamics and contrast- and SAT-dependency. What does this mean for the validity of the multivariate method? If two or more components are being lumped into one neural event, wouldn't it mean that properties of one (e.g., frontal burstiness at response) are being misattributed to the other (centroparietal signal that also peaks but less sharply at response)?

      Also related to the method, why must the neural events all be 50 ms wide, and what happens if that is changed? Is it realistic that these neural events would be the same duration on every trial, even if their duration was a free parameter? This might be reasonable for sensory and motor components, but unlikely for cognitive.

      In general, I wonder about the analytic advantage of the parsing method - the paradigm itself is so well-designed that the story may be clear from standard average event-related potential analysis, and this might sidestep the doubts around whether the algorithm is correctly parsing all neural events.

      In particular, would the authors consider plotting CPP waveforms in the traditional way, across contrast levels? The elegant design is such that the C1 component (which has similar topography) will show up negative and early, giving way to the CPP, and these two components will show opposite amplitude variations (not just temporal intervals as is this paper's main focus), because the brighter the two gratings, the stronger the aggregate early sensory response but the weaker the decision evidence due to Fechner. I believe this would provide a simple, helpful corroborating analysis to back up the main functional interpretation in the paper.

      The first component is picking up on the C1 component (which is negative for these stimulus locations), not a "P100". Please consult any visual evoked potential study (e.g., Luck, Hillyard, etc).

      It is unexpected that this does not vary in latency with contrast - see, for example. Gebodh et al (2017, Brain Topography) - and there is little discussion of this. Could it be that nonlinear trends were not correctly tested for?

      There is very little analysis or discussion of the second stage linked to attention orientation - what would the role of attention orientation be in this task? Is it spatial attention directed to the higher contrast grating (and if so, should it lateralise accordingly?), or is it more of an alerting function the authors have in mind here?

    1. Reviewer #2 (Public review):

      McDougal et al. describe the surprising finding that IFIT1 proteins from different mammalian species inhibit replication of different viruses, indicating that evolution of IFIT1 across mammals has resulted in host species-specific antiviral specificity. Before this work, research into the antiviral activity and specificity of IFIT1 had mostly focused on the human ortholog, which was described to inhibit viruses including vesicular stomatitis virus (VSV) and Venezuelan equine encephalitis virus (VEEV) but not other viruses including Sindbis virus (SINV) and parainfluenza virus type 3 (PIV3). In the current work, the authors first perform evolutionary analyses on IFIT1 genes across a wide range of mammalian species and reveal that IFIT1 genes have evolved under positive selection in primates, bats, carnivores, and ungulates. Based on these data, they hypothesize that IFIT1 proteins from these diverse mammalian groups may show distinct antiviral specificities against a panel of viruses. By generating human cells that express IFIT1 proteins from different mammalian species, the authors show a wide range of antiviral activities of mammalian IFIT1s. Most strikingly, they find several IFIT1 proteins that have completely different antiviral specificities relative to human IFIT1, including IFIT1s that fail to inhibit VSV or VEEV, but strongly inhibit PIV3 or SINV. These results indicate that there is potential for IFIT1 to inhibit a much wider range of viruses than human IFIT1 inhibits. Electrophoretic mobility shift assays (EMSAs) suggest that some of these changes in antiviral specificity can be ascribed to changes in direct binding of viral RNAs. Interestingly, they also find that chimpanzee IFIT1, which is >98% identical to human IFIT1, fails to inhibit any tested virus. Replacing three residues from chimpanzee IFIT1 with those from human IFIT1, one of which has evolved under positive selection in primates, restores activity to chimpanzee IFIT1. Together, these data reveal a vast diversity of IFIT1 antiviral specificity encoded by mammals, consistent with an IFIT1-virus evolutionary "arms race".

      Overall, this is a very interesting and well-written manuscript that combines evolutionary and functional approaches to provide new insight into IFIT1 antiviral activity and species-specific antiviral immunity. The conclusion that IFIT1 genes in several mammalian lineages are evolving under positive selection is supported by the data. The virology results, which convincingly show that IFIT1s from different species have distinct antiviral specificity, are the most surprising and exciting part of the paper. As such, this paper will be interesting for researchers studying mechanisms of innate antiviral immunity, as well as those interested in species-specific antiviral immunity. Moreover, it may prompt others to test a wide range of orthologs of antiviral factors beyond those from humans or mice, which could further the concept of host-specific innate antiviral specificity. Additional areas for improvement, which are mostly to clarify the presentation of data and conclusions, are described below.

      Strengths:

      (1) This paper is a very strong demonstration of the concept that orthologous innate immune proteins can evolve distinct antiviral specificities. Specifically, the authors show that IFIT1 proteins from different mammalian species are able to inhibit replication of distinct groups of viruses, which is most clearly illustrated in Figure 4G. This is an unexpected finding, as the mechanism by which IFIT1 inhibits viral replication was assumed to be similar across orthologs. While the molecular basis for these differences remains unresolved, this is a clear indication that IFIT1 evolution functionally impacts host-specific antiviral immunity and that IFIT1 has the potential to inhibit a much wider range of viruses than previously described.

      (2) By revealing these differences in antiviral specificity across IFIT1 orthologs, the authors highlight the importance of sampling antiviral proteins from different mammalian species to understand what functions are conserved and what functions are lineage- or species-specific. These results might therefore prompt similar investigations with other antiviral proteins, which could reveal a previously undiscovered diversity of specificities for other antiviral immunity proteins.

      (3) The authors also surprisingly reveal that chimpanzee IFIT1 shows no antiviral activity against any tested virus despite only differing from human IFIT1 by eight amino acids. By mapping this loss of function to three residues on one helix of the protein, the authors shed new light on a region of the protein with no previously known function.

      (4) Combined with evolutionary analyses that indicate that IFIT1 genes are evolving under positive selection in several mammalian groups, these functional data indicate that IFIT1 is engaged in an evolutionary "arms race" with viruses, which results in distinct antiviral specificities of IFIT1 proteins from different species.

      Weaknesses:

      (1) Some of the results and discussion text could be more focused on the model of evolution-driven changes in IFIT1 specificity. In particular, the majority of the residue mapping is on the chimpanzee protein, where it would appear that this protein has lost all antiviral function, rather than changing its antiviral specificity like some other examples in this paper. As such, the connection between the functional mapping of individual residues with the positive selection analysis and changes in antiviral specificity is not present. While the model that changes in antiviral specificity have been positively selected for is intriguing, it is not supported by data in the paper.

      (2) The strength of the differences in antiviral specificity could be highlighted to a greater degree. Specifically, the text describes a number of interesting examples of differences in inhibition of viruses from Figure 3C and 3D, and 4C-F. The revised version has added some clarity by at least providing raw data for 3C and 3D for the reader to make their own comparisons, but it is still difficult to quickly assess which are the most interesting comparisons to make (e.g. for future mapping of residues that might be important).

    1. Reviewer #1 (Public review):

      Summary:

      Weiss and co-authors presented a versatile probabilistic tool. aTrack helps in classifying tracking behaviors and understanding important parameters for different types of single particle motion types: Brwonian, Confined, or Directed motion. The tool can be used further to analyze populations of tracks and the number of motion states. This is a stand-alone software package, making it user-friendly for a broad group of researchers.

      Strengths:

      This manuscript presents a novel method for trajectory analysis.

      Comments on revisions:

      The authors have strengthened and improved the manuscript

    1. Reviewer #2 (Public review):

      Summary:

      The authors report that Arabidopsis short HSFs S-HsfA2, S-HsfA4c, and S-HsfB1 confer extreme heat. They have truncated DNA binding domains that bind to a new heat-regulated element. Considering Short HSFA2, the authors have highlighted the molecular mechanism by which S-HSFs prevent HSR hyperactivation via negative regulation of HSP17.6B. The S-HsfA2 protein binds to the DNA binding domain of HsfA2, thus preventing its binding to HSEs, eventually attenuating HsfA2-activated HSP17.6B promoter activity. This report adds insights to our understanding of heat tolerance and plant growth.

      Strengths:

      (1) The manuscript represents ample experiments to support the claim.

      (2) The manuscript covers a robust number of experiments and provides specific figures and graphs to in support of their claim.

      (3) The authors have chosen a topic to focus on stress tolerance in changing environment.

      (4) The authors have summarized the probable mechanism using a figure.

      Weaknesses:

      Quite minimum

      (1) Fig. 3. the EMSA to reveal binding

      (2) Alignment of supplementary figures 6-7.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Kolb and Hasseman et al. introduces a significantly improved GABA sensor, building on the pioneering work of the Janelia team. Given GABA's role as the main inhibitory neurotransmitter and the historical lack of effective optical tools for real-time in vivo GABA dynamics, this development is particularly impactful. The new sensor boasts an enhanced signal-to-noise ratio (SNR) and appropriate kinetics for detecting GABA dynamics in both in vitro and in vivo settings. The study is well-presented, with convincing and high-quality data, making this tool a valuable asset for future research into GABAergic signaling.

      Strengths:

      The core strength of this work lies in its significant advancement of GABA sensing technology. The authors have successfully developed a sensor with higher SNR and suitable kinetics, enabling the detection of GABA dynamics both in vitro and in vivo. This addresses a critical gap in neuroscience research, offering a much-needed optical tool for understanding the most important inhibitory neurotransmitter. The clear representation of the work and the convincing, high-quality data further bolster the manuscript's strengths, indicating the sensor's reliability and potential utility. We anticipate this tool will be invaluable for further investigation of GABAergic signaling.

      Weaknesses:

      Despite the notable progress, a key limitation is that the current generation of GABA sensors, including the one presented here, still exhibits inferior performance compared to state-of-the-art glutamate sensors. While this work is a substantial leap forward, it highlights that further improvements in GABA sensors would still be highly beneficial for the field to match the capabilities seen with glutamate sensors.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes the results of an experiment that demonstrates a disruption in statistical learning of room acoustics when transcranial magnetic stimulation (TMS) is applied to the dorsolateral prefrontal cortex in human listeners. The work uses a testing paradigm designed by the Zahorik group that has shown improvement in speech understanding as a function of listening exposure time in a room, presumably through a mechanism of statistical learning. The manuscript is comprehensive and clear, with detailed figures that show key results. Overall, this work provides an explanation for the mechanisms that support such statistical learning of room acoustics and, therefore, represents a major advancement for the field.

      Strengths:

      The primary strength of the work is its simple and clear result, that the dorsolateral prefrontal cortex is involved in human room acoustic learning.

      Weaknesses:

      A potential weakness of this work is that the manuscript is quite lengthy and complex.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors argue that defining higher visual areas (HVAs) based on reversals of retinotopic tuning has led to an over-parcellation of secondary visual cortices. Using retinotopic models, they propose that the HVAs are more parsimoniously mapped as a single area V2, which encircles V1 and exhibits complex retinotopy. They reanalyze functional data to argue that functional differences between HVAs can be explained by retinotopic coverage. Finally, they compare the classification of mouse visual cortex to that of other species to argue that our current classification is inconsistent with those used in other model species.

      Strengths:

      This manuscript is bold and thought-provoking, and is a must-read for mouse visual neuroscientists. The authors take a strong stance on combining all HVAs, with the possible exception of area POR, into a single V2 region. Although I suspect many in the field will find that their proposal goes too far, many will agree that we need to closely examine the assumptions of previous classifications to derive a more accurate areal map. The authors' supporting analyses are clear and bolster their argument. Finally, they make a compelling argument for why the classification is not just semantic, but has ramifications for the design of experiments and analysis of data.

      Weaknesses:

      Although I enjoyed the polemic nature of the manuscript, there are a few issues that weaken their argument.

      (1) Although the authors make a compelling argument that retinotopic reversals are insufficient to define distinct regions, they are less clear about what would constitute convincing evidence for distinct visual regions. They mention that a distinct area V3 has been (correctly) defined in ferrets based on "cytoarchitecture, anatomy, and functional properties", but elsewhere argue that none of these factors are sufficient to parcellate any of the HVAs in mouse cortex, despite some striking differences between HVAs in each of these factors. It would be helpful to clearly define a set of criteria that could be used for classifying distinct regions.

      (2) On a related note, although the authors carry out impressive analyses to show that differences in functional properties between HVAs could be explained by retinotopy, they glossed over some contrary evidence that there are functional differences independent of retinotopy. For example, axon projections to different HVAs originating from a single V1 injection - presumably including neurons with similar retinotopy - exhibit distinct functional properties (Glickfeld LL et al, Nat Neuro, 2013). As another example, interdigitated M2+/M2- patches in V1 show very different HVA connectivity and response properties, again independent of V1 location/retinotopy (Meier AM et al., bioRxiv). One consideration is that the secondary regions might be considered a single V2 with distinct functional modules based on retinotopy and connectivity (e.g., V2LM, V2PM, etc).

      (3) Some of the HVAs-such as AL, AM, and LI-appear to have redundant retinotopic coverage with other HVAS, such as LM and PM. Moreover, these regions have typically been found to have higher "hierarchy scores" based on connectivity (Harris JA et al., Nature, 2019; D'Souza RD et al., Nat Comm, 2022), though unfortunately, the hierarchy levels are not completely consistent between studies. Based on existing evidence, there is a reasonable argument to be made for a hybrid classification, in which some regions (e.g., LM, P, PM, and RL) are combined into a single V2 (though see point #2 above) while other HVAs are maintained as independent visual regions, distinct from V2. I don't expect the authors to revise their viewpoint in any way, but a more nuanced discussion of alternative classifications is warranted.

    1. Reviewer #1 (Public review):

      Summary:

      Parise presents another instantiation of the Multisensory Correlation Detector model that can now accept stimulus-level inputs. This is a valuable development as it removes researcher involvement in the characterization/labeling of features and allows analysis of complex stimuli with a high degree of nuance that was previously unconsidered (i.e. spatial/spectral distributions across time). The author demonstrates the power of the model by fitting data from dozens of previous experiments including multiple species, tasks, behavioral modality, and pharmacological interventions.

      Strengths:

      One of the model's biggest strengths, in my opinion, is its ability to extract complex spatiotemporal co-relationships from multisensory stimuli. These relationships have typically been manually computed or assigned based on stimulus condition and often distilled to a single dimension or even single number (e.g., "-50 ms asynchrony"). Thus, many models of multisensory integration depend heavily on human preprocessing of stimuli and these models miss out on complex dynamics of stimuli; the lead modality distribution apparent in figure 3b and c are provocative. I can imagine the model revealing interesting characteristics of the facial distribution of correlation during continuous audiovisual speech that have up to this point been largely described as "present" and almost solely focused on the lip area.

      Another aspect that makes the MCD stand out among other models is the biological inspiration and generalizability across domains. The model was developed to describe a separate process - motion perception - and in a much simpler organism - drosophila. It could then describe a very basic neural computation that has been conserved across phylogeny (which is further demonstrated in the ability to predict rat, primate, and human data) and brain area. This aspect makes the model likely able to account for much more than what has already been demonstrated with only a few tweaks akin to the modifications described in this and previous articles from Parise.

      What allows this potential is that, as Parise and colleagues have demonstrated in those papers since our (re)introduction of the model in 2016, the MCD model is modular - both in its ability to interface with different inputs/outputs and its ability to chain MCD units in a way that can analyze spatial, spectral, or any other arbitrary dimension of a stimulus. This fact leaves wide-open the possibilities for types of data, stimuli, and tasks a simplistic neutrally inspired model can account for.

      And so it's unsurprising (but impressive!) that Parise has demonstrated the model's ability here to account for such a wide range of empirical data from numerous tasks (synchrony/temporal order judgement, localization, detection, etc.) and behavior types (manual/saccade responses, gaze, etc.) using only the stimulus and a few free parameters. This ability is another of the model's main strengths that I think deserves some emphasis: it represents a kind of validation of those experiments - especially in the context of cross-experiment predictions.

      Finally, what is perhaps most impressive to me is that the MCD (and the accompanying decision model) does all this with very few (sometimes zero) free parameters. This highlights the utility of the model and the plausibility of its underlying architecture, but also helps to prevent extreme overfitting if fit correctly.

      Weaknesses:

      The model boasts an incredible versatility across tasks and stimulus configurations and its overall scope of the model is to understand how and what relevant sensory information is extracted from a stimulus. We still need to exercise care when interpreting its parameters, especially considering the broader context of top-down control of perception and that some multisensory mappings may not be derivable purely from stimulus statistics (e.g., the complementary nature of some phonemes/visemes).

    1. Reviewer #1 (Public review):

      Summary:

      This is a wonderful and landmark study in the field of human embryo modeling. It uses patterned human gastruloids and conducts a functional screen on neural tube closure, and identifies positive and negative regulators, and defines the epistasis among them.

      Strengths:

      The above was achieved following optimization of the micro-pattern-based gastruloid protocol to achieve high efficiency, and then optimized to conduct and deliver CRISPRi without disrupting the protocol. This is a technical tour de force as well as one of the first studies to reveal new knowledge on human development through embryo models, which has not been done before.

      The manuscript is very solid and well-written. The figures are clear, elegant, and meaningful. The conclusions are fully supported by the data shown. The methods are well-detailed, which is very important for such a study.

      Weaknesses:

      This reviewer did not identify any meaningful, major, or minor caveats that need addressing or correcting.

      A minor weakness is that one can never find out if the findings in human embryo models can be in vitro revalidated in humans in vivo. This is for obvious and justified ethical reasons. However, the authors acknowledge this point in the section of the manuscript detailing the limitations of their study.

    1. Reviewer #1 (Public review):

      Summary:

      Gao et al. has demonstrated that the the pesticide emamectin benzoate (EB) treatment of brown plathopper (BPH) leads to increased egg laying in the insect, which is a common agricultural pest. The authors hypothesize that EB upregulates JH titer resulting in increased fecundity.

      Strengths:

      The finding that a class of pesticide increases fecundity of brown planthopper is interesting.

      Comments on revisions:

      All my concerns have been addressed to reasonable level of satisfaction.

    1. Reviewer #1 (Public review):

      In this manuscript, Roy et al. used the previously published deep transfer learning tool, DEGAS, to map disease associations onto single-cell RNA-seq data from bulk expression data. The authors performed independent runs of DEGAS using T2D or obesity status and identified distinct β-cell subpopulations. β-cells with high obese-DEGAS scores contained two subpopulations derived largely from either non-diabetic or T2D donors. Finally, immunostaining using human pancreas sections from healthy and T2D donors validated the heterogeneous expression and depletion of DLK1 in T2D islets.

      Strengths:

      (1) This meta-analysis of previously published scRNA-seq data uses a deep transfer learning tool.

      (2) Identification of novel beta cell subclusters.

      (3) Identified a relatively innovative role of DLK1 in T2D disease progression.

      Comments on revisions:

      All previous concerns have been addressed.

    1. Reviewer #1 (Public review):

      This study established a C921Y OGT-ID mouse model, systematically demonstrating in mammals the pathological link between O-GlcNAc metabolic imbalance and neurodevelopmental disorders (cortical malformation, microcephaly) as well as behavioral abnormalities (hyperactivity, impulsivity, learning/memory deficits). However, critical flaws in the current findings require resolution to ensure scientific rigor.

      The most concerning finding appears in Figure S12. While Supplementary Figure S12 demonstrates decreased OGA expression without significant OGT level changes in C921Y mutants via Western blot/qPCR, previous reports (Florence Authier, et al., Dis Model Mech. 2023) described OGT downregulation in Western blot and an increase in qPCR in the same models. The opposite OGT expression outcomes in supposedly identical mouse models directly challenge the model's reliability. This discrepancy raises serious concerns about either the experimental execution or the interpretation of results. The authors must revalidate the data with rigorous controls or provide a molecular biology-based explanation.

      A few additional comments to the author may be helpful to improve the study.

      Major

      (1) While this study systematically validated multi-dimensional phenotypes (including neuroanatomical abnormalities and behavioral deficits) in OGT C921Y mutant mice, there is a lack of relevant mechanisms and intervention experiments. For example, the absence of targeted intervention studies on key signaling pathways prevents verification of whether proteomics-identified molecular changes directly drive phenotypic manifestations.

      (2) Although MRI detected nodular dysplasia and heterotopia in the cingulate cortex, the cellular basis remains undefined. Spatiotemporal immunofluorescence analysis using neuronal (NeuN), astrocytic (GFAP), and synaptic (Synaptophysin) markers is recommended to identify affected cell populations (e.g., radial glial migration defects or intermediate progenitor differentiation abnormalities).

      (3) While proteomics revealed dysregulation in pathways including Wnt/β-catenin and mTOR signaling, two critical issues remain unresolved: a) O-GlcNAc glycoproteomic alterations remain unexamined; b) The causal relationship between pathway changes and O-GlcNAc imbalance lacks validation. It is recommended to use co-immunoprecipitation or glycosylation sequencing to confirm whether the relevant proteins undergo O-GlcNAc modification changes, identify specific modification sites, and verify their interactions with OGT.

      (4) Given that OGT-ID neuropathology likely originates embryonically, we recommend serial analyses from E14.5 to P7 to examine cellular dynamics during critical corticogenesis phases.

      (5) The interpretation of Figure 8A constitutes overinterpretation. Current data fail to conclusively demonstrate impairment of OGT's protein interaction network and lack direct evidence supporting the proposed mechanisms of HCF1 misprocessing or OGA loss.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a robust set of experiments that provide new fundamental insights into the role of STN neurons during active and passive avoidance tasks. These forms of avoidance have received comparatively less attention in the literature than the more extensively studied escape or freezing responses, despite being extremely relevant to human behaviour and more strongly influenced by cognitive control.

      Strengths:

      Understanding the neural infrastructure supporting avoidance behaviour would be a fundamental milestone in neuroscience. The authors employ sophisticated methods, including calcium imaging and optogenetics, to delineate the functions of STN neurons during avoidance behaviours. The work is extremely thorough, and the evidence presented is compelling. Experiments are carefully constructed, well-controlled, and the statistical analyses are appropriate.

      Points for Authors' Consideration:

      (1) Motoric role of STN:<br /> The authors interpret their findings within the context of active avoidance, a cognitively demanding process. An alternative interpretation is that STN activation enhances global motoric tone, facilitating general movement rather than specifically encoding cautious avoidance. Experimentally, this could be evaluated by examining STN-induced motoric tone in non-avoidance contexts, such as open field tests with bilateral stimulations. Alternatively, or additionally, the authors could explicitly discuss evidence for and against the possibility that increased motoric tone may account for aspects of the observed behaviours.

      (2) Temporal Dynamics in Calcium Imaging (AA2 vs. AA1):<br /> Based on previous work by this group, a delay (~1-2 sec) in neuronal response onset was anticipated in AA2 compared to AA1. Although a delay in peak response is observed, there is no clear evidence of a significant delay in response onset or changes in slope of neural activity. The authors could quantify calcium onset latencies and slopes and statistically compare these parameters across conditions.

      (3) Speed Differences (AA2 vs. AA1):<br /> Given the increased latency in AA2, and based on previous work from the group, one would expect faster movements following initiation. However, such differences are not evident in the presented data. The authors might want to discuss the absence of an expected speed increase and clarify whether this absence is consistent with previous findings.

      (4) Behavioural Differences Across Neuronal Classes (Figure 7):<br /> The manuscript currently does not compare responses of neuronal classes I, II, and III between AA1 and AA2 conditions separately or provide information regarding their activity during AA3.

      (5) Streamlining Narrative and Figures:<br /> Given the extensive amount of material presented, the manuscript and figures would benefit from streamlining. Many data points and graphs could be moved to supplementary materials without affecting the core interpretation and simplifying the reading of the work by a non-expert audience. Similarly, the main text could be refined to more clearly emphasise the key findings, which would improve both readability and impact. At the same time, certain aspects would benefit from additional clarification. For example, it would be helpful to explain the key features of the AA1-AA3 tasks at the point of introduction, rather than referring readers to previous literature. Overall, enhancing clarity and accessibility would serve the authors well and broaden the impact of the work.

    1. Reviewer #1 (Public review):

      Summary:

      Previous studies have shown that treatment with 17α-estradiol (a stereoisomer of the 17β-estradiol) extends lifespan in male mice but not in females. The current study by Li et al, aimed to identify cell-specific clusters and populations in the hypothalamus of aged male rats treated with 17α-estradiol (treated for 6 months). This study identifies genes and pathways affected by 17α-estradiol in the aged hypothalamus.

      Strengths:

      Using single-nucleus transcriptomic sequencing (snRNA-seq) on hypothalamus from aged male rats treated with 17α-estradiol they show that 17α-estradiol significantly attenuated age-related increases in cellular metabolism, stress, and decreased synaptic activity in neurons.

      Moreover, sc-analysis identified GnRH as one of the key mediators of 17α-estradiol's effects on energy homeostasis. Furthermore, they show that CRH neurons exhibited a senescent phenotype, suggesting a potential side effect of the 17α-estradiol. These conclusions are supported by supervised clustering by neuropeptides, hormones, and their receptors.

      Weaknesses:

      However, the study has several limitations that reduce the strength of the key claims in the manuscript. In particular:

      (1) The study focused only on males and did not include comparisons with females. However, previous studies have shown that 17α-estradiol extends lifespan in a sex-specific manner in mice, affecting males but not females. Without the comparison with the female data, it's difficult to assess its relevance to the lifespan.

      (2) Its not known whether 17α-estradiol leads to lifespan extension in male rats similar to male mice. Therefore, it is not possible to conclude that the observed effects in the hypothalamus, are linked to the lifespan extension. The manuscript cited in the introduction does not include lifespan data on rats.

      (3) The effect of 17α-estradiol on non-neuronal cells such as microglia and astrocytes is not well described (Fig.1). Previous studies demonstrated that 17α-estradiol reduces microgliosis and astrogliosis in the hypothalamus of aged male mice. Current data suggest that the proportion of oligo, and microglia were increased by the drug treatment, while the proportions of astrocytes were decreased. These data might suggest possible species differences, differences in the treatment regimen, or differences in drug efficiency. This has to be discussed.

      A more detailed analysis of glial cell types within the hypothalamus in response to drug should be provided.

      (4) The conclusion that CRH neurons are going into senescence is not clearly supported by the data. A more detailed analysis of the hypothalamus such as histological examination to assess cellular senescence markers in CRH neurons, is needed to support this claim.

      Revised submission:

      Some of the concerns were addressed in this revised version, and the authors responded and addressed study design limitations in both sexes/ages.

      However, there are still some concerns that were not sufficiently addressed:<br /> While the term "senescent" was changed to "stressed," some histological/ cellular validation of this phenotype is still needed.

      Some discussion on the sex-specific effects of 17α-estradiol in the hypothalamus is still required. Previous studies in mice demonstrated that 17α-estradiol reduced hypothalamic microgliosis and astrogliosis in male but not female UM-HET3 mice.

      Additionally, the provided analysis on astrocytes and microglia is superficial.

    1. Reviewer #1 (Public review):

      In this manuscript, Dillard and colleagues integrate cross-species genomic data with a systems approach to identify potential driver genes underlying human GWAS loci and establish the cell type(s) within which these genes act and potentially drive disease.

      Specifically, they utilize a large single cell RNA-seq (scRNA-seq) dataset from an osteogenic cell culture model - bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) - from a genetically diverse outbred mouse population called the Diversity Outbred (DO) stock to discover network driver genes that likely underlie human bone mineral density (BMD) GWAS loci. The DO mice segregate over 40M single nucleotide variants, many of which affect gene expression levels, therefore making this an ideal population for systems genetic and co-expression analyses.

      The current study builds on previous published work from the same group that used co-expression analysis to identify co-expressed "modules" of genes that were enriched for BMD GWAS associations. In this study, the authors utilized a much larger scRNA-seq dataset from 80 DO BMSC-OBs, inferred co-expression based on Bayesian networks for each identified mesenchymal cell type, focused on networks with dynamic expression trajectories that are most likely driving differentiation of BMSC-OBs, and then prioritized genes ("differentiation driver genes" or DDGs) in these osteogenic differentation networks that had known expression or splicing QTLs (eQTL/sQTLs) in any GTEx tissue that co-localized with human BMD GWAS loci. The systems analysis is impressive, the experimental methods are described in detail, and the experiments appear to be carefully done. The computational analysis of the single cell data is comprehensive and thorough, and the evidence presented in support of the identified DDGs, including Tpx2 and Fgfrl1, is for the most part convincing. Some limitations in the data resources and methods hamper enthusiasm somewhat and are discussed below.

      Overall, while this study will no doubt be valuable to the BMD community, the cross-species data integration and analytical framework may be more valuable and generally applicable to the study of other diseases, especially for diseases with robust human GWAS data but for which robust human genomic data in relevant cell types is lacking.

      Specific strengths of the study include the large scRNA-seq dataset on BMSC-OBs from 80 DO mice, the clustering analysis to identify specific cell types and sub-types, the comparison of cell type frequencies across the DO mice, and the CELLECT analysis to prioritize cell clusters that are enriched for BMD heritability (Figure 1). The network analysis pipeline outlined in Figure 2 is also a strength, as is the pseudotime trajectory analysis (results in Figure 3).

      Potential drawbacks of the authors' approach include their focus on genes that were previously identified as having an eQTL or sQTL in any GTEx tissue. The authors rightly point out that the GTEx database does not contain data for bone tissue, but reason that eQTLs can be shared across many tissues - this assumption is valid for many cis-eQTLs, but it could also exclude many genes as potential DDGs with effects that are specific to bone/osteoblasts. Indeed, the authors show that important BMD driver genes have cell-type specific eQTLs. Another issue concerns potential model overfitting in the iterativeWGCNA analysis of mesenchymal cell type-specific co-expression, which identified an average of 76 co-expression modules per cell cluster (range 26-153). Based on the limited number of genes that are detected as expressed in a given cell due to sparse per cell read depth (400-6200 reads/cell) and drop outs, it's surprising that as many as 153 co-expression modules could be distinguished within any cell cluster. I would suspect some degree of model overfitting is responsible for these results.

      Overall, though, these concerns are minor relative to the many strengths of the study design and results. Indeed, I expect the analytical framework employed by the authors here will be valuable to -- and replicated by -- researchers in other disease areas.

      Comments on revisions:

      Thank you for addressing my concerns. This is an impressive study and manuscript that you should be proud of.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduce a densely-sampled dataset where 6 participants viewed images and sentence descriptions derived from the MS Coco database over the course of 10 scanning sessions. The authors further showcase how image and sentence decoders can be used to predict which images or descriptions were seen, using pairwise decoding across a set of 120 test images. The authors find decodable information widely distributed across the brain, with a left-lateralized focus. The results further showed that modality-agnostic models generally outperformed modality-specific models, and that data based on captions was not explained better by caption-based models but by modality-agnostic models. Finally, the authors decoded imagined scenes.

      Strengths:

      (1) The dataset presents a potentially very valuable resource for investigating visual and semantic representations and their interplay.

      (2) The introduction and discussion are very well written in the context of trying to understand the nature of multimodal representations and present a comprehensive and very useful review of the current literature on the topic.

      Weaknesses:

      (1) The paper is framed as presenting a dataset, yet most of it revolves around the presentation of findings in relation to what the authors call modality-agnostic representations, and in part around mental imagery. This makes it very difficult to assess the manuscript, whether the authors have achieved their aims, and whether the results support the conclusions.

      (2) While the authors have presented a potential use case for such a dataset, there is currently far too little detail regarding data quality metrics expected from the introduction of similar datasets, including the absence of head-motion estimates, quality of intersession alignment, or noise ceilings of all individuals.

      (3) The exact methods and statistical analyses used are still opaque, making it hard for a reader to understand how the authors achieved their results. More detail in the manuscript would be helpful, specifically regarding the exact statistical procedures, what tests were performed across, or how data were pooled across participants.

      (4) Many findings (e.g., Figure 6) are still qualitative but could be supported by quantitative measures.

      (5) Results are significant in regions that typically lack responses to visual stimuli, indicating potential bias in the classifier. This is relevant for the interpretation of the findings. A classification approach less sensitive to outliers (e.g., 70-way classification) could avoid this issue. Given the extreme collinearity of the experimental design, regressors in close temporal proximity will be highly similar, which could lead to leakage effects.

      (6) The manuscript currently lacks a limitations section, specifically regarding the design of the experiment. This involves the use of the overly homogenous dataset Coco, which invites overfitting, the mixing of sentence descriptions and visual images, which invites imagery of previously seen content, and the use of a 1-back task, which can lead to carry-over effects to the subsequent trial.

      (7) I would urge the authors to clarify whether the primary aim is the introduction of a dataset and showing the use of it, or whether it is the set of results presented. This includes the title of this manuscript. While the decoding approach is very interesting and potentially very valuable, I believe that the results in the current form are rather descriptive, and I'm wondering what specifically they add beyond what is known from other related work. This includes imagery-related results. This is completely fine! It just highlights that a stronger framing as a dataset is probably advantageous for improving the significance of this work.

    1. Reviewer #1 (Public review):

      In this manuscript, the authors describe a new method to more accurately estimate the fitness advantage of new SARS-CoV-2 variants when they emerge. This was a key public health question during the pandemic and drove a number of important policy choices during the latter half of the acute phase of the pandemic. They attempt to link fitness to expected wave size. The analyses are tested on data from 33 different US states for which the data were considered sufficient. The main novelty of the method is that it links the frequency of variants to the number of cases and thus estimates fitness in terms of the reproduction number.

      The results with the new method appear to be more consistent estimates of fitness advantage over time, suggesting that the methods suggested are more accurate than the comparator methods.

      Given that the paper presents a methodological advancement, the absence of a simulation study is a weakness. I am satisfied that the trends estimated via the different approaches suggest a useful advancement for a difficult problem. However, the work would have been considerably stronger if synthetic data had been used to illustrate without doubt how the revised method better captures underlying, pre-specified differences in fitness.

    1. Reviewer #1 (Public review):

      This is a well-designed and very interesting study examining the impact of imprecise feedback on outcomes on decision-making. I think this is an important addition to the literature and the results here, which provide a computational account of several decision-making biases, are insightful and interesting.

      I do not believe I have substantive concerns related to the actual results presented; my concerns are more related to the framing of some of the work. My main concern is regarding the assertion that the results prove that non-normative and non-Bayesian learning is taking place. I agree with the authors that their results demonstrate that people will make decisions in ways that demonstrate deviations from what would be optimal for maximizing reward in their task under a strict application of Bayes rule. I also agree that they have built reinforcement learning models which do a good job of accounting for the observed behavior. However, the Bayesian models included are rather simple- per the author descriptions, applications of Bayes' rule with either fixed or learned credibility for the feedback agents. In contrast, several versions of the RL models are used, each modified to account for different possible biases. However more complex Bayes-based models exist, notably active inference but even the hierarchical gaussian filter. These formalisms are able to accommodate more complex behavior, such as affect and habits, which might make them more competitive with RL models. I think it is entirely fair to say that these results demonstrate deviations from an idealized and strict Bayesian context; however, the equivalence here of Bayesian and normative is I think misleading or at least requires better justification/explanation. This is because a great deal of work has been done to show that Bayes optimal models can generate behavior or other outcomes that are clearly not optimal to an observer within a given context (consider hallucinations for example) but which make sense in the context of how the model is constructed as well as the priors and desired states the model is given.

      As such, I would recommend that the language be adjusted to carefully define what is meant by normative and Bayesian and to recognize that work that is clearly Bayesian could potentially still be competitive with RL models if implemented to model this task. An even better approach would be to directly use one of these more complex modelling approaches, such as active inference, as the comparator to the RL models, though I would understand if the authors would want this to be a subject for future work.

      Abstract:

      The abstract is lacking in some detail about the experiments done, but this may be a limitation of the required word count? If word count is not an issue, I would recommend adding details of the experiments done and the results. One comment is that there is an appeal to normative learning patterns, but this suggests that learning patterns have a fixed optimal nature, which may not be true in cases where the purpose of the learning (e.g. to confirm the feeling of safety of being in an in-group) may not be about learning accurately to maximize reward. This can be accommodated in a Bayesian framework by modelling priors and desired outcomes. As such the central premise that biased learning is inherently non-normative or non-Bayesian I think would require more justification. This is true in the introduction as well.

      Introduction:

      As noted above the conceptualization of Bayesian learning being equivalent to normative learning I think requires either further justification. Bayesian belief updating can be biased an non-optimal from an observer perspective, while being optimal within the agent doing the updating if the priors/desired outcomes are set up to advantage these "non-optimal" modes of decision making.

      Results:

      I wonder why the agent was presented before the choice - since the agent is only relevant to the feedback after the choice is made. I wonder if that might have induced any false association between the agent identity and the choice itself. This is by no means a critical point but would be interesting to get the authors' thoughts.

      The finding that positive feedback increases learning is one that has been shown before and depends on valence, as the authors note. They expanded their reinforcement learning model to include valence; but they did not modify the Bayesian model in a similar manner. This lack of a valence or recency effect might also explain the failure of the Bayesian models in the preceding section where the contrast effect is discussed. It is not unreasonable to imagine that if humans do employ Bayesian reasoning that this reasoning system has had parameters tuned based on the real world, where recency of information does matter; affect has also been shown to be incorporable into Bayesian information processing (see the work by Hesp on affective charge and the large body of work by Ryan Smith). It may be that the Bayesian models chosen here require further complexity to capture the situation, just like some of the biases required updates to the RL models. This complexity, rather than being arbitrary, may be well justified by decision making in the real world.

      The methods mention several symptom scales- it would be interesting to have the results of these and any interesting correlations noted. It is possible that some of individual variability here could be related to these symptoms, which could introduce precision parameter changes in a Bayesian context and things like reward sensitivity changes in an RL context.

      Discussion:

      (For discussion, not a specific comment on this paper): One wonders also about participant beliefs about the experiment or the intent of the experimenters. I have often had participants tell me they were trying to "figure out" a task or find patterns even when this was not part of the experiment. This is not specific to this paper, but it may be relevant in the future to try and model participant beliefs about the experiment especially in the context of disinformation, when they might be primed to try and "figure things out".

      As a general comment, in the active inference literature, there has been discussion of state-dependent actions, or "habits", which are learned in order to help agents more rapidly make decisions, based on previous learning. It is also possible that what is being observed is that these habits are at play, and that they represent the cognitive biases. This is likely especially true given, as the authors note, the high cognitive load of the task. It is true that this would mean that full-force Bayesian inference is not being used in each trial, or in each experience an agent might have in the world, but this is likely adaptive on the longer timescale of things, considering resource requirements. I think in this case you could argue that we have a departure from "normative" learning, but that is not necessarily a departure from any possible Bayesian framework, since these biases could potentially be modified by the agent or eschewed in favor of more expensive full-on Bayesian learning when warranted. Indeed in their discussion on the strategy of amplifying credible news sources to drown out low-credibility sources, the authors hint to the possibility of longer term strategies that may produce optimal outcomes in some contexts, but which were not necessarily appropriate to this task. As such, the performance on this task- and the consideration of true departure from Bayesian processing- should be considered in this wider context. Another thing to consider is that Bayesian inference is occurring, but that priors present going in produce the biases, or these biases arise from another source, for example factoring in epistemic value over rewards when the actual reward is not large. This again would be covered under an active inference approach, depending on how the priors are tuned. Indeed, given the benefit of social cohesion in an evolutionary perspective, some of these "biases" may be the result of adaptation. For example, it might be better to amplify people's good qualities and minimize their bad qualities in order to make it easier to interact with them; this entails a cost (in this case, not adequately learning from feedback and potentially losing out sometimes), but may fulfill a greater imperative (improved cooperation on things that matter). Given the right priors/desired states, this could still be a Bayes-optimal inference at a social level and as such may be ingrained as a habit which requires effort to break at the individual level during a task such as this.

      The authors note that this task does not relate to "emotional engagement" or "deep, identity-related, issues". While I agree that this is likely mostly true, it is also possible that just being told one is being lied to might elicit an emotional response that could bias responses, even if this is a weak response.

      Comments on revisions:

      In their updated version the authors have made some edits to address my concerns regarding the framing of the 'normative' bayesian model, clarifying that they utilized a simple bayesian model which is intended to adhere in an idealized manner to the intended task structure, though further simulations would have been ideal.

      The authors, however, did not take my recommendation to explore the symptoms in the symptom scales they collected as being a potential source of variability. They note that these were for hypothesis generation and were exploratory, fair enough, but this study is not small and there should have been sufficient sample size for a very reasonable analysis looking at symptom scores.

      However, overall the toned down claims and clarifications of intent are adequate responses to my previous review.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use a gambling task with momentary mood ratings from Rutledge et al. and compare computational models of choice and mood to identify markers of decisional and affective impairments underlying risk-prone behavior in adolescents with suicidal thoughts and behaviors (STB). The results show that adolescents with STB show enhanced gambling behavior (choosing the gamble rather than the sure amount), and this is driven by a bias towards the largest possible win rather than insensitivity to possible losses. Moreover, this group shows a diminished effect of receiving a certain reward (in the non-gambling trials) on mood. The results were replicated in an undifferentiated online sample where participants were divided into groups with or without STB based on their self-report of suicidal ideation on one question in the Beck Depression Inventory self-report instrument. The authors suggest, therefore, that adolescents with decreased sensitivity to certain rewards may need to be monitored more closely for STB due to their increased propensity to take risky decisions aimed at (expected) gains (such as relief from an unbearable situation through suicide), regardless of the potential losses.

      Strengths:

      (1) The study uses a previously validated task design and replicates previously found results through well-explained model-free and model-based analyses.

      (2) Sampling choice is optimal, with adolescents at high risk; an ideal cohort to target early preventative diagnoses and treatments for suicide.

      (3) Replication of the results in an online cohort increases confidence in the findings.

      (4) The models considered for comparison are thorough and well-motivated. The chosen models allow for teasing apart which decision and mood sensitivity parameters relate to risky decision-making across groups based on their hypotheses.

      (5) Novel finding of mood (in)sensitivity to non-risky rewards and its relationship with risk behavior in STB.

      Weaknesses:

      (1) The sample size of 25 for the S- group was justified based on previous studies (lines 181-183); however, all three papers cited mention that their sample was low powered as a study limitation.

      (2) Modeling in the mediation analysis focused on predicting risk behavior in this task from the model-derived bias for gains and suicidal symptom scores. However, the prediction of clinical interest is of suicidal behaviors from task parameters/behavior - as a psychiatrist or psychologist, I would want to use this task to potentially determine who is at higher risk of attempting suicide and therefore needs to be more closely watched rather than the other way around (predicting behavior in the task from their symptom profile). Unfortunately, the analyses presented do not show that this prediction can be made using the current task. I was left wondering: is there a correlation between beta_gain and STB? It is also important to test for the same relationships between task parameters and behavior in the healthy control group, or to clarify that the recommendations for potential clinical relevance of these findings apply exclusively to people with a diagnosis of depression or anxiety disorder. Indeed, in line 672, the authors claim their results provide "computational markers for general suicidal tendency among adolescents", but this was not shown here, as there were no models predicting STB within patient groups or across patients and healthy controls.

      (3) The FDR correction for multiple comparisons mentioned briefly in lines 536-538 was not clear. Which analyses were included in the FDR correction? In particular, did the correlations between gambling rate and BSI-C/BSI-W survive such correction? Were there other correlations tested here (e.g., with the TAI score or ERQ-R and ERQ-S) that should be corrected for? Did the mediation model survive FDR correction? Was there a correction for other mediation models (e.g., with BSI-W as a predictor), or was this specific model hypothesized and pre-registered, and therefore no other models were considered? Did the differences in beta_gain across groups survive FDR when including comparisons of all other parameters across groups? Because the results were replicated in the online dataset, it is ok if they did not survive FDR in the patient dataset, but it is important to be clear about this in presenting the findings in the patient dataset.

      (4) There is a lack of explicit mention when replication analyses differ from the analyses in the patient sample. For instance, the mediation model is different in the two samples: in the patient sample, it is only tested in S+ and S- groups, but not in healthy controls, and the model relates a dimensional measure of suicidal symptoms to gambling in the task, whereas in the online sample, the model includes all participants (including those who are presumably equivalent to healthy controls) and the predictor is a binary measure of S+ versus S- rather than the response to item 9 in the BDI. Indeed, some results did not replicate at all and this needs to be emphasized more as the lack of replication can be interpreted not only as "the link between mood sensitivity to CR and gambling behavior may be specifically observable in suicidal patients" (lines 582-585) - it may also be that this link is not truly there, and without a replication it needs to be interpreted with caution.

      (5) In interpreting their results, the authors use terms such as "motivation" (line 594) or "risk attitude" (line 606) that are not clear. In particular, how was risk attitude operationalized in this task? Is a bias for risky rewards not indicative of risk attitude? I ask because the claim is that "we did not observe a difference in risk attitude per se between STB and controls". However, it seems that participants with STB chose the risky option more often, so why is there no difference in risk attitude between the groups?

    1. Reviewer #1 (Public review):

      Summary:

      In the present study, Chen et al. investigate the role of Endophilin A1 in regulating GABAergic synapse formation and function. To this end, the authors use constitutive or conditional knockout of Endophilin A1 (EEN1) to assess the consequences on GABAergic synapse composition and function, as well as the outcome for PTZ-induced seizure susceptibility. The authors show that EEN1 KO mice show a higher susceptibility to PTZ-induced seizures, accompanied by a reduction in the GABAergic synaptic scaffolding protein gephyrin as well as specific GABAAR subunits and eIPSCs. The authors then investigate the underlying mechanisms, demonstrating that Endophilin A1 binds directly to gephyrin and GABAAR subunits, and identifying the subdomains of Endophilin A1 that contribute to this effect. Overall, the authors state that their study places Endophilin A1 as a new regulator of GABAergic synapse function.

      Strengths:

      Overall, the topic of this manuscript is very timely, since there has been substantial recent interest in describing the mechanisms governing inhibitory synaptic transmission at GABAergic synapses. The study will therefore be of interest to a wide audience of neuroscientists studying synaptic transmission and its role in disease. The manuscript is well written and contains a substantial quantity of data. In the revised version of the manuscript, the authors have increased the number of samples analyzed and have significantly improved the statistical analysis, thereby substantially strengthening the conclusions of their study.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses a diverse isolate collection of Streptococcus pneumoniae from hospital patients in the Netherlands to understand the population-level genetic basis of growth rate variation in this pathogen, which is a key determinant of S. pneumoniae within-host fitness. Previous efforts have studied this phenomenon in strain-specific comparisons, which can lack the statistical power and scope of population-level studies. The authors collected a rigorous set of in vitro growth data for each S. pneumoniae isolate and subsequently paired growth curve analysis with whole-genome analyses to identify how phylogenetics, serotype and specific genetic loci influence in vitro growth. While there were noticeable correlations between capsular serotype and phylogeny with growth metrics, they did not identify specific loci associated with altered in vitro growth, suggesting that these phenotypes are controlled by the collective effect of the entire genetic background of a strain. This is an important finding that lays the foundation for additional, more highly-powered studies that capture more S. pneumoniae genetic diversity to identify these genetic contributions.

      Strengths:

      The authors were able to completely control the experimental and genetic analyses to ensure all isolates underwent the same analysis pipeline to enhance the rigor of their findings.

      The isolate collection captures an appreciable amount of S. pneumoniae diversity and, importantly, enables disentangling the contributions of the capsule and phylogenetic background to growth rates.

      This study provides a population-level, rather than strain-specific, view of how genetic background influences growth rate in S. pneumoniae. This is an advance over previous studies that have only looked at smaller sets of strains.

      The methods used are well-detailed and robust to allow replication and extension of these analyses. Moreover, the manuscript is very well written and includes a thoughtful and thorough discussion of the strengths and limitations of the current study.

      Weaknesses:

      As acknowledged by the authors, the genetic diversity and sample size of this newly collected isolate set is still limited relative to the known global diversity of S. pneumoniae, which evidently limits the power to detect loci with smaller/combinatorial contributions to growth rate (and ultimately infection).

      The in vitro growth data is limited to a single type of rich growth medium, which may not fully reflect the nutritional and/or selective pressures present in the host.

      The current study does not use genetic manipulation or in vitro/in vivo infection models to experimentally test whether alteration of growth rates as observed in this study is linked to virulence or successful infection. The availability of a naturally diverse collection with phylogenetic and serotype combinations already identified as interesting by the authors provides a strong rationale for wet-lab studies of these phenotypes.

      Update on first revision:

      The authors have responded to all of my initial comments as well as those of the other reviewers, and I have no further concerns to be addressed.