10,000 Matching Annotations
  1. Oct 2025
    1. Reviewer #1 (Public review):

      Summary:

      Activation of thermogenesis by cold exposure and dietary protein restriction are two lifestyle changes that impact health in humans and lead to weight loss in model organisms - here, in mice. How these affect liver and adipose tissues has not been thoroughly investigated side by side. In mice, the authors show that the responses to methionine restriction and cold exposure are tissue-specific, while the effects on beige adipose are somewhat similar.

      Strengths:

      The strength of the work is the comparative approach, using transcriptomics and bioinformatic analyses to investigate the tissue-specific impact. The work was performed in mouse models and is state-of-the-art. This represents an important resource for researchers in the field of protein restriction and thermogenesis.

      Weaknesses:

      The findings are descriptive, and the conclusions remain associative. The work is limited to mouse physiology, and the human implications have not been investigated yet.

    2. Reviewer #2 (Public review):

      Summary:

      This study provides a library of RNA sequencing analysis from brown fat, liver, and white fat of mice treated with two stressors - cold challenge and methionine restriction - alone and in combination (interaction between diet and temperature). They characterize the physiologic response of the mice to the stressors, including effects on weight, food intake, and metabolism. This paper provides evidence that while both stressors increase energy expenditure, there are complex tissue-specific responses in gene expression, with additive, synergistic, and antagonistic responses seen in different tissues.

      Strengths:

      The study design and implementation are solid and well-controlled. Their writing is clear and concise. The authors do an admirable job of distilling the complex transcriptome data into digestible information for presentation in the paper. Most importantly, they do not overreach in their interpretation of their genomic data, keeping their conclusions appropriately tied to the data presented. The discussion is well thought out and addresses some interesting points raised by their results.

      Weaknesses:

      The major weakness of the paper is the almost complete reliance on RNA sequencing data, but it is presented as a transcriptomic resource.

    3. Reviewer #3 (Public review):

      Summary:

      Ruppert et al. present a well-designed 2×2 factorial study directly comparing methionine restriction (MetR) and cold exposure (CE) across liver, iBAT, iWAT, and eWAT, integrating physiology with tissue-resolved RNA-seq. This approach allows a rigorous assessment of where dietary and environmental stimuli act additively, synergistically, or antagonistically. Physiologically, MetR progressively increases energy expenditure (EE) at 22{degree sign}C and lowers RER, indicating a lipid utilization bias. By contrast, a 24-hour 4 {degree sign}C challenge elevates EE across all groups and eliminates MetR-Ctrl differences. Notably, changes in food intake and activity do not explain the MetR effect at room temperature.

      Strengths:

      The data convincingly support the central claim: MetR enhances EE and shifts fuel preference to lipids at thermoneutrality, while CE drives robust EE increases regardless of diet and attenuates MetR-driven differences. Transcriptomic analysis reveals tissue-specific responses, with additive signatures in iWAT and CE-dominant effects in iBAT. The inclusion of explicit diet×temperature interaction modeling and GSEA provides a valuable transcriptomic resource for the field.

      Weaknesses:

      Limitations include the short intervention windows (7 d MetR, 24 h CE), use of male-only cohorts, and reliance on transcriptomics without complementary proteomic, metabolomic, or functional validation. Greater mechanistic depth, especially at the level of WAT thermogenic function, would strengthen the conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      Redchuk et al. explore the dynamic properties of chromatin upon serum starvation using machine learning approaches. They use CRISPR-tagging to visualize a region on chromosome 1 in human cells and show that in their system, chromosome 1, but not the previously reported chromosomes 10, 13, and X, undergo a change in radial position upon serum starvation. Live cell imaging showed a position change towards the periphery after serum starvation. They then apply a machine learning algorithm for the analysis of the imaging data, which reveals changes in nuclear area during serum starvation and longer displacements of the chromosome 1 locus near the nuclear periphery. Differential behavior of homologues is also reported.

      Strengths:

      (1) The study of chromatin dynamics is an interesting and important area of research.

      (2) The use of machine learning approaches to analyze live cell imaging data is timely.

      (3) With serum starvation, the authors use a simple, well-controllable model system.

      Weaknesses:

      (1) This study only provides limited new insight into chromatin dynamics.

      (2) It was not immediately evident what the use of machine learning approaches added to this study. It appears that the main conclusions could have been reached by conventional analysis.

      (3) There are several specific technical points:

      a) It was not clear what the CRISRP-Sirius probes actually labelled. The chromosome 1 sgRNA sequence is provided, but I could not find information as to which region(s) of the chromosome are actually labelled (size, location, etc.).

      b) The authors visualize a relatively small region of chromosome 1 but make conclusions regarding the entire chromosome. Additional probes on the same chromosome should be used.

      Related to this point, the discussion of why the authors are unable to reproduce the prior findings of relocation of chromosomes 10, 13, and X is not satisfying. It would be worth comparing the FISH-based painting of entire chromosomes, which generated the results suggesting relocation of these chromosomes, with the point-labelling method used here.

      c) The study lacks controls. Since in their hands chromosomes 10, 13, and X do not change position, they should be used as a negative control in all experiments demonstrating a shift in the location of chromosome 1.

      d) I did not find information about the spatial or temporal resolution of the imaging modality. This is important to assess whether the observed changes in position, relative to time, are meaningful.

      e) The authors analyze surprisingly early timepoints (up to 40 minutes) of serum starvation. Would these results look different if longer serum starvation timepoints of several hours were analyzed?

      f) The authors can do a better job of explaining what the biological meaning of the various parameters (DistR, TDist, etc.) they measure is.

      g) I did not understand the reasoning for the authors' conclusion of differential behavior of homologues. Please explain this better, or idealy use more direct labeling methods that identify the individual homologues.

      h) In many figures, statistical analysis of the data is missing, including, but not limited to, Figures 1B, C, G, Figures 4, 5, 6.

      i) No information is provided throughout the manuscript as to how many cells were analyzed in each experiment. This should be indicated in every figure legend.

    2. Reviewer #2 (Public review):

      Summary:

      The study demonstrates that CRISPR-Sirius provides a powerful approach to investigating chromosome dynamics in living cells during environmental stress. By focusing on serum starvation, the authors show that this process induces global nuclear changes, including a reduction in nuclear area and increased morphological dynamism, while at the same time driving specific reorganization of chromosome 1. Chromosome 1 relocates toward the nuclear periphery and displays distinctive patterns of motion, maintaining overall motility but punctuated by occasional long-distance displacements, particularly near the nuclear envelope. Importantly, the analysis reveals that homologous copies of chromosome 1 do not behave uniformly: peripheral loci become more mobile and responsive to starvation, whereas central homologs remain comparatively stable, often associated with nucleolar subcompartments. By integrating live imaging with machine learning and explainable AI analysis, the study highlights the complexity of nuclear organization and provides valuable insights into how chromosome-specific and locus-specific responses to stress are orchestrated within the three-dimensional nuclear landscape.

      Strengths:

      The study uses live-cell imaging to investigate the dynamics of loci during starvation. Live-cell tracking and data interpretation are carried out using machine learning and AI models, which is a major strength.

      Weaknesses:

      The manuscript is at times difficult to follow, partly because the methodological descriptions are highly specialized, especially for non-expert biologists. In addition, the observations are not tested for a mechanistic basis. Experiments that could provide deeper insights are missing, for example, why chromosome 1 moves, why the peripheral homologue dislocates, or why a "long jump" is observed at the periphery even though the speed of the loci does not change. It is also unclear whether a displacement of 0.5 μm is functionally meaningful.

    1. Reviewer #1 (Public review):

      Summary:

      Hosack and Arce-McShane investigate how the 3D movement direction of the tongue is represented in the orofacial part of the sensory-motor cortex and how this representation changes with the loss of oral sensation. They examine the firing patterns of neurons in the orofacial parts of the primary motor cortex (MIo) and somatosensory cortex (SIo) in non-human primates (NHPs) during drinking and feeding tasks. While recording neural activity, they also tracked the kinematics of tongue movement using biplanar video-radiography of markers implanted in the tongue. Their findings indicate that many units in both MIo and SIo are directionally tuned during the drinking task. However, during the feeding task, directional turning was more frequent in MIo units and less prominent in SIo units. Additionally, in some recording sessions, they blocked sensory feedback using bilateral nerve block injections, which seemed to result in fewer directionally tuned units and changes in the overall distribution of the preferred direction of the units.

      Strengths:

      The most significant strength of this paper lies in its unique combination of experimental tools. The author utilized a video-radiography method to capture 3D kinematics of the tongue movement during two behavioral tasks while simultaneously recording activity from two brain areas. This specific dataset and experimental setup hold great potential for future research on the understudied orofacial segment of the sensory-motor area.

      Weaknesses:

      A substantial portion of the paper is dedicated to establishing directional tuning in individual neurons, followed by an analysis of how this tuning changes when sensory feedback is blocked. While such characterizations are valuable, particularly in less-studied motor cortical areas and behaviors, the discrepancies in tuning changes across the two NHPs, coupled with the overall exploratory nature of the study, render the interpretation of these subtle differences somewhat speculative. At the population level, both decoding analyses and state space trajectories from factor analysis indicate that movement direction (or spout location) is robustly represented. However, as with the single-cell findings, the nuanced differences in neural trajectories across reach directions and between baseline and sensory-block conditions remain largely descriptive. To move beyond this, model-based or hypothesis-driven approaches are needed to uncover mechanistic links between neural state space dynamics and behavior.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Hosack and Arce-McShane examines the directional tuning of neurons in macaque primary motor (MIo) and somatosensory (SIo) cortex. The neural basis of tongue control is far less studied than, for example, forelimb movements, partly because the tongue's kinematics and kinetics are difficult to measure. A major technical advantage of this study is using biplanar video-radiography, processed with modern motion tracking analysis software, to track the movement of the tongue inside the oral cavity. Compared to prior work, the behaviors are more naturalistic behaviors (feeding and licking water from one of three spouts), although the animals were still head-fixed.

      The study's main findings are that:

      • A majority of neurons in MIo and a (somewhat smaller) percentage of SIo modulated their firing rates during tongue movements, with different modulation depending on the direction of movement (i.e., exhibited directional tuning). Examining the statistics of tuning across neurons, there was anisotropy (e.g., more neurons preferring anterior movement) and a lateral bias in which tongue direction neurons preferred that was consistent with the innervation patterns of tongue control muscles (although with some inconsistency between monkeys).<br /> • Consistent with this encoding, tongue position could be decoded with moderate accuracy even from small ensembles of ~28 neurons.<br /> • There were differences observed in the proportion and extent of directional tuning between the feeding and licking behaviors, with stronger tuning overall during feeding. This potentially suggests behavioral context-dependent encoding.<br /> • The authors then went one step further and used a bilateral nerve block to the sensory inputs (trigeminal nerve) from the tongue. This impaired the precision of tongue movements and resulted in an apparent reduction and change in neural tuning in Mio and SIo.

      Strengths:

      The data are difficult to obtain and appear to have been rigorously measured, and provide a valuable contribution to this under-explored subfield of sensorimotor neuroscience. The analyses adopt well-established methods especially from the arm motor control literature, and represent a natural starting point for characterizing tongue 3D direction tuning.

      Weaknesses:

      There are alternative explanations from some of the interpretations, but those interpretations are described in a way that clearly distinguishes results from interpretations, and readers can make their own assessments. Some of these limitations are described in more detail below.

      One weakness of the current study is that there is substantial variability in some of the results between monkeys, including the tuning characteristics of primary somatosensory cortex neurons during drinking, and the effect of nerve block on tongue movements and the associated changes in single neuron tuning.

      This study focuses on describing directional tuning using the preferred direction (PD) / cosine tuning model popularized by Georgopoulous and colleagues for understanding neural control of arm reaching in the 1980s. This is a reasonable starting point and a decent first order description of neural tuning. However, the arm motor control field has moved far past that viewpoint, and in some ways an over-fixation on static representational encoding models and PDs held that field back for many years. The manuscript benefit from drawing the readers' attention (perhaps in their Discussion) that PDs are a very simple starting point for characterizing how cortical activity relates to kinematics, but that there is likely much richer population-level dynamical structure and that a more mechanistic, control-focused analytical framework may be fruitful. A good review of this evolution in the arm field can be found in Vyas S, Golub MD, Sussillo D, Shenoy K. 2020. Computation Through Neural Population Dynamics. Annual Review of Neuroscience. 43(1):249-75. A revised version of the manuscript incorporates more population-level analyses, but with inconsistent use of quantifications/statistics and without sufficient contextualization of what the reader is to make of these results.

      The described changes in tuning after nerve block could also be explained by changes in kinematics between these conditions, which temper the interpretation of these interesting results.

      I am not convinced of the claim that tongue directional encoding fundamentally changes between drinking and feeding given the dramatically different kinematics and the involvement of other body parts like the jaw (e.g., the reference to Laurence-Chasen et al. 2023 just shows that there is tongue information independent of jaw kinematics, not that jaw movements don't affect these neurons' activities). I also find the nerve block results inconsistent (more tuning in one monkey, less in the other?) and difficult to really learn something fundamental from, besides that neural activity and behavior both change - in various ways - after nerve block (not at all surprising but still good to see measurements of).

      The manuscript states that "Our results suggest that the somatosensory cortex may be less involved than the motor areas during feeding, possibly because it is a more ingrained and stereotyped behavior as opposed to tongue protrusion or drinking tasks". An alternative explanation be more statistical/technical in nature: that during feeding, there will be more variability in exactly what somatosensation afferent signals are being received from trial to trial (because slight differences in kinematics can have large differences in exactly where the tongue is and the where/when/how of what parts of it are touching other parts of the oral cavity)? This variability could "smear out" the apparent tuning using these types of trial-averaged analyses. Given how important proprioception and somatosensation are for not biting the tongue or choking, the speculation that somatosensory cortical activity is suppressed during feedback is very counter-intuitive to this reviewer. In the revised manuscript the authors note these potential confounds and other limitations in the Discussion.

    3. Reviewer #3 (Public review):

      Summary

      In this study, the authors aim to uncover how 3D tongue direction is represented in the Motor (M1o) and Somatosensory (S1o) cortex. In non-human primates implanted with chronic electrode arrays, they use X-ray based imaging to track the kinematics of the tongue and jaw as the animal is either chewing food or licking from a spout. They then correlate the tongue kinematics with the recorded neural activity. They perform both single-unit and population level analyses during feeding and licking. Then, they recharacterize the tuning properties after bilateral lidocaine injections in the two sensory branches of the trigeminal nerve. They report that their nerve block causes a reorganization of the tuning properties and population trajectories. Overall, this paper concludes that M1o and S1o both contain representations of the tongue direction, but their numbers, their tuning properties and susceptibility to perturbed sensory input are different.

      Strengths

      The major strengths of this paper are in the state-of-the-art experimental methods employed to collect the electrophysiological and kinematic data. In the revision, the single-unit analyses of tuning direction are robustly characterized. The differences in neural correlations across behaviors, regions and perturbations are robust. In addition to the substantial amount of largely descriptive analyses, this paper makes two convincing arguments 1) The single-neuron correlates for feeding and licking in OSMCx are different - and can't be simply explained by different kinematics and 2) Blocking sensory input alters the neural processing during orofacial behaviors. The evidence for these claims is solid.

      Weaknesses

      The main weakness of this paper is in providing an account for these differences to get some insight into neural mechanisms. For example, while the authors show changes in neural tuning and different 'neural trajectory' shapes during feeding and drinking - their analyses of these differences are descriptive and provide limited insight for the underlying neural computations.

    1. Reviewer #1 (Public review):

      Summary:

      This work addresses a key question in cell signalling: how does the membrane composition affect the behaviour of a membrane signalling protein? Understanding this is important, not just to understand basic biological function but because membrane composition is highly altered in diseases such as cancer and neurodegenerative disease. Although parts of this question have been addressed on fragments of the target membrane protein, EGFR, used here, Srinivasan et al. harness a unique tool, membrane nanodisks, which allow them to probe full-length EGFR in vitro in great detail with cutting-edge fluorescent tools. They find interesting impacts on EGFR conformation in differently charged and fluid membranes, explaining previously identified signalling phenotypes.

      Strengths:

      The nanodisk system enables full-length EGFR to be studied in vitro and in a membrane with varying lipid and cholesterol concentrations. The authors combine this with single-molecule FRET utilising multiple pairs of fluorophores at different places on the protein to probe different conformational changes in response to EGF binding under different anionic lipid and cholesterol concentrations. They further support their findings using molecular dynamics simulations, which help uncover the full atomistic detail of the conformations they observe.

      Weaknesses:

      Much of the interpretation of the results comes down to a bimodal model of an 'open' and 'closed' state between the intracellular tail of the protein and the membrane. Some of the data looks like a bimodal model is appropriate, but its use is not sufficiently justified (statistically or otherwise) in this work in its current form. The experiments with varying cholesterol in particular appear to suggest an alternate model with longer fluorescent lifetimes. More justification of these interpretations of the central experiment of this work would strengthen the paper.

    2. Reviewer #2 (Public review):

      Summary:

      Nanodiscs and synthesized EGFR are co-assembled directly in cell-free reactions. Nanodiscs containing membranes with different lipid compositions are obtained by providing liposomes with corresponding lipid mixtures in the reaction. The authors focus on the effects of lipid charge and fluidity on EGFR activity.

      Strengths:

      The authors implement a variety of complementary techniques to analyze data and to verify results. They further provide a new pipeline to study lipid effects on membrane protein function.

      Weaknesses:

      Due to the relative novelty of the approach, a number of concerns remain.

      (1) I am a little skeptical about the good correlation of the nanodisc compositions with the liposome compositions. I would rather have expected a kind of clustering of individual lipid types in the liposome membrane, in particular of cholesterol. This should then result in an uneven distribution upon nanodisc assembly, i.e., in a notable variation of lipid composition in the individual nanodiscs. Could this be ruled out by the implemented assays, or can just the overall lipid composition of the complete nanodisc fraction be analyzed?

      (2) Both templates have been added simultaneously, with a 100-fold excess of the EGFR template. Was this the result of optimization? How is the kinetics of protein production? As EGFR is in far excess, a significant precipitation, at least in the early period of the reaction, due to limiting nanodiscs, should be expected. How is the oligomeric form of the inserted EGFR? Have multiple insertions into one nanodisc been observed?

      (3) The IMAC purification does not discriminate between EGFR-filled and empty nanodiscs. Does the TEM study give any information about the composition of the particles (empty, EGFR monomers, or EGFR oligomers)? Normalizing the measured fluorescence, i.e., the total amount of solubilized receptor, with the total protein concentration of the samples could give some data on the stoichiometry of EGFR and nanodiscs.

      (4) The authors generally assume a 100% functional folding of EGFR in all analyzed environments. While this could be the case, with some other membrane proteins, it was shown that only a fraction of the nanodisc solubilized particles are in functional conformation. Furthermore, the percentage of solubilized and folded membrane protein may change with the membrane composition of the supplied nanodiscs, while non-charged lipids mostly gave rather poor sample quality. The authors normalize the ATP binding to the total amount of detectable EGFR, and variations are interpreted as suppression of activity. Would the presence of unfolded EGFR fractions in some samples with no access to ATP binding be an alternative interpretation?

    1. Reviewer #1 (Public review):

      Summary:

      The authors show that genetic deletion of the orphan tumor necrosis factor receptor DR6 in mice does not protect peripheral axons against degeneration after axotomy. Similarly, Schwann cells in DR6 mutant mice react to axotomy similarly to wild-type controls. These negative results are important because previous work has indicated that loss or inhibition of DR6 is protective in disease models and also against Wallerian degeneration of axons following injury. This carefully executed counterexample is important for the field to consider.

      Strengths:

      A strength of the paper is the use of two independent mouse strains that knock out DR6 in slightly different ways. The authors confirm that DR6 mRNA is absent in these models (western blots for DR6 protein are less convincingly null, but given the absence of mRNA, this is likely an issue of antibody specificity). One of the DR6 knockout strains used is the same strain used in a previous paper examining the effects of DR6 on Wallerian degeneration.

      The authors use a series of established assays to evaluate axon degeneration, including light and electron microscopy on nerve histological samples and cultured dorsal root ganglion neurons in which axons are mechanically severed and degeneration is scored in time-lapse microscopy. These assays consistently show a lack of effect of loss of DR6 on Wallerian degeneration in both mouse strains examined.

      Therefore, in the specific context of these experiments, the author's data support their conclusion that loss of DR6 does not protect against Wallerian degeneration.

      Weaknesses:

      The major weaknesses of this paper include the tone of correcting previously erroneous results and the lack of reporting on important details around animal experiments that would help determine whether the results here really are discordant with previous studies, and if so, why.

      The authors do not report the genetic strain background of the mice used, the sex distributions of their experimental cohorts, or the age of the mice at the time the experiments were performed. All of these are important variables.

      The DR6 knockout strain reported in Gamage et al. (2017) was on a C57BL/6.129S segregating background. Gamage et al. reported that loss of DR6 protected axons from Wallerian degeneration for up to 4 weeks, but importantly, only in 38.5% (5 out of 13) mice they examined. In the present paper, the authors speculate on possible causes for differences between the lack of effect seen here and the effects reported in Gamage et al., including possible spontaneous background mutations, epigenetic changes, genetic modifiers, neuroinflammation, and environmental differences. A likely explanation of the incomplete penetrance reported by Gamage et al. is the segregating genetic background and the presence of modifier loci between C57BL/6 and 129S. The authors do not report the genetic background of the mice used in this study, other than to note that the knockout strain was provided by the group in Gamage et al. However, if, for example, that mutation has been made congenic on C57BL/6 in the intervening years, this would be important to know. One could also argue that the results presented here are consistent with 8 out of 13 mice presented in Gamage et al.

      Age is also an important variable. The protective effects of the spontaneous WldS mutation decrease with age, for example. It is unclear whether the possible protective effects of DR6 also change with age; perhaps this could explain the variable response seen in Gamage et al. and the lack of response seen here.

      It is unclear if sex is a factor, but this is part of why it should be reported.

      The authors also state that they do not see differences in the Schwann cell response to injury in the absence of DR6 that were reported in Gamage et al., but this is not an accurate comparison. In Gamage et al., they examined Schwann cells around axons that were protected from degeneration 2 and 4 weeks post-injury. Those axons had much thinner myelin, in contrast to axons protected by WldS or loss of Sarm1, where the myelin thickness remained relatively normal. Thus, Gamage et al. concluded that the protection of axons from degeneration and the preservation of Schwann cell myelin thickness are separate processes. Here, since no axon protection was seen, the same analysis cannot be done, and we can only say that when axons degenerate, the Schwann cells respond the same whether DR6 is expressed or not.

      The authors also take issue with Colombo et al. (2018), where it was reported that there is an increase in axon diameter and a change in the g-ratio (axon diameter to fiber diameter - the axon + myelin) in peripheral nerves in DR6 knockout mice. This change resulted in a small population of abnormally large axons that had thinner myelin than one would expect for their size. The change in g-ratio was specific to these axons and driven by the increased axon diameter, not decreased myelin thickness, although those two factors are normally loosely correlated. Here, the authors report no changes in axon size or g-ratio, but this could also be due to how the distribution of axon sizes was binned for analysis, and looking at individual data points in supplemental figure 3A, there are axons in the DR6 knockout mice that are larger than any axons in wild type. Thus, this discrepancy may be down to specifics and how statistics were performed or how histograms were binned, but it is unclear if the results presented here are dramatically at odds with the results in Colombo et al. (2018).

      Finally, it is important to note that previously reported effects of DR6 inhibition, such as protection of cultured cortical neurons from beta-amyloid toxicity, are not necessarily the same as Wallerian degeneration of axons distal to an injury studied here. The negative results presented here, showing that loss of DR6 is not protective against Wallerian degeneration induced by injury, are important given the interest in DR6 as a therapeutic target, but they are specific to these mice and this mechanism of induced axon degeneration. The extent to which these findings contradict previous work is difficult to assess due to the lack of detail in describing the mouse experiments, and care should be taken in attempting to extrapolate these results to other disease contexts, such as ALS or Alzheimer's disease.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Beirowski, Huang, and Babetto revisits the proposed role of Death Receptor 6 (DR6/Tnfrsf21) in Wallerian degeneration (WD). A prior study (Gamage et al., 2017) suggested that DR6 deletion delays axon degeneration and alters Schwann cell responses following peripheral nerve injury. Here, the authors comprehensively test this claim using two DR6 knockout mouse models (the line used in the earlier report plus a CMV-Cre derived floxed ko line) and multiple WD assays in vivo and in vitro, aligned with three positive controls, Sarm1 WldS and Phr1/Mycbp2 mutants. Contrary to the prior findings, they find no evidence that DR6 deletion affects axon degeneration kinetics or Schwann cell dynamics (assessed by cJun expression or [intact+degenerating] myelin abundance after injury) during WD. Importantly, in DRG explant assays, neurites from DR6-deficient mice degenerated at rates indistinguishable from controls. The authors conclude that DR6 is dispensable for WD, and that previously reported protective effects may have been due to confounding factors such as genetic background or spontaneous mutations.

      Strengths:

      The authors employ two independently generated DR6 knockout models, one overlapping with the previously published study, and confirm loss of DR6 expression by qPCR and Western blotting.<br /> Multiple complementary readouts of WD are applied (structural, ultrastructural, molecular, and functional), providing a robust test of the hypothesis.

      Comparisons are drawn with established positive controls (WldS, SARM1, Phr1/Mycbp2 mutants), reinforcing the validity of the assays.

      By directly addressing an influential but inconsistent prior report, the manuscript clarifies the role of DR6 and prevents potential misdirection of therapeutic strategies aimed at modulating WD in the PNS. The discussion thoughtfully considers possible explanations for the earlier results, including colony-specific second-site mutations that could explain the incomplete penetrance of the earlier reported phenotype of only 36%.

      Weaknesses:

      (1) The study focuses on peripheral nerves. The manuscript frequently refers to CNS studies to argue for consistency with their findings. It would be more accurate to frame PNS/CNS similarities as reminiscences rather than as consistencies (e.g., line 205ff in the Discussion).

      (2) The DRG explant assays are convincing, though the slight acceleration of degeneration in the DR6 floxed/Cre condition is intriguing (Figure 4E). Could the authors clarify whether this is statistically robust or biologically meaningful?

      (3) In the summary (line 43), the authors refer to Hu et al. (2013) (reference 5) as the study that previously reported AxD delay and SC response alteration after injury. However, this study did not investigate the PNS, and I believe the authors intended to reference Gamage et al. (2017) (reference 10) at this point.

      (4) In line 74ff of the results section, the authors claim that developmental myelination is not altered in DR6 mutants at postnatal day 1. However, the variability in Figure S2 appears substantial, and the group size seems underpowered to support this claim. Colombo et al. (2018) (reference 11) reported accelerated myelination at P1, but this study likewise appears underpowered. Possible reasons for these discrepancies and the large variability could be that only a defined cross-sectional area was quantified, rather than the entire nerve cross-section.

      (5) The authors stress the data of Gamage et al. (2017) on altered SC responses in DR6 mutants after injury. They employed cJun quantification to show that SC reprogramming after injury is not altered in DR6 mutants. This approach is valid and the conclusion trustworthy. Here, the addition of data showing the combined abundance of intact and degenerated myelin does not add much insight. However, Gamage et al. (2017) reported altered myelin thickness in a subset of axons at 14 days after injury, which is considerably later than the time points analyzed in the present study. While, in the Reviewer's view, the thin myelin observed by Gamage et al. in fact resembles remyelination, the authors may wish to highlight the difference in the time points analyzed.

    3. Reviewer #3 (Public review):

      Summary:

      The authors revisit the role of DR6 in axon degeneration following physical injury (Wallerian degeneration), examining both its effects on axons and its role in regulating the Schwann cell response to injury. Surprisingly, and in contrast to previous studies, they find that DR6 deletion does not delay the rate of axon degeneration after injury, suggesting that DR6 is not a mediator of this process.

      Overall, this is a valuable study. As the authors note, the current literature on DR6 is inconsistent, and these results provide useful new data and clarification. This work will help other researchers interpret their own data and re-evaluate studies related to DR6 and axon degeneration.

      Strengths:

      (1) The use of two independent DR6 knockout mouse models strengthens the conclusions, particularly when reporting the absence of a phenotype.

      (2) The focus on early time points after injury addresses a key limitation of previous studies. This approach reduces the risk of missing subtle protective phenotypes and avoids confounding results with regenerating axons at later time points after axotomy.

      Weaknesses:

      (1) The study would benefit from including an additional experimental paradigm in which DR6 deficiency is expected to have a protective effect, to increase confidence in the experimental models, and to better contextualize the findings within different pathways of axon degeneration. For example, DR6 deletion has been shown in more than one study to be partially axon protective in the NGF deprivation model in DRGs in vitro. Incorporating such an experiment could be straightforward and would strengthen the paper, especially if some of the neuroprotective effects previously reported are confirmed.

      (2) The quality of some figures could be improved, particularly the EM images in Figure 2. As presented, they make it difficult to discern subtle differences.

    1. Reviewer #1 (Public review):

      Disclaimer:

      This reviewer is not an expert on MD simulations but has a basic understanding of the findings reported and is well-versed with mycobacterial lipids.

      Summary:

      In this manuscript titled "Dynamic Architecture of Mycobacterial Outer Membranes Revealed by All-Atom 1 Simulations", Brown et al describe outcomes of all-atom simulation of a model outer membrane of mycobacteria. This compelling study provided three key insights:<br /> (1) The likely conformation of the unusually long chain alpha-branched beta-methoxy fatty acids, mycolic acids in the mycomembrane, to be the extended U or Z type rather than the compacted W-type. (2) Outer leaflet lipids such as PDIM and PAT provide regional vertical heterogeneity and disorder in the mycomembrane that is otherwise prevented in a mycolic acid-only bilayer.<br /> (3) Removal of specific lipid classes from the symmetric membrane systems leads to significant changes in membrane thickness and resilience to high temperatures.

      Strengths:

      The authors take a step-wise approach in building the complexity of the membrane and highlight the limitations of each of the approaches. A case in point is the use of supraphysiological temperature of 333 K or even higher temperatures for some of the simulations. Overall, this is a very important piece of work for the mycobacterial field, and will help in the development of membrane-disrupting small molecules and provide important insights for lipid-lipid interactions in the mycomembrane.

      Weaknesses:

      (1) The authors used alpha-mycolic acids only for their models. The ratios of alpha, keto, and methoxy-mycolic acids are known in the literature, and it may be worth including these in their model. Future studies can be aimed at addressing changes in the dynamic behavior of the MOM by altering this ratio, but the inclusion of all three forms in the current model will be important and may alter the other major findings of the current study.

      (2) The findings from the 14 different symmetric membrane systems developed with the removal of one complex lipid at a time are very interesting but have not been analysed/discussed at length in the current manuscript. I find many interesting insights from Figures S3 and S5, which I find missing in the manuscript. These are as follows:

      a) Loss of PDIM resulted in reduced membrane thickness. This is a very important finding given that loss of PDIM can be a spontaneous phenomenon in Mtb cultures in vitro and that this is driven by increased nutrient uptake by PDIM-deficient bacilli (Domenech and Reed, 2009 Microbiology). While the latter is explained by the enhanced solute uptake by several PE/PPE transporter systems in the absence of PDIM (Wang et al, Science 2020), the findings presented by Brown et al could be very important in this context. A discussion on these aspects would be beneficial for the mycobacterial community.

      b) I find it interesting that loss of PAT or DAT does not change membrane thickness (Figure S3). While both PAT and PDIM can migrate to the interleaflet space, loss of PDIM and PAT has a different impact on membrane thickness. It is worth explaining what the likely interactions are that shape membrane thickness in the case of the modelled MOM.

      c) Figure S5: Is the presence of SGL driving PDIM and PAT to migrate to the inter-leaflet space? Again, a discussion on major lipid-lipid interactions driving these lipid migrations across the membrane thickness would be useful.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript reports all-atom molecular dynamics simulations on the outer membrane of Mycobacterium tuberculosis. This is the first all-atom MD simulation of the MTb outer membrane and complements the earlier studies, which used coarse-grained simulation.

      Strengths:

      The simulation of the outer membrane consisting of heterogeneous lipids is a challenging task, and the current work is technically very sound.

      The observation about membrane heterogeneity and ordered inner leaflets vs disordered outer leaflets is a novel result from the study. This work will also facilitate other groups to work on all-atom models of mycobacterial outer membrane for drug transport, etc.

      Weaknesses:

      Beyond a challenging simulation study, the current manuscript only provides qualitative explanations on the unusual membrane structure of MTb and does not demonstrate any practical utility of the all-atom membrane simulation. It will be difficult for the general biology community to appreciate the significance of the work, based on the manuscript in its current form, because of the high content of technical details and limited evidence on the utility of the work.

      Major Points:

      (1) The simulation by Basu et al (Phys Chem Chem Phys 2024) has studied drug transports through mycolic acid monolayers. Since the authors of the current study have all atom models of MTb outer membrane, they should carry out drug transport simulations and compare them to the outer membranes of other bacteria through which drugs can permeate. In the current manuscript, it is only discussed in lines 388-392. Can the disruption of MA cyclopropanation be simulated to show its effect on membrane structure ?

      (2) In line 277, the authors mention about 6 simulations which mimic lipid knockout strains. The results of these simulations, specifically the outcomes of in silico knockout of lipids, are not described in detail.

      (3) Figure 5 shows PDIM and PAT-driven lipid redistribution, which is a significant novel observation from the study. However, comparison of 3B and 3D shows that at 313K, the movement of the PDIM head group is much less. Since MD simulations are sensitive to random initial seeds, repeated simulations with different random seeds and initial structures may be necessary.

      (4) As per Figure 1, in the initial structure, the head group of PAT should be on the membrane surface, similar to TDM and TMM, while PDIM is placed towardsthe interior of the outer membrane. However, Figure 5 shows that at t=0, PAT has the same Z position as PDIM. It will be necessary to provide Z-position Figures for TMM and TDM to understand the difference. Is it really dependent on the chemical structure of the lipid moiety or the initial position of the lipid in the bilayer at the beginning of the simulation?

      Minor Point:

      In view of the complexity of the system undertaken for the study, the manuscript in its current form may not be informative for readers who are not experts in molecular simulations.

    1. Reviewer #1 (Public review):

      Summary:

      Overexpression of the mRNA-binding protein Ssd1 was shown before to expand the replicative lifespan of yeast cells, whereas ssd1 deletion had the opposite effect. Here, the authors provide evidence that Ssd1 acts via sequestration of mRNAs of the Aft1/2-dependent iron regulon. This restricts activation of the regulon and limits accumulation of Fe2+ inside cells, thereby likely lowering oxidative damage. The effects of Ssd1 overexpression and calorie restriction on lifespan are epistatic, suggesting that they might act through the same pathway.

      Strengths:

      The study is well-designed and involves analysis of single yeast cells during replicative aging. The findings are well displayed and largely support the derived model, which also has implications for the lifespan of other organisms, including humans.

      Weaknesses:

      The model is largely supported by the findings, however, they remain largely correlative at the same time. Whether the knockout of ssd1 shortens lifespan by increased intracellular Fe2+ levels has not been tested. The finding that increased Ssd1 levels form condensates in a cell-cycle-dependent manner is interesting, yet the role of the condensates in lifespan expansion remains untested and unlinked.

    2. Reviewer #2 (Public review):

      This manuscript describes the use of a powerful technique called microfluidics to elucidate the mechanisms explaining how overexpression (OE) of Ssd1 and caloric restriction (CR) in yeast extend replicative lifespan (RLS). Microfluidics measures RLS by trapping cells in chambers mounted to a slide. The chambers hold the mother cell but allow daughters to escape. The slide, with many chambers, is recorded during the entire process, roughly 72 hours, with the video monitored afterwards to count how many daughters each of the trapped mothers produces. The power of the method is what can be done with it. For example, the entire process can be viewed by fluorescence so that GFP and mCherry-tagged proteins can be followed as cells age. The budding yeast is the only model where bona fide replicative aging can be measured, and microfluidics is the only system that allows protein localization and levels to be measured in a single cell while aging. The authors do a wonderful job of showing what this combination of tools can do.

      The authors had previously shown that Ssd1, an mRNA-binding protein, extends RLS when overexpressed. This was attributed to Ssd1 sequestering away specific mRNAs under stress, likely leading to reduced ribosomal function. It remained completely unknown how Ssd1 OE extended RLS. The authors observed that overexpressed, but not normally expressed, Ssd1 formed cytoplasmic condensates during mitosis that are resolved by cytokinesis. When the condensates fail to be resolved at the end of mitosis, this signals death.

      It has become clear in the literature that iron accumulation increases with age within the cell. The transcriptional programs that activate the iron regulon also become elevated in aging cells. This is thought to be due to impaired mitochondrial function in aging cells, with increased iron accumulation as an attempt at restoring mitochondrial activity. The authors show that Ssd1 OE and CR both reduce the expression of the iron regulon. The data presented indicate that iron accumulation shortens RLS: deletion of iron regulon components extends RLS, and adding iron to WT cells decreases RLS, but not when Ssd1 is overexpressed or when cells are calorically restricted. Interestingly, iron chelation using BPS has no impact on WT RLS, but decreases the elevated RLS in CR cells and cells overexpressing Ssd1. It was not initially clear why iron chelation would inhibit the extended lifespan seen with CR and Ssd1 OE. This was addressed by an experiment where it was shown that the iron regulon is induced (FIT2 induction) when iron is chelated. Thus, the detrimental effects of induction of the iron regulon by BPS and iron accumulation on RLS cannot be tempered by Ssd1 OE and CR once turned on.

      I did not find any weaknesses to be addressed in this paper. The draft was well-written, and the extensive experimentation was well-designed, performed, and controlled. However, I did make minor comments that I recommend the authors address:

      (1) Why would BPS not reduce RLS in WT cells? The authors could test whether OE of FIT2 reduces RLS in WT cells.

      (2) The authors should add a brief explanation for why the GDP1 promoter was chosen for Ssd1 OE.

      (3) On page 12, growth to saturation was described as glucose starvation. This is more accurately described as nutrient deprivation. Referring to it as glucose starvation is akin to CR, which growing to saturation is not. Ssd1 OE formed condensates upon saturation but not in CR. Why do the authors think Ssd1 OE did not form condensates upon CR? Too mild a stress?

      (4) The authors conclude that the main mechanism for RLS extension in CR and Ssd1 OE is the inhibition of the iron regulon in aging cells. The data certainly supports this. However, this may be an overstatement as other mutations block CR, such as mutations that impair respiration. The authors do note that induction of the iron regulon in aging cells could be a response to impaired mitochondrial function. Thus, it seems that the main goal of CR and Ssd1 OE may be to restore mitochondrial function in aging cells, one way being inactivation of the iron regulon. A discussion of how other mutations impact CR would be of benefit.

      (5) The cell cycle regulation of Ssd1 OE condensates is very interesting. There does not appear to be literature linking Ssd1 with proteasome-dependent protein turnover. Many proteins involved in cell cycle regulation and genome stability are regulated through ubiquitination. It is not necessary to do anything here about it, but it would be interesting to address how Ssd1 condensates may be regulated with such precision.

      (6) While reading the draft, I kept asking myself what the relevance to human biology was. I was very impressed with the extensive literature review at the end of the discussion, going over how well conserved this strategy is in yeast with humans. I suggest referring to this earlier, perhaps even in the abstract. This would nail down how relevant this model is for understanding human longevity regulation.

      In conclusion, I enjoyed reading this manuscript, describing how Ssd1 OE and CR lead to RLS increases, using different mechanisms. However, since the 2 strategies appear to be using redundant mechanisms, I was surprised that synergism was not observed.

    3. Reviewer #3 (Public review):

      In this paper, the authors investigate how the RNA-binding protein Ssd1 and calorie restriction (CR) influence yeast replicative lifespan, with a particular focus on age-dependent iron uptake and activation of the iron regulon. For this, they use microfluidics-based single-cell imaging to monitor replicative lifespan, protein localization, and intracellular iron levels across aging cells. They show that both Ssd1 overexpression and CR act through a shared pathway to prevent the nuclear translocation of the iron-regulon regulator Aft1 and the subsequent induction of high-affinity iron transporters. As a result, these interventions block the age-related accumulation of intracellular free iron, which otherwise shortens lifespan. Genetic and chemical epistasis experiments further demonstrate that suppression of iron regulon activation is the key mechanism by which Ssd1 and CR promote replicative longevity.

      Overall, the paper is technically rigorous, and the main conclusions are supported by a substantial body of experimental data. The microfluidics-based assays in particular provide compelling single-cell evidence for the dynamics of Ssd1 condensates and iron homeostasis.

      My main concern, however, is that the central reasoning of the paper-that Ssd1 overexpression and CR prevent the activation of the iron regulon-appears to be contradicted by previous findings, and the authors may actually be misrepresenting these studies, unless I am mistaken. In the manuscript, the authors state on two occasions:

      "Intriguingly, transcripts that had altered abundance in CR vs control media and in SSD1 vs ssd1∆ yeast included the FIT1, FIT2, FIT3, and ARN1 genes of the iron regulon (8)"

      "Ssd1 and CR both reduce the levels of mRNAs of genes within the iron regulon: FIT1, FIT2, FIT3 and ARN1 (8)"

      However, reference (8) by Kaeberlein et al. actually says the opposite:

      "Using RNA derived from three independent experiments, a total of 97 genes were observed to undergo a change in expression >1.5-fold in SSD1-V cells relative to ssd1-d cells (supplemental Table 1 at http://www.genetics.org/supplemental/). Of these 97 genes, only 6 underwent similar transcriptional changes in calorically restricted cells (Table 2). This is only slightly greater than the number of genes expected to overlap between the SSD1-V and CR datasets by chance and is in contrast to the highly significant overlap in transcriptional changes observed between CR and HAP4 overexpression (Lin et al. 2002) or between CR and high external osmolarity (Kaeberlein et al. 2002). Intriguingly, of the 6 genes that show similar transcriptional changes in calorically restricted cells and SSD1-V cells, 4 are involved in iron-siderochrome transport: FIT1, FIT2, FIT3, and ARN1 (supplemental Table 1 at http://www.genetics.org/supplemental/)."

      Although the phrasing might be ambiguous at first reading, this interpretation is confirmed upon reviewing Matt Kaeberlein's PhD thesis: https://dspace.mit.edu/handle/1721.1/8318 (page 264 and so on).

      Moreover, consistent with this, activation of the iron regulon during calorie restriction (or the diauxic shift) has also been observed in two other articles:

      https://doi.org/10.1016/S1016-8478(23)13999-9

      https://doi.org/10.1074/jbc.M307447200

      Taken together, these contradictory data might blur the proposed model and make it unclear how to reconcile the results.

    1. Reviewer #1 (Public review):

      Sinzato et. al. investigated how shear flow in a rheological chamber affects the assembly and fragmentation of cyanobacterial aggregates, with the goal of understanding how such aggregates might form naturally, and/or be destroyed industrially. The authors used a combination of experiments and models to show that cyanobacterial colonies can be difficult to fragment with fluid flows. Additionally, they provide biophysical support for the idea that such aggregates likely form primarily when cells stay together after cell division, rather than coming together from disparate paths.

      This work has significant relevance to the field, both practically and naturally. Combatting or preventing toxic cyanobacterial blooms is an active area of environmental research that offers a practical backbone for this manuscript's ideas. Additionally, the formation and behavior of cellular aggregates in general is of widespread interest in many fields, including marine and freshwater ecology, healthcare and antibiotic resistance research, biophysics, and microbial evolution. In this field, there are still outstanding questions regarding how microbial aggregates form into communities, including if and how they come together from separate places. Therefore, I believe that researchers from many distinct fields would find interest in the topic of this paper, and particularly Figure 5, in which a phase space that is meant to represent the different modes of aggregate formation and destruction is suggested, dependent on properties of the fluid flow and particle concentration.

      Altogether, the authors were successful in their investigation, and I find their claims to be justified. In particular, the authors achieve strong results from their experiments. Below, I outline key claims of the paper and indicate the level to which they were supported by their data.

      • Their first major claim is that fluid flows alone must be quite strong in order to fragment the cyanobacterial aggregates they have studied. With their rheological chamber, they explicitly show that energy dissipation rates must exceed "natural" conditions by multiple orders of magnitude in order to fragment lab strain colonies, and even higher to disrupt natural strains sampled from a nearby freshwater lake. This claim is well-supported by their experiments and data.

      • The authors then claim that the fragmentation of aggregates due to fluid flows occurs primarily through erosion of small pieces from larger aggregates. Because their experimental setup does not allow them to directly observe this process (for example, by watching one aggregate break into pieces), they rely on indirect methods to support the claim. Overall, the experimental evidence is generally supportive, but the models leave some gaps. I describe this conclusion in more detail below.

      • The strongest evidence for the erosion-dominated process comes from the authors' measurements of transfer of biomass between large and small size classes, as in Figure 2E and Figure 2D. The authors claim that only the erosion model can reproduce this kind of biomass transfer. However, it also seems that the idealized erosion model alone is not fully sufficient to capture the observed behavior. In Figure 2D, there remains a gap between their experiment and the prediction of the erosion model, which grows larger over time (Supplemental Figure S9). While the authors suggest that the erosion model is better than the equal-fragmentation model, it is also true that tracking the mean size (Figure 2B) or small size distribution (Figure S6) cannot distinguish between these models.

      • Taken altogether, the experimental evidence favors an erosion-dominated process. However, a few minor questions remain regarding the models. Why does the equal-fragmentation model predict no biomass transfer between size classes? To what extent, quantitatively, does the erosion model outperform the equal fragments model at capturing the biomass size distributions? Finally, why does the idealized erosion fail to capture the size distribution at late stages in Supplemental Figure S9 - would this discrepancy be resolved if the authors considered individual colony variances in cell adhesion (for instance, as hypothesized by the authors in lines 133-137)? I do not believe these questions curb the other results of the paper.

      • Their third major claim is that fluid flows only weakly cause cells to collide and adhere in a "coming together" process of aggregate formation. They test this claim in Figure 3, where they suspend single cells in their test chamber and stir them at moderate intensity, monitoring their size histogram. They show that the size histogram changes only slightly, indicating that aggregation is, by-and-large, not occurring at a high rate. Therefore, they lend support to the idea that cell aggregation likely does not initiate group formation in toxic cyanobacterial blooms. Additionally, they show that the median size of large colonies also does not change at moderate turbulent intensities. These results agree with previous studies (their own citation 25) indicating that aggregates in toxic blooms are clonal in nature. This is an important result, and well-supported by their data, but only for this specific particle concentration and stirring intensity. Later, in Figure 5 they show a much broader range of particle concentrations and energy dissipation rates that they leave untested. However, they refer to other literature that does test these regions of the phase map.

      • The fourth major result of the manuscript is displayed in Equation 8 and Figure 5, where the authors derive an expression for the ratio between the rate of increase of a colony due to aggregation vs. the rate due to cell division. They then plot this line on a phase map, altering two physical parameters (concentration and fluid turbulence) to show under what conditions aggregation vs. cell division are more important for group formation. Because these results are derived from relatively simple biophysical considerations, they have the potential to be quite powerful and useful, and represent a significant conceptual advance. By combining their experiments with discussions of other experimental investigations of scum formation in cyanobacterial blooms, the authors have investigated the two most relevant zones of this map for the present study (Zones II and III), and have made a strong contribution to the literature in regards to artificial mixing to disrupt cyanobacterial blooms.

      Other notes:

      The authors rely heavily on size distributions to make the claims of their paper. I was pleased to find the calibration histograms in Supplemental Figure S8, which provide information as to how and why they made corrections to the histograms they observed. From these calibration histograms, it seems that larger colonies are more accurately measured in the cone-and-plate shear setup, while smaller colonies can be missed, presumably due to resolution issues.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors investigate the role of fluid flow in shaping the colony size of a freshwater cyanobacterium Microcystis. To do so, they have created a novel assay by combining a rheometer with a bright field microscope. This allows them to exert precise shear forces on cyanobacterial cultures and field samples, and then quantify the effect of these shear forces on the colony size distribution. Shear force can affect the colony size in two ways: reducing size by fragmentation and increasing size by aggregation. They find limited aggregation at low shear rates, but high shear forces can create erosion-type fragmentation: colonies do not break in large pieces, but many small colonies are sheared off the large colonies. Overall, bacterial colonies from field samples seem to be more inert to shear than laboratory cultures, which the authors explain in terms of enhanced intercellular adhesion mediated by secreted polysaccharides.

      Strengths:

      • This study is timely, as cyanobacterial blooms are an increasing problem in freshwater lakes. They are expected to increase in frequency and severeness because of rising temperatures, and it is worthwhile learning how these blooms are formed. More generally, how physical aspects such as flow and shear influence colony formation is often overlooked, at least in part because of experimental challenges. Therefore, the method developed by the authors is useful and innovative, and I expect applications beyond the presented system here.

      • A strong feature of this paper is the highly quantitative approach, combining theory with experiments, and the combination of laboratory experiments and field samples.

      Weaknesses:

      • Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. The writing could have done more justice to the fact that the importance of adhesion had been described elsewhere. This being said, the same method can be used to investigate systems where shear forces are biologically more relevant.
    1. Joint Public Review:

      The study assesses how the rise of the Qinghai-Tibet Plateau affected patterns of bird migration between their breeding and wintering sites.

      This is an interesting topic and a novel theme. The visualisations and presentation are to a very high standard. The Introduction is very well-written and introduces the main concepts well, with a clear logical structure and good use of the literature. The Methods are detailed and well-described, and written in such a fashion that they are transparent and repeatable.

      Editorial note: These latest revisions are minor in the sense that they expand on the dataset but do not change the primary results.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Mirza et al developed a continuum active gel model of actomyosin cytoskeleton that account for nematic order and density variations in actomyosin. Using this model, they identify the requirements for the formation of dense nematic structures. In particular, they show that self-organization into nematic bundles requires both flow-induced alignment and active tension anisotropy in the system. By varying model parameters that control active tension and nematic alignment, the authors show that their model reproduces a rich variety of actomyosin structures, including tactoids, fibres, asters as well as crystalline networks. Additionally, discrete simulations are employed to calculate the activity parameters in the continuum model, providing a microscopic perspective on the conditions driving the formation of fibrillar patterns.

      Strengths:

      The strength of the work lies in its delineation of the parameter ranges that generate distinct types of nematic organization within actomyosin networks. The authors pinpoint the physical mechanisms behind the formation of fibrillar patterns, which may offer valuable insights into stress fiber assembly. Another strength of the work is connecting activity parameters in the continuum theory with microscopic simulations.

      Weaknesses:

      This paper is a very difficult read for nonspecialists, especially if you are not well-versed in continuum hydrodynamic theories. Efforts should be made to connect various elements of theory with biological mechanisms, which is mostly lacking in this paper. The comparison with experiments is predominantly qualitative. It is unclear if the theory is suited for in vitro or in vivo actomyosin systems. The justification for various model assumptions, especially concerning their applicability to actomyosin networks, requires a more thorough examination. The classification of different structures demands further justification. For example, the rationale behind categorizing structures as sarcomeric remains unclear when nematic order is perpendicular to the axis of the bands. Sarcomeres traditionally exhibit a specific ordering of actin filaments with alternating polarity patterns. Similarly, the criteria for distinguishing between contractile and extensile structures need clarification, as one would expect extensile structures to be under tension contrary to the authors' claim. Additionally, it's unclear if the model's predictions for fiber dynamics align with observations in cells, as stress fibers exhibit a high degree of dynamism and tend to coalesce with neighboring fibers during their assembly phase. Finally, it seems that the microscopic model is unable to recapitulate the density patterns predicted by the continuum theory, raising questions about the suitability of the simulation model.

    2. Reviewer #2 (Public review):

      Summary:

      The article by Waleed et al discusses the self-organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self-organized structures can emerge.

      Strengths:

      (i) Analytical calculations complemented with simulations (ii) Theory for cytoskeletal network

      Weaknesses:

      Not placed in the context or literature on active nematics.

      Comments on revised version:

      The authors have satisfactorily responded to the comments

    3. Reviewer #3 (Public review):

      The manuscript "Theory of active self-organization of dense nematic structures in the actin cytoskeleton" analysis self-organized pattern formation within a two-dimensional nematic liquid crystal theory and uses microscopic simulations to test the plausibility of some of the conclusions drawn from that analysis. After performing an analytic linear stability analysis that indicates the possibility of patterning instabilities, the authors perform fully non-linear numerical simulations and identify the emergence of stripe-like patterning when anisotropic active stresses are present. Following a range of qualitative numerical observations on how parameter changes affect these patterns, the authors identify, besides isotropic and nematic stress, also active self-alignment as an important ingredient to form the observed patterns. Finally, microscopic simulations are used to test the plausibility of some of the most crucial assumptions underlying continuum simulations.

      The paper is well written, figures are mostly clear, and the theoretical analysis presented in both, main text and supplement, is rigorous. Mechano-chemical coupling has emerged in recent years as a crucial element of cell cortex and tissue organization and it is plausible to think that both, isotropic and anisotropic active stresses, are present within such effectively compressible structures. Even though not explicitly stated this way by the authors, I would argue that combining these two is one of the key ingredients that distinguishes this theoretical paper from similar ones.

      The diversity of patterning processes experimentally observed and theoretically described is nicely elaborated on in the introduction of the paper. The theory development and discussion of the continuum model itself is also well-embedded in a review of the relevant broad literature on active liquid crystals and active nematics, which includes plenty of previous results by the authors themselves. Interestingly, several of the patterns identified in the present work, such as 2D hexagonal and pulsatory patterns (Kumar et al, PRL, 2014), as well as contractile patches (Mietke et al, PRL 2019) have been observed previously in different, but related, active isotropic fluid models. In light of this crowded literature, the authors do good job in delineating key results obtained in the present manuscript from existing work.

      The results of numerical simulations are well-presented. The discussion of numerical observations is comprehensive, but also at many times qualitative. Some of the observations resonate with recent discussions in the field, for example the observation of effectively extensile dynamics in a contractile system, which is interesting and reminiscent of ambiguities about extensile/contractile properties discussed in recent preprints (Nejad et al, Nat Comm 2024). It is convincingly concluded that, besides nematic stress on top of isotropic one, active self-alignment is a key ingredient to produce the observed patterns.

      The authors must be complimented for trying to gain further mechanistic insights into their conclusions using microscopic filament simulations that were diligently performed. It is rightfully stated that these simulations only provide plausibility tests about key assumptions underlying the hydrodynamic theory. Within this scope, I would say the authors are successful. At the same time, it leaves open questions that could have been discussed more carefully. For example, I wonder what can be said about the regime \kappa>0 microscopically, in which the continuum theory does also predict the formation of stripe patterns? How does the spatial inhomogeneous organization the continuum theory predicts fit in the presented, microscopic picture and vice versa? The authors clearly explain the scope and limitations of the microscopic model, which suggests that questions like these will be interesting directions of future investigations.

      Overall, the paper represents a valuable contribution to the field of active matter that should provide a fruitful basis to develop new hypothesis about the dynamic self-organisation and mechanics of dense filamentous bundles in biological systems.

    1. Reviewer #1 (Public review):

      Summary:

      I read with much attention the manuscript titled "Generation of knock-in Cre and FlpO mouse lines for precise targeting of striatal projection neurons and dopaminergic neurons" in which the authors reveal five transgenic lines to target diverse neuronal populations of the basal ganglia. In addition, the authors also provide some assessments of the functionality of the lines.

      Strengths:

      Knockin lines made readily available through Jackson. Lines show specific expression.

      Weaknesses:

      Although I have no doubt these knocking lines will be broadly used by researchers in the field, I find the scientific advances of the study and the breadth of the resource provided quite limited. This is partly because 4 of these lines have been generated by other laboratories. For instance, there are already two other Dat-FlpO lines generated (JAX#: 033673 and 035436), with one of them already characterized (PMID: 33979604). Similarly, Drd1-Cre and Adora2a-Cre have been used abundantly since they were generated over a decade ago, and a novel Drd1-FlpO line has been characterized thoroughly recently (PMID: 38965445). Indeed, some of these lines were BAC transgenic, and I agree with the authors that there is a sound rationale for generating knock-in mice; however, the authors should then demonstrate if/how their new drivers are superior. Overall, the valuable resource generated by the authors would benefit from additional quantification and validation.

    2. Reviewer #2 (Public review):

      Summary:

      The authors report the generation and validation of new knock-in mouse lines enabling precise targeting of basal ganglia projection neurons and midbrain dopamine neurons. By inserting recombinase sequences at endogenous loci, they provide tools that improve on older BAC-based models, with the additional benefit that all lines are openly available through Jackson Laboratories. This work is timely, fills a longstanding gap for the community, and will support both basic circuit mapping and disease-related research.

      Strengths:

      The major strength of this study is the provision of new genetic resources that will be widely used by the basal ganglia and dopamine research communities. Anatomical and electrophysiological data indicate appropriate expression and preserved intrinsic properties. The Flp lines, in particular, show labeling largely confined to basal ganglia circuits, making them especially attractive for circuit-based studies. A further strength is the use of a T2A-recombinase insertion at the native gene stop codon, which preserves endogenous regulation and maintains near-physiological expression of Adora2a, Drd1a, and DAT. The availability of both Cre and Flp versions enables powerful intersectional strategies, and open distribution through Jackson Laboratories ensures broad accessibility and long-term value.

      Weaknesses:

      The major limitation is the discrepancy between Cre and Flp lines, with Cre generally driving broader expression than Flp. This raises concerns about anatomical fidelity that require validation at the cellular level. For the DAT-FlpO line, efficiency remains insufficiently quantified, and higher-resolution co-labeling with TH immunostaining is needed. Electrophysiological comparisons between Cre and Flp versions are also incomplete; current data suggest potential physiological differences, which warrant additional statistical testing and, at a minimum, explicit discussion in the manuscript.

    3. Reviewer #3 (Public review):

      Summary:

      Using latest knock-in technology, the authors generated a set of five mouse lines with expression of recombinases in striatal projection neurons and dopaminergic neurons for public use. They rigorously characterize the expression of the recombinases by intersectional crossing with reporter lines to demonstrate that these lines are faithful, and they perform electrophysiological experiments in slices to provide evidence that the respective neurons show the expected features in these assays.

      Strengths:

      The characterization of the new mouse lines is exceptional, and these will be widely used by the community. The mouse lines are openly available for the community to use.

      Weaknesses:

      No weaknesses were identified by this Reviewer.

    1. Reviewer #1 (Public review):

      Summary:

      The authors report the structure of the human CTF18-RFC complex bound to PCNA. Similar structures (and more) have been reported by the O'Donnell and Li labs. This study should add to our understanding of CTF18-RFC in DNA replication and clamp loaders in general. However, there are numerous major issues that I recommend the authors fix.

      Strengths:

      The structures reported are strong and useful for comparison with other clamp loader structures that have been reported lately.

      Comments on revisions:

      The revised manuscript is greatly improved. The comparison with hRFC and the addition of direct PCNA loading data from the Hedglin group are particular highlights. I think this is a strong addition to the literature.

      I only have minor comments on the revised manuscript.

      (1) The clamp loading kinetic data in Figure 6 would be more easily interpreted if the three graphs all had the same x axes, and if addition of RFC was t=0 rather than t=60 sec.

      (2) The author's statement that "CTF18-RFC displayed a slightly faster rate than RFC" seems to me a bit misleading, even though this is technically correct. The two loaders have indistinguishable rate constants for the fast phase, and RFC is a bit slower than CTF18-RFC in the slow phase. However, the data also show that RFC is overall more efficient than CTF18-RFC at loading PCNA because much more flux through the fast phase (rel amplitudes 0.73 vs 0.36). Because the slow phase represents such a reduced fraction of loading events, the slight reduction in rate constant for the slow phase doesn't impact RFC's overall loading. And because the majority of loading events are in the fast phase, RFC has a faster halftime than CTF18-RFC. (Is it known what the different phases correspond to? If it is known, it might be interesting to discuss.)

      (3) AAA+ is an acronym for "ATPases Associated with diverse cellular Activities" rather than "Adenosine Triphosphatase Associated".

    2. Reviewer #2 (Public review):

      Summary

      Briola and co-authors have performed a structural analysis of the human CTF18 clamp loader bound to PCNA. The authors purified the complexes and formed a complex in solution. They used cryo-EM to determine the structure to high resolution. The complex assumed an auto-inhibited conformation, where DNA binding is blocked, which is of regulatory importance and suggests that additional factors could be required to support PCNA loading on DNA. The authors carefully analysed the structure and compared it to RFC and related structures.

      Strength & Weakness

      Their overall analysis is of high quality, and they identified, among other things, a human-specific beta-hairpin in Ctf18 that flexible tethers Ctf18 to Rfc2-5. Indeed, deletion of the beta-hairpin resulted in reduced complex stability and a reduction in a primer extension assay with Pol ε. Moreover, the authors identify that the Ctf18 ATP-binding domain assumes a more flexible organisation.

      The data are discussed accurately and relevantly, which provides an important framework for rationalising the results.

      All in all, this is a high-quality manuscript that identifies a key intermediate in CTF18-dependent clamp loading.

      Comments on revisions:

      The authors have done a nice job with the revision.

    3. Reviewer #3 (Public review):

      Summary:

      CTF18-RFC is an alternative eukaryotic PCNA sliding clamp loader which is thought to specialize in loading PCNA on the leading strand. Eukaryotic clamp loaders (RFC complexes) have an interchangeable large subunit which is responsible for their specialized functions. The authors show that the CTF18 large subunit has several features responsible for its weaker PCNA loading activity, and that the resulting weakened stability of the complex is compensated by a novel beta hairpin backside hook. The authors show this hook is required for the optimal stability and activity of the complex.

      Relevance:

      The structural findings are important for understanding RFC enzymology and novel ways that the widespread class of AAA ATPases can be adapted to specialized functions. A better understanding of CTF18-RFC function will also provide clarity into aspects of DNA replication, cohesion establishment and the DNA damage response.

      Strengths:

      The cryo-EM structures are of high quality enabling accurate modelling of the complex and providing a strong basis for analyzing differences and similarities with other RFC complexes.

      Weaknesses:

      The manuscript would have benefited from a more detailed biochemical analysis using mutagenesis and assays to tease apart the differences with the canonical RFC complex. Analysis of the FRET assay could be improved.

      Overall appraisal:

      Overall, the work presented here is solid and important. The data is mostly sufficient to support the stated conclusions.

      Comments on revisions:

      While the authors addressed my previous specific concerns, they have now added a new experiment which raises new concerns.

      The FRET clamp loading experiments (Fig. 6) appear to be overfitted so that the fitted values are unlikely to be robust and it is difficult to know what they mean, and this is not explained in this manuscript. Specifically, the contribution of two exponentials is floated in each experiment. By eye, CTF18-RFC looks much slower than RFC1-RFC (as also shown previously in the literature) but the kinetic constants and text suggest it is faster. This is because the contribution of the fast exponential is substantially decreased, and the rate constants then compensate for this. There is a similar change in contribution of the slow and fast rates between WT CTF18 and the variant (where the data curves look the same) and this has been balanced out by a change in the rate constants, which is then interpreted as a defect. I doubt the data are strong enough to confidently fit all these co-dependent parameters, especially for CTF18, where a fast initial phase is not visible. I would recommend either removing this figure or doing a more careful and thorough analysis.

    1. Reviewer #1 (Public review):

      Summary:

      mRNA decapping and decay factors play critical roles in post-transcriptionally regulating gene expression. Here, Kumar and colleagues investigate how deleting two yeast decapping enhancer proteins (Edc3 and Scd6), either alone or in tandem, affects the transcriptome. Using RNA-Seq, CAGE-Seq and ribosome profiling, they conclude that these factors generally act in a redundant fashion, with a mutant lacking both proteins showing an increased abundance of select mRNAs. As these upregulated transcripts are also upregulated in mutants lacking the decapping enzyme, Dcp2, and show no increases in transcription of their cognate genes, the authors conclude that this is at the level of mRNA decapping and decay. This was further supported by CAGE-Seq analyses carried out in WT cells and the scd∆6edc3∆ double mutant. Their ribosome profiling data also lead them to conclude that Scd6 and Edc3 display functional redundancy and cooperativity with Dhh1/Pat1 in repressing the translation of specific transcripts. Finally, as their data suggest that Scd6 and Edc3 repress mRNAs coding for proteins involved in cellular respiration, as well as proteins involved in the catabolism of alternative carbon sources, they go on to show that these decapping activators play a role in repressing oxidative phosphorylation.

      Strengths:

      Overall, this manuscript is well-written and contains a large amount of compelling high-quality data and analyses. At its core, it helps to shed light on the overlapping roles Edc3 and Scd6 have in sculpting the yeast transcriptome.

      Weaknesses:

      While not essential, it would be interesting if the authors carried out add-back experiments to determine which domain within Scd6/Edce3 plays a critical role for enforcing the regulation that they see? Their double mutant now puts them in a perfect position to carry out such experiments.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Kumar and Zhang presents compelling evidence that Edc3 and Scd6 decapping activators, present a high degree of redundancy that can only be overcome by double mutants of both. In addition, the authors provide strong evidence for their role in regulating starvation-induced pathways as evidenced by measurements of mitochondrial membrane potential, metabolomics and analysis of the flux of Krebs cycle intermediates.

      Strengths:

      Kumar, Zhang et al provide multiple source of evidence of the direct mechanism of Edc3 and Scd6, by using and comparing different approaches such as mRNA-seq, ribosome occupancies and translational efficiencies. By extensive analysis the authors show that this complex can also regulate genes outside the Environmental Stress Response (non-iESR) that are significantly up-regulated in all three mutants. Remarkably, the gene ontology analysis of these non-iESR genes identify enrichment for mitochondrial proteins that are implicated in the Krebs cycle. Overall, this study adds novel mechanistic insight into how nutrients control gene expression by modulating decapping and translational repression.

      Weaknesses:

      The authors show very nicely that growth phenotypes from scd6Δedc3∆ can be rescued by transformation of EDC3 (pLfz614-7) or SCD6 (pLfz615-5). Future work could make use of these rescue strategies, for example as a platform to further characterise protein-protein interactions between Edc3, Scd6 and Dhh1.

    3. Reviewer #3 (Public review):

      Summary:

      In this paper, Kumar et al investigated the role of two decapping activators, Edc3 and Scd6, in regulating mRNA decay and translation in yeast. Using a variety of approaches including RNA-seq, ribosome profiling, proteomics, polysome analysis, and metabolomics the authors demonstrate that whereas single deletions of Edc3 or Scd6 have modest effects, the double mutant leads to increased abundance of mRNAs, many of which overlap with those targeted by the decapping activators Dhh1 and Pat1. The data suggest that Edc3 and Scd6 function redundantly to recruit Dhh1 to the Dcp2 decapping complex, thereby promoting mRNA turnover and translational repression. The authors show that these factors cooperate with Dhh1/Pat1 to repress transcripts involved in respiration, mitochondrial function, and alternative carbon source utilization, linking post-transcriptional regulation to nutrient responses. The study establishes Edc3 and Scd6 as important, but redundant regulators that fine-tune gene expression and metabolic adaptation in response to nutrient availability.

      Strengths:

      The paper has several strengths, including the comprehensive approach taken by the authors using multiple experimental techniques (RNA-seq, ribosome profiling, Western blotting, TMT-MS, polysome profiling, and metabolomics) to provide multiple lines of evidence to support their conclusions. The authors demonstrate clear redundancy of the factors by using single and double mutants for Edc3 and Scd6 and their global approach enables an understanding of these factors' roles across the yeast transcriptome. The work connects post-transcriptional processes to nutrient-dependent gene regulation, providing insights into how cells adapt to changes in their environment. The authors demonstrate the redundant roles of Edc3 and Scd6 in mRNA decapping and translation repression. Their RNA-seq and ribosome profiling results convincingly show that many mRNAs are derepressed only in the double mutants, confirming their hypothesis of redundancy. Furthermore, the functional cooperation between Edc3/Scd6 and Dhh1/Pat1 in regulating specific metabolic pathways, including mitochondrial function and carbon source utilization, is supported by the metabolomic data.

      Weaknesses:

      The study uses indirect evidence to support claims about the effect on mRNA stability rather than directly measuring mRNA stability. However, the combination of Pol II occupancy and RNA abundance measurements is consistent with the claims regarding mRNA stability. The addition of new experiments in the revision co-IPing Dhh1 and Dcp2 strengthens the argument that Edc3 and Scd6 recruit these factors.

    1. Reviewer #2 (Public review):

      Summary:

      The paper describes the high-resolution structure of KdpFABC, a bacterial pump regulating intracellular potassium concentrations. The pump consists of a subunit with an overall structure similar to that of a canonical potassium channel and a subunit with a structure similar to a canonical ATP-driven ion pump. The ions enter through the channel subunit and then traverse the subunit interface via a long channel that lies parallel to the membrane to enter the pump, followed by their release into the cytoplasm.

      The work builds on the previous structural and mechanistic studies from the authors' and other labs. While the overall architecture and mechanism have already been established, a detailed understanding was lacking. The study provides a 2.1 Å resolution structure of the E1-P state of the transport cycle, which precedes the transition to the E2 state, assumed to be the rate-limiting step. It clearly shows a single K+ ion in the selectivity filter of the channel and in the canonical ion binding site in the pump, resolving how ions bind to these key regions of the transporter. It also resolves the details of water molecules filling the tunnel that connects the subunits, suggesting that K+ ions move through the tunnel transiently without occupying well-defined binding sites. The authors further propose how the ions are released into the cytoplasm in the E2 state. The authors support the structural findings through mutagenesis and measurements of ATPase activity and ion transport by surface-supported membrane (SSM) electrophysiology.

    2. Reviewer #3 (Public review):

      Summary:

      By expressing protein in a strain that is unable to phosphorylate KdpFABC, the authors achieve structures of the active wildtype protein, capturing a new intermediate state, in which the terminal phosphoryl group of ATP has been transferred to a nearby Asp, and ADP remains covalently bound. The manuscript examines the coupling of potassium transport and ATP hydrolysis by a comprehensive set of mutants. The most interesting proposal revolves around the proposed binding site for K+ as it exits the channel near T75. Nearby mutations to charged residues cause interesting phenotypes, such as constitutive uncoupled ATPase activity, leading to a model in which lysine residues can occupy/compete with K+ for binding sites along the transport pathway.

      Strengths:

      The high resolution (2.1 Å) of the current structure is impressive, and allows many new densities in the potassium transport pathway to be resolved. The authors are judicious about assigning these as potassium ions or water molecules, and explain their structural interpretations clearly. In addition to the nice structural work, the mechanistic work is thorough. A series of thoughtful experiments involving ATP hydrolysis/transport coupling under various pH and potassium concentrations bolsters the structural interpretations and lends convincing support to the mechanistic proposal. The SSME experiments are generally rigorous.

      Weaknesses:

      The present SSME experiments do not support quantitative comparisons of different mutants, as in Figures 4D and 5E. Only qualitative inferences can be drawn among different mutant constructs.

    1. Reviewer #1 (Public review):

      Summary:

      The authors tested two competing mechanisms of expectation (1) a sharpening model that suppresses unexpected information via center-surround inhibition; (2) a cancellation model that predicts a monotonic gradient response profile. Using two psychophysical experiments manipulating feature space distance between expected and unexpected stimuli, the results consistently supported the sharpening model. Computational modeling further showed that expectation effects were explained by either sharpened tuning curves or tuning shifts. Finally, convolutional neural network simulations revealed that feedback connections critically mediate the observed center-surround inhibition.

      Strengths:

      The manuscript provides compelling and convergent evidence from both psychophysical experiments and computational modeling to robustly support the sharpening model of expectation, demonstrating clear center-surround inhibition of unexpected information.

      Comments on revisions:

      I appreciate the authors' thoughtful revisions. I have no further comments.

    2. Reviewer #2 (Public review):

      Summary:

      This is a compelling and methodologically rich manuscript. The authors used a variety of methods, including psychophysics, computational modeling, and artificial neural networks, to reveal a non-monotonic, center-surround "Mexican-hat" profile of expectation in orientation space. Their data convincingly extend analogous findings in attention and working memory, and the modeling nicely teases apart sharpening vs. shift mechanisms.

      Strengths:

      The findings are novel and important in elucidating the potential neural mechanisms by which expectation shapes perception. The authors conducted a series of well-designed psychophysical experiments to careful examination of the profile of expectation's modulation. Computational modeling also provides further insights, linking the neural mechanisms of expectation to behavioral results.

      Comments on revisions:

      I think the authors did a great job in addressing my previous comments. I have no further comments.

    1. Reviewer #1 (Public review):

      Summary:

      The authors performed a multi-funder study to determine if the Matthew effect and early-career setback effect were reproducible across funding programs and processes. The authors extended the analysis of these effects to all applicants and compared the results to the prior studies that only looked at near-hit/near-miss applicants to determine if the effects were generalizable to the whole applicant pool. Further, the authors included new models that also account for researcher behavior and their overall likelihood to reapply for later funding and how this behavior may resolve what appears to be a paradox between the Matthew effect and the early-career setback effect.

      Strengths:

      Figure 4 shows that the "Post (late) MFCR" is the same for the funded and unfunded groups, indicating that the impact of early career funding (at least, in terms of citation metrics) is transient in researcher's overall careers. This finding should encourage researchers to persevere when needed and that long-term success is attainable.

      The inclusion of the collider bias in the models to account for researcher behavioral responses is a key strength of the paper and enhance the analysis and nuanced discussion of the results.

      Weaknesses:

      The discussion of limitations is thorough and point to the need for additional studies. One limitation that is acknowledged is that the authors only looked at applicants who reapplied for funding at the same funder. Given that the authors had the names and affiliations of the applicants from all of the funders, it would be helpful to understand why they were not able to look at applicants across their full data set. Was the limitation technical or a result of the study design? What would have to change to enable this broader analysis?

      In Section 4.1, the authors make a statement that the "between MFCR" difference was seen at 5 years, but not at 10 years, and so the authors chose to use the 5-year period for the presentation of their results. It would be helpful to also see the 10-year analysis and have further justification from the authors on why they selected to look at the 5-year period and how their conclusions might or might not change if they consider the longer time period.

      The discussion could also include that many funders require novel research directions as a condition of receiving an early-career award. For those who receive these awards, they must establish the new research program, begin publishing, and they may initially see a lower citation rate until the impact of the research is more broadly recognized. Are there ways to explore how these time lags impact the "Between MFCR" on those who were funded more so than those who were not funded?

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript evaluates the generalizability of two phenomena of great interest to early-career scientists and scientific policymakers. These phenomena describe how early funding success can promote future funding success (the Matthew Effect) and how initially unsuccessful applicants may later succeed (the early-career setback effect). Given the often-normative aspirations of science-of-science studies, the manuscript represents a much-needed and highly significant effort, as it allows a broader audience to assess whether they should reconsider their behavior or policies.

      Strengths:

      The evidence provided by the authors for the generalizability of the Matthew Effect is very strong and convincing. The manuscripts addresses an important topic of practical concern to early-career scientists and scientific policymakers.

      Weaknesses: If I am correctly interpreting S11 and S12, the statements on the early-career setback effect could be stronger and more direct. The argument in the main text relies on assumptions and simulations to suggest that observations of the early-career setback effect may depend on reapplications. In contrast, S11 and S12 appear to provide more direct evidence against its generalizability, showing that the effect seems to exist in, and be driven by, only one of the six funding agencies considered (FWF). This narrow replication may not be obvious to readers ("the early-career setback effect also replicates, but is not robust across funders").

      I would also suggest that the authors provide a more nuanced discussion of the limitations of their Bayesian model. While the model seems appropriate for accounting for major factors, it appears to exclude others, such as the emergence of new scientific fields or the strategic reorientation of funders toward such fields.

    3. Reviewer #3 (Public review):

      Summary:

      This paper investigates the Matthew effect, where early success in funding peer review can translate into potentially unwarranted later success. It also investigated the previously found "setback" effect for those who narrowly miss out on funding.

      Strengths:

      The study used data from six funding agencies, which increases the generalisability, and was able to link bibliographic data for around 95% of applicants. The authors nicely illustrate how the previously found "setback" effect for near-miss applicants could be a collider bias due to those who chose to apply sometime later. This is a good explanation for the counter-intuitive effect and is nicely shown in Figure 5.

      Weaknesses:

      Most of the methods were clearly presented, but I have a few questions and comments, as outlined below.

      In Figure 4(a) why are the "post" means much lower than the "pre"? This contradicts the expected research trajectory of researchers. Or is this simply due to less follow-up time? But doesn't the field citation ratio control for follow-up time?

      The choice of the log-normal distribution for latent quality was not entirely clear to me. This would create some skew, rather than a symmetric distribution, which may be reasonable but log-normal distributions can have a very long tail which might not mimic reality, as I would not expect a small number of researchers to be extremely above the crowd. However, then the skew was potentially dampened by using percentile scores. Some further reasoning and plots of the priors would help.

      Can the authors confirm the results of Figure S9 which show no visible effect of altering the standard deviation for the review parameter or the mean citations? Is this just because the prior for quality is dominated by the data? Could it be that the width of the distribution for quality does not matter, as it's the relative difference/ranking that counts? So the beta in equation 6 changes to adjust to the different quality scale?

      The contrary result for the FWF is not explained (Table S3). Does this funder have different rules around re-applicants or many other competing funders?

      The outlined qualitative research sounds worthwhile. Another potential mechanism (based on anecdote) is that some researchers react irrationally to rejection or acceptance, tending to think that the whole agency likes or hates their work based on one experience. Many researchers do not appreciate that it was a somewhat random selection of reviewers who viewed their work, and it will unlikely be the same reviewers next time.

      "A key implication is the importance of encouraging promising, but initially unsuccessful applicants to reapply." Yes, A policy implication is to give people multiple chances to be lucky, perhaps by giving fewer grants to more people, which could be achieved by shortening the funding period (e.g., 4 year fellowships instead of 5 years). Although this will have some costs as applicants would need to spend more time on applications and suffer increased stress of shorter-term contracts. The bridge grants is potentially an ideal half-way house between many short-term and few long-term awards. Giving more grants to fewer people is supported by this analysis showing a diminishing returns in research outputs with more funding, DOI: 10.1371/journal.pone.0065263.

      Making more room for re-applicants also made me wonder if there should be an upper cap on funding, potentially for people who have been incredibly successful. Of course, funders generally want to award successful researchers, but people who've won over some limit, for example $50 million, could likely be expected to win funding from other sources such as philanthropy and business. Graded caps could occur by career stage.

    1. Reviewer #1 (Public review):

      Summary:

      This work investigated how the sense of control influences perceptions of stress. In a novel "Wheel Stopping" task, the authors used task variations in difficulty and controllability to measure and manipulate perceived control in two large cohorts of online participants. The authors first demonstrate that their behavioral task exhibits good internal consistency and external validity, indicating that perceived control during the task is linked to relevant measures of anxiety, depression, and locus of control. Most importantly, manipulating controllability in the task resulted in reduced subjective stress, demonstrating a direct impact of control on stress perception. However, this work has some minor limitations to this work due to the design of the stressor manipulations/measurements and the necessary logistics associated with online versus in-person stress studies.<br /> Nevertheless, this research adds to our understanding of when and how control can influence the effects of stress and has particular relevance for mental health interventions.

      Strengths:

      The primary strength of this research is the development of a unique and clever task design that can reliably and validly elicit variations in beliefs about control. Impressively, higher subjective control in the task was associated with decreased psychopathology measures such as anxiety and depression in a non-clinical sample of participants. In addition, the authors found that lower control and higher task difficulty led to higher perceived stress, suggesting that the task can reliably manipulate perceptions of stress. Prior tasks have not included both controllability and difficulty in this manner and have not directly tested the direct influence of these factors on incidental stress, making this work both novel and important for the field.

      Weaknesses:

      One minor weakness of this research is the validity of the online stress measurements and manipulations. In this study, the authors measure subjective stress via self-report both during the task and after either a Trier Social Stress Test (high-stress condition) or a memory test (low-stress condition). One concern is that these stress manipulations were really "threats" of stress, where participants never had to complete the stress tasks (i.e., recording a speech for judgment). While this is not unusual for an in-lab study and can reliably elicit substantial stress/anxiety, in an online study, there is a possibility for communication between participants (via online forums dedicated to such communication), which could weaken the stress effects. That said, the authors did find sensible increases and decreases in perceived stress between relevant time points; however, future work could improve upon this design by including more comprehensive stress manipulations and by measuring implicit physiological signs of stress.

      Comments on revisions:

      I appreciate the authors' responses to my comments and concerns. I have decided not to make changes to my public review, as I believe it remains relevant and fair after revisions.

    2. Reviewer #2 (Public review):

      Summary:

      The authors have developed a behavioral paradigm to experimentally manipulate the sense of control experienced by participants by varying the level of difficulty in a wheel-stopping task. In the first study, this manipulation is tested by administering the task in a factorial design with two levels of controllability and two levels of stressor intensity to a large number of participants online, while simultaneously recording subjective ratings of perceived control, anxiety, and stress. In a second study, the authors employed the wheel stopping task to induce a high sense of controllability and investigate whether this manipulation buffers the response to a subsequent stress induction when compared to a neutral task, such as watching pleasant videos.

      Strengths:

      (1) The authors validate a method to manipulate stress.

      (2) The authors use an experimental manipulation to induce an enhanced sense of controllability to test its impact on the response to stress induction.\

      (3) The studies involved big sample sizes.

      Weaknesses:

      (1) The study was not preregistered.

      (2) The control manipulation is conflated with task difficulty and, therefore, the reward rate. In the revised version of the manuscript, the authors perform statistical analysis to demonstrate that the relationship between perceived level of control and subjective stress remains robust after the inclusion of win rate in the model. This analysis strengthens the authors's claims, but the evidence would more substantial if the design did not conflate reward rate and control. The authors properly discuss this issue in the revised manuscript.

      This study will be of interest to psychologists and cognitive scientists who are interested in understanding how controllability and its subjective perception influence how people respond to stress exposure. The demonstration that an increased sense of control buffers/protects against subsequent stress is important and may trigger further studies to characterize this phenomenon better. However, beyond the highlighted weaknesses, the current study only studied the effect of stress induction consequent to the performance of the WS task on the same day, and its generalizability is not warranted.

    3. Reviewer #3 (Public review):

      Summary:

      This is an interesting investigation on the benefits of perceiving control and its impact on the subjective experience of stress. To assess the subjective sense of control, the authors introduce a novel wheel stopping (WS) task where control is manipulated via size and speed to induce conditions of low and high control. The authors demonstrate that the subjective sense of control is associated with experienced subjective stress and individual differences related to mental health measures. In a second experiment, they further demonstrate that an increased sense of control buffers subjective stress induced by a trier social stress manipulation, more so than a typical stress-buffering mechanism of watching neutral/calming videos.

      Strengths:

      Several strengths of the manuscript can be highlighted. For instance, the paper introduces a new paradigm and a clever manipulation to test a significant and important question. Additionally, it is a well-powered investigation that allows for confidence in replicability and demonstrate both high internal consistency and high external validity, along with an interesting set of individual difference analyses. Finally, the results are quite interesting and support prior literature, while also making a significant contribution to the field in understanding the benefits of perceiving control.

      Weaknesses:

      The authors have addressed all my queries, and I believe the revised paper has been improved and will make an important contribution to the literature.

    1. Reviewer #1 (Public review):

      Summary:

      The taxonomic analysis of IRG1 evolution is compelling and fills an important gap in the literature. However, the experimental evidence for IRG1 localization requires greater detail and confirmation.

      Strengths:

      The phylogenetic analysis of IRG1 evolution fills an important gap in the literature. The identification of independent acquisition of metazoan and fungal IRG1 from prokaryotic sources is novel, and the observation that human IRG1 lost mitochondrial matrix localization is particularly interesting, with potentially significant implications for the study of itaconate biology.

      Weaknesses:

      The protease protection assay was conducted with MTS-IRG1 but not with wild-type IRG1, which should also be tested. Moreover, no complementary methods, such as microscopy, were employed to validate localization. Beyond humans, the structure and localization of mouse IRG1, highly relevant given the widespread use of the mouse as a model for IRG1 functional studies, are not addressed. Finally, if itaconate is indeed synthesized outside the mitochondrial matrix to safeguard metabolic activity, it is not discussed how this reconciles with its reported inhibitory effect on SDH.

    2. Reviewer #2 (Public review):

      Summary:

      The authors are trying to explain how the metabolite itaconate evolved, since although it's involved in host defense, it can also limit mitochondrial function. They are trying to probe the trade-off between these two functions.

      Strengths:

      The evolutionary aspect is novel; this is the first time to my knowledge that the evolution of IRG1 has been analysed, and there are interesting findings here. The key finding appears to be that subcellular localisation is an important aspect, allowing host defense in some organisms without compromising bioenergetics. This is an interesting finding in the context of immunomebolism, although it needs extra analysis.

      Weaknesses:

      The work concerning sub-mitochondrial localisation is confusing and needs better analysis.

    3. Reviewer #3 (Public review):

      Summary:

      IRG1 is highly expressed in activated human and mouse myeloid cells. It encodes the mitochondrial enzyme cis-aconitate decarboxylase 1 (ACOD1) that generates itaconate. Itaconate has anti-microbial activity and acts immunoregulatory by interfering with cellular metabolism, signaling to cytokine production, and multiple other processes.

      The authors perform a phylogenetic analysis of IRG1 to obtain insight into the evolution of itaconate biosynthesis. Combining BLAST with human IRG1 and a MmgE/Ptrp domain search, they find CAD in all domains of life, but the presence of IRG1 homologs is patchy in eukaryotes, indicating that itaconate biosynthesis is not essential. The phylogenetic analysis showed a more distant relationship of fungal and metazoan CAD/IRG1 to many prokaryotic sequences, suggesting independent acquisition of these metazoan and fungal CAD genes. In metazoans, three subbranches of paleo-IRG1 (in mollusks/early chordates) and two paralogous vertebrate forms (IRG1 and IRG1-like) were identified, with the latter derived from paleo-IRG1, and by genome duplication. While most jawed vertebrates have both IRG1 and IRG1L, metatherian and eutherian mammals have lost IRG1L and contain only IRG1.

      Interestingly, sequence analysis of both paralogues showed that many IRG1L genes contain an N-terminal mitochondrial targeting sequence (MTS) that is absent from most IRG1 sequences. Limited proteolysis of submitochondrial localization confirmed that zebrafish IRG1L is only sensitive to proteases in the presence of high Triton X-100, indicative of association with mitochondrial matrix. In contrast, a recent paper from the Galan lab (Lian 2003 Nature Microbiology) reported that human IRG1 is not localized to the mitochondrial matrix, although enriched in mitochondria. Here, the authors generated a matrix-targeted human IRG1 by adding the N-terminal MTS and found that it localizes to the matrix based on a limited proteolysis assay. The loss of MTS-containing IRG1L from most mammals appears, therefore, to indicate that itaconate generation is directed to the cytoplasm, potentially reducing inhibition of TCA cycle activity in the mitochondria.

      Next, the authors confirmed that the recombinant IRG1L protein has CAD activity in vitro. The last part of the manuscript addresses the expression of paleo-IRG1 in oysters and amphioxus, where they found high mRNA levels in oyster hemocytes which was further increased by poly(I:C), which was also the case in amphioxus tissues after feeding of LPS or poly(I:C), indicating a role for paleo-IRG1/itaconate in early metazoan innate immunity.

      Strengths

      (1) Phylogenetic perspective largely lacking so far in the IRG1/itaconate field.

      (2) Manuscript clearly written and understandable across disciplines.

      (3) Phylogenetic analyses complemented by biochemical and gene expression analyses to link to function.

      (4) Lack of MTS in IRG1 and change in localization from mitochondria, highly relevant antimicrobial and cellular effects of itaconate.

      Weaknesses:

      (1) Biochemical and functional analysis of different CAD mRNA and proteins lacks depth.

      (2) The submitochondrial localization assay lacks a native human IRG1 control.

      (3) CAD activity shown for IRG1L but not paleo-IRG1.

      (4) Itaconate production by early metazoans after PAMP stimulation?

      (5) No measurement of energy metabolism (trade-offs?).

      I acknowledge that some of these limitations are inevitable because the range of detailed experimental analysis is necessarily limited. However, some of these data would be important to support central claims of the manuscript (further discussed below).

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates whether transformer-based models can represent sentence-level semantics in a human-like way. The authors designed a set of 108 sentences specifically to dissociate lexical semantics from sentence-level information and collected 7T fMRI data from 30 participants reading these sentences. They conducted representational similarity analysis (RSA) comparing brain data and model representations, as well as the human behavioral ratings. It is found that transformer-based models match brain representation better than a static word embedding baseline, which ignores word order, but fall short of models that encode the structural relations between words. The main contributions of this paper are:

      (1) The construction of a sentence set that disentangles sentence structure from word meaning.

      (2) A comprehensive comparison of neural sentence representations (via fMRI), human behavior, and multiple computational models at the sentence level.

      Strengths:

      (1) The paper evaluates a wide variety of models, including layer-wise analysis for transformers and region-wise analysis in the human brain.

      (2) The stimulus design allows precise dissociation between lexical and sentence-level semantics. The RSA-based approach is empirically sound and intuitive.

      (3) The constructed sentences, along with the fMRI and behavioral data, represent a valuable resource for studying sentence representation.

      Weaknesses:

      (1) The rationale behind averaging sentence embeddings across multiple transformer models (with different architectures and training objectives) is unclear. These transformer-based models have different training paradigms and model architectures, which may result in misaligned semantic spaces. The averaging operation may dilute the distinct sentence representations learned by each model, potentially weakening the overall semantic encoding for sentences. Please clarify this choice or cite supporting methodology.

      (2) All structure-sensitive models discussed incorporate semantics to some extent. Including a purely syntactic baseline, such as a model based on context-free grammar, would help confirm the importance of syntactic structures.

      (3) In Figure 2, human behavioral judgments show weak correlations with neural data, and even fall below those of computational models, suggesting the behavioral judgments may not reflect the sentence structures in a brain-like way. This discrepancy between behavioral and neural data should be clarified, as it affects the interpretation of the results.

      (4) To better contextualize model and neural performance, sentence similarity should be anchored to a notion of semantic "ground truth", such as the matrix shown in Figure 1a. Comparing this reference with human judgments, brain responses, and model similarities would help establish an upper bound.

      (5) The structure of this paper is confusing. For instance, Figure 5 is cited early but appears much later. Reordering sections and figures would enhance readability.

      (6) While the analysis is broad and comprehensive, it lacks depth in some respects. For instance, it remains unclear what specific insights are gained from comparing across brain regions (e.g., whole brain, language network, and other subregions). Similarly, the results of simple-average and group-average RSA appear quite similar and may not advance the interpretation.

      (7) While explaining the grid-like pattern due to sentence length is important, this part feels somewhat disconnected from the central question of this paper (word order). It might be better placed in supplementary material.

    2. Reviewer #2 (Public review):

      Summary:

      The paper used fMRI data while reading a set of sentences. The sentences are designed to disentangle syntax from meaning. RSA was performed using voxel activations and a variety of language models. The results show that transformers are inferior to models with explicit syntactic representation in terms of matching brain representations.

      Strengths:

      (1) The study controls for some variables that allow for an investigation of sentence structure in the brain. This controlled setting has an advantage over naturalistic stimuli in targeting more specific linguistic phenomena.

      (2) The study combines fMRI data with behavioral similarity ratings and a variety of language models (static, transformers, graph-based models).

      Weaknesses:

      (1) The stimuli are not fully controlled for lexical content across conditions. Residual lexical differences between sentences could still influence both brain and model similarity patterns. To more cleanly isolate syntactic effects, it would be useful to systematically vary only a single structural element while keeping all other lexical content constant (e.g., the boy kicked the ball / the ball kicked the boy). It would be better to engage more with the minimal pair paradigm, which is widely used in large language model probing research.

      (2) The comparisons are done across fundamentally different model types, including static embeddings, graph-based parsers, and transformers. The inherent differences in dimensionality and training objectives might make the conclusion drawn from RSA inconclusive. Transformer embeddings typically occupy much higher-dimensional, anisotropic representational spaces, and their similarity structure may reflect richer, more heterogeneous information than models explicitly encoding semantic roles. A lower RSA correlation in this study does not necessarily imply that transformers fail to encode syntactic information; rather, they may represent additional aspects of meaning or context that diverge from the narrow structural contrasts probed here.

      (3) The interpretation of the RSA correlation largely depends on the understanding of models. The authors suggest that because hybrid models correlate better than transformers, this implies that transformers are inferior at representing syntax. However, this is not a direct test of syntactic ability. Transformers may encode syntactic information, but it may not be expressed in a way that aligns with the RSA paradigm or the chosen stimuli. RSA does not reveal what the model encodes, and the models might achieve a good correlation for non-syntactic reasons (e.g., length of sentence, orthographic similarity, lexical features).

    3. Reviewer #3 (Public review):

      Summary:

      Large Language Models have revolutionized Artificial Intelligence and can now match or surpass human language abilities on many tasks. This has fueled interest in cognitive neuroscience in exposing representational similarities between Language Models and brain recordings of language comprehension. The current study breaks from this mold by: (1) Systematically identifying sentence structures for which brain and Large Language Model representations diverge. (2) Demonstrating that brain representations for these sentences can be better accounted for by a model structured by the semantic roles of words in the sentence. As such, the study may now fuel interest in characterizing how Large Language Models and brain representations differ, which may prompt new, more brain-like language models.

      Strengths:

      (1) This study presents a bold and solid challenge to a literature trend that has touted similarities between Transformer models and human cognition based on representational correlations with brain activity. This challenge is substantiated by identifying sentences for which brain and model representations of sentences diverge and explaining those divergences using models structured by semantic roles/syntax.

      (2) This study conducts a rigorous pre-registered analysis of a comprehensive selection of the state-of-the-art Large Language Models, on a controlled sentence comprehension fMRI dataset. The analysis is conducted within a Representation Similarity framework to support similarity comparisons between graph structures and brain activity without needing to vectorize graphs. Transformer models are predicted and shown to diverge from brain representations on subsets of sentences with similar word-level content but different sentence structures.

      (3) The study introduces a 7T fMRI sentence comprehension dataset and accompanying human sentence similarity ratings, which may be a fruitful resource for developing more human-like language models. Unlike other model-based sentence datasets, the relation between grammatical structure and word-level content is controlled, and subsets of sentences for which models and brains diverge are identified.

      Weaknesses:

      (1) The interpretation of findings is nuanced. Although Transformers underperform as brain models on the critical subsets of controlled sentences, a Transformer outperforms all other models when evaluated on the union of all sentences when both word-level content and structure vary. Transformers also yield equivalent or better models of human behavioral data. Thus, although Transformers have demonstrable flaws as human models, which are pinpointed here, in the general case, (some) Transformers are more human-like than the other models considered.

      (2) There may be confounds between the critical sentence structure manipulations and visual representations of sentence stimuli. This is inconvenient because activation in brain regions that process semantics tends to partially correlate with visual cortex representations, and computational models tend to reflect the number of words/tokens/elements in sentences. Although the study commendably controls for confounds associated with sentence length, there could still be residual effects that remain. For instance, the Graph model correlates most strongly with the visual cortex despite these sentence length controls.

      (3) Sentence similarity computations are emphasized as the basis for unifying comparative analyses of graph structures and vector data. A strength of this approach is that correlation is not always the ideal similarity metric. However, a weakness is that similarity computations are not unified across models. This has practical consequences here because different similarity metrics applied to the same model produce positive or negative correlations with brain data.

    1. Reviewer #1 (Public review):

      The authors describe a new computational pipeline designed to identify smFISH probes with improved RNA detection compared to preexisting approaches. smFISH is a powerful and relatively straightforward technique to detect single RNAs in cells at subcellular resolution, which is critical for understanding gene expression regulation at the RNA level. However, existing methods for designing smFISH oligos suffer from several limitations, including off-target binding that produces high background signals, as well as a restricted number of probes that are sufficiently specific to target shorter-than-average mRNAs. To address these challenges, the authors developed TrueProbes, a computational method that aims to minimize off-target-mediated background fluorescence.

      Overall, the study addresses a technically relevant problem. If improved, this would allow researchers to study gene expression regulation more effectively using single-molecule FISH. However, based on the current presentation of data, it is not yet clear that TrueProbes offers significant advantages over preexisting pipelines. In the following section, I describe some concerns, which should be adequately addressed.

      Major Comments:

      (1) The manuscript currently presents only one example in which different pipelines were tested to generate probes (targeting ARF4). While the images suggest that both TrueProbes and Stellaris outperform the other pipelines, the comparison is potentially misleading because the number of probes used differs substantially. I recommend that the authors include at least three independent examples in which an equal number of probes are designed across pipelines, so that signal-to-noise can be assessed in a controlled and comparable way. This would allow the probe number to be held constant while directly evaluating performance.

      (2) It is also unclear how many biological replicates were performed for the ARF4 experiments. If only a single replicate was included, it is difficult to conclude that TrueProbes consistently outperforms other pipelines in a robust and reproducible manner. I suggest the authors include data from at least three biological replicates with appropriate statistical analysis, and ideally extend this to additional smFISH targets as outlined in Comment 1.

      (3) No controls are presented to demonstrate that the TrueProbes-designed smFISH spots are specifically detecting ARF4. The current experiment primarily measures signal-to-noise, but it remains possible that some detected spots do not correspond to ARF4 mRNAs. Since one of the major criteria used by TrueProbes is to limit cross-hybridization, the authors should perform ARF4 knockdown experiments and demonstrate that nearly all ARF4 smFISH signal is lost. A similar approach should be applied to the additional examples recommended in Comment 1.

      (4) In the limitations of the study, the authors note that "RNA secondary and tertiary structures are not included, which may lead to inaccuracies if binding sites are structurally occluded." However, I am not convinced that this is a true limitation, since formamide in the smFISH protocol should denature secondary structures and allow oligo access to the RNA. I recommend that the authors comment on this point and clarify whether secondary structure poses a practical limitation in smFISH probe design.

      (5) The authors also correctly acknowledge in their limitations that "RNA-protein interactions, which can modulate accessibility of the transcript, are not modeled." I suggest referencing relevant studies on this issue, particularly Buxbaum et al. (2014, Science), which would provide important context.

    2. Reviewer #2 (Public review):

      Summary:

      Hughes et al present a new single-molecule RNA fluorescence in situ hybridization (smFISH) probe design software, termed "TrueProbes" in this manuscript. They claim that all existing smFISH (and variants) probe design software packages have limitations that ultimately impact experimental performance. The author's claim to address the majority of these limitations in TrueProbes by introducing multiple computational steps to ensure high-quality probe design. The manuscript's goal is clear, and the authors provide some evidence by designing and targeting one gene. Overall, the manuscript lacks rigorous evidence to support the claims, does not demonstrate its suitability for a variety of smFISH-type experiments, and some of the provided quantification data are unclear. While TrueProbes clearly has potential, more data is required, or the authors should tone down the claims.

      Strengths:

      (1) The problem is well-articulated in the abstract and the introduction.

      (2) Figures 3 and 4 follow a consistent color scheme where each probe design method has its own color, which helps the reader visually compare methods.

      (3) The authors compared multiple probe design software packages both computationally and experimentally.

      (4) TrueProbes does produce visually and quantitatively better results when compared to 2 of the 4 existing smFISH probe design packages (Paintshop and MERFISH panel designer).

      (5) The authors introduce a comprehensive steady-state thermodynamic model to help optimally guide probe design.

      Weaknesses:

      (1) The abstract describes the problem well and introduces the solution (the TrueProbes software), but fails to provide specific ways in which the TrueProbes software performs better. The authors state that "...[TrueProbes] consistently outperformed alternatives across multiple computational metrics and experimental validation assays", but specific, quantitative evidence of improved performance would strengthen the statement.

      (2) The text claims that TrueProbes outperforms all other probe design software, but Figure 3 indicates that TrueProbes has neither the greatest number of on-target binding nor the lowest number of off-target binding. The data in Figure 3 does not support the claims made in the text. Specifically, the authors claim that "RNA FISH Experimental Results Demonstrate that Off Target and Binding Affinity Inclusive Probe Design Improve RNA FISH Signal Discrimination" (lines 217-218). However, despite their claim that Stellaris and Oligostan-HT produce more off-target probes when evaluated with the TrueProbes framework, the experiment results are nearly identical. The authors should consider modifying their claims or performing new experiments that more clearly demonstrate their claims.

      (3) The bar graphs in Figure 3 do not seem to agree with the probability graphs in Figure 4. For example, Figure 3 indicates that Stellaris probes have higher off-target binding than TrueProbes; however, in Figure 4, their probability graphs lie almost on top of each other.

      (4) The authors performed validation for only one gene (ARF4), because "...it had the highest gene expression (in TPM units) and the fewest isoforms among all candidate genes for the Jurkat cell line" (lines 176-177). While the results do look good, this is a minimal use case and does not really showcase the power of their method. One experiment that could be helpful would be two-color (or more) smFISH in tissue, where the chances for off-target binding contributing to higher errors are much greater than in an adherent cell line.

      (5) A common strategy for both smFISH and highly multiplexed methods is to use secondary DNA oligos with dye molecules instead of direct conjugation. Given that this is a primary design goal of PaintSHOP and the Zhuang lab's MERFISH probe design code, it would be helpful to demonstrate that TrueProbes can design a two-layer probe strategy for high-quality RNA-FISH labeling.

      (6) The authors claim, "For every probe set, TrueProbes can simulate expected smRNA FISH outcomes including optimal probe, RNA, and salt concentrations and optionally account for probe secondary structure, hybridization temperature, multiple targets, fluorophore choice, DNA, nascent RNA, and photon count statistics (Figures S2A, S2B). The model can be used to generate predictions for temperature and cell line sensitivity, multi-target discrimination, multiple fluorophore colocalization; when provided transcript expression levels and probe/background intensity, it can start to generate predictions for spot intensity, background, signal to noise ratio, and false negative rates (Figure S2C)." (lines 156-163). Figure S2 is a flow chart and does not provide evidence for any of these items. The authors should provide evidence for these claims, either as a figure or an example script in their software repository. If that is not possible, then it should be removed.

      (7) All thermodynamic equations are performed at steady state. The authors do not justify this assumption, and there is no discussion of the potential impacts of either low molecule numbers or violations of the well-mixed assumption. Can the authors please include a discussion on the potential impacts non non-steady state dynamics?

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a new platform termed "TrueProbes" for designing mRNA FISH probes. In comparison to existing design strategies, the authors incorporate a comprehensive thermodynamic and kinetic model to account for probe states that may contribute to nonspecific background. The authors validate their design pipeline using Jurkat cells and provide evidence of improved probe performance.

      Strengths:

      A notable strength of TrueProbes is the consideration of genome-wide binding affinities, which aims to minimize off-target signals. The work will be of interest to researchers employing mRNA FISH in certain human cell lines.

      Weaknesses:

      However, in my view, the experimental validation is not sufficient to justify the broad claims of the platform. Given the number of assumptions in the model, additional experimental comparisons across probe design methods, ideally targeting transcripts with different expression levels, would be necessary to establish the general superiority of this approach.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript reports a series of experiments designed to test whether optogenetic activation of infralimbic (IL) neurons facilitates extinction retrieval and whether this depends on animals' prior experience. In Experiment 1, rats underwent fear conditioning followed by either one or two extinction sessions, with IL stimulation given during the second extinction; stimulation facilitated extinction retrieval only in rats with prior extinction experience. Experiments 2 and 3 examined whether backward conditioning (CS presented after the US) could establish inhibitory properties that allowed IL stimulation to enhance extinction, and whether this effect was specific to the same stimulus or generalized to different stimuli. Experiments 5 - 7 extended this approach to appetitive learning: rats received backward or forward appetitive conditioning followed by extinction, and then fear conditioning, to determine whether IL stimulation could enhance extinction in contexts beyond aversive learning and across conditioning sequences. Across studies, the key claim is that IL activation facilitates extinction retrieval only when animals possess a prior inhibitory memory, and that this effect generalizes across aversive and appetitive paradigms.

      Strengths:

      (1) The design attempts to dissect the role of IL activity as a function of prior learning, which is conceptually valuable.

      (2) The experimental design of probing different inhibitory learning approaches to probe how IL activation facilitates extinction learning was creative and innovative.

      Weaknesses:

      (1) Non-specific manipulation.

      ChR2 was expressed in IL without distinction between glutamatergic and GABAergic populations. Without knowing the relative contribution of these cell types or the percentage of neurons affected, the circuit-level interpretation of the results is unclear.

      (2) Extinction retrieval test conflates processes

      The retrieval test included 8 tones. Averaging across this many tone presentations conflate extinction retrieval/expression (early tones) with further extinction learning (later tones). A more appropriate analysis would focus on the first 2-4 tones to capture retrieval only. As currently presented, the data do not isolate extinction retrieval.

      (3) Under-sampling and poor group matching.

      Sample sizes appear small, which may explain why groups are not well matched in several figures (e.g., 2b, 3b, 6b, 6c) and why there are several instances of unexpected interactions (protocol, virus, and period). This baseline mismatch raises concerns about the reliability of group differences.

      (4) Incomplete presentation of conditioning data.

      Figure 3 only shows a single conditioning session despite five days of training. Without the full dataset, it is difficult to evaluate learning dynamics or whether groups were equivalent before testing.

      (5) Interpretation stronger than evidence.

      The authors conclude that IL activation facilitates extinction retrieval only when an inhibitory memory has been formed. However, given the caveats above, the data are insufficient to support such a strong mechanistic claim. The results could reflect non-specific facilitation or disruption of behavior by broad prefrontal activation. Moreover, there is compelling evidence that optogenetic activation of IL during fear extinction does facilitate subsequent extinction retrieval without prior extinction training (Do-Monte et al 2015, Chen et al 2021), which the authors do not directly test in this study.

      Impact:

      The role of IL in extinction retrieval remains a central question in the fear learning literature. However, because the test used conflates extinction retrieval with new learning and the manipulations lack cell-type specificity, the evidence presented here does not convincingly support the main claims. The study highlights the need for more precise manipulations and more rigorous behavioral testing to resolve this issue.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors examine the mechanisms by which stimulation of the infralimbic cortex (IL) facilitates the retention and retrieval of inhibitory memories. Previous work has shown that optogenetic stimulation of the IL suppresses freezing during extinction but does not improve extinction recall when extinction memory is probed one day later. When stimulation occurs during a second extinction session (following a prior stimulation-free extinction session), freezing is suppressed during the second extinction as well as during the tone test the following day. The current study was designed to further explore the facilitatory role of the IL in inhibitory learning and memory recall. The authors conducted a series of experiments to determine whether recruitment of IL extends to other forms of inhibitory learning (e.g., backward conditioning) and to inhibitory learning involving appetitive conditioning. Further, they assessed whether their effects could be explained by stimulus familiarity. The results of their experiments show that backward conditioning, another form of inhibitory learning, also enabled IL stimulation to enhance fear extinction. This phenomenon was not specific to aversive learning, as backward appetitive conditioning similarly allowed IL stimulation to facilitate extinction of aversive memories. Finally, the authors ruled out the possibility that IL facilitated extinction merely because of prior experience with the stimulus (e.g., reducing the novelty of the stimulus). These findings significantly advance our understanding of the contribution of IL to inhibitory learning. Namely, they show that the IL is recruited during various forms of inhibitory learning, and its involvement is independent of the motivational value associated with the unconditioned stimulus.

      Strengths:

      (1) Transparency about the inclusion of both sexes and the representation of data from both sexes in figures.

      (2) Very clear representation of groups and experimental design for each figure.

      (3) The authors were very rigorous in determining the neurobehavioral basis for the effects of IL stimulation on extinction. They considered multiple interpretations and designed experiments to address these possible accounts of their data.

      (4) The rationale for and the design of the experiments in this manuscript are clearly based on a wealth of knowledge about learning theory. The authors leveraged this expertise to narrow down how the IL encodes and retrieves inhibitory memories.

      Weaknesses:

      (1) In Experiment 1, although not statistically significant, it does appear as though the stimulation groups (OFF and ON) differ during Extinction 1. It seems like this may be due to a difference between these groups after the first forward conditioning. Could the authors have prevented this potential group difference in Extinction 1 by re-balancing group assignment after the first forward conditioning session to minimize the differences in fear acquisition (the authors do report a marginally significant effect between the groups that would undergo one vs. two extinction sessions in their freezing during the first conditioning session)?

      (2) Across all experiments (except for Experiment 1), the authors state that freezing during the initial conditioning increased across "days". The figures that correspond to this text, however, show that freezing changes across trials. In the methods, the authors report that backward conditioning occurred over 5 days. It would be helpful to understand how these data were analyzed and collated to create the final figures. Was the freezing averaged across the five days for each trial for analyses and figures?

      (3) In Experiment 3, the authors report a significant Protocol X Virus interaction. It would be useful if the authors could conduct post-hoc analyses to determine the source of this interaction. Inspection of Figure 4B suggests that freezing during the two different variants of backward conditioning differs between the virus groups. Did the authors expect to see a difference in backward conditioning depending on the stimulus used in the conditioning procedure (light vs. tone)? The authors don't really address this confounding interaction, but I do think a discussion is warranted.

      (4) In this same experiment, the authors state that freezing decreased during extinction; however, freezing in the Diff-EYFP group at the start of extinction (first bin of trials) doesn't look appreciably different than their freezing at the end of the session. Did this group actually extinguish their fear? Freezing on the tone test day also does not look too different from freezing during the last block of extinction trials.

      (5) The Discussion explored the outcomes of the experiments in detail, but it would be useful for the authors to discuss the implications of their findings for our understanding of circuits in which the IL is embedded that are involved in inhibitory learning and memory. It would also be useful for the authors to acknowledge in the Discussion that although they did not have the statistical power to detect sex differences, future work is needed to explore whether IL functions similarly in both sexes.

    3. Reviewer #3 (Public review):

      Summary:

      This is a really nice manuscript with different lines of evidence to show that the IL encodes inhibitory memories that can then be manipulated by optogenetic stimulation of these neurons during extinction. The behavioral designs are excellent, with converging evidence using extinction/re-extinction, backwards/forwards aversive conditioning, and backwards appetitive/forwards aversive conditioning. Additional factors, such as nonassociative effects of the CS or US, are also considered, and the authors evaluate the inhibitory properties of the CS with tests of conditioned inhibition.

      Strengths:

      The experimental designs are very rigorous with an unusual level of behavioral sophistication.

      Weaknesses:

      (1) More justification for parametric choices (number of days of backwards vs forwards conditioning) could be provided.

      (2) The current discussion could be condensed and could focus on broader implications for the literature.

    1. Reviewer #1 (Public review):

      The goal of this study was to generate a library of new enhancer-driven AAVs in order to selectively and efficiently target astrocytes and oligodendrocytes in rodents. The implied criteria are that such viral vectors should have high specificity for the intended cell type and effectively express in all astrocytes/oligos in the brain or, alternatively, be specific for defined brain regions, layers, or subtypes of astrocytes/oligos. In addition, they should be compatible with intravenous retro-orbital delivery to facilitate experimentation and brain-wide targeting (i.e., show organ specificity and high efficiency in the brain). Ideally, these new AAVs would also maintain their characteristics across disease contexts and show applicability in non-human primates. Tools with such characteristics are generally lacking in studying glial cells and would be extremely useful to scale up and accelerate glial research, allowing targeting of astrocytes/oligos with distinct molecular identity and intersectional strategies.

      At present, however, none of the enhancer-AAVs presented in the study seems to meet this combination of criteria, at least not with the level of stringency typically expected in the field. The main reason is that, in its current form, the study does not present one candidate AAV iteratively improved to meet all these criteria; instead, it presents a catalogue of new AAVs with various degrees of specificity, completeness, and mixed characteristics. Therefore, their utility should be interpreted cautiously. Moreover, the way specificity and completeness are intermixed in the analysis makes it difficult to evaluate the actual utility of any given AAV. The study might have been strengthened by focusing on a small set of the most promising candidates (i.e., AiE0890m_3x2C) and validating them thoroughly for expression specificity, completeness, effective cargo expression, ability to allow specific pan-astrocyte or astrocyte-subtype targeting in vivo, and preserved properties in NHPs and in disease, as this would encourage their adoption by the community. Currently, too many AAVs are assessed inconsistently against the desired criteria, with none being evaluated through and through.

      The impact of the catalogue is also greatly diminished by the fact that a suite of AAVs with outstanding specificity and efficiency is already available for the study of astrocytes (e.g., 4x6T AAVs) and was not utilized as a standard to benchmark the new library, making it difficult to appreciate the relative benefits of the new AAVs. The inclusion of expression data in NHPs is very significant, but benchmarking against established AAVs would also be needed to fully appreciate their value.

      Importantly, readers should also be aware that the study seems noticeably limited in its literacy with glial biology. The introduction and discussion frame the field in a way that seems outdated, creating the impression that the diverse roles of glia in health and disease have not yet been studied, which may inadvertently be perceived as dismissive and stigmatizing.

      In summary, the paper introduces potentially useful viral tools and lays the foundations for future multiplexed targeting of distinct glial cell subpopulations in rodents and in non-human primates, which are extremely important directions. Some of the regionally restricted or even sparsely expressed AAVs may prove valuable in enabling subpopulation-specific targeting or molecular profiling strategies, but currently lack full benchmarking. At present, the promises over the utility of the new tools seem overstated, and the library may not yet represent an actionable resource for targeting astrocytes and oligodendrocytes.

    2. Reviewer #2 (Public review):

      Enhancer elements are regulatory DNA sequences that are capable of driving specific expression patterns. As these elements are generally short and context-independent, enhancers can be used in expression vectors (e.g., packaged in an adeno-associated virus, AAV) to limit expression to target cell populations. This approach was identified as a major strategy for cell-type-specific manipulation in the brain and has been pursued by both standard research studies as well as large-scale efforts led by the BRAIN Initiative. This manuscript describes a major effort to generate enhancer-AAVs targeting astrocytes and oligodendrocytes orchestrated by a large research team led by the Allen Institute for Brain Science. This manuscript parallels other recent publications describing sets of enhancer-AAVs, following rigorous, similar methods with relatively broad testing and application.

      To identify and screen candidate enhancers, the scientists prioritized candidates via analysis of single-nucleus accessibility and methylation datasets (i.e., snATAC-seq) and tested them in mice. The scientists prioritized candidate enhancers that exhibited specificity of accessibility in the target cell type. Following selection, the scientists cloned the candidate sequences into AAV vectors with a minimal promoter and reporter gene, packaged the virus, delivered it to the mouse brain, and screened for activity based on reporter expression. Candidates that passed initial screening were further characterized via imaging and sorting, followed by single-cell RNA-seq. This process had around a 50% success rate and yielded 25 astrocyte and 21 oligodendrocyte enhancer-AAVs with the targeted cell-type-specific expression patterns.

      The scientists went on to test for subtype-specific activity patterns, finding wide diversity in astrocyte activities across sub-populations and conversely, homogenous oligodendrocyte activation. They optimized a few of these via concatenating the enhancer core sequence to increase expression levels of the reporter gene and showed strong specificity and completeness of cell targeting for a set of these enhancer-AAVs. Following characterization and validation, they then deployed these enhancer-AAVs in a number of demonstration applications to show the utility for basic and translational science. All the constructs developed here are available for public use via Addgene, ensuring that these new tools can be used by other researchers.

      There really are no obvious weaknesses in the work presented here, from the generation of the enhancer-AAVs to use in sophisticated validation studies. The enhancer-AAV testing is rigorous and provides critical information necessary for other scientists to select and use these constructs. The applications demonstrate the power of enhancer-AAV approaches. The toolbox presented here may not enable specific targeting of all relevant cellular subtypes or activity states for astrocytes and oligodendrocytes, and future work will be needed to fully understand the activity of the enhancers, identity of the target cell types, and context-dependent utility of these constructs. However, the set of enhancer-AAVs developed here should be transformative for researchers working on accessing and manipulating these cell types and have a major impact on the field.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors analyze connectome data from Drosophila and compare the physical wiring with functional connectivity estimated from calcium imaging data. They quantify structure-function relationships as a correlation of the two connectivity modalities. They report correlations roughly comparable to what has been described in the literature on sc/fc relationships in mammalian connectome data at the meso-scale. They then repeat their analysis, focusing on segregated versus unsegregated synapses. They derive separate connectomes using one or the other class of synapse. They show differential contributions to the sc/fc relationships by segregated versus unsegregated synapses.

      Strengths:

      There is nice synthesis of multimodal imaging data (Ca and EM data from flies and meso-scale data from human and marmoset).

      Weaknesses:

      (1) The paper is written in an unusual way. The introduction intermingles results with background, making it hard to figure out what precisely is being tested.

      (2) There are also major methodological gaps. Though the mammalian connectomes are used as a point of reference, no descriptions of their origins or processing are included.

      (3) A major weakness stems from the actual calculation of the sc/fc correlation. In general, SC is sparse. In the case of the EM connectomes, it is *exceptionally* sparse (most neural elements are not connected to one another). The authors calculated sc/fc coupling by correlating the off-diagonal elements of sc (the logarithm of its edge weights) and fc matrices with one another. The logarithmic transformation yields a value of infinity for all zero entries. The authors simply impute these elements with 0. This makes no sense and, depending on whether these zero elements are distributed systematically versus uniformly random, could either inflate or deflate the sc/fc correlations. Care must be taken here.

      (4) Further, in constructing the segregated versus unsegregated connectomes, they use absolute thresholds for collecting synapses. It is unclear, however, whether similar numbers of synapses were included in both matrices. If the number is different, that might explain the differential relationship with fc; one matrix has more non-zero entries (and as noted earlier, those zero entries are problematic).

      (5) There was also considerable text (in the results) describing the processing of the Ca data. In this section, the authors frequently refer to some pipelines as "better" or "worse" (more or less effective). But it is not clear what measures they adopted to assess the effectiveness of a pipeline.

    2. Reviewer #2 (Public review):

      Summary:

      Okuno et al. investigate the structure-function relationship in the fruit fly Drosophila melanogaster. To do so, they combine published data from two recent synapse-level connectomes ("hemibrain" and "FlyWire") with a dataset comprising functional whole-brain calcium imaging and behavioural data. First, they investigate the applicability of fMRI pre-processing techniques on data from calcium imaging. They then cross-correlate this pre-processed functional data with structural data extracted from the connectomes, including a comparison to humans. The authors proceed to compare the two connectomes and find significant differences, which they attribute to differences in the accuracy of the synapse detections. Next, they present a novel algorithm to quantify whether neurons are segregated (pre- and postsynapses are spatially separate) or unsegregated (pre- and postsynapses are mixed). Using this approach, they find that unsegregated neurons may contribute more to function than segregated neurons. Applying a general linear model to the functional dataset suggests that activity in two brain areas (Wedge and AVLP) is suppressed during walking. The authors identify a GABAergic neuron in the connectome that could be responsible for this effect and suggest it may provide feedback to the fly's "compass" in the central complex.

      Strengths:

      The study tackles a relevant question in connectomics by exploring the relationship between structural and functional connectivity in the Drosophila brain. The authors apply a range of established and adapted analytical methods, including fMRI-style preprocessing and a novel synaptic segregation index. The effort to integrate multiple datasets and to compare across species reflects a broad and methodical approach.

      Weaknesses:

      The manuscript would benefit from a clearer overarching narrative to unify the various analyses, which currently appear somewhat disjointed. While the technical methods are extensive, the writing is often convoluted and lacks crucial details, making it difficult to follow the logic and interpret key findings. Additionally, the conclusions are relatively incremental and lack a compelling conceptual advance, limiting the overall impact of the work.

      (1) The introduction currently contains a number of findings and conclusions that would be better placed in the results and discussion to clearly delineate past findings from new results and speculations.

      (2) The narrative would benefit greatly from some clear statements along the lines of "we wanted to find out X, therefore we did Y".

      (3) More concise terminology would be helpful. For example, the connectomes are currently referred to as either "hemibrain", "FlyEM", "whole-brain", or "FlyWire".

      (4) The abstract claims "a new, more robust method to quantify the degree of pre- and post-synaptic segregation". However, the study fails to provide evidence that this method is indeed more robust than existing methods.

      (5) The authors define unsegregated neurons as having mixed pre- and postsynapses in the same space. However, this ignores the neurons' topology: a neuron can exhibit a clearly defined dendrite with (mostly) postsynapses and a clearly defined axon with (mostly) presynapses, which then occupy the same space. This is different from genuinely unsegregated neurons with no distinct dendritic and axonal compartments, such as CT1.

      (6) It is not entirely clear where the marmoset dataset originates from. Was it generated for this study? If not, why is there a note in the Ethics Declaration?

      (7) On the differences between hemibrain and FlyWire: What is the "18.8 million post-synapses" for FlyWire referring to? The (thresholded) FlyWire synapse table has 130M connections (=postsynapses). Subsetting that synapse cloud to the hemibrain volume still gives ~47M synapses. Further subsetting to only connections between proofread neurons inside the hemibrain volume gives 19.4M - perhaps the authors did something like that? Similarly, the hemibrain synapse table contains 64M postsynapses. Do the 21M "FlyEM" post-synapses refer to proofread neurons only? If the authors indeed used only (post-)synapses from proofread neurons, they need to make that explicit in results and methods, and account for differences in reconstruction status when making any comparisons. For example, the mushroom body in the hemibrain got a lot more attention than in FlyWire, which would explain the differences reported here. For that reason, connection weights are often expressed as, e.g., a fraction of the target's inputs instead of the total number of synapses when comparing connectivity across connectomic datasets. Furthermore, in Figure 3b, it looks like the FlyWire synapse cloud was not trimmed to the exact hemibrain boundaries: for example, the trimmed FlyWire synapse cloud seems to extend further into the optic lobes than the hemibrain volume does.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Okuno et al. re-analyze whole-brain imaging data collected in another paper (Brezovec et al., 2024) in the context of the two currently available Drosophila connectome datasets: the partial "FlyEM" (hemibrain) dataset (Scheffer et al., 2020) and the whole-brain "FlyWire" dataset (Dorkenwald et al., 2024). They apply existing fMRI signal processing algorithms to the fly imaging data and compute function-structure correlations across a variety of post-processing parameters (noise reduction methods, ROI size), demonstrating an inverse relationship between ROI size and FC-SC correlation. The authors go on to look at structural connectivity amongst more polarized or less polarized neurons, and suggest that stronger FC-SC correlations are driven by more polarized neurons.

      Strengths:

      (1) The result that larger mesoscale ROIs have a higher correlation with structural data is interesting. This has been previously discussed in Drosophila in Turner et al., 2021, but here it is quantified more extensively.

      (2) The quantification of neuron polarization (PPSSI) as applied to these structural data is a promising approach for quantifying differences in spatial synapse distribution.

      Weaknesses:

      One should not score noise/nuisance removal methods solely by their impact on FC-SC correlation values, because we do not know a priori that direct structural connections correspond with strong functional correlations. In fact, work in C. elegans, where we have access to both a connectome and neuron-resolution functional data, suggests that this relationship is weak (Yemini et al., 2021; Randi et al., 2023). Similarly, I don't think it's appropriate to tune the confidence scores on the EM datasets using FC-SC correlations as an output metric.

      Any discussion of FC-SC comparisons should include an analysis of excitatory/inhibitory neurotransmitters, which are available in the fly connectome dataset. However, here the authors do not perform any analyses with neurotransmitter information.<br /> Comparisons between fly and human MRI data are also premature here. Firstly, the fly connectomes, which are derived from neuron-scale EM reconstructions, are a qualitatively different kind of data from human connectomes, which are derived from DSI imaging of large-scale tracts. Likewise, calcium data and fMRI data are very different functional data acquisition methods-the fact that similar processing steps can be used on time-series data does not make them surprisingly similar, and does not in my view, constitute evidence of "similar design concepts."

      The comparison of FlyEM/FlyWire connectomes concludes that differences are more likely a result of data processing than of inter-individual variability. If this is the case, the title should not claim that the manuscript covers individual variability.<br /> The analysis of the wedge-AVLP neuron strikes me as highly speculative, given that the alignment precision between the connectome and the functional data is around 5 microns (Brezovec* et al, PNAS 2024).

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Ana Lapao et al. investigated the roles of Rab27 effector SYTL5 in cellular membrane trafficking pathways. The authors found that SYTL5 localizes to mitochondria in a Rab27A-dependent manner. They demonstrated that SYTL5-Rab27A positive vesicles containing mitochondrial material are formed under hypoxic conditions, thus they speculate that SYTL5 and Rab27A play roles in mitophagy. They also found that both SYTL5 and Rab27A are important for normal mitochondrial respiration. Cells lacking SYTL5 undergo a shift from mitochondrial oxygen consumption to glycolysis which is a common process known as the Warburg effect in cancer cells. Based on cancer patient database, the author noticed that low SYTL5 expression is related to reduced survival for adrenocortical carcinoma patients, indicating SYTL5 could be a negative regulator of the Warburg effect and potentially tumorigenesis.

      Strengths:

      The authors take advantages of multiple techniques and novel methods to perform the experiments.

      (1) Live-cell imaging revealed that stably inducible expression of SYTL5 co-localized with filamentous structures positive for mitochondria. This result was further confirmed by using correlative light and EM (CLEM) analysis and western blotting from purified mitochondrial fraction.

      (2) In order to investigate whether SYTL5 and RAB27A are required for mitophagy in hypoxic conditions, two established mitophagy reporter U2OS cell lines were used to analyze the autophagic flux.

      Weaknesses:

      This study revealed a potential function of SYTL5 in mitophagy and mitochondrial metabolism. However, the mechanistic evidence that establishes the relationship between SYTL5/Rab27A and mitophagy is insufficient. The involvement of SYTL5 in ACC needs more investigation. Furthermore, images and results supporting the major conclusions need to be improved.

      Comments on revisions: The authors did not revise the paper as suggested.

    2. Reviewer #2 (Public review):

      Summary:

      The authors provide convincing evidence that Rab27 and STYL5 work together to regulate mitochondrial activity and homeostasis.

      Strengths:

      The development of models which allow the function to be dissected, and the rigous approach and testing of mitochondrial activity.

      This work is carefully done, and supports the importance of the roles of Rab27A and STYL5.

    3. Reviewer #3 (Public review):

      In the manuscript by Lapao et al., the authors uncover a role for the RAB27A effector protein SYTL5 in regulating mitochondrial function and apparent selective turnover of mitochondrial components. The authors find that SYTL5 localizes to mitochondria in a RAB27A dependent way and that loss of SYTL5 (or RAB27A) impairs lysosomal turnover of MTCO1 (but not a matrix-based reporter/other mitochondrial proteins). The authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      As previously reviewed, this is a very intriguing body of work and reveals a new role for SYTL5/RAB27A at the mitochondria. Unfortunately, it appears that SYTL5 is challenging protein to detect endogenously and the authors' cell lines "comprise a heterogenous pool with high variability", which means that a lot of my original concerns remain. It is still also not clear if the conventional autophagy machinery is required for this pathway, especially if SYTL5/RAB27A mitochondrial recruitment is upstream of this. Hopefully, in future work, the authors (and/or others) will be able to address this and build on the mechanisms of this interesting and potentially important pathway.

    1. Reviewer #1 (Public review):

      Summary:

      The innate immune system serves as the first line of defense against invading pathogens. Four major immune-specific modules-the Toll pathway, the Imd pathway, melanization, and phagocytosis-play critical roles in orchestrating the immune response. Traditionally, most studies have focused on the function of individual modules in isolation. However, in recent years, it has become increasingly evident that effective immune defense requires intricate interactions among these pathways.

      Despite this growing recognition, the precise roles, timing, and interconnections of these immune modules remain poorly understood. Moreover, addressing these questions represents a major scientific undertaking.

      Strengths:

      In this manuscript, Ryckebusch et al. systematically evaluate both the individual and combined contributions of these four immune modules to host defense against a range of pathogens. Their findings significantly enhance our understanding of the layered architecture of innate immunity.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors take a holistic view at the Drosophila immunity by selecting four major components of fly immunity often studied separately (Toll signaling, Imd signaling, phagocytosis and melanization), and studying their combinatory effects on the efficiency of the immune response. They achieve this by using fly lines mutant for one of these components, or modules, as well as for a combination of them, and testing the survival of these flies upon infection with a plethora of pathogens (bacterial, viral and fungal).

      Strengths:

      It is clear that this manuscript has required a large amount of hands-on work, considering the number of pathogens, mutations and timepoints tested. In my opinion, this work is a very welcome addition to the literature on fly immune responses, which obviously do not occur one type of a response at a time, but in parallel, subsequently and/or are interconnected. I find that the major strength of this work is the overall concept, which is made possible by the mutations designed to target the specific immune function of each module, without effects on other functions. I believe that the combinatory mutants will be of use for the fly community and enable further studies of interplay of these components of immune response in various settings.

      To control for the effects arising from the genetic variation other than the intended mutations, the mutants have been backcrossed into a widely used, isogenized Drosophila strain called w1118. Therefore, the differences accounted for by the genotype are controlled.

      I also appreciate that the authors have investigated the two possible ways of dealing with an infection: tolerance and resistance, and how the modules play into those.

      Weaknesses:

      While controlling for the background effects is vital, the w1118 background is problematic (an issue not limited to this manuscript) because of the wide effects of the white mutation on several phenotypes (also other than eye color/eyesight). It is a possibility that the mutation influences the functionality of the immune response components. I acknowledge that it is not reasonable to ask for data in different backgrounds better representing a "wild type" fly, but I think this matter should be brought up and discussed.

      The whole study has been conducted on male flies. Immune responses show quite extensive sex-specific variation across a variety of species studied, also in the fly. But the reasons for this variation are not fully understood. Therefore, I suggest that the authors would conduct a subset of experiments on female flies to see if the findings apply to both sexes, especially the infection-specificity of the module combinations.

      Comments on the revised manuscript:

      I appreciate the author's responses to the points I raised and the additional work they have conducted. The authors have now discussed the possible background effect and added an experiment on female flies showing that the module function is applicable to both sexes.

    1. Reviewer #1 (Public Review):

      (1) Significance of the findings:

      Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.

      (2) Strengths of the manuscript:

      - The authors report original data.<br /> - For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.<br /> - The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.<br /> - The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.<br /> - Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative gated-voltage-gated K+ ion channel (Kch channel) : enhancing survival under photo-toxic conditions.

      (3) Weakness:

      - Contrarily to what is stated in the abstract, the group of B. Maier has already reported collective electrical oscillations in the Gram-negative bacterium Neisseria gonorrhoeae (Hennes et al., PLoS Biol, 2023).<br /> - The data presented in the manuscript are not sufficient to conclude on the photo-protective role of the Kch channel. The authors should perform the appropriate control experiments related to Fig4D,E, i.e. reproduce these experiments without ThT to rule out possible photo-conversion effects on ThT that would modify its toxicity. In addition, it looks like the data reported on Fig 4E are extracted from Fig 4D. If this is indeed the case, it would be more conclusive to report the percentage of PI-positive cells in the population for each condition. This percentage should be calculated independently for each replicate. The authors should then report the average value and standard deviation of the percentage of dead cells for each condition.<br /> - Although Fig 4A clearly shows that light stimulation has an influence on the dynamics of ThT signal in the biofilm, it is important to rule out possible contributions of other environmental variations that occur when the flow is stopped at the onset of light stimulation. I understand that for technical reasons, the flow of fresh medium must be stopped for the sake of imaging. Therefore, I suggest to perform control experiments consisting in stopping the flow at different time intervals before image acquisition (30min or 1h before). If there is no significant contribution from environmental variations due to medium perfusion arrest, the dynamics of ThT signal must be unchanged regardless of the delay between flow stop and the start of light stimulation.<br /> - To precise the role of K+ in the habituation response, I suggest using the ionophore valinomycin at sub-inhibitory concentrations (5 or 10µM). It should abolish the habituation response. In addition, the Kch complementation experiment exhibits a sharp drop after the first peak but on a single point. It would be more convincing to increase the temporal resolution (1min->10s) to show that there are indeed a first and a second peak. Finally, the high concentration (100µM) of CCCP used in this study completely inhibits cell activity. Therefore, it is not surprising that no ThT dynamics was observed upon light stimulation at such concentration of CCCP.<br /> - Since TMRM signal exhibits a linear increase after the first response peak (Supp Fig1D), I recommend to mitigate the statement at line 78.<br /> - Electrical signal propagation is an important aspect of the manuscript. However, a detailed quantitative analysis of the spatial dynamics within the biofilm is lacking. At minima, I recommend to plot the spatio-temporal diagram of ThT intensity profile averaged along the azimuthal direction in the biofilm. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel: I have plotted the spatio-temporal diagram for Video S3 and no electrical propagation is evident at the second peak. In addition, the authors should provide technical details of how R^2(t) is measured in the first regime (Fig 7E).<br /> - In the series of images presented in supplementary Figure 4A, no wavefront is apparent. Although the microscopy technics used in this figure differs from other images (like in Fig2), the wavefront should be still present. In addition, there is no second peak in confocal images as well (Supp Fig4B) .<br /> - Many important technical details are missing (e.g. biofilm size, R^2, curvature and 445nm irradiance measurements). The description of how these quantitates are measured should be detailed in the Material & Methods section.<br /> - Fig 5C: The curve in Fig 5D seems to correspond to the biofilm case. Since the model is made for single cells, the curve obtained by the model should be compared with the average curve presented in Fig 1B (i.e. single cell experiments).<br /> - For clarity, I suggest to indicate on the panels if the experiments concern single cell or biofilm experiments. Finally, please provide bright-field images associated to ThT images to locate bacteria.<br /> - In Fig 7B, the plateau is higher in the simulations than in the biofilm experiments. The authors should add a comment in the paper to explain this discrepancy.

    2. Reviewer #2 (Public Review):

      The authors use ThT dye as a Nernstian potential dye in E. coli. Quantitative measurements of membrane potential using any cationic indicator dye are based on the equilibration of the dye across the membrane according to Boltzmann's law.

      Ideally, the dye should have high membrane permeability to ensure rapid equilibration. Others have demonstrated that E.coli cells in the presence of ThT do not load unless there is blue light present, that the loading profile does not look like it is expected for a cationic Nernstian dye. They also show that the loading profile of the dye is different for E.coli cells deleted for the TolC pump. I, therefore, objected to interpreting the signal from the ThT as a Vm signal when used in E.coli. Nothing the authors have said has suggested that I should be changing this assessment.

      Specifically, the authors responded to my concerns as follows:

      (1) 'We are aware of this study, but believe it to be scientifically flawed. We do not cite the article because we do not think it is a particularly useful contribution to the literature.' This seems to go against ethical practices when it comes to scientific literature citations. If the authors identified work that handles the same topic they do, which they believe is scientifically flawed, the discussion to reflect that should be included.

      (2)'The Pilizota group invokes some elaborate artefacts to explain the lack of agreement with a simple Nernstian battery model. The model is incorrect not the fluorophore.'<br /> It seems the authors object to the basic principle behind the usage of Nernstian dyes. If the authors wish to use ThT according to some other model, and not as a Nernstian indicator, they need to explain and develop that model. Instead, they state 'ThT is a Nernstian voltage indicator' in their manuscript and expect the dye to behave like a passive voltage indicator throughout it.

      (3)'We think the proton effect is a million times weaker than that due to potassium i.e. 0.2 M K+<br /> versus 10-7 M H+. We can comfortably neglect the influx of H+ in our experiments.'<br /> I agree with this statement by the authors. At near-neutral extracellular pH, E.coli keeps near-neutral intracellular pH, and the contribution from the chemical concentration gradient to the electrochemical potential of protons is negligible. The main contribution is from the membrane potential. However, this has nothing to do with the criticism to which this is the response of the authors. The criticism is that ThT has been observed not to permeate the cell without blue light. The blue light has been observed to influence the electrochemical potential of protons (and given that at near-neutral intracellular and extracellular pH this is mostly the membrane potential, as authors note themselves, we are talking about Vm effectively). Thus, two things are happening when one is loading the ThT, not just expected equilibration but also lowering of membrane potential. The electrochemical potential of protons is coupled via the membrane potential to all the other electrochemical potentials of ions, including the mentioned K+.

      (4) 'The vast majority of cells continue to be viable. We do not think membrane damage is dominating.' In response to the question on how the authors demonstrated TMRM loading and in which conditions (and while reminding them that TMRM loading profile in E.coli has been demonstrated in Potassium Phosphate buffer). The request was to demonstrate TMRM loading profile in their condition as well as to show that it does not depend on light. Cells could still be viable, as membrane permeabilisation with light is gradual, but the loading of ThT dye is no longer based on simple electrochemical potential (of the dye) equilibration.

      (5) On the comment on the action of CCCP with references included, authors include a comment that consists of phrases like 'our understanding of the literature' with no citations of such literature. Difficult to comment further without references.

      (6) 'Shielding would provide the reverse effect, since hyperpolarization begins in the dense centres of the biofilms. For the initial 2 hours the cells receive negligible blue light. Neither of the referee's comments thus seem tenable.'<br /> The authors have misunderstood my comment. I am not advocating shielding (I agree that this is not it) but stating that this is not the only other explanation for what they see (apart from electrical signaling). The other I proposed is that the membrane has changed in composition and/or the effective light power the cells can tolerate. The authors comment only on the light power (not convincingly though, giving the number for that power would be more appropriate), not on the possible changes in the membrane permeability.

      (7) 'The work that TolC provides a possible passive pathway for ThT to leave cells seems slightly niche. It just demonstrates another mechanism for the cells to equilibrate the concentrations of ThT in a Nernstian manner i.e. driven by the membrane voltage.' I am not sure what the authors mean by another mechanism. The mechanism of action of a Nernstian dye is passive equilibration according to the electrochemical potential (i.e. until the electrochemical potential of the dye is 0).

      (8) 'In the 70 years since Hodgkin and Huxley first presented their model, a huge number of similar models have been proposed to describe cellular electrophysiology. We are not being hyperbolic when we state that the HH models for excitable cells are like the Schrödinger<br /> equation for molecules. We carefully adapted our HH model to reflect the currently understood electrophysiology of E. coli.'

      I gave a very concrete comment on the fact that in the HH model conductivity and leakage are as they are because this was explicitly measured. The authors state that they have carefully adopted their model based on what is currently understood for E.coli electrophysiology. It is not clear how. HH uses gKn^4 based on Figure2 here https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/pdf/jphysiol01442-0106.pdf, i.e. measured rise and fall of potassium conductance on msec time scales. I looked at the citation the authors have given and found a resistance of an entire biofilm of a given strain at 3 applied voltages. So why n^4 based on that? Why does unknown current have gqz^4 form? Sodium conductance in HH is described by m^3hgNa (again based on detailed conductance measurements), so why unknown current in E.coli by gQz^4? Why leakage is in the form that it is, based on what measurement?

      Throughout their responses, the authors seem to think that collapsing the electrochemical gradient of protons is all about protons, and this is not the case. At near neutral inside and outside pH, the electrochemical potential of protons is simply membrane voltage. And membrane voltage acts on all ions in the cell.

      Authors have started their response to concrete comments on the usage of ThT dye with comments on papers from my group that are not all directly relevant to this publication. I understand that their intention is to discredit a reviewer but given that my role here is to review this manuscript, I will only address their comments to the publications/part of publications that are relevant to this manuscript and mention what is not relevant.

      Publications in the order these were commented on.

      (1) In a comment on the paper that describes the usage of ThT dye as a Nernstian dye authors seem to talk about a model of an entire active cell.<br /> 'Huge oscillations occur in the membrane potentials of E. coli that cannot be described by the SNB model.' The two have nothing to do with each other. Nernstian dye equilibrates according to its electrochemical potential. Once that happens it can measure the potential (under the assumption that not too much dye has entered and thus lowered too much the membrane potential under measurement). The time scale of that is important, and the dye can only measure processes that are slower than that equilibration. If one wants to use a dye that acts under a different model, first that needs to be developed, and then coupled to any other active cell model.

      (2) The part of this paper that is relevant is simply the usage of TMRM dye. It is used as Nernstian dye, so all the above said applies. The rest is a study of flagellar motor.

      (3) The authors seem to not understand that the electrochemical potential of protons is coupled to the electrochemical potentials of all other ions, via the membrane potential. In the manuscript authors talk about, PMF~Vm, as DeltapH~0. Other than that this publication is not relevant to their current manuscript.

      (4) The manuscript in fact states precisely that PMF cannot be generated by protons only and some other ions need to be moved out for the purpose. In near neutral environment it stated that these need to be cations (K+ e.g.). The model used in this manuscript is a pump-leak model. Neither is relevant for the usage of ThT dye.

      Further comments include, along the lines of:

      'The editors stress the main issue raised was a single referee questioning the use of ThT as an indicator of membrane potential. We are well aware of the articles by the Pilizota group and we believe them to be scientifically flawed. The authors assume there are no voltage-gated ion channels in E. coli and then attempt to explain motility data based on a simple Nernstian battery model (they assume E. coli are unexcitable<br /> matter). This in turn leads them to conclude the membrane dye ThT is faulty, when in fact it is a problem with their simple battery model.'

      The only assumption made when using a cationic Nernstian dye is that it equilibrates passively across the membrane according to its electrochemical potential. As it does that, it does lower the membrane potential, which is why as little as possible is added so that this is negligible. The equilibration should be as fast as possible, but at the very least it should be known, as no change in membrane potential can be measured that is faster than that.

      This behaviour should be orthogonal to what the cell is doing, it is a probe after all. If the cell is excitable, a Nernstian dye can be used, as long as it's still passively equilibrating and doing so faster than any changes in membrane potential due to excitations of the cells. There are absolutely no assumptions made on the active system that is about to be measured by this expected behaviour of a Nernstian dye. And there shouldn't be, it is a probe. If one wants to use a dye that is not purely Nernstian that behaviour needs to be described and a model proposed. As far as I can find, authors do no such thing.

      There is a comment on the use of a flagellar motor as a readout of PMF, stating that the motor can be stopped by YcgR citing the work from 2023. Indeed, there is a range of references such as https://doi.org/10.1016/j.molcel.2010.03.001 that demonstrate this (from around 2000-2010 as far as I am aware). The timescale of such slowdown is hours (see here Figure 5 https://www.cell.com/cell/pdf/S0092-8674(10)00019-X.pdf). Needless to say, the flagellar motor when used as a probe, needs to stay that in the conditions used. Thus one should always be on the lookout at any other such proteins that could slow it down and we are not aware of yet or make the speed no longer proportional to the PMF. In the papers my group uses the motor the changes are fast, often reversible, and in the observation window of 30min. They are also the same with DeltaYcgR strain, which we have not included as it seemed given the time scales it's obvious, but certainly can in the future (as well as stay vigilant on any conditions that would render the motor a no longer suitable probe for PMF).

    3. Reviewer #3 (Public Review):

      This manuscript by Akabuogu et al. investigates membrane potential dynamics in E. coli. Membrane potential fluctuations have been observed in bacteria by several research groups in recent years, including in the context of bacterial biofilms where they have been proposed to play a role in cellular communication. Here, these authors investigate membrane potential in E. coli, in both single cells and biofilms. I have reviewed the revised manuscript provided by the authors, as well as their responses to the initial reviews; my opinion about the manuscript is largely unchanged. I have focused my public review on those issues that I believe to be most pressing, with additional comments included in the review to authors. Although these authors are working in an exciting research area, the evidence they provide for their claims is inadequate, and several key control experiments are still missing. In some cases, the authors allude to potentially relevant data in their responses to the initial reviews, but unfortunately these data are not shown. Furthermore, I cannot identify any traveling wavefronts in the data included in this manuscript. In addition to the challenges associated with the use of Thioflavin-T (ThT) raised by the second reviewer, these caveats make the work presented in this manuscript difficult to interpret.

      First, some of the key experiments presented in the paper lack required controls:

      (1) This paper asserts that the observed ThT fluorescence dynamics are induced by blue light. This is a fundamental claim in the paper, since the authors go on to argue that these dynamics are part of a blue light response. This claim must be supported by the appropriate negative control experiment measuring ThT fluorescence dynamics in the absence of blue light- if this idea is correct, these dynamics should not be observed in the absence of blue light exposure. If this experiment cannot be performed with ThT since blue light is used for its excitation, TMRM can be used instead.

      In response to this, the authors wrote that "the fluorescent baseline is too weak to measure cleanly in this experiment." If they observe no ThT signal above noise in their time lapse data in the absence of blue light, this should be reported in the manuscript- this would be a satisfactory negative control. They then wrote that "It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal." I am not sure what they mean by this- perhaps that ThT fluorescence changes strongly only in response to blue light? This is a fundamental control for this experiment that ought to be presented to the reader.

      (2) The authors claim that a ∆kch mutant is more susceptible to blue light stress, as evidenced by PI staining. The premise that the cells are mounting a protective response to blue light via these channels rests on this claim. However, they do not perform the negative control experiment, conducting PI staining for WT the ∆kch mutant in the absence of blue light. In the absence of this control it is not possible to rule out effects of the ∆kch mutation on overall viability and/or PI uptake. The authors do include a growth curve for comparison, but planktonic growth is a very different context than surface-attached biofilm growth. Additionally, the ∆kch mutation may have impacts on PI permeability specifically that are not addressed by a growth curve. The negative control experiment is of key importance here.

      Second, the ideas presented in this manuscript rely entirely on analysis of ThT fluorescence data, specifically a time course of cellular fluorescence following blue light treatment. However, alternate explanations for and potential confounders of the observed dynamics are not sufficiently addressed:

      (1) Bacterial cells are autofluorescent, and this fluorescence can change significantly in response to stress (e.g. blue light exposure). To characterize and/or rule out autofluorescence contributions to the measurement, the authors should present time lapse fluorescence traces of unstained cells for comparison, acquired under the same imaging conditions in both wild type and ∆kch mutant cells. In their response to reviewers the authors suggested that they have conducted this experiment and found that the autofluorescence contribution is negligible, which is good, but these data should be included in the manuscript along with a description of how these controls were conducted.

      (2) Similarly, in my initial review I raised a concern about the possible contributions of photobleaching to the observed fluorescence dynamics. This is particularly relevant for the interpretation of the experiment in which catalase appears to attenuate the decay of the ThT signal; this attenuation could alternatively be due to catalase decreasing ThT photobleaching. In their response, the authors indicated that photobleaching is negligible, which would be good, but they do not share any evidence to support this claim. Photobleaching can be assessed in this experiment by varying the light dosage (illumination power, frequency, and/or duration) and confirming that the observed fluorescence dynamics are unaffected.

      Third, the paper claims in two instances that there are propagating waves of ThT fluorescence that move through biofilms, but I do not observe these waves in any case:

      (1) The first wavefront claim relates to small cell clusters, in Fig. 2A and Video S2 and S3 (with Fig. 2A and Video S2 showing the same biofilm.) I simply do not see any evidence of propagation in either case- rather, all cells get brighter and dimmer in tandem. I downloaded and analyzed Video S3 in several ways (plotting intensity profiles for different regions at different distances from the cluster center, drawing a kymograph across the cluster, etc.) and in no case did I see any evidence of a propagating wavefront. (I attempted this same analysis on the biofilm shown in Fig. 2A and Video S2 with similar results, but the images shown in the figure panels and especially the video are still both so saturated that the quantification is difficult to interpret.) If there is evidence for wavefronts, it should be demonstrated explicitly by analysis of several clusters. For example, a figure of time-to-peak vs. position in the cluster demonstrating a propagating wave would satisfy this. Currently, I do not see any wavefronts in this data.

      (2) The other wavefront claim relates to biofilms, and the relevant data is presented in Fig. S4 (and I believe also in what is now Video S8, but no supplemental video legends are provided, and this video is not cited in text.) As before, I cannot discern any wavefronts in the image and video provided; Reviewer 1 was also not able to detect wave propagation in this video by kymograph. Some mean squared displacements are shown in Fig. 7. As before, the methods for how these were obtained are not clearly documented either in this manuscript or in the BioRXiv preprint linked in the initial response to reviewers, and since wavefronts are not evident in the video it is hard to understand what is being measured here- radial distance from where? (The methods section mentions radial distance from the substrate, this should mean Z position above the imaging surface, and no wavefronts are evident in Z in the figure panels or movie.) Thus, clear demonstration of these wavefronts is still missing here as well.

      Fourth, I have some specific questions about the study of blue light stress and the use of PI as a cell viability indicator:

      (1) The logic of this paper includes the premise that blue light exposure is a stressor under the experimental conditions employed in the paper. Although it is of course generally true that blue light can be damaging to bacteria, this is dependent on light power and dosage. The control I recommended above, staining cells with PI in the presence and absence of blue light, will also allow the authors to confirm that this blue light treatment is indeed a stressor- the PI staining would be expected to increase in the presence of blue light if this is so.

      (2) The presence of ThT may complicate the study of the blue light stress response, since ThT enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). The authors could investigate ThT toxicity under these conditions by staining cells with PI after exposing them to blue light with or without ThT staining.

      (3) In my initial review, I wrote the following: "In Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3[BC]), this complicates the interpretation of this experiment." In their response, the authors suggested that these results are not relevant in this case because "In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia." However, the logic of the paper is that the cells are in fact dying due to an imposed external stressor, which presumably also confers an increased burden as the cells try to deal with the stress. Instead, the authors should simply use a parallel method to confirm the results of PI staining. For example, the experiment could be repeated with other stains, or the viability of blue light-treated cells could be addressed more directly by outgrowth or colony-forming unit assays.

      The CFU assay suggested above has the additional advantage that it can also be performed on planktonic cells in liquid culture that are exposed to blue light. If, as the paper suggests, a protective response to blue light is being coordinated at the biofilm level by these membrane potential fluctuations, the WT strain might be expected to lose its survival advantage vs. the ∆kch mutant in the absence of a biofilm.

      Fifth, in several cases the data are presented in a way that are difficult to interpret, or the paper makes claims that are different to observe in the data:

      (1) The authors suggest that the ThT and TMRM traces presented in Fig. S1D have similar shapes, but this is not obvious to me- the TMRM curve has very little decrease after the initial peak and only a modest, gradual rise thereafter. The authors suggest that this is due to increased TMRM photobleaching, but I would expect that photobleaching should exacerbate the signal decrease after the initial peak. Since this figure is used to support the use of ThT as a membrane potential indicator, and since this is the only alternative measurement of membrane potential presented in text, the authors should discuss this discrepancy in more detail.

      (2) The comparison of single cells to microcolonies presented in figures 1B and D still needs revision:

      First, both reviewer 1 and I commented in our initial reviews that the ThT traces, here and elsewhere, should not be normalized- this will help with the interpretation of some of the claims throughout the manuscript.

      Second, the way these figures are shown with all traces overlaid at full opacity makes it very difficult to see what is being compared. Since the point of the comparison is the time to first peak (and the standard deviation thereof), histograms of the distributions of time to first peak in both cases should be plotted as a separate figure panel.<br /> Third, statistical significance tests ought to be used to evaluate the statistical strength of the comparisons between these curves. The authors compare both means and standard deviations of the time to first peak, and there are appropriate statistical tests for both types of comparisons.

      (3) The authors claim that the curve shown in Fig. S4B is similar to the simulation result shown in Fig. 7B. I remain unconvinced that this is so, particularly with respect to the kinetics of the second peak- at least it seems to me that the differences should be acknowledged and discussed. In any case, the best thing to do would be to move Fig. S4B to the main text alongside Fig. 7B so that the readers can make the comparison more easily.

      (4) As I wrote in my first review, in the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, these fluctuations cannot be distinguished from measurement noise. A no-light control could help clarify this.

      (5) In the lower irradiance conditions in Fig. 4A, the ThT dynamics are slower overall, and it looks like the ThT intensity is beginning to rise at the end of the measurement. The authors write that no second peak is observed below an irradiance threshold of 15.99 µW/mm2. However, could a more prominent second peak be observed in these cases if the measurement time was extended? Additionally, the end of these curves looks similar to the curve in Fig. S4B, in which the authors write that the slow rise is evidence of the presence of a second peak, in contrast to their interpretation here.

      Additional considerations:

      (1) The analysis and interpretation of the first peak, and particularly of the time-to-fire data is challenging throughout the manuscript the time resolution of the data set is quite limited. It seems that a large proportion of cells have already fired after a single acquisition frame. It would be ideal to increase the time resolution on this measurement to improve precision. This could be done by imaging more quickly, but that would perhaps necessitate more blue light exposure; an alternative is to do this experiment under lower blue light irradiance where the first spike time is increased (Figure 4A).

      (2) The authors suggest in the manuscript that "E. coli biofilms use electrical signalling to coordinate long-range responses to light stress." In addition to the technical caveats discussed above, I am missing a discussion about what these responses might be. What constitutes a long-range response to light stress, and are there known examples of such responses in bacteria?

      (3) The presence of long-range blue light responses can also be interrogated experimentally, for example, by repeating the Live/Dead experiment in planktonic culture or the single-cell condition. If the protection from blue light specifically emerges due to coordinated activity of the biofilm, the ∆kch mutant would not be expected to show a change in Live/Dead staining in non-biofilm conditions. The CFU experiment I mentioned above could also implicate coordinated long-range responses specifically, if biofilms and liquid culture experiments can be compared (although I know that recovering cells from biofilms is challenging.)

      4. At the end of the results section, the authors suggest a critical biofilm size of only 4 μm for wavefront propagation (not much larger than a single cell!) The authors show responses for various biofilm sizes in Fig. 2C, but these are all substantially larger (and this figure also does not contain wavefront information.) Are there data for cell clusters above and below this size that could support this claim more directly?

      (5) In Fig. 4C, the overall trajectories of extracellular potassium are indeed similar, but the kinetics of the second peak of potassium are different than those observed by ThT (it rises minutes earlier)- is this consistent with the idea that Kch is responsible for that peak? Additionally, the potassium dynamics also include the first ThT peak- is this surprising given that the Kch channel has no effect on this peak according to the model?

      Detailed comments:

      Why are Fig. 2A and Video S2 called a microcluster, whereas Video S3, which is smaller, is called a biofilm?

      "We observed a spontaneous rapid rise in spikes within cells in the center of the biofilm" (Line 140): What does "spontaneous" mean here?

      "This demonstrates that the ion-channel mediated membrane potential dynamics is a light stress relief process.", "E. coli cells employ ion-channel mediated dynamics to manage ROS-induced stress linked to light irradiation." (Line 268 and the second sentence of the Fig. 4F legend): This claim is not well-supported. There are several possible interpretations of the catalase experiment (which should be discussed); this experiment perhaps suggests that ROS impacts membrane potential but does not indicate that these membrane potential fluctuations help the cells respond to blue light stress. The loss of viability in the ∆kch mutant might indicate a link between these membrane potential experiments and viability, but it is hard to interpret without the no light controls I mention above.

      "The model also predicts... the external light stress" (Lines 338-341): Please clarify this section. Where does this prediction arise from in the modeling work? Second, I am not sure what is meant by "modulates the light stress" or "keeps the cell dynamics robust to the intensity of external light stress" (especially since the dynamics clearly vary with irradiance, as seen in Figure 4A).

      "We hypothesized that E. coli not only modulates the light-induced stress but also handles the increase of the ROS by adjusting the profile of the membrane potential dynamics" (Line 347): I am not sure what "handles the ROS by adjusting the profile of the membrane potential dynamics" means. What is meant by "handling" ROS? Is the hypothesis that membrane potential dynamics themselves are protective against ROS, or that they induce a ROS-protective response downstream, or something else? Later the authors write that changes in the response to ROS in the model agree with the hypothesis, but just showing that ROS impacts the membrane potential does not seem to demonstrate that this has a protective effect against ROS.

      "Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli." (Line 391): This is misleading- mechanosensitive ion channels totally ablate membrane potential dynamics, they don't have a specific effect on the first hyperpolarization event. The claim that mechanonsensitive ion channels are specifically involved in the first event also appears in the abstract.

      Also, the apparent membrane potential is much lower even at the start of the experiment in these mutants (Fig. 6C-D)- is this expected? This seems to imply that these ion channels also have a blue light-independent effect.

      Throughout the paper, there are claims that the initial ThT spike is involved in "registering the presence of the light stress" and similar. What is the evidence for this claim?

      "We have presented much better quantitative agreement of our model with the propagating wavefronts in E. coli biofilms..." (Line 619): It is not evident to me that the agreement between model and prediction is "much better" in this work than in the cited work (reference 57, Hennes et al. 2023). The model in Figure 4 of ref. 57 seems to capture the key features of their data.

      In methods, "Only cells that are hyperpolarized were counted in the experiment as live" (Line 745): what percentage of cells did not hyperpolarize in these experiments?

      Some indication of standard deviation (error bars or shading) should be added to all figures where mean traces are plotted.

      Video S8 is very confusing- why does the video play first forwards and then backwards? It is easy to misinterpret this as a rise in the intensity at the end of the experiment.

    1. Reviewer #1 (Public review):

      Summary:

      This study provides a comprehensive single-cell and multiomic characterization of trabecular meshwork (TM) cells in the mouse eye, a structure critical to intraocular pressure (IOP) regulation and glaucoma pathogenesis. Using scRNA-seq, snATAC-seq, immunofluorescence, and in situ hybridization, the authors identify three transcriptionally and spatially distinct TM cell subtypes. The study further demonstrates that mitochondrial dysfunction, specifically in one subtype (TM3), contributes to elevated IOP in a genetic mouse model of glaucoma carrying a mutation in the transcription factor Lmx1b. Importantly, treatment with nicotinamide (vitamin B3), known to support mitochondrial health, prevents IOP elevation in this model. The authors also link their findings to human datasets, suggesting the existence of analogous TM3-like cells with potential relevance to human glaucoma.

      Strengths:

      The study is methodologically rigorous, integrating single-cell transcriptomic and chromatin accessibility profiling with spatial validation and in vivo functional testing. The identification of TM subtypes is consistent across mouse strains and institutions, providing robust evidence of conserved TM cell heterogeneity. The use of a glaucoma model to show subtype-specific vulnerability, combined with a therapeutic intervention-gives the study strong mechanistic and translational significance. The inclusion of chromatin accessibility data adds further depth by implicating active transcription factors such as LMX1B, a gene known to be associated with glaucoma risk. The integration with human single-cell datasets enhances the potential relevance of the findings to human disease.

      Weaknesses:

      Although the LMX1B transcription factor is implicated as a key regulator in TM3 cells, its role in directly controlling mitochondrial gene expression is not fully explored. Additional analysis of motif accessibility or binding enrichment near relevant target genes could substantiate this mechanistic link. The therapeutic effect of vitamin B3 is clearly demonstrated phenotypically, but the underlying cellular and molecular mechanisms remain somewhat underdeveloped - for instance, changes in mitochondrial function, oxidative stress markers, or NAD+ levels are not directly measured. While the human relevance of TM3 cells is suggested through marker overlap, more quantitative approaches, such as cell identity mapping or gene signature scoring in human datasets, would strengthen the translational connection.

      Overall, this is a compelling and carefully executed study that offers significant advances in our understanding of TM cell biology and its role in glaucoma. The integration of multimodal data, disease modeling, and therapeutic testing represents a valuable contribution to the field. With additional mechanistic depth, the study has the potential to become a foundational resource for future research into IOP regulation and glaucoma treatment.

    2. Reviewer #2 (Public review):

      Summary:

      This elegant study by Tolman and colleagues provides fundamental findings that substantially advance our knowledge of the major cell types within the limbus of the mouse eye, focusing on the aqueous humor outflow pathway. The authors used single-cell and single-nuclei RNAseq to very clearly identify 3 subtypes of the trabecular meshwork (TM) cells in the mouse eye, with each subtype having unique markers and proposed functions. The U. Columbia results are strengthened by an independent replication in a different mouse strain at a separate laboratory (Duke). Bioinformatics analyses of these expression data were used to identify cellular compartments, molecular functions, and biological processes. Although there were some common pathways among the 3 subtypes of TM cells (e.g., ECM metabolism), there also were distinct functions. For example:

      • TM1 cell expression supports heavy engagement in ECM metabolism and structure, as well as TGFβ2 signaling.

      • TM2 cells were enriched in laminin and pathways involved in phagocytosis, lysosomal function, and antigen expression, as well as End3/VEGF/angiopoietin signaling.

      • TM3 cells were enriched in actin binding and mitochondrial metabolism.

      They used high-resolution immunostaining and in situ hybridization to show that these 3 TM subtypes express distinct markers and occupy distinct locations within the TM tissue. The authors compared their expression data with other published scRNAseq studies of the mouse as well as the human aqueous outflow pathway. They used ATAC-seq to map open chromatin regions in order to predict transcription factor binding sites. Their results were also evaluated in the context of human IOP and glaucoma risk alleles from published GWAS data, with interesting and meaningful correlations. Although not discussed in their manuscript, their expression data support other signaling pathways/ proteins/ genes that have been implicated in glaucoma, including: TGFβ2, BMP signaling (including involvement of ID proteins), MYOC, actin cytoskeleton (CLANs), WNT signaling, etc.

      In addition to these very impressive data, the authors used scRNAseq to examine changes in TM cell gene expression in the mouse glaucoma model of mutant Lmxb1-induced ocular hypertension. In man, LMX1B is associated with Nail-Patella syndrome, which can include the development of glaucoma, demonstrating the clinical relevance of this mouse model. Among the gene expression changes detected, TM3 cells had altered expression of genes associated with mitochondrial metabolism. The authors used their previous experience using nicotinamide to metabolically protect DBA2/J mice from glaucomatous damage, and they hypothesized that nicotinamide supplementation of mutant Lmx1b mice would help restore normal mitochondrial metabolism in the TM and prevent Lmx1b-mediated ocular hypertension. Adding nicotinamide to the drinking water significantly prevented Lmxb1 mutant mice from developing high intraocular pressure. This is a laudable example of dissecting the molecular pathogenic mechanisms responsible for a disease (glaucoma) and then discovering and testing a potential therapy that directly intervenes in the disease process and thereby protects from the disease.

      Strengths:<br /> There are numerous strengths in this comprehensive study including:<br /> • Deep scRNA sequencing that was confirmed by an independent dataset in another mouse strain at another university.<br /> • Identification and validation of molecular markers for each mouse TM cell subset along with localization of these subsets within the mouse aqueous outflow pathway.<br /> • Rigorous bioinformatics analysis of these data as well as comparison of the current data with previously published mouse and human scRNAseq data.<br /> • Correlating their current data with GWAS glaucoma and IOP "hits".<br /> • Discovering gene expression changes in the 3 TM subgroups in the mouse mutant Lmx1b model of glaucoma.<br /> • Further pursuing the indication of dysfunctional mitochondrial metabolism in TM3 cells from Lmx1b mutant mice to test the efficacy of dietary supplementation with nicotinamide. The authors nicely demonstrate the disease modifying efficacy of nicotinamide in preventing IOP elevation in these Lmx1b mutant mice, preventing the development of glaucoma. These results have clinical implications for new glaucoma therapies.

      Weaknesses:<br /> • Occasional over-interpretation of data. The authors have used changes in gene expression (RNAseq) to implicate functions and signaling pathways. For example: they have not directly measured "changes in metabolism", "mitochondrial dysfunction" or "activity of Lmx1b".<br /> • In their very thorough data set, there is enrichment of or changes in gene expression that support other pathways that have been previously reported to be associated with glaucoma (such as TGFβ2, BMP signaling, actin cytoskeletal organization (CLANs), WNT signaling, ossification, etc. that appears to be a lost opportunity to further enhance the significance of this work.

    3. Reviewer #3 (Public review):

      Summary:In this study, the authors perform multimodal single-cell transcriptomic and epigenomic profiling of 9,394 mouse TM cells, identifying three transcriptionally distinct TM subtypes with validated molecular signatures. TM1 cells are enriched for extracellular matrix genes, TM2 for secreted ligands supporting Schlemm's canal, and TM3 for contractile and mitochondrial/metabolic functions. The transcription factor LMX1B, previously linked to glaucoma, shows the highest expression in TM3 cells and appears to regulate mitochondrial pathways. In Lmx1bV265D mutant mice, TM3 cells exhibit transcriptional signs of mitochondrial dysfunction associated with elevated IOP. Notably, vitamin B3 treatment significantly mitigates IOP elevation, suggesting a potential therapeutic avenue.

      This is an excellent and collaborative study involving investigators from two institutions, offering the most detailed single-cell transcriptomic and epigenetic profiling of the mouse limbal tissues-including both TM and Schlemm's canal (SC), from wild-type and Lmx1bV265D mutant mice. The study defines three TM subtypes and characterizes their distinct molecular signatures, associated pathways, and transcriptional regulators. The authors also compare their dataset with previously published murine and human studies, including those by Van Zyl et al., providing valuable cross-species insights.

      Strengths:

      (1) Comprehensive dataset with high single-cell resolution<br /> (2) Use of multiple bioinformatic and cross-comparative approaches<br /> (3) Integration of 3D imaging of TM and SC for anatomical context<br /> (4) Convincing identification and validation of three TM subtypes using molecular markers.

      Weaknesses:

      (1) Insufficient evidence linking mitochondrial dysfunction to TM3 cells in Lmx1bV265D mice: While the identification of TM3 cells as metabolically specialized and Lmx1b-enriched is compelling, the proposed link between Lmx1b mutation and mitochondrial dysfunction remains underdeveloped. It is unclear whether mitochondrial defects are a primary consequence of Lmx1b-mediated transcriptional dysregulation or a secondary response to elevated IOP. Additional evidence is needed to clarify whether Lmx1b directly regulates mitochondrial genes (e.g., via ChIP-seq, motif analysis, or ATAC-seq), or whether mitochondrial changes are downstream effects.<br /> Furthermore, the protective effects of nicotinamide (NAM) are interpreted as evidence of mitochondrial involvement, but no direct mitochondrial measurements (e.g., immunostaining, electron microscopy, OCR assays) are provided. It is essential to validate mitochondrial dysfunction in TM3 cells using in vivo functional assays to support the central conclusion of the paper. Without this, the claim that mitochondrial dysfunction drives IOP elevation in Lmx1bV265D mice remains speculative. Alternatively, authors should consider revising their claims that mitochondrial dysfunction in these mice is a central driver of TM dysfunction.

      (2) Mechanism of NAM-mediated protection is unclear: The manuscript states that NAM treatment prevents IOP elevation in Lmx1bV265D mice via metabolic support, yet no data are shown to confirm that NAM specifically rescues mitochondrial function. Do NAM-treated TM3 cells show improved mitochondrial integrity? Are reactive oxygen species (ROS) reduced? Does NAM also protect RGCs from glaucomatous damage? Addressing these points would clarify whether the therapeutic effects of NAM are indeed mitochondrial.

      (3) Lack of direct evidence that LMX1B regulates mitochondrial genes: While transcriptomic and motif accessibility analyses suggest that LMX1B is enriched in TM3 cells and may influence mitochondrial function, no mechanistic data are provided to demonstrate direct regulation of mitochondrial genes. Including ChIP-seq data, motif enrichment at mitochondrial gene loci, or perturbation studies (e.g., Lmx1b knockout or overexpression in TM3 cells) would greatly strengthen this central claim.

      (4)Focus on LMX1B in Fig. 5F lacks broader context: Figure 5F shows that several transcription factors (TFs)-including Tcf21, Foxs1, Arid3b, Myc, Gli2, Patz1, Plag1, Npas2, Nr1h4, and Nfatc2-exhibit stronger positive correlations or motif accessibility changes than LMX1B. Yet the manuscript focuses almost exclusively on LMX1B. The rationale for this focus should be clarified, especially given LMX1B's relatively lower ranking in the correlation analysis. Were the functions of these other highly ranked TFs examined or considered in the context of TM biology or glaucoma? Discussing their potential roles would enhance the interpretation of the transcriptional regulatory landscape and demonstrate the broader relevance of the findings.

      Other weaknesses:

      (1) In abstract, they say a number of 9,394 wild-type TM cell transcriptomes. The number of Lmx1bV265D/+ TM cell transcriptomes analyzed is not provided. This information is essential for evaluating the comparative analysis and should be clearly stated in the Abstract and again in the main text (e.g., lines 121-123). Including both wild-type and mutant cell counts will help readers assess the balance and robustness of the dataset.

      (2) Did the authors monitor mouse weight or other health parameters to assess potential systemic effects of treatment? It is known that the taste of compounds in drinking water can alter fluid or food intake, which may influence general health. Also, does Lmx1bV265D/+ have mice exhibit non-ocular phenotypes, and if so, does nicotinamide confer protection in those tissues as well? Additionally, starting the dose of the nicotinamide at postnatal day 2, how long the mice were treated with water containing nicotinamide, and after how many days or weeks IOP was reduced, and how long the decrease in the IOP was sustained.<br /> (3) While the IOP reduction observed in NAM-treated Lmx1bV265D/+ mice appears statistically significant, it is unclear whether this reflects meaningful biological protection. Several untreated mice exhibit very high IOP values, which may skew the analysis. The authors should report the mean values for IOP in both untreated and NAM-treated groups to clarify the magnitude and variability of the response.<br /> (4) Additionally, since NAM has been shown to protect RGCs in other glaucoma models directly, the authors should assess whether RGCs are preserved in NAM-treated Lmx1b V265D/+ mice. Demonstrating RGC protection would support a synergistic effect of NAM through both IOP reduction and direct neuroprotection, strengthening the translational relevance of the treatment.<br /> (5) Can the authors add any other functional validation studies to explore to understand the pathways enriched in all the subtypes of TM1, TM2, and TM3 cells, in addition to the ICH/IF/RNAscope validation?<br /> (6) The authors should include a representative image of the limbal dissection. While Figure S1 provides a schematic, mouse eyes are very small, and dissecting unfixed limbal tissue is technically challenging. It is also difficult to reconcile the claim that the majority of cells in the limbal region are TM and endothelium. As shown in Figure S6, DAPI staining suggests a much higher abundance of scleral cells compared to TM cells within the limbal strip. Additional clarification or visual evidence would help validate the dissection strategy and cellular composition of the captured region.

    1. Reviewer #1 (Public review):

      Tamao et al. aimed to quantify the diversity and mutation rate of the influenza (PR8 strain) in order to establish a high-resolution method for studying intra-host viral evolution. To achieve this, the authors combined RNA sequencing with single-molecule unique molecular identifiers (UMIs) to minimize errors introduced during technical processing. They proposed an in vitro infection model with a single viral particle to represent biological genetic diversity, alongside a control model using in vitro transcribed RNA for two viral genes, PB2 and HA.

      Through this approach, the authors demonstrated that UMIs reduced technical errors by approximately tenfold. By analyzing four viral populations and comparing them to in vitro transcribed RNA controls, they estimated that ~98.1% of observed mutations originated from viral replication rather than technical artifacts. Their results further showed that most mutations were synonymous and introduced randomly. However, the distribution of mutations suggested selective pressures that favored certain variants. Additionally, comparison with a closely related influenza strain (A/Alaska/1935) revealed two positively selected mutations, though these were absent in the strain responsible for the most recent pandemic (CA01).

      Overall, the study is well-designed, and the interpretations are strongly supported by the data. However, the following clarifications are recommended:

      (1) The methods section is overly brief. Even if techniques are cited, more experimental details should be included. For example, since the study focuses heavily on methodology, details such as the number of PCR cycles in RT-PCR or the rationale for choosing HA and PB2 as representative in vitro transcripts should be provided.

      (2) Information on library preparation and sequencing metrics should be included. For example, the total number of reads, any filtering steps, and quality score distributions/cutoff for the analyzed reads.

      (3) In the Results section (line 115, "Quantification of error rate caused by RT"), the mutation rate attributed to viral replication is calculated. However, in line 138, it is unclear whether the reported value reflects PB2, HA, or both, and whether the comparison is based on the error rate of the same viral RNA or the mean of multiple values (as shown in Figure 3A). Please clarify whether this number applies universally to all influenza RNAs or provide the observed range.

      (4) Since the T7 polymerase introduced errors are only applied to the in vitro transcription control, how were these accounted for when comparing mutation rates between transcribed RNA and cell-culture-derived virus?

      (5) Figure 2 shows that a UMI group size of 4 has an error rate of zero, but this group size is not mentioned in the text. Please clarify.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript presents a technically oriented application of UMI-based long-read sequencing to study intra-host diversity in influenza virus populations. The authors aim to minimize sequencing artifacts and improve the detection of rare variants, proposing that this approach may inform predictive models of viral evolution. While the methodology appears robust and successfully reduces sequencing error rates, key experimental and analytical details are missing, and the biological insight is modest. The study includes only four samples, with no independent biological replicates or controls, which limits the generalizability of the findings. Claims related to rare variant detection and evolutionary selection are not fully supported by the data presented.

      Strengths:

      The study addresses an important technical challenge in viral genomics by implementing a UMI-based long-read sequencing approach to reduce amplification and sequencing errors. The methodological focus is well presented, and the work contributes to improving the resolution of low-frequency variant detection in complex viral populations.

      Weaknesses:

      The application of UMI-based error correction to viral population sequencing has been established in previous studies (e.g., in HIV), and this manuscript does not introduce a substantial methodological or conceptual advance beyond its use in the context of influenza.

      The study lacks independent biological replicates or additional viral systems that would strengthen the generalizability of the conclusions. Potential sources of technical error are not explored or explicitly controlled. Key methodological details are missing, including the number of PCR cycles, the input number of molecules, and UMI family size distributions. These are essential to support the claimed sensitivity of the method.

      The assertion that variants at {greater than or equal to}0.1% frequency can be reliably detected is based on total read count rather than the number of unique input molecules. Without information on UMI diversity and family sizes, the detection limit cannot be reliably assessed.

      Although genetic variation is described, the functional relevance of observed mutations in HA and NA is not addressed or discussed in the context of known antigenic or evolutionary features of influenza. The manuscript is largely focused on technical performance, with limited exploration of the biological implications or mechanistic insights into influenza virus evolution.

      The experimental scale is small, with only four viral populations derived from single particles analyzed. This limited sample size restricts the ability to draw broader conclusions about quasispecies dynamics or evolutionary pressures.

    1. Reviewer #2 (Public Review):

      The goal of the present study is to better understand the 'control objectives' that subjects adopt in a video-game-like virtual-balancing task. In this task, the hand must move in the opposite direction from a cursor. For example, if the cursor is 2 cm to the right, the subject must move their hand 2 cm to the left to 'balance' the cursor. Any imperfection in that opposition causes the cursor to move. E.g., if the subject were to move only 1.8 cm, that would be insufficient, and the cursor would continue to move to the right. If they were to move 2.2 cm, the cursor would move back toward the center of the screen. This return to center might actually be 'good' from the subject's perspective, depending on whether their objective is to keep the cursor still or keep it near the screen's center. Both are reasonable 'objectives' because the trial fails if the cursor moves too far from the screen's center during each six-second trial.

      This task was recently developed for use in monkeys (Quick et al., 2018), with the intention of being used for the study of the cortical control of movement, and also as a task that might be used to evaluate BMI control algorithms. The purpose of the present study is to better characterize how this task is performed. What sort of control policies are used. Perhaps more deeply, what kind of errors are those policies trying to minimize? To address these questions, the authors simulate control-theory style models and compare with behavior. They do in both in monkeys and in humans.

      These goals make sense as a precursor to future recording or BMI experiments. The primate motor-control field has long been dominated by variants of reaching tasks, so introducing this new task will likely be beneficial. This is not the first non-reaching task, but it is an interesting one and it makes sense to expand the presently limited repertoire of tasks. The present task is very different from any prior task I know of. Thus, it makes sense to quantify behavior as thoroughly as possible in advance of recordings. Understanding how behavior is controlled is, as the authors note, likely to be critical to interpreting neural data.

      From this perspective - providing a basis for interpreting future neural results - the present study is fairly successful. Monkeys seem to understand the task properly, and to use control policies that are not dissimilar from humans. Also reassuring is the fact that behavior remains sensible even when task-difficulty become high. By 'sensible' I simply mean that behavior can be understood as seeking to minimize error: position, velocity, or (possibly) both, and that this remains true across a broad range of task difficulties. The authors document why minimizing position and minimizing velocity are both reasonable objectives. Minimizing velocity is reasonable, because a near-stationary cursor can't move far in six seconds. Minimizing position error is reasonable, because the trial won't fail if the cursor doesn't stray far from the center. This is formally demonstrated by simulating control policies: both objectives lead to control policies that can perform the task and produce realistic single-trial behavior. The authors also demonstrate that, via verbal instruction, they can induce human subjects to favor one objective over the other. These all seem like things that are on the 'need to know' list, and it is commendable that this amount of care is being taken before recordings begin, as it will surely aid interpretation.

      Yet as a stand-alone study, the contribution to our understanding of motor control is more limited. The task allows two different objectives (minimize velocity, minimize position) to be equally compatible with the overall goal (don't fail the trial). Or more precisely, there exists a range of objectives with those two at the extreme. So it makes sense that different subjects might choose to favor different objectives, and also that they can do so when instructed. But has this taught us something about motor control, or simply that there is a natural ambiguity built into the task? If I ask you to play a game, but don't fully specify the rules, should I be surprised that different people think the rules are slightly different?

      The most interesting scientific claim of this study is not the subject-to-subject variability; the task design makes that quite likely and natural. Rather, the central scientific result is the claim that individual subjects are constantly switching objectives (and thus control policies), such that the policy guiding behavior differs dramatically even on a single-trial basis. This scientific claim is supported by a technical claim: that the authors' methods can distinguish which objective is in use, even on single trials. I am uncertain of both claims.

      Consider Figure 8B, which reprises a point made in Figure 1&3 and gives the best evidence for trial-to-trial variability in objective/policy. For every subject, there are two example trials. The top row of trials shows oscillations around the center, which could be consistent with position-error minimization. The bottom row shows tolerance of position errors so long as drift is slow, which could be consistent with velocity-error minimization. But is this really evidence that subjects were switching objectives (and thus control policies) from trial to trial? A simpler alternative would be a single control policy that does not switch, but still generates this range of behaviors. The authors don't really consider this possibility, and I'm not sure why. One can think of a variety of ways in which a unified policy could produce this variation, given noise and the natural instability of the system.

      Indeed, I found that it was remarkably easy to produce a range of reasonably realistic behaviors, including the patterns that the authors interpret as evidence for switching objectives, based on a simple fixed controller. To run the simulations, I made the simple assumption that subjects simply attempt to match their hand position to oppose the cursor position. Because subjects cannot see their hand, I assumed modest variability in the gain, with a range from -1 to -1.05. I assumed a small amount of motor noise in the outgoing motor command. The resulting (very simple) controller naturally displayed the basic range of behaviors observed across trials (see Image 1)

      Peer review image 1.

      Some trials had oscillations around the screen center (zero), which is the pattern the authors suggest reflects position control. In other trials the cursor was allowed to drift slowly away from the center, which is the pattern the authors suggest reflects velocity control. This is true even though the controller was the same on every trial. Trial-to-trial differences were driven both by motor noise and by the modest variability in gain. In an unstable system, small differences can lead to (seemingly) qualitatively different behavior on different trials.

      This simple controller is also compatible with the ability of subjects to adapt their strategy when instructed. Anyone experienced with this task likely understands (or has learned) that moving the hand slightly more than 'one should' will tend to shepherd the cursor back to center, at the cost of briefly high velocity. Using this strategy more sparingly will tend to minimize velocity even if position errors persist. Thus, any subject using this control policy would be able to adapt their strategy via a modest change in gain (the gain linking visible cursor position to intended hand position).

      This model is simple, and there may be reasons to dislike it. But it is presumably a reasonable model. The nature of the task is that you should move your hand opposite where the cursor is. Because you can't see your hand, you will make small mistakes. Due to the instability of the system, those small mistakes have large and variable effects. This feature is likely common to other controllers as well; many may explicitly or implicitly blend position and velocity control, with different trials appearing more dominated by one versus the other. Given this, I think the study presents only weak evidence that individual subjects are switching their objective on individual trials. Indeed, the more parsimonious explanation may be that they aren't. While the study certainly does demonstrate that the control policy can be influenced by verbal instructions, this might be a small adjustment as noted above.

      I thus don't feel convinced that the authors can conclusively tell us the true control policy being used by human and monkey subjects, nor whether that policy is mostly fixed or constantly switching. The data are potentially compatible with any of these interpretations, depending on which control-style model one prefers.

      I see a few paths that the authors might take if they chose.<br /> --First, my reasoning above might be faulty, or there might be additional analyses that could rule out the possibility of a unified policy underlying variable behavior. If so, the authors may be able to reject the above concerns and retain the present conclusions. The main scientifically novel conclusion of the present study is that subjects are using a highly variable control policy, and switching on individual trials. If this is indeed the case, there may be additional analyses that could reveal that.<br /> --Second, additional trial types (e.g., with various perturbations) might be used as a probe of the control policy. As noted below, there is a long history of doing this in the pursuit system. That additional data might better disambiguate control policies both in general, and across trials.<br /> --Third, the authors might find that a unified controller is actually a good (and more parsimonious) explanation. Which might actually be a good thing from the standpoint of future experiments. Interpretation of neural data is likely to be much easier if the control policy being instantiated isn't in constant flux.

      In any case, I would recommend altering the strength of some conclusions, particularly the conclusion that the presented methods can reliably discriminate amongst objectives/policies on individual trials. This is mentioned as a major motivation on multiple occasions, but in most of these instances, the subsequent analysis infers the objective only across trial (e.g., one must observe a scatterplot of many trials). By Figure 7, they do introduce a method for inferring the control policy on individual trials, and while this seems to work considerably better than chance, it hardly appears reliable.

      In this same vein I would suggest toning down aspects of the Introduction and Discussion. The Introduction in particular is overly long, and tries to position the present study as unique in ways that seem strained. Other studies have built links between human behavior, monkey behavior, and monkey neural data (for just one example, consider the corpus of work from the Scott lab that includes Pruszynski et al. 2008 and 2011). Other studies have used highly quantitative methods to infer the objective function used by subjects (e.g. Kording and Wolpert 2004). The very issue that is of interest in the present study - velocity-error-minimization versus position-error-minimization - has been extensively addressed in the smooth pursuit system. That field has long combined quantitative analyses of behavior in humans and monkeys, along with neural recordings. Many pursuit experiments used strategies that could be fruitfully employed to address the central questions of the present study. For example, error stabilization was important for dissecting the control policy used by the pursuit system. By artificially stabilizing the error (position or velocity) at zero, or at some other value, one can determine the system's response. The classic Rashbass step (1961) put position and velocity errors in opposition, to see which dominates the response. Step and sinusoidal perturbations were useful in distinguishing between models, as was the imposition of artificially imposed delays. The authors note the 'richness' of the behavior in the present task, and while one could say the same of pursuit, it was still the case that specific and well-thought through experimental manipulations were pretty critical. It would be better if the Introduction considered at least some of the above-mentioned work (or other work in a similar vein). While most would agree with the motivations outlined by the authors - they are logical and make sense - the present Introduction runs the risk of overselling the present conclusions while underselling prior work.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript discusses the role of phosphorylated ubiquitin (pUb) by PINK1 kinase in neurodegenerative diseases. It reveals that elevated levels of pUb are observed in aged human brains and those affected by Parkinson's disease (PD), as well as in Alzheimer's disease (AD), aging, and ischemic injury. The study shows that increased pUb impairs proteasomal degradation, leading to protein aggregation and neurodegeneration. The authors also demonstrate that PINK1 knockout can mitigate protein aggregation in aging and ischemic mouse brains, as well as in cells treated with a proteasome inhibitor. While this study provided some interesting data, several important points should be addressed before being further consideration.

      Strengths:

      (1) Reveals a novel pathological mechanism of neurodegeneration mediated by pUb, providing a new perspective on understanding neurodegenerative diseases.

      (2) The study covers not only a single disease model but also various neurodegenerative diseases such as Alzheimer's disease, aging, and ischemic injury, enhancing the breadth and applicability of the research findings.

      Comments on revisions:

      This study, through a systematic experimental design, reveals the crucial role of pUb in forming a positive feedback loop by inhibiting proteasome activity in neurodegenerative diseases. The data are comprehensive and highly innovative. However, some of the results are not entirely convincing, particularly the staining results in Figure 1.

      In Figure 1A, the density of DAPI staining differs significantly between the control patient and the AD patient, making it difficult to conclusively demonstrate a clear increase in PINK1 in AD patients. Quantitative analysis is needed. In Fig 1C, the PINK1 staining in the mouse brain appears to resemble non-specific staining.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Ratchinski et al presents a comprehensive analysis of developmental and life history gene expression patterns in brown algal species. The manuscript shows that the degree of generation bias or generation-specific gene expression correlates with the degree of dimorphism. It also reports conservation of life cycle features within generations and marked changes in gene expression patterns in Ectocarpus in the transition between gamete and early sporophyte. The manuscript also reports considerable conservation of gene expression modules between two representative species, particularly in genes associated with conserved functional characteristics.

      Strengths:

      The manuscript represents a considerable "tour de force" dataset and analytical effort. While the data presented is largely descriptive, it is likely to provide a very useful resource for studies of brown algal development and for comparative studies with other developmental and life cycle systems.

      Comments on revisions

      The authors have provided in their response (point 1) a good clarification for their rationale in excluding fucoid algae from the study, based on the diploid nature of the fucoid life cycle. Similarly, they have noted (point 2) that "the relationship between changes in gene expression during very early sporophyte development and during alternation of life cycle generations could be investigated further using a highlydimorphic kelp model system such as Saccharina latissima." For the benefit of the reader who may not be too familiar with the different life cycles in brown algae, I would recommend that these clarifications are included in the Discussion.

      Otherwise the authors have addressed my previous comments adequately.

    1. Reviewer #1 (Public review):

      Summary:

      The study aimed to: (1) assess the magnitude of placebo and nocebo effects immediately after induction through verbal instructions and conditioning, (2) examine the persistence of these effects one week later, and (3) identify predictors of sustained placebo and nocebo responses over time.

      Strengths:

      An innovation was to use sham TENS stimulation as the expectation manipulation. This expectation manipulation was reinforced not only by the change in pain stimulus intensity, but also by delivery of non-painful electrical stimulation, labelled as TENS stimulation.

      Questionnaire-based treatment expectation ratings were collected before conditioning and after conditioning, and after the test session, which provided an explicit measure of participant's expectations about the manipulation.

      The finding that placebo and nocebo effects are influenced by recent experience provides a novel insight into a potential moderator of individual placebo effects.

      Weaknesses:

      There are a limited number of trials per test condition (10) which means that the trajectory of responses to the manipulation may not be explored, which would be an interesting future study.

      The differences between the nocebo and control condition in pain ratings during conditioning could be explained by differing physiological effects of the different stimulus intensities, so it is difficult to make any claims about the expectation effects here. A a randomisation error meant that 25 participants received an unbalanced number 448 of trials per condition (i.e., 10 x VAS 40, 14 x VAS 60, 12 x VAS 80), although the authors accounted for this during analysis so it is not of major concern.

      This manuscript presents a study on expectation manipulation to induce placebo and nocebo effects in healthy participants. The study follows standard placebo experiment conventions with use of TENS stimulation as the placebo manipulation. The authors were able to achieve their aims. A key finding is that placebo and nocebo effects were predicted by recent experience, which is a novel contribution to the literature. The findings provide insights into the differences between placebo and nocebo effects and the potential moderators of these effects.

      Comments on revisions:

      I am satisfied with the author's revisions to the manuscript and have no further comments.

    2. Reviewer #2 (Public review):

      Summary:

      Kunkel et al aim to answer a fundamental question: Do placebo and nocebo effects differ in magnitude or longevity? To address this question, they used a powerful within-participants design, with a very large sample size (n=104), in which they compared placebo and nocebo effects - within the same individuals - across verbal expectations, conditioning, testing phase, and a 1-week follow-up. With elegant analyses, they establish that different mechanisms underlie the learning of placebo vs nocebo effects, with the latter being acquired faster and extinguished slower. This is an important finding for both the basic understanding of learning mechanisms in humans and for potential clinical applications to improve human health.

      Strengths:

      Beyond the above - the paper is well-written and very clear. It lays out nicely the need for the current investigation and what implications it holds. The design is elegant, and the analyses are rich, thoughtful, and interesting. The sample size is large which is highly appreciated, considering the longitudinal, in-lab study design. The question is super important and well-investigated, and the entire manuscript is very thoughtful with analyses closely examining the underlying mechanisms of placebo versus nocebo effects.

      Comments on revisions:

      The authors have addressed all of my concerns and comments - one point for them to verify is that indeed analyses that have not been preregistered will be flagged as such. The provided pre-registration link doesn't specify much about the analysis plans and specific tests used.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors describe a new pipeline to measure changes in vasculature diameter upon opt-genetic stimulation of neurons.

      The work is interesting and the topic is quite relevant to better understand the hemodynamic response on the graph/network level.

      Strengths:

      The manuscript provides a pipeline that allows for the detection of changes in the vessel diameter as well as simultaneously allowing for the location of the neurons driven by stimulation.

      The resulting data could provide interesting insights into the graph-level mechanisms of regulating activity-dependent blood flow.

      The interesting findings include that vessel radius changes depend on depth from the cortical surface and that dilations on average happen closer to the activated neurons.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors develop a highly detailed pipeline to analyze hemodynamic signals from in vivo two-photon fluorescence microscopy. This includes motion correction, segmentation of the vascular network, diameter measurements across time, mapping neuronal position relative to the vascular network, and analyzing vascular network properties (interactions between different vascular segments). For the segmentation, the authors use a Convolution Neural Network to identify vessel (or neural) and background pixels and train it using ground truth images based on semi-automated mapping followed by human correction/annotation. Considerable processing was done on the segmented images to improve accuracy, extract vessel center lines, and compute frame-by-frame diameters. The model was tested with artificial diameter increases and Gaussian noise and proved robust to these manipulations.

      Network-level properties include Assortativity - a measure of how similar a vessel's response is to nearby vessels - and Efficiency - the ease of flow through the network (essentially, the combined resistance of a path based on diameter and vessel length between two points).

      Strengths:

      This is a very powerful tool for cerebral vascular biologists as many of these tasks are labor intensive, prone to subjectivity, and often not performed due to the complexity of collecting and managing volumes of vascular signals. Modelling is not my specialty so I cannot speak too specifically, but the model appears to be well-designed and robust to perturbations. It has many clever features for processing the data.

      The authors rightly point out that there is a real lack in the field of knowledge of vascular network activity at single-vessel resolution. Network anatomy has been studied, but hemodynamics are typically studied either with coarse resolution or in only one or a few vessels at a time. This pipeline has the potential to change that.

      [Editors' note: this work has been through three rounds of revisions, and most recently the authors have added caveats to the discussion. This version of the paper has been assessed by the editors and the weaknesses identified previously remain with earlier versions of the work.]

    1. Reviewer #1 (Public review):

      Summary:

      The authors show that early life experience of juvenile bats shape their outdoor foraging behaviors. They achieve this by raising juvenile bats either in an impoverished or enriched environment. They subsequently test the behavior of bats indoors and outdoors. The authors show that behavioral measures outdoors were more reliable in delineating the effect of early life experiences as the bats raised in enriched environments were more bold, active and exhibit higher exploratory tendencies.

      Strengths:

      The major strength of the study is providing a quantitative study of animal "personality" and how it is likely shaped by innate and environmental conditions. The other major strength is the ability to do reliable long term recording of bats in the outdoors giving researchers the opportunity to study bats in their natural habitat. To this point, the study also shows that the behavioral variables measured indoors do not correlate to that measured outdoor, thus providing a key insight into the importance of test animal behaviors in their natural habitat.

      Weaknesses were in the first round of review:

      It is not clear from the analysis presented in the paper how persistent those environmentally induced changes, do they remain with the bats till end of their lives.

      Comments on revisions:

      The authors have addressed those weaknesses and the paper is much stronger.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Gu et al., employed novel viral strategies, combined with in vivo two-photon imaging, to map the tone response properties of two groups of cortical neurons in A1 - The thalamocortical recipient (TR neurons) and the corticothalamic (CT neurons). They observed a clear tonotopic gradient among TR neurons but not in CT neurons. Moreover, CT neurons exhibited high heterogeneity of their frequency tuning and broader bandwidth, suggesting increased synaptic integration in these neurons. By parsing out different projecting-specific neurons within A1, this study provides insight into how neurons with different connectivity can exhibit different frequency response-related topographic organization.

      Strengths:

      This study reveals the importance of studying neurons with projection specificity rather than layer specificity since neurons within the same layer have very diverse molecular, morphological, physiological, and connectional features. By utilizing a newly developed rabies virus CSN-N2c GCaMP-expressing vector, the authors can label and image specifically the neurons (CT neurons) in A1 that project to the MGB. To compare, they used an anterograde trans-synaptic tracing strategy to label and image neurons in A1 that receive input from MGB (TR neurons).

      Weaknesses:

      - Perhaps as cited in the introduction, it is well known that tonotopic gradient is well preserved across all layers within A1, but I feel if the authors want to highlight the specificity of their virus tracing strategy and the populations that they imaged in L2/3 (TR neurons) and L6 (CT neurons), they should perform control groups where they image general excitatory neurons in the two depths and compare to TR and CT neurons, respectively. This will show that it's not their imaging/analysis or behavioral paradigms that are different from other labs.  

      - Fig 1D and G, the y-axis is Distance from pia (%). I'm not exactly sure what this means. How does % translate to real cortical thickness? 

      - For Fig. 2G and H, is each circle a neuron or an animal? Why are they staggered on top of each other on the x-axis? If x-axis is thedistance from caudal to rostral, each neuron should have a different distance? Also,it seems like it's because Fig. 2H has more circles, that's why it has morevariation thus not significant (for example, at 600 or 900um, 2G seems to haveless circles than 2H).  

      - Similar in Fig 2J and L, why are the circles staggered onthe y-axis now? And is each circle now a neuron or a trial? It seems they havemuch more circles than Fig 2G and 2H. Also I don't think doing a correlation isthe proper stats for this type of plot (this point applies to Fig. 3H and 3J)

      - What does inter-quartile range of BF (IQRBF, in octaves) imply? What's the interpretation of this analysis? I am confused why TR neurons showhigh IQR in HF areas compared to LF areas mean homogeneity among TR neurons (line 213 - 216). On the same note, how is this different from the BF variability?  Isn't higher IQR = tohigher variability?

      - Fig. 4A-B, there's no clear critieria on how the authors categorize V, I, and O Shape. The descriptions in the Methods (line 721 - 725) are also very vague.  

      Comments on revisions:

      The authors have addressed all my questions in the previous round.

    2. Reviewer #2 (Public review):

      Summary:

      Gu and Liang et. al investigated how auditory information is mapped and transformed as it enters and exits a auditory cortex. They use anterograde transsynaptic tracers to label and perform calcium imaging of thalamorecipient neurons in A1 and retrograde tracers to label and perform calcium imaging of corticothalamic output neurons. They demonstrate a degradation of tonotopic organization from the input to output neurons.

      Strengths:

      The experiments appear well executed, well described, and analyzed.

      Weaknesses:

      (1) Given that the CT and TR neurons were imaged at different depths, the question as to whether not these differences could otherwise be explained by layer-specific differences is still not 100% resolved. Control measurements would be needed either by recording 1) CT neurons upper layers 2) TR in deeper layers 3) non-CT in deeper layers and/or 4) non-TR in upper layers.

      (2) What percent of the neurons at the depths being are CT neurons? Similar questions for TR neurons?

      (3) V-shaped, I-shaped, or O-shaped is not an intuitively understood nomenclature, consider changing. Further, the x/y axis for Figure 4a is not labeled, so it's not clear what the heat maps are supposed to represent.

      (4). Many references about projection neurons and cortical circuits are based on studies from visual or somatosensory cortex. Auditory cortex organization is not necessarily the same as other sensory areas. Auditory cortex references should be used specifically, and not sources reporting on S1, V1.

      Comments on revisions:

      The authors have fully addressed my concerns.

    3. Reviewer #3 (Public review):

      Summary:

      The authors performed wide-field and 2-photon imaging in vivo in awake head-fixed mice, to compare receptive fields and tonotopic organization in thalamocortical recipient (TR) neurons vs corticothalamic (CT) neurons of mouse auditory cortex. TR neurons were found in all cortical layers while CT neurons were restricted to layer 6. The TR neurons at nominal depths of 200-400 microns have a remarkable degree of tonotopy (as good if not better than tonotopic maps reported by multiunit recordings). In contrast, CT neurons were very heterogenous in terms of their best frequency (BF), even when focusing on the low vs high frequency regions of primary auditory cortex. CT neurons also had wider tuning.

      Strengths:

      This is a thorough examination using modern methods, helping to resolve a question in the field with projection-specific mapping.

      Weaknesses:

      There are some limitations due to the methods, and it's unclear what the importance of these responses are outside of behavioral context or measured at single timepoints given the plasticity, context-dependence, and receptive field 'drift' that can occur in cortex.

      (1) Probably the biggest conceptual difficulty I have with the paper is comparing these results to past studies mapping auditory cortex topography, mainly due to differences in methods. Conventionally, tonotopic organization is observed for characteristic frequency maps (not best frequency maps), as tuning precision degrades and best frequency can shift as sound intensity increases. The authors used six attenuation levels (30-80 dB SPL) and report that the background noise of the 2-photon scope is <30 dB SPL, which seems very quiet. The authors should at least describe the sound-proofing they used to get the noise level that low, and some sense of noise across the 2-40 kHz frequency range would be nice as a supplementary figure. It also remains unclear just what the 2-photon dF/F response represents in terms of spikes. Classic mapping using single-unit or multi-unit electrodes might be sensitive to single spikes (as might be emitted at characteristic frequency), but this might not be as obvious for Ca2+ imaging. This isn't a concern for the internal comparison here between TR and CT cells as conditions are similar, but is a concern for relating the tonotopy or lack thereof reported here to other studies.

      (2) It seems a bit peculiar that while 2721 CT neurons (N=10 mice) were imaged, less than half as many TR cells were imaged (n=1041 cells from N=5 mice). I would have expected there to be many more TR neurons even mouse for mouse (normalizing by number of neurons per mouse), but perhaps the authors were just interested in a comparison data set and not being as thorough or complete with the TR imaging?

      (3) The authors definitions of neuronal response type in the methods needs more quantitative detail. The authors state: ""Irregular" neurons exhibited spontaneous activity with highly variable responses to sound stimulation. "Tuned" neurons were responsive neurons that demonstrated significant selectivity for certain stimuli. "Silent" neurons were defined as those that remained completely inactive during our recording period (> 30 min). For tuned neurons, the best frequency (BF) was defined as the sound frequency associated with the highest response averaged across all sound levels." The authors need to define what their thresholds are for 'highly variable', 'significant', and 'completely inactive'. Is best frequency the most significant response, the global max (even if another stimulus evokes a very close amplitude response), etc.

      Comments on revisions:

      I think the authors misunderstood my point about sound level and characteristic frequency vs best frequency tonotopic maps. Yes, many studies of cortical responses present stimuli at higher intensities than the characteristic frequencies, but as tuning curves widen with sound level, the macroscopic tonotopic organization of primary auditory cortex breaks down at higher intensities. This is why most of the classic studies of tonotopy e.g., from the Merzenich lab) generated maps of characteristic frequency. As I mentioned before, this isn't so much of an issue for the authors' comparisons of TR vs CT organization in their own study, but in general, this makes it difficult to compare aspects of spatially-organized tonotopy from imaging studies with the older electrophysiological 'truer' tonotopic maps. That said, this means that CT cells also might be tonotopically organized if the authors had been able to look at lower intensity tuning properties.

    1. Joint Public Review:

      Summary:

      Ledamoisel et al. examined the evolution of visual and chemical signals in closely related Morpho butterfly species to understand their role in species coexistence. Using an integrative, state-of-the-art approach combining spectrophotometry, visual modeling, and behavioral mate choice experiments, they quantified differences in wing iridescence and assessed its influence on mate preference in allopatry and sympatry. They also performed chemical analyses to determine whether sympatric species exhibit divergent chemical cues that may facilitate species recognition and mate discrimination. The authors found iridescent coloration to be similar in sympatric Morpho species. Furthermore, male mate choice experiments revealed that in sympatry, males fail to discriminate conspecific females based on coloration, reinforcing the idea that visual signal convergence is primarily driven by predation pressure. In contrast, the divergence of chemical signals among sympatric species suggests their potential role in facilitating species recognition and mate discrimination. The authors conclude that interactions between ecological pressures and signal evolution may shape species coexistence.

      Strengths:

      The study is well-designed and integrates multiple methodological approaches to provide a thorough assessment of signal evolution in the studied species. We appreciate the authors' careful consideration of multiple selective pressures and their combined influence on signal divergence and convergence. Additionally, the inclusion of both visual and chemical signals adds an interesting and valuable dimension to the study, enhancing its importance. Beyond butterflies, this research broadens our understanding of multimodal communication and signal evolution in the context of species coexistence.

      Reviewing Editor comment:

      The authors have improved their submission after revisions and responded to the previous concerns of the reviewers.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors demonstrate for the first time that opioid signaling has opposing effects on the same target neuron depending on the source of the input. Further, the authors provide evidence to support the role of potassium channels in regulating a brake on glutamatergic and cholinergic signaling, with the latter finding being developmentally regulated and responsive to opioid treatment. This evidence solves a conundrum regarding cholinergic signaling in the interpeduncular nucleus that evaded elucidation for many years.

      Strengths:

      This manuscript provides 3 novel and important findings that significantly advance our understanding of the medial habenula-interpeduncular circuitry:

      (1) Mu opioid receptor activation (mOR) reduces postsynaptic glutamatergic currents elicited from substance P neurons while simultaneously enhancing postsynaptic glutamatergic currents from cholinergic neurons, with the latter being developmentally regulated.

      (2) Substance P neurons from the Mhb provide functional input to the rostral nucleus of the IPN, in addition to the previously characterized lateral nuclei.

      (3) Potassium channels (Kv1.2) provide a break on neurotransmission in the IPN,

      The findings here suggest that the authors have identified a novel mechanism for the normal function of neurotransmission in the IPN, so it would be expected to be observable in almost any animal. In the revised manuscript, the authors put forth significant effort to increase the n, thus increasing the confidence in the observations.

      There are also significant sex differences in nAChR expression in the IPN that might not be functionally apparent using the low n presented here. In the revised manuscript, the authors increased the n, and provided data to the reviewers that no significant sex differences were apparent, although there was a trend. Future studies should examine sex differences in detail.

      There are also some particularly novel observations that are presented but not followed up on, and this creates a somewhat disjointed story. For example, in Figure 2, the authors identify neurons in which no response is elicited by light stimulation of ChAT-neurons, but application of DAMGO (mOR agonist) un-silences these neurons. Are there baseline differences in the electrophysiological or morphological properties of these "silent" neurons compared to the responsive neurons? In the revised manuscript, the authors directly tested this with new experiments in SST+ neurons in the IPN, demonstrating convincingly that mOR activation unsilences these neurons.

      With the revisions, the authors have addressed the reviewers' concerns and significantly improved the manuscript. I find no further weaknesses.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, Chittajallu and colleagues present compelling evidence that mu opioid receptor (MOR) activation can potentiate synaptic neurotransmission in a medial habenula to interpeduncular nucleus (mHb-IPN) subcircuit. While, projections from mHb tachykinin 1 (Tac1) neurons onto lateral IPN neurons show a canonical opioid-induced synaptic depression in glutamate release, excitatory neurotransmission in mHb choline acetyltransferase (ChAT) projections to the rostral IPN is potentiated by opioids. This function emerges around age P27 in mice, when MOR expression in the IPN peaks.

      Strengths:

      Carefully executed electrophysiological experiments with appropriate controls. Interesting description of a neurodevelopmental change in the effects of opioids on mHb-IPN signaling.

      Weaknesses:

      A minor concern is that the genetic strategy used to target the mHb-IPN pathway (constitutive ChR2 expression in all ChAT+ and Tac1+ neurons) might not specifically target this projection. Future studies are needed to examine the precise mechanism whereby MOR signaling can potentiate glutamatergic neurotransmission in ChAT+ MHb-IPN projections."

    3. Reviewer #3 (Public review):

      Summary:

      Here the authors describe the role of mORs in synaptic glutamate release from substance P and cholinergic neurons in the medial habenula to interpeduncular nucleus (IPN) circuit in adult mice. They show that mOR activation reduces evoked glutamate release from substance P neurons yet increases evoked glutamate release and Ach release from cholinergic neurons. Unlike glutamate release, Ach release is only detected when potassium channels are blocked with 4-AP or dendrotoxin. The authors also report a previously unidentified glutamatergic input to IPR from SP neurons and describe the developmental timing of mOR- facilitation in adolescent mice.

      Strengths:

      - The experiments provide new insight into the role of mORs in controlling evoked glutamate release in a circuit with high levels of mORs and established roles in relevant behaviors.

      - The experiments are rigorous, and the results are clear cut. The conclusions are supported by the data.

      - The findings will be of interest to those working in the field of synaptic transmission and those interested in the function of the medial habenula or interpeduncular nucleus, as well as those seeking to understand the role of opioids on normal and pathological behaviors.

      Weaknesses:

      - The mechanistic underpinnings of these interesting and novel results are not pursued.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Lin et al. studies the role of EXOC6A in ciliogenesis and its relationship with the interactor myosin-Va using a range of approaches based on the RPE1 cell line model. They establish its spatio-temporal organization at centrioles, the forming ciliary vesicle and ciliary sheath using ExM, various super-resolution techniques, and EM, including correlative light and electron microscopy. They also perform live imaging analyses and functional studies using RNAi and knockout. They establish a role of EXOC6A together with myosin-Va in Golgi-derived, microtubule- and actin-based vesicle trafficking to and from the ciliary vesicle and sheath membranes. Defects in these functions impair robust ciliary shaft and axoneme formation due to defective transition zone assembly.

      Strengths:

      The study provides very high-quality data that support the conclusions. In particular, the imaging data is compelling. It also integrates all findings in a model that shows how EXOC6A participates in multiple stages of ciliogenesis and how it cooperates with other factors.

      Weaknesses:

      The precise role of EXOC6A remains somewhat unclear. While it is described as a component of the exocyst, the authors do not address its molecular functions and whether it indeed works as part of the exocyst complex during ciliogenesis.

    2. Reviewer #2 (Public review):

      Summary:

      The molecular mechanisms underlying ciliogenesis are not well understood. Previously, work from the same group (Wu et al., 2018) identified myosin-Va as an important protein in transporting preciliary vesicles to the mother vesicles, allowing for initiation of ciliogenesis. The exocyst complex has previously been implicated in ciliogenesis and protein trafficking to cilia. Here, Lin et al. investigate the role of exocyst complex protein EXOC6A in cilia formation. The authors find that EXOC6A localizes to preciliary vesicles, ciliary vesicles, and the ciliary sheath. EXOC6A colocalizes with Myo-Va in the ciliary vesicle and the ciliary sheath, and both proteins are removed from fully assembled cilia. EXOC6A is not required for Myo-Va localization, but Myo-VA and EHD1 are required for EXOC6A to localize in ciliary vesicles. The authors propose that EXOC6A vesicles continually remodel the cilium: FRAP analysis demonstrates that EXOC6A is a dynamic protein, and live imaging shows that EXOC6A fuses with and buds off from the ciliary membrane. Loss of EXOC6A reduces, but does not eliminate, the number of cilia formed in cells. Any cilia that are still present are structurally abnormal, with either bent morphologies or the absence of some transition zone proteins. Overall, the analyses and imaging are well done, and the conclusions are well supported by the data. The work will be of interest to cell biologists, especially those interested in centrosomes and cilia.

      Strengths:

      The TEM micrographs are of excellent quality. The quality of the imaging overall is very good, especially considering that these are dynamic processes occurring in a small region of the cell. The data analysis is well done and the quantifications are very helpful. The manuscript is well-written and the final figure is especially helpful in understanding the model.

      Weaknesses:

      Additional information about the functional and mechanistic roles of EXOC6A would improve the manuscript greatly.

    3. Reviewer #3 (Public review):

      Summary:

      Lin et al report on the dynamic localization of EXOC6A and Myo-Va at pre-ciliary vesicles, ciliary vesicles, and ciliary sheath membrane during ciliogenesis using three-dimensional structured illumination microscopy and ultrastructure expansion microscopy. The authors further confirm the interaction of EXOC6A and Myo-Va by co-immunoprecipitation experiments and demonstrated the requirement of EHD1 for the EXOC6A-labeled ciliary vesicles formation. Additional experiments using gene-silencing by siRNA and pharmacological tools identified the involvement of dynein-, microtubule-, and actin in the transport mechanism of EXOC6A-labeled vesicles to the centriole, as they have previously reported for Myo-Va. Notably, loss of EXOC6A severely disrupts ciliogenesis, with the majority of cells becoming arrested at the ciliary vesicle (CV) stage, highlighting the involvement of EXOC6A at later stages of ciliogenesis. As the authors observe dynamic EXOC6A-positive vesicle release and fusion with the ciliary sheath, this suggests a role in membrane and potentially membrane protein delivery to the growing cilium past the ciliary vesicle stage. While CEP290 localization at the forming cilium appears normal, the recruitment of other transition zone components, exemplified by several MKS and NPHP module components, was also impaired in EXOC6A-deficient cells.

      Strengths:

      (1) By applying different microscopy approaches, the study provides deeper insight into the spatial and temporal localization of EXOC6A and Myo-Va during ciliogenesis.

      (2) The combination of complementary siRNA and pharmacological tools targeting different components strengthens the conclusions.

      (3) This study reveals a new function of EXOC6A in delivering membrane and membrane proteins during ciliogenesis, both to the ciliary vesicle as well as to the ciliary sheath.

      (4) The overall data quality is high. The investigation of EXOC6A at different time points during ciliogenesis is well schematized and explained.

      Weaknesses:

      (1) Since many conclusions are based on EXOC6A immunostaining, it would strengthen the study to validate antibody specificity by demonstrating the absence of staining in EXOC6A-deficient cells.

      (2) While the authors generated an EXOC6A-deficient cell line, off-target effects can be clone-specific. Validating key experiments in a second independent knockout clone or rescuing the phenotype of the existing clone by re-expressing EXOC6A would ensure that the observed phenotypes are due to EXOC6A loss rather than unintended off-target effects.

      (3) Some experimental details are lacking from the materials and methods section. No information on how the co-immunoprecipitation experiments have been performed can be found. The concentrations of pharmacological agents should be provided to allow proper interpretation of the results, as higher or lower doses can produce nonspecific effects. For example, the concentrations of ciliobrevin and nocodazole used to treat RPE1 cells are not specified and should be included. More precise settings for the FRAP experiments would help others reproduce the presented data. Some details for the siRNA-based knockdowns, such as incubation times, can only be found in the figure legends.

      Taken together, the authors achieved their goal of elucidating the role of EXOC6A in ciliogenesis, demonstrating its involvement in vesicle trafficking and membrane remodeling in both early and late stages of ciliogenesis. Their findings are supported by experimental evidence. This work is likely to have an impact on the field by expanding our understanding of the molecular machinery underlying cilia biogenesis, particularly the coordination between the exocyst complex and cytoskeletal transport systems. The methods and data presented offer valuable tools for dissecting vesicle dynamics and cilium formation, providing a foundation for future research into ciliary dysfunction and related diseases. By connecting vesicle trafficking to structural maturation of an organelle, the study adds important context to the broader description of cellular architecture and organelle biogenesis.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts.

      Strengths:

      The study presents convincing genetic and pharmacological approaches on the role of hypoxia signaling enhance the regenerative potential of the epicardium

      Weaknesses:

      The major weakness remains the lack of convincing evidence demonstrating the role of hypoxia signaling in EMT modulation in the epicardial cells. The authors claimed that EMT assays adopted in this study are based on similar previous studies. Surprisingly, two of the references provided correspond to their own research group (PMID: 17108969, PMID: 19235142), limiting the credit for such claims, and the other two (PMID: 27023710, PMID: 12297106) assessment of cell migration but not EMT is reported. Thus, EMT remains to be convincingly demonstrated.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Gamen et al. investigated the roles of hypoxia and HIF1a signaling in regulating epicardial function during cardiac development and neonatal heart regeneration. The authors identified hypoxic regions in the epicardium during development and demonstrated that genetic and pharmacological stabilization of HIF1a during neonatal heart injury prolonged epicardial activation, preserved myocardium, enhanced infarct resolution, and maintained cardiac function beyond the normal postnatal regenerative window.

      Strengths:

      HIF1a signaling was manipulated in an epicardium-specific manner using appropriate genetic tools.

      Weaknesses:

      Some conclusions still need clarification.

      Comments on revisions:

      (1) The authors' comment on the partial overlap of HP1 and HIF1a IF signals (HIF1a is highly unstable ... broader regions of hypoxia) is reasonable and would help readers interpret the data if included in the text describing Fig. 1.

      (2) The conclusion regarding WT1+ cells in Fig. 2a and b remains unclear. Both panels display larger and smaller magenta cells, and when all are taken into account, the overall number does not appear substantially different. Additional clarification is needed on how the quantification was performed.

      (3) Regarding Figure 6-figure supplement 1c, it seems difficult to conclude the endothelial identity of WT1+ cells based on EMCN staining, as the markers do not overlap. The authors note that WT1 is upregulated in endothelial cells, but this has been reported in the context of injury, which differs from the context of the present study involving Molidustat.

    3. Reviewer #3 (Public review):

      Summary:

      The author's research here was to understand the role of hypoxia and hypoxia-induced transcription factors Hif-1a in the epicardium. The authors noted that hypoxia was prevalent in the embryonic heart and this persisted into neonatal stages until post natal day 7 (P7). Hypoxic regions in the heart were noted in the outer layer of the heart and expression of Hif-1a coincided with the epicardial gene WT1. It has been documented that at P7, the mouse heart cannot regenerate after myocardial infarction and the authors speculated that the change in epicardial hypoxic conditions could play a role in regeneration. The authors then used genetic and pharmacological tools to increase the activity of Hif genes in the heart and noted that there was a significant improvement in cardiac function when Hif-1a was active in the epicardium. The authors speculated that the presence of Hif-1a improved cell survival.

      Strengths:

      A focus on hypoxia and its effects on the epicardium in development and after myocardial infraction. This study outlines a potential to extend the regenerative time window in neonatal mammalian hearts.

      Weaknesses:

      While the observations of improved cardiac function is clear, the exact mechanism of how increased Hif-1a activity causes these effects is not completely revealed. The authors mention improved myocardium survival, but do not include studies to demonstrate this.

      There is an indication that fibrosis is decreased in hearts where Hif activity is prolonged, but there are no studies to link hypoxia and fibrosis.

      Comments on revisions:

      In the manuscript revision, the authors address my comments. They outline differences between genetic disruption of Phd2 and chemical inactivation could be due to dosing and drug half-life of Molidustat. The other comments are addressed by explaining that they have analyzed enough heart sections and hearts to come to their conclusions. The authors also state they cannot generate more numbers for this study, therefore I accept their conclusions as stated.

    1. Joint Public Review:

      This manuscript tests the notion that bulky membrane glycoproteins suppress viral infection through non-specific interactions. Using a suite of biochemical, biophysical, and computational methods in multiple contexts (ex vivo, in vitro, and in silico), the authors collect compelling evidence supporting the notion that (1) a wide range of surface glycoproteins erect an energy barrier for the virus to form stable adhesive interface needed for fusion and uptake and (2) the total amount of glycan, independent of their molecular identity, additively enhanced the suppression.

      As a functional assay the authors focus on viral infection starting from the assumption that a physical boundary modulated by overexpressing a protein-of-interest could prevent viral entry and subsequent infection. Here they find that glycan content (measured using the PNA lectin) of the overexpressed protein and total molecular weight, that includes amino acid weight and the glycan weight, is negatively correlated with viral infection. They continue to demonstrate that it is in effect the total glycan content, using a variety of lectin labelling, that is responsible for reduced infection in cells. Because the authors do not find a loss in virus binding this allows them to hypothesize that the glycan content presents a barrier for the stable membrane-membrane contact between virus and cell. They subsequently set out to determine the effective radius of the proteins at the membrane and demonstrate that on a supported lipid bilayer the glycosylated proteins do not transition from the mushroom to the brush regime at the densities used. Finally, using Super Resolution microscopy they find that above an effective radius of 5 nm proteins are excluded from the virus-cell interface.

      The experimental design does not present major concerns and the results provide insight on a biophysical mechanism according to which, repulsion forces between branched glycan chains of highly glycosylated proteins exert a kinetic energy barrier that limits the formation of a membrane/viral interface required for infection.

      In their revised manuscript and rebuttal, the authors address several general and specific concerns that were raised about their first submission. The revised manuscript now makes the strength of the evidence supporting their claims, compelling.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript analyses the effects of deleting the TgfbR1 and TgfbR2 receptors from endothelial cells at postnatal stages on vascular development and blood-retina barrier maturation in the retina. The authors find that deletion of these receptors affects vascular development in the retina but importantly it affects the infiltration of immune cells across the vessels in the retina. The findings demonstrate that Tgf-beta signaling through TgfbR1/R2 heterodimers regulates primarily the immune phenotypes of endothelial cells in addition to regulating vascular development, but has minor effects on the BRB maturation. The data provided by the authors provides a solid support for their conclusions.

      Strengths:

      (1) The manuscript uses a variety of elegant genetic studies in mice to analyze the role of TgfbR1 and TgfbR2 receptors in endothelial cells at postnatal stages of vascular development and blood-retina barrier maturation in the retina.

      (2) The authors provide a nice comparison of the vascular phenotypes in endothelial-specific knockout of TgfbR1 and TgfbR2 in the retina (and to a lesser degree in the brain) with those from Npd KO mice (loss of Ndp/Fzd4 signaling) or loss of VEGF-A signaling to dissect the specific roles of Tgf-beta signaling for vascular development in the retina.

      (3) The snRNAseq data of vessel segments from the brains of WT versus TgfbR1 -iECKO mice provides a nice analysis of pathways and transcripts that are regulated by Tgf-beta signaling in endothelial cells.

      Weaknesses (Original Submission):

      (1) The authors claim that choroidal neovascular tuft phenotypes are similar in TgfbrR1 KO and TgfbrR2 KO mice. However, the phenotypes look more severe in the TgfbrR1 KO rather than TgfbrR2 KO mice. Can the authors show a quantitative comparison of the number of choroidal neovascular tufts per whole eye cross-section in both genotypes?

      (2) In the analysis of Sulfo-NHS-Biotin leakage in the retina to assess blood-retina barrier maturation, the authors claim that there is increased vascular leakage in the TgfbR1 KO mice. However, there does not seem like Sulfo-NHS-biotin is leaking outside the vessels. Therefore, it cannot be increased vascular permeability. Can the authors provide a detailed quantification of the leakage phenotype?

      (3) The immune cell phenotyping by snRNAseq seems premature as the number of cells is very small. The authors should sort for CD45+ cells and perform single cell RNA sequencing.

      (4) The analysis of BBB leakage phenotype in TgfbR1 KO mice needs to be more detailed and include some tracers in addition to serum IgG leakage.

      (5) A previous study (Zarkada et al., 2021, Developmental Cell) showed that EC-deletion of Alk5 affects the D tip cells. The phenotypes of those mice look very similar to those shown for TgfbrR1 KO mice. Are D tip cells lost in these mutants by snRNAseq?

      Comments on revisions:

      The authors have addressed the major weaknesses that I raised with the original submission adequately in the revised manuscript.

    2. Reviewer #2 (Public review):

      Summary:

      The authors meticulously characterized EC-specific Tgfbr1, Tgfbr2, or double knockout in the retina, demonstrating through convincing immunostaining data that loss of TGF-β signaling disrupts retinal angiogenesis and choroidal neovascularization. Compared to other genetic models (Fzd4 KO, Ndp KO, VEGF KO), the Tgfbr1/2 KO retina exhibits the most severe immune cell infiltration. The authors proposed that TGF-β signaling loss triggers vascular inflammation, attracting immune cells - a phenotype specific to CNS vasculature, as non-CNS organs remain unaffected.

      Strengths:

      The immunostaining results presented are clear and robust. The authors performed well-controlled analyses against relevant mouse models. snRNA-seq corroborates immune cell leakage in the retina and vascular inflammation in the brain.

      Comments on revisions:

      The authors have revised the manuscript and addressed all my questions.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether advantageous and disadvantageous inequality aversion can be vicariously learned and generalized. Using an adapted version of the ultimatum game (UG), in three phases, participants first gave their own preference (baseline phase), then interacted with a "teacher" to learn their preference (learning phase), and finally were tested again on their own (transfer phase). The key measure is whether participants exhibited similar choice preference (i.e., rejection rate and fairness rating) influenced by the learning phase, by contrasting their transfer phase and baseline phase. Through a series of statistical modeling and computational modeling, the authors reported that both advantageous and disadvantageous inequality aversion can indeed be learned (Study 1), and even be generalised (Study 2).

      Strengths:

      This study is very interesting, that directly adapted the lab's previous work on the observational learning effect on disadvantageous inequality aversion, to test both advantageous and disadvantageous inequality aversion in the current study. Social transmission of action, emotion, and attitude have started to be looked at recently, hence this research is timely. The use of computational modeling is mostly appropriate and motivated. Study 2 that examined the vicarious inequality aversion on conditions where feedback was never provided is interesting and important to strengthen the reported effects. Both studies have proper justifications to determine the sample size.

      Weaknesses:

      Despite the strengths, a few conceptual aspects and analytical decisions have to be explained, justified, or clarified.

      INTRODUCTION/CONCEPTUALIZATION

      (1) Two terms seem to be interchangeable, which should not, in this work: vicarious/observational learning vs preference learning. For vicarious learning, individuals observe others' actions (and optionally also the corresponding consequence resulted directly by their own actions), whereas, for preference learning, individuals predict, or act on behalf of, the others' actions, and then receive feedback if that prediction is correct or not. For the current work, it seems that the experiment is more about preference learning and prediction, and less so about vicarious learning. But the intro and set are heavily around vicarious learning, and late the use of vicarious learning and preference learning is rather mixed in the text. I think either tone down the focus on vicarious learning, or discuss how they are different. Some of the references here may be helpful: Charpentier et al., Neuron, 2020; Olsson et al., Nature Reviews Neuroscience, 2020; Zhang & Glascher, Science Advances, 2020

      EXPERIMENTAL DESIGN

      (2) For each offer type, the experiment "added a uniformly distributed noise in the range of (-10 ,10)". I wonder how this looks like? With only integers such as 25:75, or even with decimal points? More importantly, is it possible to have either 70:30 or 90:10 option, after adding the noise, to have generated an 80:20 split shown to the participants? If so, for the analyses later, when participants saw the 80:20 split, which condition did this trial belong to? 70:30 or 90:10? And is such noise added only to the learning phase, or also to the baseline/transfer phases? This requires some clarification.

      (3) For the offer conditions (90:10, 70:30, 50:50, 30:70, 10:90) - are they randomized? If so, how is it done? Is it randomized within each participants, and/or also across participants (such that each participant experienced different trial sequences)? This is important, as the order especially for the leanring phase can largely impact on the preference learning of the participants.

      STATISTICAL ANALYSIS & COMPUTATIONAL MODELING

      (4) In Study 1 DI offer types (90:10, 70:30), the rejection rate for DI-AI averse looks consistently higher than that for DI averse (ie, blue line is above the yellow line). Is this significant? If so, how come? Since this is a between-subject design, I would not anticipate such a result (especially for the baseline). Also, for the LME results (eg, Table S3), only interactions were reported but not the main results.

      (5) I do not particularly find this analysis appealing: "we examined whether participants' changes in rejection rates between Transfer and Baseline, could be explained by the degree to which they vicariously learned, defined as the change in punishment rates between the first and last 5 trials of the Learning phase." Naturally, participants' behavior in the first 5 trials in the learning phase will be similar to those in the baseline; and their behavior in the last 5 trials in the learning phase would echo those at the transfer phase. I think it would be stronger to link the preference learning results to the chance between baseline and transfer phase, eg, by looking at the difference between alpha (beta) at the end of the learning phase and the initial alpha (beta).

      (6) I wonder if data from the baseline and transfer phases can also be modeled, using a simple Fehr-Schimdt model? This way, the change in alpha/beta can also be examined between the baseline and transfer phase.

      (7) I quite liked Study 2 that tests the generalization effect, and I expected to see an adapted computational modeling to directly reflect this idea. Indeed, the authors wrote "[...] given that this model [...] assumes the sort of generalization of preferences between offer types [...]". But where exactly did the preference learning model assumed the generalization? In the methods, the modeling seems to be only about Study 1; did the authors advise their model to accommodate Study 2? The authors also ran simulation for the learning phase in Study 2 (Figure 6), and how did the preference updated (if at all) for offers (90:10 and 10:90) where feedback was not given? Extending/Unpacking the computational modeling results for Study2 will be very helpful for the paper.

      Comments on revisions:

      I kept my original public review, so that future readers can see the progress and development of the manuscript.

      The authors have largely addressed my original questions/concerns, and I have two outstanding comments.

      (a) Related to my original comment #6, where I suggested to apply the F-S model also to the baseline and transfer phase. The authors were inclined not to do it, but in fact later in comment #7 and in the manuscript they opted to use a more complex F-S-based model to their learning phase. I agree that the rejection rate is indeed a clear indication, but for completeness, it'd be more consistent and compelling if the paper follows a model-free (model-agnostic) and model-based approach in all phases of the experiment.

      (b) Related to my original comment #4, I appreciate that the authors have provided more details of their LMM models. But I don't think it is accurate regardless. First, all offer levels (50:50, 30:70, 10:90), should not be coded as pure categorical levels. In fact, they have an ordinal meaning, a single ordinal predictor with three levels should be used. This also avoids the excessive number of interactions the authors have pointed out.

      Second, running a model with only interactions without main effects is flawed. All textbooks on stats emphasize that without the presence of the main effects, the interpretation of interaction only is biased.

      So these LMMs needs to be revised before the manuscript eventually gets to a version of record.

    2. Reviewer #2 (Public review):

      Summary:

      This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments aim to demonstrate that individuals can learn to reject such offers by observing a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.

      Strengths:

      This paper is well-written and tackles an important topic relevant to social norms, morality, and justice. The findings are promising (though further control conditions are necessary to support the conclusions). The study is well-situated in the literature, with a clever experimental design and a computational approach that may offer insights into latent cognitive processes. In the revision, the authors clarified some questions related to the initial submission.

      Weaknesses:

      Despite these strengths, I remain unconvinced that the current evidence supports the paper's central claims. Below, I outline several issues that, in my view, limit the strength of the conclusions.

      (1) Experimental Design and Missing Control Condition:

      The authors set out to test whether observing a "teacher" who is averse to advantageous inequity (Adv-I) will affect observers' own rejection of Adv-I offers. However, I think the design of the task lacks an important control condition needed to address this question. At present, participants are assigned to one of two teachers: DIS or DIS+ADV. Behavioral differences between these groups can only reveal relative differences in influence; they cannot establish whether (and how) either teacher independently affects participants' own behavior. For example, a significant difference between conditions can emerge even if participants are only affected by the DIS teacher and are not affected at all by the DIS+ADV teacher. What is crucially missing here is a no-teacher control condition, which can then be compared with each teacher condition separately. This control condition would also control for pure temporal effects unrelated to teacher influence (e.g., increasing Adv-I rejections due to guilt build-up).

      While this criticism applies to both experiments, it is especially apparent in Experiment 2. As shown in Figure 4, the interaction for 10:90 offers reflects a decrease in rejection rates following the DIS teacher, with no significant change following the DIS+ADV teacher. Ignoring temporal effects, this pattern suggests that participants may be learning NOT to reject from the DIS teacher, rather than learning to reject from the DIS+ADV teacher. On this basis, I do not see convincing evidence that participants' own choices were shaped by observing Adv-I rejections.

      In the Discussion, the authors write that "We found that participants' own Adv-I-averse preferences shifted towards the preferences of the Teacher they just observed, and the strength of these contagion effects related to the degree of behavior change participants exhibited on behalf of the Teachers, suggesting that they internalized, at least somewhat, these inequity preferences." However, there is no evidence that directly links the degree of behaviour change (on the teacher's behalf) to contagion effects (own behavioural change). I think there was a relevant analysis in the original version, but it was removed from the current version.

      (2) Modelling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided. Additionally, behavioural fits for the losing models are not shown, leaving readers in the dark about where these models fail. Readers would benefit from seeing qualitative/behavioural patterns that favour the winning model. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related. For example, the feedback that the teacher would have rejected an offer provides evidence that rejection is "correct" but also that acceptance is "an error," and the latter is not incorporated into the modelling. In other words, offers are modelled as two-armed bandits (where separate values are learned for reject and accept actions), but the situation is effectively a one-armed bandit (if one action is correct, the other is mistaken). It is unclear to what extent this limitation affects the current RL formulations. Can the authors justify/explain their reasoning for including these specific variants? The manuscript only states Q-values for reject actions, but what are the Q-values for accept actions? This is unclear.

      In Experiment 2, only the preferred model is capable of generalization, so it is perhaps unsurprising that this model "wins." However, this does not strongly support the proposed learning mechanism, lacking a comparison with simpler generalizing mechanisms (see following comments).

      (3) Conceptual Leap in Modelling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models, learning occurs independently for each offer (hence no cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore "model-free" RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner acquires a functional form that allows prediction of the teacher's feedback based on offer features (e.g., linear or quadratic weighting). Because feedback for an offer modulates the parameters of this function (feature weights), generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even outperform the preference learning model, casting doubt on the authors' conclusions.

      Of note: even the behaviourists knew that when Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean Little Albert had a sophisticated model of animals that he used to infer how they behave.

      In their rebuttal letter, the authors acknowledge these possibilities, but the manuscript still does not explore or address alternative mechanisms.

      (4) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g., Fig. 3A, AI+DI blue group). This is puzzling. Thinking about this, I realized the model makes quite strong, unintuitive predictions which are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then, over learning, the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact that the teacher rejects 75% of the offers. In other words, as learning continues, learners will diverge from the teacher. On the other hand, if a participant begins learning by tending to accept this offer (guilt < 1.5), then during learning, they can increase their rejection rate but never above 50%. Thus, one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).

      In their rebuttal letter, the authors acknowledged these anomalies and stated that they were able to build a better model (where anomalies are mitigated, though not fully eliminated). But they still report the current model and do not develop/discuss alternatives. A more principled model may be a Bayesian model where participants learn a belief distribution (rather than point estimates) regarding the teacher's parameters.

      (5) Statistical Analysis: The authors state in their rebuttal letter that they used the most flexible random effect structure in mixed-effects models. But this seems not to be the case in the model reported in Table SI3 (the very same model was used for other analyses too). Indeed, here it seems only intercepts are random effects. This left me confused about which models were used.

    1. Reviewer #1 (Public review):

      Turner et al. present an original approach to investigate the role of Type-1 nNOS interneurons in driving neuronal network activity and in controlling vascular network dynamics in awake head-fixed mice. Selective activation or suppression of Type-1 nNOS interneurons has previously been achieved using either chemogenetic, optogenetic or local pharmacology. Here, the authors took advantage of the fact that Type-1 nNOS interneurons are the only cortical cells that express the tachykinin receptor 1 to ablate them with a local injection of saporin conjugated to substance P (SP-SAP). SP-SAP causes cell death in 90 % of type1 nNOS interneurons without affecting microglia, astrocytes and neurons. The authors report that the ablation has no major effects on sleep or behavior. Refining the analysis by scoring neural and hemodynamic signals with electrode recordings, calcium signal imaging and wide field optical imaging, they observe that Type-1 nNOS interneuron ablation does not change the various phases of the sleep/wake cycle. However, it does reduce low-frequency neural activity, irrespective of the classification of arousal state. Analyzing neurovascular coupling using multiple approaches, they report small changes in resting-state neural-hemodynamic correlations across arousal states, primarily mediated by changes in neural activity. Finally, they show that nNOS type 1 interneurons play a role in controlling interhemispheric coherence and vasomotion.

      In conclusion, these results are interesting, use state-of-the-art methods and are well supported by the data and their analysis. I have only a few comments on the stimulus-evoked haemodynamic responses that can be easily addressed:

      Comments on revisions:

      As I mentioned in my initial review, this study is important. In my opinion, it could be published as is. Nonetheless, I am still somewhat dissatisfied with the authors' responses to my earlier comments. I understand that the same animals were not used for both stimulation paradigms, which is unfortunate. Nonetheless, I would have appreciated it if the authors had provided a couple of experiments illustrating GCaMP7 signals during brief stimulation in their reply to the reviewers. I am still unconvinced by the authors' suggestion that the GCaMP7 signal would remain stable during removal of the vascular undershoot. Since the absence of the undershoot is notable, I anticipate that a significant part of the initial response to prolonged stimulation is influenced by processes that occur during the 0.1-second stimulation, processes that may involve a change in the bulk neuronal response.

      In short, the data could support or refute the following statement: "Loss of type-I nNOS neurons drove minimal changes in the vasodilation elicited by brief stimulation..."

    2. Reviewer #2 (Public review):

      Summary:

      This important study by Turner et al., examines the functional role of a sparse but unique population of neurons in the cortex that express Nitric oxide synthase (Nos1). To do this, they pharmacolologically ablate these neurons in focal region of whisker related primary somatosensory (S1) cortex using a saponin-Substance P conjugate. Using widefield and 2-photon microscopy, as well as field recordings, they examine the impact of this cell specific lesion on blood flow dynamics and neuronal population activity. Within primary somatosensory cortex after Nos1 ablation, they find changes in neural activity patterns, decreased delta band power, reduced sensory evoked changes in blood flow (specifically eliminates the sustained blood flow change after stimulation) and decreased vasomotion.

      Strengths:

      This was a technically challenging study and the experiments were executed in an expert manner. The manuscript was well written and I appreciated the cartoon summary diagrams included in each figure. The analysis was rigorous and appropriate. Their discovery that Nos1 neurons can have significant effects on blood flow dynamics and neural activity is quite novel that should seed many follow up, mechanistic experiments to explain this phenomenon. The conclusions were justified by the convincing data presented.

      Weaknesses:

      I did not find any major flaws with the study. I originally noted some potential issues with the authors' characterization of the lesion and its extent, but that has been resolved in the revised manuscript.

      Comments on revisions:

      The authors have thoughtfully addressed the relatively minor concerns I had originally raised. Congratulations to the authors for producing this important paper.

    1. Reviewer #1 (Public review):

      Most human traits and common diseases are polygenic, influenced by numerous genetic variants across the genome. These variants are typically non-coding and likely function through gene regulatory mechanisms. To identify their target genes, one strategy is to examine if these variants are also found among genetic variants with detectable effects on gene expression levels, known as eQTLs. Surprisingly, this strategy has had limited success, and most disease variants are not identified as eQTLs, a puzzling observation recently referred to as "missing regulation".

      In this work, Jeong and Bulyk aimed to better understand the reasons behind the gap between disease-associated variants and eQTLs. They focused on immune-related diseases and used lymphoblastoid cell lines (LCLs) as a surrogate for the cell types mediating the genetic effects. Their main hypothesis is that some variants without eQTL evidence might be identifiable by studying other molecular intermediates along the path from genotype to phenotype. They specifically focused on variants that affect chromatin accessibility, known as caQTLs, as a potential marker of regulatory activity.

      The authors present data analyses supporting this hypothesis: several disease-associated variants are explained by caQTLs but not eQTLs. They further show that although caQTLs and eQTLs likely have largely overlapping underlying genetic variants, some variants are discovered only through one of these mapping strategies. Notably, they demonstrate that eQTL mapping is underpowered for gene-distal variants with small effects on gene expression, whereas caQTL mapping is not dependent on the distance to genes. Additionally, for some disease variants with caQTLs but no corresponding eQTLs in LCLs, they identify eQTLs in other cell types.

      Altogether, Jeong and Bulyk convincingly demonstrate that for immune-related diseases, discovering the missing disease-eQTLs requires both larger eQTL studies and a broader range of cell types in expression assays. It remains to be seen what fractions of the missing disease-eQTLs will be discovered with either strategy and whether these results can be extended to other diseases or traits.

      It should be noted that the problem of "missing regulation" has been investigated and discussed in several recent papers, notably Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; Mostafavi et al., Nat. Genet. 2023. The results reported by Jeong and Bulyk are not unexpected in light of this previous work (all of which they cite), but they add valuable empirical evidence that mostly aligns with the model and discussions presented in Mostafavi et al.

    2. Reviewer #2 (Public review):

      eQTLs have emerged as a method for interpreting GWAS signals. However, some GWAS signals are difficult to explain with eQTLs. In this paper, the authors demonstrated that caQTLs can explain these signals. This suggests that for GWAS signals to actually lead to disease phenotypes, they must be accessible in the chromatin. This implies that for GWAS signals to translate into disease phenotypes, they need to be accessible within the chromatin.

      However, fundamentally, caQTLs, like GWAS, have the limitation of not being able to determine which genes mediate the influence on disease phenotypes. This limitation is consistent with the constraints observed in this study.

      (1) Reproducibility / Methods. The concrete numbers provided in the authors' response (e.g., 20 YRI LCL ATAC‑seq samples used only for peak discovery; caQTL mapping restricted to 100 GBR LCLs; 99,320 ATAC peaks tested vs 14,872 genes for eQTL; 373 European RNA‑seq samples, with clarification of overlap) do not appear to be reflected in the Methods. These specifics should be incorporated directly into the Methods sections.

      (2) Experimental evidence demonstrating transcription factor binding at representative caQTL peaks would strengthen causal interpretation of these loci.

      (3) Tissue/cell‑type specificity of caQTLs: Prior work supports that chromatin‑level effects are broadly shared across cellular states, whereas expression effects are more context‑specific; thus, caQTLs are generally less "state‑specific" than eQTLs. However, this does not imply equivalence across distinct cell types: caQTLs derived from different cell types may yield different results, particularly where accessibility is cell‑type restricted.

    1. Reviewer #1 (Public review):

      The study analyzes the gastric fluid DNA content identified as a potential biomarker for human gastric cancer. However, the study lacks overall logicality, and several key issues require improvement and clarification. In the opinion of this reviewer, some major revisions are needed:

      (1) This manuscript lacks a comparison of gastric cancer patients' stages with PN and N+PD patients, especially T0-T2 patients.

      (2) The comparison between gastric cancer stages seems only to reveal the difference between T3 patients and early-stage gastric cancer patients, which raises doubts about the authenticity of the previous differences between gastric cancer patients and normal patients, whether it is only due to the higher number of T3 patients.

      (3) The prognosis evaluation is too simplistic, only considering staging factors, without taking into account other factors such as tumor pathology and the time from onset to tumor detection.

      (4) The comparison between gfDNA and conventional pathological examination methods should be mentioned, reflecting advantages such as accuracy and patient comfort.

      (5) There are many questions in the figures and tables. Please match the Title, Figure legends, Footnote, Alphabetic order, etc.

      (6) The overall logicality of the manuscript is not rigorous enough, with few discussion factors, and cannot represent the conclusions drawn

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigated whether the total DNA concentration in gastric fluid (gfDNA), collected via routine esophagogastroduodenoscopy (EGD), could serve as a diagnostic and prognostic biomarker for gastric cancer. In a large patient cohort (initial n=1,056; analyzed n=941), they found that gfDNA levels were significantly higher in gastric cancer patients compared to non-cancer, gastritis, and precancerous lesion groups. Unexpectedly, higher gfDNA concentrations were also significantly associated with better survival prognosis and positively correlated with immune cell infiltration. The authors proposed that gfDNA may reflect both tumor burden and immune activity, potentially serving as a cost-effective and convenient liquid biopsy tool to assist in gastric cancer diagnosis, staging, and follow-up.

      Strengths:

      This study is supported by a robust sample size (n=941) with clear patient classification, enabling reliable statistical analysis. It employs a simple, low-threshold method for measuring total gfDNA, making it suitable for large-scale clinical use. Clinical confounders, including age, sex, BMI, gastric fluid pH, and PPI use, were systematically controlled. The findings demonstrate both diagnostic and prognostic value of gfDNA, as its concentration can help distinguish gastric cancer patients and correlates with tumor progression and survival. Additionally, preliminary mechanistic data reveal a significant association between elevated gfDNA levels and increased immune cell infiltration in tumors (p=0.001).

      Weaknesses:

      The study has several notable weaknesses. The association between high gfDNA levels and better survival contradicts conventional expectations and raises concerns about the biological interpretation of the findings. The diagnostic performance of gfDNA alone was only moderate, and the study did not explore potential improvements through combination with established biomarkers. Methodological limitations include a lack of control for pre-analytical variables, the absence of longitudinal data, and imbalanced group sizes, which may affect the robustness and generalizability of the results. Additionally, key methodological details were insufficiently reported, and the ROC analysis lacked comprehensive performance metrics, limiting the study's clinical applicability.

    1. Reviewer #1 (Public review):

      This study examines the spatiotemporal properties of feedback signals in the human brain during an object discrimination task. Using 7T fMRI and MEG, the authors show that task-relevant object category information can be decoded from both deep and superficial layers of V1, originating from occipito-temporal and posterior parietal cortices. In contrast, task-irrelevant category feedback does not appear in V1, even when the same objects are foveally presented. Low-level orientation information, however, is decodable from V1 regardless of task relevance and is supported by recurrence with occipito-temporal regions. These findings suggest that category decoding in V1 depends on task-driven feedback rather than feedforward visual features.

      Strengths

      This study leverages two advanced neuroimaging modalities attempting to connect object recognition across cortical layer and whole-brain levels. The revised manuscript strengthens the connection between the fMRI and MEG components.<br /> It also demonstrates that a peripheral object discrimination task is effective for isolating feedforward and feedback signals using 7T fMRI.<br /> It is particularly notable that no low-level features were fed back to V1's superficial layers in the peripheral object discrimination task. The authors further show that high- and low-level feedback to the foveal V1 are comparable in strength, supporting the idea that the superficial layer in V1 selectively represents task-relevant content.

      Weaknesses

      One alternative explanation for the absence of task-irrelevant category decoding in the foveal task could be that feedback enhancement may be required to decode complex features from V1 (compared to a coarse orientation feature). It would be informative to test whether the findings hold if the categorical boundary were defined through a low level feature other than orientation (e.g., frequency) (e.g. Ester, Sprague and Serences, 2020).

      I would like to echo the concerns raised by the other reviewer regarding multiple comparisons correction. It is important to apply correction procedures, especially given the number of statistical tests performed across brain regions where strict a priori hypotheses are unlikely. In the case of cluster-based statistics, the manuscript should clearly specify both the cluster-forming threshold and the significance threshold used for comparing true cluster masses to the shuffled distribution.

      Conclusion

      Overall, the results support the study's conclusions. This work addresses a timely question in object categorization and predictive coding-specifically, how feedback signals vary in content and timing across cortical layers.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript reports high-resolution functional MRI data and MEG data revealing additional mechanistic information about an established paradigm studying how foveal regions of primary visual cortex (V1) are involved in processing peripheral visual stimuli. Because of the retinotopic organization of V1, peripheral stimuli should not evoke responses in the regions of V1 that represent stimuli in the center of the visual field (the fovea). However, functional MRI responses in foveal regions do reflect the characteristics of peripheral visual stimuli - this is a surprising finding first reported in 2008. The present study uses fMRI data with sub-millimeter resolution to study the how responses at different depths in the foveal gray matter do or don't reflect peripheral object characteristics during 2 different tasks: one in which observers needed to make detailed judgments about object identity, and one in which observers needed to make more coarse judgments about object orientation. FMRI results reveal interesting and informative patterns in these two conditions. A follow-on MEG study yields information about the timing of these responses. Put together, the findings settle some questions in the field and add new information about the nature of visual feedback to V1.

      Strengths:

      (1) Rigorous and appropriate use of "laminar fMRI" techniques.

      (2) The introduction does an excellent job of contextualizing the work.

      (3) Control experiments and analyses are designed and implemented well

      Weaknesses:

      (1) The use of the term "low order" to describe object orientation is potentially confusing. During review, the authors considered this issue and responded that they would continue with the use of the term low-order to describe object orientation because a low-pass spatial frequency filter would provide object orientation information. This is certainly a reasonable perspective; nonetheless, this reviewer thinks spatial frequencies that low are not readily represented by neurons in early visual cortex and it is common to use "low-order" to refer to features extracted in early visual areas, so I think this causes confusion.

      (2) The methods contain a nice description of the methods for "correcting the vascular-related signals". I'm guessing this is the method that removed, e.g., 22% of foveal voxels (previous paragraph), but it's not entirely clear whether the voxel selection methods described in the "correcting the vascular-related signals" are describing the same processing step referred to in the previous paragraph as "a portion of voxels was removed based on large vein distribution".

      (3) It is quite difficult to perform laminar analyses across multiple visual areas because distortion compensation is not perfect and registration of functional to anatomical data will always be a bit better in some places and a bit worse in others. An ideal manuscript would include some images showing registration quality in V1, LOC, and IPS regions for a few different participants, or include some kind of quality metric indicating the confidence in depth assignments in different regions.

      (4) For the decoding analysis, it would be helpful to have more information about how samples were defined for each condition -- were the beta values for entire blocks used as samples for each condition, or were separate timepoints during a block used in the SVM as repeated samples for each condition?

    1. Reviewer #1 (Public review):

      Wang, Junxiu et al. investigated the underlying molecular mechanisms of the insecticidal activity of betulin against the peach aphid, Myzus persicae. There are two important findings described in this manuscript: (a) betulin inhibits the gene expression of GABA receptor in the aphid, and (b) betulin binds to the GABA receptor protein, acting as an inhibitor. The first finding is supported by RNA-Seq and RNAi, and the second one is convinced with MST and electrophysiological assays. Further investigations on the betulin binding site on the receptor protein provided a fundamental discovery that T228 is the key amino acid residue for its affinity, thereby acting as an inhibitor, backed up by site-directed mutagenesis of the heterologously-expressed receptor in E. coli and by CRISPR-genome editing in Drosophila.

      Comments on revisions:

      All of my review comments have been addressed, and the manuscript has been revised accordingly.

    2. Reviewer #2 (Public review):

      Summary:

      This important study shows that betulin from wild peach trees disrupts neural signaling in aphids by targeting a conserved site in the insect GABA receptor. The authors present a nicely integrated set of molecular, physiological, and genetic experiments to establish the compound's species-specific mode of action. While the mechanistic evidence is solid, the manuscript would benefit from a broader discussion of evolutionary conservation and potential off-target ecological effects.

      Strengths:

      The main strengths of the study lie in its mechanistic clarity and experimental rigor. The identification of a betulin-binding single threonine residue was supported by (1) site-directed mutagenesis and (2) functional assays. These experiments strongly support the specificity of action. Furthermore, the use of comparative analyses between aphids and fruit flies demonstrates an important effort to explore species specificity, and the integration of quantitative data further enhances the robustness of the conclusions.

      Comments on revisions:

      The revision satisfactorily addresses my concerns on evolutionary context, methodological clarity, and ecological risk.

    1. Reviewer #1 (Public review):

      Summary:

      The authors study the steady-state solutions of ODE models for molecular signaling involving ligand binding coupled to multi-site phosphorylation at saturating ligand concentrations. Although the results are in principle general, the work highlights the receptor tyrosine kinases (RTK) as model systems. After presenting previous ODE model solutions, the authors present their own "kinetic sorting" model, which is distinguished by ligand-induced phosphorylation-dependent receptor degradation and the property that every phosphorylation state is signaling competent. The authors show that this model recovers the two types of non-monotonicity experimentally reported for RTKs: maximum activity for intermediate ligand affinity and maximum activity for intermediate kinase activity.

      The main contribution of the work is in demonstrating that their model can capture both types of non-monotonicity, whereas previous models could at most capture non-monotonicity of ligand binding.

      Strengths:

      The question of how energy dissipating, and thus non-equilibrium, molecular systems can achieve steady-state solutions not accessible to equilibrium systems is of fundamental importance in biomolecular information processing and self-organization. Although the authors do not address the energy requirements of their non-equilibrium model, their comparative analysis of different alternative non-equilibrium models provides insight into the design choices necessary to achieve non-monotonic control, a property that is inaccessible at equilibrium.

      The paper is succinctly written and easy to follow, and the authors achieve their aims by providing convincing numerical solutions demonstrating non-monotonicity over the range of parameter values encompassing the biologically relevant regime.

      Weaknesses:

      (1) A key motivating framework for this work is the argument that the ability to tune to recognize intermediate ligand affinities provides a control knob for signal selection that is available to non-equilibrium systems. As such, this seems like a compelling type of ligand selectivity, which is a question of broad interest. However, as the authors note in the results, the previously published "limited signaling model" already achieves such non-monotonicity to ligand binding affinity. The introduction and abstract do not clearly delineate the new contributions of the model.

      The novel benefit of the model introduced by the authors is that it also achieves non-monotonic response to kinase activity. Because such non-monotonicity is observed for RTK, this would make the authors' model a better fit for capturing RTK behavior. However, the broad significance of achieving non-monotonicity to kinase activity is not motivated or supported by empirical evidence in the paper. As such, the conceptual significance of the modified model presented by the authors is not clear.

      UPDATE: The authors have now clarified the significance of the model in elucidating how known motifs (multisite phosphorylation and active receptor degradation) could explain the behavior, including non-monotonicity. The authors have also provided compelling arguments for the biological significance of achieving non-monotonic kinase activity response.

      (2) Whereas previous models used in the literature are schematized in Figure 1, the model proposed by the author is missing (See line 97 of page 3). Without the schematic, the text description of the model is incomplete.

      UPDATE: this issue has been resolved.

      (3) The authors use the activity of the first phosphorylation site as the default measure of activity. This choice needs to be justified. Why not use the sum of the activities at all sites?

      UPDATE: This was a non-issue. The potential misunderstanding has been mitigated by clarifications in the text.

      Comments on revisions:

      All issues previously identified were convincingly addressed. I have no additional suggestions.

    2. Reviewer #2 (Public review):

      Summary:

      In classical models of signaling network, the signaling activity increases monotonically with the ligand affinity. However, certain receptors prefer ligands of intermediate affinity. In the paper, the authors present a new minimal model to derive generic conditions for ligand specificity. In brief, this requires multi-site phosphorylation and that high-affinity complexes be more prone to degrade. This particular type of kinetic discrimination allows to overcome equilibrium constraints.

      Strengths:

      The model is simple, and it adds only a few parameters to classical generic models. They moreover vary these additional parameters in ranges based on experimental observations. They explain how the introduction of these new parameters is essential to ligand specificity. Their model quantitatively reproduces the ligand specificity of a certain receptor. They finally provide testable prediction.

      Weaknesses:

      The naming of multiple variables as activity without precise definitions may be confusing to readers.

      Comments on revisions:

      I thank the authors for addressing my comments. One point remains regarding the naming of multiple variables as activity. Besides using other words, the authors may consider giving precise definitions of terms, e.g. by writing "We define kinase activity as the phosphorylation rate $\omega=k_p\tau$." A connection that appears only at line 204 in the present manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Cupollilo et al describes the development, characterization and application of a novel activity labeling system; fast labelling of engram neurons (FLEN). Several such systems already exist but this study adds additional capability by leveraging an activity marker that is destabilized (and thus temporally active) as well as being driven by the full-length promoter of cFos. The authors demonstrate the activity dependent induction and timecourse of expression, first in cultured neurons and then in vivo in hippocampal CA3 neurons after one trial contextual fear conditioning. In a series of ex vivo experiments the authors perform patch clamp analysis of labeled neurons to determine if these putative engram neurons differ from non-labelled neurons using both the FLEN system as well as the previously characterized RAM system. Interestingly the early labelled neurons at 3 h post CFC (FLEN+) demonstrated no differences in excitability whereas the RAM labeled neurons at 24h after CFC had increased excitability. Examination of synaptic properties demonstrated an increase in sEPCS and mEPSC frequencies as well as those for sIPSCs and mIPSCs which was not due to a change in the mossy fiber input to these neurons.

      Strengths:

      Overall the data is of high quality and the study introduces a new tool while also reassessing some principles of circuit plasticity in the CA3 that have been the focus of prior studies.

      Weaknesses:

      No major weaknesses were noted

    2. Reviewer #2 (Public review):

      Summary:

      Cupollilo et al. investigate the properties of hippocampal CA3 neurons that express the immediate early gene cFos in response to a single foot shock. They compare ex-vivo the electrophysiological properties of these "engram neurons" labeled with two different cFos promoter-driven green markers: Their new virally delivered tool FLEN labels neurons 2-6 h after activity, while RAM contains additional enhancers and peaks considerably later (>24 h). Since the fraction of labeled CA3 cells is comparable with both constructs, it is assumed (but not tested) that they label the same population of activated neurons at different time points. Both FLEN+ and RAM+ neurons in CA3 receive more synaptic inputs compared to non-expressing control neurons, which could be a causal factor for cFos activation, or a very early consequence thereof. Frequency facilitation and E/I ratio of mossy fiber inputs were also tested, but are not different in both cFos+ groups of neurons. One day after foot shock, RAM+ neurons are more excitable than RAM- neurons, suggesting a slow increase in excitability as a major consequence of cFos activation.

      Strengths:

      The study is conducted to high standards and contributes significantly to our understanding of memory formation and consolidation in the hippocampus. Modifications of intrinsic neuronal properties seem to be more salient than overall changes in the total number of (excitatory and inhibitory) inputs, although a switch in the source of the synaptic inputs would not have been detected by the methods employed in this study

      Weaknesses:

      The new tool FLEN is not quantitatively compared to e.g. the TetTag reporter mouse. Nevertheless, the fluorescent images of FLEN+ neurons are quite convincing.

    1. Reviewer #1 (Public review):

      This work derives a general theory of optimal gain modulation in neural populations. It demonstrates that population homeostasis is a consequence of optimal modulation for information maximization with noisy neurons. The developed theory is then applied to the distributed distributional code (DDC) model of the primary visual cortex to demonstrate that homeostatic DDCs can account for stimulus specific adaptation.

      Strengths:

      The theory of gain modulation proposed in the paper is rigorous and the analysis is thorough. It does address the issue in an interesting, general setting. The proposed approach separates the question of which bits of sensory information are transmitted (as defined by a specific computation and tuning curve shapes) and how well are they transmitted (as defined by the tuning curve gain optimized to combat noise). This separation permits the application of the developed theory to different neural systems.

      Weaknesses:

      The manuscript effectively consits of two parts: a general theory of optimal gain modulation and a DDC model of the visual cortex. From my perspective it is not entirely clear which components of the developed theory and the model it is applied to are essential to explain the experimental phenomena in the visual cortex (Fig. 12). This "separation" into two parts makes this work, in my view, somewhat diffused.

      Overall, I think this is an interesting contribution and I assess it positively. It has the potential of deepening our understanding of efficient neural representations beyond sensory periphery.

    2. Reviewer #2 (Public review):

      Summary:

      Using the theory of efficient coding, the authors study how neural gains may be adjusted to optimize information transmission by noisy neural populations while minimizing metabolic cost, under the assumption that other aspects of neural activity (i.e. tuning) are determined by the computation performed by the network.

      The manuscript first presents mathematical results for the general case where the computational goals of the neural population are not specified (the computation is implicit in the assumed tuning curves). It then develops the theory for a specific probabilistic coding scheme. The general theory provides an explanation for firing rate homeostasis at the level of neural clusters with firing rate heterogeneity within clusters. The specific application further explains stimulus-specific adaptation in visual cortex.

      The mathematical derivations, simulations and application to visual cortex data are solid as far as I can tell.

      This remains a highly technical manuscript although the authors have improved the clarity of presentation of the general theory (which is the bulk of the work presented) and better motivated/explained modeling assumptions and choices. In the second part, the manuscript focuses on a specific code (homeostatic DDC) showing that this can be implemented by divisive normalization and can explain stimulus-specific adaptation.

      Strengths:

      The problem of efficient coding is a long-standing and important one. This manuscript contributes to that field by proposing a theory of efficient coding through gain adjustments, independent of the computational goals of the system. The main assumption, and insight, is that computational goals and efficiency can be in some sense factorized: tuning curve shapes are determined by the computational goal, whereas gains can be adjusted to optimize transmission of information.

      One key result is a normative explanation for firing rate homeostasis at the level of neural clusters (groups of neurons that perform a similar computation) with firing rate heterogeneity within each cluster. Both phenomena are widely observed, and reconciling them under one theory is important.

      The mathematical derivations are thorough. Although the model of neural activity is artificial, the authors make sure to include many aspects of cortical physiology, while also keeping the models quite general.

      Section 2.5 derives the conditions in which homeostasis would be near-optimal in cortex, which appear to be consistent with many empirical observations in V1. This indicates that homeostasis in V1 might be indeed a close to optimal solution to code efficiently in the face of noise.

      The application to the data of Benucci et al 2013 is the first to offer a normative explanation of stimulus-specific adaptation in V1.

      The novelty and significance of the work are presented clearly in the newly extended Introduction and Discussion.

      Weaknesses:

      The manuscript remains hard to read. The general theory occupies most of the manuscript, as needed to convey it fully. But as a result the second part on homeostatic DDC and adaptation is somewhat underdeveloped and risks having less visibility than it might deserve.

      The paper Benucci et al 2013 shows that homeostasis holds for some stimulus distributions, but not others i.e. when the 'adapter' is present too often. This manuscript, like the Benucci paper, discards those datasets. But from a theoretical standpoint, it seems important to consider why that would be the case, and if it can be predicted by the theory proposed here. The authors now acknowledge this limitation in the Discussion.

    1. Reviewer #1 (Public review):

      In this manuscript, Chen et al. investigate the role of the membrane estrogen receptor GPR30 in spinal mechanisms of neuropathic pain. Using a wide variety of techniques, they first provide convincing evidence that GPR30 expression is restricted to neurons within the spinal cord, and that GPR30 neurons are well-positioned to receive descending input from the primary sensory cortex (S1). In addition, the authors put their findings in the context the previous knowledge in the field, presenting evidence demonstrating that GRP30 is expressed in the majority of CCK-expressing spinal neurons. Overall, this manuscript furthers our understanding of neural circuity that underlies neuropathic pain and will be of broad interest to neuroscientists, especially those interested in somatosensation. Nevertheless, the manuscript would be strengthened by additional analyses and clarification of data that is currently presented.

      Strengths:

      The authors present convincing evidence for expression of GPR30 in the spinal cord that is specific to spinal neurons. Similarly, complementary approaches including pharmacological inhibition and knockdown of GPR30 are used to demonstrate a role for the receptor in driving nerve injury-induced pain in rodent models.

      Weaknesses:

      Although steps were taken to put their data into the broader context of what is already known about the spinal circuitry of pain, more considerations and analyses would help the authors better achieve their goal. For instance, to determine whether GPR30 is expressed in excitatory or inhibitory neurons, more selective markers for these subtypes should be used over CamK2. Moreover, quantitative analysis of the extent of overlap between GPR30+ and CCK+ spinal neurons is needed to understand the potential heterogeneity of the GPR30 spinal neuron population, and to interpret experiments characterizing descending SI inputs onto GPR30 and CCK spinal neurons. Filling these gaps in knowledge would make their findings more solid.

      Revised Manuscript Update:

      In their revised manuscript, Chen et al. have added additional data that establishes GPR30 spinal neurons as a population of excitatory neurons, half of which express CCK. These data help to position GPR30 neurons in the existing framework of spinal neuron populations that contribute to neuropathic pain, strengthening the author's findings.

    2. Reviewer #3 (Public review):

      Summary:

      The authors convincingly demonstrate that a population of CCK+ spinal neurons in the deep dorsal horn express the G protein coupled estrogen receptor GPR30 to modulate pain sensitivity in the chronic constriction injury (CCI) model of neuropathic pain in mice. Using complementary pharmacological and genetic knockdown experiments they convincingly show that GPR30 inhibition or knockdown reverses mechanical, tactile and thermal hypersensitivity, conditioned place aversion, and c-fos staining in the spinal dorsal horn after CCI. They propose that GPR30 mediates an increase in postsynaptic AMPA receptors after CCI using slice electrophysiology which may underlie the increased behavioral sensitivity. They then use anterograde tracing approaches to show that CCK and GPR30 positive neurons in the deep dorsal horn may receive direct connections from primary somatosensory cortex. Chemogenetic activation of these dorsal horn neurons proposed to be connected to S1 increased nociceptive sensitivity in a GPR30 dependent manner. Overall, the data are very convincing and the experiments are well conducted and adequately controlled. However, the proposed model of descending corticospinal facilitation of nociceptive sensitivity through GPR30 in a population of CCK+ neurons in the dorsal horn is not fully supported.

      Strengths:

      The experiments are very well executed and adequately controlled throughout the manuscript. The data are nicely presented and supportive of a role for GPR30 signaling in the spinal dorsal horn influencing nociceptive sensitivity following CCI. The authors also did an excellent job of using complementary approaches to rigorously test their hypothesis.

      Weaknesses:

      The primary weakness in this manuscript involves overextending the interpretations of the data to still propose a role for corticospinal descending facilitation. While the viral tracing demonstrates a potential connection between S1 and CCK+ or GPR30+ spinal neurons, no direct evidence is provided for S1 in facilitating any activity of these neurons in the dorsal horn.

      Comments on the latest version:

      The authors did an excellent job addressing many of the critiques raised. Despite acknowledging that a direct functional corticospinal projection to CCK/GPR30+neurons is not supported by the data and revising the title, these claims still persist throughout the manuscript. Manipulating gene expression or the activity of postsynaptic neurons through a trans-synaptic labeling strategy does not directly support any claim that those upstream neurons are directly modulating spinal neurons through the proposed pathway. Indeed they might, but that is not demonstrated here.

    1. Reviewer #1 (Public review):

      Summary:

      The authors identify and investigate a specific population of PVNOT neurons (oxytocin neurons of the paraventricular hypothalamus) that seem to be involved in both behavioral and autonomic thermoregulation. These cells are activated by social thermoregulatory behaviors, but can influence thermoregulation in both social and nonsocial contexts, specifically during transitions and when mice are at low core body temperature (Tb).

      Strengths:

      The manuscript has many strengths.

      This is a novel study, with a clear question that is addressed using an array of well-designed experiments employing integrative methods. Most of the figures are well-developed, and the analysis is generally rigorous and well-detailed. The authors are clearly very experienced in this field, and indeed, their scholarly introduction and discussion sections are to their credit.

      The link between thermoregulation and the oxytocin system is well established, as is the link between social behavior and the same broad system. However, the link between these three things is novel, if it can be well substantiated. I am not persuaded that was achieved here, but I do think this manuscript has many novel and useful offerings.

      The authors use a cooling floor, and only go down to 10 degrees Celsius. This is fine, but I would like to see the effects using ambient temperature also. This is not a crucial issue, as it is not necessary for the authors' interpretations, but it could improve measurement sensitivity.

      Through an elegant behavioral experiment in Figure 1, the authors identify c-Fos patterns in the PVN that are activated by active social huddling, and they show that at the RNA level these cells overlap with oxytocin, indicating that they are oxytocin-producing cells. But this is not well discussed or indeed quantified.

      The authors engage in a deep analysis of fiber photometry experiments, first by observing PVNOT neuron overall activity during a variety of different behaviors in the context of three different temperatures. Activity was associated with nesting, quiescence, and both types of huddling (when social opportunities exist). Social situations did not strongly affect this, nor did temperature conditions. These analyses indicate that the PVNOT neurons are involved in mediating specific behavioral outputs.

      With more detailed analysis, the authors investigated how PVNOT neuronal activity relates to behavioral state transition. They found that the probability of peak PVNOT neural activity strongly predicts the offset of quiescence or quiescent huddling, and therefore can be argued to signal an increase in physical activity, and as such, increased metabolism. However, the opposite pattern was observed for huddling and nesting (onset being associated with PVNOT activity), again arguing for increased thermogenesis as a function.

      What is particularly compelling is that these peaks of activity tend to occur during low Tb, again arguing for the function in increasing body warmth.

      The authors then employ an impressive setup where they image brown adipose tissue (BAT) in tandem with DeepLabCut (DLC) based animal tracking. Crucially, BAT activity and surface temperature correlated with the calcium peak of PVNOT neurons.

      Lastly, optogenetic activation of PVNOT neurons increased Tb when it was in the lower range, but not when in the higher range. It also affected BAT and rump temperature, again at low Tb. However, there is no real effect on behavior, except a trend in activity.

      The authors do some interesting tracing work at the end, though this is not functionally explored. That is not a criticism, as it does seem like this would be a whole follow-up study.

      Weaknesses:

      While novel and valuable, the manuscript feels incomplete in its current form.

      The main evidence lacking is a loss of function of the experiment. Ideally, the authors would chronically and/or acutely inhibit PVNOT neurons to establish their necessity. I know this seems obvious, but I think it is important.

      The relative lack of behavioral analysis following optogenetic activation of PVNOT neurons is puzzling. The authors must surely want to study what this intervention does to behavioral state transitions. I feel that the current level of analysis limits the overall conclusions of this study to a large extent.

      A broader criticism is that the social dimension of this manuscript seems overplayed. Naturally, oxytocin signalling can be implicated in social behavior based on a large literature. However, the focus on social thermogenesis seems like a crude integration of social behavior and thermogenesis. Given that the authors see their effects in both social and nonsocial cases of thermoregulation, I am not sure the attempts at integrating social functions and thermogenic functions of PVNOT neurons are warranted. That is, unless the authors have further experiments or analysis that can convincingly justify this link.

      In addition, the analysis of virgin females and lactating mothers seems out of place in Figure 4.

      The c-Fos/oxytocin overlap needs to be quantified.

      The methods section could be improved by explaining how the authors exclude animals that exhibit both types of huddling, if they occur within a 90-minute time window. This seems like it could cause significant confounds.

      The computer vision model is not well-explained. The authors need to be far more explicit here about how it was validated.

      The authors should cite and consider this preprint: https://www.biorxiv.org/content/10.1101/2024.09.17.613378v1

    2. Reviewer #2 (Public review):

      Summary:

      This is a very interesting study from Vandendoren and colleagues examining the role of PVN oxytocin neurons during thermoregulatory behaviors, in particular during thermoregulatory huddling. The findings are important and compelling, and have implications for the thermoregulation field as well as the social/naturalistic behavior field.

      Strengths:

      The study is very creative and tackles a challenging task to examine how natural and social behavior influences neural circuits for a homeostatic system such as thermoregulation. The authors use a combination of state-of-the-art tools (photometry, optogenetics, automated behavior tracking, thermal imaging, and core body temperature measurement), often in combination with each other, to produce a rigorous and high-dimensional dataset. Carrying out tightly temperature-controlled experiments and examining natural behavior, neural activity, and body physiology simultaneously is quite a feat. I applaud the authors for taking this on in a rigorous and detailed manner. This paper will be valuable for both the thermoregulation field as well as for researchers interested in naturalistic social behaviors. The conclusions are supported by the data.

      Weaknesses:

      I have a number of questions and suggestions for clarification that would help improve the interpretation of the findings.

      (1) Figure 1D-F: It would be helpful to include representative images of cFos expression in the PVN, LS, and DMH during both quiescent and solo huddling conditions, to better illustrate the reported differences.

      (2) Figure 1C: The data suggest a general suppression of neural activity during sleep-associated quiescent huddling, which somewhat complicates the interpretation of what specifically the active huddling cells are responding to. A more informative control might have been a comparison between huddling and a more generic form of social engagement (e.g., dyadic sniffing) to assess whether huddling-responsive neurons are broadly tuned to social stimuli. While it may not be feasible to add this experimentally at this time, a brief discussion of this limitation in the main text would be valuable.

      (3) Figure 2H-J vs. Figure 1: The fiber photometry data suggest increased PVN activity during quiescent huddling vs active huddling, which appears to contrast with the cFos results from Figure 1. It would be helpful for the authors to comment on possible reasons for this discrepancy-e.g., methodological differences, temporal resolution, or cell-type specificity.

      (4) Figure 2O: A comparable linear regression for active huddling would be informative to assess whether the observed relationships extend across behavioral states.

      (5) Temperature manipulation: The use of floor temperature changes presents a distinct physiological and sensory experience from, for example, manipulation of ambient temperature. A discussion of how this choice may affect neural circuit engagement or interpretation of thermoregulatory responses would be beneficial.

      (6) Correlations with behavior: Across the manuscript, it would be informative to see correlations between huddle duration and neural activity (e.g., cFos expression, calcium signal magnitude). Similarly, do longer huddles produce greater thermogenic effects?

      (7) Lactating vs. virgin mothers: The inclusion of maternal data is intriguing but feels somewhat disconnected from the central huddling-thermoregulation narrative. If these experiments are to remain, additional explanation of their rationale and how they fit into the broader story would help clarify their relevance.

      (8) Optogenetic manipulation: Have the authors tested the effect of PVN OT neuron stimulation or inhibition during huddling? Even a negative result would be of interest to the field. If these data exist (main or supplementary), I apologize for missing them. If not, the authors might consider including them or commenting briefly on any attempts or challenges in carrying out these experiments.

    3. Reviewer #3 (Public review):

      Summary:

      The authors aimed to elucidate the relationship between physiological state (i.e., behavioral status and thermogenic sympathetic activity) and the activity of hypothalamic paraventricular oxytocin (PVNOT) neurons in female mice. They studied this by combining automated classification of mouse behavior via video-based analysis with calcium imaging of PVNOT neuron activity. Sympathetic thermogenesis was inferred from surface temperature changes captured by infrared thermography, and the authors provided their custom analysis scripts in the manuscript. Notably, they found that a strong, pulsatile activation of PVNOT neurons was "occasionally" observed immediately before the animals transitioned from a resting to an active state. This pulsatile activity was observed in both pair-housed and individually housed animals. While PVNOT neurons are often associated with social behaviors, this finding suggests that the oxytocinergic system is also engaged during naturalistic behaviors, even in the absence of social interactions. If experiments were more convincingly performed and presented, the results would point to a broader physiological role of central oxytocin, including in the regulation of fundamental brain states and homeostatic processes, and offer a new perspective on the functional significance of central oxytocin signaling.

      Strengths:

      The oxytocinergic neural system is believed to subserve a wide range of physiological functions, and elucidating these roles requires monitoring PVNOT neuronal activity under various behavioral contexts, as well as manipulating this activity to establish causal links. In the present study, the authors show a technically sound experimental framework that integrates behavioral tracking in both individually and group-housed mice with the observation and manipulation of PVNOT neuron activity. This experimental setup represents a valuable methodological resource for researchers investigating the physiological functions of oxytocin.

      Weaknesses:

      While this study successfully established a new experimental setup for simultaneous analyses of behavior and PVNOT neuronal activity, there are several concerns regarding the interpretation of the results and the robustness of the conclusions, which should be more thoroughly addressed.

      (1) The study relies on the assumption that calcium imaging and optogenetic manipulation were restricted only to PVNOT neurons. However, the specificity of AAV-mediated gene expression was not verified quantitatively. A fair number of cell bodies in the PVN expressed GCaMP8s, but not OT, indicating potential off-target expression (see Figure S2A, B). The lack of quantitative validation weakens confidence in the causal interpretation of the results.

      (2) The study focuses on the transition from rest to active states following pulsatile activity of PVNOT neurons. However, the physiological significance of this pulsatile activity remains unclear. According to the authors, pulsatile activity occurred with an approximately 20% probability within 100 seconds prior to the end of the resting state. This implies that, in the remaining 80% of rest-to-active transitions, pulsatile PVNOT activity did not occur, suggesting that it is not essential for initiating the transition. A comparative analysis of behavioral and thermogenic changes between transitions with and without pulsatile PVNOT activity would help to further clarify the functional relevance of this phenomenon and strengthen the authors' interpretation of the findings.

      (3) The study identifies a correlation between pulsatile activity of PVNOT neurons and rest-to-active transitions, and tests for a causal relationship using optogenetic stimulation. However, since PVNOT neurons are known to co-release other neurotransmitters such as glutamate, it remains unclear whether the observed effects are mediated specifically through oxytocin receptor signaling. To address this question, functional intervention experiments using oxytocin receptor antagonists or receptor knockout mice are necessary.

      (4) The authors attempted to detect BAT thermogenesis and skin vasomotion using infrared thermography. This technique measures only skin hair temperatures (since the skin was not shaved), but does not measure "BAT temperature" or "vasomotor tone". As seen in Figure 5E, the temperatures of the body surface areas ("BAT", "Rump", and "Dorsal surface") mostly changed in parallel, indicating that these temperatures are strongly affected by body core temperature. Therefore, the thermographic measurements in this study did not provide convincing information on BAT thermogenesis or skin vasomotion. To avoid misleading reports, the authors need to use other techniques to directly measure temperatures, such as telemetry.

      (5) Photostimulation of PVNOT neurons increased Tb after 400 sec (6.6 min) (Figure 5). This latency is too long to conclude that the neuronal stimulation elicited BAT thermogenesis. A more reasonable explanation is that the increase in Tb was caused by the induction of physical activity (Figure S4C), which slowly generates heat and contributes to the elevation of Tb. However, this view contradicts the authors' claim. To address this concern, the authors should directly measure BAT thermogenesis and compare it with the rate of Tb elevation. If BAT thermogenesis occurs, the rate at which the BAT temperature increases must exceed the rate at which Tb rises.

    1. Reviewer #1 (Public review):

      Sebag et al. addressed the role of ADH5 in BAT in the development of aging and metabolic disarrangements associated with it. This is a follow-up study after the authors' demonstration of the role of BAT ADH5 in glucose homeostasis, obesity, and cold tolerance. By ablating ADH5 specifically in brown adipocytes or pharmacologically modulating ADH5 through activation of its transcription factor, the authors conclude that preservation of BAT function is crucial for healthy aging and ADH5 is causally involved in this process. The topic is appealing given the rise in the aging population and the unclear role of BAT function in this process. Overall, the study uses several techniques, is easy to follow, and addresses several physiological and molecular manifestations of aging. However, the study lacks an appropriate statistical analysis, which severely affects the conclusions of the work. Therefore, interpretation of the findings is limited and must be done with caution.

    2. Reviewer #2 (Public review):

      Summary:

      This study investigates the role of the enzyme Alcohol Dehydrogenase 5 (ADH5) in brown adipose tissue (BAT) during aging. BAT is crucial for thermogenesis and energy balance, but its function and mass diminish with age, contributing to metabolic dysfunction and age-related diseases. ADH5, also known as S-nitrosoglutathione reductase, regulates nitric oxide (NO) signaling by damaging S-nitrosylation modifications from proteins. The authors show that aging in mice leads to increased protein S-nitrosylation but reduced ADH5 expression in BAT, resulting in impaired metabolic and cognitive functions. Deletion of ADH5 in BAT accelerates tissue senescence and systemic metabolic decline.

      Mechanisticaremoving lly, aging suppresses ADH5 via downregulation of heat shock factor 1 (HSF1), a master regulator of protein homeostasis. Importantly, pharmacologically boosting HSF1 improves BAT function and mitigates both metabolic and cognitive declines in aged mice. The findings highlight a critical HSF1-ADH5 pathway in BAT that protects against aging-related dysfunction, suggesting that targeting this pathway may offer new therapeutic strategies for improving metabolic health and cognition during aging.

      Strengths:

      This research provides insight into the interplay between redox biology, proteostasis, and metabolic decline in aging. By identifying a specific enzyme that controls SNO status in BAT and further developing a therapy to target ADH5 in BAT to prevent age-related decline, the authors have identified a putative mechanism to combat age-related decline in BAT function.

      Weaknesses:

      (1) Sex needs to be considered as a biological variable, at a minimum in the reporting of the phenotypes observed in this manuscript, but also potentially by further experimentation. The only mention of sex I could find is that the authors reported the general protein SNO status in BAT is increased with age in male C57Bl/6J mice. Is this also true in female mice? For all of the ADH5 knockout mouse data, are these also male mice? Do female ADH5 knockout mice have a consistent phenotype, or are the sex differences?

      (2) It would be helpful to know the extent of ADH5 loss in the adipose tissue of knockout mice, either by mRNA or by immunoblotting for ADH5. It could also be helpful to know if ADH5 is deleted from the inguinal adipose tissue of these mice, especially since they seem to accumulate fat mass as they age (Figure 2B).

      (3) For Figure 4D, the ChiP, it would be better to show the IgG control pulldowns. Also, there's an unexpected thing where all the values for the Adh5 flox mice are exactly the same - how is this possible? Finally, it's not clear how these BAT samples were treated with HSF1A - was this done in vivo or ex vivo?

      (4) I didn't understand what was on the y-axis in Figure 5A, nor how it was measured. I assume it's HSF1A, and maybe it's the part in the methods with the Metabolomic Analysis, but this wasn't clear. It would also help if release from the NC-Vehicle formulation could be included as a negative control.

      (5) What happens to BAT protein S-nitrosylation in HSF1A-treated mice?

      (6) Figure 1B: What is the age of the positive (ADH5BKO) and negative (Adh5 fl) mice?

      (7) Figure 1F: Can you clarify what I'm looking at in the P16ink4a panels? The red staining? Is the blue staining DAPI? This is also a problem in Figures 3C, 3D and 5G, and 5I. Figure 4B looks great - maybe this could be used as an example?

      (8) Figure 3B looks a bit odd since 7 of the 12 total mice seem to have an IL-beat level of exactly 5. I was a bit unclear about why arbitrary units were used for IL-1β levels since it says an ELISA was used to quantify IL-1β; however, in the methods the authors describe a Bio-Rad Laboratories Bio-plex Pro Mouse Cytokine 23-Plex approach, which I don't think is an ELISA. Can the approach to measuring IL-1β be clarified, and could the authors explain why they can't show units of mass for IL-1β levels?

      (9) Figure 2C and 2D: I don't really understand why the Heat or VO2 need to be expressed as fold changes. Can't these just be expressed with absolute units? It's also confusing why the heat fold change is 1.0 in the light and the dark for the floxed animal. I bet this is because the knockout is normalized to the floxed animal for light and then normalized again for the dark period, but since both are on the same graph, readers could be confused into thinking there is no difference in the heat production or VO2 between light and dark, which would be surprising. This could all just be solved if absolute units were used.

    1. Joint Public Review:

      Summary:

      This study uses data from a recent RVFV serosurvey among transhumant cattle in The Gambia to inform the development of an RVFV transmission model. The model incorporates several hypotheses that capture the seasonal nature of both vector-borne RVFV transmission and cattle migration. These natural phenomena are driven by contrasting wet and dry seasons in The Gambia's two main ecoregions and are purported to drive cyclical source-sink transmission dynamics. Although the Sahel is hypothesized to be unsuitable for year-long RVFV transmission, findings suggest that cattle returning from the Gambia River to the Sahel at the beginning of the wet season could drive repeated RVFV introductions and ensuing seasonal outbreaks. The model is also used to evaluate the potential impacts of cattle movement bans on transmission dynamics, although there is doubt about the certainty of these latter findings in light of various simplifying assumptions.

      Strengths:

      Like most infectious diseases in animal systems in low- and middle-income countries, the transmission dynamics of RVFV in cattle in The Gambia are poorly understood. This study harnesses important data on RVFV seroepidemiology to develop and parameterize a novel transmission model, providing plausible estimates of several epidemiological parameters and transmission dynamic patterns.

      This study is well written and easy to follow.

      The authors consider both deterministic and stochastic formulations of their model, demonstrating potential impacts of random events (e.g., extinctions) and providing confidence regarding model robustness.

      The authors use well-established Bayesian estimation techniques for model fitting and confront their transmission model with a seroepidemiological model to assess model fit.

      Elasticity analyses help to understand the relative importance of competing demographic and epidemiological drivers of transmission in this system.

      Weaknesses:

      The model predicts relatively stable annual dynamics reminiscent of a seasonal endemic pathogen, but RVF in sub-Saharan Africa is often characterized as causing periodic epizootics with sustained lulls in between outbreaks. Do the authors believe this conventional wisdom regarding RVF epidemiology is wrong, and that their results better support that transmission patterns are seasonal but truly relatively stable year-over-year, at least in the Gambia? The authors should discuss whether these predicted dynamics could be an artefact of the model's structure, and what ramifications this could have for their conclusions.

      It is unclear how the network analysis is used to inform the model. The network (Figure S2) suggests a highly fragmented population, which could better support, for example, a herd metapopulation approach. The first results section highlights that transhumant movements cover large distances (perhaps to justify the assumption of homogenous mixing within each ecoregion?), but the median (13.5km) is quite short.

      The model does not include an impact of infection on cattle birth rates, but the authors highlight the well-known impacts of RVF epizootics on cattle abortion and neonatal death.

      ODEs for M herds in the dry season are missing from the appendix. Even in the absence of transmission among this subpopulation in this season, demographic turnover should influence its SIR population dynamics. Were these not included in the model or simply omitted from the text?

      The importance of the LVFV positivity decay rate is highlighted, but the loss of immunity is not considered in the SIR model. The authors do discuss uncertainty regarding model structure, but could better justify their choice. Is there evidence of reduced infection risk among previously infected seronegatives, and why was an SIRS model not considered? How might findings be expected to differ under an SIRS model?

      Shouldn't disease-induced host death be included in the serocatalytic model? A high RVF mortality rate has been estimated, and FOI is relatively high, suggesting a non-negligible impact of RVF death on seroprevalence dynamics, and indeed possibly a greater impact than seroreversion.

      It is helpful that the authors have described findings from the previously conducted household survey, which is a key foundation for the model, but it needs to be made clearer what work was already conducted as part of the previous study, in particular the Methods sections RVFV seroprevalence & household survey data and Epidemiological setting & cattle population structure. Same for the sections Study Area and Data Collection in the appendix.

      The study limitations paragraph is vague. What modelling assumptions have introduced the greatest uncertainty, and what implications could this have for study conclusions?

      Two main issues with the simulations of a ban on transhuman movement:

      The introduction rightly highlights the importance of pastoral lifestyles for subsistence farmers in the Gambia. It therefore seems likely that transhumant movement bans would have great socioeconomic and ethical challenges in addition to obvious practical challenges. Is such an intervention even a remote possibility?

      The model's structure, including homogenous mixing within each ecoregion and step-change seasonality, allows for estimation of generalized transmission rates at a macro scale. However, it greatly simplifies the movement process itself and assumes that transhumant cattle movement is the only mechanism for RVF reintroduction into the Sahel region. The model is therefore likely to misrepresent the potential impacts of movement bans on transmission. As studies, for example, in healthcare settings have shown, where fine-scaled contact data are available, incorporating the specific and complex nature of inter-individual contact can change not only the magnitude but the direction of intervention impacts relative to predictions from a model with homogenous mixing assumptions. Conclusions from this work regarding the impacts of movement bans, therefore, seem poorly supported.

      This model seems perhaps better suited to exploring, for example, cattle vaccination, and potential differential efficiency when targeting T herds relative to M or L.

    1. Reviewer #1 (Public review):

      In this manuscript, Aghabi et al. present a comprehensive characterization of ZFT, a metal transporter located at the plasma membrane of the eukaryotic parasite Toxoplasma gondii. The authors provide convincing evidence that ZFT plays a crucial role in parasite fitness, as demonstrated by the generation of a conditional knockdown mutant cell line, which exhibits a marked impact on mitochondrial respiration, a process dependent on several iron-containing proteins. Consistent with previous reports, the authors also show that disruption of mitochondrial metabolism leads to conversion into the persistent bradyzoite stage. The study then employed advanced techniques, such as inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray fluorescence microscopy (XFM), to demonstrate that ZFT depletion results in reduced parasite-associated metals, particularly iron and zinc. Additionally, the authors show that ZFT expression is modulated by the availability of these metals, although defects in the transporter could not be compensated for by exogenous addition of iron or zinc.

      While the manuscript does not directly investigate the transport function of ZFT through biochemical assays, the authors indirectly support the notion that ZFT can transport zinc by demonstrating its ability to compensate for a lack of zinc transport in a yeast heterologous system. Furthermore, phenotypic analyses suggest defects in iron availability, particularly with regard to Fe-S mitochondrial proteins and mitochondrial function. Overall, the manuscript provides a solid, well-rounded argument for ZFT's role in metal transport, using a combination of complementary approaches. Although direct biochemical evidence for the transporter's substrate specificity and transport activity is lacking, the converging evidence, including changes in metal concentrations upon ZFT depletion, yeast complementation data, and phenotypic changes linked to iron deficiency, presents a convincing case. Some aspects of the results may appear somewhat unbalanced, particularly since iron transport could not be confirmed through heterologous complementation, while zinc-related phenotypes in the parasites have not been thoroughly explored (which is challenging given the limited number of zinc-dependent proteins characterized in Toxoplasma). Nevertheless, given that metal acquisition remains largely uncharacterized in Toxoplasma, this manuscript provides an important first step in identifying a metal transporter in these parasites, and the data presented are generally convincing and insightful.

    2. Reviewer #2 (Public review):

      Summary:

      The intracellular pathogen Toxoplasma gondii scavenges metal ions such as iron and zinc to support its replication; however, mechanistic studies of iron and zinc uptake are limited. This study investigates the function of a putative iron and zinc transporter, ZFT. In this paper, the authors provide evidence that ZFT mediates iron and zinc uptake by examining the regulation of ZFT expression by iron and zinc levels, the impact of altered ZFT expression on iron sensitivity, and the effects of ZFT depletion on intracellular iron and zinc levels in the parasite. The effects of ZFT depletion on parasite growth are also investigated, showing the importance of ZFT function for the parasite.

      Strengths:

      A key strength of the study is the use of multiple complementary approaches to demonstrate that ZFT is involved in iron and zinc uptake. Additionally, the authors build on their finding that loss of ZFT impairs parasite growth by showing that ZFT depletion induces stage conversion and leads to defects in both the apicoplast and mitochondrion.

      Weaknesses:

      (1) Excess zinc was shown not to alter ZFT expression, but a cation chelator (TPEN) did lead to decreased expression. While TPEN is often used to reduce zinc levels, does it have any effect on iron levels? Could the reduction in ZFT after TPEN treatment be due to a reduction in the level of iron or another cation?

      (2) ZFT expression was found to be dynamic depending on the size of the vacuole, based on mean fluorescence intensity measurements. Looking at protein levels by Western blot at different times during infection would strengthen this finding.

      (3) ZFT localization remained at the parasite periphery under low iron conditions. However, in the images shown in Figure S1c, larger vacuoles (containing 4-8 parasites) are shown for the untreated conditions, and single parasite-containing vacuoles are shown for the low iron condition. As ZFT localization is predominantly at the basal end of the parasite in larger PV and at the parasite periphery for smaller vacuoles, it would be better to compare vacuoles of similar size between the untreated and low-iron conditions.

    3. Reviewer #3 (Public review):

      Summary:

      Aghabi et al set out to characterize a T. gondii transmembrane protein with a ZIP domain, termed ZFT. The authors investigate the consequences of ZFT downregulation and overexpression for parasite fitness. Downregulation of ZFT causes defects in the parasite's endosymbiotic organelles, the apicoplast and the mitochondrion. Specifically, lack of ZFT causes a decrease in mitochondrial respiration, consistent with its role as an iron transporter. This impact on the mitochondria appears to trigger partial differentiation to bradyzoites. The authors furthermore demonstrate that expression of TgZFT can rescue a yeast mutant lacking its zinc transporter and perform an array of direct metal ion measurements, including X-ray fluorescence microscopy and inductively coupled mass spectrometry (ICP-MS). These reveal reduced metal ions in parasites depleted in ZFT. Overall, the data by Aghabi et al. reveal that ZFT is a major metal ion transporter in T. gondii, importing iron and zinc for diverse essential processes.

      Strengths:

      This study's strength lies in the thorough characterization of the transporter. The authors combine a number of techniques to measure the impact of ZFT depletion, ranging from the direct measurement of metal ions to determining the consequences for the parasite's metabolism (mitochondrial respiration), as well as performing a yeast mutant complementation. This work is very thorough and clearly presented, leaving little doubt about this protein's function.

      Weaknesses:

      This study offers no major novel insights into the biology of T. gondii. The transporter was already annotated as a zinc transporter (ToxoDB), was deemed essential (PMID: 27594426), and localized to the plasma membrane (PMID: 33053376). This study mostly confirms and validates these previous datasets. The authors identify three other proteins with a ZIT domain. Particularly, the role of TGME49_225530 is intriguing, as it is likely fitness-conferring (score: -2.8, PMID: 27594426) and has no subcellular localization assigned. Characterizing this protein as well, revealing its localization, and identifying if and how these transporters coordinate metal ion transport would have been worthwhile.

      Another weakness is the data related to the impact of ZFT downregulation on the apicoplast in Figure 4. The authors show that downregulation of ZFT causes an increase in elongated apicoplasts (Figure 4d). The subsequent panels seem to show that the parasites present a dramatic growth defect at that time point. This growth arrest can directly explain the elongated apicoplast, but does not allow any conclusion about an impact on the organelle. In any case, an assessment of 'delayed death' as presented in Figure 4c seems futile, since the many other processes affected by zinc and iron depletion likely cause a rapid death, masking any potential delayed death.

    1. Reviewer #1 (Public review):

      Shigella flexneri is a bacterial pathogen that is an important globally significant cause of diarrhea. Shigella pathogenesis remains poorly understood. In their manuscript, Saavedra-Sanchez et al report their discovery that a secreted E3 ligase effector of Shigella, called IpaH1.4, mediates the degradation of a host E3 ligase called RNF213. RNF213 was previously described to mediate ubiquitylation of intracellular bacteria, an initial step in their targeting to xenophagosomes. Thus, Shigella IpaH1.4 appears to be an important factor to permit evasion of RNF213-mediated host defense. Strengths: The work is focused, convincing, well-performed and important, and the manuscript is well-written. The revised version addressed all the concerns raised during the initial review.

    2. Reviewer #2 (Public review):

      Summary:

      The authors find that the bacterial pathogen Shigella flexneri uses the T3SS effector IpaH1.4 to induce degradation of the IFNg-induced protein RNF213. They show that in the absence of IpaH1.4, cytosolic Shigella is bound by RNF213. Furthermore, RNF213 conjugates linear and lysine-linked ubiquitin to Shigella independently of LUBAC. Intriguingly, they find that Shigella lacking ipaH1.4 or mxiE, which regulates the expression of some T3SS effectors, are not killed even when ubiquitylated by RNF213 and that these mutants are still able to replicate within the cytosol, suggesting that Shigella encodes additional effectors to escape from host defenses mediated by RNF213-driven ubiquitylation.

      Strengths:

      The authors take a variety of approaches, including host and bacterial genetics, gain-of-function and loss-of-function assays, cell biology, biochemistry, . Overall, the experiments are elegantly designed, rigorous, and convincing.

    3. Reviewer #3 (Public review):

      Summary:

      In this study the authors set out to investigate whether and how Shigella avoids cell autonomous immunity initiated through M1-linked ubiquitin and the immune sensor and E3 ligase RNF213. The key findings are that the Shigella flexneri T3SS effector, IpaH1.4 induces degradation of RNF213. Without IpaH1.4, the bacteria are marked with RNF213 and ubiquitin following stimulation with IFNg. Interestingly, this is not sufficient to initiate the destruction of the bacteria, leading the authors to conclude that Shigella deploys additional virulence factors to avoid this host immune response. The second key finding of this study is that M1 chains decorate the mxiE/ipaH Shigella mutant independent of LUBAC, which is by and large, considered the only enzyme capable of generating M1-linked ubiquitin chains. These findings are fundamental in nature and of general interest.

      Strengths and weaknesses:

      The data is well-controlled and clearly presented with appropriate methodology. The authors provide compelling evidence that demonstrates that IpaH1.4 is the effector responsible for the degradation of RNF213 via the proteasome and their conclusions are well supported. They have clearly demonstrated how Shigella disarms RNF213-mediated immunity.

      This work builds on prior work from the same laboratory that suggests that M1 ubiquitin chains can be formed independently of LUBAC (in the prior publication this related to Chlamydia inclusions). Two key pieces of evidence support this statement - fluorescence microscopy-based images and accompanying quantification in Hoip and Hoil knockout cells for association of M1-ub, using an M1 specific antibody, and the use of an internally tagged Ub-K7R mutant. Whilst it remains possible that the M1 antibody is non-specific, as acknowledged by the authors, the data in supplementary figure 1, comparing K7R-ub and the N-terminally tagged K7R ub variant, provides evidence that during Shigella infection, LUBAC independent M1-ubiquitin chains are indeed formed. This represents an important new angle in ubiquitin biology.

      The importance of IFNgamma priming for RNF213 association to the mxiE or ipaH1.4 remains an interesting question that awaits future studies that compare different intracellular bacteria and the role of RNF213.

      Overall, the findings are important for the host-pathogen field, cell autonomous/innate immune signaling fields and microbial pathogenesis fields and the work is a very valuable addition to the recent advances in understanding the role of RNF213 in host immune responses to bacteria.

    1. Reviewer #1 (Public review):

      Summary:

      Wang and Colleagues present a study aimed at demonstrating the feasibility of repeated ultrasound localization microscopy (ULM) recording sessions on mice chronically implanted with a cranial window transparent to US. They provided quantitative information on their protocol, such as the required number of Contrast enhancing microbubbles (MBs) to get a clear image of the vasculature of a brain coronal section. Also, they quantified the co-registration quality over time-distant sessions and the vasodilator effect of isoflurane.

      Strengths:

      Strengths:

      The study showed a remarkable performance in recording precisely the same brain coronal section over repeated imaging sessions. In addition, it sheds light on the vasodilator effect of isoflurane (an anesthetic whose effects are not fully understood) on the different brain vasculature compartments, although, as the Authors stated, some insights in this aspect have already been published with other imaging techniques. The experimental setting and protocol are very well described.

      In this newly revised version, the Authors made evident efforts to strengthen the messages of their study. All the limitations of their research have been clearly acknowledged.

      A central issue remains. To answer my concerns about the need for multivariate analyses, the Author stated that: "Due to the limited number of animals used, the analyses presented in this work should be interpreted as example case studies." Although this sentence does not convince me, if the purpose of this study was to showcase the potentialities of ULM for future longitudinal awake studies, why don't they avoid any statistics? The trend for decreased vein size and increased arterial blood flow during wakefulness is evident from the plot and physiologically plausible. Why impose wrong statistics instead of dropping them altogether? I do not see the lack of statistics as detrimental to this study, based on the feedback received from the Authors.

    2. Reviewer #2 (Public review):

      Summary:

      The authors present a very interesting collection of methods and results using brain ultrasound localization microscopy (ULM) in awake mice. They emphasize the effect of the level of anesthesia on the quantifiable elements assessable with this technique (i.e. vessel diameter, flow speed, in veins and arteries, area perfused, in capillaries) and demonstrate the possibility of achieving longitudinal cerebrovascular assessment in one animal during several weeks with their protocol.

      The authors made a good rewriting the article based on the reviewers' comments. One of the message of the first version of the manuscript was that variability in measurements (vessel diameter, flow velocity, vascularity) were much more pronounced under changes of anesthesia than when considering longitudinal imaging across several weeks. This message is now not quite mitigated, as longitudinal imaging seems to show a certain variability close to the order of magnitude observed under anesthesia. In that sense, the review process was useful in avoiding hasty conclusion and calls for further caution in ULM awake longitudinal imaging, in particular regarding precision of positioning and cancellation of tissue motion.

      Strengths:

      Even if the methods elements considered separately are not new (brain ULM in rodents, setup for longitudinal awake imaging similar to those used in fUS imaging, quantification of vessel diameters/bubble flow/vessel area), when masterfully combined as it is done in this paper, they answer two questions that have been long-running in the community: what is the impact of anesthesia on the parameters measured by ULM (and indirectly in fUS and other techniques)? Is it possible to achieve ULM in awake rodents for longitudinal imaging? The manuscript is well constructed, well written, and graphics are appealing.

      The manuscript has been much strengthened by the round of review, with more animals for the longitudinal imaging study.

      Weaknesses:

      The manuscript has been only marginally modified since our last round of review, so there is probably not much we reviewers can additionally elaborate to improve it. Therefore my last concerns about the reliability of longitudinal quantifications and on certain discrepancies remains for this paper. As a general piece of advice, I would just say that every claim (' is higher', is lower', is stable') should be supported by evidence and statistical testing if it is not already the case.

      Response 06: the authors' response is not satisfactory. Even if the difference in terms of ROI boundaries between fig 4e and fig 4j has been underlined by the authors, they only provide a wordy comment and no additional quantitative analysis that could explain the discrepancy I pointed out. By doing so they take the risk of making misinterpretations. The reader is left with a discrepancy that could be explained by 2 mechanisms: -pial vessel population behave differently from penetrating arterioles and venules OR - the imaging of pial vessels with ULM is not good enough to enable proper quantification because the vessels are not clearly visible (out of plane extent). In any case Figure 4j does not "provides a more comprehensive representation of cortical vasculature" as stated. If the changes in pial vessels cannot be reliably measured, they should be excluded from the ROI.

      Line 161: be careful with the use of vessel density, as pointed by reviewer 1.

      Line 196: "the decrease in venous vessel area (averaging 55% across mice) was greater than that of arterial (averaging 35%)" no stat test has been performed.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Weir et al. investigate why the 13-lined ground squirrel (13LGS) retina is unusually rich in cone photoreceptors, the cells responsible for color and daylight vision. Most mammals, including humans, have rod-dominant retinas, making the 13LGS retina both an intriguing evolutionary divergence and a valuable model for uncovering novel mechanisms of cone generation. The developmental programs underlying this adaptation were previously unknown.

      Using an integrated approach that combines single-cell RNA sequencing (scRNAseq), scATACseq, and histology, the authors generate a comprehensive atlas of retinal neurogenesis in 13LGS. Notably, comparative analyses with mouse datasets reveal that in 13LGS, cones can arise from late-stage neurogenic progenitors, a striking contrast to mouse and primate retinas, where late progenitors typically generate rods and other late-born cell types but not cones. They further identify a shift in the timing (heterochrony) of expression of several transcription factors. Further, the authors show that these factors act through species-specific regulatory elements. And overall, functional experiments support a role for several of these candidates in cone production.

      Strengths:

      This study stands out for its rigorous and multi-layered methodology. The combination of transcriptomic, epigenomic, and histological data yields a detailed and coherent view of cone development in 13LGS. Cross-species comparisons are thoughtfully executed, lending strong evolutionary context to the findings. The conclusions are, in general, well supported by the evidence, and the datasets generated represent a substantial resource for the field. The work will be of high value to both evolutionary neurobiology and regenerative medicine, particularly in the design of strategies to replace lost cone photoreceptors in human disease.

      Weaknesses:

      (1) Overall, the conclusions are strongly supported by the data, but the paper would benefit from additional clarifications. In particular, some of the conclusions could be toned down slightly to reflect that the observed changes in candidate gene function, such as those for Zic3 by itself, are modest and may represent part of a more complex regulatory network.

      (2) Additional explanations about the cell composition of the 13LGS retina are needed. The ratios between cone and rod are clearly detailed, but do those lead to changes in other cell types?

      (3) Could the lack of a clear trajectory for rod differentiation be just an effect of low cell numbers for this population?

      (4) The immunohistochemistry and RNA hybridization experiments shown in Figure S2 would benefit from supporting controls to strengthen their interpretability. While it has to be recognized that performing immunostainings on non-conventional species is not a simple task, negative controls are necessary to establish the baseline background levels, especially in cases where there seems to be labeling around the cells. The text indicates that these experiments are both immunostainings and ISH, but the figure legend only says "immunohistochemistry". Clarifying these points would improve readers' confidence in the data.

      (5) Figure S3: The text claims that overexpression of Zic3 alone is sufficient to induce the cone-like photoreceptor precursor cells as well as horizontal cell-like precursors, but this is not clear in Figure S3A nor in any other figure. Similarly, the effects of Pou2f1 overexpression are different in Figure S3A and Figure S3B. In Figure S3B, the effects described (increased presence of cone-like and horizontal-like precursors) are very clear, whereas it is not in Figure S3A. How are these experiments different?

      (6) The analyses of Zic3 conditional mutants (Figure S4) reveal an increase in many cone, rod, and pan-photoreceptor genes with only a reduction in some cone genes. Thus, the overall conclusion that Zic3 is essential for cones while repressing rod genes doesn't seem to match this particular dataset.

      (7) Throughout the text, the authors used the term "evolved". To substantiate this claim, it would be important to include sequence analyses or to rephrase to a more neutral term that does not imply evolutionary inference.

    2. Reviewer #2 (Public review):

      Summary:

      This paper aims to elucidate the gene regulatory network governing the development of cone photoreceptors, the light-sensing neurons responsible for high acuity and color vision in humans. The authors provide a comprehensive analysis through stage-matched comparisons of gene expression and chromatin accessibility using scRNA-seq and scATAC-seq from the cone-dominant 13-lined ground squirrel (13LGS) retina and the rod-dominant mouse retina. The abundance of cones in the 13LGS retina arises from a dominant trajectory from late retinal progenitor cells (RPCs) to photoreceptor precursors and then to cones, whereas only a small proportion of rods are generated from these precursors.

      Strengths:

      The paper presents intriguing insights into the gene regulatory network involved in 13LGS cone development. In particular, the authors highlight the expression of cone-promoting transcription factors such as Onecut2, Pou2f1, and Zic3 in late-stage neurogenic progenitors, which may be driven by 13LGS-specific cis-regulatory elements. The authors also characterize candidate cone-promoting genes Zic3 and Mef2C, which have been previously understudied. Overall, I found that the across-species analysis presented by this study is a useful resource for the field.

      Weaknesses:

      The functional analysis on Zic3 and Mef2C in mice does not convincingly establish that these factors are sufficient or necessary to promote cone photoreceptor specification. Several analyses lack clarity or consistency, and figure labeling and interpretation need improvement.

    3. Reviewer #3 (Public review):

      Summary:

      The authors perform deep transcriptomic and epigenetic comparisons between mouse and 13-lined ground squirrel (13LGS) to identify mechanisms that drive rod vs cone-rich retina development. Through cross-species analysis, the authors find extended cone generation in 13LGS, gene expression within progenitor/photoreceptor precursor cells consistent with a lengthened cone window, and differential regulatory element usage. Two of the transcription factors, Mef2c and Zic3, were subsequently validated using OE and KO mouse lines to verify the role of these genes in regulating competence to generate cone photoreceptors.

      Strengths:

      Overall, this is an impactful manuscript with broad implications toward our understanding of retinal development, cell fate specification, and TF network dynamics across evolution and with the potential to influence our future ability to treat vision loss in human patients. The generation of this rich new dataset profiling the transcriptome and epigenome of the 13LGS is a tremendous addition to the field that assuredly will be useful for numerous other investigations and questions of a variety of interests. In this manuscript, the authors use this dataset and compare it to data they previously generated for mouse retinal development to identify 2 new regulators of cone generation and shed insights into their regulation and their integration into the network of regulatory elements within the 13LGS compared to mouse.

      Weaknesses:

      (1) The authors chose to omit several cell classes from analyses and visualizations that would have added to their interpretations. In particular, I worry that the omission of 13LGS rods, early RPCs, and early NG from Figures 2C, D, and F is notable and would have added to the understanding of gene expression dynamics. In other words, (a) are these genes of interest unique to late RPCs or maintained from early RPCs, and (b) are rod networks suppressed compared to the mouse?

      (2) The authors claim that the majority of cones are generated by late RPCs and that this is driven primarily by the enriched enhancer network around cone-promoting genes. With the temporal scRNA/ATACseq data at their disposal, the authors should compare early vs late born cones and RPCs to determine whether the same enhancers and genes are hyperactivated in early RPCs as well as in the 13LGS. This analysis will answer the important question of whether the enhancers activated/evolved to promote all cones, or are only and specifically activated within late RPCs to drive cone genesis at the expense of rods.

      (3) The authors repeatedly use the term 'evolved' to describe the increased number of local enhancer elements of genes that increase in expression in 13LGS late RPCs and cones. Evolution can act at multiple levels on the genome and its regulation. The authors should consider analysis of sequence level changes between mouse, 13LGS, and other species to test whether the enhancer sequences claimed to be novel in the 13LGS are, in fact, newly evolved sequence/binding sites or if the binding sites are present in mouse but only used in late RPCs of the 13LGS.

      (4) The authors state that 'Enhancer elements in 13LGS are predicted to be directly targeted by a considerably greater number of transcription factors than in mice'. This statement can easily be misread to suggest that all enhancers display this, when in fact, this is only the cone-promoting enhancers of late 13LGS RPCs. In a way, this is not surprising since these genes are largely less expressed in mouse vs 13LGS late RPCs, as shown in Figure 2. The manuscript is written to suggest this mechanism of enhancer number is specific to cone production in the 13LGS- it would help prove this point if the authors asked the opposite question and showed that mouse late RPCs do not have similar increased predicted binding of TFs near rod-promoting genes in C7-8.

    1. Reviewer #1 (Public review):

      Li et al. investigate Ca2+ signaling in T. gondii and argue that Ca2+ tunnels through the ER to other organelles to fuel multiple aspects of T. gondii biology. They focus in particular on TgSERCA as the presumed primary mechanism for ER Ca2+ filling. Although, when TgSERCA was knocked out there was still a Ca2+ release in response to TG present. Overall the data supports a model where the Ca2+ filling state of the ER modulates Ca2+ dynamics in other organelles.

      Comments on revisions:

      I thank the authors for their careful revisions and response to my comments, which have been addressed.

      Regarding the most critical point of the paper that is Ca2+ transfer from the ER to other organelles, the authors in their rebuttal and in the revised manuscript argue that ER Ca2+ is critical to redistribute and replenish Ca2+ in other organelles in the cell. I agree this conclusion and think it is best stated in the authors' response to point #7: "We propose that this leaked calcium is subsequently taken up by other intracellular compartments. This effect is observed immediately upon TG addition. However, pre-incubation with TG or knockdown of SERCA reduces calcium storage in the ER, thereby diminishing the transfer of calcium to other stores."

      In their rebuttal the authors particularly highlight experiments in Figures 1H-K, 4G-H, and 5H-K in support of this conclusion. The data in Fig 1H-K show that with TG there is increased Ca2+ release from acidic stores. In all cases TG results in a rise in cytoplasmic Ca2+ that could load the acidic stores. So under those conditions the increased acidic organelle Ca2+ is likely due to a preceding high cytosolic Ca2+ transient due to TG. The experiments in 4G-H and 5H-K are more convincing and supportive of an important role of ER Ca2+ to maintain Ca2+ levels in other organelles. Overall, and to avoid a detailed, lengthy discussion of every point, the data support a model where in the absence of SERCA activity ER Ca2+ is reduced as well as Ca2+ in other organelles. I think it would be helpful to present and discuss this finding throughout the manuscript as under physiological conditions ER Ca2+ is regularly mobilized for signaling and homeostasis and this maintains Ca2+ levels in other organelles. This is supported by the new experiment in Supp Fig. 2A.

    1. Reviewer #1 (Public review):

      In this important study, the authors develop a suite of machine vision tools to identify and align fluorescent neuronal recording images in space and time according to neuron identity and position. The authors provide compelling evidence for the speed and utility of these tools. While such tools have been developed in the past (including by the authors), the key advancement here is the speed and broad utility of these new tools. While prior approaches based on steepest descent worked, they required hundreds of hours of computational time, while the new approaches outlined here are >600-fold faster. The machine vision tools here should be immediately useful to readers specifically interested in whole-brain C. elegans data, but also for more general readers who may be interested in using BrainAlignNet for tracking fluorescent neuronal recordings from other systems.

      I really enjoyed reading this paper. The authors had several ground truth examples to quantify the accuracy of their algorithms and identified several small caveats users should consider when using these tools. These tools were primarily developed for C. elegans, an animal with stereotyped development, but whose neurons can be variably located due to internal motion of the body. The authors provide several examples of how BrainAlignNet reliably tracked these neurons over space and time. Neuron identity is also important to track, and the authors showed how AutoCellLoader can reliably identify neurons based on their fluorescence in the NeuroPAL background. A challenge with NeuroPAL though, is the high expression of several fluorophores, which compromises behavioral fidelity. The authors provide some possible avenues where this problem can be addressed by expressing fewer fluorophores. While using all four channels provided the best performance, only using the tagRFP and CyOFP channels was sufficient for performance that was close to full performance using all 4 NeuroPAL channels. This result indicates that the development of future lines with less fluorophore expression could be sufficient for reliable neuronal identification, which would decrease the genetic load on the animal, but also open other fluorescent channels that could be used for tracking other fluorescent tools/markers. Even though these tools were developed for C. elegans specifically, they showed BrainAlignNet can be applied to other organisms as well (in their case, the cnidarian C. hemisphaerica), which broadens the utility of their tools.

      Strengths:

      (1) The authors have a wealth of ground-truth training data to compare their algorithms against, and provide a variety of metrics to assess how well their new tools perform against hand annotation and/or prior algorithms.

      (2) For BrainAlignNet, the authors show how this tool can be applied to other organisms besides C. elegans.

      (3) The tools are publicly available on GitHub, which includes useful README files and installation guidance.

      Weaknesses:

      (1) Most of the utility of these algorithms is for C. elegans specifically. Testing their algorithms (specifically BrainAlignNet) on more challenging problems, such as whole-brain zebrafish, would have been interesting. This is a very, very minor weakness, though.

      (2) The tools are benchmarked against their own prior pipeline, but not against other algorithms written for the same purpose.

      (3) Considerable pre-processing was done before implementation. Expanding upon this would improve accessibility of these tools to a wider audience.

    2. Reviewer #2 (Public review):

      Summary:

      The paper introduced the pipeline to analyze brain imaging of freely moving animals: registering deforming tissues and maintaining consistent cell identities over time. The pipeline consists of three neural networks that are built upon existing models: BrainAlignNet for non-rigid registration, AutoCellLabeler for supervised annotation of over 100 neuronal types, and CellDiscoveryNet for unsupervised discovery of cell identities. The ambition of the work is to enable high-throughput and largely automated pipelines for neuron tracking and labeling in deforming nervous systems.

      Strengths:

      (1) The paper tackles a timely and difficult problem, offering an end-to-end system rather than isolated modules.

      (2) The authors report high performance within their dataset, including single-pixel registration accuracy, nearly complete neuron linking over time, and annotation accuracy that exceeds individual human labelers.

      (3) Demonstrations across two organisms suggest the methods could be transferable, and the integration of supervised and unsupervised modules is of practical utility.

      Weaknesses:

      (1) Lack of solid evaluation. Despite strong results on their own data, the work is not benchmarked against existing methods on community datasets, making it hard to evaluate relative performance or generality.

      (2) Lack of novelty. All three models do not incorporate state-of-the-art advances from the respective fields. BrainAlignNet does not learn from the latest optical flow literature, relying instead on relatively conventional architectures. AutoCellLabeler does not utilize the advanced medNeXt3D architectures for supervised semantic segmentation. CellDiscoveryNet is presented as unsupervised discovery but relies on standard clustering approaches, with limited evaluation on only a small test set.

      (3) Lack of robustness. BrainAlignNet requires dataset-specific training and pre-alignment strategies, limiting its plug-and-play use. AutoCellLabeler depends heavily on raw intensity patterns of neurons, making it brittle to pose changes. By contrast, current state-of-the-art methods incorporate spatial deformation atlases or relative spatial relationships, which provide robustness across poses and imaging conditions. More broadly, the ANTSUN 2.0 system depends on numerous manually tuned weights and thresholds, which reduces reproducibility and generalizability beyond curated conditions.

      Evaluation:

      To make the evaluation more solid, it would be great for the authors to (1) apply the new method on existing datasets and (2) apply baseline methods on their own datasets. Otherwise, without comparison, it is unclear if the proposed method is better or not. The following papers have public challenging tracking data: https://elifesciences.org/articles/66410, https://elifesciences.org/articles/59187, https://www.nature.com/articles/s41592-023-02096-3.

      Methodology:

      (1) The model innovations appear incrementally novel relative to existing work. The authors should articulate what is fundamentally different (architectural choices, training objectives, inductive biases) and why those differences matter empirically. Ablations isolating each design choice would help.

      (2) The pipeline currently depends on numerous manually set hyperparameters and dataset-specific preprocessing. Please provide principled guidelines (e.g., ranges, default settings, heuristics) and a robustness analysis (sweeps, sensitivity curves) to show how performance varies with these choices across datasets; wherever possible, learn weights from data or replace fixed thresholds with data-driven criteria.

      Appraisal:

      The authors partially achieve their aims. Within the scope of their dataset, the pipeline demonstrates impressive performance and clear practical value. However, the absence of comparisons with state-of-the-art algorithms such as ZephIR, fDNC, or WormID, combined with small-scale evaluation (e.g., ten test volumes), makes the strength of evidence incomplete. The results support the conclusion that the approach is useful for their lab's workflow, but they do not establish broader robustness or superiority over existing methods.

      Impact:

      Even though the authors have released code, the pipeline requires heavy pre- and post-processing with numerous manually tuned hyperparameters, which limits its practical applicability to new datasets. Indeed, even within the paper, BrainAlignNet had to be adapted with additional preprocessing to handle the jellyfish data. The broader impact of the work will depend on systematic benchmarking against community datasets and comparison with established methods. As such, readers should view the results as a promising proof of concept rather than a definitive standard for imaging in deformable nervous systems.

    3. Reviewer #3 (Public review):

      Context:

      Tracking cell trajectories in deformable organs, such as the head neurons of freely moving C. elegans, is a challenging task due to rapid, non-rigid cellular motion. Similarly, identifying neuron types in the worm brain is difficult because of high inter-individual variability in cell positions.

      Summary:

      In this study, the authors developed a deep learning-based approach for cell tracking and identification in deformable neuronal images. Several different CNN models were trained to: (1) register image pairs without severe deformation, and then track cells across continuous image sequences using multiple registration results combined with clustering strategies; (2) predict neuron IDs from multicolor-labeled images; and (3) perform clustering across multiple multicolor images to automatically generate neuron IDs.

      Strengths:

      Directly using raw images for registration and identification simplifies the analysis pipeline, but it is also a challenging task since CNN architectures often struggle to capture spatial relationships between distant cells. Surprisingly, the authors report very high accuracy across all tasks. For example, the tracking of head neurons in freely moving worms reportedly reached 99.6% accuracy, neuron identification achieved 98%, and automatic classification achieved 93% compared to human annotations.

      Weaknesses:

      (1) The deep networks proposed in this study for registration and neuron identification require dataset-specific training, due to variations in imaging conditions across different laboratories. This, in turn, demands a large amount of manually or semi-manually annotated training data, including cell centroid correspondences and cell identity labels, which reduces the overall practicality and scalability of the method.

      (2) The cell tracking accuracy was not rigorously validated, but rather estimated using a biased and coarse approach. Specifically, the accuracy was assessed based on the stability of GFP signals in the eat-4-labeled channel. A tracking error was assumed to occur when the GFP signal switched between eat-4-negative and eat-4-positive at a given time point. However, this estimation is imprecise and only captures a small subset of all potential errors. Although the authors introduced a correction factor to approximate the true error rate, the validity of this correction relies on the assumption that eat-4 neurons are uniformly distributed across the brain - a condition that is unlikely to hold.

      (3) Figure S1F demonstrates that the registration network, BrainAlignNet, alone is insufficient to accurately align arbitrary pairs of C. elegans head images. The high tracking accuracy reported is largely due to the use of a carefully designed registration sequence, matching only images with similar postures, and an effective clustering algorithm. Although the authors address this point in the Discussion section, the abstract may give the misleading impression that the network itself is solely responsible for the observed accuracy.

      (4) The reported accuracy for neuron identification and automatic classification may be misleading, as it was assessed only on a subset of neurons labeled as "high-confidence" by human annotators. Although the authors did not disclose the exact proportion, various descriptions (such as Figure 4f) imply that this subset comprises approximately 60% of all neurons. While excluding uncertain labels is justifiable, the authors highlight the high accuracy achieved on this subset without clearly clarifying that the reported performance pertains only to neurons that are relatively easy to identify. Furthermore, they do not report what fraction of the total neuron population can be accurately identified using their methods-an omission of critical importance for prospective users.

    1. Reviewer #1 (Public review):

      Summary:

      The study investigated how individuals living in urban slums in Salvador, Brazil, interact with environmental risk factors, particularly focusing on domestic rubbish piles, open sewers, and a central stream. The study makes use of the step selection functions using telemetry data, which is a method to estimate how likely individuals move towards these environmental features, differentiating among groups by gender, age, and leptospirosis serostatus. The results indicated that women tended to stay closer to the central stream while avoiding open sewers more than men. Furthermore, individuals who tested positive for leptospirosis tended to avoid open sewers, suggesting that behavioral patterns might influence exposure to risk factors for leptospirosis, hence ensuring more targeted interventions.

      Strengths:

      (1) The use of step selection functions to analyze human movement represents an innovative adaptation of a method typically used in animal ecology. This provides a robust quantitative framework for evaluating how people interact with environmental risk factors linked to infectious diseases (in this case, leptospirosis).

      (2) Detailed differentiation by gender and serological status allows for nuanced insights, which can help tailor targeted interventions and potentially improve public health measures in urban slum settings.

      (3) The integration of real-world telemetry data with epidemiological risk factors supports the development of predictive models that can be applied in future infectious disease research, helping to bridge the gap between environmental exposure and health outcomes.

    2. Reviewer #2 (Public review):

      Summary:

      Pablo Ruiz Cuenca et al. conducted a GPS logger study with 124 adult participants across four different slum areas in Salvador, Brazil, recording GPS locations every 35 seconds for 48 hours. The aim of their study was to investigate step-selection models, a technique widely used in movement ecology to quantify contact with environmental risk factors for exposure to leptospires (open sewers, community streams, and rubbish piles). The authors built two different types of models based on distance and based on buffer areas to model human environmental exposure to risk factors. They show differences in movement/contact with these risk factors based on gender and seropositivity status. This study shows the existence of modest differences in contact with environmental risk factors for leptospirosis at small spatial scales based on socio-demographics and infection status.

      Strengths:

      The authors assembled a rich dataset by collecting human GPS logger data, combined with field-recorded locations of open sewers, community streams, and rubbish piles, and testing individuals for leptospirosis via serology. This study was able to capture fine-scale exposure dynamics within an urban environment and shows differences by gender and seropositive status, using a method novel to epidemiology (step selection).

      [Editors' note: I have reviewed the authors' revised submission and confirm that they have adequately addressed the reviewers' comments for this manuscript.]

    1. Reviewer #1 (Public review):

      Summary:

      Grasper et al. present a combined analysis of the role of temporal mutagenesis in cancer, which includes both theoretical investigation and empirical analysis of point mutations in TCGA cancer patient cohorts. They find that temporally elevated mutation rates contribute to cancer fitness by allowing fast adaptation when the fitness drops (due to previous deleterious mutations). This may be relevant in the case of tumor suppressor genes (TSG), which follow the 2-hit hypothesis (i.e., biallelic 2 mutations are necessary to deactivate TS), and in cases where temporal mutagenesis occurs (e.g., high APOBEC, ROS). They provide evidence that this scenario is likely to occur in patients with some cancer types. This is an interesting and potentially important result that merits the attention of the target audience. Nonetheless, I have some questions (detailed below) regarding the design of the study, the tools and parametrization of the theoretical analysis, and the empirical analysis, which I think, if addressed, would make the paper more solid and the conclusion more substantiated.

      Strengths:

      Combined theoretical investigation with empirical analysis of cancer patients.

      Weaknesses:

      Parametrization and systematic investigation of theoretical tools and their relevance to tumor evolution.

    2. Reviewer #2 (Public review):

      This work presents theoretical results concerning the effect of punctuated mutation on multistep adaptation and empirical evidence for that effect in cancer. The empirical results seem to agree with the theoretical predictions. However, it is not clear how strong the effect should be on theoretical grounds, and there are other plausible explanations for the empirical observations.

      For various reasons, the effect of punctuated mutation may be weaker than suggested by the theoretical and empirical analyses:

      (1) The effect of punctuated mutation is much stronger when the first mutation of a two-step adaptation is deleterious (Figure 2). For double inactivation of a TSG, the first mutation--inactivation of one copy--would be expected to be neutral or slightly advantageous. The simulations depicted in Figure 4, which are supposed to demonstrate the expected effect for TSGs, assume that the first mutation is quite deleterious. This assumption seems inappropriate for TSGs, and perhaps the other synergistic pairs considered, and exaggerates the expected effects.

      (2) More generally, parameter values affect the magnitude of the effect. The authors note, for example, that the relative effect decreases with mutation rate. They suggest that the absolute effect, which increases, is more important, but the relative effect seems more relevant and is what is assessed empirically.

      (3) Routes to inactivation of both copies of a TSG that are not accelerated by punctuation will dilute any effects of punctuation. An example is a single somatic mutation followed by loss of heterozygosity. Such mechanisms are not included in the theoretical analysis nor assessed empirically. If, for example, 90% of double inactivations were the result of such mechanisms with a constant mutation rate, a factor of two effect of punctuated mutagenesis would increase the overall rate by only 10%. Consideration of the rate of apparent inactivation of just one TSG copy and of deletion of both copies would shed some light on the importance of this consideration.

      Several factors besides the effects of punctuated mutation might explain or contribute to the empirical observations:

      (1) High APOBEC3 activity can select for inactivation of TSGs (references in Butler and Banday 2023, PMID 36978147). This selective force is another plausible explanation for the empirical observations.

      (2) Without punctuation, the rate of multistep adaptation is expected to rise more than linearly with mutation rate. Thus, if APOBEC signatures are correlated with a high mutation rate due to the action of APOBEC, this alone could explain the correlation with TSG inactivation.

      (3) The nature of mutations caused by APOBEC might explain the results. Notably, one of the two APOBEC mutation signatures, SBS13, is particularly likely to produce nonsense mutations. The authors count both nonsense and missense mutations, but nonsense mutations are more likely to inactivate the gene, and hence to be selected.

    1. Reviewer #1 (Public review):

      Summary:

      This very thorough anatomical study addresses the innervation of the Drosophila male reproductive tract. Two distinct glutamatergic neuron types were classified: serotonergic (SGNs) and octopaminergic (OGNs). By expansion microscopy, it was established that glutamate and serotonin /octopamine are co-released. The expression of different receptors for 5-HT and OA in muscles and epithelial cells of the innervation target organs was characterized. The pattern of neurotransmitter receptor expression in the target organs suggests that seminal fluid and sperm transport and emission are subjected to complex regulation. While silencing of abdominal SGNs leads to male infertility and prevents sperm from entering the ejaculatory duct, silencing of OGNs does not render males infertile.

      Strengths:

      The studied neurons were analysed with different transgenes and methods, as well as antibodies against neurotransmitter synthesis enzymes, building a consistent picture of their neurotransmitter identity. The careful anatomical description of innervation patterns together with receptor expression patterns of the target organs provides a solid basis for advancing the understanding of how seminal fluid and sperm transport and emission are subjected to complex regulation. The functional data showing that SGNs are required for male fertility and for the release of sperm from the seminal vesicle into the ejaculatory duct is convincing.

      Weaknesses:

      The functional analysis of the characterized neurons is not as comprehensive as the anatomical description, and phenotypic characterization was limited to simple fertility assays. It is understandable that a full functional dissection is beyond the scope of the present work. The paper contains experiments showing neuron-independent peristaltic waves in the reproductive tract muscles, which are thematically not very well integrated into the paper. Although very interesting, one wonders if these experiments would not fit better into a future work that also explores these peristaltic waves and their interrelation with neuromodulation mechanistically.

    2. Reviewer #2 (Public review):

      Summary:

      Cheverra et al. present a comprehensive anatomical and functional analysis of the motor neurons innervating the male reproductive tract in Drosophila melanogaster, addressing a gap in our understanding of the peripheral circuits underlying ejaculation and male fertility. They identify two classes of multi-transmitter motor neurons-OGNs (octopamine/glutamate) and SGNs (serotonin/glutamate)-with distinct innervation patterns across reproductive organs. The authors further characterize the differential expression of glutamate, octopamine, and serotonin receptors in both epithelial and muscular tissues of these organs. Behavioral assays reveal that SGNs are essential for male fertility, whereas OGNs and glutamatergic transmission are dispensable. This work provides a high-resolution map linking neuromodulatory identity to organ-specific motor control, offering a valuable framework to explore the neural basis of male reproductive function.

      Strengths:

      Through the use of an extensive set of GAL4 drivers and antibodies, this work successfully and precisely defines the neurons that innervate the male reproductive tract, identifying the specific organs they target and the nature of the neurotransmitters they release. It also characterizes the expression patterns and localization of the corresponding neurotransmitter receptors across different tissues. The authors describe two distinct groups of dual-identity neurons innervating the male reproductive tract: OGNs, which co-express octopamine and glutamate, and SGNs, which co-express serotonin and glutamate. They further demonstrate that the various organs within the male reproductive system differentially express receptors for these neurotransmitters. Based on these findings, the authors propose that a single neuron capable of co-releasing a fast-acting neurotransmitter alongside a slower-acting one may more effectively synchronize and stagger events that require precise timing. This, together with the differential expression of ionotropic glutamate receptors and metabotropic aminergic receptors in postsynaptic muscle tissue, adds an additional layer of complexity to the coordinated regulation of fluid secretion, organ contractility, and directional sperm movement-all contributing to the optimization of male fertility.

      Weaknesses:

      The main weakness of the manuscript is the lack of detail in the presentation of the results. Specifically, all microscopy image figures are missing information about the number of samples (N), and in the case of colocalization experiments, quantitative analyses are not provided. Additionally, in the first behavioral section, it would be beneficial to complement the data table with figures similar to those presented later in the manuscript for consistency and clarity.

      Wider context:

      This study delivers the first detailed anatomical map connecting multi-transmitter motor neurons with specific male reproductive structures. It highlights a previously unrecognized functional specialization between serotonergic and octopaminergic pathways and lays the groundwork for exploring fundamental neural mechanisms that regulate ejaculation and fertility in males. The principles uncovered here may help explain how males of Drosophila and other organisms adjust reproductive behaviors in response to environmental changes. Furthermore, by shedding light on how multi-transmitter systems operate in reproductive control, this model could provide insights into therapeutic targets for conditions such as male infertility and prostate cancer, where similar neuronal populations are involved in humans. Ultimately, this genetically accessible system serves as a powerful tool for uncovering how multi-transmitter neurons orchestrate coordinated physiological actions necessary for the functioning of complex organs.

    3. Reviewer #3 (Public review):

      Summary:

      This work provides an overview of the motor neuron landscape in the male reproductive system. Some work had been done to elucidate the circuits of ejaculation in the spine, as well as the cord, but this work fills a gap in knowledge at the level of the reproductive organs. Using complementary approaches, the authors show that there are two types of motor neurons that are mutually exclusive: neurons that co-express octopamine and glutamate and neurons that co-express serotonin and glutamate. They also show evidence that both types of neurons express large dense core vesicles, indicating that neuropeptides play a role in male fertility. This paper provides a thorough characterization of the expression of the different glutamate, octopamine, and serotonin receptors in the different organs and tissues of the male reproductive system. The differential expression in different tissues and organs allows building initial theories on the control of emission and expulsion. Additionally, the authors characterize the expression of synaptic proteins and the neuromuscular junction sites. On a mechanistic level, the authors show that neither octopamine/glutamate neuron transmission nor glutamate transmission in serotonin/glutamate neurons is required for male fertility. This final result is quite surprising and opens up many questions on how ejaculation is coordinated.

      Strengths:

      This work fills an important gap in the characterization of innervation of the male reproductive system by providing an extensive characterization of the motor neurons and the potential receptors of motor neuron release. The authors show convincing evidence of glutamate/monoamine co-release and of mutual exclusivity of serotonin/glutamate and octopamine/glutamate neurons.

      Weaknesses:

      (1) Often, it is mentioned that the expression is higher or lower or regional without quantification or an indication of the number of samples analysed.

      (2) The experiment aimed at tracking sperm in the male reproductive system is difficult to interpret when it is not assessed whether ejaculation has occurred.

      (3) The experiment looking at peristaltic waves in the male organs is missing labeling of the different regions and quantification of the observed waves.

    1. Reviewer #1 (Public review):

      Summary:

      This study focuses on characterizing the EEG correlates of item-specific proportion congruency effects. In particular, two types of learned associations are characterized. One being associations between stimulus features and control states (SC), and the other being stimulus features and responses (SR). Decoding methods are used to identify SC and SR correlates and to determine whether they have similar topographies and dynamics.

      The results suggest SC and SR associations are simultaneously coactivated and have shared topographies, with the inference being that these associations may share a common generator.

      Strengths:

      Fearless, creative use of EEG decoding to test tricky hypotheses regarding latent associations.

      Nice idea to orthogonalize the ISPC condition (MC/MI) from stimulus features.

      Weaknesses:

      (1) I'm relatively concerned that these results may be spurious. I hope to be proven wrong, but I would suggest taking another look at a few things.

      While a nice idea in principle, the ISPC manipulation seems to be quite confounded with the trial number. E.g., color-red is MI only during phase 2, and is MC primarily only during Phase 3 (since phase 1 is so sparsely represented). In my experience, EEG noise is highly structured across a session and easily exploited by decoders. Plus, behavior seems quite different between Phase 2 and Phase 3. So, it seems likely that the classes you are asking the decoder to separate are highly confounded with temporally structured noise.

      I suggest thinking of how to handle this concern in a rigorous way. A compelling way to address this would be to perform "cross-phase" decoding, however I am not sure if that is possible given the design.

      The time courses also seem concerning. What are we to make of the SR and SC timecourses, which have aggregate decoding dynamics that look to be <1Hz?

      Some sanity checks would be one place to start. Time courses were baselined, but this is often not necessary with decoding; it can cause bias (10.1016/j.jneumeth.2021.109080), and can mask deeper issues. What do things look like when not baselined? Can variables be decoded when they should not be decoded? What does cross-temporal decoding look like - everything stable across all times, etc.?

      (2) The nature of the shared features between SR and SC subspaces is unclear.

      The simulation is framed in terms of the amount of overlap, revealing the number of shared dimensions between subspaces. In reality, it seems like it's closer to 'proportion of volume shared', i.e., a small number of dominant dimensions could drive a large degree of alignment between subspaces.

      What features drive the similarity? What features drive the distinctions between SR and SC? Aside from the temporal confounds I mentioned above, is it possible that some low-dimensional feature, like EEG congruency effect (e.g., low-D ERPs associated with conflict), or RT dynamics, drives discriminability among these classes? It seems plausible to me - all one would need is non-homogeneity in the size of the congruency effect across different items (subject-level idiosyncracies could contribute: 10.1016/j.neuroimage.2013.03.039).

      (3) The time-resolved within-trial correlation of RSA betas is a cool idea, but I am concerned it is biased. Estimating correlations among different coefficients from the same GLM design matrix is, in general, biased, i.e., when the regressors are non-orthogonal. This bias comes from the expected covariance of the betas and is discussed in detail here (10.1371/journal.pcbi.1006299). In short, correlations could be inflated due to a combination of the design matrix and the structure of the noise. The most established solution, to cross-validate across different GLM estimations, is unfortunately not available here. I would suggest that the authors think of ways to handle this issue.

      (4) Are results robust to running response-locked analyses? Especially the EEG-behavior correlation. Could this be driven by different RTs across trials & trial-types? I.e., at 400 ms post-stim onset, some trials would be near or at RT/action execution, while others may not be nearly as close, and so EEG features would differ & "predict" RT.

      (5) I suggest providing more explanation about the logic of the subspace decoding method - what trialtypes exactly constitute the different classes, why we would expect this method to capture something useful regarding ISPC, & what this something might be. I felt that the first paragraph of the results breezes by a lot of important logic.

      In general, this paper does not seem to be written for readers who are unfamiliar with this particular topic area. If authors think this is undesirable, I would suggest altering the text.

    2. Reviewer #2 (Public review):

      Summary:

      In this EEG study, Huang et al. investigated the relative contribution of two accounts to the process of conflict control, namely the stimulus-control association (SC), which refers to the phenomenon that the ratio of congruent vs. incongruent trials affects the overall control demands, and the stimulus-response association (SR), stating that the frequency of stimulus-response pairings can also impact the level of control. The authors extended the Stroop task with novel manipulation of item congruencies across blocks in order to test whether both types of information are encoded and related to behaviour. Using decoding and RSA, they showed that the SC and SR representations were concurrently present in voltage signals, and they also positively co-varied. In addition, the variability in both of their strengths was predictive of reaction time. In general, the experiment has a solid design, but there are some confounding factors in the analyses that should be addressed to provide strong support for the conclusions.

      Strengths:

      (1) The authors used an interesting task design that extended the classic Stroop paradigm and is potentially effective in teasing apart the relative contribution of the two different accounts regarding item-specific proportion congruency effect, provided that some confounds are addressed.

      (2) Linking the strength of RSA scores with behavioural measures is critical to demonstrating the functional significance of the task representations in question.

      Weakness:

      (1) While the use of RSA to model the decoding strength vector is a fitting choice, looking at the RDMs in Figure 7, it seems that SC, SR, ISPC, and Identity matrices are all somewhat correlated. I wouldn't be surprised if some correlations would be quite high if they were reported. Total orthogonality is, of course, impossible depending on the hypothesis, but from experience, having highly covaried predictors in a regression can lead to unexpected results, such as artificially boosting the significance of one predictor in one direction, and the other one to the opposite direction. Perhaps some efforts to address how stable the timed-resolved RSA correlations for SC and SR are with and without the other highly correlated predictors will be valuable to raising confidence in the findings.

      (2) In "task overview", SR is defined as the word-response pair; however, in the Methods, lines 495-496, the definition changed to "the pairing between word and ISPC" which is in accordance with the values in the RDMs (e.g., mccbb and mcirb have similarity of 1, but they are linked to different responses, so should they not be considered different in terms of SR?). This needs clarification as they have very different implications for the task design and interpretation of results, e.g., how correlated the SC and SR manipulations were.

    1. Reviewer #1 (Public review):

      Summary:<br /> This article carefully compares intramural vs. extramural National Institutes of Health funded research during 2009-2019, according to a variety of bibliometric indices. They find that extramural awards more cost-effectively fund outputs commonly used for academic review such as number of publications and citations per dollar, while intramural awards are more cost-effective at generating work that influences future clinical work, more closely in line with agency health goals.

      Strengths:<br /> Great care was taken in selecting and cleaning the data, and in making sure that intramural vs. extramural projects were compared appropriately. The data has statistical validation. The trends are clear and convincing.

      Weaknesses:<br /> The Discussion is too short and descriptive, and needs more perspective - why are the findings important and what do they mean? Without recommending policy, at least these should discuss possible implications for policy.

      The biggest problem I have with this submission is Figure 3, which shows a big decrease in clinical-related parameters between 2014 and 2019 in both intramural and extramural research (panels C, D and E). There is no obvious explanation for this and I did not see any discussion of this trend, but it cries out for investigation. This might, for example, reflect global changes in funding policies which might also influence the observed closing gaps between intramural and extramural research.

    2. Reviewer #2 (Public review):

      Summary:<br /> This article reports a cost-effectiveness comparison of intramural and extramural that NIH funded between 2009 and 2019. Using data obtained from NIH RePORTER, they linked total project costs to publication output, using robust validated metrics including Relative Citation Ratio (RCR), Approximate Potential to Translate (APT), and clinical citations. They find that after adjusting for confounders in regression and propensity-score analyses, extramural projects were generally more cost-effective, though intramural projects were more cost effective for generating clinical citations. They also describe differences in the topics of intramural- and extramural-funded publications, with intramural projects more likely to generate papers on viral infections and immunity or cancer metastases and survival, but less likely to generate papers on pregnancy and maternal health, brain connectivity and tasks, and adolescent experiences and depression. The authors aptly describe the different natures of the intramural and extramural funding models, including that extramural researchers spend much time writing grant applications and that the work described in extramural publications often receives funding from sources other than NIH grants.

      Strengths:<br /> The authors leveraged publicly available data (including RePORTER and the iCite repository) and used robust validated metrics (RCR, APT, clinical citations). They carefully considered a large number of confounders, including those related to the PI, and performed several well-described regression analyses.

      Weaknesses:<br /> Figure 3A shows intramural projects producing about 2.75 papers per year in 2009, whereas extramural projects are producing just over 1 paper per year. Extramural projects appear to catch up over the next five years. While the authors attempt to explain the difference in their figure legend, another explanation is that the intramural projects started well before 2009 but, as the authors state, intramural data only became available in 2009.

      As the authors note, funding information is often complex and difficult to characterize for an analysis like this. How did the authors handle: i) publications linked to multiple extramural grants; ii) publications linked to intramural and extramural grants; iii) publications linked NIH grants and non-NIH grants?<br /> I would think it necessary to somehow apportion credit, as otherwise it would appear that extramural projects are more productive than they truly are.

      Also, it is not clear if the authors took account of the indirect costs paid by the NIH to universities that have received extramural grants.

    3. Reviewer #3 (Public review):

      Summary:<br /> The manuscript "Comparing the outputs of intramural and extramural grants funded by National Institutes of Health" demonstrates a comparative study on two funding mechanisms adopted by the National Institutes of Health (NIH). The authors adopted a quantitative approach and introduced five metrics to compare the output of intramural and extramural grants. These findings reveal the impacts of intramural and extramural grants on the scientific community, providing funders with insights into the future decisions of funding mechanisms they should take.

      Strengths:<br /> The authors clearly presented their methods for processing the NIH project data and classifying projects into either intramural or extramural categories. The limitations of the study are also well-addressed.

      Weaknesses:<br /> The article would benefit from a more thorough discussion of the literature, a clearer presentation of the results (especially in the figure captions), and the inclusion of evidence to support some of the claims.

    1. Reviewer #1 (Public review):

      Summary:

      The authors reduce uncertainties in TAK-003 vaccine efficacy estimates by applying a multi-level model to all published Phase III clinical trial case data and sharing parameters across strata consistent with the data generation process. In line with our current understanding of the vaccine, they show that its efficacy depends on the serostatus and infecting serotype.

      Strengths:

      The methodology is well-described and technically sound, with clear explanations of how the authors reduce uncertainty through the model structure. The comparison of model estimates with and without independence parameter assumptions is particularly valuable. The data come from the Phase III RCT conducted over 4.5 years in 8 countries, and the study is the first to model efficacy using available country-specific data. The analysis is timely and addresses important public health questions regarding TAK-003 efficacy.

      Weaknesses:

      It is unclear whether the simulation study used to validate the model sampled from the priors (as stated in the methods) or the posterior distributions. Supplementary figures 19-28 show that sampled parameters often derive from narrower distributions than the priors, with sampled areas varying by subgroup. Sampling from posterior distributions makes the validation somewhat circular. As many parameters are estimated stratified by multiple subgroups, identifiability issues may arise. Model variations with fewer parameter dependencies could impact the resulting estimates.

      Assessment of aims and conclusions:

      The authors achieve their aims of reducing uncertainty in efficacy estimates and show that efficacy varies by serostatus and serotype. The conclusions are well-justified, although they could be strengthened by clarifying the model validation, as discussed above.

      Impact and utility:

      This work contributes valuable evidence demonstrating TAK-003's serostatus and serotype-specific efficacy and highlights remaining uncertainties in the protection or risk against DENV3/4 in seronegative individuals. The methods are well-described and would be useful to other modellers, and could be applied to additional dengue vaccines like the Butantan-DV vaccine currently under development.

      Additional context:

      Several factors may influence the estimates but cannot be addressed using public data, including the role of subclinical infections, flavivirus cross-immunity, and the imperfect use of hospitalisation as a proxy for severe disease.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors used a multi-level modelling approach to reanalyse trial data from Takeda's Phase III randomised control trial investigating the efficacy of the TAK-003 vaccine against dengue. The aim of the paper is to refine uncertainty by incorporating all the available data into the model and pooling across stratifications that are correlated. A major challenge in constructing a likelihood that allows for data available at differing levels of aggregation by group and outcome, and at different time intervals. This is done by first supposing that the data is available without aggregation for all groups, outcomes and time points, and then marginalising over the aggregated levels. The model is validated using simulations and then applied to trial data from Takeda. Results appear to corroborate those of Takeda with reduced uncertainty in the estimates.

      Strengths:

      The main strength of the paper is the multi-level modelling approach. It is a particularly natural one for this setting. One reason for this, as discussed in the paper, is that correlations across stratifications can arise when there are similarities in their underlying causal structure. It is more realistic to model this nested data structure hierarchically. Another reason, also well discussed in the paper, is the reduction in uncertainty you get when you pool estimates across related groups. Multi-level modelling is also beneficial when group sizes are different. For example, there were too few cases of DENV-4 from seronegatives, which resulted in hospitalised disease for the original analysis to produce estimates, but by using multi-level modelling, this paper can produce estimates. The modelling framework developed in this paper will be simple to extend to further trial data collected in the future.

      Another strength is that it is reanalysing existing trial data, which is both cost-effective and beneficial for scientific reproducibility. This approach also helps to assess the robustness of conclusions about the efficacy of the TAK-003 vaccine to use of different analytical methods.

      The paper is well-written. The tables and figures presented in this paper are particularly informative. Protection conferred by the vaccine varies depending upon which variant a person is exposed to, their serostatus, and time since vaccination. The analysis presented supports the discussed conclusions. Comparisons between the results of this paper and the results of the original trial analysis are also shown and demonstrate a reduction in the uncertainty of parameter estimates, as desired.

      Weaknesses:

      The weakness of the paper is that it reports per-exposure protection instead of vaccine efficacy. This is methodologically sound, but it does limit the comparability of this study with the original trial analyses, which reported vaccine efficacy. It is therefore unclear whether the reduction in uncertainty observed is due solely to the multi-level modelling approach or whether it may be due in part to the parameters of interest being slightly different.

    3. Reviewer #3 (Public review):

      Summary:

      The authors provide estimates of the efficacy of the dengue vaccine, which is notoriously complex given the different serotypes and complex immunity. Through their method using publicly available data, the estimates have less uncertainty and are of use to the field in understanding the future possible impact of the vaccine.

      Strengths:

      This is an elegant analysis addressing an important question. The pooling of common factors for estimation is nice and adds strength to the analysis. It is an important analysis for the field and our understanding of the vaccine, and for the analysis of future multi-site trials for the dengue vaccine.

      Weaknesses:

      It would be useful to have more understanding of how the way the vaccine efficacy is defined here is related to the previous estimates and a greater understanding of how the estimated impact changes over time.

    1. Reviewer #1 (Public review):

      Summary:

      Simoens and colleagues use a continuous estimation task to disentangle learning rate adjustments on shorter and longer timescales. They show that participants rapidly decrease learning rates within a block of trials in a given "location", but that they also adjust learning rates for the very first trial based on information accrued gradually about the statistics of each location, which can be viewed as a form of metalearning. The authors show that the metalearned learning rates are represented in patterns of neural activity in the orbitofrontal cortex, and that prediction errors are represented in a constellation of brain regions, including the ventral striatum, where they are modulated by expectations about error magnitude to some degree. Overall, the work is interesting, timely, and well communicated. My primary concern with the work was that the link between the brain signals and their role in the behavior of interest was not well explored, raising some questions about the degree to which signals are really involved in the learning process, versus playing some downstream role.

      Strengths:

      The authors build on an interesting task design, allowing them to distinguish moment-to-moment adjustments in learning rate from slower adjustments in learning rate corresponding to slowly-gained knowledge about the statistics of specific "locations". Behavior and computational modeling clearly demonstrate that individuals adjust to environmental statistics in a sort of metalearning. fMRI data reveal representations of interest, including those related to adjusted learning rates and their impact on the degree of prediction error encoding in the striatum.

      Weaknesses:

      It was nice to see that the authors could distinguish differences between the OFC signals that they observed and those in the visual regions based on changes through the session. However, the linkage between these brain activations and a functional role in generating behavior was left unexplored. Without further exploration, it is hard to tell exactly what role the signals might be playing, if any, in the behavior of interest.

    2. Reviewer #2 (Public review):

      Summary:

      Across two experiments, this work presents a novel spatial predictive inference paradigm that facilitates the investigation of meta-learning across multiple environments with distinct statistics, as well as more local learning from sequences of observations within an environment. The authors present behavioral data indicating that people can indeed learn to distinguish between noise levels and calibrate their learning rates accordingly across environments, even on initial trials when revisiting an environment. They complement their behavioral results with computational modeling, further bolstering claims of both local and global adaptation. Additional fMRI results support the role of OFC in this meta-learning process, with central OFC activity reflecting similarity between environments. This similarity emerges over time with task experience. Holistically, this paradigm and these data add to our understanding of how humans dynamically adapt their behavior on different timescales.

      Strengths:

      The novel paradigm represents a clever and creative expansion of spatial predictive inference tasks. The cover story was well chosen to facilitate an intuitive understanding of both the differences between environments and the estimation of the mean within environments.

      Additionally, the authors present complementary results from two experiments, which strengthen the behavioral findings. This is especially effective as the initial experiment's results were a bit noisy, and the modifications within the second experiment increased both power and the specificity/accuracy of participant predictions. Taken together, the behavioral results provide convincing evidence that participants did distinguish environments based on their underlying statistics and adapted their initial behavior accordingly.

      Beyond this, the combination of behavioral results, computational modeling, and neuroimaging enhances the impact of the work. It paints a fuller picture of whether and how humans meta-learn the global statistics of environments, and this is an important direction for the field of adaptive learning.

      Weaknesses:

      (1) The authors make the distinction between meta-learned "global" learning rates and within-environment learning rate adaptation in response to "local" fluctuations/observations. Though the experimental paradigm is novel, there are certainly links to prior work - for instance, though change point structures don't entail revisiting unique environments, they do require meta-learning from environmental statistics that is distinct from transient local adaptation to prediction errors. This tendency to increase one's learning rate after large prediction errors is appropriate in change point environments, though, as is true in this study, the amount of increase should be dependent on. This represents a similar kind of slower-timescale learning or reuse of more "global" parameters, and can be seen to different extents in prior work. It might benefit readers if the authors were to link the current work to previous research more explicitly to draw clearer connections between the approaches and findings.

      (2) Throughout much of the paper, the authors refer to the distinctions between environments primarily as differences in "initial learning rates" or "environment-specific learning rates." This is particularly prominent when discussing fMRI results. Though the optimal initial learning rate did differ across environments, this was the result of differences in underlying task statistics. It will be important to clarify this throughout the text, because of the confounds between task statistics and initial learning rate (and to some extent, the position on the screen), it is not possible to separate the impact of these specific variables. This is also relevant to understanding the justification for using methods like RSA to test whether brain regions represent task states similarly. If the main hypothesis is that neural activity reflects the (initial) learning rate itself, then a univariate analysis approach would seem more natural.

      (3) For the neuroimaging results in particular, the specificity of some of the results (e.g. ventral striatum showing an effect of prediction error only in the low noise condition in the second half of task experience, only on the first trial) is a bit surprising. Additional justification of or context for these results would be useful to help readers gauge how expected or surprising these findings are.

      (4) There are some methodological details that are unclear (e.g., how were the positions of the crabs selected relative to the location they emerged from? Looking at Figure 1C, it looks like the crabs spread out unevenly, and that the single position they emerge from is not necessarily at the center of the crab locations.) Additional detail and clarity would help address some unanswered questions (more details below).

    1. Reviewer #1 (Public review):

      In this well-written and timely manuscript, Rieger et al. introduce Squidly, a new deep learning framework for catalytic residue prediction. The novelty of the work lies in the aspect of integrating per-residue embeddings from large protein language models (ESM2) with a biology-informed contrastive learning scheme that leverages enzyme class information to rationally mine hard positive/negative pairs. Importantly, the method avoids reliance on the use of predicted 3D structures, enabling scalability, speed, and broad applicability. The authors show that Squidly outperforms existing ML-based tools and even BLAST in certain settings, while an ensemble with BLAST achieves state-of-the-art performance across multiple benchmarks. Additionally, the introduction of the CataloDB benchmark, designed to test generalization at low sequence and structural identity, represents another important contribution of this work.

      I have only some minor comments:

      (1) The manuscript acknowledges biases in EC class representation, particularly the enrichment for hydrolases. While CataloDB addresses some of these issues, the strong imbalance across enzyme classes may still limit conclusions about generalization. Could the authors provide per-class performance metrics, especially for underrepresented EC classes?

      (2) An ablation analysis would be valuable to demonstrate how specific design choices in the algorithm contribute to capturing catalytic residue patterns in enzymes.

      (3) The statement that users can optionally use uncertainty to filter predictions is promising but underdeveloped. How should predictive entropy values be interpreted in practice? Is there an empirical threshold that separates high- from low-confidence predictions? A demonstration of how uncertainty filtering shifts the trade-off between false positives and false negatives would clarify the practical utility of this feature.

      (4) The excerpt highlights computational efficiency, reporting substantial runtime improvements (e.g., 108 s vs. 5757 s). However, the comparison lacks details on dataset size, hardware/software environment, and reproducibility conditions. Without these details, the speedup claim is difficult to evaluate. Furthermore, it remains unclear whether the reported efficiency gains come at the expense of predictive performance.

      (5) Given the well-known biases in public enzyme databases, the dataset is likely enriched for model organisms (e.g., E. coli, yeast, human enzymes) and underrepresents enzymes from archaea, extremophiles, and diverse microbial taxa. Would this limit conclusions about Squidly's generalisability to less-studied lineages?

    2. Reviewer #2 (Public review):

      Summary:

      The authors aim to develop Squidly, a sequence-only catalytic residue prediction method. By combining protein language model (ESM2) embedding with a biologically inspired contrastive learning pairing strategy, they achieve efficient and scalable predictions without relying on three-dimensional structure. Overall, the authors largely achieved their stated objectives, and the results generally support their conclusions. This research has the potential to advance the fields of enzyme functional annotation and protein design, particularly in the context of screening large-scale sequence databases and unstructured data. However, the data and methods are still limited by the biases of current public databases, so the interpretation of predictions requires specific biological context and experimental validation.

      Strengths:

      The strengths of this work include the innovative methodological incorporation of EC classification information for "reaction-informed" sample pairing, thereby enhancing the discriminative power of contrastive learning. Results demonstrate that Squidly outperforms existing machine learning methods on multiple benchmarks and is significantly faster than structure prediction tools, demonstrating its practicality.

      Weaknesses:

      Disadvantages include the lack of a systematic evaluation of the impact of each strategy on model performance. Furthermore, some analyses, such as PCA visualization, exhibit low explained variance, which undermines the strength of the conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors derive an integrate-and-fire model to describe the dynamics of a more complex Wang-Buzsaki model and compare the two models. A detailed discussion of bifurcation schemes in both models is convincing and allows us to evaluate the simpler model.

      Strengths:

      The idea is interesting, and the mathematical approach appears to be convincing. In addition, differences between the simple and original models are also discussed.

      Weaknesses:

      A comparison to experimental data is necessary to support the theoretical work.

    2. Reviewer #1 (Public review):

      Summary:

      From a big picture viewpoint, this work aims to provide a method to fit parameters of reduced models for neural dynamics so that the resulting tuned model has a bifurcation diagram that matches that of a more complex, computationally expensive model. The matching of bifurcation diagrams ensures that the model dynamics agree on a region of parameter space, rather than just at specially tuned values, and that the models share properties such as qualitative features of their phase response curves, as the authors demonstrate. A notable point is the inclusion of extracellular potassium concentration dynamics into the reduced model - here, the quadratic integrate-and-fire model; this is straightforward but nonetheless useful for studying certain phenomena.

      Strengths:

      The paper demonstrates the method specifically on the fitting of the quadratic integrate-and-fire model, with potassium concentration dynamics included, to the Wang-Buzsaki model extended to include the potassium component. The method works very well overall in this instance. The resulting model is thoroughly compared with the original, in terms of bifurcation diagrams, production of various activity patterns, phase response curves, and associated phase-locking and synchronization properties.

      Weaknesses:

      It is important to note that the proposed method requires that a target bifurcation diagram be known. In practical terms, this means that the method may be well suited to fitting a reduced model to another, more complicated model, but is not likely to be useful for fitting the model to data. Certainly, the authors did not illustrate any such application. Secondly, the authors do not provide any sort of general algorithm but rather give a demonstration of a single example of fitting one specific reduced model to one specific conductance-based model. Finally, the main idea of the paper seems to me to be a natural descendant of the chain of reasoning, starting from Rinzel - continuing through Bertram; Golubitsky/Kaper/Josic; Izhikevich; and others - that a fundamental way to think about neuronal models, especially those involving bursting dynamics, is in terms of their bifurcation structure. According to this line of reasoning, two models are "the same" if they have the same bifurcation structure. Thus, it becomes natural to fit a reduced model to a more complicated model based on the bifurcation structure. The authors deserve credit for recognizing and implementing this step, and their work may be a useful example to the community. But the manuscript should have described and cited this chain of works to put the current study in the correct context.

    1. Reviewer #1 (Public review):

      This paper by Poverlein et al reports the substantial membrane deformation around the oxidative phosphorylation super complex, proposing that this deformation is a key part of super complex formation. I found the paper interesting and well-written.

      * Analysis of the bilayer curvature is challenging on the fine lengthscales they have used and produces unexpectedly large energies (Table 1). Additionally, the authors use the mean curvature (Eq. S5) as input to the (uncited, but it seems clear that this is Helfrich) Helfrich Hamiltonian (Eq. S7). If an errant factor of one half has been included with curvature, this would quarter the curvature energy compared to the real energy, due to the squared curvature. The bending modulus used (ca. 5 kcal/mol) is small on the scale of typically observed biological bending moduli. This suggests the curvature energies are indeed much higher even than the high values reported. Some of this may be due to the spontaneous curvature of the lipids and perhaps the effect of the protein modifying the nearby lipids properties.

      * It is unclear how CDL is supporting SC formation if its effect stabilizing the membrane deformation is strong or if it is acting as an electrostatic glue. While this is a weakenss for a definite quantification of the effect of CDL on SC formation, the study presents an interesting observation of CDL redistribution and could be an interesting topic for future work.

      In summary, the qualitative data presented are interesting (especially the combination of molecular modeling with simpler Monte Carlo modeling aiding broader interpretation of the results). The energies of the membrane deformations are quite large. This might reflect the roles of specific lipids stabilizing those deformations, or the inherent difficulty in characterizing nanometer-scale curvature.

    2. Reviewer #3 (Public review):

      Summary:

      In this contribution, the authors report atomistic, coarse-grained and lattice simulations to analyze the mechanism of supercomplex (SC) formation in mitochondria. The results highlight the importance of membrane deformation as one of the major driving forces for the SC formation, which is not entirely surprising given prior work on membrane protein assembly, but certainly of major mechanistic significance for the specific systems of interest.

      Strengths:

      The combination of complementary approaches, including an interesting (re)analysis of cryo-EM data, is particularly powerful, and might be applicable to the analysis of related systems. The calculations also revealed that SC formation has interesting impacts on the structural and dynamical (motional correlation) properties of the individual protein components, suggesting further functional relevance of SC formation. In the revision, the authors further clarified and quantified their analysis of membrane responses, leading to further insights into membrane contributions. They have also toned down the decomposition of membrane contributions into enthalpic and entropic contributions, which is difficult to do. Overall, the study is rather thorough, highly creative and the impact on the field is expected to be significant.

      Weaknesses:

      Upon revision, I believe the weakness identified in previous work has been largely alleviated.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigated the mechanism underlying boundary formation necessary for proper separation of vestibular sensory end organs. In both chick and mouse embryos, it was shown that a population of cells abutting the sensory (marked by high Sox2 expression) /nonsensory cell populations (marked by Lmx1a expression) undergo apical expansion, elongation, alignment and basal constriction to separate the lateral crista (LC) from the utricle. Using Lmx1a mouse mutant, organ cultures, pharmacological and viral-mediated Rock inhibition, it was demonstrated that the Lmx1a transcription factor and Rock-mediated actomyosin contractility is required for boundary formation and LC-utricle separation.

      Strengths:

      Overall, the morphometric analyses were done rigorously and revealed novel boundary cell behaviors. The requirement of Lmx1a and Rock activity in boundary formation was convincingly demonstrated.

      Weaknesses:

      However, the precise roles of Lmx1a and Rock in regulating cell behaviors during boundary formation were not clearly fleshed out. For example, phenotypic analysis of Lmx1a was rather cursory; it is unclear how Lmx1a, expressed in half of the boundary domain, control boundary cell behaviors and prevent cell mixing between Lmx1a+ and Lmx1a- compartments? Well-established mechanisms and molecules for boundary formation were not investigated (e.g. differential adhesion via cadherins, cell repulsion via ephrin-Eph signaling). Moreover, within the boundary domain, it is unclear whether apical multicellular rosettes and basal constrictions are drivers of boundary formation, as boundary can still form when these cell behaviors were inhibited. Involvement of other cell behaviors, such as directional cell intercalation and oriented cell division also warrant consideration. With these lingering questions, the mechanistic advance of the present study is modest.

      Revision: The clarity of the text was improved. The open questions regarding the mechanisms were not experimentally addressed but discussed.

    2. Reviewer #3 (Public review):

      Summary:

      Lmx1a is an orthologue of apterous in flies, which is important for dorsal-ventral border formation in the wing disc. Previously, this research group has described the importance of the chicken Lmx1b in establishing the boundary between sensory and non-sensory domains in the chicken inner ear. Here, the authors described a series of cellular changes during border formation in the chicken inner ear, including alignment of cells at the apical border and concomitant constriction basally. The authors extended these observations to the mouse inner ear and showed that these morphological changes occurred at the border of Lmx1a positive and negative regions, and these changes failed to develop in Lmx1a mutants. Furthermore, the authors demonstrated that the ROCK-dependent actomyosin contractility is important for this border formation and blocking ROCK function affected epithelial basal constriction and border formation in both in vitro and in vivo systems.

      Strengths:

      The morphological changes described during border formation in the developing inner ear are interesting. Linking these changes to the function of Lmx1a and ROCK dependent actomyosin contractile function are provocative.

      Weaknesses:

      There are several outstanding issues that need to be clarified before one can pin the morphological changes observed being causal to border formation and that Lmx1a and ROCK are involved.

      Comments on the latest version:

      The revised manuscript has provided clarity of their results on some levels, but unfortunately, the basal restriction during border formation remains unclear and the study did not advance the understanding of role of Lmx1a in boundary formation. Overall comments are indicated below:

      (1) The authors states in the rebuttal, "we do not think that ROCK activity is required for the formation or maintenance of the basal constriction at the interface of Lmx1a-expressing and non-expressing cells"<br /> If the above is the sentiment of the authors, then the manuscript is not written to support this sentiment clearly, starting with this misleading sentence in the Abstract, "The boundary domain is absent in Lmx1a-deficient mice, which exhibit defects in sensory organ segregation, and is disrupted by the inhibition of ROCK-dependent actomyosin contractility."

      (2) As acknowledged by the authors, the data as they currently stand could be explained by Lmx1a functioning in specifying the non-sensory fate and may not function directly in boundary formation. With this caveat in mind, the role of Lmx1a in boundary formation remains unclear.

      (3) I feel like the word "orchestrate" in the title is an overstatement.

    1. Reviewer #1 (Public review):

      Sarpaning et al. provide a thorough characterization of putative Rnt1 cleavage of mRNA in S. cerevisiae. Previous studies have discovered Rnt1 mRNA substrates anecdotally, and this global characterization expands the known collection of putative Rnt1 cleavage sites. The study is comprehensive, with several types of controls to show that Rnt1 is required for several of these cleavages.

      Comments on revisions:

      The authors have responded appropriately to the review.

    2. Reviewer #2 (Public review):

      This study presents a useful inventory of polyadenylated RNAs cleaved by the double-stranded RNA endonuclease Rnt1 in yeast. The data were obtained with solid methodology based on high-throughput sequencing, and the evidence that Rnt1 contributes to cellular homeostasis through controlling the turnover of selected mRNAs is convincing.

      Comments on revisions:

      I appreciate the authors' thorough and thoughtful response, and I find that the manuscript has been substantially strengthened by the additional data, analyses, and textual clarifications.

    1. Reviewer #1 (Public review):

      Summary:

      The objective of this study was to infer the population dynamics (rates of differentiation, division and loss) and lineage relationships of NK cell subsets during an acute immune response and under homeostatic conditions.

      Strengths:

      A rich dataset and a detailed analysis of a particular class of stochastic models.

      Weaknesses: (relating to initial submission)

      The stochastic models used are quite simple; each population is considered homogeneous with first-order rates of division, death, and differentiation. In Markov process models such as these there is no dependence of cellular behavior on its history of divisions. In recent years models of clonal expansion and diversification, in the settings of T and B cells, have progressed beyond this picture. So I was a little surprised that there was no mention of the literature exploring the role of replicative history in differentiation (e.g. Bresser Nat Imm 2022), nor of the notion of family 'division destinies' (either in division number, or the time spent proliferating, as described by the Cyton and Cyton2 models developed by Hodgkin and collaborators; e.g. Heinzel Nat Imm 2017). The emerging view is that variability in clone (family) size arises may arise predominantly from the signals delivered at activation, which dictate each precursor's subsequent degree of expansion, rather than from the fluctuations deriving from division and death modeled as Poisson processes.

      As you pointed out, the Gerlach and Buchholz Science papers showed evidence for highly skewed distributions of family sizes, and correlations between family size and phenotypic composition. Is it possible that your observed correlations could arise if the propensity for immature CD27+ cells to differentiate into mature CD27- cells increases with division number? The relative frequency of the two populations would then also be impacted by differences in the division rates of each subset - one would need to explore this. But depending on the dependence of the differentiation rate on division number, there may be parameter regimes (and timepoints) at which the more differentiated cells can predominate within large clones even if they divide more slowly than their immature precursors. One might not then be able to rule out the two-state model. I would like to see a discussion or rebuttal of these issues.

      Comments on revisions:

      The authors have put in a lot of effort to address the reviews and have explored alternative models carefully.

      In the sections relating to homeostasis and the endogenous response, as far as I can tell you are estimating net growth rates (the k parameters) throughout - this is to be expected if you're working with just cell numbers and no information relating to proliferation. In these sections there are many places where you refer to proliferation rates and death rates when I think you just mean net positive or net negative growth rates. It's important to be precise about this even if the language can get a bit repetitive. (These net rates of growth or loss relate to clonal rather than cellular dynamics, which may be worth explaining). Later, you do use data relating to dead cells, which in principle can be used to get independent measures of death rates, but these data were not used in the fitting.

      There is so much evidence that T and B cell differentiation are often contingent on division that it would be very reasonable to consider it as a possibility for NK cells too. (Differentiation could be asymmetric, as you explored, or simply symmetric with some probability per division). These processes can be cast into simple ODE models but no longer allow you to aggregate division and death rates - so for parameter estimation you need to add measures of proliferation (Ki67 or similar) or death. This may be worth some discussion?

    2. Reviewer #2 (Public review):

      Summary:

      Wethington et al. investigated the mechanistic principles underlying antigen-specific proliferation and memory formation in mouse natural killer (NK) cells following exposure to mouse cytomegalovirus (MCMV), a phenomenon predominantly associated with CD8+ T cells. Using a stochastic modeling approach, the authors aimed to develop a quantitative model of NK cell clonal dynamics during MCMV infection. Starting from a single immature Ly49+CD27+ NK cell, a two-state linear model (with a death variant) explained the negative correlation between clone size at 8 dpi and the CD27+ fraction, but failed to reproduce the first and second moments of CD27+ and CD27− NK cell populations at 8 dpi. To address this limitation, the authors added an intermediate maturation state, yielding a three-stage model (CD27+Ly6C− → CD27−Ly6C− → CD27−Ly6C+) that fits the first and second moments under two constraints: CD27+ NK cells proliferate faster than CD27− NK cells, and clone size is negatively correlated with the CD27+ fraction (upper bound of −0.2). The model predicts high proliferation in the intermediate state and high death in mature CD27−Ly6C+ cells, and it was validated using Adams et al. (2021) NK reporter mice tracking CD27+/− populations after tamoxifen, allowing discrimination between bone marrow-derived and pre-existing peripheral NK cells. To test the prediction that mature CD27− NK cells have a higher death rate, the authors measured Ly49H+ NK cell viability in the mouse spleen at different time points post-MCMV infection. Data confirmed lower viability of mature (CD27−) than immature (CD27+) cells during days 4-8 post-infection, and a model variant supported that higher CD27− death increases their proportion in the dead cell compartment. Altogether, the authors propose a three-stage quantitative model of antigen-specific expansion and maturation of naïve Ly49H+ NK cells with the trajectory CD27+Ly6C− (immature) → CD27−Ly6C− (mature I) → CD27−Ly6C+ (mature II), highlighting high proliferation in the mature I state and increased death in the mature II state.

      Strengths:

      Models explaining correlations and first and second moments, supported by analytical investigations, stochastic simulations, and model selection, identify key processes in antigen-specific NK expansion and maturation. The work distinguishes expansion, contraction, and memory in NK cells from CD8+ T cells and informs NK therapy development.

      Weaknesses (relating to initial submission):

      The conclusions of this paper are largely supported by the available data. However, a comparative analysis with more recent works in the field would be desirable. Clarifications:

      (1) Initial Conditions and Grassmann Data: The Grassmann data is used solely as a constraint, while the simulated values of CD27+/CD27− cells could have been directly fitted to the Grassmann data, which assumes a 1:1 ratio of CD27+/CD27− at t = 0. This would allow an alternative initial condition rather than starting from a single CD27+ cell.

      (2) Correlation Coefficients in the Three-State Model: Although the parameter scan of the three-stage model (Figure 2) demonstrates the potential for negative correlations between colony size and the fraction of CD27+ cells, the calculated correlation coefficients using the fitted parameter values are not shown. Including these would validate that the fitted parameters lie in the negative-correlation regime.

      (3) Viability Dynamics and Adaptive Response: The authors measured the time evolution of CD27+/− dynamics and viability over 30 days post-infection (Figure 4). It would be valuable to test whether the three-state model can reproduce the adaptive response of CD27− cells to MCMV infection, particularly the observed drop in CD27− viability at 5 dpi and its rebound at 8 dpi. Demonstrating this would test whether the model can simultaneously explain viability dynamics and moment dynamics, and would enable sensitivity analysis of CD27− viability with respect to model parameters.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Raices et al., provides some novel insights into the role and interactions between SPO-11 accessory proteins in C. elegans. The authors propose a model of meiotic DSBs regulation, critical to our understanding of DSB formation and ultimately crossover regulation and accurate chromosome segregation. The work also emphasizes the commonalities and species-specific aspects of DSB regulation.

      Strengths:

      This study capitalizes on the strengths of the C. elegans system to uncover genetic interactions between a lSPO-11 accessory proteins. In combination with physical interactions, the authors synthesize their findings into a model, which will serve as the basis for future work, to determine mechanisms of DSB regulation.

      Weaknesses:

      The methodology, although standard, still lacks some rigor, especially with the IPs.

    2. Reviewer #2 (Public review):

      Summary:

      Meiotic recombination initiates with the formation of DNA double-strand break (DSB) formation, catalyzed by the conserved topoisomerase-like enzyme Spo11. Spo11 requires accessory factors that are poorly conserved across eukaryotes. Previous genetic studies have identified several proteins required for DSB formation in C. elegans to varying degrees; however, how these proteins interact with each other to recruit the DSB-forming machinery to chromosome axes remains unclear.

      In this study, Raices et al. characterized the biochemical and genetic interactions among proteins that are known to promote DSB formation during C. elegans meiosis. The authors examined pairwise interactions using yeast two-hybrid (Y2H) and co-immunoprecipitation and revealed an interaction between a chromatin-associated protein HIM-17 and a transcription factor XND-1. They further confirmed the previously known interaction between DSB-1 and SPO-11 and showed that DSB-1 also interacts with a nematode-specific HIM-5, which is essential for DSB formation on the X chromosome. They also assessed genetic interactions among these proteins, categorizing them into four epistasis groups by comparing phenotypes in double vs. single mutants. Combining these results, the authors proposed a model of how these proteins interact with chromatin loops and are recruited to chromosome axes, offering insights into the process in C. elegans compared to other organisms.

      Weaknesses:

      This work relies heavily on Y2H, which is notorious for having high rates of false positives and false negatives. Although the interactions between HIM-17 and XND-1 and between DSB-1 and HIM-5 were validated by co-IP, the significance of these interactions was not tested in vivo. Cataloging Y2H and genetic interactions does not yield much more insight. The model proposed in Figure 4 is also highly speculative.

    3. Reviewer #3 (Public review):

      The goal of this work is to understand the regulation of double-strand break formation during meiosis in C. elegans. The authors have analyzed physical and genetic interactions among a subset of factors that have been previously implicated in DSB formation or the number of timing of DSBs: CEP-1, DSB-1, DSB-2, DSB-3, HIM-5, HIM-17, MRE-11, REC-1, PARG-1, and XND-1.

      The 10 proteins that are analyzed here include a diverse set of factors with different functions, based on prior analyses in many published studies. The term "Spo11 accessory factors" has been used in the meiosis literature to describe proteins that directly promote Spo11 cleavage activity, rather than factors that are important for the expression of meiotic proteins or that influence the genome-wide distribution or timing of DSBs. Based on this definition, the known SPO-11 accessory factors in C. elegans include DSB-1, DSB-2, DSB-3, and the MRN complex (at least MRE-11 and RAD-50). These are all homologs of proteins that have been studied biochemically and structurally in other organisms. DSB-1 & DSB-2 are homologs of Rec114, while DSB-3 is a homolog of Mei4. Biochemical and structural studies have shown that Rec114 and Mei4 directly modulate Spo11 activity by recruiting Spo11 to chromatin and promoting its dimerization, which is essential for cleavage. The other factors analyzed in this study affect the timing, distribution, or number of RAD-51 foci, but they likely do so indirectly. As elaborated below, XND-1 and HIM-17 are transcription factors that modulate the expression of other meiotic genes, and their role in DSB formation is parsimoniously explained by this regulatory activity. The roles of HIM-5 and REC-1 remain unclear; the reported localization of HIM-5 to autosomes is consistent with a role in transcription (the autosomes are transcriptionally active in the germline, while the X chromosome is largely silent), but its loss-of-function phenotypes are much more limited than those of HIM-17 and XND-1, so it may play a more direct role in DSB formation. The roles of CEP-1 (a Rad53 homolog) and PARG-1 are also ambiguous, but their homologs in other organisms contribute to DNA repair rather than DSB formation.

      An additional significant limitation of the study, as stated in my initial review, is that much of the analysis here relies on cytological visualization of RAD-51 foci as a proxy for DSBs. RAD-51 associates transiently with DSB sites as they undergo repair and is thus limited in its ability to reveal details about the timing or abundance of DSBs since its loading and removal involve additional steps that may be influenced by the factors being analyzed.

      The paper focuses extensively on HIM-5, which was previously shown through genetic and cytological analysis to be important for breaks on the X chromosome. The revised manuscript still claims that "HIM-5 mediates interactions with the different accessory factors sub-groups, providing insights into how components on the DNA loops may interact with the chromosome axis." The weak interactions between HIM-5 and DSB-1/2 detected in the Y2H assay do not convincingly support such a role. The idea that HIM-5 directly promotes break formation is also inconsistent with genetic data showing that him-5 mutants lack breaks on the X chromosomes, while HIM-5 has been shown to be is enriched on autosomes. Additionally, as noted in my comment to the authors, the localization data for HIM-5 shown in this paper are discordant with prior studies; this discrepancy should be addressed experimentally.

      This paper describes REC-1 and HIM-5 as paralogs, based on prior analysis in a paper that included some of the same authors (Chung et al., 2015; DOI 10.1101/gad.266056.115). In my initial review I mentioned that this earlier conclusion was likely incorrect and should not be propagated uncritically here. Since the authors have rebutted this comment rather than amending it, I feel it is important to explain my concerns about the conclusions of previous study. Chung et al. found a small region of potential homology between the C. elegans rec-1 and him-5 genes and also reported that him-5; rec-1 double mutants have more severe defects than either single mutant, indicative of a stronger reduction in DSBs. Based on these observations and an additional argument based on microsynteny, they concluded that these two genes arose through recent duplication and divergence. However, as they noted, genes resembling rec-1 are absent from all other Caenorhabditis species, even those most closely related to C. elegans. The hypothesis that two genes are paralogs that arose through duplication and divergence is thus based on their presence in a single species, in the absence of extensive homology or evidence for conserved molecular function. Further, the hypothesis that gene duplication and divergence has given rise to two paralogs that share no evident structural similarity or common interaction partners in the few million years since C. elegans diverged from its closest known relatives is implausible. In contrast, DSB-1 and DSB-2 are both homologs of Rec114 that clearly arose through duplication and divergence within the Caenorhabditis lineage, but much earlier than the proposed split between REC-1 and HIM-5. Two genes that can be unambiguously identified as dsb-1 and dsb-2 are present in genomes throughout the Elegans supergroup and absent in the Angaria supergroup, placing the duplication event at around 18-30 MYA, yet DSB-1 and DSB-2 share much greater similarity in their amino acid sequence, predicted structure, and function than HIM-5 and REC-1. Further, Raices place HIM-5 and REC-1 in different functional complexes (Figure 3B).

      The authors acknowledge that HIM-17 is a transcription factor that regulates many meiotic genes. Like HIM-17, XND-1 is cytologically enriched along the autosomes in germline nuclei, suggestive of a role in transcription. The Reinke lab performed ChIP-seq in a strain expressing an XND-1::GFP fusion protein and showed that it binds to promoter regions, many of which overlap with the HIM-17-regulated promoters characterized by the Ahringer lab (doi: 10.1126/sciadv.abo4082). Work from the Yanowitz lab has shown that XND-1 influences the transcription of many other genes involved in meiosis (doi: 10.1534/g3.116.035725) and work from the Colaiacovo lab has shown that XND-1 regulates the expression of CRA-1 (doi: 10.1371/journal.pgen.1005029). Additionally, loss of HIM-17 or XND-1 causes pleiotropic phenotypes, consistent with a broad role in gene regulation. Collectively, these data indicate that XND-1 and HIM-17 are transcription factors that are important for the proper expression of many germline-expressed genes. Thus, as stated above, the roles of HIM-17 and XND-1 in DSB formation, as well as their effects on histone modification, are parsimoniously explained by their regulation of the expression of factors that contribute more directly to DSB formation and chromatin modification. I feel strongly that transcription factors should not be described as "SPO-11 accessory factors."

  2. Sep 2025
    1. Reviewer #1 (Public review):

      Summary:

      Badarnee and colleagues analyse fMRI data collected during an associative threat-learning task. They find evidence for parallel processes mediated by the mediodorsal, LGn, and pulvinar nuclei of the thalamus. The evidence for these conclusions is promising, but limited by a lack of clarity regarding the preprocessing and statistical methods.

      Strengths:

      The approach is inventive and novel, providing information about thalamocortical interactions that are scant in the current literature.

      Weaknesses:

      (1) There are not sufficient details present to allow for the direct interrogation of the methods used in the study.

      (2) The figures do not contain sufficiently granular details, making it challenging to determine whether the observed effects were robust to individual differences.

    2. Reviewer #2 (Public review):

      Summary:

      The authors quantify human fMRI BOLD responses in pulvinar and mediodorsal thalamic nuclei during a fear conditioning and extinction task across two days, in a large sample size (hundreds of participants). They show that the BOLD responses in these areas differentiate the conditioned (CS+) and safety (CS-) stimuli. Additionally, this changes with repeated trials, which could be a neural correlate of fear learning. They show that the anterior pulvinar is most correlated with the MD, and that this is not due to anatomical proximity. They perform graph analysis on the pulvinar subnuclei, which suggests that the medial pulvinar is a hub between the sensory (lateral/inferior) and associative (anterior) pulvinar. They show different patterns of thalamic activity across conditioning, extinction, recall, and renewal.

      Strengths:

      The data has a large sample size (n=293 in some measures, n=412 in others). This is a validated human fear conditioning/extinction task that Dr Milad's group has been working with for several years. Few labs have investigated the thalamus activity during fear conditioning and extinction, particularly with a large sample size. There is an independent replication of the pulvinar network structure (Figure 3), which suggests that the processing in the more sensory-related inferior and lateral pulvinar is relayed to the anterior pulvinar (and possibly thereby to more action-related prefrontal areas) via an intermediate step in the medial pulvinar - potentially a novel discovery, but that needs more validation.

      Weaknesses:

      (1) The authors cannot make causal claims about their results based on correlational neuroimaging evidence. Causal claims should be pared back. E.g., sentence 1 in the Results section: "The anterior pulvinar and MD contribute to early associative threat learning, as evidenced by increased functional activation in response to CS+ compared to CS- at the block level (Fig. 1b-c)." needs to be reworded to something like "The anterior pulvinar and MD have increased functional activation... This suggests that these areas may contribute to early associate threat learning."

      (2) Figure 1: The fact that the difference in BOLD activity between CS+ and CS- goes away on the third trial is not addressed. This is a very large effect in the data.

      (3) Figure 3: Could the observed network structure be due to anatomical proximity? Perhaps the authors should do an analogous analysis to what they did in Figure 2 for this intra-pulvinar analysis. This analysis doesn't take into account the indirect connections through corticothalamic and thalamocortical connections with the visual cortex and the pulvinar. There is an implicit assumption that there are interconnections between the pulvinar subnuclei, but there are few strong excitatory projections between these subnuclei to my knowledge. If visual areas are included in the graph, it would make things more complex, but would probably dramatically change the story. In this way, the message is somewhat constructed or arbitrary.

      (3) In the results section describing Figures 4-7, there are no statistics supporting the claims made. There needs to be a set of graphs comparing the results across the study sessions and days, with statistical comparisons between the different experiments to confirm differences.

      (4) Figure 7 does not include the major corticothalamic and thalamocortical projections from early, mid-level, and higher visual cortex to the different pulvinar nuclei. I doubt that there are strong direct projections between the pulvinar nuclei; rather, the functional connections are probably mediated through interconnections with cortical visual areas.

      (5) Stylistic: There are a lot of hypotheses and interpretations presented in this primary literature paper, which may be better suited for a review or perspective piece.

      (6) In the discussion, there is an assumption that the fMRI BOLD responses to CS+ and CS- need to be different to indicate that an area is processing these distinctly, but the BOLD signal can only detect large-scale changes in overall activity. It's easy to imagine that an area could be involved in processing these two stimuli distinctly without showing an overall difference in the gross amount of activity.

      (7) There is strong evidence that the BOLD responses to the threat-related and safety-related stimuli are different, modest evidence for their claims of learning/plasticity in these pathways, and circumstantial evidence supporting their hypothesized graph network models. Overall, most of the claims made in the discussion are better considered possible interpretations rather than proven findings - this is not a criticism, as these experiments and subject matter are extremely complex.

      This study continues to validate the power and utility of this in human fear conditioning/extinction paradigm, and extends this paradigm to investigating fear learning beyond the traditional limbic system pathways. It's possible that their models for the pulvinar nuclei interconnections could guide future neuromodulation or DBS studies that could provide more causal evidence for their hypotheses.

    3. Reviewer #3 (Public review):

      Summary:

      The present work was aimed at investigating the specific contributions of thalamic nuclei to associative threat learning and extinction. Using fMRI, they examined activation patterns across pulvinar divisions, the lateral geniculate nucleus (LGN), and the mediodorsal thalamus (MD) during threat acquisition, extinction, and recall. Their goal was to uncover whether distinct thalamic systems support different modes of learning-automatic survival mechanisms versus more deliberate processes - and to propose a hierarchical pulvinar model of fear conditioning. They also try to refine current neuroanatomical models of threat learning and memory, highlighting the role of thalamic nuclei in it.

      Strengths:

      (1) Valuable theoretical elaboration and modeling regarding the differential role of pulvinar subdivisions on feedforward (inferior, lateral) and higher-order integration (anterior), and their functional interplay with other relevant subcortical and cortical structures in associative threat and extinction learning.

      (2) Large sample sizes and multipronged analytical approaches were used for hypothesis testing.

      (3) Exhaustive literature review in the field of associative threat, as well as regarding the role of thalamic nuclei and other brain structures in it.

      Weaknesses:

      (1) Several weaknesses should be pointed out regarding how fMRI data were collected, as well as decisions regarding how the fMRI data were preprocessed and analyzed:

      a) fMRI data have low resolution (3 cubic mm), which certainly limits the examination of small nuclei such as the ones investigated here, and especially the examination of the LGN and inferior pulvinar.

      b) fMRI was normalized to standard space. Analyzing the data in individual-subject space would have given you the options of avoiding altering every participant's brain and of using a probabilistic thalamic atlas that better adapts to each subject's brain and thalamic nuclei (see, for instance, Iglesias et al., 2018). This would have been ideal and would have given the authors more precision, especially considering the low resolution of the fMRI data and the size of the thalamic nuclei of interest.

      c) On top of the two previous points, the authors decided to smooth the data to 6mm, which means that every single voxel within these small nuclei was blurred/mixed with the 2 immediately contiguous voxels (if they followed the standard SPM12 normalization resampling default which resamples, or upsamples the data in this case, to 2 x 2 x 2mm). Given the strong changes in structural connectivity and function that can occur, especially in the thalamus, on voxels of this size, this and the previous 2 decisions do not favor anatomical precision.

      d) Motion during scanning was poorly controlled in the preprocessing. Including the motion parameters as covariates of no interest in the GLM does not fully guarantee that motion is not influencing the results, and that motion is not differentially influencing some experimental conditions more than others.

      (2) It is not clearly indicated in the manuscript how many subjects and how many trials went into each of the analyses. It would be important to indicate this in the text and/or the figures.

      (3) It is not clear either, why, given the large sample size, some of the results were not conducted using reproducibility strategies such as dividing the sample into 2 or 3 groups or using further cross-validation strategies.

      (4) Limited testing of alternative hypotheses. The results clearly seem to be a selection of the findings supporting the hypotheses that the authors sought to confirm. (just one example: in the analysis reported in Figures 1-2; are there other correlations between the activation of the anterior pulvinar and MD with other pulvinar nuclei? only the MD-anterior Puv is reported).

      (5) The manuscript does not contain a limitations subsection. Practically every study has limitations, and this one is not an exception. Better to tell the limitations to the readers upfront so they can factor them into their evaluation of the relevance of the manuscript and reported evidence.

      (6) Data should be made available to the scientific community. Code too. Even if you just used standard fMRI toolboxes, any code used to run analyses will be helpful to the community, or if someone decides to try to replicate your findings.

      Despite these weaknesses and what can be derived from them, this manuscript constitutes a valuable contribution to the field to start characterizing and conceptualizing the involvement of thalamic nuclei and their interactions with other brain regions in the associative threat learning circuitries. It also paves the road for further testing of the functional dynamics among these regions and circuitries, and modeling testing.

    1. Joint Public Review:

      This manuscript puts forward the provocative idea that a posttranslational feedback loop regulates daily and ultradian rhythms in neuronal excitability. The authors used in vivo long-term tip recordings of the long trichoid sensilla of male hawkmoths to analyze spontaneous spiking activity indicative of the ORNs' endogenous membrane potential oscillations. This firing pattern was disrupted by pharmacological blockade of the Orco receptor. They then use these recordings together with computational modeling to predict that Orco receptor neuron (ORN) activity is required for circadian, not ultradian, firing patterns. Orco did not show a circadian expression pattern in a qPCR experiment, and its conductance was proposed to be regulated by cyclic nucleotide levels. This evidence led the authors to conclude that a post-translational feedback loop (PTFL) clockwork, associated with the ORN plasma membrane, allows for temporal control of pheromone detection via the generation of multi-scale endogenous membrane potential oscillations. The findings will interest researchers in neurophysiology, circadian rhythms, and sensory biology. However, the manuscript has limited experimental evidence to support its central hypothesis and is undermined by several questionable assumptions that underlie their data analysis and model builds, as well as insufficient biological data, including critical controls to validate and/or fully justify the model the authors are proposing.

      Strengths:

      The study is notable for its combination of long-term in vivo tip recordings with computational modeling, which is technically challenging and adds weight to the authors' claims. The link between Orco, cyclic nucleotides, and circadian regulation is potentially important for sensory neuroscience, and the modeling framework itself - a stochastic Hodgkin-Huxley formulation that explicitly incorporates channel noise - is a solid and forward-looking contribution. Together, these elements make the study conceptually bold and of clear interest to circadian and olfactory biologists.

      Major weaknesses:

      At the same time, several limitations temper the conclusions. The pharmacological evidence relies on a single antagonist and concentration, without key controls. The circadian analysis is based on relatively small numbers of neurons, with rhythms detected only in subsets, and the alignment procedure used in constant darkness raises concerns of bias. The molecular evidence is sparse, with only three qPCR timepoints, and the model, while creative, rests on assumptions that are not yet fully supported by in vivo data.

      Detailed comments are provided below:

      (1) The role for Orco proposed in the authors' model largely stems from the effects seen following the administration of (a single dose) of the Orco antagonist, OLC15. However, this hypothesis is undercut by the lack of adequate pharmacological controls, including a basic multipoint OLC15 dose-response series in addition to the administration of blockers for the other channels that are embedded in their model, but which were ruled out as being involved in the modulation of biological rhythms. In addition, these studies would (ideally) also benefit from the inclusion of the same concentration (series) of an inactive OLC15 analog to better control for off-target effects.

      (2) The expression pattern of Orco was assessed using qPCR at only three timepoints. Rhythmic transcripts can easily be missed with such sparse sampling (Hughes et al., 2017). A minimum of six evenly spaced timepoints across a 24-hour cycle would be required to confidently rule out circadian transcriptional regulation. In addition, the use of the timeless mRNA control from another study is not acceptable. Furthermore, qPCR analysis measures transcript abundance, not transcription, as the authors repeatedly state. Transcriptional studies would require nuclear run-off or, more recently, can be done with snRNAseq analysis. Taken together, these concerns undermine the authors' desire to rule out TTFL-based control that directly led them to implicate a PTTF-based model.

      (3) The modelling presented is based on Orco as a ZT-dependent conductance tied to the cAMP oscillations that were reported by this group in the cockroach and from the presence and functionality in Manduca of homomeric Orco complexes that are devoid of tuning ORs. While these complexes have been generated in cell culture and other heterologous expression systems, as well as presumably exist in vivo in the Drosophila empty neuron and other tuning OR mutants, there is no evidence that these complexes exist in wild-type Manduca ORNs. While this doesn't necessarily undermine every aspect of their models, the authors should note the presence of Orco/OR complexes rather than Orco homomeric complexes.

      (4) Some aspects of the authors' models, most notably the decision to phase align/optimize their DD and OLC15 recordings, are likely to bias their interpretations.

      (5) The tip recordings from long trichoid sensilla are critical aspects of this study. These recordings were carried out on upper sensillar tips located on the distal-most second annulus. Since there are approximately 80 annuli on the Manduca antennae, it is unclear whether the recordings are representative of the antennal response.

      (6) The authors do not provide any data in support of their cAMP/cGMP-based Orco gating, and the PTTF model proposed is somewhat disappointing. The model seems to be influenced by their long-held proposal that insect olfactory signaling has a critical metabotropic component involving cyclic nucleotides, PKC, etc, a view that may be influenced by the use of Orco homomeric complexes generated in HEK cells. Nevertheless, structural studies on Orco do not support a cyclic nucleotide binding site, although PKC-based phosphorylation has been implicated in the fine-tuning/adaptation of olfactory signaling.

      (7) Because only 5/11 LD and 7/10 DD animals showed daily rhythms, with averages lacking clear daily modulation, the methods are not sufficiently reliable enough to reveal novel underlying mechanisms of circadian rhythm generation. The reported results are therefore not yet reliable or quantifiable. To quantify their results, the authors should apply tests for circadian rhythmicity using methods such as RAIN, JTK CYCLE, MetaCycle, or Echo. The use of FFT and Wavelet is applauded, but these methods do not have tests of significance for rhythms and can be biased when analyzing data in which there could only be 1-3 circadian cycles. Because the conclusions appear to be based on 11-12 neurons that were recorded for 2-4 days, the reader is concerned that the methods are not yet perfected to provide strong evidence for circadian regulation of spontaneous firing of ORNs. The average data (e.g., Figure 3Bii and 3Cii) highlight the apparent lack of daily rhythms. In summary, the results would be more compelling if more than 50% of the recordings had significant circadian amplitudes and with similar periods and phases.

      (8) The statement that circadian patterns of ORN firing are lost with the Orco antagonist (OLC15) is not strongly supported. The manuscript should be revised to quantify how Orco changed circadian amplitude in the 12 recorded neurons. Measures of circadian amplitude can avoid confusing/vague statements like Line 394 "low and high frequency bands appeared to merge during the activity phase around ZT 0 in the animals that showed clear circadian rhythms (N = 5 of 11 in LD)". The conclusion that Orco blocks circadian firing appears to be contradicted by Figure 6, which indicates that ~6 of these neurons had circadian periods detected by wavelet. The manuscript would be strengthened with details about the specificity and reproducibility of the Orco antagonist. The authors quantify the gradual decrease in firing with the slope of a linear fit to estimate how the "effectiveness [of OLC15] increased over time." They conclude that the drug "obliterated circadian rhythms and attenuated the spontaneous activity in several, but not all experiments (N = 8 of 12)." The report would be greatly strengthened with corroborating data from additional Orco antagonists and additional doses of OLC15 (the authors use only 50 uM OLC15).

      (9) The manuscript includes several statements that are more speculation than conclusion. For example, there is no evidence for tuning or plasticity in this report. Statements like the following should be removed or addressed with experiments that show changes in odor response specificity or sensitivity: "ORN signalosomes are highly plastic endogenous PTFL clocks comprising receptors for circadian and ultradian Zeitgebers that allow to tune into internal physiological and external environmental rhythms as basis for active sensing." (Discussion Line 622). The paper concludes that (line 380) "mean frequency of spontaneous spiking and the frequency of bursting expressed daily modulation, and are both most likely controlled via a circadian clock that targets the leak channel Orco." This is too bold given the available results.

      (10) Because Orco conductance is modulated by cyclic nucleotides, it remains highly plausible that circadian regulation occurs upstream at the level of signaling pathways (e.g., calcium, calcium-binding proteins, GPCRs, cyclases, phosphodiesterases). The possibility that circadian oscillations of cyclic nucleotides are generated by the canonical TTFL mechanism has not been excluded. In fact, extensive work in Drosophila has demonstrated that the TTFL-based molecular clock proteins are required for circadian rhythms in olfaction.

      (11) A defining feature of circadian oscillators is the feedback mechanism that generates a time delay (e.g., PERIOD/TIMELESS repressing their own transcription). While the authors describe how cyclic nucleotides can regulate Orco conductance, they do not provide a convincing explanation of how Orco activity could, in turn, feed back into the proposed PTFL to sustain oscillations. For these reasons, the authors should consider:

      (a) Providing a broader discussion of non-TTFL models of circadian rhythms (e.g., redox cycles, post-translational modifications).

      (b) Reassessing Orco expression using a higher-resolution temporal sampling ({greater than or equal to}6 timepoints per 24 h).

      (c) Clarifying or revising the PTFL model to explicitly address how feedback would be achieved. Alternatively, the data may be more consistent with Orco conductance rhythms being regulated by post-translational mechanisms downstream of the canonical TTFL oscillator, as suggested by the Drosophila olfactory system literature.

      Minor weaknesses:

      (1) The authors should compare the firing patterns of ORN neurons to the bursts, clusters, and packets of retinal efferent spikes reported in Liu JS and Passaglia CL (2011; JBR). By comparing measures in moths to measures in Limulus, the authors might be able to address the question: Is the daily firing pattern of ORN neurons likely a conserved feature of circadian control of sensory sensitivity?

      (2) The methods need further details. For example, it is unclear if or how single neuron activity was discriminated and whether the results were compromised by the relatively large environmental fluctuations in temperature (21-27oC), humidity (35-60%), or other cues known to modulate spontaneous firing.

    1. Reviewer #1 (Public review):

      Summary:

      This work asks the question of how different organelles and structures in the apicomplexan parasite Toxoplasma gondii are recycled and/or segregated to the daughter cells during cell replication. In particular, they consider an unusual cell structure called the residual body that links replicating cells during the intracellular infection stage of this parasite. The residual body has historically been considered a 'dumping ground' for unnecessary relics of the mother cell during division, but this notion is increasingly being revised. Indeed, cell replication in Toxoplasma is often misinterpreted as cell division (cytokinesis), but in fact, the cell replicates its organelles and structures to multiple 10s of copies in seemingly distinctly formed daughter cells, but cytokinesis is delayed for many such cycles and typically only occurs simultaneously with parasite egress from its host cell. The residual body is, in fact, the connection between these pre-cytokinetic replicated daughters, and effectively, this is still a single cell at this stage. The authors have previously shown that an actin network extends through the residual body between these daughter cells, and ER and mitochondria common to all cells are also linked through this structure. This study examining the fates of organelles during cell replication is timely for continuing our understanding of how this fascinating component of the cell participates in these processes. The authors use Halo-tags as their principal tool to track discrete populations of proteins, labelling their organelle locations, and this provides beautiful insight into these processes.

      Strengths:

      Using dyes conjugated to Halo tags, this work elegantly tracks the fates of proteins synthesised by an original 'mother' cell over several replication cycles of pre-cytokinetic 'daughters'. Using this tool, they show that some organelles are made intact just once and that some of these can be subsequently sorted to the daughters (micronemes and rhoptries) while others are dismantled (IMC) and the daughters must make their own. A third set of organelles (largely synthesis, sorting, and metabolic compartments) is divided and inherited, and new daughter-synthesised proteins are added to the preexisting maternal proteins in these structures. A role for actin and myosin is clearly demonstrated for micronemes and rhoptries, and this correlates with their relatively late inheritance into the developing daughters. Overall, this work gives clarity to the behaviours of several cell structures during replication and paves the way to a better understanding of the mechanisms that drive the differences between structures and the universality of these processes in other apicomplexan parasites.

      Weaknesses:

      In addressing the question of residual body participation in sorting of organelles, it would be useful to clearly define this structure and when and where it is delineated from the posterior of a mother cell during the formation of daughter structures. This might seem like a moot point, but it would give clarity to notions of recycling and 'reservoirs'. Mother cells retain their active invasion apparatus until very late in daughter formation, and the need for micronemes and rhoptries to be released from this service late in the process might explain why they are only then trafficked to the cell posterior and then into the daughters. So, is this a distinct 'residual body' body function/reservoir or just a spatial constraint of this sequence of daughter formation? In subsequent cell replications (4, 8, 16... stages), is there a separation between the residual body that links them all and the posterior of each new 'mother cell', and if so, when is this distinction lost? This is important because without a definition, we might be confusing different processes. Are rhoptries/micronemes that originate in one 'mother' able to be sorted to the 'daughters' from a distinct mother in this syncytium? If so, this would make it a sorting centre, but otherwise we could be just capturing the activities at the posterior of any given cell during replication. The authors' further thoughts on this would be very interesting.

      The Group 2 structures are described as those that are divided between daughters and receive newly synthesised proteins that add to the maternal protein of these compartments. While this is a logical conclusion for several that are mentioned, where the maternal protein signal is seen to be depleted with replication (including for the apicoplast, ER, glideosome, and Golgi). Data for the addition of new proteins to these existing structures is actually only presented in direct support of this for the Golgi.

    2. Reviewer #2 (Public review):

      Summary:

      Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. Parasite invasion into host cells, intracellular replication, and then egress, which results in the destruction of the infected cell, is central to pathogenicity. This manuscript focuses on understanding how maternal resources (in this case, cellular organelles) are shared between daughter parasites during cell division. Many organelles are single copy, meaning that division and inheritance by the daughters is crucial for successful replication. The major strength of this study was the use of a Halo-based pulse chase assay to characterize patterns of organelle inheritance. The results show that both microneme and rhoptries (secretory vesicles) previously thought to be synthesized de novo are inherited by daughter parasites. Thus, this paper adds new insight to our understanding of cell division in this important parasite.

      Strengths:

      This study demonstrated that pulse labeling of proteins can be used to monitor protein synthesis, turnover, and movement. This approach will be of great interest to the field. Using this method, the authors demonstrate three main modes of organelle inheritance.

      (1) Organelles, where there are multiple copies (such as secretory vesicles, micronemes, and rhoptries), are divided between the daughter parasites, with additional contribution of newly formed vesicles. New and old material remain as separate entities in the cell.

      (2) Single-copy organelles, which are expanded to include newly synthesized material prior to division, such as the Golgi and apicoplast.

      (3) Cytoskeletal structures that are synthesized anew during each round of division. These studies provide more refined insight into patterns or organelle inheritance and demonstrate that secretory organelles are not made de novo during each round of division as previously thought. The paper has a logical flow, and overall, the data is presented in a clear and organized fashion.

      Weaknesses:

      (1) Descriptions of methodology and statistical analysis were incomplete.

      (2) There are inconsistencies between the data in Figures 1 and 5. In Figure 1, a small amount of maternal IMC is visible in stage 2 parasites. Although this is a ~90% reduction, these parasites should be quantified as parasites with material IMC. However, the graph in Figure 5C indicates that no material parasites have GAPM1a, given that graph 5C is a binary measure (present vs. absent), one would expect a non-zero percent of parasites to have maternal material.

      (3) The conclusion from Figure 6 was not justified based on the data. I agree with the author's conclusion that the accumulation of micronemes and rhoptries in the residual body was time-dependent. In Figure 6A, the signal observed in the residual body at times 6:30, 13, and 14 hours is not observed in subsequent time points. However, the fate of these micronemes and rhoptries is unclear. It cannot be concluded that these vesicles are recycled back to the mother. They could also have been degraded. In fact, the graphs of microneme inheritance in Figure 2B show a decrease in maternal signal from 100% to 80% between stages 1 and 2, indicating that some microneme degradation is taking place.

      (4) To convincingly demonstrate that the redistribution of micronemes and rhoptries was due to recovery of MyoF protein levels after auxin washout, a Western blot should be performed to show MyoF protein levels over time. In addition, the decrease in mMIC2 protein levels in the residual body in Figure 8F should be measured and normalized for photobleaching. Both apical and basal signals appear to be reduced over the time course of imaging.

    3. Reviewer #3 (Public review):

      Summary:

      Knoerzer-Suckow et al. explore the mechanisms of organelle inheritance during endodyogeny in Toxoplasma gondii using an innovative dual-labeling approach to track the distribution of maternal organelles into daughter parasites. They can clearly distinguish between maternal and daughter-derived organelles using their dual-labeling Halo Tag approach. They reveal that different organelles are trafficked to daughter parasites in three broad patterns, which they have binned into groups. Their findings reveal a role for MyoF in the inheritance of micronemes and rhoptries, and notably, they observe that the inner membrane complex (IMC) is not recycled. Instead, the IMC undergoes a pronounced relocalization to the posterior of the maternal cell, where it is likely targeted for degradation.

      Strengths:

      The data surrounding their MyoF knockdown experiments, IMC degradation, and trafficking of MIC2 after auxin washout are compelling. These data add to the knowledge of how organelle inheritance occurs in T. gondii, increasing the field's understanding of endodyogeny.

      Weaknesses:

      (1) The evidence provided to support the claim that microneme and rhoptry inheritance specifically traffics through the residual body does not sufficiently substantiate the claim. The temporal resolution of the imaging is inadequate to precisely trace the path of microneme and rhoptry inheritance. From the data shown in the manuscript, it can be concluded that at least some of the micronemes and rhoptries might be recycled through the residual body, but it is unclear whether many or most of these organelles do so.

      (2) The absence of specific markers for the residual body brings into question whether microneme inheritance occurs through a discrete residual body or simply via the basal end of the maternal parasite. The authors need a robust way to visualize and define the residual body to claim that micronemes and rhoptries are specifically transported through this structure.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors employed comprehensive proteomics and transcriptomics analysis to investigate the systemic and organ-specific adaptations to IF in males. They found that shared biological signaling processes were identified across tissues, suggesting unifying mechanisms linking metabolic changes to cellular communication, which revealed both conserved and tissue-specific responses by which IF may optimize energy utilization, enhance metabolic flexibility, and promote cellular resilience.

      Strengths:

      This study detected multiple organs, including the liver, brain, and muscle, and revealed both conserved and tissue-specific responses to IF.

      Weaknesses:

      (1) Why did the authors choose the liver, brain, and muscle, but not other organs such as the heart and kidney? The latter are proven to be the largest consumers of ketones, which is also changed in the IF treatment of this study.

      (2) The proteomics and transcriptomics analyses were only performed at 4 months. However, a strong correlation between IF and the molecular adaptations should be time point-dependent.

      (3) The context lacks a "discussion" section, which would detail the significance and weaknesses of the study.

      (4) There is no confirmation for the proteomic and transcriptomic profiling. For example, the important changes in proteomics could be further identified by a Western blot.

    2. Reviewer #2 (Public review):

      Summary:

      Fan and colleagues measure proteomics and transcriptomics in 3 organs (liver, skeletal muscle, cerebral cortex) from male C57BL/6 mice to investigate whether intermittent fasting (IF; 16h daily fasting over 4 months) produces systemic and organ-specific adaptations.

      They find shared signaling pathways, certain metabolic changes, and organ-specific responses that suggest IF might affect energy utilization, metabolic flexibility, while promoting resilience at the cellular level.

      Strengths:

      The fact that there are 3 organs and 2 -omics approaches is a strength of this study.

      Weaknesses:

      The analytical approach of the data generated by the present study is not well posed, because it doesn't help to answer key questions implicit in the experimental design. Consequently, the paper, as it is for now, reads as a mere description of results and not a response to specific questions.

      The presentation of the figures, the knowledge of the literature, and the inclusion of only one sex (male) are all weaknesses.

    3. Reviewer #3 (Public review):

      Summary:

      Fan et al utilize large omics data sets to give an overview of proteomic and gene expression changes after 4 months of intermittent fasting (IF) in liver, muscle, and brain tissue. They describe common and distinct pathways altered under IF across tissues using different analysis approaches. The main conclusions presented are the variability in responses across tissues with IF. Some common pathways were observed, but there were notable distinctions between tissues.

      Strengths:

      (1) The IF study was well conducted and ran out to 4 months, which was a nice long-term design.

      (2) The multiomics approach was solid, and additional integrative analysis was complementary to illustrate the differential pathways and interactions across tissues.

      (3) The authors did not overstep their conclusions and imply an overreached mechanism.

      Weaknesses:

      The weaknesses, which are minor, include the use of only male mice and the early start (6 weeks) of the IF treatment. See specifics in the recommendations section.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes the results of phylogenetic and epidemiological modeling of the PopART community cohorts in Zambia. The current manuscript draft is methodologically strong, but needs revision to strengthen the take-home messages. As written, there are many possible take-away conclusions. For example, the agreement between IBM and phylogenetic analysis is noteworthy and provides a methodological focus. The revealed age patterns of transmission could be a focus. The effects of the PopART intervention and the consequences of a 1-year disruption could be a focus. It is important, though, that any main messages summarized by the authors are substantiated by the evidence provided and do not extrapolate beyond the data that have been generated. I recommend that the authors think deeply about what the most important, well-supported messages are and reframe the discussion and abstract accordingly.

      Strengths/weaknesses by section:

      (1) ABSTRACT

      The Abstract summarizes qualitative findings nicely, but the authors should incorporate quantitative results for all of the qualitative findings statements.

      The ending claim is not substantiated by the modeling scenarios that have been run: "targeted interventions for demographic groups such as under-35 men may be the key to finally ending HIV." It is straightforward to run this specific scenario in the model to determine whether or not this is true.

      The authors should add confidence intervals to the quantitative metrics, such as the 93.8% and 62.1% incidence reduction.

      (2) RESULTS

      The authors should check the Results section for any qualitative claims not substantiated by the analyses performed, and ensure the corresponding analyses are presented to support the claims.

      The Results and Methods describe the model's implementation of the PopART intervention differently. The Methods describes it as including VMMC, TB, and STI services, while the Results only mentions intensified HIV testing and linkage.

      A limitation of the model is that HIV disease progression is based on the ATHENA cohort in the Netherlands, which is a different HIV subtype (B) than the one in the research setting (C). The model should be configured using subtype C progression data, which have been published, or at least a sensitivity analysis should be conducted with respect to disease progression assumptions.

      In Table 2, the authors should consider adding a p-value to establish whether or not IBM and phylogenetics estimates are different.

      (3) DISCUSSION

      The literature review and comparison of study results to previously published phylogenetic studies is very nice. The authors could strengthen this by providing quantitative estimates with CIs for a more scientific comparison of the study results vs. prior studies, perhaps as a table or figure.

      The authors state that due to "the narrow geographical catchment area... The results should not be automatically extrapolated to apply to other SSA settings." The authors should exercise this caution when comparing the results to studies in South Africa and elsewhere.

      There are many other limitations to the analysis, including some mentioned above, that are not acknowledged. The authors should think carefully about what the most important limitations are and acknowledge them honestly at the end of the Discussion section.

    2. Reviewer #2 (Public review):

      Summary:

      The authors analyzed PopART data to better characterize the age and sex-specific heterosexual HIV transmission dynamics in Zambia, with the goal of allocating resources.

      Strengths:

      Important analysis to hone in on the key driver of HIV transmission in Zambia, which hopefully can be used to tune prevention efforts to maximize effect while limiting required resources. Two analytic approaches were used, and while the phylogenetic data were markedly more limited, they mirrored the simulated epidemic. The authors did a nice job reviewing the limitations of the data and the analyses. The authors did a nice job of providing analyses to support their goals and hypothesis, and this work may have more impact now that resources in SSA for HIV prevention and treatment may become more scarce

      Weaknesses:

      To increase the impact and utility of this work, it would be helpful to parse the analysis just a bit further to estimate the roles of undiagnosed vs diagnosed and untreated subpopulations on this transmission. PopART is a multifaceted intervention, but the cost, effort, and approach to reengagement in care vs testing/treatment can be quite different.

    1. Reviewer #1 (Public review):

      Summary:

      Heat production mechanisms are flexible, depending on a wide variety of genetic, dietary and environmental factors. The physiology associated with each mechanism is important to understand, since loss of flexibility associates with metabolic decline and disease.

      The phenomenon of compensatory heat production has been described in some detail in publications and reviews, notably by modifying BAT-dependent thermogenesis (for example by deleting UCP1 or impairing lipolysis, cited in this paper).

      These authors chose to eliminate exercise as an alternative means for maintaining body temperature. To do this, they cast either one or both mouse hindlimbs.

      This paper is set up as an evaluation of a loss of function of muscle on the functionality of BAT. However, the authors show that cast immobilization (CI) does not work as a (passive) loss of function, instead this procedure produces a dramatic gain of function.

      It does not test the hypothesis as stated, instead it adds an extraneous variable, which is that the animal is put under enormous stress, inducing b-adrenergic effectors, increased oxygen consumption, and IL6 expression in a variety of tissues, together with commensurate cachectic effects on muscle and fat. The BAT is stressed by this procedure, becoming super-induced but relatively poor functioning. This is an inaccurate experimental construct, and the paper is therefore full of wrong conclusions.

      Within hours and days of CI, there is massive muscle loss (leading to high circulating BCAAs), and loss of lipid reserves in adipose and liver. The lipid cycle that maintains BAT thermogenesis is depleted and the mouse is unable to maintain body temperature.

      I cannot agree with these statements in the Discussion -

      "We have here shown that cast immobilization suppressed skeletal muscle thermogenesis, resulting in failure to maintain core body temperature in a cold environment."

      • This result could also be attributed to high stress and decreased calorie reserves. Note also: CI suppresses 50% locomoter activity, but the actual work done by the mouse carrying bilateral casts is not taken into account (how heavy are they?). Presumably other muscles in the mouse body are compensating to allow the mouse to drag itself to the food source, to maintain food consumption, which remarkably, is unchanged. Is the demand for heat even the same when the mouse is wrapped in gypsum?

      I cannot be convinced that this approach (CI) can be interpreted at all in terms of organ communication during thermogenic challenge. This paper describes instead the resilience and adaptation of mouse physiology in the face of dragging around hind limb casts.

      From Rebuttal:

      "On the other hand, the experiment shown in Fig.1C involved acute cold exposure of mice 2 h after cast immobilization. This result suggests that, even before the depletion of energy stores by immobilization of skeletal muscle, cast immobilization may cause cold intolerance in mice."

      Since the mice are in acute recovery from the anesthetic, there can be no conclusions drawn about thermogenesis. Isoflurane is a great way to depress body temperature (http://www.ncbi.nlm.nih.gov/pubmed/12552204), and the recovery time is not known.

      "In addition, as the reviewer suggests, cast immobilization may result in BAT thermogenesis and cachectic effects on muscle and fat. However, circulating corticosterone concentrations and hypothalamic CRH gene expression are not significantly altered after cast immobilization (Figure 2_figure supplement 2D-F)."

      The absence of positive results from your stress assays does not exclude stress as the primary source of the results. These mice are not proceeding as normal with their lives - they are learning whole new behaviors in order to stay fed and watered.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors identified a previously unrecognized organ interaction where limb immobilization induces thermogenesis in BAT. They showed that limb immobilization by cast fixation enhances the expression of UCP1 as well as amino acid transporters in BAT, and amino acids are supplied from skeletal muscle to BAT during this process, likely contributing to increased thermogenesis in BAT. Furthermore, the experiments with IL-6 knockout mice and IL-6 administration to these mice suggest that this cytokine is likely involved in the supply of amino acids from skeletal muscle to BAT during limb immobilization.

      Strengths:

      The function of BAT plays a crucial role in the regulation of an individual's energy and body weight. Therefore, identifying new interventions that can control BAT function is not only scientifically significant but also holds substantial promise for medical applications. The authors have thoroughly and comprehensively examined the changes in skeletal muscle and BAT under these conditions, convincingly demonstrating the significance of this organ interaction.

      Weaknesses:

      Through considerable effort, the authors have demonstrated that limb-immobilized mice exhibit changes in thermogenesis and energy metabolism dynamics at their steady state. However, The impact of immobilization on the function of skeletal muscle and BAT during cold exposure has not been thoroughly analyzed.

      Comments on revisions:

      The authors appropriately responded to the reviewers' recommendations made during the previous round of peer review.

    1. Reviewer #1 (Public review):

      Summary:

      The extent to which P. falciparum liver stage parasites export proteins into the host cell is unclear. Most blood-stage exported proteins tested in liver stages were not exported. An exception is LISP2, which is exported in P. berghei but not P. falciparum liver stages. While the machinery for export is present in liver stages, efforts to demonstrate export have so far been mostly unsuccessful. Parasite proteins exported during the liver stage could be presented by MHC and thereby become the target of immune control, an incentive to study liver stage export and identify proteins exported during this stage. However, particularly for P. falciparum, it is very difficult to study liver stages.

      This work studies LSA3 in P. falciparum blood and liver stages. The authors show that this protein is exported into the host cell in blood stages, but in liver stages, no or only very little export was detected. A disruption of LSA3 reduced liver stage load in a humanized mouse model, indicating this protein contributes to efficient development of the parasites in the liver.

      The paper also studies the localization of LSA3 in blood stages and uses a known inhibitor to show that it is processed by plasmepsin 5, a protease important for protein trafficking. The work also shows that LSA3 is not needed for passage through the mosquito.

      Strengths:

      The main strength of this work is the use of the humanized mouse model to study liver stages of P. falciparum, which is technically challenging and requires specialized facilities. The biochemical analysis of LSA3 localization and processing by plasmepsin 5 is thorough and mostly overcame adverse issues such as a cross-reactive antibody and the negative influence of the GFP-tag on LSA3 trafficking. The mosquito stage analysis is also notable, as these kinds of studies are difficult with P. falciparum. However, there was no evidence for a function of LSA3 in mosquito stages.

      Weaknesses:

      The cross-reactivity of the antibody, together with the co-infection strategy, prevents reliable assessment of LSA3 localization in liver stages. Despite this, it seems LSA3 is not exported in liver stages, and the paper does not bring us closer to the original goal of finding an exported liver stage protein.

      While the localization analysis in blood stages is well done and thorough, the advance is somewhat limited. LSA3 may be in structures like J dots, but this hypothesis was not tested. Although parasites with a disrupted LSA3 were generated, the function of this protein was not explored. Given that a previous publication found some inhibitory effect of LSA3 antibodies on blood stage growth, a comparison of the growth of the LSA3 disruption clones with the parent would have been very welcome and easy to do. At this point, LSA3 is one more of many proteins exported in blood stages for which the function remains unclear.

      It might be possible to refine some of the conclusions. The impact on liver stage development is interesting, but which phase of the liver stage is affected, and the phenotype remains largely unknown. The co-infection (WT together with LSA3 mutant) has the advantage of a direct comparison of the mutant with the control in the same liver, but complicates phenotypic analysis if the LSA3 antibody is also cross-reactive in liver stages. This issue adds a question mark to the shown localization and precludes phenotypic comparisons. The authors write that they do not know if the cross-reactive protein is expressed at that stage. But this should be immediately evident from the mixed WT/mutant infection. If all cells are positive for LSA3, there is a cross-reaction. If about half of the cells are negative, there isn't. In the latter case, the localization shown in the paper is indeed LSA3, and morphological differences between WT and LSA3 disruption could be assessed without additional experiments.

      Significance:

      The conclusion from the paper that "our study presents just the second PEXEL protein so far identified as important for normal P. falciparum liver-stage development and confirms the hypothesized potential of exported proteins as malaria vaccine candidates" is partially misleading. Neither LISP2 nor LSA3 seems to be exported in P. falciparum liver stages, and we can't confirm the potential of vaccines with proteins exported in this stage. LSA3 is still important and may still be the target of the immune response, but based on this work, probably not due to export in liver stages.

    2. Reviewer #2 (Public review):

      Summary:

      Immunogenic Plasmodium falciparum proteins that could be targeted to prevent parasite development in the liver are of significant interest for novel anti-malarial vaccine development. In this study, McConville et al evaluate the trafficking and functional importance of LSA3, a protein expressed in the blood and liver stages and previously shown to provide protection in immunized chimpanzees. LSA3 contains a PEXEL motif, but the authors have previously shown that this protein does not appear to be exported beyond the PVM in the liver stage (McConville et al, PNAS 2024). However, LSA3 trafficking and functional importance have not been comprehensively evaluated across stages. In the present study, the authors find that blood-stage LSA3 undergoes PEXEL processing, and a portion of the protein is exported into the erythrocyte, where it localizes to punctate structures distinct from Maurer's clefts. Using a knockout mutant, LSA3 is shown to be dispensable for blood and mosquito stages but important to liver-stage development. Collectively, these results validate LSA3 as a liver-stage target and place it among several other PEXEL proteins that display differential trafficking beyond the PVM in the erythrocyte but not the hepatocyte.

      Strengths:

      (1) The authors present a thorough analysis of LSA3 trafficking in the blood stage. PEXEL processing by Plasmepsin 5 is clearly demonstrated through a combination of mini LSA3-GFP reporters and Plasmepsin 5 inhibitors. Importantly, an LSA3 knockout mutant is used to show that the LSA3-C anti-sera also react with additional, unidentified parasite proteins in the blood stage. Nonetheless, comparison between the WT and KO parasites clearly indicates that a portion of LSA3 is exported into the erythrocyte, which is further supported by protease-protection assays with fractionated iRBCs. This contrasts with the liver stage, where LSA3 does not appear to traffic beyond the PVM, similar to what has been observed for other PEXEL proteins in the rodent malaria model.

      (2)This study provides the first direct analysis of LSA3 function by reverse genetics, showing this protein is important for liver stage development in chimeric human liver mice. Several PEXEL proteins in P. berghei have been shown to be exported into the host cell in the blood stage, but do not appear to cross the PVM in the liver stage. These observations reinforce that even without detectable export into the hepatocyte, PEXEL proteins play critical roles during liver stage development.

      Weaknesses:

      (1) A previous study reported that anti-LSA3 antibodies inhibit blood-stage growth, suggesting a role for LSA3 during erythrocyte infection. While the authors carefully evaluate the LSA3 mutant in mosquito and liver stages, the impact on blood stage fitness is not tested. While the knockout shows LSA3 is not essential in the blood stage, its importance during erythrocyte infection remains unclear.

      (2) The authors previously reported that anti-LSA3-C signal in the liver stage localizes within the parasite and at the parasite periphery but is not exported into the hepatocyte. In the present study, it is shown that anti-LSA3-C reacts with other parasite proteins beyond LSA3 in the blood stage, and this may also occur in the liver stage. However, since liver-stage IFAs were only performed on samples co-infected with both WT and ∆LSA3 parasites, non-specific anti-LSA3-C reactivity at this stage could not be determined, and the localization of LSA3 in the liver stage remains somewhat unclear.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript provides a comprehensive characterization of the Plasmodium falciparum protein LSA3, combining biochemical, genetic, and in vivo approaches. The authors convincingly demonstrate that LSA3 is expressed during liver stage infection and that disruption of the gene leads to a modest but reproducible reduction in liver stage parasite load in humanized mice.

      Strengths:

      Their biochemical and cell biological analysis of blood stages provides strong evidence that LSA3 is exported to the infected erythrocyte, and the detailed analysis of its PEXEL motif processing is well executed.

      Weaknesses:

      The study suggests LSA3 as one of only two known P. falciparum PEXEL proteins contributing to this stage, although there is no evidence for the export beyond the vacuolar membrane. Several key conclusions, particularly regarding antibody specificity, localization in liver stage parasites, and the interpretation of the phenotypic data, are not fully supported by the current experiments.

    1. Reviewer #1 (Public review):

      Summary:

      The authors present an investigation of associative learning in Drosophila in which a previous exposure to an aversive stimulus leads to an increase in approach behaviors to a novel odor relative to a previously paired odor or no odor (air). Moreover, this relative increase is larger compared to that of a control group - i.e., presented with a (different) odor only. Evidence for the opposite effect with an appetitive stimulus, delivered indirectly by optogenetically activating sugar sensory neurons, which leads to a reduction in approach behavior to a novel odor, was also presented. The olfactory memory circuits underpinning these responses, which the authors refer to as 'priming', are revealed and include a feedback loop mediated by dopaminergic neurons to the mushroom body.

      Strengths:

      (1) The study includes a solid demonstration of the effect of the valence of a previous stimulus on sensory preferences, with an increase or decrease in preference to novel over no odor following an aversive or appetitive stimulus, respectively.

      (2) The demonstration of bidirectional effects on odor preferences following aversive or rewarding stimuli is compelling.

      (3) The evidence for distinct neural circuits underpinning the odor preferences in each context appears to be robust.

      Weaknesses:

      (1) The conclusions regarding the links between neural and behavioral mechanisms are mostly well supported by the data. However, what is less convincing is the authors' argument that their study offers evidence of 'priming'. An important hallmark of priming, at least as is commonly understood by cognitive scientists, is that it is stimulus specific: i.e., a repeated stimulus facilitates response times (repetition priming), or a repeated but previously ignored stimulus increases response times (negative priming). That is, it is an effect on a subsequent repeated stimulus, not ANY subsequent stimulus. Because (prime or target) stimuli are not repeated in the current experiments, the conditions necessary for demonstrating priming effects are not present. Instead, a different phenomenon seems to be demonstrated here, and one that might be more akin to approach/avoidance behavior to a novel or salient stimulus following an appetitive/aversive stimulus, respectively.

      (2) On a similar note, the authors' claim that 'priming' per se has not been well studied in non-human animals is not quite correct and would need to be revised. Priming effects have been demonstrated in several animal types, although perhaps not always described as such. For example, the neural underpinnings of priming effects on behavior have been very well characterized in human and non-human primates, in studies more commonly described as investigations of 'response suppression'.

      (3) The outcome measure - i.e., difference scores between the two odors or odor and non-odor (i.e., the number of flies choosing to approach the novel odor versus the number approaching the non-odor (air)) - appears to be reasonable to account for a natural preference for odors in the mock-trained group. However, it does not provide sufficient clarification of the results. The findings would be more convincing if these relative scores were unpacked - that is, instead of analyzing difference scores, the results of the interaction between group and odor preference (e.g., novel or air) (or even within the pre- and post-training conditions with the same animals) would provide greater clarity. This more detailed account may also better support the argument that the results are not due to conditioning of the US with pure air.

    2. Reviewer #2 (Public review):

      The manuscript by Yang et al. investigates how a prior experience (notably by the activation of sensory/reinforcing dopaminergic neurons) alters olfactory response and memory expression in Drosophila. They refer to a priming effect with the definition: "Priming is a process by which exposure to a stimulus affects the response to a subsequent stimulus in Humans". The authors observed that exposing flies to a series of shocks (or the optogenetic activation of aversively reinforcing dopaminergic neurons) decreases ensuing odour avoidance. Conversely, optogenetic activation of sweet-sensing neurons increases following odour avoidance. They proposed that the reduced odour avoidance was due to the involvement of reward dopaminergic neurons involved during shock (or the optogenetic activation of aversively reinforcing dopaminergic neurons). They indeed show the involvement of reward dopaminergic neurons innervating the mushroom body (the fly learning and memory centre) during shock preexposure. Recording (calcium activity) from reward dopaminergic neurons before and after shock preexposure shows that only a small subset of dopaminergic neurons innervating the mushroom body γ4 compartment increases their response to odour after shock. They then showed the requirement of the γ4 reward dopaminergic neurons during shock preexposure on ensuing odour avoidance. They also tested the role of the dopamine receptor in the mushroom body. They finally recorded from different mushroom body output neurons, including the one (MBON-γ4γ5) likely affected by the increased activity of the corresponding γ4 reward dopaminergic neurons after shock preexposure. They recorded odour-evoked responses from these neurons before and after shock preexposure, but did not find any plasticity, while they found a logical effect during spaced cycles of aversive training.

      Overall, the study is very interesting with a substantial amount of behavioural analysis and in vivo 2-photon calcium imaging data, but some major (and some minor) issues have to be resolved to strengthen their conclusions.

      (1) According to neuropsychological work (Henson, Encyclopedia of Neuroscience (2009), vol. 7, pp. 1055-1063), « Priming refers to a change in behavioral response to a stimulus, following prior exposure to the same, or a related, stimulus. Examples include faster reaction times to make a decision about the stimulus, a bias to produce that stimulus when generating responses, or the more accurate identification of a degraded version of the stimulus". Or "Repetition priming refers to a change in behavioural response to a stimulus following re-exposure" (PMID: 18328508). I therefore do not think that the effects observed by the authors are really the investigation of the neural mechanisms of priming. To me, the effect they observed seems more related to sensitisation, especially for the activation of sweet-sensing neurons. For the shock effect, it could be a safety phenomenon, as in Jacob and Waddell, 2020, involving (as for sugar reward) different subsets for short-term and long-term safety.

      (2) The author missed the paper from Thomas Preat, The Journal of Neuroscience, October 15, 1998, 18(20):8534-8538 (Decreased Odor Avoidance after Electric Shock in Drosophila Mutants Biases Learning and Memory Tests). In this paper, one of the effects observed by the authors has already been described, and the molecular requirement of memory-related genes is investigated. This paper should be mentioned and discussed.

      (3) Overall, the bidirectional effect they observed is interesting; however, their results are not always clear, and the use of a delta PI is sometimes misleading. The authors have mentioned that shocks induced attraction to the novel odour, while they should stick to the increase or decrease in preference/avoidance. As not all experiments are done in parallel logic, it is not always easy to understand which protocol the authors are using. For example, only optogenetics is used in the appetitive preexposure. Does exposing flies to sugar or activating reward dopaminergic neurons also increase odour avoidance? The observed increased odour avoidance after optogenetic activation of sweet-sensing neurons involve reward (e.g., decreased response) and/or punishment (e.g., increased response) to increase odour avoidance? The author should always statistically test the fly behavioural performances against 0 to have an idea of random choice or a clear preference toward an odour. On the appetitive side, the internal hunger state would play an important role. The author should test it or at least discuss it.

      (4) The authors found a discrepancy between genetic backgrounds; sometimes the same odour can be attractive or aversive. Different effects between the T-maze and the olfactory arena are found. The authors proposed that: "Punishment priming effect was still not detected, probably due to the insensitivity of the optogenetic arena". This is unclear to me, considering all prior work using this arena. The author should discuss it more clearly. They mentioned that flies could not be conditioned with air and electric shock. However, flies could be conditioned with the context + shock, which is changing in the T-maze and not in the optogenetic area.

    1. Reviewer #1 (Public review):

      Liang et al. have conducted a small-scale pilot study focusing on the feasibility and tolerability of Low-dose chemotherapy combined with delayed immunotherapy in the neoadjuvant treatment of non-small cell lung cancer. The design of delayed immunotherapy after chemotherapy is relatively novel, while the reduced chemotherapy, although somewhat lacking in innovation, still serves as an early clue for exploring future feasible strategies. Also, the dynamic ctDNA and TCR profiles could give some important hints of intrinsic tumor reaction.

      However, as the author mentioned in the limitation part, due to the small sample size and lack of a control group, we cannot fully understand the advantages and disadvantages of this approach compared to standard treatment. Compared to standard immunotherapy, the treatment group in this study has three differences: (1) reduced chemotherapy, (2) the use of cisplatin instead of the commonly used carboplatin in neoadjuvant therapy trials, and (3) delayed immunotherapy. Generally, in the exploration of updated treatment strategies, the design should follow the principle of "controlling variables." If there are too many differences at once, it becomes difficult to determine which variable is responsible for the effects, leading to confusion in the interpretation of the results. Moreover, the therapeutic strategy may lack practical clinical operability due to the long treatment duration.

      Furthermore, in the exploration of biomarkers, the authors emphasized the procedure of whole RNA sequencing in tumor tissues in the method section, and this was also noted in the flowchart in Figure 1. However, I didn't find any mention of RNA-related analyses in the Results section, which raises some concerns about the quality of this paper for me. If the authors have inadvertently omitted some results, they should supplement the RNA-related analyses so that I can re-evaluate the paper.

      To sum up, this article exhibited a certain degree of innovation to some extent, However, due to its intrinsic design defects and data omissions, the quality of the research warranted further improvement.

    2. Reviewer #2 (Public review):

      Summary:

      In this single center, single arm, open label non-randomised study the authors tested the use of paclitaxel at 180-220 mg/m2 and cisplatin at 60mg/m2 in patients with squamous NSCLC and pemetrexed at 500mg/m2 and cisplatin at 60mg/m2 in adenocarcinoma of lung origin in the neoadjuvant setting. The chemotherapy appears to have been given at a relatively standard dose; though the platin dose at 60mg/m2 is somewhat lower than has been used in the checkmate 816 trial (75mg/m2/dose), this is a well-established dose for NSCLC.

      Key differences to currently approved neoadjuvant chemo-ICI treatment is that anti-PD1 antibody sintilimab (at 200mg/dose) was given on day 5 and that only 2 cycles of chemotherapy were given pre surgery, but then repeated on two occasions post surgery. Between May/2020 and Nov/2023 50 patients were screened, 38 went on to have this schedule of tx, 31 (~82%) went on to have surgery and 27 had the adjuvant treatment. The rate of surgery is entirely consistent with the checkmate 816 data.

      Question to the authors:

      It would be very helpful to understand why 7 (~18% of the population) patients did not make it to surgery and whether this is related to disease progression, toxicity or other reasons for withdrawal.

      The key clinical endpoints were pCR and mPR rates. 2/38 patients are reported to have achieved a radiological pCR but only 31 patients underwent surgery with histological verification. Supp table2 suggests that 10/31 patients achieved a pCR, 6/31 additional patients achieved a major pathological response and that 13/31 did not achieve a major pathological response

      It would be really helpful for understanding the clinical outcome to present the histopathological findings in the text in a bit more detail and to refer the outcome to the radiological findings. I note that the reference for pathological responses incorrectly is 38 patients as only 31 patients underwent surgery and were evaluated histologically.

      The treatment was very well tolerated with only 1 grade 3 AE reported. The longer term outcome will need to be assessed over time as the cohort is very 'young'. It is not clear what the adjuvant chemo-ICI treatment would add and how this extra treatment would be evaluated for benefit - if all the benefit is in the neoadjuvant treatment then the extra post-operative tx would only add toxicity

      Please consider what the two post-operative chemo-ICI cycles might add to the outcome and how the value of these cycles would be assessed. Would there be a case for a randomised assessment in the patients who have NOT achieved a mPR histologically?

      While the clinical dataset identifies that the proposed reduced chemo-ICI therapy has clinical merit and should be assessed in a randomized study, the translational work is less informative.

      The authors suggest that the treatment has a positive impact on T lymphocytes. Blood sampling was done at day 0 and day 5 of each of the four cycle of chemotherapy with an additional sample post cycle 4. The authors state that data were analysed at each stage.

      The data in Figure 3B are reported for three sets of pairs: baseline to pre day 5 in cycle 1, day 5 to day 21 in cycle 1, baseline of cycle to to day 5. It remains unclear whether the datasets contain the same top 20 clones and it would be very helpful to show kinetic change for the individual 'top 20 clones' throughout the events in individual patients; as it stands the 'top20 clones' may vary widely from timepoint to timepoint. Of note, the figures do not demonstrate that the top 20 TCR clones were 'continuously increased'.

      Instead, the data suggest that there are fluctuations in the relative distributions over time but that may simply be a reflection of shifts in T cell populations following chemotherapy rather than of immunological effects in the cancer tissue.<br /> Consistent with this the authors conclude (line 304/5): "No significant difference was observed in the diversity, evenness, and clonality of TCR clones across the whole treatment procedure" and this seems to be a more persuasive conclusion than the statement 'that a positive effect on T lymphocytes was observed' - where it is also not clear what 'positive' means.

      The text needs a more balanced representation of the data: only a small subset of four patients appear to have been evaluated to generate the data for figure 3B and only three patients (P5, P6, P7) can have contributed to figure 3C if the sample collection is represented accurately in Figure 3A.

      The text refers to flow cytometric results in SF3. However, no information is given on the flow cytometry in M&M, markers or gating strategy.

      Please consider changing the terminology of the 'phases' into something that is easier to understand. One option would be to use a reference to a more standard unit (cycle 1-4 of chemotherapy and then d0/d5/d21).

      Please make it explicit in the text that molecular analyses were undertaken for some patients only, and how many patients contribute to the data in figures 3B-F. Figure 3A suggests paired mRNA data were obtained in 2 patients (P2 and P5) but I cannot find the results on these analyses; four individual blood samples to assess TCR changes int PH1/PH2/PH3and PH4 were only available in four patients (P4,P5,P7,P9). Only three patients seem to have the right samples collected to allow the analysis for 'C3' in figure 3C.

      Please display for each of the 'top 20 clones' at any one timepoint how these clones evolve throughout the study; I expect that a clone that is 'top 20' at a given timepoint may not be among the 'top twenty' at all timepoints.

      Please also assess if the expanded clonotypes are present (and expanded) in the cancer tissue at resection, to link the effect in blood to the tumour. Given that tissue was collected for 31 patients, mRNA sequencing to generate TCR data should be possible to add to the blood analyses in the 12 patients in Figure 3A. Without this data no clear link can be made to events in the cancer.

      Please provide in M&M the missing information on the flow cytometry methodology (instrument, antibody clones, gating strategy) and what markers were used to define T cell subsets (naïve, memory, central memory, effector memory).

      The authors also describe that ctDNA reduces after chemo-ICI treatment. This is well documented in their data but ultimately irrelevant: if the cancer volume is reduced to the degree of a radiological or pathological response /complete response then the quantity of circulating DNA from the cancer cells must reduce. More interesting would be the question whether early changes predict clinical outcome and whether recurrent ct DNA elevations herald recurrence.

      Please probe whether the molecular data identify good radiological or pathological outcomes before cycle 2 is started and whether the ctDNA levels identify patients who will have a poor response and/or who relapse early.

    1. Reviewer #1 (Public review):

      Summary:

      Cai et al have investigated the role of msiCAT-tailed mitochondrial proteins that frequently exist in glioblastoma stem cells. Overexpression of msiCAT-tailed mitochondrial ATP synthase F1 subunit alpha (ATP5) protein increases the mitochondrial membrane potential and blocks mitochondrial permeability transition pore formation/opening. These changes in mitochondrial properties provide resistance to staurosporine (STS)-induced apoptosis in GBM cells. Therefore, msiCAT-tailing can promote cell survival and migration, while genetic and pharmacological inhibition of msiCAT-tailing can prevent the overgrowth of GBM cells.

      Strengths:

      The CATailing concept has not been explored in cancer settings. Therefore, the present provides new insights for widening the therapeutic avenue.

      Weaknesses:

      Although the paper does have strengths in principle, the weaknesses of the paper are that these strengths are not directly demonstrated.

      The conclusions of this paper are mostly well supported by data, but some aspects of image acquisition and data analysis need to be clarified and extended.

    1. Reviewer #2 (Public review):

      This study provides some interesting observations on how different flavour e-cigarettes can affect lung immunology; however, there are numerous flaws, including a low replicate number and a lack of effective validation methods, meaning findings may not be repeated. This is a revised article but several weaknesses remain related to the analysis and interpretation of the data.

      Strengths:

      The strength of the study is the successful scRNA-seq experiment which gives some preliminary data that can be used to create new hypotheses in this area.

      Weaknesses:

      Although some text weaknesses have been addressed since resubmission, other specific weaknesses remain: The major weakness is the n-number and analysis methods. Two biological n per group is not acceptable to base any solid conclusions. Any validatory data was too little (only cell % data) and not always supporting the findings (e.g. figure 3D does not match 3B/4A). Other examples include:

      (1) There aren't enough cells to justify analysis - only 300-1500 myeloid cells per group with not many of these being neutrophils or the apparent 'Ly6G- neutrophils'

      (2) The dynamic range of RNA measurement using scRNAseq is known to be limited - how do we know whether genes are not expressed or just didn't hit detection? This links into the Ly6G negative neutrophil comments, but in general the lack of gene expression in this kind of data should be viewed with caution, especially with a low n number and few cells. The data in the entire paper is not strong enough to base any solid conclusion - it is not just the RNA-sequencing data.

      (3) There is no data supporting the presence of Ly6G negative neutrophils. In the flow cytometry only Ly6G+ cells are shown with no evidence of Ly6G negative neutrophils (assuming equal CD11b expression). There is no new data to support this claim since resubmission and the New figures 4C and D actually show there are no Ly6G negative cells - the cells that the authors deem Ly6G negative are actually positive - but the red overlay of S100A8 is so strong it blocks out the green signal - looking to the Ly6G single stains (green only) you can see that the reported S100A8+Ly6G- cells all have Ly6G (with different staining intensities).

      (4) Eosinophils are heavily involved in lung macrophage biology, but are missing from the analysis - it is highly likely the RNA-sequence picked out eosinophils as Ly6G- neutrophils rather than 'digestion issues' the authors claim

      (5) After author comments, it appears the schematic in Figure 1A is misleading and there are not n=2/group/sex but actually only n=1/group/sex (as shown in Figure 6A). Meaning the n number is even lower than the previous assumption.

    2. Reviewer #3 (Public review):

      This work aims to establish cell-type specific changes in gene expression upon exposure to different flavors of commercial e-cigarette aerosols compared to control or vehicle. Kaur et al. conclude that immune cells are most affected, with the greatest dysregulation found in myeloid cells exposed to tobacco-flavored e-cigs and lymphoid cells exposed to fruit-flavored e-cigs. The up- and down-regulated genes are heavily associated with innate immune response. The authors suggest that a Ly6G-deficient subset of neutrophils is found to be increased in abundance for the treatment groups, while gene expression remains consistent, which could indicate impaired function. Increased expression of CD4+ and CD8+ T cells along with their associated markers for proliferation and cytotoxicity is thought to be a result of activation following this decline in neutrophil-mediated immune response.

      Strengths:

      - Single cell sequencing data can be very valuable in identifying potential health risks and clinical pathologies of lung conditions associated with e-cigarettes considering they are still relatively new.

      - Not many studies have been performed on cell-type specific differential gene expression following exposure to e-cig aerosols.

      - The assays performed address several factors of e-cig exposure such as metal concentration in the liquid and condensate, coil composition, cotinine/nicotine levels in serum and the product itself, cell types affected, which genes are up- or down-regulated and what pathways they control.

      - Considerations were made to ensure clinical relevance such as selecting mice whose ages corresponded with human adolescents so that data collected was relevant.

      Weaknesses:

      - The exposure period of 1 hour a day for 5 days is not representative of chronic use and this time point may be too short to see a full response in all cell types. The experimental design is not well-supported based on the literature available for similar mouse models. Clinical relevance of this short exposure remains unclear.

      - Several claims lack supporting evidence or use data that is not statistically significant. In particular, there were no statistical analyses to compare results across sex, so conclusions stating there is a sex bias for things like Ly6G+ neutrophil percentage by condition are observational.

      - Overall, the paper and its discussion are relatively surface-level and do not delve into the significance of the findings or how they fit into the bigger picture of the field. It is not clear whether this paper is intended to be used as a resource for other researchers or as an original research article.

      - The manuscript has some validation of findings but not very comprehensive.

      This paper provides a strong foundation for follow-up experiments that take a closer look at the effects of e-cig exposure on innate immunity. There is still room to elaborate on the differential gene expression within and between various cell types.

      Comments on revisions:

      The reviewers have addressed major concerns with better validation of data and improved organization of the paper. However, we still have some concerns and suggestions pertaining to the statistical analyses and justifications for experimental design.

      - We appreciate the nuance of this experimental design, and the reviewers have adequately commented on why they chose nose-only exposure over whole body exposure. However, the justification for the duration of the exposure, and the clinical relevance of a short exposure, have not been addressed in the revised manuscript.

      - The presentation of cell counts should be represented by a percentage/proportion rather than a raw number of cells. Without normalization to the total number of cells, comparisons cannot be made across groups/conditions. This comment applies to several figures.

      - We appreciate that the authors have taken the reviewers' advice to validate their findings. However, we have concerns regarding the immunofluorescent staining shown in Figure 4. If the red channel is showing a pan-neutrophil marker (S100A8) and the green channel is showing only a subset of neutrophils (LY6G+), then the green channel should have far less signal than the red channel. This expected pattern is not what is shown in the figure, with the Ly6G marker apparently showing more expression than S100A8. Additionally, the FACS data states that only 4-5% of cells are neutrophils, but the red channel co-localizes with far more than 4-5% of the DAPI stain, meaning this population is overrepresented, potentially due to background fluorescence (noise). In addition, some of the shapes in the staining pattern do not look like true neutrophils, although it is difficult to tell because there remains a lot of background staining. The authors need to verify that their S100A8 and Ly6G antibodies work and are specific to the populations they intend to target. It is possible that only the brightest spots are truly S100A8+ or Ly6G+.

      - Paraffin sections do not always yield the best immunostaining results and the images themselves are low magnification and low resolution.

      - Please change the scale bars to white so they are more visible in each channel.

      - We appreciate that this is a preliminary test used as a resource for the community, but there is interesting biology regarding immune cells that warrants DEG analysis by the authors. This computational analysis can be easily added with no additional experiments required.

    3. Reviewer #1 (Public review):

      Summary:

      The authors assess the impact of E-cigarette smoke exposure on mouse lungs using single cell RNA sequencing. Air was used as control and several flavors (fruit, menthol, tobacco) were tested. Differentially expressed genes (DEGs) were identified for each group and compared against the air control. Changes in gene expression in either myeloid or lymphoid cells were identified for each flavor and the results varied by sex. The scRNAseq dataset will be of interest to the lung immunity and e-cig research communities and some of the observed effects could be important. Unfortunately, the revision did not address the reviewers' main concerns about low replicate numbers and lack of validations. The study remains preliminary and no solid conclusions could be drawn about the effects of E-cig exposure as a whole or any flavor-specific phenotypes.

      Strengths:

      The study is the first to use scRNAseq to systematically analyze the impact of e-cigarettes on the lung. The dataset will be of broad interest.

      Weaknesses:

      scRNAseq studies may have low replicate numbers due to the high cost of studies but at least 2 or 3 biological replicates for each experimental group is required to ensure rigor of the interpretation. This study had only N=1 per sex per group and some sex-dependent effects were observed. This could have been remedied by validating key observations from the study using traditional methods such as flow cytometry and qPCR, but the limited number of validation experiments did not support the conclusions of the scRNAseq analysis. An important control group (PG:VG) had extremely low cell numbers and was basically not useful. Statistical analysis is lacking in almost all figures. Overall, this is a preliminary study with some potentially interesting observations but no solid conclusions can be made from the data presented.

      (1) The only new validation experiment is the immunofluorescent staining of neutrophils in Figure 4. The images are very low resolution and low quality and it is not clear which cells are neutrophils. S100A8 (calprotectin) is highly abundant in neutrophils but not strictly neutrophil-specific. It's hard to distinguish positive cells from autofluorescence in both Ly6g and S100a8 channels. No statistical analysis in the quantification.

      (2) It is unclear what the meaning of Fig. 3A and B is, since these numbers only reflect the number of cells captured in the scRNAseq experiment and are not biologically meaningful. Flow cytometry quantification is presented as cell counts, but the percentage of cells from the CD45+ gate should be shown. No statistical analysis is shown, and flow cytometry results do not support the conclusions of scRNAseq data.

    1. Reviewer #1 (Public review):

      Summary:

      The authors revealed the cellular heterogeneity of companion cells (CCs) and demonstrated that the florigen gene FT is highly expressed in a specific subpopulation of these CCs in Arabidopsis. Through a thorough characterization of this subpopulation, they further identified NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT. Overall, these findings are intriguing and valuable, contributing significantly to our understanding of florigen and the photoperiodic flowering pathway. However, there is still room for improvement in the quality of the data and the depth of the analysis. I have several comments that may be beneficial for the authors.

      Strengths:

      The usage of snRNA-seq to characterize the FT-expressing companion cells (CCs) is very interesting and important. Two findings are novel: 1) Expression of FT in CCs is not uniform. Only a subcluster of CCs exhibits high expression level of FT. 2) Based on consensus binding motifs enriched in this subcluster, they further identify NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT.

      Weaknesses:

      (1) Title: "A florigen-expressing subpopulation of companion cells". It is a bit misleading. The conclusion here is that only a subset of companion cells exhibit high expression of FT, but this does not imply that other companion cells do not express it at all.

      (2) Data quality: Authors opted for fluorescence-activated nuclei sorting (FANS) instead of traditional cell sorting method. What is the rationale behind this decision? Readers may wonder, especially given that RNA abundance in single nuclei is generally lower than that in single cells. This concern also applies to snRNA-seq data. Specifically, the number of genes captured was quite low, with a median of only 149 genes per nucleus. Additionally, the total number of nuclei analyzed was limited (1,173 for the pFT:NTF and 3,650 for the pSUC2:NTF). These factors suggest that the quality of the snRNA-seq data presented in this study is quite low. In this context, it becomes challenging for the reviewer to accurately assess whether this will impact the subsequent conclusions of the paper. Would it be possible to repeat this experiment and get more nuclei?

      (3) Another disappointment is that the authors did not utilize reporter genes to identify the specific locations of the FT-high expressing cells (cluster 7 cells) within the CC population in vivo. Are there any discernible patterns that can be observed?

      (4) The final disappointment is that the authors only compared FT expression between the nigtQ mutants and the wild type. Does this imply that the mutant does not have a flowering time defect particularly under high nitrogen conditions?

      Comments on revisions:

      I think the authors took my comments seriously and addressed most of my concerns. Overall, I find this to be a very interesting paper.

    2. Reviewer #2 (Public review):

      This manuscript submitted by Takagi et al. details the molecular characterization of the FT-expressing cell at a single-cell level. The authors examined what genes are expressed specifically in FT-expressing cells and other phloem companion cells by exploiting bulk nuclei and single-nuclei RNA-seq and transgenic analysis. The authors found the unique expression profile of FT-expressing cells at a single-cell level and identified new transcriptional repressors of FT such as NIGT1.2 and NIGT1.4.

      Although previous researchers have known that FT is expressed in phloem companion cells, they have tended to neglect the molecular characterization of the FT-expressing phloem companion cells. To understand how FT, which is expressed in tiny amounts in phloem companion cells that make up a very small portion of the leaf, can be a key molecule in the regulation of the critical developmental step of floral transition, it is important to understand the molecular features of FT-expressing cells in detail. In this regard, this manuscript provides insight into the understanding of detailed molecular characteristics of the FT-expressing cell. This endeavor will contribute to the research field of flowering time.

      During the initial review process, I proposed the following two points for improving this manuscript:

      (1) The most noble finding of this manuscript is the identification of NTGI1.2 as the upstream regulator of FT-expressing cluster 7 gene expression. The flowering phenotypes of the nigtQ mutant and the transgenic plants in which NIGT1.2 was expressed under the SUC2 gene promoter support that NIGT1.2 functions as a floral repressor upstream of the FT gene. Nevertheless, the expression patterns of NIGT1.2 genes do not appear to have much overlap with those of NIGT1.2-downstream genes in the cluster 7 (Figs S14 and F3). An explanation for this should be provided in the discussion section.

      (2) To investigate gene expression in the nuclei of specific cell populations, the authors generated transgenic plants expressing a fusion gene encoding a Nuclear Targeting Fusion protein (NTF) under the control of various cell type-specific promoters. Since the public audience would not know about NTF without reading reference 16, some explanation of NTF is necessary in the manuscript. Please provide a schematic of the constructs the authors used to make the transformants.

      The revised manuscript has addressed my comments well. I am deeply grateful for the authors' efforts to address concerns raised by me and other reviewers.<br /> I have no doubt that the manuscript in its current form is worthy of publication in this journal and will provide valuable insights into flowering time for many readers.

    1. Joint Public Review:

      Summary:

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs).

      Strengths:

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum. This study adds to our understanding of the logic of corticostriatal connections, suggesting a previously unappreciated structure.

      Editors' note:

      The concerns raised by Reviewers #1, and #2, have been addressed during the first round of revision. The specific concern raised by Reviewer #3 is about the Rabis virus-based circuit tracing itself. This version of the work has been assessed by the editors without going back to the reviewers.