Reviewer #2 (Public review):
Summary:
Disruption of the nicotinamide adenine dinucleotide (NAD) de novo Synthesis Pathway, by which L-tryptophan is converted to NAD results in multi-organ malformations which collectively has been termed Congenital NAD Deficiency Disorder (CNDD).
While NAD de novo synthesis is primarily active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. However, mouse embryos are susceptible to CNDD between E7.5-E12.5, before the embryo has developed a functional liver. Therefore, NAD de novo synthesis is likely active in another cell or tissue during this time window of susceptibility.
The body of work presented in this paper continues the corresponding author's labs investigation of the cause and effects of NAD Deficiency and the primary goal was to determine the cell or tissue responsible for NAD de novo synthesis during early embryogenesis.
The authors conclude that visceral yolk sac endoderm is the source of NAD de novo synthesis, which is essential for mouse embryonic development, and furthermore that the dynamics of NAD synthesis are conserved in human equivalent cells and tissues, the perturbation of which results in CNDD.
Strengths:
Overall, the primary findings regarding the source of NAD synthesis, the temporal requirement and conservation between rodent and human species is quite novel and important for our understanding of NAD synthesis and function and role in CNDD.
The authors used UHPLC-MS/MS to quantify NAD+ and NAD-related metabolites and showed convincingly that the NAD salvage pathway can compensate for the loss of NAD synthesis in Haao-/- embryos, then determined that Haao activity was present in the yolk sac prior to hepatic development identifying this organ as the site of de novo NAD synthesis. Dietary modulation between E7.5-10.5 was sufficient to induce CNDD phenotypes, narrowing the window of susceptibility, and then re-analysis of RNA-seq datasets suggested the endoderm was the cell source of NAD synthesis.
Weaknesses:
Page 4 and Table S4. The descriptors for malformations of organs such as the kidney and vertebrae are quite vague and uninformative. More specific details are required to convey the type and range of anomalies observed as a consequence of NAD deficiency.
Can the authors define whether the role for the NAD pathway in a couple of tissue or organ systems is the same. By this I mean is the molecular or cellular effect of NAD deficiency the same in the vertebrae and organs such as the kidney. What unifies the effects on these specific tissues and organs and are all tissues and organs affected. If some are not, can the authors explain why they escape the need for the NAD pathway.
Page 5 and Figure 6C. The expectation and conclusion for whether specific genes are expressed in particular cell types in scRNA-seq datasets depends on number of cells sequenced, the technology (methodology) used, the depth of sequencing and also the resolution of the analysis. It is therefore essential to perform secondary validation of the analysis of scRNA-seq data. At a minimum, the authors should perform in situ hybridization or immunostaining for Tdo2, Afmid, Kmo, Kynu, Haao, Qprt and Nadsyn1 or some combination thereof at multiple time points during early mouse embryogenesis to truly understand the spatiotemporal dynamics of expression and NAD synthesis.
Absolute functional proof of the yolk sac endoderm as being essential and required for NAD synthesis in the context of CNDD might require conditional deletion of Haao in the yolk sac versus embryo using appropriate Cre driver lines or in the absence of a conditional allele, could be performed by tetraploid embryo-ES cell complementation approaches. But temporal dietary intervention can also approximate the same thing by perturbing NAD synthesis then the yolk sac is the primary source versus when the liver becomes the primary source in the embryo.
In further revisions, the authors have added data to Supp Table 4 and Supplemental Figures 1 and 2
Although the authors did not perform in situ hybridization for some of the genes requested to define the critical cell type of expression, available scRNA-sequencing suggests the yolk sac endoderm are the only likely source of NAD synthesis prior to its synthesis in the liver. Absolute functional proof of the yolk sac endoderm as being essential and required for NAD synthesis in the context of CNDD still requires validation but nonetheless it seems likely given the absence of a functional liver in embryos prior to E12.5. The authors provided some additional data pertaining to the type of kidney and vertebral anomalies observed which makes this data more complete.