10,000 Matching Annotations
  1. Feb 2025
    1. Reviewer #2 (Public review):

      Summary:

      The authors have examined the effects of two parameters that could improve their clade forecasting predictions for A(H3N2) seasonal influenza viruses based solely on analysis of haemagglutinin gene sequences deposited on the GISAID Epiflu database. Sequences were analysed from viruses collected between April 1, 2005 and October 1, 2019. The parameters they investigated were various lag periods (0, 1, 3 months) for sequences to be deposited in GISAID from the time the viruses were sequenced. The second parameter was the time the forecast was accurate over projecting forward (for 3,6,9,12 months). Their conclusion (not surprisingly) was that "the single most valuable intervention we could make to improve forecast accuracy would be to reduce the forecast horizon to 6 months or less through more rapid vaccine development". This is not practical using conventional influenza vaccine production and regulatory procedures. Nevertheless, this study does identify some practical steps that could improve the accuracy and utility of forecasting such as a few suggested modifications by the authors such as "..... changing the start and end times of our long-term forecasts. We could change our forecasting target from the middle of the next season to the beginning of the season, reducing the forecast horizon from 12 to 9 months.'

      Strengths:

      The authors are very familiar with the type of forecasting tools used in this analysis (LBI and mutational load models) and the processes used currently for influenza vaccine virus selection by the WHO committees having participated in a number of WHO Influenza Vaccine Consultation meetings for both the Southern and Northern Hemispheres.

      Weaknesses:

      The conclusion of limiting the forecasting to 6 months would only be achievable from the current influenza vaccine production platforms with mRNA. However, there are no currently approved mRNA influenza vaccines, and mRNA influenza vaccines have also yet to demonstrate their real-world efficacy, longevity, and cost-effectiveness and therefore are only a potential platform for a future influenza vaccine. Hence other avenues to improve the forecasting should be investigated.

      While it is inevitable that more influenza HA sequences will become available over time a better understanding of where new influenza variants emerge would enable a higher weighting to be used for those countries rather than giving an equal weighting to all HA sequences.

      Also, other groups are considering neuraminidase sequences and how these contribute to the emergence of new or potentially predominant clades.

    1. Reviewer #1 (Public review):

      Summary:

      The authors wanted to use AlphaFold-multimer (AFm) predictions to reduce the challenge of physics-based protein-protein docking.

      Strengths:

      They found two features of AFm predictions that are very useful. 1) pLLDT is predictive of flexible residues, which they could target for conformational sampling during docking; 2) the interface-pLLDT score is predictive of the quality of AFm predictions, which allows the authors to decide whether to do local or global docking.

      Weaknesses:

      (1) As admitted by the authors, the AFm predictions for the main dataset are undoubtedly biased because these structures were used for AFm training. Could the authors find a way to assess the extent of this bias?<br /> (2) For the CASP15 targets where this bias is absent, the presentation was very brief. In particular, I'm interested in seeing how AFm helped with the docking? They may even want to do a direct comparison with docking results w/o the help of AFm.

      Comments on revisions:

      This revision has addressed my previous comments.

    2. Reviewer #2 (Public review):

      Summary:

      In short, this paper uses a previously published method, ReplicaDock to improve predictions from AlphaFold-multimer. The method generated about 25% more acceptable predictions than AFm, but more important is improving an Antibody-antigen set, where more than 50% of the models become improved.

      When looking at the results in more detail, it is clear that for the models where the AFm models are good, the improvement is modest (or not at all). See, for instance, the blue dots in Fig 6. However, in the cases where AFm fails, the improvement is substantial (red dots in Fig 6), but no models reach a very high accuracy (Fnat ~0.5 compared to 0.8 for the good AFm models). So the paper could be summarized by claiming, "We apply ReplicaDock when AFm fails", instead of trying to sell the paper as an utterly novel pipeline. I must also say that I am surprised by the excellent performance of ReplicaDock - it seems to be a significant step ahead of other (not AlphaFold) docking methods, and from reading the original paper, that was unclear. Having a better benchmark of it alone (without AFm) would be very interesting.

      These results also highlight several questions I try to describe in the weakness section below. In short, they boil down to the fact that the authors must show how good/bad ReplicaDock is at all targets (not only the ones where AFm fails. In addition, I have several more technical comments.

      Strengths:

      Impressive increase in performance on AB-AG set (although a small set and no proteins ).

      Weaknesses:

      The presentation is a bit hard to follow. The authors mix several measures (Fnat, iRMS, RMSDbound, etc). In addition, it is not always clear what is shown. For instance, in Fig 1, is the RMSD calculated for a single chain or the entire protein? I would suggest that the author replace all these measures with two: TM-score when evaluating the quality of a single chain and DockQ when evaluating the results for docking. This would provide a clearer picture of the performance. This applies to most figures and tables. For instance, Fig 9 could be shown as a distribution of DockQ scores.

      The improvements on the models where AFm is good are minimal (if at all), and it is unclear how global docking would perform on these targets, nor exactly why the plDDT<0.85 cutoff was chosen. To better understand the performance of ReplicaDock, the authors should therefore (i) run global and local docking on all targets and report the results, (ii) report the results if AlphaFold (not multimer) models of the chains were used as input to ReplicaDock (I would assume it is similar). These models can be downloaded from AlphaFoldDB.

      Further, it would be interesting to see if ReplicaDock could be combined with AFsample (or any other model to generate structural diversity) to improve performance further.

      The estimates of computing costs for the AFsample are incorrect (check what is presented in their paper). What are the computational costs for RepliaDock global docking?

      It is unclear strictly what sequences were used as input to the modelling. The authors should use full-length UniProt sequences if that were not done.

      The antibody-antigen dataset is small. It could easily be expanded to thousands of proteins. It would be interesting to know the performance of ReplicaDock on a more extensive set of Antibodies and nanobodies.

      Using pLDDT on the interface region to identify good/bas models is likely suboptimal. It was acceptable (as a part of the score) for AlphaFold-2.0 (monomer), but AFm behaves differently. Here, AFm provides a direct score to evaluate the quality of the interaction (ipTM or Ranking Confidence). The authors should use these to separate good/bad models (for global/local docking), or at least show that these scores are less good than the one they used.

      Comments on revisions:

      The inclusion of the DockQ improved the paper. No further comments.

    1. Reviewer #1 (Public review):

      Summary:

      The authors sought to identify unknown factors involved in the repair of uracil in DNA through a CRISPR knockout screen.

      Strengths:

      The screen identified both known and unknown proteins involved in DNA repair resulting from uracil or modified uracil base incorporation into DNA. The conclusion is that the protein activity of METTL3, which converts A nucleotides to 6mA nucleotides, plays a role in the DNA damage/repair response. The importance of METTL3 in DNA repair, and its colocalization with a known DNA repair enzyme, UNG2, is well characterized.

      Weaknesses:

      This reviewer identified no major weaknesses in this study. The manuscript could be improved by tightening the text throughout, and more accurate and consistent word choice around the origin of U and 6mA in DNA. The dUTP nucleotide is misincorporated into DNA, and 6mA is formed by methylation of the A base present in DNA. Using words like 6mA "deposition in DNA" seems to imply it results from incorporation of a methylated dATP nucleotide during DNA synthesis.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluoro-uracil into DNA, and identified unexpected factors, such as the RNA m6A methyltransferase METTL3, as required to overcome floxuridine-driven cytotoxicity in mammalian cells. Interestingly, the observed N6-methyladenosine was embedded in DNA, which has been reported as DNA 6mA in mammalian genomes and is currently confirmed with mass spectrometry in this model. Therefore, this work consolidated the functional role of mammalian genomic DNA 6mA, and supported with solid evidence to uncover the METTL3-6mA-UNG2 axis in response to DNA base damage.

      Strengths:

      In this work, the authors took an unbiased, genome-wide CRISPR approach to identify novel factors involved in uracil repair with potential clinical interest.

      The authors designed elegant experiments to confirm the METTL3 works through genomic DNA, adding the methylation into DNA (6mA) but not the RNA (m6A), in this base damage repair context. The authors employ different enzymes, such as RNase A, RNase H, DNase, and liquid chromatography coupled to tandem mass spectrometry to validate that METTL3 deposits 6mA in DNA in response to agents that increase genomic uracil.

      They also have the Mettl3-KO and the METTL3 inhibition results to support their conclusion.

      Weaknesses:

      Although this study demonstrates that METTL3-dependent 6mA deposition in DNA is functionally relevant to DNA damage repair in mammalian cells, there are still several concerns and issues that need to be improved to strengthen this research.

      First, in the whole paper, the authors never claim or mention the mammalian cell lines contamination testing result, which is the fundamental assay that has to be done for the mammalian cell lines DNA 6mA study.

      Second, in the whole work, the authors have not supplied any genomic sequencing data to support their conclusions. Although the sequencing of DNA 6mA in mammalian models is challenging, recent breakthroughs in sequencing techniques, such as DR-Seq or NT/NAME-seq, have lowered the bar and improved a lot in the 6mA sequencing assay. Therefore, the authors should consider employing the sequencing methods to further confirm the functional role of 6mA in base repair.

      Third, the authors used the METTL3 inhibitor and Mettl3-KO to validate the METTL3-6mA-UNG2 functional roles. However, the catalytic mutant and rescue of Mettl3 may be the further experiments to confirm the conclusion.

    3. Reviewer #3 (Public review):

      Summary:

      The authors are showing evidence that they claim establishes the controversial epigenetic mark, DNA 6mA, as promoting genome stability.

      Strengths:

      The identification of a poorly understood protein, METTL3, and its subsequent characterization in DDR is of high quality and interesting.

      Weaknesses:

      (1) The very presence of 6mA (DNA) in mammalian DNA is still highly controversial and numerous studies have been conclusively shown to have reported the presence of 6mA due to technical artifacts and bacterial contamination. Thus, to my knowledge there is no clear evidence for 6mA as an epigenetic mark in mammals, and consequently, no evidence of writers and readers of 6mA. None of this is mentioned in the introduction. Much of the introduction can be reduced, but a paragraph clearly stating the controversy and lack of evidence for 6mA in mammals needs to be added, otherwise, the reader is given an entirely distorted view of the field.

      These concerns must also be clearly in the limitations section and even in the results section which fails to nuance the authors' findings.

      (2) What is the motivation for using HT-29 cells? Moreover, the materials and methods do not state how the authors controlled for bacterial contamination, which has been the most common cause of erroneous 6mA signals to date. Did the authors routinely check for mycoplasma?

      (3) The single cell imaging of 6mA in various cells is nice. The results are confirmed by mass spec as an orthogonal approach. Another orthogonal and quantitative approach to assessing 6mA levels would be PacBio. Similarly, it is unclear why the authors have not performed dot-blots of 6mA for genomic DNA from the given cell lines.

      (4) The results of Figure 3 need further investigation and validation. If the results are correct the authors are suggesting that the majority of 6mA in their cell lines is present in the DNA, and not the RNA, which is completely contrary to every other study of 6mA in mammalian cells that I am aware of. This could suggest that the antibody is not, in fact, binding to 6mA, but to unmodified adenine, which would explain why the signal disappears after DNAse treatment. Indeed, binding of 6mA to unmethylated DNA is a commonly known problem with most 6mA antibodies and is well described elsewhere.

      (5) Given the lack of orthologous validation of the observed DNA 6mA and the lack of evidence supporting the presence of 6mA in mammalian DNA and consequently any functional role for 6mA in mammalian biology, the manuscript's conclusions need to be toned down significantly, and the inherent difficulty in assessing 6mA accurately in mammals acknowledged throughout.

    1. Joint Public Review:

      Summary:

      The authors of the study investigated the generalization capabilities of a deep learning brain age model across different age groups within the Singaporean population, encompassing both elderly individuals aged 55 to 88 years and children aged 4 to 11 years. The model, originally trained on a dataset primarily consisting of Caucasian adults, demonstrated a varying degree of adaptability across these age groups. For the elderly, the authors observed that the model could be applied with minimal modifications, whereas for children, significant fine-tuning was necessary to achieve accurate predictions. Through their analysis, the authors established a correlation between changes in the brain age gap and future executive function performance across both demographics. Additionally, they identified distinct neuroanatomical predictors for brain age in each group: lateral ventricles and frontal areas were key in elderly participants, while white matter and posterior brain regions played a crucial role in children. These findings underscore the authors' conclusion that brain age models hold the potential for generalization across diverse populations, further emphasizing the significance of brain age progression as an indicator of cognitive development and aging processes.

      Strengths:

      (1) The study tackles a crucial research gap by exploring the adaptability of a brain age model across Asian demographics (Chinese, Malay, and Indian Singaporeans), enriching our knowledge of brain aging beyond Western populations.<br /> (2) It uncovers distinct anatomical predictors of brain aging between elderly and younger individuals, highlighting a significant finding in the understanding of age-related changes and ethnic differences.

      In summary, this paper underscores the critical need to include diverse ethnicities in model testing and estimation.

      Comments on revisions:

      The previously mentioned weaknesses were addressed in the revision process. As stated earlier the paper tackles a crucial research gap by exploring the adaptability of a brain-age model across Asian demographics (Chinese, Malay, and Indian Singaporeans), enriching our knowledge of brain aging beyond Western populations.

    1. Reviewer #1 (Public review):

      Summary:

      The present paper by Redman et al. investigated the variability of grid cell properties in the MEC by analyzing publicly available large-scale neural recording data. Although previous studies have proposed that grid spacing and orientation are homogeneous within the same grid module, the authors found a small but robust variability in grid spacing and orientation across grid cells in the same module. The authors also showed, through model simulations, that such variability is useful for decoding spatial position.

      Strengths:

      The results of this study provide novel and intriguing insights into how grid cells compose the cognitive map in the axis of the entorhinal cortex and hippocampus. This study analyzes large data sets in an appropriate manner and the results are convincing.

      Comments on revisions:

      In the revised version of the manuscript, the authors have addressed all the concerns I raised.

    2. Reviewer #2 (Public review):

      Summary:

      This paper presents an interesting and useful analysis of grid cell heterogeneity, showing that the experimentally observed heterogeneity of spacing and orientation within a grid cell module can allow more accurate decoding of location from a single module.

      Strengths:

      (1) I found the statistical analysis of the grid cell variability to be very systematic and convincing. I also found the evidence for enhanced decoding of location based on between cell variability within a module to be convincing and important, supporting their conclusions.

      (2) Theoreticians have developed models that focus on the use of grid cells that are highly regular in their parameters, and usually vary only in the spatial phase of cells within modules and the spacing and orientation between modules. This focus on consistency is partly to obtain the generalization of the grid cell code to a broad range of previously unvisited locations. In contrast, most experimentalists working with grid cells know that many if not most grid cells show high variability of firing fields, as demonstrated in the figures in experimental papers. The authors of this current paper have highlighted this discrepancy, and shown that the variability shown in the data could actually enhance decoding of location.

    3. Reviewer #3 (Public review):

      Summary:

      Redman and colleagues analyze grid cell data obtained from public databases. They show that there is significant variability in spacing and orientation within a module. They show that the difference in spacing and orientation for a pair of cells is larger than the one obtained for two independent maps of the same cell. They speculate that this variability could be useful to disambiguate the rat position if only information from a single module is used by a decoder.

      Strengths:

      The strengths of this work lie in its conciseness, clarity, and the potential significance of its findings for the grid cell community, which has largely overlooked this issue for the past two decades. Their hypothesis is well stated and the analyses are solid.

      Weaknesses:

      Major weaknesses identified in the original version have been addressed.

      The authors have addressed all of our concerns, providing control analyses that strengthen their claim.

    1. Reviewer #1 (Public review):

      Hotinger et al. explore the population dynamics of Salmonella enterica serovar Typhimurium in mice using genetically tagged bacteria. In addition to physiological observations, pathology assessments, and CFU measurements, the study emphasizes quantifying host bottleneck sizes that limit Salmonella colonization and dissemination. The authors also investigate the genetic distances between bacterial populations at various infection sites within the host.

      Initially, the study confirms that pretreatment with the antibiotic streptomycin before inoculation via orogastric gavage increases the bacterial burden in the gastrointestinal (GI) tract, leading to more severe symptoms and heightened fecal shedding of bacteria. This pretreatment also significantly reduces between-animal variation in bacterial burden and fecal shedding. The authors then calculate founding population sizes across different organs, discovering a severe bottleneck in the intestine, with founding populations reduced by approximately 10^6-fold compared to the inoculum size. Streptomycin pretreatment increases the founding population size and bacterial replication in the GI tract. Moreover, by calculating genetic distances between populations, the authors demonstrate that, in untreated mice, Salmonella populations within the GI tract are genetically dissimilar, suggesting limited exchange between colonization sites. In contrast, streptomycin pretreatment reduces genetic distances, indicating increased exchange.

      In extraintestinal organs, the bacterial burden is generally not substantially increased by streptomycin pretreatment, with significant differences observed only in the mesenteric lymph nodes and bile. However, the founding population sizes in these organs are increased. By comparing genetic distances between organs, the authors provide evidence that subpopulations colonizing extraintestinal organs diverge early after infection from those in the GI tract. This hypothesis is further tested by measuring bacterial burden and founding population sizes in the liver and GI tract at 5 and 120 hours post-infection. Additionally, they compare orogastric gavage infection with the less injurious method of infection via drinking, finding similar results for CFUs, founding populations, and genetic distances. These results argue against injuries during gavage as a route of direct infection.

      To bypass bottlenecks associated with the GI tract, the authors compare intravenous (IV) and intraperitoneal (IP) routes of infection. They find approximately a 10-fold increase in bacterial burden and founding population size in immune-rich organs with IV/IP routes compared to orogastric gavage in streptomycin-pretreated animals. This difference is interpreted as a result of "extra steps required to reach systemic organs."

      While IP and IV routes yield similar results in immune-rich organs, IP infections lead to higher bacterial burdens in nearby sites, such as the pancreas, adipose tissue, and intraperitoneal wash, as well as somewhat increased founding population sizes. The authors correlate these findings with the presence of white lesions in adipose tissue. Genetic distance comparisons reveal that, apart from the spleen and liver, IP infections lead to genetically distinct populations in infected organs, whereas IV infections generally result in higher genetic similarity.

      Finally, the authors investigate GI tract reseeding, identifying two distinct routes. They observe that the GI tracts of IP/IV-infected mice are colonized either by a clonal or a diversely tagged bacterial population. In clonally reseeded animals, the genetic distance within the GI tract is very low (often zero) compared to the bile population, which is predominantly clonal or pauciclonal. These animals also display pathological signs, such as cloudy/hardened bile and increased bacterial burden, leading the authors to conclude that the GI tract was reseeded by bacteria from the gallbladder bile. In contrast, animals reseeded by more complex bacterial populations show that bile contributes only a minor fraction of the tags. Given the large founding population size in these animals' GI tracts, which is larger than in orogastrically infected animals, the authors suggest a highly permissive second reseeding route, largely independent of bile. They speculate that this route may involve a reversal of known mechanisms that the pathogen uses to escape from the intestine.

      The manuscript presents a substantial body of work that offers a meticulously detailed understanding of the population dynamics of S. Typhimurium in mice. It quantifies the processes shaping the within-host dynamics of this pathogen and provides new insights into its spread, including previously unrecognized dissemination routes. The methodology is appropriate and carefully executed, and the manuscript is well-written, clearly presented, and concise. The authors' conclusions are well-supported by experimental results and thoroughly discussed. This work underscores the power of using highly diverse barcoded pathogens to uncover the within-host population dynamics of infections and will likely inspire further investigations into the molecular mechanisms underlying the bottlenecks and dissemination routes described here.

    2. Reviewer #2 (Public review):

      In this paper, Hotinger et. al. propose an improved barcoded library system, called STAMPR, to study Salmonella population dynamics during infection. Using this system, the authors demonstrate significant diversity in the colonization of different Salmonella clones (defined by the presence of different barcodes) not only across different organs (liver, spleen, adipose tissues, pancreas and gall bladder) but also within different compartments of the same gastrointestinal tissue. Additionally, this system revealed that microbiota competition is the major bottleneck in Salmonella intestinal colonization, which can be mitigated by streptomycin treatment. However, this has been demonstrated previously in numerous publications. They also show that there was minimal sharing between populations found in the intestine and those in the other organs. Upon IV and IP infection to bypass the intestinal bottleneck, they were able to demonstrate, using this library, that Salmonella can renter the intestine through two possible routes. One route is essentially the reverse path used to escape the gut, leading to a diverse intestinal population; while the other, through the bile, typically results in a clonal population.

      Comments on latest version:

      The authors have addressed my concerns.

    1. Reviewer #1 (Public review):

      This is an interesting manuscript where the authors systematically measure rG4 levels in brain samples at different ages of patients affected by AD. To the best of my knowledge this is the first time that BG4 staining is used in this context and the authors provide compelling evidence to show an association with BG4 staining and age or AD progression, which interestingly indicates that such RNA structure might play a role in regulating protein homeostasis as previously speculated. The methods used and the results reported seems robust and reproducible.

    2. Reviewer #2 (Public review):

      RNA guanine-rich G-quadruplexes (rG4s) are non-canonical higher order nucleic acid structures that can form under physiological conditions. Interestingly, cellular stress is positively correlated with rG4 induction.

      In this study, the authors examined human hippocampal postmortem tissue for the formation ofrG4s in aging and Alzheimer Disease (AD). rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. 21 cases were used in this study (age range 30-92).

      This immunostaining co-localized with hyper-phosphorylated tau immunostaining in neurons. The BG4 staining levels were also impacted by APOE status. rG4 structure was previously found to drive tau aggregation. Based on these observations, the authors propose a model of neurodegeneration in which chronic rG4 formation drives proteostasis collapse.

      This model is interesting, and would explain different observations (e.g., RNA is present in AD aggregates and rG4s can enhance protein oligomerization and tau aggregation).

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript investigates lipid scrambling mechanisms across TMEM16 family members using coarse-grained molecular dynamics (MD) simulations. While the study presents a statistically rigorous analysis of lipid scrambling events across multiple structures and conformations, several critical issues undermine its novelty, impact, and alignment with experimental observations.

      Critical issues:

      (1) Lack of Novelty:<br /> The phenomenon of lipid scrambling via an open hydrophilic groove is already well-established in the literature, including through atomistic MD simulations. The authors themselves acknowledge this fact in their introduction and discussion. By employing coarse-grained simulations, the study essentially reiterates previously known findings with limited additional mechanistic insight. The repeated observation of scrambling occurring predominantly via the groove does not offer significant advancement beyond prior work.

      (2) Redundancy Across Systems:<br /> The manuscript explores multiple TMEM16 family members in activating and non-activating conformations, but the conclusions remain largely confirmatory. The extensive dataset generated through coarse-grained MD simulations primarily reinforces established mechanistic models rather than uncovering fundamentally new insights. The effort, while statistically robust, feels excessive given the incremental nature of the findings.

      (3) Discrepancy with Experimental Observations:<br /> The use of coarse-grained simulations introduces inherent limitations in accurately representing lipid scrambling dynamics at the atomistic level. Experimental studies have highlighted nuances in lipid permeation that are not fully captured by coarse-grained models. This discrepancy raises questions about the biological relevance of the reported scrambling events, especially those occurring outside the canonical groove.

      (4) Alternative Scrambling Sites:<br /> The manuscript reports scrambling events at the dimer-dimer interface as a novel mechanism. While this observation is intriguing, it is not explored in sufficient detail to establish its functional significance. Furthermore, the low frequency of these events (relative to groove-mediated scrambling) suggests they may be artifacts of the simulation model rather than biologically meaningful pathways.

      Conclusion:

      Overall, while the study is technically sound and presents a large dataset of lipid scrambling events across multiple TMEM16 structures, it falls short in terms of novelty and mechanistic advancement. The findings are largely confirmatory and do not bridge the gap between coarse-grained simulations and experimental observations. Future efforts should focus on resolving these limitations, possibly through atomistic simulations or experimental validation of the alternative scrambling pathways.

    2. Reviewer #2 (Public review):

      Summary:

      Stephens et al. present a comprehensive study of TMEM16-members via coarse-grained MD simulations (CGMD). They particularly focus on the scramblase ability of these proteins and aim to characterize the "energetics of scrambling". Through their simulations, the authors interestingly relate protein conformational states to the membrane's thickness and link those to the scrambling ability of TMEM members, measured as the trespassing tendency of lipids across leaflets. They validate their simulation with a direct qualitative comparison with Cryo-EM maps.

      Strengths:

      The study demonstrates an efficient use of CGMD simulations to explore lipid scrambling across various TMEM16 family members. By leveraging this approach, the authors are able to bypass some of the sampling limitations inherent in all-atom simulations, providing a more comprehensive and high-throughput analysis of lipid scrambling. Their comparison of different protein conformations, including open and closed groove states, presents a detailed exploration of how structural features influence scrambling activity, adding significant value to the field. A key contribution of this study is the finding that groove dilation plays a central role in lipid scrambling. The authors observe that for scrambling-competent TMEM16 structures, there is substantial membrane thinning and groove widening. The open Ca2+-bound nhTMEM16 structure (PDB ID 4WIS) was identified as the fastest scrambler in their simulations, with scrambling rates as high as 24.4 {plus minus} 5.2 events per μs. This structure also shows significant membrane thinning (up to 18 Å), which supports the hypothesis that groove dilation lowers the energetic barrier for lipid translocation, facilitating scrambling.

      The study also establishes a correlation between structural features and scrambling competence, though analyses often lack statistical robustness and quantitative comparisons. The simulations differentiate between open and closed conformations of TMEM16 structures, with open-groove structures exhibiting increased scrambling activity, while closed-groove structures do not. This finding aligns with previous research suggesting that the structural dynamics of the groove are critical for scrambling. Furthermore, the authors explore how the physical dimensions of the groove qualitatively correlate with observed scrambling rates. For example, TMEM16K induces increased membrane thinning in its open form, suggesting that membrane properties, along with structural features, play a role in modulating scrambling activity.

      Another significant finding is the concept of "out-of-the-groove" scrambling, where lipid translocation occurs outside the protein's groove. This observation introduces the possibility of alternate scrambling mechanisms that do not follow the traditional "credit-card model" of groove-mediated lipid scrambling. In their simulations, the authors note that these out-of-the-groove events predominantly occur at the dimer interface between TM3 and TM10, especially in mammalian TMEM16 structures. While these events were not observed in fungal TMEM16s, they may provide insight into Ca2+-independent scrambling mechanisms, as they do not require groove opening.

      Weaknesses:

      A significant challenge of the study is the discrepancy between the scrambling rates observed in CGMD simulations and those reported experimentally. Despite the authors' claim that the rates are in line experimentally, the observed differences can mean large energetic discrepancies in describing scrambling (larger than 1kT barrier in reality). For instance, the authors report scrambling rates of 10.7 events per μs for TMEM16F and 24.4 events per μs for nhTMEM16, which are several orders of magnitude faster than experimental rates. While the authors suggest that this discrepancy could be due to the Martini 3 force field's faster diffusion dynamics, this explanation does not fully account for the large difference in rates. A more thorough discussion on how the choice of force field and simulation parameters influence the results, and how these discrepancies can be reconciled with experimental data, would strengthen the conclusions. Likewise, rate calculations in the study are based on 10 μs simulations, while experimental scrambling rates occur over seconds. This timescale discrepancy limits the study's accuracy, as the simulations may not capture rare or slow scrambling events that are observed experimentally and therefore might underestimate the kinetics of scrambling. It's however important to recognize that it's hard (borderline unachievable) to pinpoint reasonable kinetics for systems like this using the currently available computational power and force field accuracy. The faster diffusion in simulations may lead to overestimated scrambling rates, making the simulation results less comparable to real-world observations. Thus, I would therefore read the findings qualitatively rather than quantitatively. An interesting observation is the asymmetry observed in the scrambling rates of the two monomers. Since MARTINI is known to be limited in correctly sampling protein dynamics, the authors - in order to preserve the fold - have applied a strong (500 kJ mol-1 nm-2) elastic network. However, I am wondering how the ENM applies across the dimer and if any asymmetry can be noticed in the application of restraints for each monomer and at the dimer interface. How can this have potentially biased the asymmetry in the scrambling rates observed between the monomers? Is this artificially obtained from restraining the initial structure, or is the asymmetry somehow gatekeeping the scrambling mechanism to occur majorly across a single monomer? Answering this question would have far-reaching implications to better describe the mechanism of scrambling.

      Notably, the manuscript does not explore the impact of membrane composition on scrambling rates. While the authors use a specific lipid composition (DOPC) in their simulations, they acknowledge that membrane composition can influence scrambling activity. However, the study does not explore how different lipids or membrane environments or varying membrane curvature and tension, could alter scrambling behaviour. I appreciate that this might have been beyond the scope of this particular paper and the authors plan to further chase these questions, as this work sets a strong protocol for this study. Contextualizing scrambling in the context of membrane composition is particularly relevant since the authors note that TMEM16K's scrambling rate increases tenfold in thinner membranes, suggesting that lipid-specific or membrane-thickness-dependent effects could play a role.

    3. Reviewer #3 (Public review):

      Summary:

      The paper investigates the TMEM16 family of membrane proteins, which play roles in lipid scrambling and ion transport. A total of 27 experimental structures from five TMEM16 family members were analyzed, including mammalian and fungal homologs (e.g., TMEM16A, TMEM16F, TMEM16K, nhTMEM16, afTMEM16). The identified structures were in both Ca²⁺-bound (open) and Ca²⁺-free (closed) states to compare conformations and were preprocessed (e.g., modeling missing loops) and equilibrated. Coarse-grain simulations were performed in DOPC membranes for 10 microseconds to capture the scrambling events. These events were identified by tracking lipids transitioning between the two membrane leaflets and they analysed the correlation between scrambling rates, in addition, structural properties such as groove dilation and membrane thinning were calculated. They report 700 scrambling events across structures and Figure 2 elaborates on how open structures show higher activity, also as expected. The authors also address how structures may require open grooves, this and other mechanisms around scrambling are a bit controversial in the field.

      Strengths:

      The strength of this study emerges from a comparative analysis of multiple structural starting points and understanding global/local motions of the protein with respect to lipid movement. Although the protein is well-studied, both experimentally and computationally, the understanding of conformational events in different family members, especially membrane thickness less compared to fungal scramblases offers good insights.

      Weaknesses:

      The weakness of the work is to fully reconcile with experimental evidence of Ca²⁺-independent scrambling rates observed in prior studies, but this part is also challenging using coarse-grain molecular simulations. Previous reports have identified lipid crossing, packing defects, and other associated events, so it is difficult to place this paper in that context. However, the absence of validation leaves certain claims, like alternative scrambling pathways, speculative.

    1. Reviewer #1 (Public review):

      This experiment sought to determine what effect congenital/early-onset hearing loss (and associated delay in language onset) has on the degree of inter-individual variability in functional connectivity to the auditory cortex. Looking at differences in variability rather than group differences in mean connectivity itself represents an interesting addition to the existing literature. The sample of deaf individuals was large, and quite homogeneous in terms of age of hearing loss onset, which are considerable strengths of the work. The experiment appears well conducted and the results are certainly of interest.

      Comment from Reviewing Editor: In the revised manuscript, the authors have addressed all concerns previously identified by reviewer 1.

    2. Reviewer #3 (Public review):

      Summary:

      This study focuses on changes in brain organization associated with congenital deafness. The authors investigate differences in functional connectivity (FC) and differences in the variability of FC. By comparing congenitally deaf individuals to individuals with normal hearing, and by further separating congenitally deaf individuals into groups of early and late signers, the authors can distinguish between changes in FC due to auditory deprivation and changes in FC due to late language acquisition. They find larger FC variability in deaf than normal-hearing individuals in temporal, frontal, parietal, and midline brain structures, and that FC variability is largely driven by auditory deprivation. They suggest that the regions that show a greater FC difference between groups also show greater FC variability.

      Strengths:

      The manuscript is well-written, and the methods are clearly described and appropriate. Including the three different groups enables the critical contrasts distinguishing between different causes of FC variability changes. The results are interesting and novel.

      Weaknesses:

      Analyses were conducted for task-based data rather than resting-state data. The authors report behavioral differences between groups and include behavioral performance as a nuisance regressor in their analysis. This is a good approach to account for behavioral task differences, given the data. Nevertheless, additional work using resting-state functional connectivity could remove the potential confound fully.

      Comment from Reviewing Editor: In the revised manuscript, the authors have addressed all concerns previously identified by reviewer 3, and the eLife assessment statement reflects the point by reviewer 3 that using resting-state functional connectivity in the future could further strengthen the results.

    1. Reviewer #1 (Public review):

      The study aimed to investigate the significant impact of criterion placement on the validity of neural measures of consciousness, examining how different standards for classifying a stimulus as 'seen' or 'unseen' can influence the interpretation of neural data. They conducted simulations and EEG experiments to demonstrate that the Perceptual Awareness Scale, a widely used tool in consciousness research, may not effectively mitigate criterion-related confounds, suggesting that even with the PAS, neural measures can be compromised by how criteria are set. Their study challenged existing paradigms by showing that the construct validity of neural measures of conscious and unconscious processing is threatened by criterion placement, and they provided practical recommendations for improving experimental designs in the field. The authors' work contributes to a deeper understanding of the nature of conscious and unconscious processing and addresses methodological concerns by exploring the pervasive influence of criterion placement on neural measures of consciousness and discussing alternative paradigms that might offer solutions to the criterion problem.

      The study effectively demonstrates that the placement of criteria for determining whether a stimulus is 'seen' or 'unseen' significantly impacts the validity of neural measures of consciousness. The authors found that conservative criteria tend to inflate effect sizes, while liberal criteria reduce them, leading to potentially misleading conclusions about conscious and unconscious processing. The authors employed robust simulations and EEG experiments to demonstrate the effects of criterion placement, ensuring that the findings are well-supported by empirical evidence. The results from both experiments confirm the predicted confounding effects of criterion placement on neural measures of unconscious and conscious processing.

      The results are consistent with their hypotheses and contribute meaningfully to the field of consciousness research.

    2. Reviewer #2 (Public review):

      Summary:

      The study investigates the potential influence of the response criterion on neural decoding accuracy in consciousness and unconsciousness, utilizing either simulated data or reanalyzing experimental data with post-hoc sorting data.

      Strengths:

      When comparing the neural decoding performance of Target versus NonTarget with or without post-hoc sorting based on subject reports, it is evident that response criterion can influence the results. This was observed in simulated data as well as in two experiments that manipulated subject response criterion to be either more liberal or more conservative. One experiment involved a two-level response (seen vs unseen), while the other included a more detailed four-level response (ranging from 0 for no experience to 3 for a clear experience). The findings consistently indicated that adopting a more conservative response criterion could enhance neural decoding performance, whether in conscious or unconscious states, depending on the sensitivity or overall response threshold.

      Weaknesses:

      (1) In the realm of research methodology, conducting post-hoc sorting based on subject reports raises an issue. This operation leads to an imbalance in the number of trials between the two conditions (Target and NonTarget) during the decoding process. Such trial number disparity introduces bias during decoding, likely contributing to fluctuations in neural decoding performance. This potential confounding factor significantly impacts the interpretation of research findings. The trial number imbalance may cause models to exhibit a bias towards the category with more trials during the learning process, leading to misjudgments of neural signal differences between the two conditions and failing to accurately reflect the distinctions in brain neural activity between target and non-target states. Therefore, it is recommended that the authors extensively discuss this confounding factor in their paper. They should analyze in detail how this factor could influence the interpretation of results, such as potentially exaggerating or diminishing certain effects, and whether measures are necessary to correct the bias induced by this imbalance to ensure the reliability and validity of the research conclusions.

    3. Reviewer #3 (Public review):

      Summary:

      Fahrenfort et al. investigate how liberal or conservative criterion placement in a detection task affects the construct validity of neural measures of unconscious cognition and conscious processing. Participants identified instances of "seen" or "unseen" in a detection task, a method known as post hoc sorting. Simulation data convincingly demonstrate that, counterintuitively, a conservative criterion inflates effect sizes of neural measures compared to a liberal criterion. While the impact of criterion shifts on effect size is suggested by signal detection theory, this study is the first to address this explicitly within the consciousness literature. Decoding analysis of data from two EEG experiments further shows that different criteria lead to differential effects on classifier performance in post hoc sorting. The findings underscore the pervasive influence of experimental design and participant reports on neural measures of consciousness, revealing that criterion placement poses a critical challenge for researchers.

      Strengths and Weaknesses

      One of the strengths of this study is the inclusion of the Perceptual Awareness Scale (PAS), which allows participants to provide more nuanced responses regarding their perceptual experiences. This approach ensures that responses at the lowest awareness level (selection 0) are made only when trials are genuinely unseen. This methodological choice is important as it helps prevent the overestimation of unconscious processing, enhancing the validity of the findings.<br /> The authors also do a commendable job in the discussion by addressing alternative paradigms, such as wagering paradigms, as a possible remedy to the criterion problem (Peters & Lau, 2015; Dienes & Seth, 2010). Their consideration of these alternatives provides a balanced view and strengthens the overall discussion.

      Our initial review identified a lack of measures of variance as one potential weakness of this work. However we agree with the authors' response that plotting individual datapoints for each condition is indeed a good visualization of variance within a dataset.

      Impact of the Work:

      This study effectively demonstrates a phenomenon that, while understood within the context of signal detection theory, has been largely unexplored within the consciousness literature. Subjective measures may not reliably capture the construct they aim to measure due to criterion confounds. Future research on neural measures of consciousness should account for this issue, and no-report measures may be necessary until the criterion problem is resolved.

    1. Reviewer #1 (Public review):

      Summary:

      Tubert C. et al. investigated the role of dopamine D5 receptors (D5R) and their downstream potassium channel, Kv1, in the striatal cholinergic neuron pause response induced by thalamic excitatory input. Using slice electrophysiological analysis combined with pharmacological approaches, the authors tested which receptors and channels contribute to the cholinergic interneuron pause response in both control and dyskinetic mice (in the L-DOPA off state). They found that activation of Kv1 was necessary for the pause response, while activation of D5R blocked the pause response in control mice. Furthermore, in the L-DOPA off state of dyskinetic mice, the absence of the pause response was restored by the application of clozapine. The authors claimed that 1) the D5R-Kv1 pathway contributes to the cholinergic interneuron pause response in a phasic dopamine concentration-dependent manner, and 2) clozapine inhibits D5R in the L-DOPA off state, which restores the pause response.

      Strengths

      The electrophysiological and pharmacological approaches used in this study are powerful tools for testing channel properties and functions. The authors' group has well-established these methodologies and analysis pipelines. Indeed, the data presented were robust and reliable.

      Weaknesses:

      Although the paper has strengths in its methodological approaches, there is a significant gap between the presented data and the authors' claims.

      The authors answered the most of concerns I raised. However, the critical issue remains unresolved.

      I am still not convinced by the results presented in Fig. 6 and their interpretation. Since Clozapine acts as an agonist in the absence of an endogenous agonist, it may stimulate the D5R-cAMP-Kv1 pathway. Stimulation of this pathway should abolish the pause response mediated by thalamic stimulation in SCINs, rather than restoring the pause response. Clarification is needed regarding how Clozapine reduces D5R-ligand-independent activity in the absence of dopamine (the endogenous agonist). In addition, the author's argued that D5R antagonist does not work in the absence of dopamine, therefore solely D5R antagonist didn't restore the pause response. However, if D5R-cAMP-Kv1 pathway is already active in L-DOPA off state, why D5R antagonist didn't contribute to inhibition of D5R pathway?<br /> Since Clozapine is not D5 specific and Clozapine experiments were not concrete, I recommend testing whether other receptors, such as the D2 receptor, contribute to the Clozapine-induced pause response in the L-DOPA-off state.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Tubert et al. presents the role of D5 receptors (D5R) in regulating the striatal cholinergic interneuron (CIN) pause response through D5R-cAMP-Kv1 inhibitory signaling. Their findings provide a compelling model explaining the "on/off" switch of the CIN pause, driven by the distinct dopamine affinities of D2R and D5R. This mechanism, coupled with varying dopamine states, is likely critical for modulating synaptic plasticity in cortico-striatal circuits during motor learning and execution. Furthermore, the study bridges their previous finding of CIN hyperexcitability (Paz et al., Movement Disorder 2022) with the loss of the pause response in LID mice and demonstrates the restore of the pause through D1/D5 inverse agonism.

      Strengths:

      The study presents solid findings, and the writing is logically structured and easy to follow. The experiments are well-designed, properly combining ex vivo electrophysiology recording, optogenetics, and pharmacological treatment to dissect / rule out most, if not all, alternative mechanisms in their model.

      Weaknesses:

      While the manuscript is overall satisfying, one conceptual gap needs to be further addressed or discussed: the potential "imbalance" between D2R and D5R signaling due to the ligand-independent activity of D5R in LID. Given that D2R and D5R oppositely regulate CIN pause responses through cAMP signaling, investigating the role of D2R under LID off L-DOPA (e.g., by applying D2 agonists or antagonists, even together with intracellular cAMP analogs or inhibitors) could provide critical insights. Addressing this aspect would strengthen the manuscript in understanding CIN pause loss under pathological conditions.

    3. Reviewer #3 (Public review):

      Summary:

      Tubert et al. investigate the mechanisms underlying the pause response in striatal cholinergic interneurons (SCINs). The authors demonstrate that optogenetic activation of thalamic axons in the striatum induces burst activity in SCINs, followed by a brief pause in firing. They show that the duration of this pause correlates with the number of elicited action potentials, suggesting a burst-dependent pause mechanism. The authors demonstrated this burst-dependent pause relied on Kv1 channels. The pause is blocked by a SKF81297 and partially by sulpiride and mecamylamine, implicating D1/D5 receptor involvement. The study also shows that the ZD7288 does not reduce the duration of the pause, and that lesioning dopamine neurons abolishes this response, which can be restored by clozapine.

      Weaknesses:

      While this study presents an interesting mechanism for SCIN pausing after burst activity, there are several major concerns that should be addressed:

      (1) Scope of the Mechanism: It is important to clarify that the proposed mechanism may apply specifically to the pause in SCINs following burst activity. The manuscript does not provide clear evidence that this mechanism contributes to the pause response observed in behavioral animals. While the thalamus is crucial for SCIN pauses in behavioral contexts, the exact mechanism remains unclear. Activating thalamic input triggers burst activity in SCINs, leading to a subsequent pause, but this mechanism may not be generalizable across different scenarios. For instance, approximately half of TANs do not exhibit initial excitation but still pause during behavior, suggesting that the burst-dependent pause mechanism is unlikely to explain this phenomenon. Furthermore, in behavioral animals, the duration of the pause seems consistent, whereas the proposed mechanism suggests it depends on the prior burst, which is not aligned with in vivo observations. Additionally, many in vivo recordings show that the pause response is a reduction in firing rate, not complete silence, which the mechanism described here does not explain. Please address these in the manuscript.

      (2) Terminology: The use of "pause response" throughout the manuscript is misleading. The pause induced by thalamic input in brain slices is distinct from the pause observed in behavioral animals. Given the lack of a clear link between these two phenomena in the manuscript, it is essential to use more precise terminology throughout, including in the title, bullet points, and body of the manuscript.

      (3) Kv1 Blocker Specificity: It is unclear how the authors ruled out the possibility that the Kv1 blocker did not act directly on SCINs. Could there be an indirect effect contributing to the burst-dependent pause? Clarification on this point would strengthen the interpretation of the results.

      (4) Role of D1 Receptors: While it is well-established that activating thalamic input to SCINs triggers dopamine release, contributing to SCIN pausing (as shown in Figure 3), it would be helpful to assess the extent to which D1 receptors contribute to this burst-dependent pause. This could be achieved by applying the D1 agonist SKF81297 after blocking nAChRs and D2 receptors.

      (5) Clozapine's Mechanism of Action: The restoration of the burst-dependent pause by clozapine following dopamine neuron lesioning is interesting, but clozapine acts on multiple receptors beyond D1 and D5. Although it may be challenging to find a specific D5 antagonist or inverse agonist, it would be more accurate to state that clozapine restores the burst-dependent pause without conclusively attributing this effect to D5 receptors.

      Comments on revisions:

      The authors have addressed many of my concerns. However, I remain unconvinced that adding an 'ex vivo' experiment fully resolves the fundamental differences between the burst-dependent pause observed in slices - defined by the duration of a single AHP - and the pause response in CHINs observed in vivo, which may involve contributions from more than one prolonged AHP. In vivo, neurons can still fire action potentials during the pause, albeit at a lower frequency. Moreover, in behaving animals, pause duration does not vary with or without initial excitation. The mechanism proposed demonstrates that the pause duration, defined by the length of a single AHP, is positively correlated with preceding burst activity.

      To improve clarity, I recommend using the term 'SCIN pause' to describe the ex vivo findings, distinguishing them more explicitly from the 'pause response' observed in behaving animals. This distinction would help contextualize the ex vivo findings as potentially contributing to, but not fully representing, the pause response in vivo.

      Again, it would be helpful to present raw data for pause durations rather than relying solely on ratios. This approach would provide the audience with a clearer understanding of the absolute duration of the burst-dependent pause and allow for better comparison to the ~200 ms pause observed in behaving animals.

    1. Reviewer #2 (Public review):

      Summary:

      Cell intrinsic signaling pathways controlling the function of macrophages in inflammatory processes, including in response to infection, injury or in the resolution of inflammation are incompletely understood. In this study, Rosell et al. investigate the contribution of RAS-p110α signaling to macrophage activity. p110α is a ubiquitously expressed catalytic subunit of PI3K with previously described roles in multiple biological processes including in epithelial cell growth and survival, and carcinogenesis. While previous studies have already suggested a role for RAS-p110α signaling in macrophage function, the cell intrinsic impact of disrupting the interaction between RAS and p110α in this central myeloid cell subset is not known.

      Strengths:

      Exploiting a sound previously described genetically engineered mouse model that allows tamoxifen-inducible disruption of the RAS-p110α pathway and using different readouts of macrophage activity in vitro and in vivo, the authors provide data consistent with their conclusion that alteration in RAS-p110α signaling impairs various but selective aspects of macrophage function in a cell-intrinsic manner.

      Weaknesses:

      My main concern is that for various readouts, the difference between wild-type and mutant macrophages in vitro or between wild-type and Pik3caRBD mice in vivo is modest, even if statistically significant. To further substantiate the extent of macrophage function alteration upon disruption of RAS-p110α signaling and its impact on the initiation and resolution of inflammatory responses, the manuscript would benefit from a more extensive assessment of macrophage activity and inflammatory responses in vivo.

      In the in vivo model, all cells have disrupted RAS-p100α signaling, not only macrophages. Given that other myeloid cells besides macrophages contribute to the orchestration of inflammatory responses, it remains unclear whether the phenotype described in vivo results from impaired RAS-p100α signaling within macrophages or from defects in other haematopoietic cells such as neutrophils, dendritic cells, etc.

      Inclusion of information on the absolute number of macrophages, and total immune cells (e.g. for the spleen analysis) would help determine if the reduced frequency of macrophages represents an actual difference in their total number or rather reflects a relative decrease due to an increase in the number of other/s immune cell/s.

      Comments on revisions:

      I thank the authors for addressing my comments.<br /> - I believe that additional in vivo experiments, or the inclusion of controls for the specificity of the inhibitor, which the authors argue are beyond the scope of the current study, are essential to address the weaknesses and limitations stated in my current evaluation.<br /> - While the neutrophil depletion suggests neutrophils are not required for the phenotype, there are multiple other myeloid cells, in addition to macrophages, that could be contributing or accounting for the in vivo phenotype observed in the mutant strain (not macrophage specific).<br /> - Inclusion of absolute cell numbers (in addition to the %) is essential. I do not understand why the authors are not including these data. Have they not counted the cells?<br /> - Lastly, inclusion of representatives staining and gating strategies for all immune profiling measurements carried out by flow cytometry is important. This point has not been addressed, not even in writing.

    1. Reviewer #1 (Public review):

      Summary:

      The authors sought to identify unknown factors involved in the repair of uracil in DNA through a CRISPR knockout screen.

      Strengths:

      The screen identified both known and unknown proteins involved in DNA repair resulting from uracil or modified uracil base incorporation into DNA. The conclusion is that the protein activity of METTL3, which converts A nucleotides to 6mA nucleotides, plays a role in the DNA damage/repair response. The importance of METTL3 in DNA repair, and its colocalization with a known DNA repair enzyme, UNG2, is well characterized.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluoro-uracil into DNA, and identified unexpected factors, such as the RNA m6A methyltransferase METTL3, as required to overcome floxuridine-driven cytotoxicity in mammalian cells. Interestingly, the observed N6-methyladenosine was embedded in DNA, which has been reported as DNA 6mA in mammalian genomes and is currently confirmed with mass spectrometry in this model. Therefore, this work consolidated the functional role of mammalian genomic DNA 6mA, and supported with solid evidence to uncover the METTL3-6mA-UNG2 axis in response to DNA base damage.

      Strengths:

      In this work, the authors took an unbiased, genome-wide CRISPR approach to identify novel factors involved in uracil repair with potential clinical interest.

      The authors designed elegant experiments to confirm the METTL3 works through genomic DNA, adding the methylation into DNA (6mA) but not the RNA (m6A), in this base damage repair context. The authors employ different enzymes, such as RNase A, RNase H, DNase, and liquid chromatography coupled to tandem mass spectrometry to validate that METTL3 deposits 6mA in DNA in response to agents that increase genomic uracil.

      They also have the Mettl3-KO and the METTL3 inhibition results to support their conclusion.

      Weaknesses:

      The authors used the METTL3 inhibitor and Mettl3-KO to validate the METTL3-6mA-UNG2 functional roles. While not an outright weakness, rescue experiments of the KO line with wild type and the METTL3 catalytic mutant would have further strengthened the evidence.

    1. Reviewer #1 (Public review):

      This paper describes a number of patterns of epistasis in a large fitness landscape dataset recently published by Papkou et al. The paper is motivated by an important goal in the field of evolutionary biology to understand the statistical structure of epistasis in protein fitness landscapes, and it capitalizes on the unique opportunities presented by this new dataset to address this problem.

      The paper reports some interesting previously unobserved patterns that may have implications for our understanding of fitness landscapes and protein evolution. In particular, Figure 5 is very intriguing. However, I have two major concerns detailed below. First, I found the paper rather descriptive (it makes little attempt to gain deeper insights into the origins of the observed patterns) and unfocused (it reports what appears to be a disjointed collection of various statistics without a clear narrative. Second, I have concerns with the statistical rigor of the work.

      (1) I think Figures 5 and 7 are the main, most interesting, and novel results of the paper. However, I don't think that the statement "Only a small fraction of mutations exhibit global epistasis" accurately describes what we see in Figure 5. To me, the most striking feature of this figure is that the effects of most mutations at all sites appear to be a mixture of three patterns. The most interesting pattern noted by the authors is of course the "strong" global epistasis, i.e., when the effect of a mutation is highly negatively correlated with the fitness of the background genotype. The second pattern is a "weak" global epistasis, where the correlation with background fitness is much weaker or non-existent. The third pattern is the vertically spread-out cluster at low-fitness backgrounds, i.e., a mutation has a wide range of mostly positive effects that are clearly not correlated with fitness. What is very interesting to me is that all background genotypes fall into these three groups with respect to almost every mutation, but the proportions of the three groups are different for different mutations. In contrast to the authors' statement, it seems to me that almost all mutations display strong global epistasis in at least a subset of backgrounds. A clear example is C>A mutation at site 3.

      1a. I think the authors ought to try to dissect these patterns and investigate them separately rather than lumping them all together and declaring that global epistasis is rare. For example, I would like to know whether those backgrounds in which mutations exhibit strong global epistasis are the same for all mutations or whether they are mutation- or perhaps position-specific. Both answers could be potentially very interesting, either pointing to some specific site-site interactions or, alternatively, suggesting that the statistical patterns are conserved despite variation in the underlying interactions.

      1b. Another rather remarkable feature of this plot is that the slopes of the strong global epistasis patterns seem to be very similar across mutations. Is this the case? Is there anything special about this slope? For example, does this slope simply reflect the fact that a given mutation becomes essentially lethal (i.e., produces the same minimal fitness) in a certain set of background genotypes?

      1c. Finally, how consistent are these patterns with some null expectations? Specifically, would one expect the same distribution of global epistasis slopes on an uncorrelated landscape? Are the pivot points unusually clustered relative to an expectation on an uncorrelated landscape?

      1d. The shapes of the DFE shown in Figure 7 are also quite interesting, particularly the bimodal nature of the DFE in high-fitness (HF) backgrounds. I think this bimodality must be a reflection of the clustering of mutation-background combinations mentioned above. I think the authors ought to draw this connection explicitly. Do all HF backgrounds have a bimodal DFE? What mutations occupy the "moving" peak?

      1e. In several figures, the authors compare the patterns for HF and low-fitness (LF) genotypes. In some cases, there are some stark differences between these two groups, most notably in the shape of the DFE (Figure 7B, C). But there is no discussion about what could underlie these differences. Why are the statistics of epistasis different for HF and LF genotypes? Can the authors at least speculate about possible reasons? Why do HF and LF genotypes have qualitatively different DFEs? I actually don't quite understand why the transition between bimodal DFE in Figure 7B and unimodal DFE in Figure 7C is so abrupt. Is there something biologically special about the threshold that separates LF and HF genotypes? My understanding was that this was just a statistical cutoff. Perhaps the authors can plot the DFEs for all backgrounds on the same plot and just draw a line that separates HF and LF backgrounds so that the reader can better see whether the DFE shape changes gradually or abruptly.

      1f. The analysis of the synonymous mutations is also interesting. However I think a few additional analyses are necessary to clarify what is happening here. I would like to know the extent to which synonymous mutations are more often neutral compared to non-synonymous ones. Then, synonymous pairs interact in the same way as non-synonymous pair (i.e., plot Figure 1 for synonymous pairs)? Do synonymous or non-synonymous mutations that are neutral exhibit less epistasis than non-neutral ones? Finally, do non-synonymous mutations alter epistasis among other mutations more often than synonymous mutations do? What about synonymous-neutral versus synonymous-non-neutral. Basically, I'd like to understand the extent to which a mutation that is neutral in a given background is more or less likely to alter epistasis between other mutations than a non-neutral mutation in the same background.

      (2) I have two related methodological concerns. First, in several analyses, the authors employ thresholds that appear to be arbitrary. And second, I did not see any account of measurement errors. For example, the authors chose the 0.05 threshold to distinguish between epistasis and no epistasis, but why this particular threshold was chosen is not justified. Another example: is whether the product s12 × (s1 + s2) is greater or smaller than zero for any given mutation is uncertain due to measurement errors. Presumably, how to classify each pair of mutations should depend on the precision with which the fitness of mutants is measured. These thresholds could well be different across mutants. We know, for example, that low-fitness mutants typically have noisier fitness estimates than high-fitness mutants. I think the authors should use a statistically rigorous procedure to categorize mutations and their epistatic interactions. I think it is very important to address this issue. I got very concerned about it when I saw on LL 383-388 that synonymous stop codon mutations appear to modulate epistasis among other mutations. This seems very strange to me and makes me quite worried that this is a result of noise in LF genotypes.

    2. Reviewer #2 (Public review):

      Significance:

      This paper reanalyzes an experimental fitness landscape generated by Papkou et al., who assayed the fitness of all possible combinations of 4 nucleotide states at 9 sites in the E. coli DHFR gene, which confers antibiotic resistance. The 9 nucleotide sites make up 3 amino acid sites in the protein, of which one was shown to be the primary determinant of fitness by Papkou et al. This paper sought to assess whether pairwise epistatic interactions differ among genetic backgrounds at other sites and whether there are major patterns in any such differences. They use a "double mutant cycle" approach to quantify pairwise epistasis, where the epistatic interaction between two mutations is the difference between the measured fitness of the double-mutant and its predicted fitness in the absence of epistasis (which equals the sum of individual effects of each mutation observed in the single mutants relative to the reference genotype). The paper claims that epistasis is "fluid," because pairwise epistatic effects often differs depending on the genetic state at the other site. It also claims that this fluidity is "binary," because pairwise effects depend strongly on the state at nucleotide positions 5 and 6 but weakly on those at other sites. Finally, they compare the distribution of fitness effects (DFE) of single mutations for starting genotypes with similar fitness and find that despite the apparent "fluidity" of interactions this distribution is well-predicted by the fitness of the starting genotype.

      The paper addresses an important question for genetics and evolution: how complex and unpredictable are the effects and interactions among mutations in a protein? Epistasis can make the phenotype hard to predict from the genotype and also affect the evolutionary navigability of a genotype landscape. Whether pairwise epistatic interactions depend on genetic background - that is, whether there are important high-order interactions -- is important because interactions of order greater than pairwise would make phenotypes especially idiosyncratic and difficult to predict from the genotype (or by extrapolating from experimentally measured phenotypes of genotypes randomly sampled from the huge space of possible genotypes). Another interesting question is the sparsity of such high-order interactions: if they exist but mostly depend on a small number of identifiable sequence sites in the background, then this would drastically reduce the complexity and idiosyncrasy relative to a landscape on which "fluidity" involves interactions among groups of all sites in the protein. A number of papers in the recent literature have addressed the topics of high-order epistasis and sparsity and have come to conflicting conclusions. This paper contributes to that body of literature with a case study of one published experimental dataset of high quality. The findings are therefore potentially significant if convincingly supported.

      Validity:

      In my judgment, the major conclusions of this paper are not well supported by the data. There are three major problems with the analysis.

      (1) Lack of statistical tests. The authors conclude that pairwise interactions differ among backgrounds, but no statistical analysis is provided to establish that the observed differences are statistically significant, rather than being attributable to error and noise in the assay measurements. It has been established previously that the methods the authors use to estimate high-order interactions can result in inflated inferences of epistasis because of the propagation of measurement noise (see PMID 31527666 and 39261454). Error propagation can be extreme because first-order mutation effects are calculated as the difference between the measured phenotype of a single-mutant variant and the reference genotype; pairwise effects are then calculated as the difference between the measured phenotype of a double mutant and the sum of the differences described above for the single mutants. This paper claims fluidity when this latter difference itself differs when assessed in two different backgrounds. At each step of these calculations, measurement noise propagates. Because no statistical analysis is provided to evaluate whether these observed differences are greater than expected because of propagated error, the paper has not convincingly established or quantified "fluidity" in epistatic effects.

      (2) Arbitrary cutoffs. Many of the analyses involve assigning pairwise interactions into discrete categories, based on the magnitude and direction of the difference between the predicted and observed phenotypes for a pairwise mutant. For example, the authors categorize as a positive pairwise interaction if the apparent deviation of phenotype from prediction is >0.05, negative if the deviation is <-0.05, and no interaction if the deviation is between these cutoffs. Fluidity is diagnosed when the category for a pairwise interaction differs among backgrounds. These cutoffs are essentially arbitrary, and the effects are assigned to categories without assessing statistical significance. For example, an interaction of 0.06 in one background and 0.04 in another would be classified as fluid, but it is very plausible that such a difference would arise due to error alone. The frequency of epistatic interactions in each category as claimed in the paper, as well as the extent of fluidity across backgrounds, could therefore be systematically overestimated or underestimated, affecting the major conclusions of the study.

      (3) Global nonlinearities. The analyses do not consider the fact that apparent fluidity could be attributable to the fact that fitness measurements are bounded by a minimum (the fitness of cells carrying proteins in which DHFR is essentially nonfunctional) and a maximum (the fitness of cells in which some biological factor other than DHFR function is limiting for fitness). The data are clearly bounded; the original Papkou et al. paper states that 93% of genotypes are at the low-fitness limit at which deleterious effects no longer influence fitness. Because of this bounding, mutations that are strongly deleterious to DHFR function will therefore have an apparently smaller effect when introduced in combination with other deleterious mutations, leading to apparent epistatic interactions; moreover, these apparent interactions will have different magnitudes if they are introduced into backgrounds that themselves differ in DHFR function/fitness, leading to apparent "fluidity" of these interactions. This is a well-established issue in the literature (see PMIDs 30037990, 28100592, 39261454). It is therefore important to adjust for these global nonlinearities before assessing interactions, but the authors have not done this.

      This global nonlinearity could explain much of the fluidity claimed in this paper. It could explain the observation that epistasis does not seem to depend as much on genetic background for low-fitness backgrounds, and the latter is constant (Figure 2B and 2C): these patterns would arise simply because the effects of deleterious mutations are all epistatically masked in backgrounds that are already near the fitness minimum. It would also explain the observations in Figure 7. For background genotypes with relatively high fitness, there are two distinct peaks of fitness effects, which likely correspond to neutral mutations and deleterious mutations that bring fitness to the lower bound of measurement; as the fitness of the background declines, the deleterious mutations have a smaller effect, so the two peaks draw closer to each other, and in the lowest-fitness backgrounds, they collapse into a single unimodal distribution in which all mutations are approximately neutral (with the distribution reflecting only noise).<br /> Global nonlinearity could also explain the apparent "binary" nature of epistasis. Sites 4 and 5 change the second amino acid, and the Papkou paper shows that only 3 amino acid states (C, D, and E) are compatible with function; all others abolish function and yield lower-bound fitness, while mutations at other sites have much weaker effects. The apparent binary nature of epistasis in Figure 5 corresponds to these effects given the nonlinearity of the fitness assay. Most mutations are close to neutral irrespective of the fitness of the background into which they are introduced: these are the "non-epistatic" mutations in the binary scheme. For the mutations at sites 4 and 5 that abolish one of the beneficial mutations, however, these have a strong background-dependence: they are very deleterious when introduced into a high-fitness background but their impact shrinks as they are introduced into backgrounds with progressively lower fitness. The apparent "binary" nature of global epistasis is likely to be a simple artifact of bounding and the bimodal distribution of functional effects: neutral mutations are insensitive to background, while the magnitude of the fitness effect of deleterious mutations declines with background fitness because they are masked by the lower bound. The authors' statement is that "global epistasis often does not hold." This is not established. A more plausible conclusion is that global epistasis imposed by the phenotype limits affects all mutations, but it does so in a nonlinear fashion.

      In conclusion, most of the major claims in the paper could be artifactual. Much of the claimed pairwise epistasis could be caused by measurement noise, the use of arbitrary cutoffs, and the lack of adjustment for global nonlinearity. Much of the fluidity or higher-order epistasis could be attributable to the same issues. And the apparently binary nature of global epistasis is also the expected result of this nonlinearity.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have studied a previously published large dataset on the fitness landscape of a 9 base-pair region of the folA gene. The objective of the paper is to understand various aspects of epistasis in this system, which the authors have achieved through detailed and computationally expensive exploration of the landscape. The authors describe epistasis in this system as "fluid", meaning that it depends sensitively on the genetic background, thereby reducing the predictability of evolution at the genetic level. However, the study also finds two robust patterns. The first is the existence of a "pivot point" for a majority of mutations, which is a fixed growth rate at which the effect of mutations switches from beneficial to deleterious (consistent with a previous study on the topic). The second is the observation that the distribution of fitness effects (DFE) of mutations is predicted quite well by the fitness of the genotype, especially for high-fitness genotypes. While the work does not offer a synthesis of the multitude of reported results, the information provided here raises interesting questions for future studies in this field.

      Strengths:

      A major strength of the study is its detailed and multifaceted approach, which has helped the authors tease out a number of interesting epistatic properties. The study makes a timely contribution by focusing on topical issues like the prevalence of global epistasis, the existence of pivot points, and the dependence of DFE on the background genotype and its fitness. The methodology is presented in a largely transparent manner, which makes it easy to interpret and evaluate the results.

      The authors have classified pairwise epistasis into six types and found that the type of epistasis changes depending on background mutations. Switches happen more frequently for mutations at functionally important sites. Interestingly, the authors find that even synonymous mutations in stop codons can alter the epistatic interaction between mutations in other codons. Consistent with these observations of "fluidity", the study reports limited instances of global epistasis (which predicts a simple linear relationship between the size of a mutational effect and the fitness of the genetic background in which it occurs). Overall, the work presents some evidence for the genetic context-dependent nature of epistasis in this system.

      Weaknesses:

      Despite the wealth of information provided by the study, there are some shortcomings of the paper which must be mentioned.

      (1) In the Significance Statement, the authors say that the "fluid" nature of epistasis is a previously unknown property. This is not accurate. What the authors describe as "fluidity" is essentially the prevalence of certain forms of higher-order epistasis (i.e., epistasis beyond pairwise mutational interactions). The existence of higher-order epistasis is a well-known feature of many landscapes. For example, in an early work, (Szendro et. al., J. Stat. Mech., 2013), the presence of a significant degree of higher-order epistasis was reported for a number of empirical fitness landscapes. Likewise, (Weinreich et. al., Curr. Opin. Genet. Dev., 2013) analysed several fitness landscapes and found that higher-order epistatic terms were on average larger than the pairwise term in nearly all cases. They further showed that ignoring higher-order epistasis leads to a significant overestimate of accessible evolutionary paths. The literature on higher-order epistasis has grown substantially since these early works. Any future versions of the present preprint will benefit from a more thorough contextual discussion of the literature on higher-order epistasis.

      (2) In the paper, the term 'sign epistasis' is used in a way that is different from its well-established meaning. (Pairwise) sign epistasis, in its standard usage, is said to occur when the effect of a mutation switches from beneficial to deleterious (or vice versa) when a mutation occurs at a different locus. The authors require a stronger condition, namely that the sum of the individual effects of two mutations should have the opposite sign from their joint effect. This is a sufficient condition for sign epistasis, but not a necessary one. The property studied by the authors is important in its own right, but it is not equivalent to sign epistasis.

      (3) The authors have looked for global epistasis in all 108 (9x12) mutations, out of which only 16 showed a correlation of R^2 > 0.4. 14 out of these 16 mutations were in the functionally important nucleotide positions. Based on this, the authors conclude that global epistasis is rare in this landscape, and further, that mutations in this landscape can be classified into one of two binary states - those that exhibit global epistasis (a small minority) and those that do not (the majority). I suspect, however, that a biologically significant binary classification based on these data may be premature. Unsurprisingly, mutational effects are stronger at the functional sites as seen in Figure 5 and Figure 2, which means that even if global epistasis is present for all mutations, a statistical signal will be more easily detected for the functionally important sites. Indeed, the authors show that the means of DFEs decrease linearly with background fitness, which hints at the possibility that a weak global epistatic effect may be present (though hard to detect) in the individual mutations. Given the high importance of the phenomenon of global epistasis, it pays to be cautious in interpreting these results.

      (4) The study reports that synonymous mutations frequently change the nature of epistasis between mutations in other codons. However, it is unclear whether this should be surprising, because, as the authors have already noted, synonymous mutations can have an impact on cellular functions. The reader may wonder if the synonymous mutations that cause changes in epistatic interactions in a certain background also tend to be non-neutral in that background. Unfortunately, the fitness effect of synonymous mutations has not been reported in the paper.

      (5) The authors find that DFEs of high-fitness genotypes tend to depend only on fitness and not on genetic composition. This is an intriguing observation, but unfortunately, the authors do not provide any possible explanation or connect it to theoretical literature. I am reminded of work by (Agarwala and Fisher, Theor. Popul. Biol., 2019) as well as (Reddy and Desai, eLife, 2023) where conditions under which the DFE depends only on the fitness have been derived. Any discussion of possible connections to these works could be a useful addition.

    1. Reviewer #1 (Public review):

      Summary

      Behavioural adjustments to different sources of uncertainty remain a hot topic in many fields including reinforcement learning. The authors present valuable findings suggesting that human participants integrate prior beliefs with sensory evidence to improve their predictions in dynamically changing environments involving perceptual decision-making, pinpointing to hallmarks of Bayesian inference. Fitting of a reduced Bayesian model to participant choice behaviour reveals that decision-makers overestimate environmental volatility, but were reasonably accurate in terms of tracking environmental noise.

      Strengths

      Using a perceptual decision-making task in which participants were presented with sequences of noisy observation in environments with constant volatility and variable noise, the authors demonstrate solid evidence in favour of reduced Bayesian models that can account for participant choice behaviour when its generative parameters are fitted freely. The work nicely complements recent work demonstrating the fitting of a full Bayesian model to human reinforcement learning. The authors' approach to the fitting of the model in a principled/factorial manner that is exhaustive performs the model comparison and highlights the need for further work in evaluating the model's performance in environments outside of its generative parameters. Overall the work further highlights the utility of using perceptual decision-making for Bayesian inference questions.

      Weaknesses

      Although data sharing and reanalysis of data are extremely welcome, particularly considering their utility for open science, the small sample size (N= 29) of the original dataset somewhat restricts the authors' ability to show more conclusive findings when it comes to deciphering the optimal memory capacity of the fitted models. It is likely that the relatively small sample size also contributes to certain key hypotheses not being confirmed intuitively, for example, the expected negative relationship between hazard rates and log (noise). The notion that the participants rely on priors to a greater extent in low noise environments relative to high noise may also indicate that they might misattribute noise as volatility, as higher noise in the environment usually obscures the information content of outcomes, and in the case of pure random/noisy sequences, it should increase reliance to priors as new sensory evidence becomes unreliable.

    2. Reviewer #2 (Public review):

      Summary:

      Meijer et al reanalyze behavioral data from a task in which people made predictions about the next in a sequence of localized sounds with the goal of understanding the computations through which people combine sensory experiences into a prior used for perception. The authors combine basic analyses of experimental data with model simulations and development and fitting of a factorial model set that includes a prominent model of change-point detection that has previously been shown to approximate Bayesian inference at a reduced computational cost and provide a good match to human prediction data (reduced Bayesian model). The authors present a number of findings, including a demonstration of key qualitative markers for Bayesian change-point detection, a tendency in humans to over-rely on recent observations, a lack of an inverse relationship between fit values of hazard rate and fit values of noise, support for a number of assumptions in the reduced Bayesian model, and a lack of evidence for reliance on memory systems beyond the extremely minimal requirements of that model.

      Strengths:

      The paper asks an important question and takes a number of useful steps toward answering it. In particular, the factorial model set constructed to examine a number of explicit assumptions in the models typically fit to change-point predictive inference task data was a very useful innovation, and in some cases showed clearly that assumptions in the model are necessary or at least better than the proposed alternatives. In particular, the paper develops a notion of memory capacity that allows for a continuum of models differing in their tradeoffs between computational cost and predictive precision. Another strength of the paper is that it relies on data that avoids sequential biases that can contaminate reported beliefs in more standard predictive inference tasks.

      Weaknesses:

      The primary weakness of the paper is that most of the definitive findings reported within it have already been reported elsewhere. That humans increase the influence of surprising outcomes indicative of change points, or to say this another way, decrease their reliance on prior information in such cases, has been fairly well established, as has the discovery that humans tend to overuse recent outcomes when making predictions. The most novel aspect of the paper, the exploration of reductions of the Bayesian ideal observer that rely on differing memory capacities, yielded results that are somewhat difficult to interpret, particularly because it is not clear that the task analyzed is diagnostic of the memory capacity term in the model, or if so, what the qualitative hallmarks of a high/low memory capacity model reduction might be.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors derive a mean-field model for a network of Hodgkin-Huxley neurons retaining the equations for ion exchange between the intracellular and extracellular space.

      The mean-field model derived in this work relies on approximations and heuristic arguments that, on the one hand, allow a closed-form derivation of the mean-field equations, and on the other hand restrict its validity to a limited regime of activity corresponding to quasi-synchronous neuronal populations. Therefore, rather than an exact mean-field representation, the model provides a description of a mesoscopic population of connected neurons driven by ion exchange dynamics.

      Strengths:

      The idea of deriving a mean-field model that relates the slow-timescale biophysical mechanism of ion exchange and transportation in the brain to the fast-timescale electrical activities of large neuronal ensembles.

      Weaknesses:

      The idea underlying this work is not completely implemented in practice.

      The derived mean field model does not show a one-to-one correspondence with the neural network simulations, except in strongly synchronous regimes. The agreement with the in vitro experiment is hardly evident, both for the mean-field model and for the network model. The assumptions made to derive the closed-form equations of the mean-field model have not been justified by any biological reason, they just allow for the mathematical derivation. The final form of the mean-field equations does not clarify whether or not microscopic variables are used together with macroscopic variables in an inconsistent mixture.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aim to develop a neural mass model characterized by a few collective variables mimicking the dynamics of a network of Hodgkin - Huxley neurons encompassing ion-exchange mechanisms. They describe in detail the derivation of the mean-field model, then they compare experimental results obtained for the hippocampus of a mouse with the neural network simulations and the mean-field results. Furthermore, they report a bifurcation analysis of the developed model and simulation of a small network containing various coupled neural masses, somehow moving towards the simulation of an entire connectome.

      Strengths:

      The author attempts to develop a mean-field model for a globally coupled network of heterogeneous Hodgkin-Huxley neurons with an explicit ion exchange mechanism between the cell interior and exterior.

      Weaknesses:

      (1) It seems that the reduction methodology that is employed is not the most suitable one for the single-neuron model they are considering.<br /> (2) The authors' derivation of the neural mass model is based on several assumptions, and not all well justified.<br /> (3) The formulation of the mean-field derivation is unnecessarily complicated. It could be heavily simplified by following previously published approaches to derive biologically realistic neural masses.<br /> (4) The model seems to work only for highly synchronized situations and not for the standard asynchronous evolution usually observed in neural circuits.

      General Statements:

      The authors honestly declared the many limitations of their approach. It is assumed that the results of the mean-field are somehow inconsistent with the neural network simulations as expected.

      The authors suggest employing this model for the simulations on the whole connectome to follow seizure propagation, however, I believe that the Epileptor remains superior in this respect to this model. That indeed includes biophysical parameters but their correspondence with the ones employed in the network dynamics remains elusive, due to the many assumptions required to derive this mean-field model. Furthermore, it is more complicated than the Epileptor, I do not think that the present model will be largely employed by the community.

    1. Reviewer #1 (Public review):

      Summary:

      This is a study that used 7T diffusion MRI in subjects from a Human Connectome Project dataset to characterize the zona incerta, an area of gray matter whose involvement has been demonstrated in a broad range of behavioral and physiologic functions. The authors employ tractography to model white matter tracts that involve connections with the ZI and use clustering techniques to segment the ZI into distinct subregions based on similar patterns of connectivity. The authors report a rostral-caudal organization of the ZI's streamlines where rostrally-projecting tracts are rostrally-positioned in the ZI and caudally-projecting tracts are caudally-positioned in the ZI.

      Strengths:

      The paper presents robust findings that demonstrate subregions of the human ZI that appear to be structurally distinct using a combination of spectral clustering and diffusion map embedding methods. The results of this work can contribute to our understanding of the anatomy and structural connectivity of the ZI, allowing us to further explore its role as a neuromodulatory target for various neurological disorders.

      Weaknesses:

      There should be further discussion of the clustering methods employed and why they are appropriate for the pertinent data. Additionally, the limitations of analyzing solely the cortical connections of the zona incerta should be addressed, as anatomical studies of the ZI have shown significant involvement of the ZI in tracts projecting to deep brain regions.

    2. Reviewer #2 (Public review):

      Summary:

      Haast et al. investigated the organization of the zona incerta (ZI) in the human brain based on its structural connectivity to the neocortex. They found that the ZI is organized according to a primary rostro-caudal gradient, where the rostral ZI is more strongly connected to the prefrontal cortex and the caudal ZI to the sensorimotor cortex. They also found that the central region of the ZI is differently connected to the neocortex compared with the rostral and caudal regions, and could be important as a deep brain stimulation target for the treatment of essential tremors.

      Strengths:

      I think the overall quality of this work is great, and the results are presented in a very clear and organized manner. I particularly appreciate the effort that the authors put into validating the results using 7T and 3T data, as well as test-retest data.

      Weaknesses:

      That being said, I was left with a couple of concerns after reading the paper.

      (1) Although the authors discussed animal evidence for a dorsal-ventral organization of the ZI, I thought that the evidence they presented for it in this paper was not so convincing. In Figure S5, the second gradient (G2) shows a clear dorsoventral pattern, but this pattern seems to primarily separate the ZI and H fields rather than show an internal topology of the ZI. This is more likely the case given that there are two bands (superior and inferior) of high G2 values surrounding a single band (middle) of low G2 values. The evidence for the rostrocaudal gradient, on the other hand, is quite convincing.

      (2) HCP data is still too advanced for clinical translation. Although 3T is becoming more and more prevalent for presurgical planning, the HCP 3T dataset is acquired with a voxel size of 1.25mm, which is a far higher resolution than the typical clinical scan. It would be very useful for clinical readers to see what individual subject replicability looks like if the data were acquired at the more typical voxel size of 2mm. This could be achieved by replicating the analysis on a downsampled version of the HCP data that more closely resembles clinical data. This is understandably a large undertaking, so it could be left to future validation work.

  2. Jan 2025
    1. Reviewer #1 (Public review):

      Summary:

      In this research, Soni and Frank investigate the network mechanisms underlying capacity limitations in working memory from a new perspective, with a focus on Visual Working Memory (VWM). The authors have advanced beyond the classical neural network model, which incorporates the prefrontal cortex and basal ganglia (PBWM), by introducing an adaptive chunking variant. This model is trained using a biologically-plausible, dopaminergic reinforcement learning framework. The adaptive chunking mechanism is particularly well-suited to the VWM tasks involving continuous stimuli and elegantly integrates the 'slot' and 'resource' theories of working memory constraints. The chunk-augmented PBWM operates as a slot-like system with resource-like limitations.

      Through numerical simulations under various conditions, Soni and Frank demonstrate the performance of the chunk-augmented PBWM model surpass the no-chunk control model. The improvements are evident in enhanced effective capacity, optimized resource management, and reduced error rates. The retention of these benefits, even with increased capacity allocation, suggests that working memory limitations are due to a combination of factors, including the efficient credit assignment that are learned flexibly through reinforcement learning. In essence, this work addresses fundamental questions related to a computational working memory limitation using a biologically-inspired neural network, thus has implications for conditions such as Parkinson's disease, ADHD and schizophrenia.

      Strengths:

      The integration of mechanistic flexibility, reconciling two theories for WM capacity into a single unified model, results in a neural network that is both more adaptive and human-like. Building on the PBWM framework ensures the robustness of the findings. The addition of the chunking mechanism tailors the original model for continuous visual stimuli. Chunk-stripe mechanisms contribute to the 'resource' aspect, while input-stripes contribute to the 'slot' aspect. This combined network architecture enables flexible and diverse computational functions, enhancing performance beyond that of the classical model.

      Moreover, unlike previous studies that design networks for specific task demands, the proposed network model can dynamically adapt to varying task demands by optimizing the chunking gating policy through RL.

      The implementation of a dopaminergic reinforcement learning protocol, as opposed to a hard-wired design, leads to the emergence of strategic gating mechanisms that enhance the network's computational flexibility and adaptability. These gating strategies are vital for VWM tasks and are developed in a manner consistent with ecological and evolutionary learning held by human. Further examination of how reward prediction error signals, both positive and negative, collaborate to refine gating strategies reveals the crucial role of reward feedback in fine-tuning the working memory computations and the model's behavior, aligning with the current neuroscientific understanding that reward matters.

      Assessing the impact of a healthy balance of dopaminergic RPE signals on information manipulation holds implications for patients with altered striatal dopaminergic signaling.

      Comments on revisions:

      In the revised version, the authors have thoroughly addressed all the questions raised in my previous review. They have clarified the model architecture, provided detailed explanations of the training process, and elaborated on the convergence of the optimization.

      Additionally, Reviewer 2 made a very constructive suggestion: Can related cognitive functions or phenomena emerge from the model? The newly added analysis and results highlighting the recency effect directly address this question and significantly strengthen the paper.

    2. Reviewer #2 (Public review):

      Summary:

      This paper utilizes a neural network model to investigate how the brain employs an adaptive chunking strategy to effectively enhance working memory capacity, which is a classical and significant question in cognitive neuroscience. By integrating perspectives from both the 'slot model' and 'limited resource models,' the authors adopted a neural network model encompassing the prefrontal cortex and basal ganglia, introduced an adaptive chunking strategy, and proposed a novel hybrid model. The study demonstrates that the brain can adaptively bind various visual stimuli into a single chunk based on the similarity of color features (a continuous variable) among items in visual working memory, thereby improving working memory efficiency. Additionally, it suggests that the limited capacity of working memory arises from the computational characteristics of the neural system, rather than anatomical constraints.

      Strengths:

      The neural network model utilized in this paper effectively integrates perspectives from both slot models and resource models (i.e., resource-like constraints within a slot-like system). This methodological innovation provides a better explanation for the limited capacity of working memory. By simulating the neural networks of the prefrontal cortex and basal ganglia, the model demonstrates how to optimize working memory storage and retrieval strategies through reinforcement learning (i.e., the efficient management of access to and from working memory). This biological simulation offers a novel perspective on human working memory and provides new explanations for the working memory difficulties observed in patients with Parkinson's disease and other disorders. Furthermore, the effectiveness of the model has been validated through computational simulation experiments, yielding reliable and robust predictions.

      Comments on revisions:

      The authors have already answered all my questions.

    1. Reviewer #2 (Public review):

      Summary,

      The paper aimed to examine the effect of co-ablating Substance P and CGRPα peptides on pain using Tac1 and Calca double knockout (DKO) mice. The authors observed no significant changes in acute, inflammatory, and neuropathic pain. These results suggest that Substance P and CGRPα peptides do not play a major role in mediating pain in mice. Moreover, they reveal that the lack of behavioral phenotype cannot be explained by the redundancy between the two peptides, which are often co-expressed in the same neuron

      Strengths,

      The paper uses a straightforward approach to address a significant question in the field. The authors confirm the absence of Substance P and CGRPα peptides at the levels of DRG, spinal cord, and midbrain. Subsequently, they employ a comprehensive battery of behavioral tests to examine pain phenotypes, including acute, inflammatory, and neuropathic pain. Additionally, they evaluate neurogenic inflammation by measuring edema and extravasation, revealing no changes in DKO mice. The data are compelling, and the study's conclusions are well-supported by the results. The manuscript is succinct and well-presented.

    2. Reviewer #3 (Public review):

      In this study, the authors aimed to determine the role of a global double knockout (DKO) of substance P and CGRPα in modulating acute and chronic pain transmission. After successfully generating and validating the DKO mouse model, they conducted a series of behavioral pain assessments to evaluate the role of these neuropeptides in acute and chronic pain. Despite the well-established involvement of substance P and CGRPα in chronic pain, their findings revealed that the global loss of both neuropeptides did not affect the transmission of either acute or chronic pain.

      A major strength of the paper is that they validated their double knockout mouse model before using a comprehensive array of both acute and chronic pain tests to reach their conclusions. One minor weakness is that their n numbers for some of the studies conducted are low.

      The conclusions made by the authors are largely supported by their results and the authors successfully achieved their aim of investigating the role of simultaneous inhibition of substance P and CGRPα in pain transmission.

      This study offers valuable insights into our understanding of the pain pathways. Both Substance P and CGRPα neuropeptides and their receptors were considered key players in pain signaling due to their high expression in pain-responsive neurons. However, targeting these peptides in clinical trials has not been successful. By investigating the simultaneous inhibition of substance P and CGRPα through the generation of Tac1 and Calca double knockout (DKO) mice, the authors addressed an important gap in the field. Their comprehensive assessment of pain behaviors across a range of acute and chronic pain models revealed an unexpected outcome: the absence of both neuropeptides did not significantly alter pain responses. This finding is pivotal, as it challenges the hypothesis that these peptides are essential for pain transmission, even when targeted together.

      Comments on revisions:

      All my previous concerns have been addressed.

    1. Reviewer #1 (Public review):

      The manuscript by Rios et al. investigates the potential of GSK3 inhibition to reprogram human macrophages, exploring its therapeutic implications in conditions like severe COVID-19. The authors present convincing evidence that GSK3 inhibition shifts macrophage phenotypes from pro-inflammatory to anti-inflammatory states, thus highlighting the GSK3-MAFB axis as a potential therapeutic target. Using both GM-CSF- and M-CSF-dependent monocyte-derived macrophages as model systems, the study provides extensive transcriptional, phenotypic, and functional characterizations of these reprogrammed cells. The authors further extend their findings to human alveolar macrophages derived from patient samples, demonstrating the clinical relevance of GSK3 inhibition in macrophage biology.

      The experimental design is sound, leveraging techniques such as RNA-seq, flow cytometry, and bioenergetic profiling to generate a comprehensive dataset. The study's integration of multiple model systems and human samples strengthens its impact and relevance. The findings not only offer insights into macrophage plasticity but also propose novel therapeutic strategies for macrophage reprogramming in inflammatory diseases.

      Strengths:

      (1) Robust Experimental Design: The use of both in vitro and ex vivo models adds depth to the findings, making the conclusions applicable to both experimental and clinical settings.<br /> (2) Thorough Data Analysis: The extensive use of RNA-seq and gene set enrichment analysis (GSEA) provides a clear transcriptional signature of the reprogrammed macrophages.<br /> (3) Relevance to Severe COVID-19: The study's focus on macrophage reprogramming in the context of severe COVID-19 adds clinical significance, especially given the relevance of macrophage-driven inflammation in this disease.

      Weaknesses:

      There are no significant weaknesses in the study.

    2. Reviewer #2 (Public review):

      Summary:

      The study by Rios and colleagues provides the scientific community with a compelling exploration of macrophage plasticity and its potential as a therapeutic target. By focusing on the GSK3-MAFB axis, the authors present a strong case for macrophage reprogramming as a strategy to combat inflammatory and fibrotic diseases, including severe COVID-19. Using a robust and comprehensive methodology, in this study it is conducted a broad transcriptomic and functional analyses and offers valuable mechanistic insights while highlighting its clinical relevance

      Strengths:

      Well performed and analyzed

      Weaknesses:

      Additional analyses, including mechanistic studies, would increase the value of the study.

    1. Reviewer #1 (Public review):

      Summary:

      The study examines human biases in a regime-change task, in which participants have to report the probability of a regime change in the face of noisy data. The behavioral results indicate that humans display systematic biases, in particular, overreaction in stable but noisy environments and underreaction in volatile settings with more certain signals. fMRI results suggest that a frontoparietal brain network is selectively involved in representing subjective sensitivity to noise, while the vmPFC selectively represents sensitivity to the rate of change.

      Strengths:

      (1) The study relies on a task that measures regime-change detection primarily based on descriptive information about the noisiness and rate of change. This distinguishes the study from prior work using reversal-learning or change-point tasks in which participants are required to learn these parameters from experiences. The authors discuss these differences comprehensively.

      (2) The study uses a simple Bayes-optimal model combined with model fitting, which seems to describe the data well.

      (3) The authors apply model-based fMRI analyses that provide a close link to behavioral results, offering an elegant way to examine individual biases.

      Weaknesses:

      My major concern is about the correlational analysis in the section "Under- and overreactions are associated with selectivity and sensitivity of neural responses to system parameters", shown in Figures 5c and d (and similarly in Figure 6). The authors argue that a frontoparietal network selectively represents sensitivity to signal diagnosticity, while the vmPFC selectively represents transition probabilities. This claim is based on separate correlational analyses for red and blue across different brain areas. The authors interpret the finding of a significant correlation in one case (blue) and an insignificant correlation (red) as evidence of a difference in correlations (between blue and red) but don't test this directly. This has been referred to as the "interaction fallacy" (Niewenhuis et al., 2011; Makin & Orban de Xivry 2019). Not directly testing the difference in correlations (but only the differences to zero for each case) can lead to wrong conclusions. For example, in Figure 5c, the correlation for red is r = 0.32 (not significantly different from zero) and r = 0.48 (different from zero). However, the difference between the two is 0.1, and it is likely that this difference itself is not significant. From a statistical perspective, this corresponds to an interaction effect that has to be tested directly. It is my understanding that analyses in Figure 6 follow the same approach.

      Relevant literature on this point is:

      Nieuwenhuis, S, Forstmann, B & Wagenmakers, EJ (2011). Erroneous analyses of interactions in neuroscience: a problem of significance. Nat Neurosci 14, 1105-1107. https://doi.org/10.1038/nn.2886

      Makin TR, Orban de Xivry, JJ (2019). Science Forum: Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. eLife 8:e48175. https://doi.org/10.7554/eLife.48175

      There is also a blog post on simulation-based comparisons, which the authors could check out: https://garstats.wordpress.com/2017/03/01/comp2dcorr/

      I recommend that the authors carefully consider what approach works best for their purposes. It is sometimes recommended to directly compare correlations based on Monte-Carlo simulations (cf Makin & Orban). It might also be appropriate to run a regression with the dependent variable brain activity (Y) and predictors brain area (X) and the model-based term of interest (Z). In this case, they could include an interaction term in the model:

      Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot Z + \beta_3 \cdot X \cdot Z

      The interaction term reflects if the relationship between the model term Z and brain activity Y is conditional on the brain area of interest X.

      Another potential concern is that some important details about the parameter estimation for the system-neglect model are missing. In the respective section in the methods, the authors mention a nonlinear regression using Matlab's "fitnlm" function, but it remains unclear how the model was parameterized exactly. In particular, what are the properties of this nonlinear function, and what are the assumptions about the subject's motor noise? I could imagine that by using the inbuild function, the assumption was that residuals are Gaussian and homoscedastic, but it is possible that the assumption of homoscedasticity is violated, and residuals are systematically larger around p=0.5 compared to p=0 and p=1.

      Relatedly, in the parameter recovery analyses, the authors assume different levels of motor noise. Are these values representative of empirical values?

      The main study is based on N=30 subjects, as are the two control studies. Since this work is about individual differences (in particular w.r.t. to neural representations of noise and transition probabilities in the frontoparietal network and the vmPFC), I'm wondering how robust the results are. Is it likely that the results would replicate with a larger number of subjects? Can the two control studies be leveraged to address this concern to some extent?

      It seems that the authors have not counterbalanced the colors and that subjects always reported the probability of the blue regime. If so, I'm wondering why this was not counterbalanced.

    2. Reviewer #2 (Public review):

      Summary:

      This paper focuses on understanding the behavioral and neural basis of regime shift detection, a common yet hard problem that people encounter in an uncertain world. Using a regime-shift task, the authors examined cognitive factors influencing belief updates by manipulating signal diagnosticity and environmental volatility. Behaviorally, they have found that people demonstrate both over and under-reaction to changes given different combinations of task parameters, which can be explained by a unified system-neglect account. Neurally, the authors have found that the vmPFC-striatum network represents current belief as well as belief revision unique to the regime detection task. Meanwhile, the frontoparietal network represents cognitive factors influencing regime detection i.e., the strength of the evidence in support of the regime shift and the intertemporal belief probability. The authors further link behavioral signatures of system neglect with neural signals and have found dissociable patterns, with the frontoparietal network representing sensitivity to signal diagnosticity when the observation is consistent with regime shift and vmPFC representing environmental volatility, respectively. Together, these results shed light on the neural basis of regime shift detection especially the neural correlates of bias in belief update that can be observed behaviorally.

      Strengths:

      (1) The regime-shift detection task offers a solid ground to examine regime-shift detection without the potential confounding impact of learning and reward. Relatedly, the system-neglect modeling framework provides a unified account for both over or under-reacting to environmental changes, allowing researchers to extract a single parameter reflecting people's sensitivity to changes in decision variables and making it desirable for neuroimaging analysis to locate corresponding neural signals.

      (2) The analysis for locating brain regions related to belief revision is solid. Within the current task, the authors look for brain regions whose activation covary with both current belief and belief change. Furthermore, the authors have ruled out the possibility of representing mere current belief or motor signal by comparing the current study results with two other studies. This set of analyses is very convincing.

      (3) The section on using neuroimaging findings (i.e., the frontoparietal network is sensitive to evidence that signals regime shift) to reveal nuances in behavioral data (i.e., belief revision is more sensitive to evidence consistent with change) is very intriguing. I like how the authors structure the flow of the results, offering this as an extra piece of behavioral findings instead of ad-hoc implanting that into the computational modeling.

      Weaknesses:

      (1) The authors have presented two sets of neuroimaging results, and it is unclear to me how to reason between these two sets of results, especially for the frontoparietal network. On one hand, the frontoparietal network represents belief revision but not variables influencing belief revision (i.e., signal diagnosticity and environmental volatility). On the other hand, when it comes to understanding individual differences in regime detection, the frontoparietal network is associated with sensitivity to change and consistent evidence strength. I understand that belief revision correlates with sensitivity to signals, but it can probably benefit from formally discussing and connecting these two sets of results in discussion. Relatedly, the whole section on behavioral vs. neural slope results was not sufficiently discussed and connected to the existing literature in the discussion section. For example, the authors could provide more context to reason through the finding that striatum (but not vmPFC) is not sensitive to volatility.

      (2) More details are needed for behavioral modeling under the system-neglect framework, particularly results on model comparison. I understand that this model has been validated in previous publications, but it is unclear to me whether it provides a superior model fit in the current dataset compared to other models (e.g., a model without \alpha or \beta). Relatedly, I wonder whether the final result section can be incorporated into modeling as well - i.e., the authors could test a variant of the model with two \betas depending on whether the observation is consistent with a regime shift and conduct model comparison.

    1. Reviewer #1 (Public review):

      Summary:

      Insects and their relatives are commonly infected with microbes that are transmitted from mothers to their offspring. A number of these microbes have independently evolved the ability to kill the sons of infected females very early in their development; this male killing strategy has evolved because males are transmission dead-ends for the microbe. A major question in the field has been to identify the genes that cause male killing and to understand how they work. This has been especially challenging because most male-killing microbes cannot be genetically manipulated. This study focuses on a male-killing bacterium called Wolbachia. Different Wolbachia strains kill male embryos in beetles, flies, moths, and other arthropods. This is remarkable because how sex is determined differs widely in these hosts. Two Wolbachia genes have been previously implicated in male-killing by Wolbachia: oscar (in moth male-killing) and wmk (in fly male-killing). The genomes of some male-killing Wolbachia contain both of these genes, so it is a challenge to disentangle the two.

      This paper provides strong evidence that oscar is responsible for male-killing in moths. Here, the authors study a strain of Wolbachia that kills males in a pest of tea, Homona magnanima. Overexpressing oscar, but not wmk, kills male moth embryos. This is because oscar interferes with masculinizer, the master gene that controls sex determination in moths and butterflies. Interfering with the masculinizer gene in this way leads the (male) embryo down a path of female development, which causes problems in regulating the expression of genes that are found on the sex chromosomes.

      Strengths:

      The authors use a broad number of approaches to implicate oscar, and to dissect its mechanism of male lethality. These approaches include: a) overexpressing oscar (and wmk) by injecting RNA into moth eggs, b) determining the sex of embryos by staining female sex chromosomes, c) determining the consequences of oscar expression by assaying sex-specific splice variants of doublesex, a key sex determination gene, and by quantifying gene expression and dosage of sex chromosomes, using RNASeq, and d) expressing oscar along with masculinizer from various moth and butterfly species, in a silkmoth cell line. This extends recently published studies implicating oscar in male-killing by Wolbachia in Ostrinia corn borer moths, although the Homona and Ostrinia oscar proteins are quite divergent. Combined with other studies, there is now broad support for oscar as the male-killing gene in moths and butterflies (i.e. order Lepidoptera). So an outstanding question is to understand the role of wmk. Is it the master male-killing gene in insects other than Lepidoptera and if so, how does it operate?

      Weaknesses:

      I found the transfection assays of oscar and masculinizer in the silkworm cell line (Figure 4) to be difficult to follow. There are also places in the text where more explanation would be helpful for non-experts.

    2. Reviewer #2 (Public review):

      Summary:

      Wolbachia are maternally transmitted bacteria that can manipulate host reproduction in various ways. Some Wolbachia induce male killing (MK), where the sons of infected mothers are killed during development. Several MK-associated genes have been identified in Homona magnanima, including Hm-oscar and wmk-1-4, but the mechanistic links between these Wolbachia genes and MK in the native host are still unclear.

      In this manuscript, Arai et al. show that Hm-oscar is the gene responsible for Wolbachia-induced MK in Homona magnanima. They provide evidence that Hm-Oscar functions through interactions with the sex determination system. They also found that Hm-Oscar disrupts sex determination in male embryos by inducing female-type dsx splicing and impairing dosage compensation. Additionally, Hm-Oscar suppresses the function of Masc. The manuscript is well-written and presents intriguing findings. The results support their conclusions regarding the diversity and commonality of MK mechanisms, contributing to our understanding of the mechanisms and evolutionary aspects of Wolbachia-induced MK.

      Comments on revisions:

      The authors have already addressed the reviewer's concerns.

    3. Reviewer #3 (Public review):

      Summary:

      Overall, this is a clearly written manuscript with nice hypothesis testing in a non-model organism that addresses the mechanism of Wolbachia-mediated male killing. The authors aim to determine how five previously identified male-killing genes (encoded in the prophage region of the wHm Wolbachia strain) impact the native host, Homona magnanima moths. This work builds on the authors' previous studies in which<br /> (1) they tested the impact of these same wHm genes via heterologous expression in Drosophila melanogaster<br /> (2) also examined the activity of other male-killing genes (e.g., from the wFur Wolbachia strain in its native host: Ostrinia furnacalis moths).

      Advances here include identifying which wHm gene most strongly recapitulates the male-killing phenotype in the native host (rather than in Drosophila), and the finding that the Hm-Oscar protein has the potential for male-killing in a diverse set of lepidopterans, as inferred by the cell-culture assays.

      Strengths:

      Strengths of the manuscript include the reverse genetics approaches to dissect the impact of specific male-killing loci, and use of a "masculinization" assay in Lepidopteran cell lines to determine the impact of interactions between specific masc and oscar homologs.

      Weaknesses:

      It is clear from Figure 1 that the combinations of wmk homologs do not cause male killing on their own here. While I largely agree with the author's conclusions that oscar is the primary MK factor in this system, I don't think we can yet rule out that wmk(s) may work synergistically or interactively with oscar in vivo. This might be worth a small note in the discussion. (eg at line 294 'indicating that wmk likely targets factors other than masc." - this could be downstream of the impacts of oscar; perhaps dependent on oscar-mediated impacts on masc first).

      Regarding the perceived male-bias in Figure 2a: I think readers might be interpreting "unhatched" as "total before hatching". You could eliminate ambiguity by perhaps splitting the bars into male and female, and then within a bar, coloring by hatched versus unhatched. But this is a minor point, and I think the updated text helps clarify this.

      The new Figure 4b looks to be largely redundant with the oscar information in Figure 1a.

      Updated statistical comparisons for the RNA-seq analysis are helpful. However these analyses are based on single libraries (albeit each a pool of many individuals), so this is still a weaker aspect of the manuscript.

      The new information on masc similarity is useful (Fig 4d) - if the authors could please include a heatmap legend for the colors, that would be helpful. Also, please avoid green and red in the same figure when key for interpretation.

      Figure 1A "helix-turn-helix" is misspelled. ("tern").

    1. Joint Public Review:

      Solitary Fibrous Tumors (SFTs) are a rare malignancy defined by NAB2-STAT6 fusions. Because the molecular understanding of the disease is largely lacking, there are currently no targeted treatment approaches. Using primary tumor and adjacent normal tissue samples and cells inducibly expressing NAB2-STAT6, Hill et al. perform a detailed characterization of the transcriptomic and epigenomic NAB2-STAT6 SFT signatures. They identify enrichment or EGR1/NAB2 (but not STAT6) sites bound by the fusion protein and increased expression of EGR1 targets. Their studies indicate that NAB2-STAT6 fusion may direct the nuclear translocation of NAB2 and EGR1 proteins and potentially NAB1. Transcriptionally, NAB2-STAT6 SFTs most closely resemble neuroendocrine tumors.

      This pioneering study provides critical insight into the molecular pathogenesis of SFTs, pivotal for the future development of mechanistically informed treatment approaches. The study is rigorously executed and well-written. This new knowledge is an important addition to the field.

    1. Reviewer #1 (Public review):

      The paper by Auer et. makes several contributions:

      (1) The study developed a novel approach to map the microstructural organization of the human amygdala by applying radiomics and dimensionality reduction techniques to high-resolution histological data from the BigBrain dataset.

      (2) The method identified two main axes of microstructural variation in the amygdala, which could be translated to in vivo 7 Tesla MRI data in individual subjects.

      (3) Functional connectivity analysis using resting-state fMRI suggests that microstructurally defined amygdala subregions had distinct patterns of functional connectivity to cortical networks, particularly the limbic, frontoparietal, and default mode networks.

      (4) Meta-analytic decoding was used to suggest that the superior amygdala subregion's connectivity is associated with autobiographical memory, while the inferior subregion was linked to emotional face processing.

      (5) Overall, the data-driven, multimodal approach provides an account of amygdala microstructure and possibly function that can be applied at the individual subject level, potentially advancing research on amygdala organization.

    2. Reviewer #2 (Public review):

      Summary:

      This study bridges a micro- to macroscale understanding of the organization of the amygdala. First, using a data-driven approach, the authors identify structural clusters in the human amygdala from high-resolution post-mortem histological data. Next, multimodal imaging data to identify structural subunits of the amygdala and the functional networks in which they are involved. This approach is exciting because it permits the identification of both structural amygdalar subunits, and their functional implications, in individual subjects. There are, however, some differences in the macro and microscale levels of organization that should be addressed.

      Strengths:

      The use of data-driven parcellation on a structure that is important for human emotion and cognition, and the combination of this with high-resolution individual imaging-based parcellation, is a powerful and exciting approach, addressing both the need for a template-level understanding of organization as well as a parcellation that is valid for individuals. The functional decoding of rsfMRI permits valuable insight into the functional role of structural subunits. Overall, the combination of micro to macro, structure, and function, and general organization to individual relevance is an impressive holistic approach to brain mapping.

    1. Reviewer #1 (Public review):

      Nio and colleagues address an important question about how the cerebellum and ventral tegmental area (VTA) contribute to the extinction learning of conditioned fear associations. This work tackles a critical gap in the existing literature and provides new insights into this question in humans through the use of high-field neuroimaging with robust methodology. The presented results are novel and will broadly interest both the extinction learning and cerebellar research communities. As such, this is a very timely and impactful manuscript. However, there are several points that could be addressed during the review process to strengthen the claims and enhance their value for readers and the broader scientific community.

      Points to Address:

      (1) Reward Interpretation and Skin Conductance Responses (SCR):<br /> A central premise of the manuscript is that 'unexpected omissions of expected aversive events' are rewarding, which plays a critical role in extinction learning. The authors also suggest that the cerebellum is involved in reward processing. However, it is unclear how this conclusion can be directly drawn from their task, which does not explicitly model 'reward.' Instead, the interpretation relies on SCR, which seems more indicative of association or prediction rather than reward per se. Is SCR a valid metric of reward experienced during the extinction of feared associations? Or could these findings reflect processes tied more closely to predictive learning? Please, discuss.

      (2) Reinforcement Agent and SCR Modeling:<br /> The modeling approach with the deep reinforcement agent treats SCR as a personalized expectation of shock for a given trial. However, this interpretation seems misaligned with participants' actual experience - they are aware of the shock but exhibit evolving responses to it over time. Why is this operationalization useful or valid? It would benefit the manuscript to provide a clearer justification for this approach.

      (3) Clarity and Visualization of Results:<br /> The results section is challenging to follow, and the visualization and quantification of findings could be significantly improved. Terms like 'trending' appear frequently - what does this mean, and is it worth reporting? Adding clear statistical quantifications alongside additional visualizations (e.g., bar or violin plots of group means within specific subregions within the cerebellum, or grouped mean activity in VTA and DCN) would enhance clarity and allow readers to better assess the distribution and systematicity of effects. Furthermore, the figures are overly complex and difficult to read due to the heavy use of abbreviations. Consider splitting figures by either phase of the experiment or regions, and move some details to the supplemental material for improved readability.

      (4) Theoretical Context for Paradigm Phases:<br /> The manuscript benefits from the comprehensive experimental paradigm, which includes multiple phases (acquisition, extinction, recall, reacquisition, re-extinction). This design has great potential for providing a more holistic view of conditioned fear learning and extinction. However, the manuscript lacks clarity on what insights can be drawn from these distinct phases. What theoretical framework underpins the different stages, and how should the results be interpreted in this context? At present, the findings seem like a display of similar patterns across phases without sufficient interpretation. Providing a stronger theoretical rationale and reorganizing the results by experimental phase could significantly improve readability and impact.

      (5) Cerebellum-VTA Connectivity Analysis:<br /> The authors argue that the cerebellum modulates VTA activity, yet they perform the PPI analysis in the reverse direction. Why does this make sense? In their DCM analysis, they found a bidirectional relationship (both cerebellum - VTA and VTA-cerebellum), yet the discussion focused on connectivity from the cerebellum to VTA. A more careful interpretation of the connectivity findings would be useful - especially the strong claims in the discussion on the cerebellum providing the reward signal to the VTA should be tempered.

    2. Reviewer #2 (Public review):

      Summary:

      Building upon the group's previous work, this study used a 3-day threat acquisition, extinction, recall, reextinction, and reacquisition paradigm with 7T imaging to probe the mechanism by which the cerebellum contributes to fear extinction learning. The authors hypothesise this may be via its connection to the VTA, a known modulator of fear extinction due to its role in reward processing. Using complementary analysis methods, the authors demonstrate that activity with the cerebellum, DNC, and VTA is modulated by predictions about the occurrence of the US, which shows regional specificity. They show trend-level evidence that there is increased functional connectivity between the cerebellum and VTA during all phases of the paradigm with unexpected omissions. They also present a DCM which indicates that the cerebellum could positively modulate VTA activity during extinction learning. This study adds to a growing literature supporting the role of the historically overlooked cerebellum in the control of emotions and suggests that an interaction between the cerebellum and VTA should be considered in the existing model of the fear extinction network.

      Strengths:

      The authors address their research question using a number of complementary methods, including parametric modulation by model-derived expectation parameters, PPI, and DCM, in a logical and easily understood way. I feel the authors provide a balanced interpretation of their findings, presenting numerous interpretations and offering insight with regard to reward vs attention or unsigned prediction errors and the directionality of the interaction they identify. The manuscript is a timely addition to growing literature highlighting the role of the cerebellum in fear conditioning, and emotion generation and regulation more generally.

      Weaknesses:

      Subjective and skin conductance responses do not completely support the success of the learning paradigm. For example, CS+/CS- differentiation in both domains persisted after extinction training. I do not feel that this negates the findings of this manuscript, though it raises questions about the parametric modulators used, and the interpretation of the neural mechanisms proposed if they do not strongly relate to updated subjective appraisals (the goal of extinction therapy). My interpretation of the manuscript suggests there are some key results based upon contrasts that have as few as three events; I am a little unsure about the power and reliability of these effects, though I await author clarification on this matter. There are a number of unaddressed deviations from the pre-registered protocol that I have asked the authors to elaborate upon.

    1. Reviewer #1 (Public review):

      Summary:

      Identifying drugs that target specific disease phenotypes remains a persistent challenge. Many current methods are only applicable to well-characterized small molecules, such as those with known structures. In contrast, methods based on transcriptional responses offer broader applicability because they do not require prior information about small molecules. Additionally, they can be rapidly applied to new small molecules. One of the most promising strategies involves the use of "drug response signatures"-specific sets of genes whose differential expression can serve as markers for the response to a small molecule. By comparing drug response signatures with expression profiles characteristic of a disease, it is possible to identify drugs that modulate the disease profile, indicating a potential therapeutic connection.

      This study aims to prioritize potential drug candidates and to forecast novel drug combinations that may be effective in treating triple-negative breast cancer (TNBC). Large consortia, such as the LINCS-L1000 project, offer transcriptional signatures across various time points after exposing numerous cell lines to hundreds of compounds at different concentrations. While this data is highly valuable, its direct applicability to pathophysiological contexts is constrained by the challenges in extracting consistent drug response profiles from these extensive datasets. The authors use their method to create drug response profiles for three different TNBC cell lines from LINCS.

      To create a more precise, cancer-specific disease profile, the authors highlight the use of single-cell RNA sequencing (scRNA-seq) data. They focus on TNBC epithelial cells collected from 26 diseased individuals compared to epithelial cells collected from 10 healthy volunteers. The authors are further leveraging drug response data to develop inhibitor combinations.

      Strengths:

      The authors of this study contribute to an ongoing effort to develop automated, robust approaches that leverage gene expression similarities across various cell lines and different treatment regimens, aiming to predict drug response signatures more accurately. The authors are trying to address the gap that remains in computational methods for inferring drug responses at the cell subpopulation level.

      Weaknesses:

      One weakness is that the authors do not compare their method to previous studies. The authors develop a drug response profile by summarizing the time points, concentrations, and cell lines. The computational challenge of creating a single gene list that represents the transcriptional response to a drug across different cell lines and treatment protocols has been previously addressed. The Prototype Ranked List (PRL) procedure, developed by Iorio and co-authors (PNAS, 2010, doi:10.1073/pnas.1000138107), uses a hierarchical majority-voting scheme to rank genes. This method generates a list of genes that are consistently overexpressed or downregulated across individual conditions, which then hold top positions in the PRL. The PRL methodology was used by Aissa and co-authors (Nature Comm 2021, doi:10.1038/s41467-021-21884-z) to analyze drug effects on selective cell populations using scRNA-seq datasets. They combined PRL with Gene Set Enrichment Analysis (GSEA), a method that compares a ranked list of genes like PRL against a specific set of genes of interest. GSEA calculates a Normalized Enrichment Score (NES), which indicates how well the genes of interest are represented among the top genes in the PRL. Compared to the method described in the current manuscript, the PRL method allows for the identification of both upregulated and downregulated transcriptional signatures relevant to the drug's effects. It also gives equal weight to each cell line's contribution to the drug's overall response signature.

      The authors performed experimental validation of the top two identified drugs; however, the effect was modest. In addition, the effect on TNBC cell lines was cell-line specific as the identified drugs were effective against BT20, whose transcriptional signatures from LINCS were used for drug identification, but not against the other two cell lines analyzed. An incorrect choice of genes for the signature may result in capturing similarities tied to experimental conditions (e.g., the same cell line) rather than the drug's actual effects. This reflects the challenges faced by drug response signature methods in both selecting the appropriate subset of genes that make up the signature and in managing the multiple expression profiles generated by treating different cell lines with the same drug.

    2. Reviewer #2 (Public review):

      Summary:

      In their study, Osorio and colleagues present 'retriever,' an innovative computational tool designed to extract disease-specific transcriptional drug response profiles from the LINCS-L1000 project. This tool has been effectively applied to TNBC, leveraging single-cell RNA sequencing data to predict drug combinations that may effectively target the disease. The public review highlights the significant integration of extensive pharmacological data with high-resolution transcriptomic information, which enhances the potential for personalized therapeutic applications.

      Strengths:

      A key finding of the study is the prediction and validation of the drug combination QL-XII-47 and GSK-690693 for the treatment of TNBC. The methodology employed is robust, with a clear pathway from data analysis to experimental confirmation.

      Weaknesses:

      However, several issues need to be addressed. The predictive accuracy of 'retriever' is contingent upon the quality and comprehensiveness of the LINCS-L1000 and single-cell datasets utilized, which is an important caveat as these datasets may not fully capture the heterogeneity of patient responses to treatment. While the in vitro validation of the drug combinations is promising, further in vivo studies and clinical trials are necessary to establish their efficacy and safety. The applicability of these findings to other cancer types also warrants additional investigation. Expanding the application of 'retriever' to a broader range of cancer types and integrating it with clinical data will be crucial for realizing its potential in personalized medicine. Furthermore, as the study primarily focuses on kinase inhibitors, it remains to be seen how well these findings translate to other drug classes.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates the role of norepinephrine (NE) signaling in the hippocampus during event transitions, positing that NE release serves as a mechanism for marking event boundaries to facilitate episodic memory segmentation. The authors use a genetically encoded fluorescent indicator (GRABNE) to measure NE release with high temporal precision, correlating these signals with changes in hippocampal firing dynamics. By integrating photometry data, behavioral analyses, and analysis of neuronal activity from publicly available datasets, the work addresses fundamental questions about the relationship between neuromodulatory signals and memory encoding.

      Strengths:

      The authors present a compelling framework linking NE signaling to event boundaries, offering insight into how episodic memory segmentation may occur in the brain. The writing is clear and the data are well-described. It is easy to follow. The pharmacological validation of the GRABNE sensor enhances confidence in their NE measurements, an important methodological strength given the potential limitations of fluorescence-based neuromodulatory indicators. Moreover, the authors carefully disentangle NE signals from confounding behavioral variables, providing evidence that NE release is time-locked to event boundaries rather than movement or arousal-related behaviors. This level of analytical rigor strengthens their central claims. Additionally, the observation of NE signal dynamics that decay over hundreds of seconds is interesting, as it aligns with timescales relevant to hippocampal plasticity reported in prior literature.

      Weaknesses:

      While the authors establish correlations between NE signaling and hippocampal activity changes, causation is not demonstrated. Future studies using perturbative approaches (e.g., optogenetic or chemogenetic manipulation of NE release) would be necessary to establish a direct causal link. Furthermore, the persistence of NE signals over long timescales (hundreds of seconds) raises questions about its role in encoding rapid event boundaries, as it is unclear how this prolonged signaling might affect memory encoding for closely spaced events. The lack of a discussion about how NE dynamics would operate in such scenarios weakens the proposed framework. Finally, while the authors acknowledge the limitations of the GRABNE sensor, a more detailed exploration of how sensor sensitivity might influence their results would enhance the interpretation of their findings.

    2. Reviewer #2 (Public review):

      Summary:

      The authors use a genetically encoded fluorescent sensor, GRABNE, to measure NE dynamics in the dorsal hippocampus of mice in response to multiple behavioral manipulations. A non-linear model and regression were used to quantitatively assess the contribution of multiple behavioral covariates to changes in NE signaling, with the result that NE signal dynamics were best predicted by time from event transitions, with the signal exponentially decaying over a period of seconds to minutes after transitions. Event transitions were implemented as a transfer from a home cage to a novel arena, a transfer to a familiar linear track, and the introduction of novel objects. Additional experiments showed that spatial context transitions dominate NE signaling over novel object presentations, and experience accelerates the decay of the NE signal after spatial context transitions. Correspondingly, the hippocampal CA1 spatial code takes minutes to stabilize after context transition in both novel and familiar spaces.

      Strengths:

      A strength of the study is the use of the NE sensor with sub-second resolution, non-linear modeling, and regression to identify the prominent variable of interest as time from event transition, and multiple behavioral controls. The use of multiple behavioral designs to investigate the effect of familiarity, experience, and interaction of spatial context transitions and novel object introduction is a strength. Relating the dynamics of NE signal decay to the rate of CA1 spatial code changes is also a strength.

      Weaknesses:

      A minor weakness is that the concept of an event boundary needs to be more broadly discussed. The manuscript uses event transitions such as spatial context changes and novel object introduction to implement an event boundary. However, especially in episodic memory studies in humans, event structure and boundaries have also been shown to occur through the automatic segmentation of experiences into discrete events (Baldassano et al., Neuron, 2017; Radvansky and Zacks, Curr. Opi. Behav. Sci, 2017). The rodent experiments in the current manuscript explicitly introduce event boundaries through changes in context or objects, which can potentially be conflated with novelty. A discussion of these differences, and whether NE can also have a role in event boundary transitions based on automatic segmentation of experiences, will add to the impact of the manuscript.

    3. Reviewer #3 (Public review):

      Summary

      The manuscript investigates the role of norepinephrine (NE) release in the rodent hippocampus during event boundaries, such as transitions between spatial contexts and the introduction of novel objects. It also explores how NE release is altered by experience and how novelty drives the amplitude and decay times of extracellular NE. By utilizing the GRABNE sensor for sub-second resolution measurement of NE, the authors demonstrate that NE release is driven primarily by the time elapsed since an event boundary and is independent of behaviors like movement or reward. The study further explores how hippocampal neural representations are altered over time, showing that these representations stabilize shortly after event transitions, potentially linking NE release to episodic memory encoding.

      Strengths

      Overall, the work provides novel insights into the interplay between NE signaling and hippocampal activity and presents an intriguing hypothesis on how NE release may help push hippocampal activity into unique attractor states to encode novel experiences. The experiments are well-controlled, and the analysis is well-presented, with a detailed and engaging discussion that points towards several new and exciting research directions. The use of several behavioral paradigms to demonstrate the strongest predictor of NE release is a strength, as well as the regression analysis to disambiguate the contribution of other correlated variables. The suggestion that NE does not select ensembles for subsequent replay is also an interesting result.

      Weaknesses

      The authors have not convincingly established a link between hippocampal neural activity and NE release, showing qualitative rather than quantitative correlations. Therefore, at this stage, the role of NE on hippocampal function remains speculative.

      Another general concern is that the smoothing/ kinetics of the sensor impacts the regression analyses. Most of the other variables, such as speed, acceleration, and even reward time points are highly dynamic and it is possible that the limitations of the sensor decorrelate the signal from (potentially) causal variables, therefore resulting in the time since the event start having the most explanatory power for most of the analyses.

      More broadly, the figure legends should be expanded to better describe error bounds, mean vs median, sample sizes, and averaging choices for plots.

      There are also some concerns regarding the nearest neighbor analysis and the reported differences in the rate of reactivations after familiar and novel environments, as outlined below.

      (1) Lines 657-658. How far away in time can the top three nearest neighbor time points be? Must they lie in different trials, or can they also be within the same trial? Is there a systematic difference in the average time lags for the nearest neighbors over the course of the session?

      The authors should only allow nearest neighbors to be in a different lap because systematic changes in behavior (running fast initially) might force earlier time bins in a certain location to match with a different trial, while the later time bins can be from within the same trial if the mice are moving slower and stay in the same spatial bin location longer. The authors should also provide information on how the averaging is performed because there are several axes of variability - spatial bin locations, sessions, different environments, and animals.

      (2) Figure 8: These results are very interesting. However, I am confused by the differences between Figure 8B and D because the significant reactivations in A and C are very similar. The 1-minute and 10-minute windows seem somewhat arbitrary and prone to noise and variability. Perhaps the authors should fit a slope for the curves on A and C and compare whether the slope/ intercept are significantly different between the novel and familiar environments.

    1. Reviewer #1 (Public review):

      Summary:

      It is known that neuronal activity in several brain regions encodes interval time. However, how interval time is encoded across distributed brain regions remains unclear. By simultaneously recording neuronal activity from the hippocampal CA1, dorsal striatum, and orbitofrontal cortex during a temporal bisection task, the authors showed that elapsed time during the interval period is encoded similarly across these regions and that the neuronal activity of time cells across these regions tends to be synchronized within 100 ms. Using Bayesian decoding, they demonstrated that the interval time decoded from the firing activity of time cells in these regions correlated with the rats' decisions and that the times decoded from the neuronal activity of different brain regions were correlated. The sound experiments and analyses support most of the main conclusions of this paper.

      Strengths:

      They used a temporal bisection task in which the effects of time and distance can be dissociated. The test trials successfully revealed the relationship between the interval time estimated by Bayesian decoding and the animal's judgment of long versus short interval times. Simultaneous recording of neuronal activity from the hippocampal CA1, dorsal striatum, and orbitofrontal cortex, which is technically challenging, allowed comparison of interval time encoding across brain regions and the degree of synchrony between neurons from different brain regions.

      Weaknesses:

      Some analyses were not explained in detail, making it difficult to assess whether their results support the authors' conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors examined how neural activity related to temporal information is distributed and coordinated throughout the hippocampus, dorsal striatum, and orbitofrontal cortex. Rats were forced to run for fixed time intervals on a treadmill and make a decision based on whether the interval was long (10s) or short (5s). Under these conditions time cells were observed across all examined brain regions. The primary finding of the authors is that synchronized activity between time cells across brain regions is entrained into the theta cycle. This observation is used to support the central claim that the sharing of temporal information is mediated by the theta oscillation.

      Strengths:

      By simultaneously recording several brain regions in an interval discrimination task, the authors provide a valuable dataset for understanding how temporal information is processed and distributed throughout relevant networks.

      Weaknesses:

      Several methodological concerns should be addressed and a more focused analysis should be performed to strengthen the central claims of this work.

      Major Concerns

      (1) The restriction to only use time cells to understand temporal information processing. Other mechanisms of encoding time, like population clocks and ramping, have been characterized in the striatum and frontal cortex, and these dynamics might contain more temporal information than the subset of cells that meet the statistical criteria for being a time cell. Furthermore, time cells in the OFC, and DS in particular, appear to be heavily biased towards the beginning of treadmill running. This raises the question of whether temporal information can be encoded by neurons other than time cells in these two regions.

      (2) The results of the Bayesian decoding analysis should be expanded on. In particular, the performance of each decoder above the chance level is not quantified. Comparing the performance of decoders trained on all cells to the performance of decoders trained on time cells alone would partially address the question of whether or not time cells are the only cells that can encode temporal information in the DS and OFC.

      (3) The decoding results for the test trials appear different from the results in the authors' previous publication (Shimbo et. al., 2021). There, differences in decoded time between the selected-long and selected-short trials emerged after 5s, the duration of the short trials. This was to be expected given the following two reasons. First, from the task design, it is unclear that the animal can distinguish trial types (long, short, or test) until after the first 5 seconds of treadmill running, making it logical for differences in decoded time to emerge only after this point. Second, time cell activity was identical in the first 5s of the long and short trials as shown in Figure 2A. Here, however, the differences in decoded time during the selected-long and selected-short test trials emerge within the first 2s of treadmill running. Could the authors explain this discrepancy?

      Furthermore, in Figure 6B, at 3 seconds of running time, the decoded time for selected-long and selected-short trials shows a difference of nearly 2 seconds, with no further increase as running time progresses. In contrast, at 2 seconds of running time, there is no significant difference in decoded time for DS and OFC, while CA1 shows a slight increase in the decoded time for selected-long trials. This pattern suggests a sudden jump in the encoded time for selected-long trials between 2 and 3 seconds. However, without explicitly showing the raw data, it is difficult to interpret this result and other results from the decoding analysis.

      Minor Concerns

      (1) It is not clear how the Bayes decoder was trained. Does the training data come entirely from the long trials?

      (2) For Figure 5D, even if only one of two neurons in a pair has its spike rate modulated by theta, wouldn't the expectation be that synchronous spike events between these two neurons would be modulated by theta as well? This analysis might benefit from shuffling methods to determine if the mean resultant length of synchronous spike events is larger than the chance level.

      (3) In Figure 5A, the authors suggest that 'the synchronization of time cells was modulated by theta oscillation.' However, it is unclear whether the population exhibits a preferred theta phase or the phase preference only occurs at the individual cell level. If there is no preference on the population level, how would the authors interpret this result?

    3. Reviewer #3 (Public review):

      Summary:

      This study examines neural activity recorded simultaneously in the hippocampus, dorsal striatum, and orbitofrontal cortex as rats performed an interval timing task. The analyses primarily focus on the activity of "time cells" which are neurons that fire at specific moments during the intervals. In this experiment, the intervals consist of periods when animals are running on a treadmill before selecting the arm associated with the interval duration. The results show that the theta oscillations induced by this running behavior were observed across the three regions and that this strong oscillation modulated the activity of neurons across regions. While these findings are correlative in nature, they provide an important characterization of activity patterns across regions during complex behavior. However, more research is needed to determine whether these activity patterns specifically contribute to temporal coding.

      Strengths:

      (1) Overall, the paper is very well written. Although I have specific concerns about the review of the relevant literature and the interpretation of the results (see below), I do want to commend the authors for their efforts toward presenting this complex work in an accessible manner.

      (2) The study is well designed and the quality of the electrophysiological data collected from multiple brain regions in such a challenging behavioral experiment is impressive. This work is a technical tour de force.

      (3) The analyses are very thorough, statistically rigorous, and clearly explained and visualized. The authors provide a thoughtful mixture of example data (at the level of individual cells or animals) and aggregated data (at the group or session level) to properly explain and quantify the activity patterns of interest.

    1. Reviewer #1 (Public review):

      This study examined the effect of blood pressure variability on brain microvascular function and cognitive performance. By implementing a model of blood pressure variability using an intermittent infusion of AngII for 25 days, the authors examined different cardiovascular variables, cerebral blood flow, and cognitive function during midlife (12-15-month-old mice). Key findings from this study demonstrate that blood pressure variability impairs baroreceptor reflex and impairs myogenic tone in brain arterioles, particularly at higher blood pressure. They also provide evidence that blood pressure variability blunts functional hyperemia and impairs cognitive function and activity. Simultaneous monitoring of cardiovascular parameters, in vivo imaging recordings, and the combination of physiological and behavioral studies reflect rigor in addressing the hypothesis. The experiments are well-designed, and the data generated are clear. I list below a number of suggestions to enhance this important work:

      (1) Figure 1B: It is surprising that the BP circadian rhythm is not distinguishable in either group. Figure 2, however, shows differences in circadian rhythm at different timepoints during infusion. Could the authors explain the lack of circadian effect in the 24-h traces?

      (2) While saline infusion does not result in elevation of BP when compared to Ang II, there is an evident "and huge" BP variability in the saline group, at least 40mmHg within 1 hour. This is a significant physiological effect to take into consideration, and therefore it warrants discussion.

      (3) The decrease in DBP in the BPV group is very interesting. It is known that chronic Ang II increases cardiac hypertrophy, are there any changes to heart morphology, mass, and/or function during BPV? Can the the decrease in DBP in BPV be attributed to preload dysfunction? This observation should be discussed.

      (4) Examining the baroreceptor reflex during the early and late phases of BPV is quite compelling. Figures 3D and 3E clearly delineate the differences between the two phases. For clarity, I would recommend plotting the data as is shown in panels D and E, rather than showing the mathematical ratio. Alternatively, plotting the correlation of ∆HR to ∆SBP and analyzing the slopes might be more digestible to the reader. The impairment in baroreceptor reflex in the BPV during high BP is clear, is there any indication whether this response might be due to loss of sympathetic or gain of parasympathetic response based on the model used?

      (5) Figure 3B shows a drop in HR when the pump is ON irrespective of treatment (i.e., independent of BP changes). What is the underlying mechanism?

      (6) The correlation of ∆diameter vs MAP during low and high BP is compelling, and the shift in the cerebral autoregulation curve is also a good observation. I would strongly recommend that the authors include a schematic showing the working hypothesis that depicts the shift of the curve during BPV.

      (7) Functional hyperemia impairment in the BPV group is clear and well-described. Pairing this response with the kinetics of the recovery phase is an interesting observation. I suggest elaborating on why BPV group exerts lower responses and how this links to the rapid decline during recovery.

      (8) The experimental design for the cognitive/behavioral assessment is clear and it is a reasonable experiment based on previous results. However, the discussion associated with these results falls short. I recommend that the authors describe the rationale to assess recognition memory, short-term spatial memory, and mice activity, and explain why these outcomes are relevant in the BPV context. Are there other studies that support these findings? The authors discussed that no changes in alternation might be due to the age of the mice, which could already exhibit cognitive deficits. In this line of thought, what is the primary contributor to behavioral impairment? I think that this sentence weakens the conclusion on BPV impairing cognitive function and might even imply that age per se might be the factor that modulates the various physiological outcomes observed here. I recommend clarifying this section in the discussion.

      (9) Why were only male mice used?

      (10) In the results for Figure 3: "Ang II evoked significant increases in SBP in both control and BPV groups;...". Also, in the figure legend: "B. Five-minute average HR when the pump is OFF or ON (infusing Ang II) for control and BPV groups...." The authors should clarify this as the methods do not state a control group that receives Ang II.

    2. Reviewer #2 (Public review):

      Summary:

      Blood pressure variability has been identified as an important risk factor for dementia. However, there are no established animal models to study the molecular mechanisms of increased blood pressure variability. In this manuscript, the authors present a novel mouse model of elevated BPV produced by pulsatile infusions of high-dose angiotensin II (3.1ug/hour) in middle-aged male mice. Using elegant methodology, including direct blood pressure measurement by telemetry, programmable infusion pumps, in vivo two-photon microscopy, and neurobehavioral tests, the authors show that this BPV model resulted in a blunted bradycardic response and cognitive deficits, enhanced myogenic response in parenchymal arterioles, and a loss of the pressure-evoked increase in functional hyperemia to whisker stimulation.

      Strengths:

      As the presentation of the first model of increased blood pressure variability, this manuscript establishes a method for assessing molecular mechanisms. The state-of-the-art methodology and robust data analysis provide convincing evidence that increased blood pressure variability impacts brain health.

      Weaknesses:

      One major drawback is that there is no comparison with another pressor agent (such as phenylephrine); therefore, it is not possible to conclude whether the observed effects are a result of increased blood pressure variability or caused by direct actions of Ang II. Ang II is known to have direct actions on cerebrovascular reactivity, neuronal function, and learning and memory. Given that Ang II is increased in only 15% of human hypertensive patients (and an even lower percentage of non-hypertensive), the clinical relevance is diminished. Nonetheless, this is an important study establishing the first mouse model of increased BPV.

    1. Reviewer #1 (Public review):

      Summary:

      Building on previous in vitro synaptic circuit work (Yamawaki et al., eLife 10, 2021), Piña Novo et al. utilize an in vivo optogenetic-electrophysiological approach to characterize sensory-evoked spiking activity in the mouse's forelimb primary somatosensory (S1) and motor (M1) areas. Using a combination of a novel "phototactile" somatosensory stimuli to the mouse's hand and simultaneous high-density linear array recordings in both S1 and M1, the authors report in awake mice that evoked cortical responses follow a triphasic peak-suppression-rebound pattern response. They also find that M1 responses are delayed and attenuated relative to S1. Further analysis revealed a 20-fold difference in subcortical versus corticocortical propagation speeds. They also report that PV interneurons in S1 are strongly recruited by hand stimulation. Furthermore, they report that selective activation of PV cells can produce a suppression and rebound response similar to "phototactile" stimuli. Lastly, the authors demonstrate that silencing S1 through local PV cell activation reduces M1 response to hand stimulation, suggesting S1 may directly drive M1 responses.

      Strengths:

      The study was technically well done, with convincing results. The data presented are appropriately analyzed. The author's findings build on a growing body of both in vitro and in vivo work examining the synaptic circuits underlying the interactions between S1 and M1. The paper is well-written and illustrated. Overall, the study will be useful to those interested in forelimb S1-M1 interactions.

      Weaknesses:

      Although the results are clear and convincing, one weakness is that many results are consistent with previous studies in other sensorimotor systems, and thus not all that surprising. For example, the findings that sensory stimulation results in delayed and attenuated responses in M1 relative to S1 and that PV inhibitory cells in S1 are strongly recruited by sensory stimulation are not novel (e.g., Bruno et al., J Neurosci 22, 10966-10975, 2002; Swadlow, Philos Trans R Soc Lond B Biol Sci 357, 1717-1727, 2002; Gabernet et al., Neuron 48, 315-327, 2005; Cruikshank et al., Nat Neurosci 10, 462-468, 2007; Ferezou et al., Neuron 56, 907-923, 2007; Sreenivasan et al., Neuron 92, 1368-1382, 2016; Yu et al., Neuron 104, 412-427 e414, 2019). Furthermore, the observation that sensory processing in M1 depends upon activity in S1 is also not novel (e.g., Ferezou et al., Neuron 56, 907-923, 2007; Sreenivasan et al., Neuron 92, 1368-1382, 2016). The authors do a good job highlighting how their results are consistent with these previous studies.

      Perhaps a more significant weakness, in my opinion, was the missing analyses given the rich dataset collected. For example, why lump all responsive units and not break them down based on their depth? Given superficial and deep layers respond at different latencies and have different response magnitudes and durations to sensory stimuli (e.g., L2/3 is much more sparse) (e.g., Constantinople et al., Science 340, 1591-1594, 2013; Manita et al., Neuron 86, 1304-1316, 2015; Petersen, Nat Rev Neurosci 20, 533-546, 2019; Yu et al., Neuron 104, 412-427 e414, 2019), their conclusions could be biased toward more active layers (e.g., L4 and L5). These additional analyses could reveal interesting similarities or important differences, increasing the manuscript's impact. Given the authors use high-density linear arrays, they should have this data.

      Similarly, why not isolate and compare PV versus non-PV units in M1? They did the photostimulation experiments and presumably have the data. Recent in vitro work suggests PV neurons in the upper layers (L2/3) of M1 are strongly recruited by S1 (e.g., Okoro et al., J Neurosci 42, 8095-8112, 2022; Martinetti et al., Cerebral cortex 32, 1932-1949, 2022). Does the author's data support these in vitro observations?

      It would have also been interesting to suppress M1 while stimulating the hand to determine if any part of the S1 triphasic response depends on M1 feedback. I appreciate the control experiment showing that optical hand stimulation did not evoke forelimb movement. However, this appears to be an N=1. How consistent was this result across animals, and how was this monitored in those animals? Can the authors say anything about digit movement? A light intensity of 5 mW was used to stimulate the hand, but it is unclear how or why the authors chose this intensity. Did S1 and M1 responses (e.g., amplitude and latency) change with lower or higher intensities? Was the triphasic response dependent on the intensity of the "phototactile" stimuli?

    2. Reviewer #2 (Public review):

      Summary:

      Communication between sensory and motor cortices is likely to be important for many aspects of behavior, and in this study, the authors carefully analyse neuronal spiking activity in S1 and M1 evoked by peripheral paw stimulation finding clear evidence for sensory responses in both cortical regions

      Strengths:

      The experiments and data analyses appear to have been carefully carried out and clearly represented.

      Weaknesses:

      (1) Some studies have found evidence for excitatory projection neurons expressing PV and in particular some excitatory pyramidal cells can be labelled in PV-Cre mice. The authors might want to check if this is the case in their study, and if so, whether that might impact any conclusions.

      (2) I think the analysis shown in Figure S1 apparently reporting the absence of movements evoked by the forepaw stimulation could be strengthened. It is unclear what is shown in the various panels. I would imagine that an average of many stimulus repetitions would be needed to indicate whether there is an evoked movement or not. This could also be state-dependent and perhaps more likely to happen early in a recording session. Videography could also be helpful.

      (3) Some similar aspects of the evoked responses, including triphasic dynamics, have been reported in whisker S1 and M1, and the authors might want to cite Sreenivasan et al., 2016.

    3. Reviewer #3 (Public review):

      Summary:

      This is a solid study of stimulus-evoked neural activity dynamics in the feedforward pathway from mouse hand/forelimb mechanoreceptor afferents to S1 and M1 cortex. The conclusions are generally well supported, and match expectations from previous studies of hand/forelimb circuits by this same group (Yamawaki et al., 2021), from the well-studied whisker tactile pathway to whisker S1 and M1, and from the corresponding pathway in primates. The study uses the novel approach of optogenetic stimulation of PV afferents in the periphery, which provides an impulse-like volley of peripheral spikes, which is useful for studying feedforward circuit dynamics. These are primarily proprioceptors, so results could differ for specific mechanoreceptor populations, but this is a reasonable tool to probe basic circuit activation. Mice are awake but not engaged in a somatosensory task, which is sufficient for the study goals.

      The main results are:<br /> (1) brief peripheral activation drives brief sensory-evoked responses at ~ 15 ms latency in S1 and ~25 ms latency in M1, which is consistent with classical fast propagation on the subcortical pathway to S1, followed by slow propagation on the polysynaptic, non-myelinated pathway from S1 to M1;<br /> (2) each peripheral impulse evokes a triphasic activation-suppression-rebound response in both S1 and M1;<br /> (3) PV interneurons carry the major component of spike modulation for each of these phases;<br /> (4) activation of PV neurons in each area (M1 or S1) drives suppression and rebound both in the local area and in the other downstream area;<br /> (5) peripheral-evoked neural activity in M1 is at least partially dependent on transmission through S1.

      All conclusions are well-supported and reasonably interpreted. There are no major new findings that were not expected from standard models of somatosensory pathways or from prior work in the whisker system.

      Strengths:

      This is a well-conducted and analyzed study in which the findings are clearly presented. This will provide important baseline knowledge from which studies of more complex sensorimotor processing can build.

      Weaknesses:

      A few minor issues should be addressed to improve clarity of presentation and interpretation:

      (1) It is critical for interpretation that the stimulus does not evoke a motor response, which could induce reafference-based activity that could drive, or mask, some of the triphasic response. Figure S1 shows that no motor response is evoked for one example session, but this would be stronger if results were analyzed over several mice.

      (2) The recordings combine single and multi-units, which is fine for measures of response modulation, but not for absolute evoked firing rate, which is only interpretable for single units. For example, evoked firing rate in S1 could be higher than M1, if spike sorting were more difficult in S1, resulting in a higher fraction of multi-units relative to M1. Because of this, if reporting of absolute firing rates is an essential component of the paper, Figs 3D and 4E should be recalculated just for single units.

      (3) In Figure 5B, the average light-evoked firing rate of PV neurons seems to come up before time 0, unlike the single-trial rasters above it. Presumably, this reflects binning for firing rate calculation. This should be corrected to avoid confusion.

      (4) In Figure 6A bottom, please clarify what legends "W. suppression" and "W. rebound" mean.

    1. Reviewer #1 (Public review):

      In this study, the authors investigate the molecular mechanisms driving the establishment of constitutive heterochromatin during embryonic development. The experiments have been meticulously conducted and effectively address the proposed hypotheses.

      The methodology stands out for its robustness, utilizing:<br /> i) an efficient system for converting ESCs to 2C-like cells via Dux overexpression;<br /> ii) a global approach through IPOTD, which unveils the chromatome at distinct developmental stages; and<br /> iii) STORM technology, enabling high-resolution visualization of DNA decompaction. These tools collectively provide clear and comprehensive insights that support the study's conclusions.

      The work makes a significant contribution to the field, offering valuable insights into chromatin-bound proteins at critical stages of embryonic development. These findings may also inform our understanding of processes beyond heterochromatin maintenance.

      The revised manuscript shows improvement, particularly through enhanced discussion and the addition of new references addressing the cooperation of SMARCAD1 and TOPBP1. All my previous concerns have been thoroughly addressed by the authors. However, I believe that, as this reviewer suggested, the inclusion of a model that summarizes the main findings of the study and discusses the potential mechanisms involved, would enhance the clarity and understanding of the message the manuscript aims to convey.

    2. Reviewer #2 (Public review):

      As noted in the original review, the study by Sebastian-Perez addresses an important research question using a tractable model system to examine the earliest drivers of heterochromatin formation during embryogenesis. Moreover, the proteomic analyses provide a valuable resource to the research community to understand changes in the chromatin-bound proteome during the 2C-to-ESC transition. From there, they carry out more detailed analyses of TOPBP1, which shows substantive changes in chromatin association in 2C-like cells, and a potential interacting protein SMARCAD1, which shows only modest changes in chromatin association. While I appreciate that the authors have revised the manuscript to some extent to address the minor points raised, the major over-arching issue of how TOPBP1 and SMARCAD1 function in the 2C-like state is still a concern.

    3. Reviewer #3 (Public review):

      The manuscript entitled "SMARCAD1 and TOPBP1 contribute to heterochromatin maintenance at the transition from the 2C-like to the pluripotent state" by Sebastian-Perez et al. adopted the iPOTD method to compare the chromatin-bound proteome in ESCs and 2CLCs induced by Dux overexpression. The authors identified 397 chromatin-bound proteins enriched specifically in non-2CLCs, among which they further investigated TOPBP1 due to its potential role in chromocenter reorganization. SMARCD1, a known interacting protein of TOPBP1, was also investigated in parallel. The authors report increased size and decreased number of H3K9me3-heterochromatin foci in Dux-induced 2CLCs. Remarkably, depletion of either TOPBP1 or SMARCD1 resulted in similar phenotypes. However, the absence of these proteins did not affect the entry into or exit from the 2C-like state. The authors further showed that both TOPBP1 and SMARCD1 are essential for early embryonic development.

      This manuscript provides valuable insights into the features of 2CLCs regarding H3K9me3-heterochromatin reorganization. However, the findings are largely descriptive. Mechanistic studies are required in future studies, such as: 1) how SMARCD1 associates with H3K9me3 and contributes to heterochromatin maintenance, 2) how TOPBP1 regulates the expression of SMARCD1 and facilitates its localization in heterochromatin foci, 3) whether the remodelling of chromocenter directly influence the transitions between ESCs and 2CLCs.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Zaho and colleagues investigate inflammasome activation by E. tarda infections. They show that E. tarda induces the activation of the NLRC4 inflammasome as well as the non-canonical pathway in human THP1 macrophages. Further dissecting NLRC4 activation, the find that T3SS translocon components eseB, eseC and eseD are necessary for NLRC4 activation, and that delivery of purified eseB is sufficient to trigger NAIP-dependnet NLRC4 activation. Sequence analysis reveals that eseB shares homology within the C-terminus with T3SS needle and rod proteins, leading the authors to test if this region is necessary for inflammasome activation. They show that the eseB CT is required and that it mediates interaction with NAIP. Finally, they that homologs of eseB in other bacteria also share the same sequence and that they can activate NLRC4 in a HEK293T cell overexpression system.

      Strengths:

      This is a very nice study that convincingly shows that eseB and its homologs can be recognized by the human NAIP/NLRC4 inflammasome. The experiments are well-designed, controlled and described, and the papers is convincing as a whole.

      Weaknesses:

      The authors need to discuss their study in the context of previous papers that have shown an important role for E. tarda flagellin in inflammasome activation and test whether flagellin and/or E. tarda T3SSs needle or rod can activate NLRC4.

      The authors show that eseB and its homologs can activate NLRC4, but there are also other translocon proteins that are very different such as YopB or PopB. and share little homology with eseB. It would be nice to include a section comparing the different type 3 secretion systems. are there 2 different families of T3SSs, those that feature translocon components that are recognized by NAIP-NLRC4 and those that cannot be recognized?

      Comments on revisions:

      The authors have addressed my concern with additional experiments, which strengthen the authors' conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      This work by Zhao et al. demonstrates the role of the Edwardsiella tarda type 3 secretion system translocon in activating human macrophage inflammation and pyroptosis. The authors show the requirement of both the bacterial translocon proteins and particular host inflammasome components for E. tarda-induced pyroptosis. In addition, the authors show that the C-terminal region of the translocon protein, EseB, is both necessary and sufficient to induce pyroptosis when present in the cytoplasm. The most terminal region of EseB was determined to be highly conserved among other T3SS-encoding pathogenic bacteria and a subset of these exhibited functionally similar effects on inflammasome activation. Overall, the data support the conclusions and interpretations and provide valuable insights into interactions between bacterial T3SS components and the host immune system., thereby expanding our understanding of E. tarda pathogenesis.

      Strengths:

      The authors use established and reliable molecular biology and bacterial genetics strategies to characterize the roles of the bacterial T3SS translocon and host inflammasome pathways to E. tarda-induced pyroptosis in human macrophages. These observations are naturally expanded upon by demonstrating the specific regions of EseB that are required for inflammasome activation and the conservation of this sequence and function among other pathogenic bacteria.

    1. Reviewer #1 (Public review):

      Satouh et al. report giant organelle complexes in oocytes and early embryos. Although these structures have often been observed in oocytes and early embryos, their exact nature has not been characterized. The authors named these structures "endosomal-lysosomal organelles form assembly structures (ELYSAs)". ELYSAs contain organelles such as endosomes, lysosomes, and probably autophagic structures. ELYSAs are initially formed in the perinuclear region and then seem to migrate to the periphery in an actin-dependent manner. When ELYSAs are disassembled after the 2-cell stage, the V-ATPase V1 subunit is recruited to make lysosomes more acidic and active. The ELYSAs are most likely the same as the "endolysosomal vesicular assemblies (ELVAs)", reported by Elvan Böke's group earlier this year (Zaffagnini et al. doi.org/10.1016/j.cell.2024.01.031). However, it is clear that Satouh et al. identified and characterized these structures independently. These two studies could be complementary. Although the nature of the present study is generally descriptive, this paper provides valuable information about these giant structures. Since the ELYSA described in this paper and ELVA proposed by Elvan Böke appear to be the same structure, it would be helpful to the field if the two groups discuss unifying the nomenclature in the future.

      Comments on latest version:

      In this revised manuscript, the authors have provided additional data supporting their conclusions and also revised the text to more accurately reflect the experimental results.

    2. Reviewer #2 (Public review):

      Satouh et al report the presence of spherical structures composed of endosomes, lysosomes and autophagosomes within immature mouse oocytes. These endolysosomal compartments have been named as Endosomal-LYSosomal organellar Assembly (ELYSA). ELYSAs increase in size as the oocytes undergo maturation. ELYSAs are distributed throughout the oocyte cytoplasm of GV stage immature oocytes but these structures become mostly cortical in the mature oocytes. Interestingly, they tend to avoid the region which contain metaphase II spindle and chromosomes. They show that the endolysosomal compartments in oocytes are less acidic and therefore non-degradative but their pH decreases and become degradative as the ELYSAs begin to disassemble in the embryos post fertilization. This manuscript shows that lysosomal switching does not happen during oocyte development, and the formation of ELYSAs prevent lysosomes from being activated. Structures similar to these ELYSAs have been previously described in mouse oocytes (Zaffagnini et al, 2024) and these vesicular assemblies are important for sequestering protein aggregates in the oocytes but facilitate proteolysis after fertilization. The current manuscript, however, provides further details of endolysosomal disassembly post fertilization. Specifically, the V1-subunit of V-ATPase targeting to the ELYSAs increases the acidity of lysosomal compartments in the embryos. This is a well-conducted study and their model is supported by experimental evidence and data analyses.

      Comments on revisions:

      This revised version of the manuscript has addressed most of my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      The paper details a study of endothelial cell vessel formation during zebrafish development. The results focus on the role of aquaporins, which mediate the flow of water across the cell membrane, leading to cell movement. The authors show that actin and water flow together drive endothelial cell migration and vessel formation. If any of these two elements are perturbed, there are observed defects in vessels. Overall, the paper significantly improves our understanding of cell migration during morphogenesis in organisms.

      Strengths:

      The data are extensive and are of high quality. There is a good amount of quantification with convincing statistical significance. The overall conclusion is justified given the evidence.

      Weaknesses:

      There are two weaknesses, which if addressed, would improve the paper.

      (1) The paper focuses on aquaporins, which while mediates water flow, cannot drive directional water flow. If the osmotic engine model is correct, then ion channels such as NHE1 are the driving force for water flow. Indeed this water is shown in previous studies. Moreover, NHE1 can drive water intake because the export of H+ leads to increased HCO3 due to reaction between CO2+H2O, which increases the cytoplasmic osmolarity (see Li, Zhou and Sun, Frontiers in Cell Dev. Bio. 2021). If NHE cannot be easily perturbed in zebrafish, it might be of interest to perturb Cl channels such as SWELL1, which was recently shown to work together with NHE (see Zhang, et al, Nat. Comm. 2022).

      After revision, this concern has been addressed.

      (2) In some places the discussion seems a little confusing where the text goes from hydrostatic pressure to osmotic gradient. It might improve the paper if some background is given. For example, mention water flow follows osmotic gradients, which will build up hydrostatic pressure. The osmotic gradients across the membrane are generated by active ion exchangers. This point is often confused in literature and somewhere in the intro, this could be made clearer.

      After revision, this concern has been addressed.

    2. Reviewer #3 (Public review):

      Summary:

      Kondrychyn and colleagues describe the contribution of two Aquaporins Aqp1a.1 and Aqp8a.1 towards angiogenic sprouting in the zebrafish embryo. By whole-mount in situ hybridization, RNAscope and scRNA-seq, they show that both genes are expressed in endothelial cells in partly overlapping spatiotemporal patterns. Pharmacological inhibition experiments indicate a requirement for VEGR2 signaling (but not Notch) in transcriptional activation.

      To assess the role of both genes during vascular development the authors generate genetic mutations. While homozygous single mutants appear normal, aqp1a.1;aqp8a.1 double mutants exhibit defects in EC sprouting and ISV formation.

      At the cellular level, the aquaporin mutants display a reduction of filopodia in number and length. Furthermore, a reduction in cell volume is observed indicating a defect in water uptake.

      The authors conclude, that polarized water uptake mediated by aquaporins is required for the initiation of endothelial sprouting and (tip) cell migration during ISV formation. They further propose that water influx increases hydrostatic pressure within the cells which may facilitate actin polymerization and formation membrane protrusions.

      In the revised version of the manuscript the authors have added data which show that inhibition of swell-induced chloride channels mimics aqp mutant phenotypes, giving credence to the model that water influx via aquaporins is driven by an osmotic gradient.

      Strengths:

      The authors provide a detailed analysis of Aqp1a.1 and Aqp8a.1 during blood vessel formation in vivo, using zebrafish intersomitic vessels as a model. State-of-the-art imaging demonstrates an essential role aquaporins in different aspects of endothelial cell activation and migration during angiogenesis.

      Weaknesses:

      With respect to the connection between Aqp1/8 and actin polymerization/filopodia formation, the evidence appears preliminary and the authors' interpretation is guided by evidence from other experimental systems.

      After revision, the authors have addressed all other concerns

    1. Reviewer #1 (Public review):

      Summary:

      This paper is an elegant, mostly observational work, detailing observations that polysome accumulation appears to drive nucleoid splitting and segregation. Overall I think this is an insightful work with solid observations.

      Strengths:

      The strengths of this paper are the careful and rigorous observational work that leads to their hypothesis. They find the accumulation of polysomes correlates with nucleoid splitting, and that the nucleoid segregation occurring right after splitting correlates with polysome segregation. These correlations are also backed up by other observations:

      (1) Faster polysome accumulation and DNA segregation at faster growth rates.<br /> (2) Polysome distribution negatively correlating with DNA positioning near asymmetric nucleoids.<br /> (3) Polysomes form in regions inaccessible to similarly sized particles.

      These above points are observational, I have no comments on these observations leading to their hypothesis.

      Weaknesses:

      It is hard to state weaknesses in any of the observational findings, and furthermore, their two tests of causality, while not being completely definitive, are likely the best one could do to examine this interesting phenomenon.

      Points to consider / address:

      Notably, demonstrating causality here is very difficult (given the coupling between transcription, growth, and many other processes) but an important part of the paper. They do two experiments toward demonstrating causality that help bolster - but not prove - their hypothesis. These experiments have minor caveats, my first two points.

      (1) First, "Blocking transcription (with rifampicin) should instantly reduce the rate of polysome production to zero, causing an immediate arrest of nucleoid segregation". Here they show that adding rifampicin does indeed lead to polysome loss and an immediate halting of segregation - data that does fit their model. This is not definitive proof of causation, as rifampicin also (a) stops cell growth, and (b) stops the translation of secreted proteins. Neither of these two possibilities is ruled out fully.

      1a) As rifampicin also stops all translation, it also stops translational insertion of membrane proteins, which in many old models has been put forward as a possible driver of nucleoid segregation, and perhaps independent of growth. This should at last be mentioned in the discussion, or if there are past experiments that rule this out it would be great to note them.

      1b) They address at great length in the discussion the possibility that growth may play a role in nucleoid segregation. However, this is testable - by stopping surface growth with antibiotics. Cells should still accumulate polysomes for some time, it would be easy to see if nucleoids are still segregated, and to what extent, thereby possibly decoupling growth and polysome production. If successful, this or similar experiments would further validate their model.

      (2) In the second experiment, they express excess TagBFP2 to delocalize polysomes from midcell. Here they again see the anticorrelation of the nucleoid and the polysomes, and in some cells, it appears similar to normal (polysomes separating the nucleoid) whereas in others the nucleoid has not separated. The one concern about this data - and the differences between the "separated" and "non-separated" nuclei - is that the over-expression of TagBFP2 has a huge impact on growth, which may also have an indirect effect on DNA replication and termination in some of these cells. Could the authors demonstrate these cells contain 2 fully replicated DNA molecules that are able to segregate?

      (3) What is not clearly stated and is needed in this paper is to explain how polysomes do (or could) "exert force" in this system to segregate the nucleoid: what a "compaction force" is by definition, and what mechanisms causes this to arise (what causes the "force") as the "compaction force" arises from new polysomes being added into the gaps between them caused by thermal motions.

      They state, "polysomes exert an effective force", and they note their model requires "steric effects (repulsion) between DNA and polysomes" for the polysomes to segregate, which makes sense. But this makes it unclear to the reader what is giving the force. As written, it is unclear if (a) these repulsions alone are making the force, or (b) is it the accumulation of new polysomes in the center by adding more "repulsive" material, the force causes the nucleoids to move. If polysomes are concentrated more between nucleoids, and the polysome concentration does not increase, the DNA will not be driven apart (as in the first case) However, in the second case (which seems to be their model), the addition of new material (new polysomes) into a sterically crowded space is not exerting force - it is filling in the gaps between the molecules in that region, space that needs to arise somehow (like via Brownian motion). In other words, if the polysome region is crowded with polysomes, space must be made between these polysomes for new polysomes to be inserted, and this space must be made by thermal (or ATP-driven) fluctuations of the molecules. Thus, if polysome accumulation drives the DNA segregation, it is not "exerting force", but rather the addition of new polysomes is iteratively rectifying gaps being made by Brownian motion.

      The authors use polysome accumulation and phase separation to describe what is driving nucleoid segregation. Both terms are accurate, but it might help the less physically inclined reader to have one term, or have what each of these means explicitly defined at the start. I say this most especially in terms of "phase separation", as the currently huge momentum toward liquid-liquid interactions in biology causes the phrase "phase separation" to often evoke a number of wider (and less defined) phenomena and ideas that may not apply here. Thus, a simple clear definition at the start might help some readers.

      (4) Line 478. "Altogether, these results support the notion that ectopic polysome accumulation drives nucleoid dynamics". Is this right? Should it not read "results support the notion that ectopic polysome accumulation inhibits/redirects nucleoid dynamics"?

      (5) It would be helpful to clarify what happens as the RplA-GFP signal decreases at midcell in Figure 1- is the signal then increasing in the less "dense" parts of the cell? That is, (a) are the polysomes at midcell redistributing throughout the cell? (b) is the total concentration of polysomes in the entire cell increasing over time?

      (6) Line 154. "Cell constriction contributed to the apparent depletion of ribosomal signal from the mid-cell region at the end of the cell division cycle (Figure 1B-C and Movie S1)" - It would be helpful if when cell constriction began and ended was indicated in Figures 1B and C.

      (7) In Figure 7 they demonstrate that radial confinement is needed for longitudinal nucleoid segregation. It should be noted (and cited) that past experiments of Bacillus l-forms in microfluidic channels showed a clear requirement role for rod shape (and a given width) in the positing and the spacing of the nucleoids.<br /> Wu et al, Nature Communications, 2020 . "Geometric principles underlying the proliferation of a model cell system" https://dx.doi.org/10.1038/s41467-020-17988-7

      (8) "The correlated variability in polysome and nucleoid patterning across cells suggests that the size of the polysome-depleted spaces helps determine where the chromosomal DNA is most concentrated along the cell length. This patterning is likely reinforced through the displacement of the polysomes away from the DNA dense region"

      It should be noted this likely functions not just in one direction (polysomes dictating DNA location), but also in the reverse - as the footprint of compacted DNA should also exclude (and thus affect) the location of polysomes

      (9) Line 159. Rifampicin is a transcription inhibitor that causes polysome depletion over time. This indicates that all ribosomal enrichments consist of polysomes and therefore will be referred to as polysome accumulations hereafter". Here and throughout this paper they use the term polysome, but cells also have monosomes (and 2 somes, etc). Rifampicin stops the assembly of all of these, and thus the loss of localization could occur from both. Thus, is it accurate to state that all transcription events occur in polysomes? Or are they grouping all of the n-somes into one group?

    2. Reviewer #2 (Public review):

      Summary:

      The authors perform a remarkably comprehensive, rigorous, and extensive investigation into the spatiotemporal dynamics between ribosomal accumulation, nucleoid segregation, and cell division. Using detailed experimental characterization and rigorous physical models, they offer a compelling argument that nucleoid segregation rates are determined at least in part by the accumulation of ribosomes in the center of the cell, exerting a steric force to drive nucleoid segregation prior to cell division. This evolutionarily ingenious mechanism means cells can rely on ribosomal biogenesis as the sole determinant for the growth rate and cell division rate, avoiding the need for two separate 'sensors,' which would require careful coupling.

      Strengths:

      In terms of strengths; the paper is very well written, the data are of extremely high quality, and the work is of fundamental importance to the field of cell growth and division. This is an important and innovative discovery enabled through a combination of rigorous experimental work and innovative conceptual, statistical, and physical modeling.

      Weaknesses:

      In terms of weaknesses, I have three specific thoughts.

      Firstly, my biggest question (and this may or may not be a bona fide weakness) is how unambiguously the authors can be sure their ribosomal labeling is reporting on polysomes, specifically. My reading of the work is that the loss of spatial density upon rifampicin treatment is used to infer that spatial density corresponds to polysomes, yet this feels like a relatively indirect way to get at this question, given rifampicin targets RNA polymerase and not translation. It would be good if a more direct way to confirm polysome dependence were possible.

      Second, the authors invoke a phase separation model to explain the data, yet it is unclear whether there is any particular evidence supporting such a model, whether they can exclude simpler models of entanglement/local diffusion (and/or perhaps this is what is meant by phase separation?) and it's not clear if claiming phase separation offers any additional insight/predictive power/utility. I am OK with this being proposed as a hypothesis/idea/working model, and I agree the model is consistent with the data, BUT I also feel other models are consistent with the data. I also very much do not think that this specific aspect of the paper has any bearing on the paper's impact and importance.

      Finally, the writing and the figures are of extremely high quality, but the sheer volume of data here is potentially overwhelming. I wonder if there is any way for the authors to consider stripping down the text/figures to streamline things a bit? I also think it would be useful to include visually consistent schematics of the question/hypothesis/idea each of the figures is addressing to help keep readers on the same page as to what is going on in each figure. Again, there was no figure or section I felt was particularly unclear, but the sheer volume of text/data made reading this quite the mental endurance sport! I am completely guilty of this myself, so I don't think I have any super strong suggestions for how to fix this, but just something to consider.

    3. Reviewer #3 (Public review):

      Summary:

      Papagiannakis et al. present a detailed study exploring the relationship between DNA/polysome phase separation and nucleoid segregation in Escherichia coli. Using a combination of experiments and modelling, the authors aim to link physical principles with biological processes to better understand nucleoid organisation and segregation during cell growth.

      Strengths:

      The authors have conducted a large number of experiments under different growth conditions and physiological perturbations (using antibiotics) to analyse the biophysical factors underlying the spatial organisation of nucleoids within growing E. coli cells. A simple model of ribosome-nucleoid segregation has been developed to explain the observations.

      Weaknesses:

      While the study addresses an important topic, several aspects of the modelling, assumptions, and claims warrant further consideration.

      Major Concerns:

      Oversimplification of Modelling Assumptions:

      The model simplifies nucleoid organisation by focusing on the axial (long-axis) dimension of the cell while neglecting the radial dimension (cell width). While this approach simplifies the model, it fails to explain key experimental observations, such as:

      (1) Inconsistencies with Experimental Evidence:

      The simplified model presented in this study predicts that translation-inhibiting drugs like chloramphenicol would maintain separated nucleoids due to increased polysome fractions. However, experimental evidence shows the opposite-separated nucleoids condense into a single lobe post-treatment (Bakshi et al 2014), indicating limitations in the model's assumptions/predictions. For the nucleoids to coalesce into a single lobe, polysomes must cross the nucleoid zones via the radial shells around the nucleoid lobes.

      (2) The peripheral localisation of nucleoids observed after A22 treatment in this study and others (e.g., Japaridze et al., 2020; Wu et al., 2019), which conflicts with the model's assumptions and predictions. The assumption of radial confinement would predict nucleoids to fill up the volume or ribosomes to go near the cell wall, not the nucleoid, as seen in the data.

      (3) The radial compaction of the nucleoid upon rifampicin or chloramphenicol treatment, as reported by Bakshi et al. (2014) and Spahn et al. (2023), also contradicts the model's predictions. This is not expected if the nucleoid is already radially confined.

      (4) Radial Distribution of Nucleoid and Ribosomal Shell:

      The study does not account for well-documented features such as the membrane attachment of chromosomes and the ribosomal shell surrounding the nucleoid, observed in super-resolution studies (Bakshi et al., 2012; Sanamrad et al., 2014). These features are critical for understanding nucleoid dynamics, particularly under conditions of transcription-translation coupling or drug-induced detachment. Work by Yongren et al. (2014) has also shown that the radial organisation of the nucleoid is highly sensitive to growth and the multifork nature of DNA replication in bacteria.

      The omission of organisation in the radial dimension and the entropic effects it entails, such as ribosome localisation near the membrane and nucleoid centralisation in expanded cells, undermines the model's explanatory power and predictive ability. Some observations have been previously explained by the membrane attachment of nucleoids (a hypothesis proposed by Rabinovitch et al., 2003, and supported by experiments from Bakshi et al., 2014, and recent super-resolution measurements by Spahn et al.).

      Ignoring the radial dimension and membrane attachment of nucleoid (which might coordinate cell growth with nucleoid expansion and segregation) presents a simplistic but potentially misleading picture of the underlying factors.

      This reviewer suggests that the authors consider an alternative mechanism, supported by strong experimental evidence, as a potential explanation for the observed phenomena:<br /> Nucleoids may transiently attach to the cell membrane, possibly through transertion, allowing for coordinated increases in nucleoid volume and length alongside cell growth and DNA replication. Polysomes likely occupy cellular spaces devoid of the nucleoid, contributing to nucleoid compaction due to mutual exclusion effects. After the nucleoids separate following ter separation, axial expansion of the cell membrane could lead to their spatial separation.

      Incorporating this perspective into the discussion or future iterations of the model may provide a more comprehensive framework that aligns with the experimental observations in this study and previous work.

      Simplification of Ribosome States:<br /> Combining monomeric and translating ribosomes into a single 'polysome' category may overlook spatial variations in these states, particularly during ribosome accumulation at the mid-cell. Without validating uniform mRNA distribution or conducting experimental controls such as FRAP or single-molecule measurements to estimate the proportions of ribosome states based on diffusion, this assumption remains speculative.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Wang and colleagues generate single-cell transcriptome and chromatin accessibility data from testicular tissues of two OA and three NOA cases. The authors analyze this dataset to identify novel cellular populations, marker genes, and inter-population interactions that may contribute to proper spermatogenesis. Then they propose a role of specific Sertoli cell subtypes and their interactions via Notch signaling in germ cell development. However, I remain skeptical of their central argument (also highlighted in the title) that stage-specific interactions between Sertoli and germ cells are a key component in NOA development, as my initial concerns regarding potential data misrepresentation, lack of statistical testing, and the rationale behind some of the analyses have not been sufficiently addressed.

      (1) As noted in my previous comments, the analysis of Sertoli cell subtypes is potentially misleading and lacks proper statistical support. The authors claim a significant loss of Sertoli subpopulations in NOA cases, and provide the absolute number of cells in Figure 6B. However, this observation could easily be driven by the total number of cells captured during the experiment and the anatomical location of the specimens. There is no statistical basis to make the claim that this loss is significant. Furthermore, the same analysis should be performed on scATAC-seq cells and presented alongside.

      (2) As pointed out in my initial concerns, some parts of the analyses require additional explanation to clarify their logical flow. For example, the logic of using between-sample correlations to assess colocalization of Sertoli and germ cells is lost on me. How can this be used to infer the important role of specific Sertoli cell populations in spermatogenesis, other than the fact that some of the genes are more co-expressed in the sub-populations? And how is this related to the claim that these cell populations are actually co-localized in the tissue? The authors then dedicate nearly a page describing the pathways enriched in Sertoli and germ cells, but the relevance is unclear, and the argument that these subtypes are functionally related is not convincing enough.

      (3) The statement regarding Notch signaling as a critical component in Sertoli and germ cell interaction is not supported by actual evidence. The inference based on CellphoneDB and an epigenome snapshot that shows not much difference are insufficient to justify this claim.

      (4) The manuscript is overly wordy and descriptive, making it difficult to read and understand the points. The main text needs to be more concise and on point, with unnecessary details removed to sharpen the key points. Non-essential results (e.g. Figure S10 and S11) unrelated to the main argument should be removed.

    2. Reviewer #2 (Public review):

      Summary:

      Shimin Wang et al. investigated the role of Sertoli cells in mediating spermatogenesis disorders in non-obstructive azoospermia (NOA) through stage-specific communications. The authors utilized scRNA-seq and scATAC-seq to analyze the molecular and epigenetic profiles of germ cells and Sertoli cells at different stages of spermatogenesis.

      Strengths:

      By understanding the gene expression patterns and chromatin accessibility changes in Sertoli cells, the authors sought to uncover key regulatory mechanisms underlying male infertility and identify potential targets for therapeutic interventions. They emphasized that the absence of the SC3 subtype would be a major factor contributing to NOA.

      Comments on revisions:

      The authors have addressed my concerns. I have no further comments.

    3. Reviewer #3 (Public review):

      Summary:

      This study profiled the single-cell transcriptome of human spermatogenesis and provided many potentials molecular markers for developing testicular puncture specific marker kits for NOA patients.

      Strengths:

      Perform single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on testicular tissues from two OA patients and three NOA patients

      Weaknesses:

      Most results are analytical and lack specific experiments to support these analytical results and hypotheses.

      Comments on revisions:

      In the revised version of the manuscript, the authors made some effort to revise their manuscript according to reviewers' comments and addressed the problems that I had raised before.

      I have no other serious criticisms regarding the revised manuscript.

    1. Joint Public Review:

      Summary:

      Hossain and coworkers investigate the mechanisms of recognition of xCas9, a variant of Cas9 with expanded targeting capability for DNA. They do so by using molecular simulations and combining different flavors of simulation techniques, ranging from long classical MD simulations, to enhanced sampling, to free energy calculations of affinity differences. Through this, the authors are able to develop a consistent model of expanded recognition based on the enhanced flexibility of the protein receptor.

      Strengths:

      The paper is solidly based on the ability of the authors to master molecular simulations of highly complex systems. In my opinion, this paper shows no major weaknesses. The simulations are carried out in a technically sound way. Comparative analyses of different systems provide valuable insights, even within the well-known limitations of MD. Plus, the authors further investigate why xCas9 exhibits improved recognition of the TGG PAM sequence compared to SpCas9 via well-tempered metadynamics simulations focusing on the binding of R1335 to the G3 nucleobase and the DNA backbone in both SpCas9 and xCas9. In this context, the authors provide a free-energy profiling that helps support their final model.

      The implementation of FEP calculations to mimic directed evolution improvement of DNA binding is also interesting, original and well-conducted.

      Overall, my assessment of this paper is that it represents a strong manuscript, competently designed and conducted, and highly valuable from a technical point of view.

      Weaknesses:

      To make their impact even more general, the authors may consider expanding their discussion on entropic binding to other recent cases that have been presented in the literature recently (such as e.g. the identification of small molecules for Abeta peptides, or the identification of "fuzzy" mechanisms of binding to protein HMGB1). The point on flexibility helping adaptability and expansion of functional properties is important, and should probably be given more evidence and more direct links with a wider picture.

      Comments on revisions:

      We have read the revised version and the response letter and I find that this manuscript is ready. There is no need for further additions/revisions.

    1. Reviewer #1 (Public review):

      This study by Wu et al. provides valuable computational insights into PROTAC-related protein complexes, focusing on linker roles, protein-protein interaction stability, and lysine residue accessibility. The findings are significant for PROTAC development in cancer treatment, particularly breast and prostate cancers.

      Strengths:

      (1) Comprehensive computational analysis of PROTAC-related protein complexes.<br /> (2) Focus on critical aspects: linker role, protein-protein interaction stability, and lysine accessibility.

      Weaknesses:

      (1) Limited examination of lysine accessibility despite its stated importance.<br /> (2) Use of RMSD as the primary metric for conformational assessment, which may overlook important local structural changes.

      The authors' claims about the role of PROTAC linkers and protein-protein interaction stability are generally supported by their computational data. However, the conclusions regarding lysine accessibility could be strengthened with more in-depth analysis. The use of the term "protein functional dynamics" is not fully justified by the presented work, which focuses primarily on structural dynamics rather than functional aspects.

      Comments on revisions:

      The authors have addressed the questions raised substantially.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript reports the computational study of the dynamics of PROTAC-induced degradation complexes. The research investigates how different linkers within PROTACs affect the formation and stability of ternary complexes between the target protein BRD4BD1 and Cereblon E3 ligase, and the degradation machinery. Using computational modeling, docking, and molecular dynamics simulations, the study demonstrates that although all PROTACs form ternary complexes, the linkers significantly influence the dynamics and efficacy of protein degradation. The findings highlight that the flexibility and positioning of Lys residues are crucial for successful ubiquitination. The results also discussed the correlated motions between the PROTAC linker and the complex.

      Strengths:

      The field of PROTAC discovery and design, characterized by its limited research, distinguishes itself from traditional binary ligand-protein interactions by forming a ternary complex involving two proteins. The current understanding of how the structure of PROTAC influences its degradation efficacy remains insufficient. This study investigated the atomic-level dynamics of the degradation complex, offering potentially valuable insights for future research into PROTAC degradability.

      Comments on revisions:

      All my questions have been addressed.

    3. Reviewer #3 (Public review):

      The authors offer an interesting computational study on the dynamics of PROTAC-driven protein degradation. They employed a combination of protein-protein docking, structural alignment, atomistic MD simulations, and post-analysis to model a series of CRBN-dBET-BRD4 ternary complexes, as well as the entire degradation machinery complex. These degraders, with different linker properties, were all capable of forming stable ternary complexes but had been shown experimentally to exhibit different degradation capabilities. While in the initial models of the degradation machinery complex, no surface Lys residue(s) of BRD4 were exposed sufficiently for the crucial ubiquitination step, MD simulations illustrated protein functional dynamics of the entire complex and local side-chain arrangements to bring Lys residue(s) to the catalytic pocket of E2/Ub for reactions. Using these simulations, the authors were able to present a hypothesis as to how linker property affects degradation potency. They were able to roughly correlate the distance of Lys residues to the catalytic pocket of E2/Ub with observed DC50/5h values. This is an interesting and timely study that presents interesting tools that could be used to guide future PROTAC design or optimization.

    1. Reviewer #1 (Public review):

      In the resubmission Simões et al. emphasize the efficacy of their novel, non-invasive imaging methodology in mapping glucose-kinetics to predict key tumor features in two commonly used syngeneic mouse models of glioblastoma. The authors highlight that DGE-DMI has the potential to capture metabolic fluxes with greater sensitivity and acknowledge that future validation of DGE-DMI in patient-derived and spontaneous GBM models, as well as in the context of genetic manipulation of metabolism, would strengthen its clinical application. To further demonstrate the ability of DGE-DMI to predict tumor features, they included an assessment of myeloid cell infiltration along with proliferation, peritumoral invasion, and distant migration. Overall, the authors offer a novel method to the scientific community that can be further tested and adapted for interrogating GBM heterogeneity.

    2. Reviewer #3 (Public review):

      Summary:

      Simoes et al enhanced dynamic glucose-enhanced (DGE) deuterium spectroscopy with Deuterium Metabolic Imaging (DMI) to characterize the kinetics of glucose conversion in two murine models of glioblastoma (GBM). The authors combined spectroscopic imaging and noise attenuation with histological analysis and showcased the efficacy of metabolic markers determined from DGE DMI to correlate with histological features of the tumors. This approach is also potent to differentiate the two models from GL261 and CT2A.

      Strengths:

      The primary strength of this study is to highlight the significance of DGE DMI to interrogate the metabolic flux from glucose. The authors focused on glutamine/glutamate and lactate. They attempted to correlate the imaging findings with in-depth histological analysis to depict the link between metabolic features and pathological characteristics such as cell density, infiltration, and distant migration.

    1. Reviewer #1 (Public review):

      Summary:

      In this revised report, Yamanaka and colleagues investigate a proposed mechanism by which testosterone modulates seminal plasma metabolites in mice. The authors identify oleic acid as a particularly important metabolite, derived from seminal vesicle epithelium, that stimulates linear progressive motility in isolated cauda epidydimal sperm in vitro. The authors provide additional experimental evidence of a testosterone dependent mechanism of oleic acid production by the seminal vesicle epithelium.

      Strengths:

      Often, reported epidydimal sperm from mice have lower percent progressive motility compared with sperm retrieved from the uterus or by comparison with human ejaculated sperm. The findings in this report may improve in vitro conditions to overcome this problem, as well as add important physiological context to the role of reproductive tract glandular secretions in modulating sperm behaviors. The strongest observations are related to the sensitivity of seminal vesicle epithelial cells to testosterone. The revisions include addition of methodological detail, modified language to reflect the nuance of some of the measurements, as well as re-performed experiments with more appropriate control groups. The findings are likely to be of general interest to the field by providing context for follow-on studies regarding the relationship between fatty acid beta oxidation and sperm motility pattern.

      Weaknesses:

      Support for the proposed mechanism is stronger in this revised report than in the previous report, but there are many challenges in measuring sperm metabolism and its direct relationship with motility patterns. This study is no exception and largely relies on correlations between various experiments in lieu of direct testing. Additionally, the discussion is framed from a human pre-clinical perspective, and it should be noted that the reproductive physiology between mice and humans is very different.

    2. Reviewer #2 (Public review):

      Using a combination of in vivo studies with testosterone-inhibited and aged mice with lower testosterone levels as well as isolated mouse and human seminal vesicle epithelial cells the authors show that testosterone induces an increase in glucose uptake. They find that testosterone induces a difference in gene expression with a focus on metabolic enzymes. Specifically, they identify increased expression of enzymes regulating cholesterol and fatty acid synthesis, leading to increased production of 18:1 oleic acid. The revised version strengthens the role of ACLY as the main regulator of seminal vesicle epithelial cell metabolic programming. 18:1 oleic acid is secreted by seminal vesicle epithelial cells and taken up by sperm, inducing an increase in mitochondrial respiration. The difference in sperm motility and in vivo fertilization in the presence of 18:1 oleic acid and the absence of testosterone, however, is small. Additional experiments should be included to further support that oleic acid positively affects sperm function.

    1. I think the book is fantastic I'm now going to outlined review of a book and then at the end briefly point out some potential implications for psychiatric diagnosis and neurodiversity

      for - implications of book "The Brain Abstracted" for neurodiversity - SOURCE - Youtube - book review - Reviewing "The Brain Abstracted - Simplification in the History and Philosophy of Neuroscience" - M. Chirimuuta - Youtube channel: Philosophy of Psychiatric Diagnoses - 2025 Jan 23

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sur and colleagues present insights into the potential pathways and mechanisms underlying the pathogenesis of cystinosis - a prototypical lysosomal storage disorder caused by the loss of the cystine transporter cystinosin (CTNS). This deficiency results in early dysfunction of proximal tubule (PT) cells and proximal tubulopathy, which progresses to chronic kidney disease and multisystem complications later in life. The authors utilize patient-derived cell lines and knockout (KO) strategies in immortalized PT cell systems, alongside transcriptomics and pathway enrichment analyses, to demonstrate that the loss of CTNS function reduces V-ATPase subunits (specifically V-ATP6V0A1), impairing autophagy and mitochondrial homeostasis. These findings are consistent with their prior work and follow-up studies conducted in preclinical models (mouse, rat, and zebrafish) of cystinosis and CTNS deficiency.

      Importantly, the authors highlight rescue strategies that involve correcting V-ATP6V0A1 expression or modulating redox dyshomeostasis through ATX treatment. These interventions restore cellular homeostasis in patient-derived cells, providing actionable therapeutic targets for patients in need of novel causal therapies.

      Strengths:

      The implications for health, disease, and therapeutic discovery are considerable, given the central role of autophagy and lysosome-related pathways in regulating critical cellular processes and physiological functions.

      Weaknesses:

      Despite these promising findings, further experimental research is required to strengthen the study's framework and conclusions. This includes characterizing the physiological properties of the PT cellular systems used, performing appropriate control or sentinel experiments in lysosome function assays, and further delineating disease phenotypes associated with cystinosis. Follow-up investigations into lysosome abnormalities and autophagy dysfunctions are also needed, along with a detailed exploration of the molecular mechanisms underlying the rescue of lysosomal, autophagic, and mitochondrial phenotypes through ATX treatment.

    1. Reviewer #1 (Public review):

      Summary:

      Busch and Hansel present a morphological and histological comparison between mouse and human Purkinje cells (PCs) in the cerebellum. The study reveals species-specific differences that have not previously been reported despite numerous observations of these species. While mouse PCs show morphological heterogeneity and occasional multi-innervation by climbing fibers (CFs), human PCs exhibit a widespread, multi-dendritic structure that exceeds expectations based on allometric scaling. Specifically, human PCs are significantly larger, and exhibit increased spine density, with a unique cluster-like morphology not found in mice.

      Strengths:

      The manuscript provides an exceptionally detailed analysis of PC morphology across species, surpassing any prior publication. Major strengths include a systematic and thorough methodology, rigorous data analysis, and clear presentation of results. This work is likely to become the go-to resource for quantitation in this field. The authors have largely achieved their aims, with the results effectively supporting their conclusions.

      Weaknesses:

      There are a few concerns that need to be addressed, specifically related to details of the methodolology as well as data interpretation based on the limits of some experimental approaches. Overall, these weaknesses are minor.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript aims to follow up on a previously published paper (Busch and Hansel 2023) which proposed that the morphological variation of dendritic bifurcation in Purkinje cells in mice and humans is indicative of the number of climbing fiber inputs, with dendritic bifurcation at the level of the soma resulting in a proportion of these neurons being multi-innervated. The functional and anatomical climbing fiber data was obtained solely from mice since all human tissue was embalmed and fixed, and the extension of these findings to human Purkinje cells was indirect. The current comparative anatomy study aims to resolve this question in human tissue more directly and to further analyse in detail the properties of adult human Purkinje cell dendritic morphology.

      Strengths:

      The authors have carried out a meticulous anatomical quantification of human Purkinje cell dendrites, in tissue preparations with a better signal-to-noise ratio than their previous study, comparing them with those from mice. Importantly, they now present immunolabelling results that trace climbing fiber axons innervating human PCs. As well as providing detailed analyses of spine properties and interesting new findings of human PC dendritic length and spine types, the work confirms that human PCs that have two clearly distinct dendritic branches have an approximately x% chance of receiving more than one CF input, segregated across the two branches. Albeit entirely observational, the data will be of widespread interest to the cerebellar field, in particular, those building computational models of Purkinje cells.

      Weaknesses:

      The work is, by necessity, purely anatomical. It remains to be seen whether there are any functional differences in ion channel expression or functional mapping of granule inputs to human PCs compared with the mouse that might mitigate the major differences in electronic properties suggested.

    1. Reviewer #1 (Public review):

      Summary:

      The authors track the motion of multiple consortia of Multicellular Magnetotactic Bacteria moving through an artificial network of pores and report a discovery of a simple strategy for such consortia to move fast through the network: an optimum drift speed is attained for consortia that swim a distance comparable to the pore size in the time it takes to align the with an external magnetic field. The authors rationalize their observations using dimensional analysis and numerical simulations. Finally, they argue that the proposed strategy could generalize to other species by demonstrating the positive correlation between the swimming speed and alignment time based on parameters derived from literature.

      Strengths:

      The underlying dimensional analysis and model convincingly rationalize the experimental observation of an optimal drift velocity: the optimum balances the competition between the trapping in pores at large magnetic fields and random pore exploration for weak magnetic fields.

      Weaknesses:

      The convex pore geometry studied here creates convex traps for cells, which I expect enhances their trapping. The more natural concave geometries, resulting from random packing of spheres, would create no such traps. In this case, whether a non-monotonic dependence of the drift velocity on the Scattering number would persist is unclear.

    2. Reviewer #2 (Public review):

      Summary:

      The authors have made microfluidic arrays of pores and obstacles with a complex shape and studied the swimming of multicellular magnetotactic bacteria through this system. They provide a comprehensive discussion of the relevant parameters of this system and identify one dimensionless parameter, which they call the scattering number and which depends on the swimming speed and magnetic moment of the bacteria as well as the magnetic field and the size of the pores, as the most relevant. They measure the effective speed through the array of pores and obstacles as a function of that parameter, both in their microfluidic experiments and in simulations, and find an optimal scattering number, which they estimate to reflect the parameters of the studied multicellular bacteria in their natural environment. They finally use this knowledge to compare different species to test the generality of this idea.

      Strengths:

      This is a beautiful experimental approach and the observation of an optimal scattering number (likely reflecting an optimal magnetic moment) is very convincing. The results here improve on similar previous work in two respects: On the one hand, the tracking of bacteria does not have the limitations of previous work, and on the other hand, the effective motility is quantified. Both features are enabled by choices of the experimental system: the use the multicellular bacteria which are larger than the usual single-celled magnetotactic bacteria and the design of the obstacle array which allows the quantification of transition rates due to the regular organization as well as the controlled release of bacteria into this array through a clever mechanism.

      Weaknesses:

      Some of the reported results are not as new as the authors suggest, specifically trapping by obstacles and the detrimental effect of a strong magnetic field have been reported before as has the hypothesis that the magnetic moment may be optimized for swimming in a sediment environment where there is a competition of directed swimming and trapping. Other than that, some of the key experimental choices on which the strength of the approach is based also come at a price and impose some limitations, namely the use of a non-culturable organism and the regular, somewhat unrealistic artificial obstacle array.

    1. Reviewer #1 (Public review):

      Summary:

      Cruz-González and colleagues draw on DNA methylation and paired genetic data from 621 participants (n=308 controls; n=313 participants with Alzheimer's Disease). The authors generate a panel of epigenetic biomarkers of aging with a primary focus on the Horvath multi-tissue clock. The authors find weaker correlations between predicted epigenetic age and chronological age in subgroups with higher African ancestry than within a subgroup identified as White. The authors then examine genetic variation as a potential source for between-group differences in epigenetic clock performance. The authors draw on a large collection of publicly available methylation quantitative trait loci datasets and find evidence for substantial overlap between clock CpGs located within the Horvath clock and methQTLs. Going further, the authors show that methQTLs that overlap with Horvath clock CpGs show greater allelic variation in African ancestral groups pointing to a potential explanation for poorer clock performance within this group.

      Strengths:

      This is an interesting dataset and an important research question. The authors cite issues of portability regarding polygenic risk scores as a motivation to examine between-group differences in the performance of a panel of epigenetic clocks. The authors benefit from a diverse cohort of individuals with paired genetic data and focus on a clinical phenotype, Alzheimer's disease, of clear relevance for studies evaluating age-related biomarkers.

      Weaknesses:

      While the authors tackle an important question using a diverse cohort the current manuscript is lacking some detail that may diminish the potential impact of this paper. For example:

      (1) Information on chronological ages across groups should be reported to ensure there are no systematic differences in ages or age ranges between groups (see point below).

      (2) The authors compare correlations between chronological age and epigenetic age in sub-groups within to correlations reported by Horvath (2013). Attempting to draw comparisons between these two datasets is problematic. The current study has a much smaller N (particularly for sub-group analyses) and has a more restricted age range (60-90yrs versus 0-100 yrs). Thus, is an alternative explanation simply that any weaker correlations observed in this study are driven by sample size and a restricted age range? Reporting the chronological ages (and ranges) across subgroups in the current study would help in this regard. Similarly, given the lack of association between AD status and epigenetic age (and very small effect in the white group), it may be of interest to examine the correlation between chronological age and epigenetic age in each group including the AD participants: would the between-group differences in correlations between chronological age and epigenetic be altered by increasing the sample size?

      (3) The correlation between chronological age and epigenetic age, while helpful is not the most informative estimate of accuracy. Median absolute error (and an analysis of MAE across subgroups) would be a helpful addition.

      (4) More information should be provided about how DNAm data were generated. Were samples from each ancestral group randomized across plates/slides to ensure ancestry and batch are not associated? How were batch effects considered? Given the relatively small sample sizes, it would be important to consider the impact of technical variation on measures of epigenetic age used in the current study. The use of principal Component-based versions of these clocks (Higgins Chen et al., 2023; Nature Aging https://doi.org/10.1038/s43587-022-00248-2) may help address concerns such concerns.

      (5) Marioni et al., (2015) found a very weak cross-sectional association between DNAm Age and cognitive function (r~0.07) in a cohort of >900 participants. Given these effect sizes, I would not interpret the absence of an effect in the current study to reflect issues of portability of epigenetic biomarkers.

      6) The methQTL analyses presented are suggestive of potential genetic influence on DNAm at some Horvath CpGs. Do authors see differences in DNAm across ancestral groups at these potentially affected CpGs? This seems to be a missing piece together (e.g., estimating the likely impact of methQTL on clock CpG DNAm).

    2. Reviewer #2 (Public review):

      Summary:

      This paper seeks to characterize the portability of methylation clocks across groups. Methylation clocks are trained to predict biological aging from DNA methylation but have largely been developed in datasets of individuals with primarily European ancestries. Given that genetic variation can influence DNA methylation, the authors hypothesize that methylation clocks might have reduced accuracy in non-European ancestries.

      Strengths:

      The authors evaluate five methylation clocks in 621 individuals from the MAGENTA study. This includes approximately 280 individuals sampled in Puerto Rico, Cuba, and Peru, as well as approximately 200 self-identified African American individuals sampled in the US. To understand how methylation clock accuracy varies with proportion of non-European ancestry, the authors inferred local ancestry for the Puerto Rican, Cuban, Peruvian, and African American cohorts. Overall, this paper presents solid evidence that methylation clocks have reduced accuracy in individuals with non-European ancestries, relative to individuals with primarily European ancestries. This should be of great interest to those researchers who seek to use methylation clocks as predictors of age-related, late-onset diseases and other health outcomes.

      Weaknesses:

      One clear strength of this paper is the ability to do more sophisticated analyses using the local ancestry calls for the MAGENTA study. It would be valuable to capitalize on this strength and assess portability across the genetic ancestry spectrum, as was recently advocated by Ding et al. in Nature (2023). For example, the authors could regress non-European local ancestry fraction on measures of prediction accuracy. This could paint a clearer picture of the relationship between genetic ancestry and clock accuracy, compared to looking at overall correlations within each cohort.

      The authors present two possible reasons that methylation clocks might have reduced accuracy in individuals with non-European ancestries: genetic variants disrupting methylation sites (i.e. "disruptive variants"), and genetic variants influencing methylation sites (i.e. meQTLs). The authors conclude disruptive variants do not contribute to poor methylation clock portability, but the evidence in support of this conclusion is incomplete. The site frequency spectrum of disruptive variants in Figure 4 is estimated from all gnomAD individuals, and gnomAD is comprised of primarily European individuals. Thus, the observation that disruptive variants are generally rare in gnomAD does not rule them out as a source of poor clock portability in admixed individuals with non-European ancestries.

      It is also unclear to what extent meQTLs impact methylation clock portability. The authors find that the frequency of meQTLs is higher in African ancestry populations, but this could reflect the fact that some of the analyzed meQTLs were ascertained in African Americans. The number of meQTL-affected methylation sites also varies widely between clocks, ranging from 6 to 271; thus, meQTLs likely impact the portability of different clocks in different ways. Overall, the paper would benefit from a more quantitative assessment of the extent to which meQTLs influence clock portability.

      The paper implies that methylation clocks have an inferior ability to predict AD risk in admixed populations relative to white individuals, but the difference between white AD patients and controls is not significant when correcting for multiple testing. This nuance should be made more explicit.

      Finally, this paper overlooks the possibility that environmental exposures co-vary with genetic ancestry and play a role in decreasing the accuracy of methylation clocks in genetically admixed individuals. Quantifying the impact of environmental factors is almost certainly outside of the scope of this paper. However, it is worth acknowledging the role of environmental factors to provide the field with a more comprehensive overview of factors influencing methylation clock portability. It is also essential to avoid the assumption that correlations with genetic ancestry necessarily arise from genetic causes.

    3. Reviewer #3 (Public review):

      This manuscript examines the accuracy of DNA methylation-based epigenetic clocks across multiple cohorts of varying genetic ancestry. The authors find that clocks were generally less accurate at predicting age in cohorts with large proportions of non-European (especially African) ancestry, compared to cohorts with high European ancestry proportions. They suggest that some of this effect might be explained by meQTLs that occur near CpG sites included in clocks, because these variants may be at higher frequencies (or at least different frequencies) in cohorts with high proportions of non-European ancestry relative to the training set. They also provide discussions of potential paths forward to alleviate bias and improve portability for future clock algorithms.

      The topic is timely due to the increasing popularity of DNA methylation-based clocks and the acknowledgment that many algorithms (e.g., polygenic risk scores) lack portability when applied to cohorts that substantially differ in ancestry or other characteristics from the training set. This has been discussed to some degree for DNA methylation-based clocks, but could of course use more discussion and empirical attention which the authors nicely provide using an impressive and diverse collection of data.

      The manuscript is clear and well-written, however, some key background was missing (e.g., what we know already about the ancestry composition of clock training sets) and most importantly several analyses would benefit from being taken one step further. For example, the main argument of the paper is that ancestry impacts clock predictions, but this is determined by subsetting the data by recruitment cohort rather than analyzing ancestry as a continuous variable. Extending some of the analyses could really help the authors nail down their hypothesized sources of lack of portability, which is critical for making recommendations to the community and understanding the best paths forward.

    1. Reviewer #1 (Public review):

      Summary:

      Using high-quality genomic data (long-reads, optical maps, short-reads) and advanced bioinformatic analysis, the authors aimed to document chromosomal rearrangements across a recent radiation (Lake Malawi Cichlids). Working on 11 species, they achieved a high-resolution inversion detection and then investigated how inversions are distributed within populations (using a complementary dataset of short-reads), associated with sex, and shared or fixed among lineages. The history and ancestry of the inversions is also explored.

      On one hand, I am very enthusiastic about the global finding (many inversions well-characterized in a highly diverse group!) and impressed by the amount of work put into this study. On the other hand, I have struggled so much to read the manuscript that I am unsure about how much the data supports some claims. I'm afraid most readers may feel the same and really need a deep reorganisation of the text, figures, and tables. I reckon this is difficult given the complexity brought by different inversions/different species/different datasets but it is highly needed to make this study accessible.

      The methods of comparing optical maps, and looking at inversions at macro-evolutionary scales can be useful for the community. For cichlids, it is a first assessment that will allow further tests about the role of inversions in speciation and ecological specialisation. However, the current version of the manuscript is hardly accessible to non-specialists and the methods are not fully reproducible.

      Strengths:

      (1) Evidence for the presence of inversion is well-supported by optical mapping (very nice analysis and figure!).

      (2) The link between sex determination and inversion in chr 10 in one species is very clearly demonstrated by the proportion in each sex and additional crosses. This section is also the easiest to read in the manuscript and I recommend trying to rewrite other result sections in the same way.

      (3) A new high-quality reference genome is provided for Metriaclima zebra (and possibly other assemblies? - unclear).

      (4) The sample size is great (31 individuals with optical maps if I understand well?).

      (5) Ancestry at those inversions is explored with outgroups.

      (6) Polymorphism for all inversions is quantified using a complementary dataset.

      Weaknesses:

      (1) Lack of clarity in the paper: As it currently reads, it is very hard to follow the different species, ecotypes, samples, inversions, etc. It would be useful to provide a phylogeny explicitly positioning the samples used for assembly and the habitat preference. Then the text would benefit from being organised either by variant or by subgroups rather than by successive steps of analysis.

      (2) Lack of information for reproducibility: I couldn't find clearly the filters and parameters used for the different genomic analyses for example. This is just one example and I think the methods need to be re-worked to be reproducible. Including the codes inside the methods makes it hard to follow, so why not put the scripts in an indexed repository?

      (3) Further confirmation of inversions and their breakpoints would be valuable. I don't understand why the long-reads (that were available and used for genome assembly) were not also used for SV detection and breakpoint refinement.

      (4) Lack of statistical testing for the hypothesis of introgression: Although cichlids are known for high levels of hybridization, inversions can also remain balanced for a long time. what could allow us to differentiate introgression from incomplete lineage sorting?

      (5) The sample size is unclear: possibly 31 for Bionano, 297 for short-reads, how many for long-reads or assemblies? How is this sample size split across species? This would deserve a table.

      (6) Short read combines several datasets but batch effect is not tested.

      (7) It is unclear how ancestry is determined because the synteny with outgroups is not shown.

      (8) The level of polymorphism for the different inversions is difficult to interpret because it is unclear whether replicated are different species within an eco-group or different individuals from the same species. How could it be that homozygous references are so spread across the PCA? I guess the species-specific polymorphism is stronger than the ancestral order but in such a case, wouldn't it be worth re-doing the PCa on a subset?

    2. Reviewer #2 (Public review):

      Summary:

      Chromosomal inversions have been predicted to play a role in adaptive evolution and speciation because of their ability to "lock" together adaptive alleles in genomic regions of low recombination. In this study, the authors use a combination of cutting-edge genomic methods, including BioNano and PacBio HiFi sequencing, to identify six large chromosomal inversions segregating in over 100 species of Lake Malawi cichlids, a classic example of adaptive radiation and rapid speciation. By examining the frequencies of these inversions present in species from six different linages, the authors show that there is an association between the presence of specific inversions with specific lineages/habitats. Using a combination of phylogenetic analyses and sequencing data, they demonstrate that three of the inversions have been introduced to one lineage via hybridization. Finally, genotyping of wild individuals as well as laboratory crosses suggests that three inversions are associated with XY sex determination systems in a subset of species. The data add to a growing number of systems in which inversions have been associated with adaptation to divergent environments. However, like most of the other recent studies in the field, this study does not go beyond describing the presence of the inversions to demonstrate that the inversions are under sexual or natural selection or that they contribute to adaptation or speciation in this system.

      Strengths:

      All analyses are very well done, and the conclusions about the presence of the six inversions in Lake Malawi cichlids, the frequencies of the inversions in different species, and the presence of three inversions in the benthic lineages due to hybridization are well-supported. Genotyping of 48 individuals resulting from laboratory crosses provides strong support that the chromosome 10 inversion is associated with a sex-determination locus.

      Weaknesses:

      The evidence supporting a role for the chromosome 11 inversion and the chromosome 9 inversion in sex determination is based on relatively few individuals and therefore remains suggestive. The authors are mostly cautious in their interpretations of the data. However, there are a few places where they state that the inversions are favored by selection, but they provide no evidence that this is the case and there is no consideration of alternative hypotheses (i.e. that the inversions might have been fixed via drift).

    3. Reviewer #3 (Public review):

      This is a very interesting paper bringing truly fascinating insight into the genomic processes underlying the famous adaptive radiation seen in cichlid fishes from Lake Malawi. The authors use structural and sequence information from species belonging to distinct ecotypic categories, representing subclades of the radiation, to document structural variation across the evolutionary tree, infer introgression of inversions among branches of the clade, and even suggest that certain rearrangements constitute new sex-determining loci. The insight is intriguing and is likely to make a substantial contribution to the field and to seed new hypotheses about the ecological processes and adaptive traits involved in this radiation.

      I think the paper could be clarified in its prose, and that the discussion could be more informative regarding the putative roles of the inversions in adaptation to each ecotypic niche. Identifying key, large inversions shared in various ways across the different taxa is really a great step forward. However, the population genomics analysis requires further work to describe and decipher in a more systematic way the evolutionary forces at play and their consequences on the various inversions identified.

      The model of evolution involving multiple inversions putatively linking together co-adapted "cassettes" could be better spelled out since it is not entirely clear how the existing theory on the recruitment of inversions in local adaptation (e.g. Kirkpatrick and Barton) operates on multiple unlinked inversions. How such loci correspond to distinct suites of integrated traits, or not, is not very easy to envision in the current state of the manuscript.

      The role of one inversion in sex determination is apparent and truly intriguing. However, the implication of such locus on ecological adaptation is somewhat puzzling. Also, whether sex determination loci can flow across species via introgression seems quite important as a route to chromosomal sex determination, so this could be discussed further.

    1. Reviewer #1 (Public review):

      Summary:

      Zacharia and colleagues investigate the role of the C-terminus of IFT172 (IFT172c), a component of the IFT-B subcomplex. IFT172 is required for proper ciliary trafficking and mutations in its C-terminus are associated with skeletal ciliopathies. The authors begin by performing a pull-down to identify binding partners of His-tagged CrIFT172968-C in Chlamydomonas reinhardtii flagella. Interactions with three candidates (IFT140, IFT144, and a UBX-domain containing protein) are validated by AlphaFold Multimer with the IFT140 and IFT144 predictions in agreement with published cryo-ET structures of anterograde and retrograde IFT trains. They present a crystal structure of IFT172c and find that a part of the C-terminal domain of IFT172 resembles the fold of a non-canonical U-box domain. As U-box domains typically function to bind ubiquitin-loaded E2 enzymes, this discovery stimulates the authors to investigate the ubiquitin-binding and ubiquitination properties of IFT172c. Using in vitro ubiquitination assays with truncated IFT172c constructs, the authors demonstrate partial ubiquitination of IFT172c in the presence of the E2 enzyme UBCH5A. The authors also show a direct interaction of IFT172c with ubiquitin chains in vitro. Finally, the authors demonstrate that deletion of the U-box-like subdomain of IFT172 impairs ciliogenesis and TGFbeta signaling in RPE1 cells.

      However, some of the conclusions of this paper are only partially supported by the data, and presented analyses are potentially governed by in vitro artifacts. In particular, the data supporting autoubiquitination and ubiquitin-binding are inconclusive. Without further evidence supporting a ubiquitin-binding role for the C-terminus, the title is potentially misleading.

      Strengths:

      (1) The pull-down with IFT172 C-terminus from C. reinhardtii cilia lysates is well performed and provides valuable insights into its potential roles.

      (2) The crystal structure of the IFT172 C-terminus is of high quality.

      (3) The presented AlphaFold-multimer predictions of IFT172c:IFT140 and IFT172c:IFT144 are convincing and agree with experimental cryo-ET data.

      Weaknesses:

      (1) The crystal structure of HsIFT172c reveals a single globular domain formed by the last three TPR repeats and C-terminal residues of IFT172. However, the authors subdivide this globular domain into TPR, linker, and U-box-like regions that they treat as separate entities throughout the manuscript. This is potentially misleading as the U-box surface that is proposed to bind ubiquitin or E2 is not surface accessible but instead interacts with the TPR motifs. They justify this approach by speculating that the presented IFT172c structure represents an autoinhibited state and that the U-box-like domain can become accessible following phosphorylation. However, additional evidence supporting the proposed autoinhibited state and the potential accessibility of the U-box surface following phosphorylation is needed, as it is not tested or supported by the current data.

      (2) While in vitro ubiquitination of IFT172 has been demonstrated, in vivo evidence of this process is necessary to support its physiological relevance.

      (3) The authors describe IFT172 as being autoubiquitinated. However, the identified E2 enzymes UBCH5A and UBCH5B can both function in E3-independent ubiquitination (as pointed out by the authors) and mediate ubiquitin chain formation in an E3-independent manner in vitro (see ubiquitin chain ladder formation in Figure 3A). In addition, point mutation of known E3-binding sites in UBCH5A or TPR/U-box interface residues in IFT172 has no effect on the mono-ubiquitination of IFT172c1. Together, these data suggest that IFT172 is an E3-independent substrate of UBCH5A in vitro. The authors should state this possibility more clearly and avoid terminology such as "autoubiquitination" as it implies that IFT172 is an E3 ligase, which is misleading. Similarly, statements on page 10 and elsewhere are not supported by the data (e.g. "the low in vitro ubiquitination activity exhibited by IFT172" and "ubiquitin conjugation occurring on HsIFT172C1 in the presence of UBCH5A, possibly in coordination with the IFT172 U-box domain").

      (4) Related to the above point, the conclusion on page 11, that mono-ubiquitination of IFT172 is U-box-independent while polyubiquitination of IFT172 is U-box-dependent appears implausible. The authors should consider that UBCH5A is known to form free ubiquitin chains in vitro and structural rearrangements in F1715A/C1725R variants could render additional ubiquitination sites or the monoubiquitinated form of IFT172 inaccessible/unfavorable for further processing by UBCH5A.

      (5) Identification of the specific ubiquitination site(s) within IFT172 would be valuable as it would allow targeted mutation to determine whether the ubiquitination of IFT172 is physiologically relevant. Ubiquitination of the C1 but not the C2 or C3 constructs suggests that the ubiquitination site is located in TPRs ranging from residues 969-1470. Could this region of TPR repeats (lacking the IFT172C3 part) suffice as a substrate for UBCH5A in ubiquitination assays?

      (6) The discrepancy between the molecular weight shifts observed in anti-ubiquitin Western blots and Coomassie-stained gels is noteworthy. The authors show the appearance of a mono-ubiquitinated protein of ~108 kDa in anti-ubiquitin Western blots. However, this molecular weight shift is not observed for total IFT172 in the corresponding Coomassie-stained gels (Figures 3B, D, F). Surprisingly, this MW shift is visible in an anti-His Western blot of a ubiquitination assay (Fig 3C). Together, this raises the concern that only a small fraction of IFT172 is being modified with ubiquitin. Quantification of the percentage of ubiquitinated IFT172 in the in vitro experiments could provide helpful context.

      (7) The authors propose that IFT172 binds ubiquitin and demonstrate that GST-tagged HsIFT172C2 or HsIFT172C3 can pull down tetra-ubiquitin chains. However, ubiquitin is known to be "sticky" and to have a tendency for weak, nonspecific interactions with exposed hydrophobic surfaces. Given that only a small proportion of the ubiquitin chains bind in the pull-down, specific point mutations that identify the ubiquitin-binding site are required to convincingly show the ubiquitin binding of IFT172.

      (8) The authors generated structure-guided mutations based on the predicted Ub-interface and on the TPR/U-box interface and used these for the ubiquitination assays in Fig 3. These same mutations could provide valuable insights into ubiquitin binding assays as they may disrupt or enhance ubiquitin binding (by relieving "autoinhibition"), respectively. Surprisingly, two of these sites are highlighted in the predicted ubiquitin-binding interface (F1715, I1688; Figure 4E) but not analyzed in the accompanying ubiquitin-binding assays in Figure 4.

      (9) If IFT172 is a ubiquitin-binding protein, it might be expected that the pull-down experiments in Figure S1 would identify ubiquitin, ubiquitinated proteins, or E2 enzymes. These were not observed, raising doubt that IFT172 is a ubiquitin-binding protein.

      (10) The cell-based experiments demonstrate that the U-box-like region is important for the stability of IFT172 but does not demonstrate that the effect on the TGFb pathway is due to the loss of ubiquitin-binding or ubiquitination activity of IFT172.

      (11) The challenges in experimentally validating the interaction between IFT172 and the UBX-domain-containing protein are understandable. Alternative approaches, such as using single domains from the UBX protein, implementing solubilizing tags, or disrupting the predicted binding interface in Chlamydomonas flagella pull-downs, could be considered. In this context, the conclusion on page 7 that "The uncharacterized UBX-domain-containing protein was validated by AF-M as a direct IFT172 interactor" is incorrect as a prediction of an interaction interface with AF-M does not validate a direct interaction per se.

    2. Reviewer #2 (Public review):

      Summary:

      Cilia are antenna-like extensions projecting from the surface of most vertebrate cells. Protein transport along the ciliary axoneme is enabled by motor protein complexes with multimeric so-called IFT-A and IFT-B complexes attached. While the components of these IFT complexes have been known for a while, precise interactions between different complex members, especially how IFT-A and IFT-B subcomplexes interact, are still not entirely clear. Likewise, the precise underlying molecular mechanism in human ciliopathies resulting from IFT dysfunction has remained elusive.

      Here, the authors investigated the structure and putative function of the to-date poorly characterised C-terminus of IFT-B complex member IFT172 using alpha-fold predictions, crystallography and biochemical analyses including proteomics analyses followed by mass spectrometry, pull-down assays, and TGFbeta signalling analyses using chlamydomonas flagellae and RPE cells. The authors hereby provide novel insights into the crystal structure of IFT172 and identify novel interaction sites between IFT172 and the IFT-A complex members IFT140/IFT144. They suggest a U-box-like domain within the IFT172 C-terminus could play a role in IFT172 auto-ubiquitination as well as for TGFbeta signalling regulation.

      As a number of disease-causing IFT72 sequence variants resulting in mammalian ciliopathy phenotypes in IFT172 have been previously identified in the IFT172 C-terminus, the authors also investigate the effects of such variants on auto-ubiquitination. This revealed no mutational effect on mono-ubiquitination which the authors suggest could be independent of the U-box-like domain but reduced overall IFT172 ubiquitination.

      Strengths:

      The manuscript is clear and well written and experimental data is of high quality. The findings provide novel insights into IFT172 function, IFT complex-A and B interactions, and they offer novel potential mechanisms that could contribute to the phenotypes associated with IFT172 C-terminal ciliopathy variants.

      Weaknesses:

      Some suggestions/questions are included in the comments to the authors below.

    3. Reviewer #3 (Public review):

      Summary:

      Zacharia et al report on the molecular function of the C-terminal domain of the intraflagellar transport IFT-B complex component IFT172 by structure determination and biochemical in vitro and cell culture-based assays. The authors identify an IFT-A binding site that mediates a mutually exclusive interaction to two different IFT-A subunits, IFT144 and IFT140, consistent with interactions suggested in anterograde and retrograde IFT trains by previous cryo-electron tomography studies. Additionally, the authors identify a U-box-like domain that binds ubiquitin and conveys ubiquitin conjugation activity in the presence of the UbcH5a E2 enzyme in vitro. RPE1 cell lines that lack the U-box domain show a reduction in ciliation rate with shorter cilia, and heterozygous cells manifest TGF-beta signaling defects, suggesting an involvement of the U-box domain in cilium-dependent signaling.

      Strengths:

      (1) The structural analyses of the C-terminal domain of IFT172 combine crystallography with structure prediction using state-of-the-art algorithms, which gives high confidence in the presented protein structures. The structure-based predictions of protein interactions are validated by further biochemical experiments to assess the specific binding of the IFT172 C-terminal domains with other proteins.

      (2) The finding that the IFT172 C-terminus interactions with the IFT-A components IFT140 and IFT144 appear mutually exclusive confirm a suggested role in mediating the binding of IFT-B to IFT-A in anterograde and retrograde IFT trains, which is of very high scientific value.

      (3) The suggested molecular mechanism of IFT train coordination explains previous findings in Chlamydomonas IFT172 mutants, in particular an IFT172 mutant that appeared defective in retrograde IFT, as well as mutations identified in ciliopathy patients.

      (4) The identification of other IFT172 interactors by unbiased mass spectrometry-based proteomics is very exciting. Analysis of stoichiometries between IFT components suggests that these interactors could be part of IFT trains, either as cargos or additional components that may fulfill interesting functions in cilia and flagella.

      (5) The authors unexpectedly identify a U-box-like fold in the IFT172 C-terminus and thoroughly dissect it by sequence and mutational analyses to reveal unexpected ubiquitin binding and potential intrinsic ubiquitination activity.

      (6) The overall data quality is very high. The use of IFT172 proteins from different organisms suggests a conserved function.

      Weaknesses:

      (1) Interaction studies were carried out by pulldown experiments, which identified more IFT172 interaction partners. Whether these interactions can be seen in living cells remains to be elucidated in subsequent studies.

      (2) The cell culture-based experiments in the IFT172 mutants are exciting and show that the U-box domain is important for protein stability and point towards involvement of the U-box domain in cellular signaling processes. However, the characterization of the generated cell lines falls behind the very rigorous analysis of other aspects of this work.

      Overall, the authors achieved to characterize an understudied protein domain of the ciliary intraflagellar transport machinery and gained important molecular insights into its role in primary cilia biology, beyond IFT. By identifying an unexpected functional protein domain and novel interaction partners the work makes an important contribution to further our understanding of how ciliary processes might be regulated by ubiquitination on a molecular level. Based on this work it will be important for future studies in the cilia community to consider direct ubiquitin binding by IFT complexes.

      Conceptually, the study highlights that protein transport complexes can exhibit additional intrinsic structural features for potential auto-regulatory processes. Moreover, the study adds to the functional diversity of small U-box and ubiquitin-binding domains, which will be of interest to a broader cell biology and structural biology audience.

      Additional comments:

      The authors investigate the consequences of the U-box deletion on ciliary TGF-beta signaling. While a cilium-dependent effect of TGF-beta signaling on the phosphorylation of SMAD2 has been demonstrated, the precise function of cilia in AKT signaling has not been fully established in the field. Therefore, the relevance of this finding is somewhat unclear. It may help to discuss relevant literature on the topic, such as Shim et al., PNAS, 2020.

    1. Reviewer #1 (Public review):

      Summary:

      Colorectal cancer (CRC) is the third most common cancer globally and the second leading cause of cancer-related deaths. Colonoscopy and fecal immunohistochemical testing are among the early diagnostic tools that have significantly enhanced patient survival rates in CRC. Methylation dysregulation has been identified in the earliest stages of CRC, offering a promising avenue for screening, prediction, and diagnosis. The manuscript entitled "Early Diagnosis and Prognostic Prediction of Colorectal Cancer through Plasma Methylation Regions" by Zhu et al. presents that a panel of genes with methylation pattern derived from cfDNA (27 DMRs), serving as a noninvasive detection method for CRC early diagnosis and prognosis.

      Strengths:

      The authors provided evidence that the 27 DMRs pattern worked well in predicting CRC distant metastasis, and the methylation score remarkably increased in stage III-IV.

      Weaknesses:

      The major concerns are the design of DMR screening, the relatively low sensitivity of this DMR pattern in detecting early-stage CRC, the limited size of the cohorts, and the lack of comparison with the traditional diagnosis test.

    2. Reviewer #2 (Public review):

      This work presents a 27-region DMR model for early diagnosis and prognostic prediction of colorectal cancer using plasma methylation markers. While this non-invasive diagnostic and prognostic tool could interest a broad readership, several critical issues require attention.

      Major Concerns:

      (1) Inconsistencies and clarity issues in data presentation

      a) Sample size discrepancies<br /> - The abstract mentions screening 119 CRC tissue samples, while Figure 1 shows 136 tissues. Please clarify if this represents 119 CRC and 17 normal samples.<br /> - The plasma sample numbers vary across sections: the abstract cites 161 samples, Figure 1 shows 116 samples, and the Supplementary Methods mentions 77 samples (13 Normal, 15 NAA, 12 AA, 37 CRC).

      b) Methodological inconsistencies<br /> - The Supplementary Material reports 477 hypermethylated sites from TCGA data analysis (Δβ>0.20, FDR<0.05), but Figure 1 indicates 499 sites.<br /> - The manuscript states that analyzing TCGA data across six cancer types identified 499 CRC-specific methylation sites, yet Figure 1 shows 477. Please also explain the rationale for selecting these specific cancer types from TCGA.<br /> - "404 CRC-specific DMRs" mentioned in the main text while "404 MCBs" in Figure 1, the authors need to clarify if these terms are interchangeable or how MCBs are defined.

      (2) Methodological documentation

      - The Results section requires a more detailed description of marker identification procedures and justification of methodological choices.<br /> - Figure 3 panels need reordering for sequential citation.

      (3) Quality control and data transparency

      - No quality control metrics are presented for the in-house sequencing data (e.g., sequencing quality, alignment rate, BS conversion rate, coverage, PCA plots for each cohort).<br /> - The analysis code should be publicly available through GitHub or Zenodo.<br /> - At a minimum, processed data should be made publicly accessible to ensure reproducibility.

    3. Reviewer #3 (Public review):

      Summary:

      This article provides a model for early diagnosis and prognostic prediction of Colorectal Cancer and demonstrates its accuracy and usability. However, there are still some minor issues that need to be revised and paid attention to.

      Strengths:

      A large amount of external datasets were used for verification, thus demonstrating robustness and accuracy. Meanwhile, various influencing factors of multiple samples were taken into account, providing usability.

      Weaknesses:

      There are notable language issues that hinder readability, as well as a lack of some key conclusions provided.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Xiao et al. classified retroperitoneal liposarcoma (RPLS) patients into two subgroups based on whole transcriptome sequencing of 88 patients. The G1 group was characterized by active metabolism, while the G2 group exhibited high scores in cell cycle regulation and DNA damage repair. The G2 group also displayed more aggressive molecular features and had worse clinical outcomes compared to G1. Using a machine learning model, the authors simplified the classification system, identifying LEP and PTTG1 as the key molecular markers distinguishing the two RPLS subgroups. Finally, they validated these markers in a larger cohort of 241 RPLS patients using immunohistochemistry. Overall, the manuscript is clear and well-organized, with its significance rooted in the large sample size and the development of a classification method.

      Weakness:

      (1) While the authors suggest that LEP and PTTG1 serve as molecular markers for the two RPLS groups, the process through which these genes were selected remains unclear. The authors should provide a detailed explanation of the selection process.

      (2) To ensure the broader applicability of LEP and PTTG1 as classification markers, the authors should validate their findings in one or two external datasets.

      (3) Since molecular subtyping is often used to guide personalized treatment strategies, it is recommended that the authors evaluate therapeutic responses in the two distinct groups. Additionally, they should validate these predictions using cell lines or primary cells.

    2. Reviewer #2 (Public review):

      Surgical resection remains the most effective treatment for retroperitoneal liposarcoma. However, postoperative recurrence is very common and is considered the main cause of disease-related death. Considering the importance and effectiveness of precision medicine, the identification of molecular characteristics is particularly important for the prognosis assessment and individualized treatment of RPLS. In this work, the authors described the gene expression map of RPLS and illustrated an innovative strategy of molecular classification. Through the pathway enrichment of differentially expressed genes, characteristic abnormal biological processes were identified, and RPLS patients were simply categorized based on the two major abnormal biological processes. Subsequently, the classification strategy was further simplified through nonnegative matrix factorization. The authors finally narrowed the classification indicators to two characteristic molecules LEP and PTTG1, and constructed novel molecular prognosis models that presented obviously a great area under the curve. A relatively interpretable logistic regression model was selected to obtain the risk scoring formula, and its clinical relevance and prognostic evaluation efficiency were verified by immunohistochemistry. Recently, prognostic model construction has been a hot topic in the field of oncology. The interesting point of this study is that it effectively screened characteristic molecules and practically simplified the typing strategy on the basis of ensuring high matching clinical relevance. Overall, the study is well-designed and will serve as a valuable resource for RPLS research.

    1. Reviewer #1 (Public review):

      Summary:

      Flowers et al describe an improved version of qFit-ligand, an extension of qFit. qFit and qFit-ligand seek to model conformational heterogeneity of proteins and ligands, respectively, cryo-EM and X-ray (electron) density maps using multi-conformer models - essentially extensions of the traditional alternate conformer approach in which substantial parts of the protein or ligand are kept in place. By contrast, ensemble approaches represent conformational heterogeneity through a superposition of independent molecular conformations.

      The authors provide a clear and systematic description of the improvements made to the code, most notably the implementation of a different conformer generator algorithm centered around RDKit. This approach yields modest improvements in the strain of the proposed conformers (meaning that more physically reasonable conformations are generated than with the "old" qFit-ligand) and real space correlation of the model with the experimental electron density maps, indicating that the generated conformers also better explain the experimental data than before. In addition, the authors expand the scope of ligands that can be treated, most notably allowing for multi-conformer modeling of macrocyclic compounds.

      Strengths:

      The manuscript is well written, provides a thorough analysis, and represents a needed improvement of our collective ability to model small-molecule binding to macromolecules based on cryo-EM and X-ray crystallography, and can therefore have a positive impact on both drug discovery and general biological research.

      Weaknesses:

      There are several points where the manuscript needs clarification in order to better understand the merits of the described work. Overall the demonstrated performance gains are modest (although the theoretical ceiling on gains in model fit and strain energy are not clear!).

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Flowers et al. aimed to enhance the accuracy of automated ligand model building by refining the qFit-ligand algorithm. Recognizing that ligands can exhibit conformational flexibility even when bound to receptors, the authors developed a bioinformatic pipeline to model alternate ligand conformations while improving fitting and more energetically favorable conformations.

      Strengths:

      The authors present a computational pipeline designed to automatically model and fit ligands into electron density maps, identifying potential alternative conformations within the structures.

      Weaknesses:

      Ligand modeling, particularly in cases of poorly defined electron density, remains a challenging task. The procedure presented in this manuscript exhibits clear limitations in low-resolution electron density maps (resolution > 2.0 Å) and low-occupancy scenarios, significantly restricting its applicability. Considering that the maps used to establish the operational bounds of qFit-ligand were synthetically generated, it's likely that the resolution cutoff will be even stricter when applied to real-world data.<br /> The reported changes in real-space correlation coefficients (RSCC) are not substantial, especially considering a cutoff of 0.1. Furthermore, the significance of improvements in the strain metric remains unclear. A comprehensive analysis of the distribution of this metric across the Protein Data Bank (PDB) would provide valuable insights.<br /> To mitigate the risk of introducing bias by avoiding real strained ligand conformations, the authors should demonstrate the effectiveness of the new procedure by testing it on known examples of strained ligand-substrate complexes.

    1. Reviewer #1 (Public review):

      Summary:

      The authors tested whether learning to suppress (ignore) salient distractors (e.g., a lone colored nontarget item) via statistical regularities (e.g., the distractor is more likely to appear in one location than any other) was proactive (prior to paying attention to the distractor) or reactive (only after first attending the distractor) in nature. To test between proactive and reactive suppression the authors relied on a recently developed and novel technique designed to "ping" the brain's hidden priority map using EEG inverted encoding models. Essentially, a neutral stimulus is presented to stimulate the brain, resulting in activity on a priority map which can be decoded and used to argue when this stimulation occurred (prior to or after attending a distracting item). The authors found evidence that despite learning to suppress the high probability distractor location, the suppression was reactive, not proactive in nature.

      Overall, the manuscript was well-written, tests a timely question, and provides novel insight into a long-standing debate concerning distractor suppression.

      The authors provided a thorough rebuttal and addressed the previous critiques and concerns.

      Strengths (in no particular order):<br /> (1) The manuscript is well-written, clear, and concise (especially given the complexities of the method and analyses).<br /> (2) The presentation of the logic and results is clear and relatively easy to digest.<br /> (3) This question concerning whether location-based distractor suppression is proactive or reactive in nature is a timely question.<br /> (4) The use of the novel "pinging" technique is interesting and provides new insight into this particularly thorny debate over the mechanisms of distractor suppression.

      Weaknesses (in no particular order):

      After revision, the prior weaknesses have been largely addressed.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigate the mechanisms supporting learning to suppress distractors at predictable locations, focusing on proactive suppression mechanisms manifesting before the onset of a distractor. They used EEG and inverted encoding models (IEM). The experimental paradigm alternates between a visual search task and a spatial memory task, followed by a placeholder screen acting as a 'ping' stimulus -i.e., a stimulus to reveal how learned distractor suppression affects hidden priority maps. Behaviorally, their results align with the effects of statistical learning on distractor suppression. Contrary to the proactive suppression hypothesis, which predicts reduced memory-specific tuning of neural representations at the expected distractor location, their IEM results indicate increased tuning at the high-probability distractor location following the placeholder and prior to the onset of the search display.

      Strengths:

      Overall, the manuscript is well-written and clear, and the research question is relevant and timely, given the ongoing debate on the roles of proactive and reactive components in distractor processing. The use of a secondary task and EEG/IEM to provide a direct assessment of hidden priority maps in anticipation of a distractor is, in principle, a clever approach. The study also provides behavioral results supporting prior literature on distractor suppression at high-probability locations.

      Weaknesses:

      In response to my comments during the first review, the authors have clarified and further discussed several methodological aspects, limitations, and alternative interpretations, tempering some of their claims and, overall, improving the manuscript. These involved mostly broadening the introduction and discussion of the putative mechanisms in distractor suppression, evaluating alternative explanations due to the dual-task design, clarifying methodological details regarding the inverted encoding model, and discussing the possibility that proactive suppression might actually require enhanced tuning toward the expected feature. While, to some degree, the results may still remain open to alternative explanations, the study, in its current form, presents an interesting paradigm and promising findings that will undoubtedly be useful for future research. I therefore have no major remaining comments.

    3. Reviewer #3 (Public review):

      Summary:

      In this experiment, the authors use a probe method along with time-frequency analyses to ascertain the attentional priority map prior to a visual search display in which one location is more likely to contain a salient distractor.  The main finding is that neural responses to the probe indicate that the high probability location is attended, rather than suppressed, prior to the search display onset.  The authors conclude that suppression of distractors at high probability locations is a result of reactive, rather than proactive, suppression.

      Strengths:

      This was a creative approach to a difficult and important question about attention.  The use of this "pinging" method to assess the attentional priority map has a lot of potential value for a number of questions related to attention and visual search. Here as well, the authors have used it to address a question about distractor suppression that has been the subject of competing theories for many years in the field. The authors have also conducted additional behavioral analyses to examine the relationship between memory and search. The paper is well-written, and the authors have done a good job placing their data in the larger context of recent findings in the field.

      Weaknesses:

      The authors addressed a number of weaknesses in a thorough revision during the review process. The present study raises important questions for future research - this is not a weakness, since one study cannot answer all questions, but points to the importance of the questions raised by this study and the value of additional future research in the area.

    1. Reviewer #1 (Public review):

      Koren et al. derive and analyse a spiking network model optimised to represent external signals using the minimum number of spikes. Unlike most prior work using a similar setup, the network includes separate populations of excitatory and inhibitory neurons. The authors show that the optimised connectivity has a like-to-like structure, which leads to the experimentally observed phenomenon of feature competition. The authors also examine how various (hyper)parameters-such as adaptation timescale, the excitatory-to-inhibitory cell ratio, regularization strength, and background current-affect the model. These findings add biological realism to a specific implementation of efficient coding. They show that efficient coding explains, or at least is consistent with, multiple experimentally observed properties of excitatory and inhibitory neurons.

      As discussed in the first round of reviews, the model's ability to replicate biological observations such as the 4:1 ratio of excitatory vs. inhibitory neurons hinges on somewhat arbitrary hyperparameter choices. Although this may limit the model's explanatory power, the authors have made significant efforts to explore how these parameters influence their model. It is an empirical question whether the uncovered relationships between, e.g., metabolic cost and the fraction of excitatory neurons are biologically relevant.

      The revised manuscript is also more transparent about the model's limitations, such as the lack of excitatory-excitatory connectivity.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors present a biologically plausible, efficient E-I spiking network model and study various aspects of the model and its relation to experimental observations. This includes a derivation of the network into two (E-I) populations, the study of single-neuron perturbations and lateral-inhibition, the study of the effects of adaptation and metabolic cost, and considerations of optimal parameters. From this, they conclude that their work puts forth a plausible implementation of efficient coding that matches several experimental findings, including feature-specific inhibition, tight instantaneous balance, a 4 to 1 ratio of excitatory to inhibitory neurons, and a 3 to 1 ratio of I-I to E-I connectivity strength.

      Strengths:

      While many network implementations of efficient coding have been developed, such normative models are often abstract and lacking sufficient detail to compare directly to experiments. The intention of this work to produce a more plausible and efficient spiking model and compare it with experimental data is important and necessary in order to test these models. In rigorously deriving the model with real physical units, this work maps efficient spiking networks onto other more classical biophysical spiking neuron models. It also attempts to compare the model to recent single-neuron perturbation experiments, as well as some long-standing puzzles about neural circuits, such as the presence of separate excitatory and inhibitory neurons, the ratio of excitatory to inhibitory neurons, and E/I balance. One of the primary goals of this paper, to determine if these are merely biological constraints or come from some normative efficient coding objective, is also important. Lastly, though several of the observations have been reported and studied before, this work arguably studies them in more depth, which could be useful for comparing more directly to experiments.

      Weaknesses:

      This work is the latest among a line of research papers studying the properties of efficient spiking networks. Many of the characteristics and findings here have been discussed before, thereby limiting the new insights that this work can provide. Thus, the conclusions of this work should be considered and understood in the context of those previous works, as the authors state. Furthermore, the number of assumptions and free parameters in the model, though necessary to bring the model closer to biophysical reality, make it more difficult to understand and to draw clear conclusions from. As the authors state, many of the optimality claims depend on these free parameters, such as the dimensionality of the input signal (M=3), the relative weighting of encoding error and metabolic cost, and several others. This raises the possibility that it is not the case that the set of biophysical properties measured in the brain are accounted for by efficient coding, but rather that theories of efficient coding are flexible enough to be consistent with this regime. With this in mind, some of the conclusions made in the text may be overstated and should be considered in this light.

      Conclusions, Impact, and additional context:

      Notions of optimality are important for normative theories, but they are often studied in simple models with as few free parameters as possible. Biophysically detailed and mechanistic models, on the other hand, will often have many free parameters by their very nature, thereby muddying the connection to optimality. This tradeoff is an important concern in neuroscientific models. Previous efficient spiking models have often been criticized for their lack of biophysically-plausible characteristics, such as large synaptic weights, dense connectivity, and instantaneous communication. This work is an important contribution in showing that such networks can be modified to be much closer to biophysical reality without losing their essential properties. Though the model presented does suffer from complexity issues which raise questions about its connections to "optimal" efficient coding, the extensive study of various parameter dependencies offers a good characterization of the model and puts its conclusions in context.

    3. Reviewer #3 (Public review):

      Summary:

      In their paper the authors tackle three things at once in a theoretical model: how can spiking neural networks perform efficient coding, how can such networks limit the energy use at the same time, and how can this be done in a more biologically realistic way than previous work.

      They start by working from a long-running theory on how networks operating in a precisely balanced state can perform efficient coding. First, they assume split networks of excitatory (E) and inhibitory (I) neurons. The E neurons have the task to represent some lower dimensional input signal, and the I neurons have the task to represent the signal represented by the E neurons. Additionally, the E and I populations should minimize an energy cost represented by the sum of all spikes. All this results in two loss functions for the E and I populations, and the networks are then derived by assuming E and I neurons should only spike if this improves their respective loss. This results in networks of spiking neurons that live in a balanced state, and can accurately represent the network inputs.

      They then investigate in depth different aspects of the resulting networks, such as responses to perturbations, the effect of following Dale's law, spiking statistics, the excitation (E)/inhibition (I) balance, optimal E/I cell ratios, and others. Overall, they expand on previous work by taking a more biological angle on the theory and show the networks can operate in a biologically realistic regime.

      Strengths:

      * The authors take a much more biological angle on the efficient spiking networks theory than previous work, which is an essential contribution to the field<br /> * They make a very extensive investigation of many aspects of the network in this context, and do so thoroughly<br /> * They put sensible constraints on their networks, while still maintaining the good properties these networks should have

      Weaknesses:

      * One of the core goals of the paper is to make a more biophysically realistic network than previous work using similar optimization principles. One of the important things they consider is a split into E and I neurons. While this works fine, and they consider the coding consequences of this, it is not clear from an optimization perspective why the split into E and I neurons and following Dale's law would be beneficial. This would be out of scope for the current paper however.<br /> * The theoretical advances in the paper are not all novel by themselves, as most of them (in particular the split into E and I neurons and the use of biophysical constants) had been achieved in previous models. However, the authors discuss these links thoroughly and do more in-depth follow-up experiments with the resulting model.

      Assessment and context:

      Overall, although much of the underlying theory is not necessarily new, the work provides an important addition to the field. The authors succeeded well in their goal of making the networks more biologically realistic, and incorporate aspects of energy efficiency. For computational neuroscientists this paper is a good example of how to build models that link well to experimental knowledge and constraints, while still being computationally and mathematically tractable. For experimental readers the model provides a clearer link of efficient coding spiking networks to known experimental constraints and provides a few predictions.

    1. Reviewer #1 (Public review):

      Summary:

      This very short paper shows a greater likelihood of C->U substitutions at sites predicted to be unpaired in the SARS-CoV-2 RNA genome, using previously published observational data on mutation frequencies in SARS-CoV-2 (Bloom and Neher, 2023).

      General comments:

      A preference for unpaired bases as target for APOBEC-induced mutations has been demonstrated previously in functional studies so the finding is not entirely surprising. This of course assumes that A3A or other APOBEC is actually the cause of the majority of C->U changes observed in SARS-CoV-2 sequences.

      I'm not sure why the authors did not use the published mutation frequency data to investigate other potential influences on editing frequencies, such as 5' and 3' base contexts. The analysis did not contribute any insights into the potential mechanisms underlying the greater frequency of C->U (or G->U) substitutions in the SARS-CoV-2 genome.

      Comments on revisions:

      The revisions have addressed my main comments in my review.

    2. Reviewer #2 (Public review):

      Hensel investigated the implications of SARS-CoV-2 RNA secondary structure in synonymous and nonsynonymous mutation frequency. The analysis integrated estimates of mutational fitness generated by Bloom and Neher (from publicly available patient sequences) and a population-averaged model of RNA base-pairing from Lan et al (from DMS mutational profiling with sequencing, DMS-MaPseq)

      The results show that base-pairing limits the frequency of some synonymous substitutions (including the most common C→T), but not all: G→A and A→G substitutions seem unaffected by base-pairing.

      The author then addressed nonsynonymous C→T substitutions at basepaired positions. While there is still a generally higher estimated mutational fitness at unpaired positions, they propose a coarse adjustment to disentangle base-pairing from inherent mutational fitness at a given position. This adjustment reveals that nonsynonymous substitutions at base-paired positions, which define major variants, have higher mutational fitness.

      Overall, this manuscript highlights the importance of considering RNA secondary structure in viral evolution studies.

      The conclusions of this work are generally well supported by the data presented. Particularly, the author acknowledges most limitations of the analyses and addresses them. Even though no new sequencing results were generated, the author used available data generated from the analysis of roughly seven million sequenced patient samples. Finally, the author discusses ways to improve the current available models.

      There are a number of limitations of this work that should be highlighted, specifically in regard to the secondary structure data used in this paper. The Lan et al. dataset was generated using a multiplicity of infection (MOI) of 0.05, 24 hours post-infection (h.p.i.). At such a low MOI and late timepoint, viral replication is not synchronous and sequencing artifacts might be generated by cell debris and viral RNA degradation, therefore impacting the population-averaged results. In addition, the nonsynonymous base-paired positions in Figure 2 have relatively high population-averaged DMS reactivity, which suggests those positions are dynamic. Therefore, the proposed adjustment could result in an incorrect estimation of their inherent mutational fitness.

      Additionally, like all such RNA probing experiments within cells, it remains difficult to deconvolve DMS/SHAPE low reactivity with RNA accessibility (e.g. from protein binding).

      This work presents clear methods and an easy-to-access bioinformatic pipeline, which can be applied to other RNA viruses. Of note, it can be readily implemented in existing datasets. Finally, this study raises novel mechanistic questions on how mutational fitness is not correlated to secondary structure in the same way for every substitution.

      Overall, this work highlights the importance of studying mutational fitness beyond an immune evasion perspective. On the other hand, it also adds to the viral intrinsic constraints to immune evasion.

      Comments on revisions:

      Following revision by the author, our concerns have been addressed. The additional analysis strengthens the conclusions & the revisions to the text have improved the manuscript for a general audience.

    1. Reviewer #1 (Public review):

      Summary:

      This study focuses on metabolic changes in the paraventricular hypothalamic (PVH) region of the brain during acute periods of cold exposure. The authors point out that in comparison to the extensive literature on the effects of cold exposure in peripheral tissues, we know relatively little about its effects on the brain. They specifically focus on the hypothalamus, and identify the PVH as having changes in Atgl and Hsl gene expression changes during cold exposure. They then go on to show accumulation of lipid droplets, increased Fos expression, and increased lipid peroxidation during cold exposure. Further, they show that neuronal activation is required for the formation of lipid droplets and lipid peroxidation.

      Strengths:

      A strength of the study is trying to better understand how metabolism in the brain is a dynamic process, much like how it has been viewed in other organs. The authors also use a creative approach to measuring in vivo lipid peroxidation via delivery of BD-C11 sensor through a cannula to the region in conjunction with fiber photometry to measure fluorescence changes deep in the brain.

      Comments on revised version:

      The authors have attempted to address concerns brought to their attention in the initial review. They have performed one or two additional experiments to address concerns (e.g. adding fiber photometry of PVH neurons and trying to manipulate lipid peroxidation) though many of the concerns from the original review stand. The authors have also revised the text to limit the extent of their claims and to improve clarity, which is appreciated.

    1. Reviewer #1 (Public review):

      Summary:

      IPF is a disease lacking regressive therapies which has a poor prognosis, and so new therapies are needed. This ambitious phase 1 study builds on the authors 2024 experience in Sci Tran Med with positive results with autologous transplantation of P63 progenitor cells in patients with COPD. The current study suggests P63+ progenitor cell therapy is safe in patients with ILD. The authors attribute this to acquisition of cells from a healthy upper lobe site, removed from the lung fibrosis. There are currently no cell based therapies for ILD and in this regard the study is novel with important potential for clinical impact if validated in Phase 2 and 3 clinical trials.

      Strengths:

      This study addresses the need for an effective therapy for interstitial lung disease. It offers good evidence the cell used for therapy are safe. In so doing it addresses a concern that some P63+ progenitor cells may be proinflammatory and harmful, as has been raised in the literature (articles which suggested some P63+ cells can promote honeycombing fibrosis; ref 26 &35). The authors attribute the safety they observed (without proof) to the high HOPX expression of administered cells (a marker found in normal Type 1 AECs. The totality of the RNASeq suggests the cloned cells are not fibrogenic. They also offer exploratory data suggesting a relationship between clone roundness and PFT parameters (and a negative association of patient age and clone roundness).

      Weaknesses:

      The authors can conclude they can isolate, clone, expand and administer P63+ progenitor cells safely; but with the small sample size and lack of placebo group no efficacy should be implied.

      Comments on revisions:

      The paper is meritorious as I noted initially

      However, the authors did not directly address several of my concerns-i.e. their responses to the initial review were polite but did not translate into much change in the manuscript.

      (1) Do these progenitor cells exert their beneficial effects by a paracrine mechanism vs transforming into lung AECs? Based on work in the field of bronchopulmonary dysplasia I suspect the benefits are mediated by a paracrine mecahnism and arguably media from these cells should be tested as an alternative to administering the cells themselves. In any case, for the revision a Discussion of the possibility of differentiation vs paracrine mechanisms, citing relevant literature, would be expected. I suggest that you add such a paragraph to a limitation section.

      (2) Please address that potential implications of the fact that 5 patients had essentially normal DLCO/VA values. Saying that the "criterion for entry was DLCO" does not take away from the fact that DLCO/VA is a valid measure of lung diffusion capacity. In the absence of placebo an enrollment of mildly diseased patients would favor positive results (including stability in study endpoint parameters even without treatment). Thus, I suggest again that the limitations section should be more forthright in this regard.

      (3) The authors acknowledge the lack of a placebo group but in a study of mild IPF, I worry that without a placebo group the only robust findings are those related to technique of transplantation and the safety of cell therapy. The paper still reads as if there is a clinical benefit...I would advise you further soften this (while understanding the desire to emphasize a hopeful observation). The price for not having a placebo group must be avoidance of claims of efficacy. The improvements in DLCO and CT in several cases speaks for the need for the planned phase 2 trial, which if positive will be the time to claim efficacy signals.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, authors have investigated the effects of JNK inhibition on sucrose-induced metabolic dysfunction in rats. They used multi-tissue network analysis to study the effects of the JNK inhibitor JNK-IN-5A on metabolic dysfunction associated with excessive sucrose consumption. Their results show that JNK inhibition reduces triglyceride accumulation and inflammation in the liver and adipose tissues while promoting metabolic adaptations in skeletal muscle. The study provides new insights into how JNK inhibition can potentially treat metabolic dysfunction-associated fatty liver disease (MAFLD) by modulating inter-tissue communication and metabolic processes.

      Strengths:

      The study has several notable strengths:

      Comprehensive Multi-Tissue Analysis: The research provides a thorough multi-tissue evaluation, examining the effects of JNK inhibition across key metabolically active tissues, including the liver, visceral white adipose tissue, skeletal muscle, and brain. This comprehensive approach offers valuable insights into the systemic effects of JNK inhibition and its potential in treating MAFLD.

      Robust Use of Systems Biology: The study employs advanced systems biology techniques, including transcriptomic analysis and genome-scale metabolic modeling, to uncover the molecular mechanisms underlying JNK inhibition. This integrative approach strengthens the evidence supporting the role of JNK inhibitors in modulating metabolic pathways linked to MAFLD.

      Potential Therapeutic Insights: By demonstrating the effects of JNK inhibition on both hepatic and extrahepatic tissues, the study offers promising therapeutic insights into how JNK inhibitors could be used to mitigate metabolic dysfunction associated with excessive sucrose consumption, a key contributor to MAFLD.

      Behavioral and Metabolic Correlation: The inclusion of behavioral tests alongside metabolic assessments provides a more holistic view of the treatment's effects, allowing for a better understanding of the broader physiological implications of JNK inhibition.

      Weaknesses:

      The authors have adequately addressed all my concerns, and the revisions have significantly improved the manuscript's clarity and impact.

    2. Reviewer #2 (Public review):

      Excessive sucrose is a possible initial factor for the development of metabolic dysfunction-associated fatty liver disease (MAFLD). To investigate the possibility that intervention with JNK inhibitor could lead to the treatment of metabolic dysfunction caused by excessive sucrose intake, the authors performed multi-organ transcriptomics analysis (liver, visceral fat (vWAT), skeletal muscle, and brain) in a rat model of MAFLD induced by sucrose overtake (+ JNK inhibitor treatment).

      The major strengths and weakness of this study are as follows.

      Strengths:

      ・It has been previously reported that inhibition of JNK signalling can contribute to the prevention of hepatic steatosis (HS) and related metabolic syndrome in other models, but the role of JNK signalling in the metabolic disruption caused by excessive intake of sucrose, a possible initial factor for the development of MAFLD, has not been well understood, and the authors have addressed this point.<br /> ・This study is also important because pharmacological therapy for MAFLD has not yet been established.<br /> ・By obtaining transcriptomic data in multiple organs and comprehensively analyzing the data using gene co-expression network (GCN) analysis and genome-scale metabolic models (GEM), the authors showed the multi-organ interaction in not only in the pathology of MAFLD caused by excessive sucrose intake but also in the treatment effects by JNK-IN-5A.<br /> ・Since JNK signalling has diverse physiological functions in many organs, the authors effectively assessed possible side effects with a view to the clinical application of JNK-IN-5A.

      Weaknesses:

      ・The metabolic process activities were evaluated using RNA-seq results in Figure 7, but direct data such as metabolite measurements are lacking.<br /> ・There is a lack of consistency in the data between JNK-IN-5A_D1 and _D2, and there is no sufficient data-based explanation for why the effects observed in D1 were inconsistent in the D2 samples.<br /> ・Although it is valuable that the authors were able to suggest the possibility of JNK inhibitor as a therapeutic strategy for MAFLD, the evaluation of the therapeutic effect was limited to evaluation of plasma TG, LDH, and gene expression changes. As there was no evaluation of liver tissue images, it is unclear what changes were brought about in the liver by the excessive sucrose intake and the treatment with JNK-IN-5A.

      As mentioned in the Weakness section, biological data is insufficient, such as the lack of metabolite measurements and a histological evaluation of the liver. However, overall, the authors successfully provided the valuable insights that the JNK inhibitor has a cross-organ therapeutic effect on their MAFLD model induced by sucrose overtake. Their insist is supported by convincing data, comprehensively analysing the transcriptomic data obtained from multiple organs using GCN (gene co-expression network) analysis and GEM (genome-scale metabolic modelling).

      Their comprehensive transcriptomic analysis in multiple organs, including the brain, has demonstrated that the effects of drugs are more widespread than just on specific tissues thought to be the main target, indicating the importance of focusing on tissue interactions when we assess the effects of drugs. Also, the data set in this study will be useful for comparative evaluation with transcriptomics data for other MALFD models.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes a new in vitro model for DRG neurons that recapitulates several key differences between the peripheral and central branches of DRG axons in vivo. These differences include morphology (with one branch being thinner than the other), and regenerative capacity (with the peripheral branch displaying higher regenerative capacity). The authors analyze the abundance of various microtubule associated protein (MAPs) in each branch, as well as the microtubule dynamics in each branch and find significant differences between branches. Importantly, they found that a well-known conditioning paradigm (prior lesion of the peripheral branch improves the regenerative capacity of the central branch) is not only reproduced in this system, but also leads to loss of the asymmetry of MAPs between branches. Zooming in on one MAP that shows differential abundance between the axons, they find that the severing enzyme Spastin is required for the asymmetry in microtubule dynamics and in regenerative capacity following a conditioning lesion

      Strengths:

      The establishment of an experimental system that recapitulates DRG axon asymmetry in vitro is an important step that is likely to be useful for other studies. In addition, identifying key molecular signatures that differ between central and peripheral branches, and determining how they are lost following a conditioning lesion adds to our understanding of why peripheral axons have a better regenerative capacity. Last, the authors use of an in vivo model system to support some of their in vitro findings is a strength of this work.

      Weaknesses:

      One weakness of the manuscript is that to a large degree, one of its main conclusions (MAP symmetry underlies differences in regenerative capacity) relies mainly on a correlation, without firmly establishing a causal link. However, this is weakness is relatively minor because (1) it is partially addressed with the Spastin KO and (2) there isn't a trivial way to show a causal relationship in this case. (3) It is addressed in the Discussion section.

    2. Reviewer #2 (Public review):

      Summary:

      The authors set out to develop a tissue culture method in which to study the different regenerative abilities of the central and peripheral branch of sensory axons. Neurons developed a small and large branch, which have different regenerative abilities, different transport rates and different microtubule properties. The study provides convincing evidence that the two axonal branches differ in a way to corresponds to in vivo. The different regenerative abilities of the two branches are an important observation, because until now it has not been clear whether this difference is intrinsic to the neuron and axons or due to differences in the environment surrounding the axons. The authors have then looked for molecular explanations of the differences between the branches. They find different transport rates and different microtubule dynamics. The different microtubule dynamics are explained by differing levels of spastin, an enzyme that severs microtubules encouraging dynamics.

      Strengths:

      The differences between the two branches are clearly shown, together with differences in transport, microtubule dynamics and regeneration. The in vitro model is novel and could be widely used. The methods used are robust and generally accepted.

      Weaknesses:

      The revised version of the paper has addressed the weaknesses that were identified.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Costa and colleagues investigate how asymmetry in dorsal root ganglion (DRG) neurons is established. The authors developed an in vitro system that mimics the pseudo-unipolar morphology and asymmetry of DRG neurons during the regeneration of the peripheral and central branch axons. They suggest that central-like DRG axons exhibit a higher density of growing microtubules. By reducing the polymerization of microtubules in these central-like axons, they were able to eliminate the asymmetry in DRG neurons.

      Strengths:

      The authors point out a distinct microtubule-associated protein signature that differentiates between DRG neurons' central and peripheral axonal branches. Experimental results demonstrate that genetic deletion of spastin eliminated the differences in microtubule dynamics and axon regeneration between the central and peripheral branches.

      Weaknesses:

      While some of the data are compelling, experimental evidence does not fully support the main claims.

      In its current form, the study is primarily descriptive and lacks convincing mechanistic insights. It misses important controls and further validation using 3D in vitro models.

      The significance of studying microtubule polymerization to DRG asymmetry in vitro is questionable, especially considering the model's validity. Classifying the central and peripheral-like branches in cultured DRG neurons will require further in-depth characterization. Additional validation using adult DRG neuron cultures not aged in vitro will be required in future studies.

      The comparison of asymmetry associated with a regenerative response between in vitro and in vivo paradigms has significant limitations due to the nature of the in vitro culture system. When cultured in isolation, DRG neurons fail to form functional connections with appropriate postsynaptic target neurons (the central branch) or to differentiate the peripheral domains associated with the innervation of target organs. Rather than growing neurons on a flat, hard surface like glass, more physiologically relevant substrates and/or culturing conditions should be considered. This approach could help eliminate potential artifacts caused by plating adult DRG neurons on a flat surface. Additionally, the authors should consider replicating their findings in a 3D culture model or using dorsal root ganglia explants, where both centrally and peripherally projecting axons are present.

      Panels 5H-J require additional processing with astrocyte markers to accurately define the lesion borders. Furthermore, including a lower magnification would facilitate a direct comparison of the lesion site. The use of cholera toxin subunit B (CTB) to trace dorsal column sensory axons is prone to misinterpretation, as the tracer accumulates at the axon's tip. This limitation makes it extremely challenging to distinguish between regenerating and degenerating axons.

    1. Reviewer #1 (Public Review):

      The authors showed that autophagy-related genes are involved in plant immunity by regulating the protein level of the salicylic acid receptor, NPR1.

      The experiments are carefully designed and the data is convincing. The authors did a good job of understanding the relationship between ATG6 and NRP1.

      Comments on latest version:

      The authors have sufficiently addressed all concerns raised, which further enhanced data presentation. No additional concerns were raised.

    2. Reviewer #2 (Public Review):

      The manuscript by Zhang et al. explores the effect of autophagy regulator ATG6 on NPR1-mediated immunity. The authors propose that ATG6 directly interacts with NPR1 in the nucleus to increase its stability and promote NPR1-dependent immune gene expression and pathogen resistance. This novel role of ATG6 is proposed to be independent of its role in autophagy in the cytoplasm. The authors demonstrate through biochemical analysis that ATG6 interacts with NPR1 in yeast and very weakly in vitro. They further demonstrate using overexpression transgenic plants that in the presence of ATG6-mcherry the stability of NPR1-GFP and its nuclear pool is increased.

      Comments on latest version:

      The initial apprehensions about statistical oversights and the use of an unclear nuclear marker were fixed. The implementation of the nls-mCherry for nuclear co-localization and additional statistical analyses was done well. However, the functional importance pertaining to cytoplasmic accumulation of the ARG6 protein should ideally be explored in more detail in future studies.

      Updated sections:<br /> • Figure 1e: Added statistical analysis and updated with a nuclear marker.<br /> • Line Revisions: Terminology corrections for "infection" instead of "invasion".<br /> • NLS Analysis: Extended alignment and inclusion of conserved domains with predicted NLS (cut-off score: 2.6).

    1. Reviewer #1 (Public review):

      Summary:

      This study shows that the pro-inflammatory S1P signaling regulates the responses of muller glial cells to damage. The authors describe the expression of S1P signaling components. Using agonist and antagonist of the pathways they also investigate their effect on the de-differentiation and proliferation of Muller glial cells in damaged retina of postnatal chicks. They show that S1PR1 is highly expressed in resting MG and non-neurogenic MGPCs. This receptor suppresses the proliferation and neuronal activity promotes MGPC cell cycle re-entry and enhanced the number of regenerated amacrine-like cells after retinal damage. The formation of MGPCs in damaged retinas is impaired in the absence of microglial cells. This study further shows that ablation of microglial cells from the retina increases the expression of S1P-related genes in MG, whereas inhibition of S1PR1 and SPHK1 partially rescues the formation of MGPCs in damaged retinas depleted of microglia. The studies also show that expression of S1P-related genes is conserved in fish and human retinas.

      Strengths:

      This is well-conducted study, with convincing images and statistically relevant data

      Weaknesses:

      In a previous study, the authors have shown that S1P is upstream of NF-κB signaling (Palazzo et al. 2020; 2022, 2023). Although S1P and NF-κB signaling have overlapping effects, the authors here provide evidence for S1P specific effects, adding some new information to the field.

    2. Reviewer #2 (Public review):

      Summary:

      Sphingosine-1-phosphate (S1P) metabolic and signaling genes are expressed highly in retinal Müller glia (MG) cells. This study tested how S1P signaling regulates glial phenotype, dedifferentiation of, reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs using in vivo chick retina. Major techniques used are Sc-RNASeq and immunohistochemistry to determine the gene expression and proliferation of MG cells that co-label with signaling antibodies or mRNA FISH following treating the in vivo eyes with various S1P signaling antagonists, agonists, and signal modulators. The major conclusions drawn are supported by the results presented. However, the methodology they have used to modulate the S1P pathway using various chemical drugs raises questions about the outcomes and whether those are the real effects of S1P receptor modulation or S1P synthesis inhibition.

      Strengths:

      - Use of elaborated single-cell RNAseq expression data.<br /> - Use of FISH for S1P receptors and kinase as a good quality antibody is not available.<br /> - Use of EdU assay in combination with IHC<br /> - Comparison with human and Zebrafish Sc-RNA data

      Weaknesses:

      The methodology is not very clean. A number of drugs (inhibitors/ antagonists/agonists signal modulators) are used to modulate S1P expression or signaling in the retina without evidence that these drugs are reaching the target cells. No alternative evaluation if the drugs, in fact, are effective. The drug solubility in the vehicle and in the vitreous is not provided, and how did they decide on using a single dose of each drug to have the optimal expected effect on the S1P pathway?

      In the revision, the authors provided justification for the use of single doses of the modulators and how they could pass the retinal barrier and affect the MG gene expression and receptor functioning.

    1. Reviewer #1 (Public review):

      Summary:

      The authors employed a combinatorial CRISPR-Cas9 knockout screen to uncover synthetically lethal kinase genes that could play a role in drug resistance to kinase inhibitors in triple-negative breast cancer. The study successfully reveals FYN as a mediator of resistance to depletion and inhibition of various tyrosine kinases, notably EGFR, IGF-1R, and ABL, in triple-negative breast cancer cells and xenografts. Mechanistically, they demonstrate that KDM4 contributes to the upregulation of FYN and thereby is an important mediator of the drug resistance. All together, these findings suggest FYN and KDM4A as potential targets for combination therapy with kinase inhibitors in triple-negative breast cancer. Moreover, the study may also have important implications for other cancer types and other inhibitors, as the authors suggest that FYN could be a general feature of drug-tolerant persister cells.

      Strengths:

      (1) The authors used a large combination matrix of druggable tyrosine kinase gene knockouts, enabling studying of co-dependence of kinase genes. This approach mitigates off-target effects typically associated with kinase inhibitors, enhancing the precision of the findings.

      (2) The authors demonstrate the importance of FYN in drug resistance in multiple ways. They demonstrate synergistic interactions using both knockouts and inhibitors, while also revealing its transcriptional upregulation upon treatment, strengthening the conclusion that FYN plays a role in the resistance.

      (3) The study extends its impact by demonstrating the potent in vivo efficacy of certain combination treatments, underscoring the clinical relevance of the identified strategies.

      Weaknesses:

      (1) The combination of FYN knockout with other gene knockouts exhibits only very modest synergy. The high standard deviation observed for FYN knockout in Figure S2A weakens the robustness of these findings. As combination treatments involving inhibitors did demonstrate stronger synergistic effects, the data still support the role of FYN in regulating sensitivity to the described drugs.

      (2) While the study identifies KDM4A as a key contributor to FYN upregulation, it does not fully explore the upstream mechanisms regulating KDM4A or the downstream pathways through which FYN upregulation confers drug resistance. These unaddressed questions limit the mechanistic understanding that can be obtained from this study.

      (3) FYN has been implicated in drug resistance in previous studies, and other mechanisms for its upregulation and downstream effects have already been described. While this study adds value to the existing literature in the context of breast cancer, it does not present entirely novel findings regarding FYN's role in drug resistance.

    1. Reviewer #1 (Public review):

      Summary:

      The authors constructed a novel HSV-based therapeutic vaccine to cure SIV in a primate model. The novel HSV vector is deleted for ICP34.5. Evidence is given that this protein blocks HIV reactivation by interference with the NFkappaB pathway. The deleted construct supposedly would reactivate SIV from latency. The SIV genes carried by the vector ought to elicit a strong immune response. Together the HSV vector would elicit a shock and kill effect. This is tested in a primate model.

      Strengths and weaknesses:

      (1) Deleting ICP34.5 from the HSV construct has a very strong effect on HIV reactivation. The mechanism underlying increased activation by deleting ICP34.5 is only partially explored. Overexpression of ICP34.5 has a much smaller effect (reduction in reactivation) than deletion of ICP34.5 (strong activation); this is acknowledged by the authors that no full mechanistic explanation can be given at this moment.

      (2) No toxicity data are given for deleting ICP34.5. How specific is the effect for HIV reactivation? A RNA seq analysis is required to show the effect on cellular genes.

      A RNA seq analysis was done in the revised manuscript comparing the effect of HSV-1 and deleted vector in J-LAT cells (Fig S5). More than 2000 genes are upregulated after transduction with the modified vector in comparison with the WT vector. Hence, the specificity of upregulation of SIV genes is questioned. Authors do NOT comment on these findings. In my view it questions the utility of this approach.

      (3) The primate groups are too small and the results to variable to make averages. In Fig 5, the group with ART and saline has two slow rebounders. It is not correct to average those with the single quick rebounder. Here the interpretation is NOT supported by the data.

      Although authors provided some promising SIV DNA data, no additional animals were added. Groups of 3 animals are too small to make any conclusion, especially since the huge variability in response. The average numbers out of 3 are still presented in the paper, which is not proper science.

      No data are given of the effect of the deletion in primates. Now the deleted construct is compared with an empty vector containing no SIV genes. Authors provide new data in Fig S2 on the comparison of WT and modified vector in cells from PLWH, but data are not that convincing. A significant difference in reactivation is seen for LTR in only 2/4 donors and in Gag in 3/4 donors. (Additional question what is meaning of LTR mRNA, do authors relate to genomic RNA??)

      Discussion

      HSV vectors are mainly used in cancer treatment partially due to induced inflammation. Whether these are suitable to cure PLWH without major symptoms is a bit questionable to me and should at least be argued for.

      The RNA seq data add on to this worry and should at least be discussed.

    2. Reviewer #2 (Public review):

      Summary:

      In this article Wen et. al., describe the development of a 'proof-of-concept' bi-functional vector based out of HSV-deltaICP-34.5's ability to purge latent HIV-1 and SIV genomes from cells. They show that co-infection of latent J-lat T-cell lines with a HSV-deltaICP-34.5 vector can reactivate HIV-1 from a latent state. Over- or stable expression of ICP 34.5 ORF in these cells can arrest latent HIV-1 genomes from transcription, even in the presence of latency reversal agents. ICP34.5 can co-IP with- and de-phosphorylate IKKa/b to block its interaction with NF-k/B transcription factor. Additionally, ICP34.5 can interact with HSF1 which was identified by mass-spec. Thus, the authors propose that the latency reversal effect of HSV-deltaICP-34.5 in co-infected JLat cells is due to modulatory effects on the IKKa/b-NF-kB and PP1-HSF-1 pathway.

      Next the authors cleverly construct a bifunctional HSV based vector with deleted ICP34.5 and 47 ORFs to purge latency and avoid immunological refluxes, and additionally expand the application of this construct as a vaccine by introducing SIV genes. They use this 'vaccine' in mouse models and show the expected SIV-immune responses. Experiments in rhesus macaques (RM), further elicit potential for their approach to reactivate SIV genomes and at the same time block their replication by antibodies. What was interesting in the SIV experiments is that the dual-functional vector vaccine containing sPD1- and SIV Gag/Env ORFs effectively delayed SIV rebound in RMs and in some cases almost neutralized viral DNA copy detection in serum. Very promising indeed, however there are some questions I wish the authors explored to answer, detailed below.

      Overall, this is an elegant and timely work demonstrating the feasibility of reducing virus rebound in animals, and potentially expand to clinical studies. The work was well written, and sections were clearly discussed.

      Strengths:

      The work is well designed, rationale explained and written very clearly for lay readers.<br /> Claims are adequately supported by evidence and well designed experiments including controls.

      Weaknesses:

      (1) It looks like ICP0 is also involved in latency reversal effects. More follow-up work will be required to test if this is in fact true.

      (2) It is difficult to estimate the depletion of the latent viral reservoir. The authors have tried to address this issue. A more convincing argument to this reviewer will be data to demonstrate that after the bi-functional vaccine, the animals show overall reduction in the number of circulating latent cells. The feasibility to obtain such a result is not clearly demonstrated.

      (3) The authors state that the reduced virus rebound detected following bi-functional vaccine delivery is due to latent genomes becoming activated and steady-state neutralization of these viruses by antibody response. This needs to be demonstrated. Perhaps cell-culture experiments from specimen taken from animals might help address this issue. In lab cultures one could create environments without antibody responses, under these conditions one would expect higher level of viral loads being released in response to the vaccine in question.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides a new potential tool to manipulate Tregs function for therapeutic use. It focuses on the role of PGAM in Tregs differentiation and function. The authors, interrogating publicly available transcriptomic and proteomic data of human regulatory T cells and CD4 T cells, state that Tregs express higher levels of PGAM (at both message and protein levels) compared to CD4 T cells. They then inhibit PGAM by using a known inhibitor ECGC and show that this inhibition affects Tregs differentiation. This result was also observed when they used antisense oligonucleotides (ASOs) to knockdown PGAM1.

      PGAM1 catalyzes the conversion of 3PG to 2PG in the glycolysis cascade. However, the authors focused their attention on the additional role of 3PG: acting as starting material for the de novo synthesis of serine.

      They hypothesized that PGAM1 regulates Tregs differentiation by regulating the levels of 3PG that are available for de novo synthesis of serine, which has a negative impact on Tregs differentiation. Indeed, they tested whether the effect on Tregs differentiation observed by reducing PGAM1 levels was reverted by inhibiting the enzyme that catalyzes the synthesis of serine from 3PG.

      The authors continued by testing whether both synthesized and exogenous serine affect Tregs differentiation and continued with in vivo experiments to examine the effects of dietary serine restriction on Tregs function.

      In order to understand the mechanism by which serine impacts Tregs function, the authors assessed whether this depends on the contribution of serine to one-carbon metabolism and to DNA methylation.

      The authors therefore propose that extracellular serine and serine whose synthesis is regulated by PGAM1 induce methylation of genes Tregs associated, downregulating their expression and overall impacting Tregs differentiation and suppressive functions.

      Strengths:

      The strength of this paper is the number of approaches taken by the authors to verify their hypothesis. Indeed, by using both pharmacological and genetic tools in in vitro and in vivo systems they identified a potential new metabolic regulation of Tregs differentiation and function.

      Weaknesses:

      Using publicly available transcriptomic and proteomic data of human T cells, the authors claim that both ex vivo and in vitro polarized Tregs express higher levels of PGAM1 protein compared to CD4 T cells (naïve or cultured under Th0 polarizing conditions). The experiments shown in this paper have all been carried out in murine Tregs. Publicly available resources for murine data (ImmGen -RNAseq and ImmPRes - Proteomics) however show that Tregs do not express higher PGAM1 (mRNA and protein) compared to CD4 T cells. It would be good to verify this in the system/condition used in the paper.

      It would also be good to assess the levels of both PGAM1 mRNA and protein in Tregs PGAM1 knockdown compared to scramble using different methods e.g. qPCR and western blot. However, due to the high levels of cell death and differentiation variability, that would require cells to be sorted.

      It is not specified anywhere in the paper whether cells were sorted for bulk experiments. Based on the variability of cell differentiation, it would be good if this was mentioned in the paper as it could help to interpret the data with a different perspective.

    2. Reviewer #2 (Public review):

      Summary:

      The authors have tried to determine the regulatory role of Phosphoglycerate mutate (PGAM), an enzyme involved in converting 3-phosphoglycerate to 2-phosphoglycerate in glycolysis, in differentiation and suppressive function of regulatory CD4 T cells through de novo serine synthesis. This is done by contributing one carbon metabolism and eventually epigenetic regulation of Treg differentiation.

      Strengths:

      The authors have rigorously used inhibitors and antisense RNA to verify the contribution of these pathways in Treg differentiation in-vitro. This has also been verified in an in-vivo murine model of autoimmune colitis. This has further clinical implications in autoimmune disorders and cancer.

      Weaknesses:

      The authors have used inhibitors to study pathways involved in Treg differentiation. However, they have not studied the context of overexpression of PGAM, which was the actual reason to pursue this study.

    1. Reviewer #1 (Public review):

      This paper measures the positioning and diffusivity of RNaseE-mEos3.2 proteins in E. coli as a function of rifampicin treatment, compares RNaseE to other E. coli proteins, and measures the effect of changes in domain composition on this localization and motion. The straightforward study is thoroughly presented, including very good descriptions of the imaging parameters and the image analysis/modeling involved, which is good because the key impact of the work lies in presenting this clear methodology for determining the position and mobility of a series of proteins in living bacteria cells.

      My key notes and concerns are listed below; the most important concerns are indicated with asterisks.

      (1) The very start of the abstract mentions that the domain composition of RNase E varies among species, which leads the reader to believe that the modifications made to E. coli RNase E would be to swap in the domains from other species, but the experiment is actually to swap in domains from other E. coli proteins. The impact of this work would be increased by examining, for instance, RNase E domains from B. subtilis and C. crescentus as mentioned in the introduction.

      (2) Furthermore, the introduction ends by suggesting that this work will modulate the localization, diffusion, and activity of RNase E for "various applications", but no applications are discussed in the discussion or conclusion. The impact of this work would be increased by actually indicating potential reasons why one would want to modulate the activity of RNase E.

      (3) Lines 114 - 115: "The xNorm histogram of RNase E shows two peaks corresponding to each side edge of the membrane": "side edge" is not a helpful term. I suggest instead: "...corresponding to the membrane at each side of the cell"

      (4) ***A key concern of this reviewer is that, since membrane-bound proteins diffuse more slowly than cytoplasmic proteins, some significant undercounting of the % of cytoplasmic proteins is expected due to decreased detectability of the faster-moving proteins. This would not be a problem for the LacZ imaging where essentially all proteins are cytoplasmic, but would significantly affect the reported MB% for the intermediate protein constructs. How is this undercounting considered and taken into account? One could, for instance, compare LacZ vs. LacY (or RNase E) copy numbers detected in fixed cells to those detected in living cells to estimate it.

      (5) ***The rifampicin treatment study is not presented well. Firstly, it is found that LacY diffuses more rapidly upon rifampicin treatment. This change is attributed to changes in crowding at the membrane due to mRNA. Several other things change in cells after adding rif, including ATP levels, and these factors should be considered. More importantly, since the change in the diffusivity of RNaseE is similar to the change in diffusivity of LacY, then it seems that most of the change in RNaseE diffusion is NOT due to RNaseE-mRNA-ribosome binding, but rather due to whatever crowding/viscosity effects are experienced by LacY (along these lines: the error reported for D is SEM, but really should be a confidence interval, as in Figure 1, to give the reader a better sense of how different (or similar) 1.47 and 1.25 are).

      (6) Lines 185-189: it is surprising to me that the CTD mutants both have the same change in D (5.5x and 5.3x) relative to their full-length counterparts since D for the membrane-bound WT protein should be much less sensitive to protein size than D for the cytoplasmic MTS mutant. Can the authors comment?

      (7) Lines 190-194. Again, the confidence intervals and experimental uncertainties should be considered before drawing biological conclusions. It would seem that there is "no significant change" in the rhlB and pnp mutants, and I would avoid saying "especially for ∆pnp" when the same conclusion is true for both (one shouldn't say 1.04 is "very minute" and 1.08 is just kind of small - they are pretty much the same within experiments like this).

      (8) ***Lines 221-223 " This is remarkable because their molecular masses (and thus size) are expected to be larger than that of MTS" should be reconsidered: diffusion in a membrane does not follow the Einstein law (indeed lines 223-225 agree with me and disagree with lines 221-223). (Also the discussion paragraph starting at line 375). Rather, it is generally limited by the interactions with the transmembrane segments with the membrane. So Figure 3D does not contain the right data for a comparison, and what is surprising to me is that MTS doesn't diffuse considerably faster than LacY2.

      (9) ***The logical connection between the membrane-association discussion (which seems to ignore associations with other proteins in the cell) and the preceding +/- rifampicin discussion (which seeks to attribute very small changes to mRNA association) is confusing.

      (10) Separately, the manuscript should be read through again for grammar and usage. For instance, the title should be: "Single-molecule imaging reveals the *roles* of *the* membrane-binding motif and *the* C-terminal domain of RNase E in its localization and diffusion in Escherichia coli". Also, some writing is unwieldy, for instance, "RNase E's D" would be easier to read if written as D_{RNaseE}. (underscore = subscript), and there is a lot of repetition in the sentence structures.

    2. Reviewer #2 (Public review):

      Summary:

      Troyer and colleagues have studied the in vivo localisation and mobility of the E.coli RNaseE (a protein key for mRNA degradation in all bacteria) as well as the impact of two key protein segments (MTS and CTD) on RNase E cellular localisation and mobility. Such sequences are important to study since there is significant sequence diversity within bacteria, as well as a lack of clarity about their functional effects. Using single-molecule tracking in living bacteria, the authors confirmed that >90% of RNaseE localised on the membrane, and measured its diffusion coefficient. Via a series of mutants, they also showed that MTS leads to stronger membrane association and slower diffusion compared to a transmembrane motif (despite the latter being more embedded in the membrane), and that the CTD weakens membrane binding. The study also rationalised how the interplay of MTS and CTD modulate mRNA metabolism (and hence gene expression) in different cellular contexts.

      Strengths:

      The study uses powerful single-molecule tracking in living cells along with solid quantitative analysis, and provides direct measurements for the mobility and localisation of E.coli RNaseE, adding to information from complementary studies and other bacteria. The exploration of different membrane-binding motifs (both MTS and CTD) has novelty and provides insight on how sequence and membrane interactions can control function of protein-associated membranes and complexes. The methods and membrane-protein standards used contribute to the toolbox for molecular analysis in live bacteria.

      Weaknesses:

      The Results sections can be structured better to present the main hypotheses to be tested. For example, since it is well known that RNase E is membrane-localised (via its MTS), one expects its mobility to be mainly controlled by the interaction with the membrane (rather than with other molecules, such as polysomes and the degradosome). The results indeed support this expectation - however, the manuscript in its current form does not lay down the dominant hypothesis early on (see second Results chapter), and instead considers the rifampicin-addition results as "surprising"; it will be best to outline the most likely hypotheses, and then discuss the results in that light.

      Similarly, the authors should first discuss the different modes of interaction for a peripheral anchor vs a transmembrane anchor, outline the state of knowledge and possibilities, and then discuss their result; in its current version, the ms considers the LacY2 and LacY6 faster diffusion compared to MTS "remarkable", but considering the very different mode of interaction, there is no clear expectation prior to the experiment. In the same section, it would be good to see how the MD simulations capture the motion of LacY6 and LacY12, since this will provide a set of results consistent with the experimental set.

      The work will benefit from further exploration of the membrane-RNase E interactions; e.g., the effect of membrane composition is explored by just using two different growth media (which on its own is not a well-controlled setting), and no attempts to change the MTS itself were made. The manuscript will benefit from considering experiments that explore the diversity of RNaseE interactions in different species; for example, the authors may want to consider the possibility of using the membrane-localisation signals of functional homologs of RNaseE in different bacteria (e.g., B. subtilis). It would be good to look at the effect of CTD deletions in a similar context (i.e., in addition to the MTS substitution by LacY2 and LacY6).

      The manuscript will benefit from further discussion of the unstructured nature of the CTD, especially since the RNase CTD is well known to form condensates in Caulobacter crescentus; it is unclear how the authors excluded any roles for RNaseE phase separation in the mobility of RNaseE in E.coli cells.

      Some statements in the Discussion require support with example calculations or toning down substantially. Specifically, it is not clear how the authors conclude that RNaseE interacts with its substrate for a short time (and what this time may actually be); further, the speculation about the MTS "not being an efficient membrane-binding motif for diffusion" lacks adequate support as it stands.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Troyer et al quantitatively measured the membrane localization and diffusion of RNase E, an essential ribonuclease for mRNA turnover as well as tRNA and rRNA processing in bacteria cells. Using single-molecule tracking in live E. coli cells, the authors investigated the impact of membrane targeting sequence (MTS) and the C-terminal domain (CTD) on the membrane localization and diffusion of RNase E under various perturbations. Finally, the authors tried to correlate the membrane localization of RNase E to its function on co- and post-transcriptional mRNA decay using lacZ mRNA as a model.

      The major findings of the manuscripts include:

      (1) WT RNase E is mostly membrane localized via MTS, confirming previous results. The diffusion of RNase E is increased upon removal of MTS or CTD, and more significantly increased upon removal of both regions.

      (2) By tagging RNase E MTS and different lengths of LacY transmembrane domain (LacY2, LacY6, or LacY12) to mEos3.2, the results demonstrate that short LacY transmembrane sequence (LacY2 and LacY6) can increase the diffusion of mEos3.2 on the membrane compared to MTS, further supported by the molecular dynamics simulation. A similar trend was roughly observed in RNase E mutants with MTS switched to LacY transmembrane domains.

      (3) The removal of RNase E MTS significantly increases the co-transcriptional degradation of lacZ mRNA, but has minimal effect on the post-transcriptional degradation of lacZ mRNA. Removal of CTD of RNase E overall decreases the mRNA decay rates, suggesting the synergistic effect of CTD on RNase E activity.

      Strengths:

      (1) The manuscript is clearly written with very detailed method descriptions and analysis parameters.

      (2) The conclusions are mostly supported by the data and analysis.

      (3) Some of the main conclusions are interesting and important for understanding the cellular behavior and function of RNase E.

      Weaknesses:

      (1) Some of the observations show inconsistent or context-dependent trends that make it hard to generalize certain conclusions. Those points are worth discussion at least. Examples include:

      (a) The authors conclude that MTS segment exhibits reduced MB% when succinate is used as a carbon source compared to glycerol, whereas LacY2 segment maintains 100% membrane localization, suggesting that MTS can lose membrane affinity in the former growth condition (Ln 341-342). However, the opposite case was observed for the WT RNase E and RNase E-LacY2-CTD, in which RNase E-LacY2-CTD showed reduced MB% in the succinate-containing M9 media compared to the WT RNase E (Ln 264-267). This opposite trend was not discussed. In the absence of CTD, would the media-dependent membrane localization be similar to the membrane localization sequence or to the full-length RNase E?

      (b) When using mEos3.2 reporter only, LacY2 and LacY6 both increase the diffusion of mEos3.2 compared to MTS. However, when inserting the LacY transmembrane sequence into RNase E or RNase E without CTD, only the LacY2 increases the diffusion of RNase E. This should also be discussed.

      (2) The authors interpret that in some cases the increase in the diffusion coefficient is related to the increase in the cytoplasm localization portion, such as for the LacY2 inserted RNase E with CTD, which is rational. However, the authors can directly measure the diffusion coefficient of the membrane and cytoplasm portion of RNase E by classifying the trajectories based on their localizations first, rather than just the ensemble calculation.

      (3) The error bars of the diffusion coefficient and MB% are all SEM from bootstrapping, which are very small. I am wondering how much of the difference is simply due to a batch effect. Were the data mixed from multiple biological replicates? The number of biological replicates should also be reported.

      (4) Some figures lack p-values, such as Figures 4 and 5C-D. Also, adding p-values directly to the bar graphs will make it easier to read.

    1. Reviewer #1 (Public review):

      Summary:

      This study uses single nucleus multi-omics to profile the transcriptome and chromatin accessibility of mouse XX and XY primordial germ cells (PGCs) at three time points spanning PGC sexual differentiation and entry of XX PGCs into meiosis (embryonic days 11.5-13.5). They find that PGCs can be clustered into sub-populations at each time point, with higher heterogeneity among XX PGCs and more switch-like developmental transitions evident in XY PGCs. In addition, they identify several transcription factors that appear to regulate sex-specific pathways as well as cell-cell communication pathways that may be involved in regulating XX vs XY PGC fate transitions. The findings are important and overall rigorous. The study could be further improved by better connection to the biological system, including putting the transcriptional heterogeneity of XX PGCs in the context of findings that meiotic entry is spatially asynchronous in the fetal ovary and further addressing the role of retinoic acid signaling. Overall, this study represents and advance in germ cell regulatory biology and will be a highly used resource in the field of germ cell development.

      Strengths:

      (1) The multi-omics data is mostly rigorously collected and carefully interpreted.

      (2) The dataset is extremely valuable and helps to answer many long-standing questions in the field.

      (3) In general, the conclusions are well anchored in the biology of the germ line in mammals.

      Comments on revised version:

      Most of my concerns have been addressed in the revised manuscript. I have one remaining concern but I believe this is important in order for the paper to be fully appreciated:

      In Figures 2a, 2e, 3a, and 3e, the visualization scheme is very difficult to follow, and has not been updated or improved in the revised manuscript. It's very hard to see the colors corresponding to average expression for many genes because the circles are so small. The yellow color is hard to see and makes it hard to estimate the size of the circle. This issue is particularly egregious in Figure 2a for the data relating to ZKSCAN5, which is specifically highlighted in the text in lines 421-426. This data must be shown in a more convincing way in order to make the claims. An update to the visualization, including color scheme, is very strongly recommended; it is not difficult and would substantially improve the ability of these panels to communicate their message.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Alexander et al describes a careful and rigorous application of multiomics to mouse primordial germ cells (PGCs) and their surrounding gonadal cells during the period of sex differentiation.

      Strengths:

      In thoughtfully designed figures, the authors identify both known and new candidate gene regulatory networks in differentiating XX and XY PGCs and sex-specific interactions of PGCs with supporting cells. In XY germ cells, novel findings include the predicted set of TFs regulating Bnc2, which is known to promote mitotic arrest, as well as the TFs POU6F1/2 and FOXK2 and their predicted targets that function in mitosis and signal transduction. In XX germ cells, the authors deconstruct the regulation of the premeiotic replication factor Stra8, which reveals TFs involved in meiosis, retinoic acid signaling, pluripotency and epigenetics among predictions; this finding, along with evidence supporting regulatory potential of retinoic acid receptors in meiotic gene expression is an important addition to the debate over the necessity of retinoic acid in XX meiotic initiation. In addition, a self-regulatory network of other TFs is hypothesized in XX differentiating PGCs, including TFAP2c, TCF5, ZFX, MGA and NR6A1, which is predicted to turn on meiotic and Wnt signaling targets. Finally, analysis of PGC-support cell interactions during sex differentiation reveals substantially more interactions in XX, via WNTs and BMPs, as well as some new signaling pathways that predominate in XY PGCs including ephrins, CADM1, Desert Hedgehog and matrix metalloproteases. This dataset will be an excellent resource for the community, motivating functional studies and serving as a discovery platform.

      Weaknesses:

      While the authors performed all of their comparisons between XX versus XY datasets at each timepoint, a more systematic analysis of expression and accessibility changes across time for each sex would be valuable. It remains possible that common mechanisms of differentiation to XX and XY could be missing from this analysis that focused on sex-specific differences.

      Specific Questions:

      (1) Line 461: "the population of E13.5 XX PGCs displaying the strongest Stra8 expression levels corresponded to the same population of XX PGCs with the highest module score of early meiotic prophase I genes (Fig. 3c; Supplementary Fig. 3a-b)" however the Stra8+ XX PGCs that do not robustly express meiotic genes should be examined to understand more about their differentiation potential. The authors are well-poised to identify the likely trajectories available to cell subsets in their dataset, and not doing so is a missed opportunity.

      (2) The authors state that "we found that Stra8, Rec8, Rnf2, Sycp1, Sycp2, Ccnb3, and Zglp1 contain the RA receptor motifs in their regulatory sequences (Supplementary Figure 4g)." What is the strength of the RA->meiosis pathway compared to other mechanisms regulating meiosis? Perhaps the authors could take this analysis further with the following questions: (1) ask whether meiotic genes more enriched in RA motifs compared to other expressed genes or other motifs (2) compare the strength of peak-gene correlations for all peaks containing RA receptor motifs vs. those with peaks for Zglp1, Rnf2, etc binding. The strengths of these correlations could provide clues to how much gene expression varies in response to RA exposure vs. modulation of these other factors and thus tell us something about how much RA is playing a role.

      (3) In figure 4, the shift from promoters in E11.5 XX PGCs to distal intergenic regions is fascinating. What can we learn about epigenetic reprogramming/methylation changes across gene bodies?

      (4) The overlap between gene targets of TCFL5 with other highly expressed TFs differentially upregulated in E13.5 XX PGCs over XY suggests ambiguity regarding its role as a central or high-level regulator of differentiation; as in vivo validation has not been performed, I suggest softening this conclusion.

    3. Reviewer #3 (Public review):

      Summary:

      Alexander et al. reported the gene-regulatory networks underpinning sex determination of murine primordial germ cells (PGCs) through single-nucleus multiomics, offering a detailed chromatin accessibility and gene expression map across three embryonic stages in both male (XY) and female (XX) mice. It highlights how regulatory element accessibility may precede gene expression, pointing to chromatin accessibility as a primer for lineage commitment before differentiation. Sexual dimorphism in these elements and gene expression increases over time, and the study maps transcription factors regulating sexually dimorphic genes in PGCs, identifying sex-specific enrichment in various transcription factors.

      Strengths:

      The study includes step-wise multiomic analysis with some computational approach to identify candidate TFs regulating XX and XY PGC gene expression, providing a detailed timeline of chromatin accessibility and gene expression during PGC development, which identifies previously unknown PGC subpopulations and offers a multimodal reference atlas of differentiating PGC clusters. Furthermore, the study maps a complex network of transcription factors associated with sex determination in PGCs, adding depth to our understanding of these processes.

      Weaknesses:

      While the multiomics approach is powerful, it primarily offers correlational insights between chromatin accessibility, gene expression, and transcription factor activity, without direct functional validation of identified regulatory networks.

      Comments on revised version:

      The authors have answered my questions and concerns in the revised manuscript and correspondence.

    1. Reviewer #1 (Public review):

      Summary:

      Authors constructed a novel HSV-based therapeutic vaccine to cure SIV in a primate model. The novel HSV vector is deleted for ICP34.5. Evidence is given that this protein blocks HIV reactivation by interference with the NFkappaB pathway. The deleted construct supposedly would reactivate SIV from latency. The SIV genes carried by the vector ought to elicit a strong immune response. Together the HSV vector would elicit a shock and kill effect. This is tested in a primate model.

      Strengths and weaknesses:

      (1) Deleting ICP34.5 from the HSV construct has a very strong effect on HIV reactivation. The mechanism underlying increased activation by deleting ICP34.5 is only partially explored. Overexpression of ICP34.5 has a much smaller effect (reduction in reactivation) than deletion of ICP34.5 (strong activation); this is acknowledged by the authors that no full mechanistic explanation can be given at this moment.

      (2) No toxicity data are given for deleting ICP34.5. How specific is the effect for HIV reactivation? A RNA seq analysis is required to show the effect on cellular genes.

      A RNA seq analysis was done in the revised manuscript comparing the effect of HSV-1 and deleted vector in J-LAT cells (Fig S5). More than 2000 genes are upregulated after transduction with the modified vector in comparison with the WT vector. Hence, the specificity of upregulation of SIV genes is questioned. Authors do NOT comment on these findings. In my view it questions the utility of this approach.

      (3) The primate groups are too small and the results to variable to make averages. In Fig 5, the group with ART and saline has two slow rebounders. It is not correct to average those with the single quick rebounder. Here the interpretation is NOT supported by the data.

      Although authors provided some promising SIV DNA data, no additional animals were added. Groups of 3 animals are too small to make any conclusion, especially since the huge variability in response. The average numbers out of 3 are still presented in the paper, which is not proper science.

      No data are given of the effect of the deletion in primates. Now the deleted construct is compared with an empty vector containing no SIV genes. Authors provide new data in Fig S2 on the comparison of WT and modified vector in cells from PLWH, but data are not that convincing. A significant difference in reactivation is seen for LTR in only 2/4 donors and in Gag in 3/4 donors. (Additional question what is meaning of LTR mRNA, do authors relate to genomic RNA??)

      Discussion

      HSV vectors are mainly used in cancer treatment partially due to induced inflammation. Whether these are suitable to cure PLWH without major symptoms is a bit questionable to me and should at least be argued for.

      The RNA seq data add on to this worry and should at least be discussed.

      Comments on revisions:

      The authors accept the limitations of the primate study (too small for strong conclusions). The new way of presenting the data clearly shows these limitations.

    1. Reviewer #1 (Public review):

      Summary:

      By using the biophysical chromosome stretching, the authors measured the stiffness of chromosomes of mouse oocytes in meiosis I (MI) and meiosis II (MII). This study was the follow-up of previous studies in spermatocytes (and oocytes) by the authors (Biggs et al. Commun. Biol. 2020: Hornick et al. J. Assist. Rep. and Genet. 2015). They showed that MI chromosomes are much stiffer (~10 fold) than mitotic chromosomes of mouse embryonic fibroblast (MEF) cells. MII chromosomes are also stiffer than the mitotic chromosomes. The authors also found that oocyte aging increases the stiffness of the chromosomes. Surprisingly, the stiffness of meiotic chromosomes is independent of meiotic chromosome components, Rec8, Stag3, and Rad21L. and aging increases the stiffness.

      Strengths

      This provides a new insight into the biophysical property of meiotic chromosomes, that is chromosome stiffness. The stiffness of chromosomes in meiosis prophase I is ~10-fold higher than that of mitotic chromosomes, which is independent of meiotic cohesin. The increased stiffness during oocyte aging is a novel finding.

      Weaknesses:

      A major weakness of this paper is that it does not provide any molecular mechanism underlying the difference between MI and MII chromosomes (and/or prophase I and mitotic chromosomes).

      Comments on revisions:

      The main text lacks the first page with the authors' names and their affiliations (and corresponding authors etc).

    2. Reviewer #2 (Public review):

      Initial Review:

      This paper reports investigations of chromosome stiffness in oocytes and spermatocytes> the paper shows that prophase I spermatocytes and MI/MII oocytes yield high Young Modulus values in the assay the authors applied. Deficiency in each one of three meiosis-specific cohesins they claim did not affect this result and increased stiffness was seen in aged oocytes but not in oocytes treated with the DNA-damaging agent etoposide.

      The paper reports some interesting observations which are in line with a report by the same authors of 2020 where increased stiffness of spermatocyte chromosomes was already shown. In that sense, it the current manuscript is an extension of that previous paper and thus novelty is somewhat limited. The paper is also largely descriptive as it does neither propose mechanism nor report factors that determine the chromosomal stiffness.

      There are several points that need to be considered.

      Limitations of the study and the conclusions are not discussed in "Discussion"; that's a significant gap. Even more so as the authors rely on just one experimental system for all their data - no independent verification - and that in vitro system may be prone to artefacts.

      It is somewhat unfortunate that they jump between oocytes and spermatocytes to address the cohesin question. Prophase I (pachytene) spermatocytes chromosomes are not directly comparable to MI or MII oocyte chromosomes. In fact, the authors report Young Modulus values of 3700 for MI oocytes and only 2700 for spermatocyte prophase chromosomes, illustrating this difference. Why not using oocyte-specific cohesin deficiencies?

      It remains unclear whether the treatment of oocytes with the detergent TritonX-100 affects the spindle and thus the chromosomes isolated directly from the Triton-lysed oocytes. In fact, it is rather likely that the detergent affects chromatin-associated proteins and thus structural features of the chromosomes.

      Why did the authors use mouse strains of different genetic background, CD-1 and C57BL/6? That makes comparison difficult. Breeding of heterozygous cohesin mutants will yield the ideal controls, i.e. littermates.

      How did the authors capture chromosome axes from STAG3-deficient spermatocytes which feature very little if any axes? How representative are those chromosomes that could be captured?

      Line 135: that statement is not substantiated; better to show retraction data and full reversibility.

      Line 144: the authors claim that the Young Modulus of MII oocytes is "slightly" higher than that of mitotic cells (MEFs). Well, "slightly" means it is rather similar and therefore the commonly used statement that MII is similar to mitosis is OK - contrary to the authors claim.

      There are a lot of awkward sentences in this text. Some sentences lack words, are not sufficiently precise in wording and/or logic, and there are numerous typos. Some examples can be found in lines 89 (grammar), 94, 95 ("looked"), 98, 101 ("difference" - between what?), and some are commonplaces or superficial (lines 92/93, 120..., ). Occasionally the present and past tense are mixed (e.g. in M&M). Thus the manuscript is quite badly written.

      Comments on revisions:

      In their revised paper, Liu et al have addressed a number of my concerns and thus the paper is clearly improved in several details, e.g. in showing a control for a potential effect of the detergent (new supplies. fig. 5). Other points were not sufficiently addressed though.

      I remain sceptical about using mice of a substantially different genetic background (CD1) as controls in the analysis of the cohesin mutants (C57BL/6). The argument that C57BL/6 yield smaller litter size is, frankly, ridiculous. Hundreds of labs worldwide extensively and successfully work with C57BL/6. Further, the paper Liu et al. cite to argue that there are no (or minor) differences in chromosome structure (Biggs et al., 2020, which is from the same lab) of the two mouse strains deals with spermatocyte chromosomes only. Nothing there on oocyte chromosomes. And there is no direct comparison within the same experimental setting since in Biggs et al only C57BL/6 is used (sic!). Thus, this is not a convincing argument. It would also be reassuring to see an independent reference directly comparing different genetic backgrounds (authors may have a look at older papers of Pat Hunt/Terry Hassold where they may find some data). In my experience, differences in genetic background do play a very clear role in meiosis, e.g. in the timing of juvenile spermatogenesis, in the onset of puberty, in the kinetics of oocyte maturation, in the success of PBE, and in biophysical properties as seen in the stability of oocytes during experimental handling. In fact, the authors themselves indicate differences in reproduction by stating the low litter size of C57BL/6. Thus, I strongly advise carrying out at least a few key experiments using C57BL/6 control mice (which can very easily and cheaply be obtained from vendors; the authors have used C57BL/6 wt before - see their 2020 paper).

      The answer to my question #5 is not really satisfactory. I asked specifically how the authors isolated the very small chromosomes from Stag3-/- spermatocytes, where the axes are almost non-existing. The authors refer to suppl. fig. 3, but that shows isolation from Rec8-/- spermatocytes, which still have nicely visible, well-formed, shortened axes. Suppl. fig. 4 shows this for Rad21l-/-. Why not show this for the Stag3-/-, which in this respect is the most critical and difficult, and specifically answer my question?

      The overall criticism of the lack of conceptual novelty of the basic message of the paper and of very little if any insights into the mechanisms and factors determining the changes in chromosome stiffness remains.

    1. Reviewer #2 (Public review):

      Summary:

      The authors used a yeast model for analyzing Parkinson's disease-associated synphilin-1 inclusion bodies (SY1 IBs). In this model system, large SY1 IBs are efficiently formed from smaller potentially more toxic SY1 aggregates. Using a genome-wide approach (synthetic genetic array, SGA, combined with a high content imaging approach), the authors identified the sphingolipid metabolic pathway as pivotal for SY1 IBs formation. Disturbances of this pathway increased SY1-triggered growth deficits, loss of mitochondrial membrane potential, increased production of reactive oxygen species (ROS), and decreased cellular ATP levels pointing to an increased energy crisis within affected cells. Notably, SY1 IBs were found to be surrounded by mitochondrial membranes using state-of-the-art super-resolution microscopy. Finally, the effects observed in the yeast for SY1 IBs turned out to be evolutionary conserved in mammalian cells. Thus, sphingolipid metabolism might play an important role in the detoxification of misfolded proteins by large IBs formation at the mitochondrial outer membrane.

      Strengths:

      • The SY1 IB yeast model is very suitable for the analysis of genes involved in IB formation.<br /> • The genome-wide approach combining a synthetic genetic array (SGA) with a high content imaging approach is a compelling approach and enabled the reliable identification of novel genes. The authors tightly checked the output of the screen.<br /> • The authors clearly showed, including a couple of control experiments, that the sphingolipid metabolic pathway is crucial for SY1 IB formation and cytotoxicity.<br /> • The localization of SY1 IBs at mitochondrial membranes has been clearly demonstrated with state-of-the-art super-resolution microscopy and biochemical methods.<br /> • Pharmacological manipulation of the sphingolipid pathway influenced mitochondrial function and cell survival.<br /> • The authors have carefully redone critical experiments to avoid any misleading interpretation of data.

      Weaknesses:

      • It remains unclear how sphingolipids are involved in SY1 IB formation.

      Comments on revisions: No further comments

    1. Reviewer #1 (Public review):

      Summary:

      This paper introduces a new approach for modeling human behavioral responses using image-computable models. They create a model (VAM) that is a combination of a standard CNN coupled with a standard evidence accumulation model (EAM). The combined model is then trained directly on image-level data using human behavioral responses. This approach is original and can have wide applicability. However, many of the specific findings reported are less compelling.

      Strengths:

      (1) The manuscript presents an original approach of fitting an image-computable model to human behavioral data. This type of approach is sorely needed in the field.<br /> (2) The analyses are very technically sophisticated.<br /> (3) The behavioral data are large both in terms of sample size (N=75) and in terms of trials per subject.

      Weaknesses:

      (1) The main advance here thus appears to be methodological rather than conceptual. It's really cool that VAMs are image computable and are also fit to human data. But what we learn about the mind or brain is perhaps more modest.<br /> (2) In the approach here, a given stimulus is always processed in the same way through the core CNN to produce activations v_k. These v_k's are then corrupted by Gaussian noise to produce drift rates d_k, which can differ from trial to trial even for the same stimulus. In other words, the assumption built into VAM appears to be that the drift rate variability stems entirely from post-sensory (decisional) noise. In contrast, the typical interpretation of EAMs is that the variability in drift rates is sensory. In response to this concern, the authors responded that one can imagine an additional (unmodeled) sensory process that adds variability to the drift rates. However, this process remains unmodeled. The authors motivate their paper by saying "EAMs do not explain how the visual system extracts these representations in the first place" (second sentence of the Abstract). VAM is definitely a step in this direction but there's still a gap between the current VAM implementation and sensory systems.

    2. Reviewer #2 (Public review):

      In An image-computable model of speeded decision-making, the authors introduce and fit a combined CCN-EAM (a 'VAM') to flanker-task-like data. They show that the VAM can fit mean RTs and accuracies as well as the congruency effect that is present in the data, and subsequently analyze the VAM in terms of where in the network congruency effects arise.

      I have mixed feelings about this manuscript, as I appreciate the innovative efforts to combine CNNs with EAMs in a new class of cognitive models, while also having some reservations from an EAM perspective. The idea of combining these approaches has great potential, and I'm excited to see where this research will lead. However, I do have some concerns about the quality of fit between the behavioral data and the model. Specifically, the RT distributions, delta plots, and conditional accuracy function don't appear to be well-matched by the VAM. The conflict effects on behavioral data are well-established and typically considered crucial to understanding the underlying cognitive process. Unfortunately, it seems that these parts of the data don't fit well with the proposed model.

      This disparity is not entirely surprising. The EAM literature suggests that LBA models might not be suitable for conflict tasks, and the presented results seem to confirm this concern. Conflict EAMs, including the DMC (e.g., Ulrich et al., 2015; Evans & Servant, 2022; Lee & Sewell 2024), propose dynamic drift rates with a fast automatic process that is gradually withdrawn from evidence accumulation over time. This approach results in congruency effects arising from temporal dynamics, not spatial representations.<br /> In contrast, the VAM imposes static drift rates in the LBA model, leading to an effect between drift rates that translates to changes in representations. However, this account does not adequately explain the behavioral data, and the proposed representational geometry explanation is therefore limited.

      My concerns are addressed in the revised manuscript, but I struggle to understand why the authors distinguish between explaining mean effects across individuals and congruency effects within individuals. These concepts seem related, and issues at the individual level could propagate to the group mean. Furthermore, I find it challenging to accept that dynamics merely act 'in concert' with the orthogonalization mechanism, as it seems possible that an account that uses a time-varying EAM may not require any orthogonalization mechanism in the first place. The orthogonalization mechanism might have arisen because the model does not have the possibility to account for the conflict effect from temporal effects, instead of spatial effects. I could envision a CNN-DMC in which conflict effects arise only at the level of the choice model (e.g., as a time-varying filter that changes which information is read out from the visual system, rather than due to changes in the representations in the visual system itself). This possibility should be acknowledged in the paper, and it would be interesting to discuss how such an account would be tested.

      While I appreciate the technological advancement presented in this paper, my concerns are not about implementation details but rather about the choice of models and their consequences. I believe that a more in-depth exploration of which conclusions can be drawn, and which model comparisons would be required to reach a final conclusion.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to modify the characteristics of the extracellular matrix (ECM) produced by immortalized mesenchymal stem cells (MSCs) by employing the CRISPR/Cas9 system to knock out specific genes. Initially, they established VEGF-KO cell lines, demonstrating that these cells retained chondrogenic and angiogenic properties. Additionally, lyophilized carriage tissues produced by these cells exhibited retained osteogenic properties.

      Subsequently, the authors established RUNX2-KO cell lines, which exhibited reduced COLX expression during chondrogenic differentiation and notably diminished osteogenic properties in vitro. Transplantation of lyophilized carriage tissues produced by RUNX2-KO cell lines into osteochondral defects in rat knee joints resulted in the regeneration of articular cartilage tissues as well as bone tissues, a phenomenon not observed with tissues derived from parental cells. This suggests that gene-edited MSCs represent a valuable cell source for producing ECM with enhanced quality.

      Strengths:

      The enhanced cartilage regeneration observed with ECM derived from RUNX2-KO cells supports the authors' strategy of creating gene-edited MSCs capable of producing ECM with superior quality. Immortalized cell lines offer a limitless source of off-the-shelf material for tissue regeneration.

      Weaknesses:

      Most of the data align with anticipated outcomes, offering limited novelty to advance scientific understanding. Methodologically, the chondrogenic differentiation properties of immortalized MSCs appeared deficient, evidenced by Safranin-O staining of 3D tissues and histological findings lacking robust evidence for endochondral differentiation. This presents a critical limitation, particularly as authors propose the implantation of cartilage tissues for in vivo experiments. Instead, the bulk of data stemmed from type I collagen scaffold with factors produced by MSCs stimulated by TGFβ.

      In the revised version, the authors presented Safranin-O staining results of pellets prior to lyophilization. The inset of figures showing entire pellets revealed that Safranin-O-positive areas were limited, suggesting that cells in the negative regions had not differentiated into chondrocytes. In Figure 3F, DAPI staining showed devitalized cells in the outer layer but was negative in the central part, indicating the absence of cells in these areas and incomplete differentiation induction.

      The rationale for establishing VEGF-KO cell lines remains unclear, and the authors' explanation in the revised manuscript is still equivocal. While they mention that VEGF is a late marker for endochondral ossification, the data in Figures 1D and 1E clearly show that VEGF-KO affects the early phase of endochondral ossification.

      Insufficient depth was given to elucidate the disparity in osteogenic properties between those observed in ectopic bone formation and those observed in transplantation into osteochondral defects.

      In the ectopic bone formation study, most of the collagenous matrix observed at 2 weeks was resorbed by 6 weeks, with only a small amount contributing to bone formation in MSOD-B cells (Figs. 2I and 4C). This finding does not align with the micro-CT data presented in Figures 2H and 4B. For the micro-CT experiments, it would be more appropriate to use a standard window for bone and present the data accordingly.

      While the regeneration of articular cartilage in RUNX2-KO ECM presents intriguing results, the study lacked an exploration into underlying mechanisms, such as histological analyses at earlier time points.

    2. Reviewer #3 (Public review):

      Summary:

      In this study, the authors have started off using an immortalized human cell line and then gene edited it to decrease the levels of VEGF1 (in order to influence vascularization), and the levels of Runx2 (to decrease osteogenesis). They first transplanted these cells with a collagen scaffold. The modified cells showed a decrease in vascularization when VEGF1 was decreased, and suggested an increase in cartilage formation.

      In another study, matrix generated by these cells subsequently remodeled into a bone marrow organ. When RUNX2 was decreased, the cells did not mineralize in vitro, and their matrices expressed types I and II collagen but not type X collagen in vitro, in comparison with unedited cells. In vivo, the author claims that remodeling of the matrices into bone was somewhat inhibited. Lastly, they utilized matrices generated by RUNX2-edited cells to regenerate chondro-osteal defects. They suggest that the edited cells regenerated cartilage in comparison with unedited cells.

      Strengths:

      - The notion that inducing changes in the ECM by genetically editing the cells is a novel one, as it has long been thought that ECM composition influences cell activity.<br /> - If successful, it may be possible to make off the shelf ECMS to carry out different types of tissue repair.

      Weaknesses:

      - The authors have not demonstrated robust cartilage formation (quantitation would be useful).<br /> - Measuring total GAG content does not prove the presence of cartilage<br /> - There are numerous overstatements about forming and implanting cartilage.<br /> - Although it is implied, RUNX2 deletion did not improve cartilage formation by the modified cells.<br /> - In the control line, MSOD-B there were variability in the amount of safranin O positive material in various histological panels in the figures.; more quantitation is needed.<br /> - In the in vivo articular defect experiments, an untreated injured joint is needed as a negative control.<br /> - Statements about bone generation are often not reflective of the microCT data presented.<br /> - The discussion over-interprets the results.

    1. Reviewer #1 (Public review):

      Summary:

      In their previous publication (Dong et al. Cell Reports 2024), the authors showed that citalopram treatment resulted in reduced tumor size by binding to the E380 site of GLUT1 and inhibiting the glycolytic metabolism of HCC cells, instead of the classical citalopram receptor. Given that C5aR1 was also identified as the potential receptor of citalopram in the previous report, the authors focused on exploring the potential of the immune-dependent anti-tumor effect of citalopram via C5aR1. C5aR1 was found to be expressed on tumor-associated macrophages (TAMs) and citalopram administration showed potential to improve the stability of C5aR1 in vitro. Through macrophage depletion and adoptive transfer approaches in HCC mouse models, the data demonstrated the potential importance of C5aR1-expressing macrophage in the anti-tumor effect of citalopram in vivo. Mechanistically, their in vitro data suggested that citalopram may regulate the phagocytosis potential and polarization of macrophages through C5aR1. Next, they tried to investigate the direct link between citalopram and CD8+T cells by including an additional MASH-associated HCC mouse model. Their data suggest that citalopram may upregulate the glycolytic metabolism of CD8+T cells, probability via GLUT3 but not GLUT1-mediated glucose uptake. Lastly, as the systemic 5-HT level is down-regulated by citalopram, the authors analyzed the association between a low 5-HT and a superior CD8+T cell function against a tumor. Although the data is informative, the rationale for working on additional mechanisms and logical links among different parts is not clear. In addition, some of the conclusion is also not fully supported by the current data.

      Strengths:

      The idea of repurposing clinical-in-used drugs showed great potential for immediate clinical translation. The data here suggested that the anti-depression drug, citalopram displayed an immune regulatory role on TAM via a new target C5aR1 in HCC.

      Weaknesses:

      (1) The authors concluded that citalopram had a 'potential immune-dependent effect' based on the tumor weight difference between Rag-/- and C57 mice in Figure 1. However, tumor weight differences may also be attributed to a non-immune regulatory pathway. In addition, how do the authors calculate relative tumor weight? What is the rationale for using relative one but not absolute tumor weight to reflect the anti-tumor effect?

      (2) The authors used shSlc6a4 tumor cell lines to demonstrate that citalopram's effects are independent of the conventional SERT receptor (Figure 1C-F). However, this does not entirely exclude the possibility that SERT may still play a role in this context, as it can be expressed in other cells within the tumor microenvironment. What is the expression profiling of Slc6a4 in the HCC tumor microenvironment? In addition, in Figure 1F, the tumor growth of shSlc6a4 in C57 mice displayed a decreased trend, suggesting a possible role of Slc6a4.

      (3) Why did the authors choose to study phagocytosis in Figures 3G-H? As an important player, TAM regulates tumor growth via various mechanisms.

      (4) The information on unchanged deposition of C5a has been mentioned in this manuscript (Figures 3D and 3F), the authors should explain further in the manuscript, for example, C5a could bind to receptors other than C5aR1 and/or C5a bind to C5aR1 by different docking anchors compared with citalopram.

      (5) Figure 3I-M - the flow cytometry data suggested that citalopram treatment altered the proportions of total TAM, M1 and M2 subsets, CD4+ and CD8+T cells, DCs, and B cells. Why does the author conclude that the enhanced phagocytosis of TAM was one of the major mechanisms of citalopram? As the overall TAM number was regulated, the contribution of phagocytosis to tumor growth may be limited.

      (6) Figure 4 - what is the rationale for using the MASH-associated HCC mouse model to study metabolic regulation in CD8+T cells? The tumor microenvironment and tumor growth would be quite different. In addition, how does this part link up with the mechanisms related to C5aR1 and TAM? The authors also brought GLUT1 back in the last part and focused on CD8+T cell metabolism, which was totally separated from previous data.

      (7) Figure 5, the authors illustrated their mechanism that citalopram regulates CD8+T cell anti-tumor immunity through proinflammatory TAM with no experimental evidence. Using only CD206 and MHCII to represent TAM subsets obviously is not sufficient.

    2. Reviewer #2 (Public review):

      Summary:

      Dong et al. present a thorough investigation into the potential of repurposing citalopram, an SSRI, for hepatocellular carcinoma (HCC) therapy. The study highlights the dual mechanisms by which citalopram exerts anti-tumor effects: reprogramming tumor-associated macrophages (TAMs) toward an anti-tumor phenotype via C5aR1 modulation and suppressing cancer cell metabolism through GLUT1 inhibition while enhancing CD8+ T cell activation. The findings emphasize the potential of drug repurposing strategies and position C5aR1 as a promising immunotherapeutic target. However, certain aspects of experimental design and clinical relevance could be further developed to strengthen the study's impact.

      Strength:

      It provides detailed evidence of citalopram's non-canonical action on C5aR1, demonstrating its ability to modulate macrophage behavior and enhance CD8+ T cell cytotoxicity. The use of DARTS assays, in silico docking, and gene signature network analyses offers robust validation of drug-target interactions. Additionally, the dual focus on immune cell reprogramming and metabolic suppression presents a thorough strategy for HCC therapy. By emphasizing the potential for existing drugs like citalopram to be repurposed, the study also underscores the feasibility of translational applications.

      Major weaknesses/suggestions:

      The dataset and signature database used for GSEA analyses are not clearly specified, limiting reproducibility. The manuscript does not fully explore the potential promiscuity of citalopram's interactions across GLUT1, C5aR1, and SERT1, which could provide a deeper understanding of binding selectivity. The absence of GLUT1 knockdown or knockout experiments in macrophages prevents a complete assessment of GLUT1's role in macrophage versus tumor cell metabolism. Furthermore, there is minimal discussion of clinical data on SSRI use in HCC patients. Incorporating survival outcomes based on SSRI treatment could strengthen the study's translational relevance.

      By addressing these limitations, the manuscript could make an even stronger contribution to the fields of cancer immunotherapy and drug repurposing.

    1. Reviewer #1 (Public review):

      Summary:

      In a previous work, Prut and colleagues had shown that during reaching, high-frequency stimulation of the cerebellar outputs resulted in reduced reach velocity. Moreover, they showed that the stimulation produced reaches that deviated from a straight line, with the shoulder and elbow movements becoming less coordinated. In this report, they extend their previous work by the addition of modeling results that investigate the relationship between the kinematic changes and torques produced at the joints. The results show that the slowing is not due to reductions in interaction torques alone, as the reductions in velocity occur even for movements that are single joints. More interestingly, the experiment revealed evidence for the decomposition of the reaching movement, as well as an increase in the variance of the trajectory.

      Strengths:

      This is a rare experiment in a non-human primate that assessed the importance of cerebellar input to the motor cortex during reaching.

      Weaknesses:

      My major concerns are described below.

      If I understand the task design correctly, the monkeys did not need to stop their hand at the target. I think this design may be suboptimal for investigating the role of the cerebellum in control of reaching because a number of earlier works have found that the cerebellum's contributions are particularly significant as the movement ends, i.e., stopping at the target. For example, in mice, interposed nucleus neurons tend to be most active near the end of the reach that requires extension, and their activation produces flexion forces during the reach (Becker and Person 2019). Indeed, the inactivation of interposed neurons that project to the thalamus results in overshooting of reaching movements (Low et al. 2018). Recent work has also found that many Purkinje cells show a burst-pause pattern as the reach nears its endpoint, and stimulation of the mossy fibers tends to disrupt endpoint control (Calame et al. 2023). Thus, the fact that the current paper has no data regarding endpoint control of the reach is puzzling to me.

      Because stimulation continued after the cursor had crossed the target, it is interesting to ask whether this disruption had any effects on the movements that were task-irrelevant. The reason for asking this is because we have found that whereas during task-relevant eye or tongue movements the Purkinje cells are strongly modulated, the modulations are much more muted when similar movements are performed but are task-irrelevant (Pi et al., PNAS 2024; Hage et al. Biorxiv 2024). Thus, it is interesting to ask whether the effects of stimulation were global and affected all movements, or were the effects primarily concerned with the task-relevant movements.

      If the schematic in Figure 1 is accurate, it is difficult for me to see how any of the reaching movements can be termed single joint. In the paper, T1 is labeled as a single joint, and T2-T4 are labeled as dual-joint. The authors should provide data to justify this.

      Because at least part of this work was previously analyzed and published, information should be provided regarding which data are new.

    2. Reviewer #2 (Public review):

      This manuscript asks an interesting and important question: what part of 'cerebellar' motor dysfunction is an acute control problem vs a compensatory strategy to the acute control issue? The authors use a cerebellar 'blockade' protocol, consisting of high-frequency stimuli applied to the cerebellar peduncle which is thought to interfere with outflow signals. This protocol was applied in monkeys performing center outreaching movements and has been published from this laboratory in several preceding studies. I found the take-home-message broadly convincing and clarifying - that cerebellar block reduces muscle activation acutely particularly in movements that involve multiple joints and therefore invoke interaction torques, and that movements progressively slow down to in effect 'compensate' for these acute tone deficits. The manuscript was generally well written, and the data was clear, convincing, and novel. My comments below highlight suggestions to improve clarity and sharpen some arguments.

      Primary comments:

      (1) Torque vs. tone: Is it known whether this type of cerebellar blockade is reducing muscle tone or inducing any type of acute co-contraction that could influence limb velocity through mechanisms different than 'atonia'? If so, the authors should discuss this information in the discussion section starting around line 336, and clarify that this motivates (if it does) the focus on 'torques' rather than muscle activation. Relatedly, besides the fact that there are joints involved, is there a reason there is so much emphasis on torque per se? If the muscle is deprived of sufficient drive, it would seem that it would be more straightforward to conceptualize the deficit as one of insufficient timed drive to a set of muscles than joint force. Some text better contextualizing the choices made here would be sufficient to address this concern. I found statements like those in the introduction "hand velocity was low initially, reflecting a primary muscle torque deficit" to be lacking in substance. Either that statement is self-evident or the alternative was not made clear. Finally, emphasize that it is a loss of self-generated torque at the shoulder that accounts for the velocity deficits. At times the phrasing makes it seem that there is a loss of some kind of passive torque.

      (2) Please clarify some of the experimental metrics: Ln 94 RESULTS. The success rate is used as a primary behavioral readout, but what constitutes success is not clearly defined in the methods. In addition to providing a clear definition in the methods section, it would also be helpful for the authors to provide a brief list of criteria used to determine a 'successful' movement in the results section before the behavioral consequences of stimulation are described. In particular, the time and positional error requirements should be clear.

      (3) Based on the polar plot in Figure 1c, it seemed odd to consider Targets 1-4 outward and 5-8 inward movements, when 1 and 5 are side-to-side. Is there a rationale for this grouping or might results be cleaner by cleanly segregating outward (targets 2-4) and inward (targets 6-8) movements? Indeed, by Figure 3 where interaction torques are measured, this grouping would seem to align with the hypothesis much more cleanly since it is with T2,T3,and T4 where clear coupling torques deficits are seen with cerebellar block.

      4. I did not follow Figure 3d. Both the figure axis labels and the description in the main text were difficult to follow. Furthermore, the color code per animal made me question whether the linear regression across the entire dataset was valid, or would be better performed within animal, and the regressions summarized across animals. The authors should look again at this section and figure.

      (5) Line 206+ The rationale for examining movement decomposition with a cerebellar block is presented as testing the role of the cerebellum in timing. Yet it is not spelled out what movement decomposition and trajectory variability have to do with motor timing per se.

    3. Reviewer #3 (Public review):

      Summary:

      In their manuscript, "Disentangling acute motor deficits and adaptive responses evoked by the loss of cerebellar output," Sinha and colleagues aim to identify distinct causes of motor impairments seen when perturbing cerebellar circuits. This goal is an important one, given the diversity of movement-related phenotypes in patients with cerebellar lesions or injuries, which are especially difficult to dissect given the chronic nature of the circuit damage. To address this goal, the authors use high-frequency stimulation (HFS) of the superior cerebellar peduncle in monkeys performing reaching movements. HFS provides an attractive approach for transiently disrupting cerebellar function previously published by this group. First, they found a reduction in hand velocities during reaching, which was more pronounced for outward versus inward movements. By modeling inverse dynamics, they find evidence that shoulder muscle torques are especially affected. Next, the authors examine the temporal evolution of movement phenotypes over successive blocks of HFS trials. Using this analysis, they find that in addition to the acute, specific effects on muscle torques in early HFS trials, there was an additional progressive reduction in velocity during later trials, which they interpret as an adaptive response to the inability to effectively compensate for interaction torques during cerebellar block. Finally, the authors examine movement decomposition and trajectory, finding that even when low-velocity reaches are matched to controls, HFS produces abnormally decomposed movements and higher than expected variability in trajectory.

      Strengths:

      Overall, this work provides important insight into how perturbation of cerebellar circuits can elicit diverse effects on movement across multiple timescales.

      The HFS approach provides temporal resolution and enables analysis that would be hard to perform in the context of chronic lesions or slow pharmacological interventions. Thus, this study describes an important advance over prior methods of circuit disruption, and their approach can be used as a framework for future studies that delve deeper into how additional aspects of sensorimotor control are disrupted (e.g., response to limb perturbations).

      In addition, the authors use well-designed behavioral approaches and analysis methods to distinguish immediate from longer-term adaptive effects of HFS on behavior. Moreover, inverse dynamics modeling provides important insight into how movements with different kinematics and muscle dynamics might be differentially disrupted by cerebellar perturbation.

      Weaknesses:

      The argument that there are acute and adaptive effects to perturbing cerebellar circuits is compelling, but there seems to be a lost opportunity to leverage the fast and reversible nature of the perturbations to further test this idea and strengthen the interpretation. Specifically, the authors could have bolstered this argument by looking at the effects of terminating HFS - one might hypothesize that the acute impacts on muscle torques would quickly return to baseline in the absence of HFS, whereas the longer-term adaptive component would persist in the form of aftereffects during the 'washout' period. As is, the reversible nature of the perturbation seems underutilized in testing the authors' ideas.

      The analysis showing that there is a gradual reduction in velocity during what the authors call an adaptive phase is convincing. That said, the argument is made that this is due to difficulty in compensating for interaction torques. Even if the inward targets (i.e., targets 6-8) do not show a deficit during the acute phase, these targets still have significant interaction torques (Figure 3c). Given the interpretation of the data as presented, it is not clear why disruption of movement during the adaptive phase would not be seen for these targets as well since they also have large interaction torques. Moreover, it is difficult to delve into this issue in more detail, as the analyses in Figures 4 and 5 omit the inward targets.

      The text in the Introduction and in the prior work developing the HFS approach overstates the selectivity of the perturbations. First, there is an emphasis on signals transmitted to the neocortex. As the authors state several times in the Discussion, there are many subcortical targets of the cerebellar nuclei as well, and thus it is difficult to disentangle target-specific behavioral effects using this approach. Second, the superior cerebellar peduncle contains both cerebellar outputs and inputs (e.g., spinocerebellar). Therefore, the selectivity in perturbing cerebellar output feels overstated. Readers would benefit from a more agnostic claim that HFS affects cerebellar communication with the rest of the nervous system, which would not affect the major findings of the study.

      The text implies that increased movement decomposition and variability must be due to noise. However, this assumption is not tested. It is possible that the impairments observed are caused by disrupted commands, independent of whether these command signals are noisy. In other words, commands could be low noise but still faulty.

      Throughout the text, the use of the term 'feedforward control' seems unnecessary. To dig into the feedforward component of the deficit, the authors could quantify the trajectory errors only at the earliest time points (e.g., in Figure 5d), but even with this analysis, it is difficult to disentangle feedforward- and feedback-mediated effects when deficits are seen throughout the reach. While outside the scope of this study, it would be interesting to explore how feedback responses to limb perturbation are affected in control versus HFS conditions. However, as is, these questions are not explored, and the claim of impaired feedforward control feels overstated.

      The terminology 'single-joint' movement is a bit confusing. At a minimum, it would be nice to show kinematics during different target reaches to demonstrate that certain targets are indeed single joint movements. More of an issue, however, is that it seems like these are not actually 'single-joint' movements. For example, Figure 2c shows that target 1 exhibits high elbow and shoulder torques, but in the text, T1 is described as a 'single-joint' reach (e.g. lines 155-156). The point that I think the authors are making is that these targets have low interaction torques. If that is the case, the terminology should be changed or clarified to avoid confusion.

      The labels in Figure 3d are confusing and could use more explanation in the figure legend.

      In Figure 3d, it is stated that data from all monkeys is pooled. However, if there is a systematic bias between animals, this could generate spurious correlations. Were correlations also calculated for each animal separately to confirm the same trend between velocity and coupling torques holds for each animal?

      In Table S1, it would be nice to see target-specific success rates. The data would suggest that targets with the highest interaction torques will have the largest reduction in success rates, especially during later HFS trials. Is this the case?

    1. Reviewer #1 (Public review):

      Summary:

      Measurement of BOLD MR imaging has regularly found regions of the brain that show reliable suppression of BOLD responses during specific experimental testing conditions. These observations are to some degree unexplained, in comparison with more usual association between activation of the BOLD response and excitatory activation of the neurons (most tightly linked to synaptic activity) in the same brain location. This paper finds two patients whose brains were tested with both non-invasive functional MRI and with invasive insertion of electrodes, which allowed the direct recording of neuronal activity. The electrode insertions were made within the fusiform gyrus, which is known to process information about faces, in a clinical search for the sites of intractable epilepsy in each patient. The simple observation is that the electrode location in one patient showed activation of the BOLD response and activation of neuronal firing in response to face stimuli. This is the classical association. The other patient showed an informative and different pattern of responses. In this person, the electrode location showed a suppression of the BOLD response to face stimuli and, most interestingly, an associated suppression of neuronal activity at the electrode site.

      Strengths:

      Whilst these results are not by themselves definitive, they add an important piece of evidence to a long-standing discussion about the origins of the BOLD response. The observation of decreased neuronal activation associated with negative BOLD is interesting because, at various times, exactly the opposite association has been predicted. It has been previously argued that if synaptic mechanisms of neuronal inhibition are responsible for the suppression of neuronal firing, then it would be reasonable

      Weaknesses:

      The chief weakness of the paper is that the results may be unique in a slightly awkward way. The observation of positive BOLD and neuronal activation is made at one brain site in one patient, while the complementary observation of negative BOLD and neuronal suppression actually derives from the other patient. Showing both effects in both patients would make a much stronger paper.

    2. Reviewer #2 (Public review):

      Summary:

      This is a short and straightforward paper describing BOLD fMRI and depth electrode measurements from two regions of the fusiform gyrus that show either higher or lower BOLD responses to faces vs. objects (which I will call face-positive and face-negative regions). In these regions, which were studied separately in two patients undergoing epilepsy surgery, spiking activity increased for faces relative to objects in the face-positive region and decreased for faces relative to objects in the face-negative region. Interestingly, about 30% of neurons in the face-negative region did not respond to objects and decreased their responses below baseline in response to faces (absolute suppression).

      Strengths:

      These patient data are valuable, with many recording sessions and neurons from human face-selective regions, and the methods used for comparing face and object responses in both fMRI and electrode recordings were robust and well-established. The finding of absolute suppression could clarify the nature of face selectivity in human fusiform gyrus since previous fMRI studies of the face-negative region could not distinguish whether face < object responses came from absolute suppression, or just relatively lower but still positive responses to faces vs. objects.

      Weaknesses:

      The authors claim that the results tell us about both 1) face-selectivity in the fusiform gyrus, and 2) the physiological basis of the BOLD signal. However, I would like to see more of the data that supports the first claim, and I am not sure the second claim is supported.

      (1) The authors report that ~30% of neurons showed absolute suppression, but those data are not shown separately from the neurons that only show relative reductions. It is difficult to evaluate the absolute suppression claim from the short assertion in the text alone (lines 105-106), although this is a critical claim in the paper.<br /> (2) I am not sure how much light the results shed on the physiological basis of the BOLD signal. The authors write that the results reveal "that BOLD decreases can be due to relative, but also absolute, spike suppression in the human brain" (line 120). But I think to make this claim, you would need a region that exclusively had neurons showing absolute suppression, not a region with a mix of neurons, some showing absolute suppression and some showing relative suppression, as here. The responses of both groups of neurons contribute to the measured BOLD signal, so it seems impossible to tell from these data how absolute suppression per se drives the BOLD response.

    3. Reviewer #3 (Public review):

      Summary:

      In this paper the authors conduct two experiments an fMRI experiment and intracranial recordings of neurons in two patients P1 and P2. In both experiments, they employ a SSVEP paradigm in which they show images at a fast rate (e.g. 6Hz) and then they show face images at a slower rate (e.g. 1.2Hz), where the rest of the images are a variety of object images. In the first patient, they record from neurons over a region in the mid fusiform gyrus that is face-selective and in the second patient, they record neurons from a region more medially that is not face selective (it responds more strongly to objects than faces). Results find similar selectivity between the electrophysiology data and the fMRI data in that the location which shows higher fMRI to faces also finds face-selective neurons and the location which finds preference to non faces also shows non face preferring neurons.

      Strengths:

      The data is important in that it shows that there is a relationship between category selectivity measured from electrophysiology data and category-selective from fMRI. The data is unique as it contains a lot of single and multiunit recordings (245 units) from the human fusiform gyrus - which the authors point out - is a humanoid specific gyrus.

      Weaknesses:

      My major concerns are two-fold:<br /> (i) There is a paucity of data; Thus, more information (results and methods) is warranted; and in particular there is no comparison between the fMRI data and the SEEG data.

      (ii) One main claim of the paper is that there is evidence for suppressed responses to faces in the non-face selective region. That is, the reduction in activation to faces in the non-face selective region is interpreted as a suppression in the neural response and consequently the reduction in fMRI signal is interpreted as suppression. However, the SSVEP paradigm has no baseline (it alternates between faces and objects) and therefore it cannot distinguish between lower firing rate to faces vs suppression of response to faces.

      (1) Additional data: the paper has 2 figures: figure 1 which shows the experimental design and figure 2 which presents data, the latter shows one example neuron raster plot from each patient and group average neural data from each patient. In this reader's opinion this is insufficient data to support the conclusions of the paper. The paper will be more impactful if the researchers would report the data more comprehensively.

      (a) There is no direct comparison between the fMRI data and the SEEG data, except for a comparison of the location of the electrodes relative to the statistical parametric map generated from a contrast (Fig 2a,d). It will be helpful to build a model linking between the neural responses to the voxel response in the same location - i.e., estimate from the electrophysiology data the fMRI data (e.g. Logothetis & Wandell, 2004)

      (b) More comprehensive analyses of the SSVEP neural data: It will be helpful to show the results of the frequency analyses of the SSVEP data for all neurons to show that there are significant visual responses and significant face responses. It will be also useful to compare and quantify the magnitude of the face responses compared to the visual responses.

      (c) The neuron shown in E shows cyclical responses tied to the onset of the stimuli, is this the visual response? If so, why is there an increase in the firing rate of the neuron before the face stimulus is shown in time 0? The neuron's data seems different than the average response across neurons; This raises a concern about interpreting the average response across neurons in panel F which seems different than the single neuron responses

      (d) Related to (c) it would be useful to show raster plots of all neurons and quantify if the neural responses within a region are homogeneous or heterogeneous. This would add data relating the single neuron response to the population responses measured from fMRI. See also Nir 2009.

      (e) When reporting group average data (e.g., Fig 2C,F) it is necessary to show standard deviation of the response across neurons.

      (f) Is it possible to estimate the latency of the neural responses to face and object images from the phase data? If so, this will add important information on the timing of neural responses in the human fusiform gyrus to face and object images.

      (g) Related to (e) In total the authors recorded data from 245 units (some single units and some multiunits) and they found that both in the face and nonface selective most of the recoded neurons exhibited face -selectivity, which this reader found confusing: They write " Among all visually responsive neurons, we 87 found a very high proportion of face-selective neurons (p < 0.05) in both activated 88 and deactivated MidFG regions (P1: 98.1%; N = 51/52; P2: 86.6%; N = 110/127)'. Is the face selectivity in P1 an increase in response to faces and P2 a reduction in response to faces or in both it's an increase in response to faces

      (1) Additional methods<br /> (a) it is unclear if the SSVEP analyses of neural responses were done on the spikes or the raw electrical signal. If the former, how is the SSVEP frequency analysis done on discrete data like action potentials?<br /> (b) it is unclear why the onset time was shifted by 33ms; one can measure the phase of the response relative to the cycle onset and use that to estimate the delay between the onset of a stimulus and the onset of the response. Adding phase information will be useful.

      (2) Interpretation of suppression:

      The SSVEP paradigm alternates between 2 conditions: faces and objects and has no baseline; In other words, responses to faces are measured relative to the baseline response to objects so that any region that contains neurons that have a lower firing rate to faces than objects is bound to show a lower response in the SSVEP signal. Therefore, because the experiment does not have a true baseline (e.g. blank screen, with no visual stimulation) this experimental design cannot distinguish between lower firing rate to faces vs suppression of response to faces.<br /> The strongest evidence put forward for suppression is the response of non-visual neurons that was also reduced when patients looked at faces, but since these are non-visual neurons, it is unclear how to interpret the responses to faces.

    1. Reviewer #1 (Public review):

      Summary:

      This study demonstrates that strip cropping enhances the taxonomic diversity of ground beetles across organically-managed crop systems in the Netherlands. In particular, strip cropping supported 15% more ground beetle species and 30% more individuals compared to monocultures.

      Strengths:

      A well-written study with well-analyzed data of a complex design. The data could have been analyzed differently e.g. by not pooling samples, but there are pros and cons for each type of analysis and I am convinced this will not affect the main findings. A strong point is that data were collected for 4 years. This is especially strong as most data on biodiversity in cropping systems are only collected for one or two seasons. Another strong point is that several crops were included.

      Weaknesses:

      This study focused on the biodiversity of ground beetles and did not examine crop productivity. Therefore, I disagree with the claim that this study demonstrates biodiversity enhancement without compromising yield. The authors should present results on yield or, at the very least, provide a stronger justification for this statement.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to investigate the effects of organic strip cropping on carabid richness and density as well as on crop yields. They find on average higher carabid richness and density in strip cropping and organic farming, but not in all cases.

      Strengths:

      Based on highly resolved species-level carabid data, the authors present estimates for many different crop types, some of them rarely studied, at the same time. The authors did a great job investigating different aspects of the assemblages (although some questions remain concerning the analyses) and they present their results in a visually pleasing and intuitive way.

      Weaknesses:

      The authors used data from four different strip cropping experiments and there is no real replication in space as all of these differed in many aspects (different crops, different areas between years, different combinations, design of the strip cropping (orientation and width), sampling effort and sample sizes of beetles (differing more than 35 fold between sites; L 100f); for more differences see L 237ff). The reader gets the impression that the authors stitched data from various places together that were not made to fit together. This may not be a problem per se but it surely limits the strength of the data as results for various crops may only be based on small samples from one or two sites (it is generally unclear how many samples were used for each crop/crop combination).

      One of my major concerns is that it is completely unclear where carabids were collected. As some strips were 3m wide, some others were 6m and the monoculture plots large, it can be expected that carabids were collected at different distances from the plot edge. This alone, however, was conclusively shown to affect carabid assemblages dramatically and could easily outweigh the differences shown here if not accounted for in the models (see e.g. Boetzl et al. (2024) or Knapp et al. (2019) among many other studies on within field-distributions of carabids).

      The authors hint at a related but somewhat different problem in L 137ff - carabid assemblages sampled in strips were sampled in closer proximity to each other than assemblages in monoculture fields which is very likely a problem. The authors did not check whether their results are spatially autocorrelated and this shortcoming is hard to account for as it would have required a much bigger, spatially replicated design in which distances are maintained from the beginning. This limitation needs to be stated more clearly in the manuscript.

      Similarly, we know that carabid richness and density depend strongly on crop type (see e.g. Toivonen et al. (2022)) which could have biased results if the design is not balanced (this information is missing but it seems to be the case, see e.g. Celeriac in Almere in 2022).

      A more basic problem is that the reader neither learns where traps were located, how missing traps were treated for analyses how many samples there were per crop or crop combination (in a simple way, not through Table S7 - there has to have been a logic in each of these field trials) or why there are differences in the number of samples from the same location and year (see Table S7). This information needs to be added to the methods section.

      As carabid assemblages undergo rapid phenological changes across the year, assemblages that are collected at different phenological points within and across years cannot easily be compared. The authors would need to standardize for this and make sure that the assemblages they analyze are comparable prior to analyses. Otherwise, I see the possibility that the reported differences might simply be biased by phenology.

      Surrounding landscape structure is known to affect carabid richness and density and could thus also bias observed differences between treatments at the same locations (lower overall richness => lower differences between treatments). Landscape structure has not been taken into account in any way.

      In the statistical analyses, it is unclear whether the authors used estimated marginal means (as they should) - this needs to be clarified.

      In addition, and as mentioned by Dr. Rasmann in the previous round (comment 1), the manuscript, in its current form, still suffers from simplified generalizations that 'oversell' the impact of the study and should be avoided. The authors restricted their analyses to ground beetles and based their conclusions on a design with many 'heterogeneities' - they should not draw conclusions for farmland biodiversity but stick to their system and report what they found. Although I understand the authors have previously stated that this is 'not practically feasible', the reason for this comment is simply to say that the authors should not oversell their findings.

    3. Reviewer #3 (Public review):

      Summary:

      In this paper, the authors made a sincere effort to show the effects of strip cropping, a technique of alternating crops in small strips of several meters wide, on ground beetle diversity. They state that strip cropping can be a useful tool for bending the curve of biodiversity loss in agricultural systems as strip cropping shows a relative increase in species diversity (i.e. abundance and species richness) of the ground beetle communities compared to monocultures. Moreover, strip cropping has the added advantage of not having to compromise on agricultural yields.

      Strengths:

      The article is well written; it has an easily readable tone of voice without too much jargon or overly complicated sentence structure. Moreover, as far as reviewing the models in depth without raw data and R scripts allows, the statistical work done by the authors looks good. They have well thought out how to handle heterogenous, yet spatially and temporarily correlated field data. The models applied and the model checks performed are appropriate for the data at hand. Combining RDA and PCA axes together is a nice touch.

      Weaknesses:

      The evidence for strip cropping bringing added value for biodiversity is mixed at best. Yes, there is an increase in relative abundance and species richness at the field level, but it is not convincingly shown this difference is robust or can be linked to clear structural and hypothesised advantages of the strip cropping system. The same results could have been used to conclude that there are only very limited signs of real added value of strip cropping compared to monocultures.

      There are a number of reasons for this:

      (1) Significant differences disappear at crop level, as the authors themselves clearly acknowledge, meaning that there are no differences between pairs of similar crops in the strip cropping fields and their respective monoculture. This would mean the strips effectively function as "mini-monocultures". The significant relative differences at the field level could be an artifact of aggregation instead of structural differences between strip cropping and monocultures; with enough data points things tend to get significant despite large variance. This should have been elaborated further upon by the authors with additional analyses, designed to find out where differences originate and what it tells about the functioning of the system. Or it should have provided ample reason for cautioning in drawing conclusions about the supposed effectiveness of strip cropping based on these findings.

      (2) The authors report percentages calculated as relative change of species richness and abundance in strip cropping compared to monocultures after rarefaction. This is in itself correct, however, it can be rather tricky to interpret because the perspective on actual species richness and abundance in the fields and treatments is completely lost; the reported percentages are dimensionless. The authors could have provided the average cumulative number of species and abundance after rarefaction. Also, range and/or standard error would have been useful to provide information as to the scale of differences between treatments. This could provide a new perspective on the magnitude of differences between the two treatments which a dimensionless percentage cannot.

      (3) The authors appear to not have modelled the abundance of any of the dominant ground beetle species themselves. Therefore it becomes impossible to assess which important species are responsible (if any) for the differences found in activity density between stripcropping and monocultures and the possible life history traits related reasons for the differences, or lack thereof, that are found. A big advantage of using ground beetles is that many life history traits are well studied and these should be used whenever there is reason, as there clearly is in this case. Moreover, it is unclear which species are responsible for the difference in species richness found at the field level. Are these dominant species or singletons? Do the strip cropping fields contain species that are absent in the monoculture fields and are not the cause of random variation or sampling? Unfortunately, the authors do not report on any of these details of the communities that were found, which makes the results much less robust.

      (4) In the discussion they conclude that there is only a limited amount of interstrip movement by ground beetles. Otherwise, the results of the crop-level statistical tests would have shown significant deviation from corresponding monocultures. This is a clear indication that the strips function more like mini-monocultures instead of being more than the sum of its parts.

      (5) The RDA results show a modelled variable of differences in community composition between strip cropping and monoculture. Percentages of explained variation of the first RDA axis are extremely low, and even then, the effect of location and/or year appear to peak through (Figure S3), even though these are not part of the modelling. Moreover, there is no indication of clustering of strip cropping on the RDA axis, or in fact on the first principal component axis in the larger RDA models. This means the explanatory power of different treatments is also extremely low. The crop level RDA's show some clustering, but hardly any consistent pattern in either communities of crops or species correlations, indicating that differences between strip cropping and monocultures are very small.

      Furthermore, there are a number of additional weaknesses in the paper that should be addressed:

      The introduction lacks focus on the issues at hand. Too much space is taken up by facts on insect decline and land sharing vs. land sparing and not enough attention is spent on the scientific discussion underlying the statements made about crop diversification as a restoration strategy. They are simply stated as facts or as hypotheses with many references that are not mentioned or linked to in the text. An explicit link to the results found in the large number of references should be provided.

      The mechanistic understanding of strip cropping is what is at stake here. Does strip cropping behave similarly to intercropping, a technique that has been proven to be beneficial to biodiversity because of added effects due to increased resource efficiency and greater plant species richness? This should be the main testing point and agenda of strip cropping. Do the biodiversity benefits that have been shown for intercropping also work in strip cropping fields? The ground beetles are one way to test this. Hypotheses should originate from this and should be stated clearly and mechanistically.

      One could question how useful indicator species analysis (ISA) is for a study in which predominantly highly eurytopic species are found. These are by definition uncritical of their habitat. Is there any mechanistic hypothesis underlying a suspected difference to be found in preferences for either strip cropping or monocultures of the species that were expected to be caught? In other words, did the authors have any a priori reasons to suspect differences, or has this been an exploratory exercise from which unexplained significant results should be used with great caution?

      However, setting these objections aside there are in fact significant results with strong species associations both with monocultures and strip cropping. Unfortunately, the authors do not dig deeper into the patterns found a posteriori either. Why would some species associate so strongly with strip cropping? Do these species show a pattern of pitfall catches that deviate from other species, in that they are found in a wide range of strips with different crops in one strip cropping field and therefore may benefit from an increased abundance of food or shelter? Also, why would so many species associate with monocultures? Is this in any way logical? Could it be an artifact of the data instead of a meaningful pattern? Unfortunately, the authors do not progress along these lines in the methods and discussion at all.

      A second question raised in the introduction is whether the arable fields that form part of this study contain rare species. Unfortunately, the authors do not elaborate further on this. Do they expect rare species to be more prevalent in the strip cropping fields? Why? Has it been shown elsewhere that intercropping provides room for additional rare species?

      Considering the implications the results of this research can have on the wider discussion of bending the curve and the effects of agroecological measures, bold claims should be made with extreme restraint and be based on extensive proof and robust findings. I am not convinced by the evidence provided in this article that the claim made by the authors that strip cropping is a useful tool for bending the curve of biodiversity loss is warranted.

    1. Reviewer #1 (Public review):

      Summary:

      Goal: Find downstream targets of cmk-1 phosphorylation, identify one that also seems to act in thermosensory habituation, test for genetic interactions between cmk-1 and this gene, and assess where these genes are acting in the thermosensory circuit during thermosensory habituation.

      Methods: Two in vitro analyses of cmk-1 phosphorylation of C. elegans proteins. Thermosensory habituation of cmk-1 and tax-6 mutants and double mutants was assessed by measuring the rate of heat-evoked reversals (reversal probability) of C. elegans before and after 20s ISI repeated heat pulses over 60 minutes.

      Conclusions: cmk-1 and tax-6 act in separate habituation processes, primarily in AFD, that interact complexly, but both serve to habituate the thermosensory reversal response. They found that cmk-1 primarily acts in AFD and tax-6 primarily acts in RIM (and FLP for naïve responses). They also identified hundreds of potential cmk-1 phosphorylation substrates in vitro.

      Strengths:

      The effect size in the genetic data is quite strong and a large number of genetic interaction experiments between cmk-1 and tax-1 demonstrate a complex interaction.

      Weaknesses:

      The major concern about this manuscript is the assumption that the process they are observing is habituation. The two previously cited papers using this (or a very similar) protocol, Lia and Glauser 2020 and Jordan and Glauser 2023, both use the word 'adaptation' to describe the observed behavioral decrement. Jordan and Glauser 2023 use the words 'habituation' or 'habituation-like' 10 times, however, they use 'adaptation' over 100 times. It is critical to distinguish habituation from sensory adaptation (or fatigue) in this thermal reversal protocol. These processes are often confused/conflated, however, they are very different; sensory adaptation is a process that decreases how much the nervous system is activated by a repeated stimulus, therefore it can even occur outside of the nervous system. Habituation is a learning process where the nervous system responds less to a repeated stimulus, despite (at least part of the nervous system) the nervous system still being similarly activated by the stimulus. Habituation is considered an attentional process, while adaptation is due to the fatigue of sensory transduction machinery. Control experiments such as tests for dishabituation (where the application of a different stimulus causes recovery of the decremented response) or rate of spontaneous recovery (more rapid recovery after short inter-stimulus intervals) are required to determine if habituation or sensory adaptation are occurring. These experiments will allow the results to be interpreted with clarity, without them, it isn't actually clear what biological process is actually being studied.

      While the discrepancy between the in vitro phosphorylation experiments and the in silico predictions was discussed, the substantial discrepancy (over 85% of the substrates in the smaller in vitro dataset were not identified in the larger dataset) between the two different in vitro datasets was not discussed. This is surprising, as these approaches were quite similar, and it may indicate a measure of unreliability in the in vitro datasets (or high false negative rates). Additionally, the rationale for, and distinction between, the two separate in vitro experiments is not made clear.

      Line 207: After reporting that both tax-6 and cnb-1 mutants have high spontaneous reversals, it is not made clear why cnb-1 is not further explored in the paper. Additionally, this spontaneous reversal data should be in a supplementary figure.

      Figure 3 -S1: This model doesn't explain why the cmk-1(gf) group and the cmk-1(gf) +cyclo A group cause enhanced response decrement (presumably by reducing the inhibition by tax-6) but the +cyclo A group (inhibited tax-6) showed weaker response decrement, as here there is even further weakened inhibition of tax-6 on this process. Also, the cmk-1(lf) +cyclo A group is labeled as constitutive habituation, however, this doesn't appear to be the case in Figure 3 (seems like a similar initial level and response decrement phenotype to wildtype).

      More discussion of the significance of the sites of cmk-1 and tax-6 function in the neural circuit should take place. Additionally, incorporating the suspected loci of cmk-1 and tax-6 in the neural circuit into the model would be interesting (using proper hypothetical language). For example, as it seems like AFD is not required for the naïve reversal response but just its reduction, cmk-1 activity in AFD might be generating inhibition of the reversal response by AFD. It certainly would be understandable if this isn't workable, given extrasynaptic signaling and other unknowns, but it potentially could also be helpful in generating a working model for these complex interactions. For example, cmk-1 induces AIZ inhibition of AVA (AIZ is electrically coupled to AFD), and tax-6 reduces RIM activation of AVA (these neurons are also electrically coupled according to the diagram). RIM is also a neuropeptide-rich neuron, so this could allow it to interact with the cmk-1-related process(es) in AFD. Some discussion of possibilities like this could be informative.

      Provide an explanation for why some of the experiments in Figure 4 have such a high N, compared to other experiments.

      Because the loss of function and gain of function mutations in cmk-1 have a similar effect, it is likely that this thermosensory plasticity phenotype is sensitive to levels of cmk-1 activity. Therefore, it is not surprising that the cmk-1 promoter failed to rescue very well as these plasmid-driven rescues often result in overexpression. Given this and that the cmk-1p rescue itself was so modest, these rescue experiments are not entirely convincing (and very hard to interpret; for example, is the AFD rescue or the ASER rescue more complete? The ASER one is actually closer to the cmk-1p rescue). Given the sensitivity to cmk-1 activity levels, a degradation strategy would be more likely to deliver clear results (or perhaps even the overactivation approach used for tax-6).

    2. Reviewer #2 (Public review):

      Summary:

      The reduction in a response to a specific stimulus after repeated exposures is called habituation. Alterations in habituation to noxious stimuli are associated with chronic pain in humans, however, the underlying molecular mechanisms involved are not clear. This study uses the nematode C. elegans to study genes and mechanisms that underlie habituation to a form of noxious stimuli based on heat, termed thermo-noxious stimuli. The authors previously showed that the Calcium/Calmodulin-dependent protein kinase (CMK-1) regulates thermo-nociceptive habituation in the nematode C. elegans. Although CMK-1 is a kinase with many known substrates, the downstream targets relevant for thermo-nociceptive habituation are not known. In this study, the authors use two different kinase screens to identify phosphorylation targets of CMK-1. One of the targets they identify is Calcineurin (TAX-6). The authors show that CMK-1 phosphorylates a regulatory domain of Calcineurin at a highly conserved site (S443). In a series of elegant experiments, the authors use genetic and pharmacological approaches to increase or decrease CMK-1 and Calcineurin signaling to study their effects on thermo-nociceptive habituation in C. elegans. They also combine these various approaches to study the interactions between these two signaling proteins. The authors use specific promoters to determine in which neurons CMK-1 and Calcineurin function to regulate thermo-nociceptive habituation. The authors propose a model based on their findings illustrating that CMK-1 and Calcineurin act mostly in different neurons to antagonistically regulate habituation to thermo-nociceptive stimuli in a complex manner.

      Strengths:

      (1) Given the conservation of habituation across phylogeny, identifying genes and mechanisms that underlie nociceptive habituation in C. elegans may be relevant for understanding chronic pain in humans.

      (2) The identification of canonical CaM Kinase phosphorylation motifs in the substrates identified in the CMK-1 substrate screen validates the screen.

      (3) The use of loss and gain of function approaches to study the effects of CMK-1 and Calcineurin on thermo-nociceptive responses and habituation is elegant.

      (4) The ability to determine the cellular place of action of CMK-1 and Calcineurin using neuron-specific promoters in the nematode is a clear strength of the genetic model system.

      Weaknesses:

      (1) The manuscript begins by identifying Calcineurin as a direct substrate of CMK-1 but ends by showing that CMK-1 and Calcineurin mostly act in different neurons to regulate nociceptive habituation which disrupts the logical flow of the manuscript.

      (2) The physiological relevance of CMK-1 phosphorylation of Calcineurin is not clear.

      (3) It is not clear if Calcineurin is already a known substrate of CaM Kinases in other systems or if this finding is new.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents convincing findings that oligodendrocytes play a regulatory role in spontaneous neural activity synchronisation during early postnatal development, with implications for adult brain function. Utilising targeted genetic approaches, the authors demonstrate how oligodendrocyte depletion impacts Purkinje cell activity and behaviours dependent on cerebellar function. Delayed myelination during critical developmental windows is linked to persistent alterations in neural circuit function, underscoring the lasting impact of oligodendrocyte activity.

      Strengths:

      (1) The research leverages the anatomically distinct olivocerebellar circuit, a well-characterized system with known developmental timelines and inputs, strengthening the link between oligodendrocyte function and neural synchronization.

      (2) Functional assessments, supported by behavioral tests, validate the findings of in vivo calcium imaging, enhancing the study's credibility.

      (3) Extending the study to assess the long-term effects of early-life myelination disruptions adds depth to the implications for both circuit function and behavior.

      Weaknesses:

      (1) The study would benefit from a closer analysis of myelination during the periods when synchrony is recorded. Direct correlations between myelination and synchronized activity would substantiate the mechanistic link and clarify if observed behavioral deficits stem from altered myelination timing.

      (2) Although the study focuses on Purkinje cells in the cerebellum, neural synchrony typically involves cross-regional interactions. Expanding the discussion on how localized Purkinje synchrony affects broader behaviors - such as anxiety, motor function, and sociality - would enhance the findings' functional significance.

      (3) The authors discuss the possibility of oligodendrocyte-mediated synapse elimination as a possible mechanism behind their findings, drawing from relevant recent literature on oligodendrocyte precursor cells. However, there are no data presented supporting this assumption. The authors should explain why they think the mechanism behind their observation extends beyond the contribution of myelination or remove this point from the discussion entirely.

      (4) It would be valuable to investigate the secondary effects of oligodendrocyte depletion on other glial cells, particularly astrocytes or microglia, which could influence long-term behavioral outcomes. Identifying whether the lasting effects stem from developmental oligodendrocyte function alone or also involve myelination could deepen the study's insights.

      (5) The authors should explore the use of different methods to disturb myelin production for a longer time, in order to further determine if the observed effects are transient or if they could have longer-lasting effects.

      (6) Throughout the paper, there are concerns about statistical analyses, particularly on the use of the Mann-Whitney test or using fields of view as biological replicates.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors use genetic tools to ablate oligodendrocytes in the cerebellum during postnatal development. They show that the oligodendrocyte numbers return to normal post-weaning. Yet, the loss of oligodendrocytes during development seems to result in decreased synchrony of calcium transients in Purkinje neurons across the cerebellum. Further, there were deficits in social behaviors and motor coordination. Finally, they suppress activity in a subset of climbing fibers to show that it results in similar phenotypes in the calcium signaling and behavioral assays. They conclude that the behavioral deficits in the oligodendrocyte ablation experiments must result from loss of synchrony.

      Strengths:

      Use of genetic tools to induce perturbations in a spatiotemporally specific manner.

      Weaknesses:

      The main weakness in this manuscript is the lack of a cohesive causal connection between the experimental manipulation performed and the phenotypes observed. Though they have taken great care to induce oligodendrocyte loss specifically in the cerebellum and at specific time windows, the subsequent experiments do not address specific questions regarding the effect of this manipulation. Calcium transients in Purkinje neurons are caused to a large extent by climbing fibers, but there is evidence for simple spikes to also underlie the dF/F signatures (Ramirez and Stell, Cell Reports, 2016). Also, it is erroneous to categorize these calcium signals as signatures of "spontaneous activity" of Purkinje neurons as they can have dual origins. Further, the effect of developmental oligodendrocyte ablation on the cerebellum has been previously reported by Mathis et al., Development, 2003. They report very severe effects such as the loss of molecular layer interneurons, stunted Purkinje neuron dendritic arbors, abnormal foliations, etc. In this context, it is hardly surprising that one would observe a reduction of synchrony in Purkinje neurons (perhaps due to loss of synaptic contacts, not only from CFs but also from granule cells). The last experiment with the expression of Kir2.1 in the inferior olive is hardly convincing. In summary, while the authors used a specific tool to probe the role of developmental oligodendrocytes in cerebellar physiology and function, they failed to answer specific questions regarding this role, which they could have done with more fine-grained experimental analysis.

    1. Reviewer #1 (Public review):

      Summary:

      The paper by Lee and Ouellette explores the role of cyclic-d-AMP in chlamydial developmental progression. The manuscript uses a collection of different recombinant plasmids to up- and down-regulate cdAMP production, and then uses classical molecular and microbiological approaches to examine the effects of expression induction in each of the transformed strains.

      Strengths:

      This laboratory is a leader in the use of molecular genetic manipulation in Chlamydia trachomatis and their efforts to make such efforts mainstream is commendable. Overall, the model described and defended by these investigators is thorough and significant.

      Weaknesses:

      The biggest weakness in the document is their reliance on quantitative data that is statistically not significant, in the interpretation of results. These challenges can be addressed in a revision by the authors.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. Chlamydia are obligate intracellular bacterial pathogens that rely on eukaryotic host cells for growth. The chlamydial life cycle depends on a cell form developmental cycle that produces phenotypically distinct cell forms with specific roles during the infectious cycle. The RB cell form replicates amplifying chlamydia numbers while the EB cell form mediates entry into new host cells disseminating the infection to new hosts. Regulation of cell form development is a critical question in chlamydia biology and pathogenesis. Chlamydia must balance amplification (RB numbers) and dissemination (EB numbers) to maximize survival in its infection niche. The main findings In this manuscript show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of the transitionary gene hctA and late gene omcB. The authors also knocked down the expression of the dacA-ybbR operon and reported a reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion. Overall, this is a very intriguing study with important implications however the data is very preliminary and the model is very rudimentary and is not well supported by the data.

      Describing the significance of the findings:

      The findings are important and point to very exciting new avenues to explore the important questions in chlamydial cell form development. The authors present a model that is not quantified and does not match the data well.

      Describing the strength of evidence:

      The evidence presented is incomplete. The authors do a nice job of showing that overexpression of the dacA-ybbR operon increases c-di-AMP and that knockdown or overexpression of the catalytically dead DacA protein decreases the c-di-AMP levels. However, the effects on the developmental cycle and how they fit the proposed model are less well supported.

      dacA-ybbR ectopic expression:

      For the dacA-ybbR ectopic expression experiments they show that hctA is induced early but there is no significant change in OmcB gene expression. This is problematic as when RBs are treated with Pen (this paper) and (DOI 10.1128/MSYSTEMS.00689-20) hctA is expressed in the aberrant cell forms but these forms do not go on to express the late genes suggesting stress events can result in changes in the developmental expression kinetic profile. The RNA-seq data are a little reassuring as many of the EB/Late genes were shown to be upregulated by dacA-ybbR ectopic expression in this assay.

      The authors also demonstrate that this ectopic expression reduces the overall growth rate but produces EBs earlier in the cycle but overall fewer EBs late in the cycle. This observation matches their model well as when RBs convert early there is less amplification of cell numbers.

      dacA knockdown and dacA(mut)

      The authors showed that dacA knockdown and ectopic expression of the dacA mutant both reduced the amount of c-di-AMP. The authors show that for both of these conditions, hctA and omcB expression is reduced at 24 hpi. This was also partially supported by the RNA-seq data for the dacA knockdown as many of the late genes were downregulated. However, a shift to an increase in RB-only genes was not readily evident. This is maybe not surprising as the chlamydial inclusion would just have an increase in RB forms and changes in cell form ratios would need more time points.

      Interestingly, the overall growth rate appears to differ in these two conditions, growth is unaffected by dacA knockdown but is significantly affected by the expression of the mutant. In both cases, EB production is repressed. The overall model they present does not support this data well as if RBs were blocked from converting into EBs then the growth rate should increase as the RB cell form replicates while the EB cell form does not. This should shift the population to replicating cells.

      Overall this is a very intriguing finding that will require more gene expression data, phenotypic characterization of cell forms, and better quantitative models to fully interpret these findings.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors Eapen et al. investigated the peptide inhibitors of Cdc20. They applied a rational design approach, substituting residues found in the D-box consensus sequences to better align the peptides with the Cdc20-degron interface. In the process, the authors designed and tested a series of more potent binders, including ones that contain unnatural amino acids, and verified binding modes by elucidating the Cdc-20-peptide structures. The authors further showed that these peptides can engage with Cdc20 in the cellular context, and can inhibit APC/CCdc20 ubiquitination activity. Finally, the authors demonstrated that these peptides could be used as portable degron motifs that drive the degradation of a fused fluorescent protein.

      Strengths:

      This manuscript is clear and straightforward to follow. The investigation of different peptide variations was comprehensive and well-executed. This work provided the groundwork for the development of peptide drug modalities to inhibit degradation or apply peptides as portable motifs to achieve targeted degradation. Both of which are impactful.

      Weaknesses:

      A few minor comments:

      (1) In my opinion, more attention to the solubility issue needs to be discussed and/or tested. On page 10, what is the solubility of D2 before a modification was made? The authors mentioned that position 2 is likely solvent exposed, it is not immediately clear to me why the mutation made was from one hydrophobic residue to another. What was the level of improvement in solubility? Are there any affinity data associated with the peptide that differ with D2 only at position 2?

      (2) I'm not entirely convinced that the D19 density not observed in the crystal structure was due to crystal packing. This peptide is peculiar as it also did not induce any thermal stabilization of Cdc20 in the cellular thermal shift assay. Perhaps the binding of this peptide could be investigated in more detail (i.e., NMR?) Or at least more explanation could be provided.

    2. Reviewer #2 (Public review):

      Summary:

      The authors took a well-characterised (partly by them), important E3 ligase, in the anaphase-promoting complex, and decided to design peptide inhibitors for it based on one of the known interacting motifs (called D-box) from its substrates. They incorporate unnatural amino acids to better occupy the interaction site, improve the binding affinity, and lay foundations for future therapeutics - maybe combining their findings with additional target sites.

      Strengths:

      The paper is mostly strengths - a logical progression of experiments, very well explained and carried out to a high standard. The authors use a carefully chosen variety of techniques (including X-ray crystallography, multiple binding analyses, and ubiquitination assays) to verify their findings - and they impressively achieve their goals by honing in on tight-binders.

      Weaknesses:

      Some things are not explained fully and it would be useful to have some clarification. Why did the authors decide to model their inhibitors on the D-box motif and not the other two SLiMs that they describe? What exactly do they mean when they say their 'observation is consistent with the idea that high-affinity binding at degron binding sites on APC/C, such as in the case of the yeast 'pseudo-substrate' inhibitor Acm1, acts to impede polyubiquitination of the bound protein'? It's an interesting thing to think about, and probably the paper they cite explains it more but I would like to know without having to find that other paper.

    3. Reviewer #3 (Public review):

      Summary:

      Eapen and coworkers use a rational design approach to generate new peptide-inspired ligands at the D-box interface of cdc20. These new peptides serve as new starting points for blocking APC/C in the context of cancer, as well as manipulating APC/C for targeted protein degradation therapeutic approaches.

      Strengths:

      The characterization of new peptide-like ligands is generally solid and multifaceted, including binding assays, thermal stability enhancement in vitro and in cells, X-ray crystallography, and degradation assays.

      Weaknesses:

      One important finding of the study is that the strongest binders did not correlate with the fastest degradation in a cellular assay, but explanations for this behavior were not supported experimentally. Some minor issues regarding experimental replicates and details were also noted.

    1. Reviewer #1 (Public review):

      This study investigates alterations in the autophagic-lysosomal pathway in the Q175 HD knock-in model crossed with the TRGL autophagy reporter mouse. The findings provide valuable insights into autophagy dynamics in HD and the potential therapeutic benefits of modulating this pathway. The study suggests that autophagy stimulation may offer therapeutic benefits in the early stages of HD progression, with mTOR inhibition showing promise in ameliorating lysosomal pathology and reducing mutant huntingtin accumulation.

      However, the data raises concerns regarding the strength of the evidence. The observed changes in autophagic markers, such as autolysosome and lysosome numbers, are relatively modest, and the Western blot results do not fully match the quantitative results. These discrepancies highlight the need for further validation and more pronounced effects to strengthen the conclusions. While the study suggests the potential of autophagy regulation as a long-term therapeutic strategy, additional experiments and more reliable data are necessary to confirm the broader applicability of the TRGL/Q175 mouse model.

      Furthermore, the 2004 publication by Ravikumar et al. demonstrated that inhibition of mTOR by rapamycin or the rapamycin ester CCI-779 induces autophagy and reduces the toxicity of polyglutamine expansions in fly and mouse models of Huntington's disease. mTOR is a key regulator of autophagy, and its inhibition has been explored as a therapeutic strategy for various neurodegenerative diseases, including HD. Studies suggest that inhibiting mTOR enhances autophagy, leading to the clearance of mHTT aggregates. Given that dysfunction of the autophagic-lysosomal pathway and lysosomal function in HD is already well-established, and that mTOR inhibition as a therapeutic approach for HD is also known, this study does not present entirely novel findings.

      Major Concerns:

      (1) In Figure 3A1 and A2, delayed and/or deficient acidification of AL causes deficits in the reformation of LY to replenish the LY pool. However, in Figure S2D, there is no difference in AL formation or substrate degradation, as shown by the Western blotting results for CTSD and CTSB. How can these discrepancies be explained?

      (2) The results demonstrate that in the brain sections of 17-month-old TRGL/Q175 mice, there was an increase in the number of acidic autolysosomes (AL), including poorly acidified autolysosomes (pa-AL), alongside a decrease in lysosome (LY) numbers. These AL/pa-AL changes were not significant in 2-month-old or 7-month-old TRGL/Q175 mice, where only a reduction in lysosome numbers was observed. This indicates that these changes, representing damage to the autophagy-lysosome pathway (ALP), manifest only at later stages of the disease. Considering that the ALP is affected predominantly in the advanced stages of the disease (e.g., at 17 months), why were 6-month-old TRGL/Q175 mice selected for oral mTORi INK treatment, and why was the treatment duration restricted to just 3 weeks?

      (3) Is the extent of motor dysfunction in TRGL/Q175 mice comparable to that in Q175 mice? Does the administration of mTORi INK improve these symptoms?

      (4) Why is eGFP expression not visible in Fig. 6A in TRGL-Veh mice? Additionally, why do normal (non-poly-Q) mice have fewer lysosomes (LY) than TRGL/Q175-INK mice? IHC results also show that CTSD levels are lower in TRGL mice compared to TRGL/Q175-INK mice. Does this suggest lysosome dysfunction in TRGL-Veh mice?

      (5) In Figure 5A, the phosphorylation of ATG14 (S29) shows minimal differences in Western blotting, which appears inconsistent with the quantitative results. A similar issue is observed in the quantification of Endo-LC3.

      (6) In Figure S2A and Figure S2B, 17-month-old TRGL/Q175 mice show a decrease in p-p70S6K and the p-ULK1/ULK1 ratio, but no changes are observed in autophagy-related markers. Do these results indicate only a slight change in autophagy at this stage in TRGL/Q175 mice? Since the mTOR pathway regulates multiple cellular mechanisms, could mTOR also influence other processes? Is it possible that additional mechanisms are involved?

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors have explored the beneficial effect of autophagy upregulation in the context of HD pathology in a disease stage-specific manner. The authors have observed functional autophagy lysosomal pathway (ALP) and its machineries at the early stage in the HD mouse model, whereas impairment of ALP has been documented at the later stages of the disease progression. Eventually, the authors took advantage of the operational ALP pathway at the early stage of HD pathology, in order to upregulate ALP and autophagy flux by inhibiting mTORC1 in vivo, which ultimately reverted back to multiple ALP-related abnormalities and phenotypes. Therefore, this manuscript is a promising effort to shed light on the therapeutic interventions with which HD pathology can be treated at the patient level in the future.

      Strengths:

      The study has shown the alteration of ALP in the HD mouse model in a very detailed manner. Such stage-dependent in vivo study will be informative and has not been done before. Also, this research provides possible therapeutic interventions for patients in the future.

      Weaknesses:

      Some constructive comments and suggestions in order to reflect the key aspects and concepts better in the manuscript :

      (1) The authors have observed lysosome number alteration in a temporally regulated disease stage-specific manner. In this scenario investigation of regulation, localization, and level of TFEB, the transcription factor required for lysosome biogenesis, would be interesting and informative.

      (2) For the general scientific community better clarification of the short forms will be useful. For example, in line 97, page 4, AP full form would be useful. Also 'metabolized via autophagy' can be replaced by 'degraded via autophagy'.

      (3) The nuclear vs cytosolic localization of HTT aggregates shown in Figure 2, are very interesting. The increase in cytosolic HTT aggregate formation at 10 months compared to 6 months probably suggests spatio-temporal regulation of aggregate formation. The authors could comment in a more elaborate manner, on the reason and impact of this kind of regulation of aggregate formation in the context of HD pathology.

      (4) In this manuscript, the authors have convincingly shown that mTOR inhibition is inducing autophagy in the HD mouse model in vivo. On the other hand, mTOR inhibition would also reduce overall cellular protein translation. This aspect of mTOR inhibition can also potentially contribute to the alleviation of disease phenotype and disease symptoms by reducing protein overload in HD pathology. The authors' comments regarding this aspect would be appreciated.

      (5) The authors have shown nuclear inclusion formation and aggregation of mHTT and also commented on its potential removal with the UPS system (proteasomal degradation) in vivo. As there is also a reciprocal relationship present between autophagy and proteasomal machineries, upon upregulation of autophagy machinery by mTOR inhibition proteasomal activity may decrease. How nuclear proteasomal activity increases to tackle nuclear mHTT IBs, would be interesting to understand in the context of HD pathology. Comments from the authors in this aspect would clarify the role of multiple degradation pathways in handling mutant HTT protein in HD pathology.

      (6) For the treatment of neurodegenerative disorders taking the temporal regulation into consideration is extremely important, as that will determine the success rate of the treatments in patients. The authors in this manuscript have clearly discussed this scenario. However, for neurodegenerative disordered patients, in most cases, the symptom manifestation is a late onset scenario. In that case, it will be complicated to initiate an early treatment regime in HD patients. If the authors can comment on and discuss the practicality of the early treatment regime for therapeutic purposes that would be impactful.

    1. Reviewer #2 (Public review):

      Summary:

      In their manuscript, Quian and colleagues identified a novel mechanisms by which Pseudomonas control inflammatory responses upon inflammasome activation. They identified a caspase-11 substrates (VgrG2b) which, upon cleavage, binds and inhibit the NLRP3 to reduce the production of pro-inflammatory cytokines. This is a unique mechanism that allow for the tailoring of the innate immune response upon bacterial recognition.

      Strengths:

      The authors are presenting here a novel conceptual framework in host-pathogen interactions. Their work is supported by a range of approaches (biochemical, cellular immunology, microbiology, animal models) and their conclusions are supported by multiple independent evidences. The work is likely to have an important impact in the innate immunity field and host-pathogen interactions field and may guide the development of novel inhibitors.

      Weaknesses:

      Although quite exhaustive, a few of the authors conclusions are not fully supported (e.g, caspase-11 directly cleaving VgrG2b, the unique affinity of VgrG2b-C for NLRP3) and would require complementary approaches to validate their findings fully. This is minimal.

      Comments on revisions:

      I command the authors's effort to address my comments. They have addressed all my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na+/K+-ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na+/K+-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of Na+/K+-ATPase electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.<br /> (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na+/K+-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.<br /> (3) The study proposes several interesting compensatory mechanisms, such as sodium leak channels and extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Weaknesses:

      (1) While the modeling approach provides valuable insights, the lack of experimental data to validate the model's predictions weakens the overall conclusions.<br /> (2) The proposed compensatory mechanisms are discussed primarily in theoretical terms without providing quantitative estimates of their impact on the neuron's metabolic cost or other physiological parameters.

    2. Reviewer #2 (Public review):

      Summary:

      The paper 'The electrogenicity of the Na+/K+-ATPase poses challenges for computation in highly active spiking cells' by Weerdmeester, Schleimer, and Schreiber uses computational models to present the biological constraints under which electrocytes-specialized highly active cells that facilitate electro-sensing in weakly electric fish-may operate. The authors suggest potential solutions these cells could employ to circumvent these constraints.

      Electrocytes are highly active or spiking (greater than 300Hz) for sustained periods (for minutes to hours), and such activity is possible due to an influx of sodium and efflux of potassium ions into these cells for each spike. This ion imbalance must be restored after each spike, which in electrocytes, as with many other biological cells, is facilitated by the Na-K pumps at the expense of biological energy, i.e., ATP molecules. For each ATP molecule the pump uses, three positively charged sodium ions from the intracellular space are exchanged for two positively charged potassium ions from the extracellular volume. This creates a net efflux of positive ions into the extracellular space, resulting in hyperpolarized potentials for the cell over time. This does not pose an issue in most cells since the firing rate is much slower, and other compensatory mechanisms and other pumps can effectively restore the ion imbalances. In electrocytes of weakly electric fish, however, that operate under very different circumstances, the firing rate is exceptionally high. On top of this, these cells are also involved in critical communication and survival behaviors, emphasizing their reliable functioning.

      In a computation model, the authors test four increasingly complex solutions to the problem of counteracting the hyperpolarized states that occur due to continuous NaK pump action to sustain baseline activity. First, they propose a solution for a well-matched Na leak channel that operates in conjunction with the NaK pump, counteracting the hyperpolarizing states naturally. Additionally, their model shows that when such an orchestrated Na leak current is not included, quick changes in the firing rates could have unexpected side effects. Secondly, they study the implication of this cell in the context of chirps - a means of communication between individual fishes. Here, an upstream pacemaking neuron entrains the electrocyte to spike, which ceases to produce a so-called chirp - a brief pause in the sustained activity of the electrocytes. In their model, the authors show that it is necessary to include the extracellular potassium buffer to have a reliable chirp signal. Thirdly, they tested another means of communication in which there was a sudden increase in the firing rate of the electrocyte followed by a decay to the baseline. For reliable occurrence of this, they emphasize that a strong synaptic connection between the pacemaker neuron and the electrocyte is warranted. Finally, since these cells are energy-intensive, they hypothesize that electrocytes may have energy-efficient action potentials, for which their NaK pumps may be sensitive to the membrane voltages and perform course correction rapidly.

      Strengths:

      The authors extend an existing electrocyte model (Joos et al., 2018) based on the classical Hodgkin and Huxley conductance-based models of Na and K currents to include the dynamics of the NaK pump. The authors estimate the pump's properties based on reasonable assumptions related to the leak potential. Their proposed solutions are valid and may be employed by weakly electric fish. The authors explore theoretical solutions that compound and suggest that all these solutions must be simultaneously active for the survival and behavior of the fish. This work provides a good starting point for exploring and testing in in vivo experiments which of these proposed solutions the fish use and their relative importance.

      Weaknesses:

      The modeling work makes assumptions and simplifications that should be listed explicitly. For example, it assumes only potassium ions constitute the leak current, which may not be true as other ions (chloride and calcium) may also cross the cell membrane. This implies<br /> that the leak channels' reversal potential may differ from that of potassium. Additionally, the spikes are composed of sodium and potassium currents only and no other ion type (no calcium). Further, these ion channels are static and do not undergo any post-translational modifications. For instance, a sodium-dependent potassium pump could fine-tune the potassium leak currents and modulate the spike amplitude (Markham et al., 2013).

      This model considers only NaK pumps. In many cell types, several other ion pumps/exchangers/symporters are simultaneously present and actively participate in restoring the ion gradients. It may be true that only NaK pumps are expressed in the weakly electric fish Eigenmannia virescens. This limits the generalizability of the results to other cell types. While this does not invalidate the results of the present study, biological processes may find many other solutions to address the non-electroneutral nature of the NaK pump. For example, each spike could include a small calcium ion influx that could be buffered or extracted via a sodium-calcium exchanger.

      Finally, including testable hypotheses for these computational models would strengthen this work.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a short report investigating mismatch responses in the auditory cortex, following previous studies focused on visual cortex. By correlating mouse locomotion speed with acoustic feedback levels, the authors demonstrate excitatory responses in a subset of neurons to halts in expected acoustic feedback. They show a lack of responses to mismatch in he visual modality. A subset of neurons show enhanced mismatch responses when both auditory and visual modalities are coupled to the animal's locomotion.<br /> While the study is well-designed and addresses a timely question, several concerns exist regarding the quantification of animal behavior, potential alternative explanations for recorded signals, correlation between excitatory responses and animal velocity, discrepancies in reported values, and clarity regarding the identity of certain neurons.

      Strengths:

      (1) Well-designed study addressing a timely question in the field.<br /> (2) Successful transition from previous work focused on visual cortex to auditory cortex, demonstrating generic principles in mismatch responses.<br /> (3) Correlation between mouse locomotion speed and acoustic feedback levels provides evidence for prediction signal in the auditory cortex.<br /> (4) Coupling of visual and auditory feedback show putative multimodal integration in auditory cortex.

      Weaknesses:

      (1) Unclear correlation between excitatory responses and animal velocity during halts, particularly in closed-loop versus playback conditions.<br /> (2) Ambiguity regarding the identity of the [AM+VM] MM neurons.

    2. Reviewer #2 (Public review):

      Using multimodal closed-loop behavior and activity monitoring in the neocortex, Solyga and Keller show that the auditory cortex computes the deviation of current sensory input from expectations. Interestingly, in addition, mismatch responses within the auditory stream are non-linearly influenced by concurrent sensorimotor error computations in the visual pathway. These results suggest that non-hierarchical interactions (lateral relational cross-talk) must be considered when analyzing cortical models based on predictive processing. In my opinion, this is a fundamental study that addresses the question of hierarchical vs. no-hierarchical interactions across neocortical areas. Overall, I find the experiments elegantly designed, and the results robust, providing compelling evidence for non-hierarchical interactions across neocortical areas, and more specifically of exchange of sensorimotor prediction error signals across modalities. The authors thoroughly addressed the concerns raised. In my opinion, this has substantially strengthened the manuscript, enabling much clearer interpretation of the results reported.

    3. Reviewer #3 (Public review):

      This study explores sensory prediction errors in sensory cortex. It focuses on the question of how these signals are shaped by non-hierarchical interactions, specifically multimodal signals arising from same level cortical areas. The authors used 2-photon imaging of mouse auditory cortex in head-fixed mice that were presented with sounds and/or visual stimuli while moving on a ball. First, responses to pure tones, visual stimuli and movement onset were characterized. The authors then made the running speed of the mouse predictive of sound intensity and/or visual flow (closed loop). Mismatches were created through the interruption of sound and/or visual flow for 1 second, disrupting the expected sensory signal. As a control, sensory stimuli recorded during the close loop phase were presented again decoupled from the movement (open loop). The authors suggest that auditory responses to the unpredicted interruption of the sound, which affected neither running speed nor pupil size, reflect mismatch responses. That these mismatch responses were enhanced when the visual flow was congruently interrupted, indicates cross-modal influence of prediction error signals.

      This study's strengths are the relevance of the question and the design of the experiment. The authors are experts in the techniques used. Responses to the interruption of the sound are similar in quality, if not quantity, in the predictive and the control situation, yet the contribution of sound offset sensitivity to the observed mismatch responses is not discussed.

    1. Reviewer #2 (Public review):

      Summary:

      The authors begin with the stated goal of gaining insight into the known repression of autophagy by Ezrin, a major membrane-actin linker that assembles signaling complexes on membranes. RNA and protein expression analysis is consistent with upregulation of lysosomal proteins in Ezrin-deficient MEFs, which the authors confirm by immunostaining and western blotting for lysosomal markers. Expression analysis also implicates EGF signaling as being altered downstream of Ezrin loss, and the authors demonstrate that Ezrin promotes relocalization of EGFR from the plasma membrane to endosomes. Ezrin loss reduces downstream MAPK and Akt signaling, and represses mTORC1 signaling by promoting lysosomal localization of the TSC complex. An Ezrin mutant Medaka fish line is then generated to test its role in retinal cells, which are known to be sensitive to changes in autophagy regulation. Phenotypes in this model appear generally consistent with observations made in cultured cells, though milder overall.

      Strengths:

      Data on the impact of Ezrin-loss on relocalization of EGFR from the plasma membrane are extensive, and thoroughly demonstrate that Ezrin is required for EGFR internalization in response to EGF.

      A new Ezrin-deficient in vivo model (Medaka fish) is generated.

      Strong data demonstrating that Ezrin loss suppresses Akt signaling and mTORC1 signaling by promoting TSC complex localization to the lysosome.

      Weaknesses:

      The authors have addressed all concerns

    2. Reviewer #3 (Public review):

      Summary:

      In this study, the authors have attempted to demonstrate a critical role for the cytoskeletal scaffold protein Ezrin, in the upstream regulation of EGFR/AKT/MTOR signaling. They show that in the absence of Ezrin, ligand-induced EGFR trafficking and activation at the endosomes is perturbed, with decreased endosomal recruitment of the TSC complex, and a corresponding decrease in AKT/MTOR signaling.

      Strengths:

      The authors have used a combination of novel imaging techniques, as well as conventional proteomic and biochemical assays to substantiate their findings. The findings expand our understanding of the upstream regulators of the EGFR/AKT MTOR signaling and lysosomal biogenesis, appear to be conserved in multiple species, and may have important implications for the pathogenesis and treatment of diseases involving endo-lysosomal function, such as diabetes and cancer, as well as neuro-degenerative diseases like macular degeneration. Furthermore, pharmacological targeting of Ezrin could potentially be utilized in diseases with defective TFEB/TFE3 functions like LSDs. While a majority of the findings appear to support the hypotheses, there are substantial gaps in the findings that could be better addressed. Since Ezrin appears to directly regulate MTOR activity, the effects of Ezrin KO on MTOR-regulated, TFEB/TFE3 -driven lysosomal function should be explored more thoroughly. Similarly, a more convincing analysis of autophagic flux should be carried out. Additionally, many immunoblots lack key controls (Control IgG in CO-Ips) and many others merit repetition to either improve upon the quality of the existing data, validate the findings using orthogonal approaches or to provide a more rigorous quantitative assessment of the findings, as highlighted in the recommendation for authors.

      Comments on revisions:

      The authors have satisfactorily addressed most of the concerns raised in the prior version, and have significantly improved upon the overall findings in the revised version.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines the cortical modular functional organization of visual texture in comparison with that of color and disparity. While color, disparity, and orientation have been shown to exhibit clear functional organizations within the thin, thick, and thick/pale stripes of V2, whether the feature of texture is also organized within V2 is unknown. Using ultrahigh field 7T fMRI in humans viewing color-, disparity-, and texture-specific visual stimuli, the authors find that, unlike color and disparity, texture does not exhibit stripe-specific organization in V2. Moreover, using laminar imaging methods and calculations of informational connectivity, they find V2 color and disparity stripes exhibit the expected feedforward and feedback relationships with V1 & V4, and with V1 & V3ab, respectively. In contrast, texture activation, found predominantly in the deep layers of V2, is driven preferentially by feedback from V4. Based on these findings, the authors suggest that texture is a visual feature computed in higher-order areas and not generated by local intra-V2 computation.

      Strengths:

      This study poses an interesting and fundamental question regarding the relationship between functional modularity and hierarchical origin of computed properties. This question is thus highly significant and deserves study. The methodology is appropriate for the question and the areal and laminar resolution achieved across 10 subjects is commendable. The combination of high-resolution functional imaging and informational connectivity analysis introduces a useful way for examining feedforward and feedback relationships in mesoscale imaging data.

      Comments on latest version:

      The authors have responded adequately to my comments. The lack of texture organization in V2 is now strengthened by the apparently more clustered texture response in V4 (Fig. S9). The paired results in V2 and V4 make the study stronger. The authors may suggest that texture response, while present at the neural level, may not emerge as a primary organizational cue in V2, based on this texture stimulus paradigm. The negative results should still be presented cautiously. The connectivity inferences are interesting but should also be stated cautiously, as there are multiple assumptions. Overall, this study makes a contribution to emerging views about texture processing in the early visual pathways.

    2. Reviewer #2 (Public review):

      This study investigates the cortical circuitry at the mesoscopic level of cortical columns in the human secondary visual cortex (V2) using high-resolution fMRI at ultra-high field strength (7T). The findings confirm the columnar organization of color-selective thin and disparity-selective thick stripes, a result previously demonstrated and replicated in human fMRI research. However, this study adds a novel layer of analysis by examining cortical depth, providing insights into feedforward and feedback connections to and from V2. Furthermore, examining texture selectivity in V2 showed no evidence of a columnar structure when compared to color- and disparity-selective activation clusters. Interestingly, texture selectivity in V2 was most pronounced in deeper cortical layers, with significant feedback connectivity from V4. The authors conclude that local columnar circuitry plays a crucial role in color and disparity processing within V2, while texture selectivity is driven by feedback modulation. This research underscores the potential of high-resolution human fMRI to explore the local circuitry of the cortex at the mesoscopic scale.

      However, I still have a few comments that I would like to be addressed:

      (1) In lines 401-403, the authors state that differential BOLD responses can significantly enhance the laminar specificity. Differential contrasts indeed have the potential to reduce macrovascular contributions that are unspecific to both experimental conditions, which was already discussed in the literature (e.g., Yacoub et al., 2008, High-field fMRI unveils orientation columns in humans). This might be especially true for the pial vasculature that drains a larger surface area of the cortex, e.g., multiple columns, which is probably the key factor that enables cortical column mapping using differential BOLD contrasts despite the relatively large spatial point spread function of the BOLD response. However, this may differ for laminar analyses, where neuronal and vascular responses from intracortical and pial veins might be harder to disentangle. It would, therefore, be advisable to tone down this statement somewhat since it could imply that laminar specificity can be readily achieved with GE-BOLD, while this remains an active area of research. This is not to say that the present results are incorrect, but the broader implications of this statement should be cautiously framed.

      (2) Looking at Figure 3, one might also argue (excluding responses from V4) that statistically significant differences in selectivity are only observed where the cortical profiles generally show higher response levels. Could this be simply due to varying signal-to-noise ratios (SNR) achieved by different contrasts (color, disparity, texture)?

      (3) In lines 480-484, the authors state that twenty blocks for each stimulus condition should be sufficient to investigate within-subject effects. It would be helpful if they could elaborate on the basis for this claim. High-resolution fMRI is typically limited by low temporal signal-to-noise ratio (tSNR), and extensive averaging is often required to achieve sufficient signal. Clarifying the rationale behind this assertion would strengthen the argument.

    3. Reviewer #3 (Public review):

      Summary:

      Ai et al. studied texture, color and disparity selectivity in human visual cortex at mesoscale level using high-resolution fMRI. They reproduced earlier monkey and human studies showing interdigitated color-selective and disparity-selective sub-compartments within area V2, likely corresponding to thin and thick stripes, respectively. At least with the stimuli used, no clear evidence for texture-selective mesoscale activations were observed in area V2. The most interesting and novel part of this study focused on cortical-depth-dependent connectivity analyses across areas. The data suggest feedback and feedforward functional connectivity between V1 and V3A for disparity signals and feedback from V4 to the deep layers of V2 for textures.

      Strengths:

      High-resolution fMRI and highly interesting layer-specific informational connectivity analyses.

      Weaknesses:

      The authors tend to overclaim their results. Too few data to make conclusive inferences.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigated the role of PLECTIN, a cytoskeletal crosslinker protein, in liver cancer formation and progression. Using the liver-specific Plectin knockout mouse model, the authors convincingly showed that PLECTIN is critical for hepatocarcinogenesis, as functional inhibition of PLECTIN suppressed tumor formation in several models. They also provided evidence to show that inhibition of PLECTIN inhibited HCC cell invasion and reduced metastatic outgrowth in the lung. Mechanistically, they suggested that PLECTIN inhibition attenuated FAK, MAPK/ERK, and PI3K/AKT signaling.

      Strengths:

      The authors generated a liver-specific Plectin knockout mouse model. By using DEN and sgP53/MYC models, the authors convincingly demonstrated an oncogenic role of PLECTIN in HCC development. plecstatin-1 (PST), as a plectin inhibitor, showed promising efficacy in inhibiting HCC growth, which provides a basis for potentially treating HCC using PST.

      The MIR images for tracking tumor growth in animal models were compelling. The high-quality confocal images and related qualifications convincingly showed the impact of plectin functional inhibition on contractility and adhesions in HCC cells.

      Comments on latest version:

      My concerns have been largely addressed. The authors did a good job in addressing the questions and clarifying the inconsistent results. I have two comments:

      (1) The current data still cannot support the conclusion that plectin inactivation attenuates HCC oncogenic potential through FAK, Erk1/2, and PI3K/Akt axis, unless they can reactivate these signaling to restore the HCC congenic potential in plectin inactivated cells. It might be more appropriate to claim that plectin inactivation suppresses FAK, Erk1/2, and PI3K/Akt oncogenic signaling.

      (2) I think it would be beneficial to include the H&E and HNF4α staining from lung tissue of mice inoculated with WT Huh7 cells indicated in the rebuttal letter.

    2. Reviewer #2 (Public review):

      Summary:

      Plectin is a cytolinker that associates with cytoskeletal and intercellular junction proteins and is essential for epithelial integrity and cell migration. Previous reports showed that PLEC regulates tumor growth and metastasis in different cancers. In this manuscript, the authors describe PLEC as a target in initiation and growth of HCC. They show that inhibiting PLEC reduced tumorigenesis in different in vitro and in vivo HCC models, including in a xenograft model, DEN model, oncogene-induced HCC model and a lung metastasis model. A drug PST had similar effects, a purported Plectin inhibitor, suggesting that PLEC inhibition could be a tumor prevention or treatment strategy. Mechanistically, the authors show that inhibiting PLEC results in a disorganized cytoskeleton, deficiency in cell migration, and changes in cancer-relevant signaling pathways. This study demonstrates the importance of understanding mechanobiology of HCC for the development of new treatment strategies.

      Strengths:

      (1) This study used a variety of in vivo models to explore the role of Plectin in HCC formation and metastasis, which extend beyond the cell line-based studies reported in prior research.<br /> (2) Blocking PLEC disrupts pathways that promote tumors and cell migration, thus preventing tumor progression.<br /> (3) Overall, the anti-cancer phenotype is promising, strengthening the important role of PLEC and related factors in tumor growth and metastasis.

      Weaknesses:

      (1) There is limited novel mechanistic insights as the effect of inhibiting PLEC on the cytoskeleton, cell migration and related signaling pathways have previously been reported.<br /> (2) The results associated with PST, should be interpretated with caution. Although it is reported as an inhibitor of PLECTIN, and the phenotypes and pathways affected are similar to the knock-out, additional research is needed to support whether it will be safe and specific in treating or preventing HCC.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Outla Z et al described the analysis of Plectin in HCC pathogenesis. Specifically, it was found that elevated Plectin levels in liver tumors, correlated with poor prognosis for HCC patients. Mechanistically, it showed that Plectin-dependent disruption of cytoskeletal networks leads to the attenuation of oncogenic FAK, MAPK/Erk, and PI3K/AKT signals. Finally, the authors showed that Plectin inhibitor plecstatin-1 (PST) is well-tolerated and capable of overcoming therapy resistance in HCC.

      Strengths:

      The studies of Plectin are not entirely novel (Pubmed: 36613521). Nevertheless, the current manuscript provides a much more detailed mechanistic study and the results have translational implications. Additional strengths include convincing cell biology data, such as Plectin regulates cytoskeletal networks, and HCC migration/invasion.

      Comments on latest version:

      The authors have addressed my comments.

    1. Reviewer #2 (Public review):

      Summary:

      Tanaka et al. investigated the role of CCR4 in early atherosclerosis, focusing on the immune modulation elicited by this chemokine receptor under hypercholesterolemia. The study found that Ccr4 deficiency led to qualitative changes in atherosclerotic plaques, characterized by an increased inflammatory phenotype. The authors further analyzed the CD4 T cell immune response in para-aortic lymph nodes and atherosclerotic aorta, showing an increase mainly in Th1 cells and the Th1/Treg ratio in Ccr4-/-Apoe-/- mice compared to Apoe-/- mice. They then focused on Tregs, demonstrating that Ccr4 deficiency impaired their immunosuppressive function in in vitro assays. Authors also states that Ccr4-deficient Tregs had, as expected, impaired migration to the atherosclerotic aorta. Adoptive cell transfer of Ccr4-/- Tregs to Apoe-/- mice mimicked early atherosclerosis development in Ccr4-/-Apoe-/- mice. Therefore, this work shows that CCR4 plays an important role in early atherosclerosis but not in advanced stages.

      Strengths:

      Several in vivo and in vitro approaches were used to address the role of CCR4 in early atherosclerosis. Particularly, through the adoptive cell transfer of CCR4+ or CCR4- Tregs, the authors aimed to directly demonstrate the role of CCR4 in Tregs' protection against early atherosclerosis.

      Weaknesses:

      Flow cytometry experiments are not well controlled. Dead cells and doublets were not excluded from analysis.

      Clinical relevance is unclear.

    2. Reviewer #3 (Public review):

      Summary:

      Tanaka and colleagues addressed the role of the C-C chemokine receptor 4 (CCR4) in early atherosclerotic plaque development using ApoE-deficient mice on a standard chow diet as a model. Because several CD4+ T cell subsets express CCR4, they examined whether CCR4-deficiency alters the immune response mediated by CD4+ T cells. By histological analysis of aortic lesions, they demonstrated that the absence of CCR4 promoted the development of early atherosclerosis, with heightened inflammation linked to increased macrophages and pro-inflammatory CD4+ T cells, along with reduced collagen content. Flow cytometry and mRNA expression analysis for identifying CD4+ T cell subsets showed that CCR4 deficiency promoted higher proliferation of pro-inflammatory effector CD4+ T cells in peripheral lymphoid tissues and accumulation of Th1 cells in the atherosclerotic lesions. Interestingly, the increased pro-inflammatory CD4+ T cell response occurred despite the expansion of T CD4+ Foxp3+ regulatory cells (Tregs), found in higher numbers in lymphoid tissues of CCR4-deficient mice, suggesting that CCR4 deficiency interfered with Treg's regulatory actions. In addition, CCR4 deficiency induced an augmented Th1/Treg ratio in the aortic lesions. The CCR4-mediated mechanisms underlying the control of early inflammation and atherosclerosis development were not completely elucidated. In vitro studies suggest that CCR4 expression in Tregs plays a role in controlling DC activation and, in turn, the extent of CD4+T cell activation and proliferation. Dependence on CCR4 expression for Treg migration to the atherosclerotic aorta was not proved. The findings contrast with earlier studies in a murine model of advanced atherosclerosis, where CCR4 deficiency did not alter the development of the aortic lesions. The authors included a thoughtful discussion about hypothetical mechanisms explaining these contrasting results, including putative differences in the role played by the CCL17/CCL22-CCR4 axis along the stages of atherosclerosis development in this murine model.

      Major strengths:

      • Demonstration of CCR4 deficiency's impact on early atherosclerosis. CCR4 deficiency effects on the early atherosclerosis development in the Apoe-/-mice model were demonstrated by a quantitative analysis of the lesion area, inflammatory cell content and the expression profile of several pro- and anti-inflammatory markers.<br /> • Analysis of the T CD4+ response in various lymphoid tissues (peripheral and para-aortic lymph nodes and spleen) and the atherosclerotic aorta during the early phase of atherosclerosis in the Apoe-/-mice model. This analysis, combining flow cytometry and mRNA expression, showed that CCR4 deficiency enhanced T CD4+ cell activation, favouring the amplification of the typical biased Th1-mediated inflammatory response observed in the lymphoid tissues of hypercholesterolemic mice.<br /> • Treg transference experiments. Transference of Treg from Apoe-/- or Ccr4-/- Apoe-/- mice to Apoe-/- mice under a standard chow diet was useful for addressing the relevance of CCR4 expression on Tregs for the atheroprotective effect of this regulatory T cell subset during early atherosclerosis.

      Major weaknesses:

      • The effect of CCR4 deficiency on the Th1/Th17 balance was not evaluated. Although the role of Th17 cells in atherosclerosis remains controversial, RORγt+ cells constituted, on average, more than 10% of the effector TCD45+CD3+CD4+ lymphocytes in the aorta of Apoe-/- mice (Fig 4H). Changes in the Th1/Th17 balance in lymphoid tissues and aortic lesions may influence the type and functional properties of inflammatory cells recruited to the atherosclerotic aorta.

      • Lack of in vivo evidence for Treg suppressive effects on DC activation. The proposed CCR4 requirement for the Treg suppressive activity on DC activation is supported by in vitro co-culture assays, in which CCR4-deficiency partially reverted Treg regulatory actions. Higher expression of CD86, a DC activation marker, was found in spleen DCs from Ccr4-/- Apoe-/- mice compared to Apoe-/- mice (Supplementary Fig 5), which would be worth commenting on and discussing.

      • Methodological limitations. Controls in flow cytometry analysis were suboptimal (no viability and doublets were checked) which may have introduced artefacts, especially when measuring less-represented cell populations within complex samples. In addition, assessing Treg migration to the aorta in atherosclerotic mice faced methodological limitations that hindered statistical comparisons between Tregs from Apoe-/- and Ccr4-/- Apoe-/- mice, leading to inconclusive results. The dependence on CCR4 expression for Treg migration to the atherosclerotic aorta was not established.

      • Treg transference experiments did not allow the detection of a reduction in the aortic lesion area by transferred CCR4 expressing Tregs (comparison between saline and Apoe-/- Tregs groups). Using Apoe-/- mice as recipients, the CCR4-dependent protective effect of Tregs was mostly evidenced by analysis of aortic inflammation, which was valuable. When using Ccr4-/- Apoe-/- mice as recipients, analysis of aortic inflammation was not mentioned.

      Study limitations:

      This investigation has some limitations. Current tools for single-cell characterization have revealed the phenotypic heterogeneity and dynamics of aortic leukocytes, including T cells, which are among the principal aortic leukocytes found in mouse and human atherosclerotic lesions (doi:10.1161/CIRCRESAHA.117.312513). The flow cytometry analysis applied in this study cannot distinguish the generation of particular phenotypes within T CD4+ subsets, including putative phenotypes of no-suppressive T cells expressing low levels of Foxp3, as seems could occur in other chronic inflammatory disorders (doi: 10.1038/nm.3432; doi: 10.1172/JCI79014). Limitations due to the use of a complete CCR4 knockout mouse and putative differences in CCR4-mediated mechanisms along atherosclerosis stages and in human atherosclerosis were commented on by the authors in the discussion.

      Global Impact:

      This work opens the way for a deeper analysis of the contribution of CCR4 and its ligands to the activation and differentiation of T CD4+ lymphocytes during atherosclerosis development, with these lymphocytes being fundamental players in the generation of pro-atherogenic and anti-atherogenic immune responses. Differences in the mechanisms mediated by the CCL17/CCL22-CCR4 axis among early and advanced atherosclerosis highlight the complex landscape to examine and validate in human samples and the need to achieve a deep knowledge for identifying genuine and safe targets capable of promoting protective anti-atherogenic immune responses.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Liu et al have tried to dissect the neural and molecular mechanisms that C. elegans use to avoid digestion of harmful bacterial food. Liu et al show that C. elegans use the ON-OFF state of AWC olfactory neurons to regulate the digestion of harmful gram-positive bacteria S. saprophyticus (SS). The authors show that when C. elegans are fed on SS food, AWC neurons switch to OFF fate which prevents digestion of S. saprophyticus and this helps C. elegans avoid these harmful bacteria. Using genetic and transcriptional analysis as well as making use of previously published findings, Liu et al implicate the p38 MAPK pathway (in particular, NSY-1, the C. elegans homolog of MAPKKK ASK1) and insulin signaling in this process.

      Strengths:

      The authors have used multiple approaches to test the hypothesis that they present in this manuscript.

      Weaknesses:

      Overall, I am not convinced that the authors have provided sufficient evidence to support the various components of their hypothesis. While they present data that loosely align with their hypothesis, they fail to consider alternative explanations and do not use rigorous approaches to strengthen their overall hypothesis. The selective picking of genes from the RNA sequencing data and forcing the data to fit the proposed hypothesis based on previously published findings, without exploring other approaches, indicates a lack of thoroughness and rigor. These critical shortcomings significantly diminish enthusiasm for the manuscript in its totality. In my opinion, this is the biggest weakness in this manuscript.

    2. Reviewer #2 (Public review):

      Summary:

      Using C. elegans as a model, the authors present an interesting story demonstrating a new regulatory connection between olfactory neurons and the digestive system. Mechanistically, they identified key factors (NSY-1, STR-130 et.al) in neurons, as well as critical 'signaling factors' (INS-23, DAF-2) that bridge different cells/tissues to execute the digestive shutdown induced by poor-quality food (Staphylococcus saprophyticus, SS).

      Strengths:

      The conclusions of this manuscript are mostly well supported by the experimental results shown.

      Weaknesses:

      Several issues could be addressed and clarified to strengthen their conclusions.

      (1) The word "olfactory" should be carefully used and checked in this manuscript. Although AWCs are classic olfactory neurons in C. elegans, no data in this manuscript supports the idea that olfactory signals from SS drive the responses in the digestive system. To validate that it is truly olfaction, the authors may want to check the responses of worms (e.g. AWC, digestive shutdown, INS-23 expression) to odors from SS.

      (2) In line 113, what does "once the digestive system is activated" mean? The authors need to provide a clearer statement about 'digestive activation' and 'digestive shutdown'.

      (3) No control data on OP50. This would affect the conclusions generated from Figures 2A, 2B, 2D, 3B, 3C, 3G, 4D-G, 5D-E, 6B-D.

      (4) Do the authors know which factors are released from AWC neurons to drive the digestive shutdown?

    3. Reviewer #3 (Public review):

      Summary:

      The study explores a molecular mechanism by which C. elegans detects low-quality food through neuron-digestive crosstalk, offering new insights into food quality control systems. Liu and colleagues demonstrated that NSY-1, expressed in AWC neurons, is a key regulator for sensing Staphylococcus saprophyticus (SS), inducing avoidance behavior and shutting down the digestive system via intestinal BCF-1. They further revealed that INS-23, an insulin peptide, interacts with the DAF-2 receptor in the gut to modulate SS digestion. The study uncovers a food quality control system connecting neural and intestinal responses, enabling C. elegans to adapt to environmental challenges.

      Strengths:

      The study employs a genetic screening approach to identify nsy-1 as a critical regulator in detecting food quality and initiating adaptive responses in C. elegans. The use of RNA-seq analysis is particularly noteworthy, as it reveals distinct regulatory pathways involved in food sensing (Figure 4) and digestion of Staphylococcus saprophyticus (Figure 5). The strategic application of both positive and negative data mining enhances the depth of analysis. Importantly, the discovery that C. elegans halts digestion in response to harmful food and employs avoidance behavior highlights a physiological adaptation mechanism.

      Weaknesses:

      Major points:

      (1) While NSY-1 positively regulates str-130 expression in AWC neurons and is critical for SS avoidance and survival, the authors should examine whether similar phenotypes are observed in str-130 mutants.

      (2) NSY-1 promotes the AWC-OFF state through str-130, inhibiting SS digestion. The authors should investigate whether STR-130 in AWC neurons regulates bcf-1 expression levels in the intestine.

      (3) The current results rely on str-2 expression levels to indicate the AWC state. Ablating AWC neurons and testing the effects on digestion would provide stronger evidence for their role in digestive regulation.

      (4) The claim that NSY-1 inhibits INS-23 and that INS-23 interacts with DAF-2 to regulate bcf-1 expression (Line 339-340) requires further validation. Neuron-specific disruption of INS-23 and gut-specific rescue of DAF-2 should be tested.

      (5) Figure Reference Errors: Lines 296-297 mention Figure 6E, which does not exist in the main text. This appears to refer to Figure 5E, which has not been described.

    1. Reviewer #1 (Public review):

      Summary:

      In their paper, Tutunji et al aim to investigate the dynamic effects of stress on activity of different brain networks (salience network, executive network, and default mode network). Crucially they differentiate between rapid (<1 h) and late (>1) effects of stress. Lastly, they connect acute changes in brain activity with inter-individual differences in stress reactivity in real-life assessed using EMA.

      They first show the expected dynamics in stress-induced brain activity with a transient increase in salience network activity and a decrease in default mode network activity although in contrast to expectations, this did not disappear in the late phase. Notably, the increase in salience network activity was associated with a 'resilience index' derived from EMA that captures whether an individual responds with more or less reduction in positive effect than expected based on the number of above average stress events.

      Linking acute stress to long-term affective stress reactivity is a crucial step to better understand how adaptive or maladaptive stress responses play out in the long term and how they might be related to mental health problems.

      Strengths:

      The link of the acute stress response to stress reactivity in daily life is highly relevant and a major strength of the paper. Moreover, the design of the EMA component assessing a week with low stress and one with high stress (exam week) in all participants and thus including a naturalistic manipulation enables a quantification of stress reactivity that captures 'real life'.

      The authors do not only quantify the magnitude of the acute stress response but take into account an early as well as late response to disentangle the dynamic nature of the stress response. In that way, it is possible to establish which parts of the stress response are relevant for the affective response.

      In addition to reporting changes in network activation, the authors also report behavioral outcomes of the tasks which is crucial to evaluate the meaning and relevance of the neural outcomes.

      Weaknesses:

      Although the authors assess multiple physiological outcomes to the stress task, only the cortisol response is analyzed with regard to its association with the stress-induced changes in network activity. Considering that it is mainly the salience network that shows an increase and this in the early phase that is characterized by the noradrenaline and not so much the cortisol response, an association with a marker of the NA response would be interesting.

      To evaluate the association of the acute stress response with stress reactivity in real life more conclusively it would be interesting to see whether and how the affective response to the acute stress is related to stress reactivity in real life.

      In the introduction, the authors hypothesize that all networks show distinct activation patterns during the stress response and expect all of them to be associated with the stress reactivity during EMA. However, no correction for multiple comparisons across the many tests (each network at two phases) is reported.

      All stress-induced changes in activity are assessed by using other tasks since it is not trivial to measure changes in activation of specific regions without comparing different conditions of a task. Nonetheless, with the chosen approach it is not completely clear whether stress only modulates brain responses to other tasks or changes activation within those networks independently of any other tasks. Moreover, one of the tasks did not elicit the expected activation contrast and it is unclear whether this affects stress-effects.

      Some of the less central results that are discussed in the paper such as the association of the real-life stress reactivity measure with neuroticism, the sex-effect of the cortisol response or the mediation and moderation models of the stress-induced changes in network activity and performance in the tasks seem slightly overinterpreted considering that they are either not quite significant or not hypothesized and thus it is not clear why for example once a mediation and in another outcome a moderation model was chosen.

    2. Reviewer #2 (Public review):

      Summary:

      This study aimed to investigate changes in neural responses over time after acute stress and their association with real-life stress. To this end, functional MRI data was collected from 3 tasks (Oddball, 2-back, Associative retrieval) early and late following stress and control conditions. Emotional ratings during a stressful week before an exam and a non-stressful week without an exam were used to index real-world stress. In total, data from 70 individuals were used for the analyses in the paper. Results showed increased oddball related activation early after stress whereas activation to the associative retrieval was reduced across early and late trials following stress compared with control. Brain activation during the oddball task after stress contrasted against control correlated with the index used to measure stress in the real-world. This is a very ambitious study and the findings that stress has opposite effects on the oddball and the associative retrieval tasks is new. However, I am not convinced that brain responses are correlated with real-world stress from the results presented in the paper. I also have several other concerns listed below.

      Strengths:

      The study uses a unique design based on hypothesis firmly grounded in theories of stress related brain function. Large amounts of data are collected for all of the 70 participants included in the analyses and the hypotheses tested using paired tests have strong statistical power. Data collection methods are sound aiming to reduce stress induced by being in the scanner environment for the first time and reducing variation in cortisol due to circadian rhythm.

      Weaknesses:

      An important argument in the paper is that neural responses associated with stress in the lab correspond to stress in real life. This conclusion is based on a single correlation analysis. This is weak evidence because the correlation is based on 70 individuals and may be driven by outliers. In fact, the correlation between the difference in stress-related SN activation (Stress-Control) and real life stress residual is likely to be driven by outliers. In fig 5b, there are 3 persons with SN values of around 2, which is twice as much as the fourth highest value. There is also 1 person with a Real life stress residual of -3 or -4, which is three to four times as much as the person with the second lowest value. These 4 outliers should be removed before calculating the correlation coefficient. Also, no power analysis is presented in the paper showing what effect size is needed for significant results given a sample size of 70.

      It is not clear why the activation maps from the tasks performed in the scanner are referred to as the SN, ECN, and DMN. They are discussed as if they were resting state networks. They are however not resting state networks because they are the results of contrasting two task conditions to each other and not the results from correlating BOLD time-series data from different regions within subjects. Even though masks corresponding to SN, ECN, and DMN are used to calculate means of all voxels, I think these contrasts should be referred to as the tasks that were used to evoke them. It becomes misleading to call them networks which usually refers to nodes and edges in fMRI studies. The first scan was a resting state scan, but these data are not presented in the paper.

      Introduction<br /> In the introduction it is said that there are genomically driven effects of cortisol 1 to 2 hours after stress. This is repeated in the discussion: "[the late stress phase] is thought to be dominated by genomically driven effects of glucocorticoids". (There is no reference to this statement however.) This idea, that gene expression should only be regulated by corticosteroids following stress seems unrealistic. The increase in cortisol was only around 60% from baseline in the current study which seems to be similar to other studies. This means that the baseline cortisol level is far from zero. Therefore, effects of cortisol on gene expression must occur all the time and be tightly regulated by circadian clocks. To propose that genomically driven effects of cortisol only exist 1 to 2 hours following stress is therefore too simplistic.

      In the last paragraph, it says that n=83. However, the final sample consists of 70 people. Correct this number.

      Methods<br /> The EMA data analysis is difficult to understand. Why are the residuals used instead of means for example? I could not understand how the residual values used in the analysis should be interpreted from the way this section was written. Therefore, I cannot judge whether the index is valid or reliable. Using mean values is more common than using residuals when investigating individual differences in stress responses. The use of residuals needs justification and clarification. The results from an analysis using mean values should also be reported.

      How was AUCi calculated? What software was used to calculate AUCi?

      How was the mediation analysis performed? The only information I found was: "We additionally ran separate models with an interaction term modelled for neural activity in the targeted ROI's to examine the relationship between task performance and neural responses, with random slopes and intercepts also modelled for ROI activity." This is not how mediation analyses are done conventionally. It is common to use structural equation modelling or a series of regression analyses. What is meant by separate models? Was a reduced model compared to a full model with an interaction term? In this case, this is not a mediation analysis. I think the term moderation is better to describe this analysis.

    3. Reviewer #3 (Public review):

      This is a very interesting study that aims to examine the effect of stress induction across about two hours on physiological, behavioral, and neural measures in several brain areas. This aim is of importance for the study of stress response and recovery and their neural bases. There are several strengths to the design, including a within-subject design, adequate sample size, and multiple levels of assessment (including lab-based and real-life), and the authors should really be commended for that. The results indicate an acute cortisol response following stress induction, although HR data show that the manipulation may have been effective only among those who did the stress scan first. Behaviorally, stress induction resulted in effects on one of the tasks. Neurally, temporal changes in response were observed in what is referred to as SN and DMN networks, and associations with real-life stress were evident for SN during early stress response. Together, evidence emerged for some temporal changes in stress response on neural function and its associations with behavior and real-life stress response as indicated by self-report EMA.

      These findings, both positive and null, provide important insight to the field, and the authors should be praised for that. At the same time, it is important to emphasize that some aspects or findings complicate interpretation and limit the extent of inference, that many places in the manuscript could benefit from clarification, and that more discussion should be given to the null findings.

      All in all, given the importance of the questions and the strengths of the design, this study could provide a major contribution to future research. But, to accurately and optimally guide research, it is important to accurately describe and interpret both what was tested and found, and what was not found. Some more specific points are noted below, where improvements could be made to facilitate extraction of insight by the reader, and thus increase the impact of the study on the field.

    1. Reviewer #1 (Public review):

      Summary:

      This is an important and interesting study that uses the split-GFP approach. Localization of receptors and correlating them to function is important in understanding the circuit basis of behavior.

      Strengths:

      The split-GFP approach allows visualization of subcellular enrichment of dopamine receptors in the plasma membrane of GAL4-expressing neurons allowing for high level of specificity.

      The authors resolve the presynaptic localization of DopR1 and Dop2R, in "giant" Drosophila neurons differentiated from cytokinesis-arrested neuroblasts in culture as its not clear in the lobes and calyx.

      Starvation induced opposite responses of dopamine receptor expression in the PPL1 and PAM DANs provides key insights into models of appetitive learning.<br /> Starvation induced increase in D2R allows for increased negative feedback that the authors test in D2R knockout flies where appetitive memory is diminished.<br /> This dual autoreceptor system is an attractive model for how amplitude and kinetics of dopamine release can be fine tunes and controlled depending on the cellular function and this paper presents a good methodology to do it and a good system where dynamics of dopamine release can be tested at the level of behavior.

      Weaknesses:

      Key weaknesses have been resolved: 

      1) Receptor expression is consistent between time of the day and the authors picked two time points. The authors mention that the states of animals could affect LI (e.g. feeding state and anesthesia for sorting, see methods) were kept constant. These data and discussion are helpful. <br /> 2) Giant fiber system is argued to be a great model and authors have added additional references. However I am not very deeply familiar with these references or the giant fiber system so I am not completely clear but the argument seems reasonable. <br /> 3) The revised manuscript, shows data in the γ KCs (Figure 4C, Figure 5 - figure supplement 1) in addition to α/β KCs, so it appears there is consistency between lobes. <br /> 4) The new data for Dop1R1 and Dop2R in MBON-γ1pedc>αβ helps with thinking about dopamine receptor co-localization and it would be a herculean talk to do this for all the regions but still keeps room open for different scenarios. 

      The papers discussion has been expanded to account for different possibilities which will help the readers get a more complete picture. I appreciate the review efforts and detailed response to reviewer comments.

    2. Reviewer #2 (Public review):

      Summary:

      Hiramatsu et al. investigated how cognate neurotransmitter receptors with antagonizing downstream effects localize within neurons when co-expressed. They focus on mapping the dopaminergic Dop1R1 and Dop2R receptors, corresponding to the mammalian D1- and D2-like dopamine receptors, which have opposing effects on intracellular cAMP levels, in neurons of the Drosophila mushroom body (MB). To visualize specific receptors in single neuron types within the crowded MB neuropil, the authors use existing dopamine receptor alleles tagged with 7 copies of split GFP to target the reconstitution of GFP tags specifically in the neurons of interest, providing a readout of receptor localization.

      The authors demonstrate that both Dop1R1 and Dop2R are enriched, to differing degrees, in the axonal compartments of Kenyon cells cholinergic presynaptic inputs and in different dopamine neurons (DANs) that project axons to the MB. Co-localization studies of dopamine receptors with the presynaptic marker Brp suggest that Dop1R1, and to a greater extent Dop2R, localize near release sites. This pattern in DANs suggests Dop1R1 and Dop2R serve as dual-feedback autoreceptors. Finally, they provide evidence that the balance of Dop1R1 and Dop2R in the axons of two different DAN populations is differentially modulated by starvation, which plays a role in regulating appetitive behaviors.

      In their revised manuscript, Hiramatsu et al. revisited the localization and functional integrity of Dop1R1 and Dop2R within the Drosophila mushroom body. This revision strengthens their claims with new high-resolution imaging data and additional behavioral assays, supporting the functional integrity of 7X split GFP-tagged receptors and their distinct localizations within neural circuits.

      The revised manuscript by Hiramatsu et al. demonstrates substantial improvements in experimental design and data presentation, effectively addressing concerns raised during the initial review. The addition of advanced imaging techniques and behavioral data confirms the functionality of tagged receptors, while providing deeper insights into their spatial and functional dynamics within neural circuits modulating responses to environmental changes like starvation. This study makes an important contribution to neuroscience, enhancing our understanding of dopamine receptor distribution in circuits underlying learning and memory.

      Strengths:

      The authors use reconstitution of GFP fluorescence of split GFP tags integrated at the endogenous locus of dopamine receptors, providing a precise readout of receptor localization. This method preserves endogenous transcriptional and post-transcriptional regulation, a critical feature for protein localization studies.

      The choice of the Drosophila mushroom body as a model system is excellent, as it is well-studied, its connectome is carefully reconstructed, and its role in behaviors and associative memory enables linking receptor localization patterns to circuit function and behavior. This approach allows the authors to demonstrate that antagonizing dopamine receptors can act as autoreceptors within the axonal compartments of MB-innervating DANs. Moreover, they show that starvation differentially modulates the balance of these receptors in distinct DANs, highlighting the role of this regulation in circuit function and behavior.

      The incorporation of higher-resolution Airyscan microscopy and functional assays in the revision provide evidence that tagged receptors retain functionality and predominantly localize at presynaptic sites within Kenyon cells and DANs. These findings support the dual autoreceptor feedback model proposed.

      Weaknesses:

      While the revision significantly strengthens the manuscript, the absence of specific antibodies against these receptors remains a limitation. This is understandable given the challenges of generating antibodies against such proteins. However, the use of more direct validation methods, such as specific antibodies (if available), and employing higher-resolution techniques like expansion microscopy, could further validate and enhance the robustness of the findings.

    1. Reviewer #1 (Public review):

      Shen et al. conducted three experiments to study the cortical tracking of the natural rhythms involved in biological motion (BM), and whether these involve audiovisual integration (AVI). They presented participants with visual (dot) motion and/or the sound of a walking person. They found that EEG activity tracks the step rhythm, as well as the gait (2-step cycle) rhythm. The gait rhythm specifically is tracked superadditively (power for A+V condition is higher than the sum of the A-only and V-only condition, Experiments 1a/b), which is independent of the specific step frequency (Experiment 1b). Furthermore, audiovisual integration during tracking of gait was specific to BM, as it was absent (that is, the audiovisual congruency effect) when the walking dot motion was vertically inverted (Experiment 2). Finally, the study shows that an individual's autistic traits are negatively correlated with the BM-AVI congruency effect.

    2. Reviewer #2 (Public review):

      The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information was presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates the mechanism of axon growth directed by the conserved guidance cue UNC-6/Netrin. Experiments were designed to distinguish between alternative models in which UNC-6/Netrin functions as either a short range (haptotactic) cue or a diffusible (chemotactic) signal that steers axons to their final destinations. In each case, axonal growth cones execute ventrally directed outgrowth toward a proximal source of UNC-6/Netrin. This work concludes that UNC-6/Netrin functions as both a haptotactic and chemotactic cue to polarize the UNC-40/DCC receptor on the growth cone membrane facing the direction of growth. Ventrally directed axons initially contact a minor longitudinal nerve tract (vSLNC) at which UNC-6/Netrin appears to be concentrated before proceeding in the direction of the ventral nerve cord (VNC) from which UNC-6/Netrin is secreted. Time lapse imaging revealed that growth cones appear to pause at the vSLNC before actively extending ventrally directed filopodia that eventually contact the VNC. Growth cone contacts with the vSLNC were unstable in unc-6 mutants but were restored by expression of a membrane tethered UNC-6 in vSLNC neurons. In addition, expression of membrane tethered UNC-6/Netrin in the VNC was not sufficient to rescue initial ventral outgrowth in an unc-6 mutant. Finally, dual expression of membrane tethered UNC-6/Netrin in both vSLNC and VNC partially rescued the unc-6 mutant axon guidance defect, thus suggesting that diffusible UNC-6 is also required. This work is important because it potentially resolves the controversial question of how UNC-6/Netrin directs axon guidance by proposing a model in which both of the competing mechanisms, e.g., haptotaxis vs chemotaxis, are successively employed. The impact of this work is bolstered by its use of powerful imaging and genetic methods to test models of UNC-6/Netrin function in vivo thereby obviating potential artifacts arising from in vitro analysis.

      Strengths:

      A strength of this approach is the adoption of the model organism C. elegans to exploit its ready accessibility to live cell imaging and powerful methods for genetic analysis.

      Weaknesses:

      In the revised version of this manuscript, the authors have redressed the weaknesses highlighted in my review of the original paper.

    2. Reviewer #2 (Public review):

      Nichols et al studied the role of axon guidance molecules and their receptors and how these work as long-range and/or local cues, using in-vivo time-lapse imaging in C. elegans. They found that the Netrin axon guidance system, work in different modes when acting as a long-range (chemotaxis) cue vs local cue (haptotaxis). As an initial context, they take advantage of the postembryonic-born neuron, PDE, to understand how its axon grows and then is guided into its target. They found that this process occurs in various discrete steps, during which the growth cone migrates and pauses at specific structures, such as the vSLNC. The role of the UNC-6/Netrin and UNC-40/DCC axon guidance ligand-receptor pair was then looked at in terms of its requirement for (1) initial axon outgrowth direction, (2) stabilization at the intermediate target, (3) directional branching from the sublateral region or (4) ventral growth from intermediate target to the VNC. They found that each step is disrupted in the unc-6/Netrin and unc-40/DCC mutants and observed how the localization of these proteins changed during the process of axon guidance in wild type and mutant contexts. These observations were further supported by analysis of a mutant important for the regulation of Netrin signaling, the E3 ubiquitin ligase madd-2/Trim9/Trim67. Remarkably, the authors identified that this mutant affected axonal adhesion and stabilization, but not directional growth. Using membrane-tethered UNC-6 to specific localities, they then found this to be a consequence of the availability of UNC-6 at specific localities within the axon growth path. Altogether, this data and in-vivo analysis provide compelling evidence of the mechanistic foundation of Netrin-mediated axon guidance and how it works step by step.

      The conclusions are well-supported, with both imaging and quantification of each step of axon guidance and localization of UNC-6 and UNC-40. Using a different type of neuron to validate their findings further supports their conclusions and strengthens their model. They also probe the role of the axon guidance ligand-receptor pair SLT-1/Slit and SAX-3/ROBO in this process and find it to work in parallel to UNC-6. This work sets up the stage for future analysis of other axon guidance molecules or regulators using time-lapse in-vivo imaging to better understand their role as long-range and/or local cues.