- Apr 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This article takes an expansive look at the potential role of DUX4 in cancer treatment and prognosis, including its correlation with other key biomarkers, the potential for cancer to be resistant to treatment, and risk prediction.
Strengths:
The primary strength of this work is the breadth of the analyses. The authors have linked DUX4 to not just one but multiple points in the trajectory of cancer, which increases the face validity of their conclusion that DUX4 is meaningfully related to the course of a cancer as well as the prognosis for a patient.
Statistically, the authors have taken care to properly validate their findings using appropriate bootstrapping and testing strategies.
Weaknesses:
Several weaknesses are noted. First, there is little-to-no description of the underlying sample population. It is only stated that "several large cohorts of patients with different metastatic cancers" were analyzed, and that a cohort of patients with advanced urothelial cancer was used for estimating associations with clinical outcomes. Lacking is information on the sampling mechanism, inclusion/exclusion criteria, treatment modalities, the definition of 'time = 0', the number of events observed, or even the sample size. Knowledge about the underlying study design would help explain some counterintuitive results, e.g. that the hazard of death among patients with Stage IV cancer is half that of those with Stage I cancer (Table 1); presumably this is not because Stage IV is actually protective but rather an artifact of the sampling scheme for these data. Second, the definition of negative versus positive DUX4 expression varies throughout the paper. In Figure 2B, Figure 3A, and Figure 3C, it is defined as >1 TPM vs. <= 1 TPM; in Figure 4A and Figure 5A, it is defined as >1 TPM vs. < 0.25 TPM; in Figure S1C it is partitioned into four groups, with boundaries defined at 0.25 TPM, 1 TPM, and 5 TPM. If categorization is needed, a rationale should be provided (ideally prospectively and not based upon the observed data, so as to avoid the perception of forking paths analyses), and it should be consistently applied. Third and finally, data seem to be occasionally excluded without rationale. For example, as mentioned above, the Cox model presented in Figure 4A seems to exclude all patients with DUX4 TPM between 0.25 and 1. Figure 3C excludes patients with TMB in the lowest quartile (although the decision was ostensibly to control for TMB confounding, there are more appropriate ways to do so that don't result in loss of data, e.g. a stratified KM plot). Excluding patients based upon a particular region of the covariate space makes interpreting the resulting model awkward.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors have made a novel and important effort to distinguish and include different sources of active deformations for fitting C elegans embryo development: cyclic muscle contractions and actomyosion circumferential stresses. The combination and synchronisation of both contributions are, according to the model, responsible for different elongation rates, and can induce bending and torsion deformations, which are a priori not expected from purely contractile forces. The model can be applied to other growth processes in initially cylindrical shapes.
The tilt of the fibers is an important assumption of the model. However, fiber direction in Figure 3B is not fully clear for explaining the tilting. The fiber in 3B has not very much in common with the fibers in the color part of the figure. Also, is vector m supposed to be tangent to the fiber? In the figure does not seem to be so. It should be expected that alpha is a consequence of the deformation, not as an input parameter, as it seems in the tests of Figure 6A. How is the value of alpha chosen? According to Figure 6, torsion is expected for alpha>0, but for beta=pi/2 and alpha>0 no torsion may be obtained. In fact, it seems that torsion should appear when cos(beta)*sin(alpha)>0. As a consequence, value of beta should be given in Figure 6. Can the amount of torsion be tested as a function of alpha and beta?
The transfer of energy and deformation is a very interesting aspect of the paper, and also crucial for the model and predicting elongation. However, the modelling of this transfer remains very obscure and only explained in the Appendix. Some more details on how the transfer is selected should be given in the main text. Can the transfer of energy interpreted as a change of the relaxed reference configuration? Once a ratio of the energy transferred is fixed, the assumption on elongation distribution should be stated. (Uniformly? ) The authors should also define in the main text the factor g_a1, and explain how this value is computed from condition W_c=W_r .
Given the convoluted shape of the embryo in the egg, contact may be a crucial mechanism for determining growth and torsion. The model does not include this contact, and this limitation should be reflected in the article.
Minor comment:<br /> -Line 300: "we determine the optimal values for the activation parameters". the optimal with respect to which objective? Norm of difference between experimental and computational displacements? How this is quantified needs to be specified.
-
Reviewer #2 (Public Review):
Summary:
During C. elegans development, embryos undergo elongation of their body axis in absence of cell proliferation or growth. This process relies in an essential way on periodic contractions of two pairs muscles that extend along the embryo's main axis. How contraction can lead to extension along the same direction is unknown.
To address this question, the authors use a continuum description of a multicomponent elastic solid. The various components are the interior of the animal, the muscles, and the epidermis. The different components form separate compartments and are described as hyperelastic solids with different shear moduli. For simplicity, a cylindrical geometry is adopted. The authors consider first the early elongation phase, which is driven by contraction of the epidermis, and then late elongation, where contraction of the muscles injects elastic energy into the system, which is then transferred into elongation. The authors get elongation that can be successfully fitted to the elongation dynamics of wild type worms and two mutant strains.
Strengths:
The work proposes a physical mechanism underlying a puzzling biological phenomenon. The framework developed by the authors could be used to explain phenomena in other organisms and could be exploited in the design of soft robots.
Weaknesses:
(1) The manuscript is hard to read without being very familiar with continuum descriptions of elastic media. This might make the work difficult to access for biologists. This is a real pity because the findings are potentially of great interest to developmental biologists and engineers alike.
(2) The discussion of the worm's mechanical properties could go deeper. The authors hardly justify their assumptions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study presents careful biochemical experiments to understand the relationship between LRRK2 GTP hydrolysis parameters and LRRK2 kinase activity. The authors report that incubation of LRRK2 with ATP increases the KM for GTP and decreases the kcat. From this they suppose an autophosphorylation process is responsible for enzyme inhibition. LRRK2 T1343A showed no change, consistent with it needing to be phosphorylated to explain the changes in G-domain properties. The authors propose that phosphorylation of T1343 inhibits kinase activity and influences monomer-dimer transitions.
Strengths:
Strengths of the work are the very careful biochemical analyses and interesting result for wild type LRRK2.
Weaknesses:
The conclusions related to involvement of a monomer-dimer transition are to this reviewer, premature and an independent method needs to be utilized to bolster this aspect of the story.
-
Reviewer #2 (Public Review):
As discussed in the original review, this manuscript is an important contribution to a mechanistic understanding of LRRK2 kinase. Kinetic parameters for the GTPase activity of the ROC domain have been determined in the absence/presence of kinase activity. A feedback mechanism from the kinase domain to GTP/GDP hydrolysis by the ROC domain is convincingly demonstrated through these kinetic analyses. However, a regulatory mechanism directly linking the T1343 phospho-site and a monomer/dimer equilibrium is not fully supported. The T1343A mutant has reduced catalytic activity and can form similar levels of dimer as WT. The revised manuscript does point out that other regulatory mechanisms can also play a role in kinase activity and GTP/GDP hydrolysis (Discussion section). The environmental context in cells cannot be captured from the kinetic assays performed in this manuscript, and the introduction contains some citations regarding these regulatory factors. This is not a criticism, the detailed kinetics here are rigorous, but it is simply a limitation of the approach. Caveats concerning effects of membrane localization, Rab/14-3-3 proteins, WD40 domain oligomers, etc... should be given more prominence than a brief (and vague) allusion to 'allosteric targeting' near the end of the Discussion.
Specific comments
(1) The revised version is better organized with respect to the significance of monomer/dimer equilibrium and the relevance of the GTP-binding region of ROC domain that encompasses the T1343 phospho-site. The relevance of monomers/dimers of LRRK2 from previous studies is better articulated and readers are able to follow the reasoning for the various mutations.
(2) As a suggestion I would change the following on page 6 to clarify for readers:<br /> "...would show no change in kcat and KM values upon in vitro ATP treatment" to:<br /> "...would show no change in kcat and KM values for GTP hydrolysis upon in vitro ATP treatment"
(3) The levels of dimer in WT (+ATP) and T1343A (+/- ATP) are the same, about 40-45%. These data are cited when the authors state that ATP-induced monomerization is 'abolished' (page 6). My suggestion is to re-phrase this conclusion for consistency with data (Fig 5). For example, one can state that 'ATP incubation does not affect the percentage of dimer for the T1343A variant of LRRK2'. This would be similar to the authors' description of these data on page 8 - 'no difference in dimer formation upon ATP treatment'.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The author studies a family of models for heritable epigenetic information, with a focus on enumerating and classifying different possible architectures. The key aspects of the paper are:
- Enumerate all 'heritable' architectures for up-to 4 constituents.<br /> - A study of whether permanent ("genetic") or transient ("epigenetic") perturbations lead to heritable changes<br /> - Enumerated the connectivity of the "sequence space" formed by these heritable architectures<br /> - Incorporating stochasticity, the authors explore stability to noise (transient perturbations)<br /> - A connection is made with experimental results on C elegans.
The study is timely, as there is a renewed interest in the last decade in non-genetic, heritable heterogeneity (e.g., from single-cell transcriptomics). Consequently, there is a need for a theoretical understanding of the constraints on such systems. There are some excellent aspects of this study: for instance, the attention paid to how one architecture "mutates" into another. Unfortunately, the manuscript as a whole does not succeed in formalising nor addressing any particular open questions in the field. Aside from issues in presentation and modelling choices (detailed below), it would benefit greatly from a more systematic approach rather than the vignettes presented.
## Terminology
The author introduces a terminology for networks of interacting species in terms of "entities" and "sensors" -- the former being nodes of a graph, and the latter being those nodes that receive inputs from other nodes. In the language of directed graphs, "entities" would seem to correspond to vertices, and "sensors" those vertices with positive indegree and outdegree. Unfortunately, the added benefit of redefining accepted terminology from the study of graphs and networks is not clear.
## Model
The model seems to suddenly change from Figure 4 onwards. While the results presented here have at least some attempt at classification or statistical rigour (i.e. Fig 4 D), there are suddenly three values associated with each entity ("property step, active fraction, and number"). Furthermore, the system suddenly appears to be stochastic. The reader is left unsure what has happened, especially after having made the effort to deduce the model as it was in Figs 1 through 3. No respite is to be found in the SI, either, where this new stochastic model should have been described in sufficient detail to allow one to reproduce the simulation.
## Perturbations
Inspired especially by experimental manipulations such as RNAi or mutagenesis, the author studies whether such perturbations can lead to a heritable change in network output. While this is naturally the case for permanent changes (such as mutagenesis), the author gives convincing examples of cases in which transient perturbations lead to heritable changes. Presumably, this is due the the underlying multistability of many networks, in which a perturbation can pop the system from one attractor to another.
Unfortunately, there appears to be no attempt at a systematic study of outcomes, nor a classification of when a particular behaviour is to be expected. Instead, there is a long and difficult-to-read description of numerical results that appear to have been sampled at random (in terms of both the architecture and parameter regime chosen). The main result here appears to be that "genetic" (permanent) and "epigenetic" (transient) perturbations can differ from each other -- and that architectures that share a response to genetic perturbation need not behave the same under an epigenetic one. This is neither surprising (in which case even illustrative evidence would have sufficed) nor is it explored with statistical or combinatorial rigour (e.g. how easy is it to mistake one architecture for another? What fraction share a response to a particular perturbation?)
As an additional comment, many of the results here are presented as depending on the topology of the network. However, each network is specified by many kinetic constants, and there is no attempt to consider the robustness of results to changes in parameters.
## DNA analogy
At two points, the author makes a comparison between genetic information (i.e. DNA) and epigenetic information as determined by these heritable regulatory architectures. The two claims the author makes are that (i) heritable architectures are capable of transmitting "more heritable information" than genetic sequences, and (ii) that, unlike DNA, the connectivity (in the sense of mutations) between heritable architectures is sparse and uneven (i.e. some architectures are better connected than others).
In both cases, the claim is somewhat tenuous -- in essence, it seems an unfair comparison to consider the basic epigenetic unit to be an "entity" (e.g., an entire transcription factor gene product, or an organelle), while the basic genetic unit is taken to be a single base-pair. The situation is somewhat different if the relevant comparison was the typical size of a gene (e.g., 1 kb).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This describes the molecular identity of the intermediate status of cranial neural crest cells (NCCs) during the initial delamination process. Taking advantage of single-cell RNA seq, the authors identify new populations of cells during EMT characterized by a specific set of gene expressions, including Dlc1. Promigratory cranial NCCs differentiate through different trajectories depending on their cell cycle phases but converge into a common progenitor, then differentiate into mesenchymal cells expressing region-specific genes.
Strengths:
Single-cell RNA seq data convincingly support what the authors claim. This is the first time to identify intermediate states between premigratory and migratory cranial NCCs. Silencing one of the marker genes, Dlc1, reduces the migratory activity of cranial NCCs. These findings deepen our understanding of the mechanism of EMT in general.
Comments on revised version:
Weaknesses:
None after substantial revision.
-
Reviewer #2 (Public Review):
Zhao et al., focus on mechanisms through which cells convert from epithelium to mesenchyme and become migratory. This phenomenon of epithelial-to-mesenchymal transition (EMT) occurs during both embryonic development and cancer progression. During cancer progression, EMT seemingly includes cells at intermediate states as defined by the combinatorial expression of epithelial and mesenchymal markers. But the importance of these markers and the role of these intermediate states remains unclear. Moreover, whether EMT during development also involves equivalent intermediate cell states is not known. To address this gap in knowledge, the authors devise a strategy to identify and characterize changes that an embryonic population of cells called the cranial neural crest undergo as they delaminate from the neuroepithelium and become a highly migratory population of mesenchymal cells that ultimately give rise to a broad range of derivatives.
To isolate and study the neural crest, the authors use embryos collected at E8.5 from two transgenic mouse lines. Wnt1-Cre;RosaeYFP labels Wnt1-positive neuroepithelial cells in the dorsolateral neural plate, which includes pre-migratory neural crest that reside in the dorsal neuroectoderm and neural plate border before induction (as well as some other lineages). Mef2c-F10N-LacZ leverages a neural crest cell-specific enhancer of Mef2c to control LacZ expression in predominantly migratory neural crest. This dual genetic approach that allows the authors to distinguish and compare pre-migratory and migratory neural crest cells is a strength of the work.
To assay for the differential expression of genes involved in the EMT and migration of cranial neural crest, the authors perform single cell RNA sequencing (scRNA-seq) using current methods. A strength is a large sample size per mouse line, and relatively high numbers of single cells analyzed. The authors identify six major cell/tissue types present in mouse E8.5 cranial tissues using known markers, which they then segregate into a cranial neural crest cluster using a well-reasoned bioinformatic strategy. The cranial neural crest cluster contains pre-migratory and migratory cells that they partition further into five subclusters and then characterize using the differential expression and combinatorial patterns of neural crest specifier genes, markers of pre-migratory neural crest, markers of early versus late migratory neural crest, markers of undifferentiated versus differentiated neural crest, tissue-specific markers, and region-specific markers. One weakness is that there is little attempt to map potential novel genes and/or pathways that also distinguish these clusters.
The authors then go on to subdivide the five cranial neural crest subclusters into almost two dozen smaller subclusters, again using the combinatorial expression of known markers (e.g., neural crest genes, cell junction genes, and cell cycle genes). A weakness is that the marker analysis and accompanying interpretation of the results relies heavily on the purported roles of different genes as described in the published work of others, which potentially introduces some untested assumptions and a bit of hand-waving into the study. Moreover, the limited correlation between mRNA and protein abundance for cell cycle markers is well documented in the literature but the authors rely heavily on gene expression to determine cell cycle status. Even though the authors add a compelling Edu/pHH3 double-labeling experiment and cell cycle inhibition studies, the work would be strengthened by including some analysis of protein expression to see if the cell cycle correlations hold up. Nonetheless, the subcluster and cell cycle analyses lead the authors to conclude that there are a series of intermediate cell states between neural crest EMT and delamination, and that cell cycle regulation is a defining feature and necessary component of those states. These novel findings are generally well supported by the data.
To test if there are spatiotemporal differences in the localization of neural crest cells during EMT in vivo, the authors apply a cutting-edge technique called signal amplification by exchange reaction for multiplexed fluorescent in situ hybridization (SABER-FISH), which they validate using standard in situ hybridization. The authors select specific marker genes that seem justified based on their scRNA-seq dataset, and they generate a series of convincing images and quantitative data that add valuable depth to the story.
As a functional test of their hypothesis that one of the genes indicative of an EMT intermediate stage (i.e., Dlc1) is essential for neural crest migration, the authors use a lentivirus-mediated knockdown strategy. A strength is that the authors include appropriate scramble and cell death controls as part of their experimental design.
The authors use Sox10 as a marker to count neural crest cells, but Sox10 may only label a subset of neural crest cells and thus some unaffected lineages may not have been counted. Although the data are persuasive, a second marker for counting neural crest cells following knockdown would make the analysis more robust.
Overall, this is a first-rate study with many more strengths than weaknesses. The authors generate high quality data, and their interpretations are reasonable and balanced. Another strength is the writing, which is clear and well organized, and the figures (including supplemental), which are excellent and provide unambiguous visualization of some very complex data sets. The methods are state-of the art and are effectively executed, and they will be useful to the broader cell and developmental biology community. The work contains well-substantiated findings and supports the conclusion that EMT is a highly dynamic, multi-step process, which was previously thought to be more-or-less binary. Such findings will alter the way the field thinks about EMT in neural crest and the work will likely serve as an important example alongside cancer metastasis.
-
Reviewer #3 (Public Review):
Summary:
Zhao et al. address the question of whether intermediate states of the epithelial-to-mesenchymal transition (EMT) exist in a natural developmental context as well as in cancer cells. This is important not only for our understanding of these developmental systems but also for their development as resources for new anti-cancer approaches. Guided by single-cell RNA sequencing analysis of delaminating mouse cranial neural crest cells, they identify two distinct populations with transcriptional signatures intermediate between neuroepithelial progenitors and migrating crest. Both clusters are also spatially intermediate and are actively cycling, with one in S-phase and one in G2/M. They show that blocking progression through S phase prior to the onset of delamination and knockdown of intermediate state marker Dlc1 both reduce the number of migratory cells that have completed EMT. Overall, the work provides a modern take and new insights into the classical developmental process of neural crest delamination.
Strengths:
• Deep analysis of the scRNAseq dataset revealed previously unappreciated cell populations intermediate between premigratory and migratory crest.<br /> • The observation that delaminating/intermediate neural crest cells appear to be in S or G2/M phase is interesting and worth reporting, though the ultimate significance remains unclear, given that they do not make distinct derivatives depending on their cycle state.<br /> • The authors employ new methods for multiplex spatial imaging to more accurately define their populations of interest and their relative positions.<br /> • The authors present evidence that intermediate state gene Dlc1 (a Rho GAP) is not just a marker but functionally required for neural crest delamination in mouse, as previously shown in chicken.
Weaknesses:
• Similar experiments involving blockade of cell cycle progression and Dlc1 dose manipulation were previously performed in chick models, as noted in the discussion. The newly-defined intermediate states give added context to the results, but they are not entirely novel.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, the authors report a molecular mechanism for recruiting syntaxin 17 (Syn17) to the closed autophagosomes through the charge interaction between enriched PI4P and the C-terminal region of Syn17. How to precisely control the location and conformation of proteins is critical for maintaining autophagic flux. Particularly, the recruitment of Syn17 to autophagosomes remains unclear. In this paper, the author describes a simple lipid-protein interaction model beyond previous studies focusing on protein-protein interactions. This represents conceptual advances.
-
Reviewer #2 (Public Review):
Summary:
Syntaxin17 (STX17) is a SNARE protein that is recruited to mature (i.e., closed) autophagosomes, but not to immature (i.e., unclosed) ones, and mediates the autophagosome-lysosome fusion. How STX17 recognizes the mature autophagosome is an unresolved interesting question in the autophagy field. Shinoda and colleagues set out to answer this question by focusing on the C-terminal domain of STX17 and found that PI4P is a strong candidate that causes the STX17 recruitment to the autophagosome.
Strengths:
The main findings are: 1) Rich positive charges in the C-terminal domain of STX17 are sufficient for the recruitment to the mature autophagosome; 2) Fluorescence charge sensors of different strengths suggest that autophagic membranes have negative charges and the charge increases as they mature; 3) Among a battery of fluorescence biosensors, only PI4P-binding biosensors distribute to the mature autophagosome; 4) STX17 bound to isolated autophagosomes is released by treatment with Sac1 phosphatase; 5) By dynamic molecular simulation, STX17 TM is shown to be inserted to a membrane containing PI4P but not to a membrane without it. These results indicate that PI4P is a strong candidate that STX17 binds to in the autophagosome.
Weaknesses:
• It was not answered whether PI4P is crucial for the STX17 recruitment in cells because manipulation of the PI4P content in autophagic membranes was not successful for unknown reasons.<br /> • The question that the authors posed in the beginning, i.e., why is STX17 recruited to the mature (closed) autophagosome but not to immature autophagic membranes, was not answered. The authors speculate that the seemingly gradual increase of negative charges in autophagic membranes is caused by an increase in PI4P. However, this was not supported by the PI4P fluorescence biosensor experiment that showed their distribution to the mature autophagosome only. Here, there are at least two possibilities: 1) The increase of negative charges in immature autophagic membranes is derived from PI4P. However the fluorescence biosensors do not bind there for some reason; for example, they are not sensitive enough to recognize PI4P until it reaches a certain level, or simply, their binding does not occur in a quantitative manner. 2) The negative charge in immature membranes is not derived from PI4P, and PI4P is generated abundantly only after autophagosomes are closed. In either case, it is not easy to explain why STX17 is recruited to the mature autophagosome only. For the first scenario, it is not clear how the PI4P synthesis is regulated so that it reaches a sufficient level only after the membrane closure. In the second case, the mechanism that produces PI4P only after the autophagosome closure needs to be elucidated (so, in this case, the question of the temporal regulation issue remains the same).
-
Reviewer #3 (Public Review):
Summary:
In this study, the authors set out to address the question of how the SNARE protein Syntaxin 17 senses autophagosome maturation by being recruited to autophagosomal membranes only once autophagosome formation and sealing is complete. The authors discover that the C-terminal region of Syntaxin 17 is essential for its sensing mechanism that involves two transmembrane domains and a positively charged region. The authors discover that the lipid PI4P is highly enriched in mature autophagosomes and that electrostatic interaction with Syntaxin 17's positively charged region with PI4P drives recruitment specifically to mature autophagosomes. The temporal basis for PI4P enrichment and Syntaxin 17 recruitment to ensure that unsealed autophagosomes do not fuse with lysosomes is a very interesting and important discovery. Overall, the data are clear and convincing, with the study providing important mechanistic insights that will be of broad interest to the autophagy field, and also to cell biologists interested in phosphoinositide lipid biology. The author's discovery also provides an opportunity for future research in which Syntaxin 17's c-terminal region could be used to target factors of interest to mature autophagosomes.
Strengths:
The study combines clear and convincing cell biology data with in vitro approaches to show how Syntaxin 17 is recruited to mature autophagosomes. The authors take a methodical approach to narrow down the critical regions within Syntaxin 17 required for recruitment and use a variety of biosensors to show that PI4P is enriched on mature autophagosomes.
Weaknesses:
There are no major weaknesses, overall the work is highly convincing. It would have been beneficial if the authors could have shown whether altering PI4P levels would affect Syntaxin 17 recruitment. However, this is understandably a challenging experiment to undertake and the authors outlined their various attempts to tackle this question.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Li et al report that upon traumatic brain injury (TBI), Pvr signalling in astrocytes activates the JNK pathway and up-regulates the expression of the well-known JNK target MMP1. The FACS sort astrocytes, and carry out RNAseq analysis, which identifies pvr as well as genes of the JNK pathway as particularly up-regulated after TBI. They use conventional genetics loss of function, gain of function and epistasis analysis with and without TBI to verify the involvement of the JNK-MMP1 signalling pathway downstream of PVR. They also show that blocking endocytosis prolongs the involvement of this pathway in the TBI response.
The strengths are that multiple experiments are used to demonstrate that TBI in their hands damaged the BBB, induced apoptosis and increased MMP1 levels. The RNAseq analysis on FACS sorted astrocytes is nice and will be valuable to scientists beyond the confines of this paper. The functional genetic analysis is conventional, yet sound, and supports claims of JNK and MMP1 functioning downstream of Pvr in the TBI context.
For this revised version the authors have removed all the unsupported claims. This renders their remaining claims more solid. However, it has resulted in the loss of important cellular aspects of the response to TBI, limiting the scope and value of the work.
The main weakness is that novelty and insight are both rather limited. Others had previously published that both JNK signalling and MMP1 were activated upon injury, in multiple contexts (as well as the articles cited by the authors, they should also see Losada-Perez et al 2021). That Pvr can regulate JNK signalling was also known (Ishimaru et al 2004). The authors claim that the novelty was investigating injury responses in astrocytes in Drosophila. However, others had investigated injury responses by astrocytes in Drosophila before. It had been previously shown that astrocytes - defined as the Prospero+ neuropile glia, and also sharing evolutionary features with mammalian NG2 glia - respond to injury both in larval ventral nerve cords and in adult brains, where they proliferate regenerating glia and induce a neurogenic response (Kato et al 2011; Losada-Perez et al 2016; Harrison et al 2021; Simoes et al 2022). The authors argue that the novelty of the work is the investigation of the response of astrocytes to TBI. However, this is of somewhat limited scope. The authors mention that MMP1 regulates tissue remodelling, the inflammatory process and cancer. Exploring these functions further would have been an interesting addition, but the authors did not investigate what consequences the up-regulation of MMP1 after injury has in repair or regeneration processes.
The statistical analysis is incorrect in places, and this could affect the validity of some claims.
Altogether, this is an interesting and valuable addition to the repertoire of articles investigating neuron-glia communication and glial responses to injury in the Drosophila central nervous system (CNS). It is good and important to see this research area in Drosophila grow. This community together is building a compelling case for using Drosophila and its unparalleled powerful genetics to investigate nervous system injury, regeneration and repair, with important implications. Thus, this paper will be of interest to scientists investigating injury responses in the CNS using Drosophila, other model organisms (eg mice, fish) and humans.
-
Reviewer #3 (Public Review):
In this study, authors used the Drosophila model to characterize molecular details underlying traumatic brain injury (TBI). Authors used the transcriptomic analysis of astrocytes collected by FACS sorting of cells derived from Drosophila heads following brain injury and identified upregulation of multiple genes, such as Pvr receptor, Jun, Fos, and MMP1. Additional studies identified that Pvr positively activates AP-1 transciption factor (TF) complex consisting of Jun and Fos, of which activation leads to the induction of MMP1. Finally, authors found that disruption of endocytosis and endocytotic trafficking facilitates Pvr signaling and subsequently leads to induction of AP-1 and MMP1.
Overall, this study provides important clues to understanding molecular mechanisms underlying TBI. The identified molecules linked to TBI in astrocytes could be potential targets for developing effective therapeutics. The obtained data from transcriptional profiling of astrocytes will be useful for future follow-up studies. The manuscript is well-organized and easy to read.
However, the connection suggested by the authors between Pvr and AP-1, potentially mediated through the JNK pathway, lacks strong experimental support in my view. It's important to recognize that AP-1 activity is influenced by multiple upstream signaling pathways, not just the JNK pathway, which is the most well-characterized among them. Therefore, assuming that AP-1 transcriptional activity solely reflects the activity of the JNK pathway without additional direct evidence is unwarranted. To strengthen their argument, the study could benefit from direct evidence implicating the JNK pathway in linking Pvr to AP-1. This could be achieved through genetic studies involving mutants or transgenes targeting key components of the JNK pathway, such as Bsk and Hep, the Drosophila homologues of JNK and JNKK, respectively. Alternatively, employing p-JNK antibody-based techniques like Western blotting, while considering the potential challenges associated with p-JNK immunohistochemistry, could provide further validation. This important criticism regarding the molecular link between Pvr and AP-1 has been overlooked.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Dasguta et al. have dissected the role of Sema7a in fine tuning of a sensory microcircuit in the posterior lateral line organ of zebrafish. They attempt to also outline the different roles of a secreted verses membrane-bound form of Sema7a in this process. Using genetic perturbations and axonal network analysis, the authors show that loss of both Sema7a isoforms causes abnormal axon terminal structure with more bare terminals and fewer loops in contact with presynaptic sensory hair cells. Further, they show that loss of Sema7a causes decreased number and size of both the pre- and post-synapse. Finally, they show that overexpression of the secreted form of Sema7a specifically can elicit axon terminal outgrowth to an ectopic Sema7a expressing cell. Together, the analysis of Sema7a loss of function and overexpression on axon arbor structure is fairly thorough and revealed a novel role for Sema7a in axon terminal structure. However, the connection between different isoforms of Sema7a and the axon arborization needs to be substantiated. Furthermore, the effect of loss of Sema7a on the presynaptic cell is not ruled out as a contributing factor to the synaptic and axon structure phenotypes. These issues weaken the claims made by the authors including the statement that they have identified dual roles for the GPI-anchored verses secreted forms of Sema7a on synapse formation and as a chemoattractant for axon arborization respectively.
-
Reviewer #2 (Public Review):
In this work, Dasgupta et al. investigates the role of Sema7a in the formation of peripheral sensory circuit in the lateral line system of zebrafish. They show that Sema7a protein is present during neuromast maturation and localized, in part, to the base of hair cells (HCs). This would be consistent with pre-synaptic Sema7a mediating formation and/or stabilization of the synapse. They use sema7a loss-of-function strain to show that lateral line sensory terminals display abnormal arborization. They provide highly quantitative analysis of the lateral line terminal arborization to show that a number of specific topological parameters are affected in mutants. Next, they ectopically express a secreted form of Sema7a to show that lateral line terminals can be ectopically attracted to the source. Finally, they also demonstrate that the synaptic assembly is impaired in the sema7a mutant. Overall, the data are of high quality and properly controlled. The availability of Sema7a antibody is a big plus, as it allows to address the endogenous protein localization as well to show the signal absence in the sema7a mutant. The quantification of the arbor topology should be useful to people in the field who are looking at the lateral line as well as other axonal terminals. I think some results are overinterpreted though. The authors state: "Our findings demonstrate that Sema7A functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development." However, they have not actually demonstrated which isoform functions in HCs (also see comments below). In addition, they have to be careful in interpreting their topology analysis, as they cannot separate individual axons. Thus, such analysis can generate artifacts. They can perform additional experiments to address these issues or adjust their interpretations.
-
Reviewer #3 (Public Review):
The data reported here demonstrate that Sema7a defines the local behavior of growing axons in the developing zebrafish lateral line. The analysis is sophisticated and convincingly demonstrates effects on axon growth and synapse architecture. Collectively, the findings point to the idea that the diffusible form of sema7a may influence how axons grow within the neuromast and that the GPI-linked form of sema7a may subsequently impact how synapses form, though additional work is needed to strongly link each form to its' proposed effect on circuit assembly.
Comments on revised submission:
The revised manuscript is significantly improved. The authors comprehensively and appropriately addressed most of the reviewers' concerns. In particular, they added evidence that hair cells express both Sema7A isoforms, showed that membrane bound Sema7A does not have long range effects on guidance, demonstrated how axons behave close to ectopic Sema7A, and analyzed other features of the hair cells that revealed no strong phenotypes. The authors also softened the language in many, but not all places. Overall, I am satisfied with the study as a whole.
-
Reviewer #4 (Public Review):
This study provides direct evidence showing that Sema7a plays a role in the axon growth during the formation of peripheral sensory circuits in the lateral-line system of zebrafish. This is a valuable finding because the molecules for axon growth in hair-cell sensory systems are not well understood. The majority of the experimental evidence is convincing, and the analysis is rigorous. The evidence supporting Sema7a's juxtracrine vs. secreted role and involvement in synapse formation in hair cells is less conclusive. The study will be of interest to cell, molecular and developmental biologists, and sensory neuroscientists.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Through an unbiased genomewide KO screen, the authors identified loss of DBT to suppress MG132-mediated death of cultured RPE cells. Further analyses suggested that DBT reduces ubiquitinated proteins by promoting autophagy. Mechanistic studies indicated that DBT loss promotes autophagy via AMPK and its downstream ULK and mTOR signaling. Furthermore, loss of DBT suppresses polyglutamine- or TDP-43-mediated cytotoxicity and/or neurodegeneration in fly models. Finally, the authors showed that DBT proteins are increased in ALS patient tissues, compared to non-neurological controls.
Strengths:
The idea is novel, the evidence is convincing, and the data are clean. The findings have implications for human diseases.
Weaknesses:
None.
-
Reviewer #2 (Public Review):
Summary:
Hwang, Ran-Der et al utilized a CRISPR-Cas9 knockout in human retinal pigment epithelium (RPE1) cells to evaluate for suppressors of toxicity by the proteasome inhibitor MG132 and identified that knockout of dihydrolipoamide branched chain transacylase E2 (DBT) suppressed cell death. They show that DBT knockout in RPE1 cells does not alter proteasome or autophagy function at baseline. However, with MG132 treatment, they show a reduction in ubiquitinated proteins but with no change in proteasome function. Instead, they show that DBT knockout cells treated with MG132 have improved autophagy flux compared to wildtype cells treated with MG132. They show that MG132 treatment decreases ATP/ADP ratios to a greater extent in DBT knockout cells, and in accordance causes activation of AMPK. They then show downstream altered autophagy signaling in DBT knockout cells treated with MG132 compared to wild-type cells treated with MG132. Then they express the ALS mutant TDP43 M337 or expanded polyglutamine repeats to model Huntington's disease and show that knockdown of DBT improves cell survival in RPE1 cells with improved autophagic flux. They also utilize a Drosophila models and show that utilizing either a RNAi or CRISPR-Cas9 knockout of DBT improves eye pigment in TDP43M337V and polyglutamine repeat-expressing transgenic flies. Finally, they show evidence for increased DBT in postmortem spinal cord tissue from patients with ALS via both immunoblotting and immunofluorescence.
Strengths:
This is a mechanistic and well-designed paper that identifies DBT as a novel regulator of proteotoxicity via activating autophagy in the setting of proteasome inhibition. Major strengths include careful delineation of a mechanistic pathway to define how DBT is protective. These conclusions are well-justified.
Weaknesses:
None
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this study, the authors distinguished afferent inputs to different cell populations in the VTA using dimensionality reduction approaches and found significantly distinct patterns between normal and drug treatment conditions. They also demonstrated negative correlations of the inputs induced by drugs with gene expression of ion channels or proteins involved in synaptic transmission and demonstrated the knockdown of one of the voltage-gated calcium ion channels caused decreased inputs.
Weaknesses:
(1) For quantifications of brain regions in this study, boundaries were based on the Franklin-Paxinos (FP) atlas according to previous studies (Beier KT et al 2015, Beier KT et al 2019). It has been reported significant discrepancies exist between the anatomical labels on the FP atlas and the Allen Brain Atlas (ref: Chon U et al., Nat Commun 2019). Although a summary of conversion is provided as a sheet, the authors need to describe how consistent or different the brain boundaries they defined in the manuscript with Allen Brain Atlas by adding histology images. Also, I wonder how reliable the annotations were for over a hundred of animals with manual quantification. The authors should briefly explain it rather than citing previous studies in the Material and Methods Section.
(2) Regarding the ellipsoids in the PC, although it's written in the manuscript that "Ellipsoids were centered at the average coordinate of a condition and stretched one standard deviation along the primary and secondary axes", it's intuitively hard to understand in some figures such as Figure 2O, P and Figure S1. The authors need to make their data analysis methods more accessible by providing source code to the public.
(3) In histology images (Figure 1B and 3K), the authors need to add dashed lines or arrows to guide the reader's attention.
(4) In Figure 2A and G, apparently there are significant differences in other brain regions such as NAcMed or PBN. If they are also statistically significant, the authors should note them as well and draw asterisks(*).
(5) In Figure 2N about the spatial distribution of starter cells, the authors need to add histology images for each experimental condition (i.e. saline, fluoxetine, cocaine, methamphetamine, amphetamine, nicotine, and morphine) as supplement figures.
(6) In the manuscript, it is necessary to explain why Cacna1e was selected among other calcium ion channels.
-
Reviewer #2 (Public Review):
The application of rabies virus (RabV)-mediated transsynaptic tracing has been widely utilized for mapping cell-type-specific neural connectivities and examining potential modifications in response to biological phenomena or pharmacological interventions. Despite the predominant focus of studies on quantifying and analyzing labeling patterns within individual brain regions based on labeling abundance, such an approach may inadvertently overlook systemic alterations. There exists a considerable opportunity to integrate RabV tracing data with the global connectivity patterns and the transcriptomic signatures of labeled brain regions. In the present study, the authors take an important step towards achieving these objectives.
Specifically, the authors conducted an intensive reanalysis of a previously generated large dataset of RabV tracing to the ventral tegmental area (VTA) using dimension reduction methods such as PCA and UMPA. This reaffirmed the authors's earlier conclusion that different cell types in the VTA, namely dopamine neurons (DA) and GABAergic neurons, exhibit quantitatively distinct input patterns, and a single dose of addictive drugs, such as cocaine and morphine, induced altered labeling patterns. Additionally, the authors illustrate that distinct axes of PCA can discriminate experimental variations, such as minor differences in the injection site of viral tracers, from bona fide alternations in labeling patterns caused by drugs of abuse. While the specific mechanisms underlying altered labeling in most brain regions remain unclear, whether involving synaptic strength, synaptic numbers, pre-synaptic activities, or other factors, the present study underscores the efficacy of an informatics approach in extracting more comprehensive information from the RabV-based circuit mapping data.
Moreover, the authors showcased the utility of their previously devised bulk gene expression patterns inferred by the Allen Gene Expression Atlas (AGEA) and "projection portrait" derived from bulk axon mapping data sourced from the Allen Mouse Brain Connectivity Atlas. The utilization of such bulk data rests upon several limitations. For instance, the collection of axon mapping data involves an arbitrary selection of both cell type-specific and non-specific data, which might overlook crucial presynaptic partners, and often includes contamination from neighboring undesired brain regions. Concerns arise regarding the quantitativeness of AGEA, which may also include the potential oversight of key presynaptic partners. Nevertheless, the authors conscientiously acknowledged these potential limitations associated with the dataset.
Notably, building on the observation of a positive correlation between the basal expression levels of Ca2+ channels and the extent of drug-induced changes in RabV labeling patterns, the authors conducted a CRISPRi-based knockdown of a single Ca2+ channel gene. This intervention resulted in a reduction of RabV labeling, supporting that the observed gene expression patterns have causality in RabV labeling efficiency. While a more nuanced discussion is necessary for interpreting this result (see below), overall I commend the authors for their efforts to leverage the existing dataset in a more meaningful way. This endeavor has the potential to contribute significantly to our understanding of the mechanisms underlying alterations in RabV labeling induced by drugs of abuse.
Finally, drawing upon the aforementioned reanalysis of previous data, the authors underscored that a single administration of ketamine/xylazine anesthesia could induce enduring modifications in RabV labeling patterns for VTA DA neurons, specifically those projecting to the nucleus accumbens and amygdala. Given the potential impact of such alterations on motivational behaviors at a broader level, I fully agree that prudent consideration is warranted when employing ketamine/xylazine for the investigation of motivational behaviors in mice.
Specific Points:
(1) Beyond advancements in bioinformatics, readers may find it insightful to explore whether the PCA/UMPA-based approach yields novel biological insights. For example, the authors are encouraged to discuss more functional implications of PBN and LH in the context of drugs of abuse, as their labeling abundance could elucidate the PC2 axis in Fig. 2M.
2) While I appreciate the experimental data on Cacna1e knockdown, I am unclear about the rationale behind specifically focusing on Cacna1e. The logic behind the statement, "This means that expression of this gene is not inhibitory towards RABV transmission," is also unclear. Loss-of-function experiments only signify the necessity or permissive functions of a gene. In this context, Cacna1e expression levels are required for efficient RabV labeling, but this neither supports nor excludes the possibility that this gene expression instructively suppresses RabV labeling/transmission, which could be assessed through gain-of-function experiments.
-
Reviewer #3 (Public Review):
Summary:
Authors mapped monosynaptic inputs to dopamine, GABA, and glutamate neurons in VTA under different anesthesia methods, and under drugs (cocaine, morphine, methamphetamine, amphetamine, nicotine, fluoxetine). They found that input patterns under different conditions are separated, and identified some key brain areas to contribute to such separation. They also searched a database for gene expression patterns that are common across input brain areas with some changes by anesthesia or drug administration.
Strengths:
The whole-brain approach to address drug effects is appealing and their conclusion is clear. The methodology and motivation are clearly explained.
Weaknesses:
While gene expression analyses may not be related to their findings on the anatomical effects of drugs, this will be a nice starting point for follow-up studies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors analysed functional MRI recordings of brain activity at rest, using state-of-the-art methods that reveal the diverse ways in which the information can be integrated in the brain. In this way, they found brain areas that act as (synergistic) gateways for the 'global workspace', where conscious access to information or cognition would occur, and brain areas that serve as (redundant) broadcasters from the global workspace to the rest of the brain. The results are compelling and consisting with the already assumed role of several networks and areas within the Global Neuronal Workspace framework. Thus, in a way, this work comes to stress the role of synergy and redundancy as complementary information processing modes, which fulfill different roles in the big context of information integration.<br /> In addition, to prove that the identified high-order interactions are relevant to the phenomenon of consciousness, the same analysis was performed in subjects under anesthesia or with disorders of consciousness (DOC), showing that indeed the loss of consciousness is associated with a deficient integration of information within the gateway regions.
However, there is still a standing issue that could be the basis for an improved analysis: the concepts of gateways and broadcasters allude to a directionality in the information flow. In fact, Figure 1 depicts Stage (i) and Stage (iii) as one-way processes. However, the identification of gateway and broadcaster regions relies on matrices that are symmetrical, i.e. they are not directed. Would it be possible to assess the gateway or broadcaster nature of a region taking into account the directionality of the information flow? In other words, if region X is a gateway, I would expect a synergistic relationship between the past of X,Y and present of Y (Y not being a gateway) towards the present of X; but not necessarily the other way around (i.e. the present of Y being less dependent on the past/present of X). A similar reasoning can be made for broadcasters.
Although regional differences in haemodynamics complicate attempts to map directed information flow from fMRI recordings, perhaps the IID framework could be leveraged to extract directed data (i.e., there are many atoms that are explicitly directed). As an avenue for future research, it would be interesting to discuss the feasibility or limitations of such analysis.
Also, there is something confusing in Figure 4B-C and its description. Awake should be similar to recovery (they are both awake, aren't they? Not much info is given, anyway); thus it seems counterintuitive that anesthesia minus awake looks so different than anesthesia minus recovery. The first is mostly blue-ish and the second is mostly red. Is it possible that Figure 4C is actually recovery minus anesthesia? That would make much more sense, also for Figure 4D. Please correct me if I am wrong.
-
Reviewer #3 (Public Review):
The work proposes a model of neural information processing based on a 'synergistic global workspace,' which processes information in three principal steps: a gatekeeping step (information gathering), an information integration step, and finally, a broadcasting step. They provided an interpretation of the reduced human consciousness states in terms of the proposed model of brain information processing, which could be helpful to be implemented in other states of consciousness. The manuscript is well-organized, and the results are important and could be interesting for a broad range of literature, suggesting interesting new ideas for the field to explore.
Comments on revised version:
The authors have addressed all my comments made in the previous revision.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Strengths:<br /> There are many reports on the effect of chemical properties of foods on feeding in fruit flies, but only limited studies reported how physical properties of food affect feeding especially pharyngeal mechanosensory neurons. First, they found that mechanosensory mutants, including nompC, Tmc, and Piezo, showed impaired swallowing, mainly the emptying process. Next, they identified cibarium multidendritic mechanosensory neurons (md-C) are responsible for controlling swallowing by regulating motor neuron (MN) 12 and 11, which control filling and emptying, respectively.
Weaknesses:<br /> While the involvement of md-C and mechanosensory channels in controlling swallowing is convincing, it is not yet clear which stimuli activate md-C. Can it be an expansion of cibarium or food viscosity, or both? In addition, if rhythmic and coordinated contraction of muscles 11 and 12 is essential for swallowing, how can simultaneous activation of MN 11 and 12 by md-C achieve this? Finally, previous reports showed that food viscosity mainly affects the filling rather than the emptying process, which seems different from their finding.
-
Reviewer #1 (Public Review):
Qin et al. set out to investigate the role of mechanosensory feedback during swallowing and identify neural circuits that generate ingestion rhythms. They use Drosophila melanogaster swallowing as a model system, focusing their study on the neural mechanisms that control cibarium filling and emptying in vivo. They find that pump frequency is decreased in mutants of three mechanotransduction genes (nompC, piezo, and Tmc), and conclude that mechanosensation mainly contributes to the emptying phase of swallowing. Furthermore, they find that double mutants of nompC and Tmc have more pronounced cibarium pumping defects than either single mutants or Tmc/piezo double mutants. They discovered that the expression patterns of nompC and Tmc overlap in two classes of neurons, md-C and md-L neurons. The dendrites of md-C neurons warp the cibarium and project their axons to the subesophageal zone of the brain. Silencing neurons that express both nompC and Tmc leads to severe ingestion defects, with decreased cibarium emptying. Optogenetic activation of the same population of neurons inhibited filling of the cibarium and accelerated cibarium emptying. In the brain, the axons of nompC∩Tmc cell types respond during ingestion of sugar but do not respond when the entire fly head is passively exposed to sucrose. Finally, the authors show that nompC∩Tmc cell types arborize close to the dendrites of motor neurons that are required for swallowing and that swallowing motor neurons respond to the activation of the entire Tmc-GAL4 pattern.
Strengths:<br /> -The authors rigorously quantify ingestion behavior to convincingly demonstrate the importance of mechanosensory genes in the control of swallowing rhythms and cibarium filling and emptying<br /> -The authors demonstrate that a small population of neurons that express both nompC and Tmc oppositely regulate cibarium emptying and filling when inhibited or activated, respectively<br /> -They provide evidence that the action of multiple mechanotransduction genes may converge in common cell types
Weaknesses:<br /> -A major weakness of the paper is that the authors use reagents that are expressed in both md-C and md-L but describe the results as though only md-C is manipulated<br /> -Evidence that the defects they see in pumping can be specifically attributed to md-C is based on severing the labellum and allowing md-L neurons to degrade.<br /> -GRASP is known to be non-specific and prone to false positives when neurons are in close proximity but not synaptically connected. A positive GRASP signal supports but does not confirm direct synaptic connectivity between md-C/md-L axons and MN11/MN12.<br /> -MN11/MN12 LexA lines are not included in the manuscript and their expression patterns (shared with the reviewers in the author response) do not appear to contain any motor neurons. Double labeling with previously described MN11 and MN12 motor neuron Gal4 lines is needed to support the claim that these LexA lines in fact label MN11 and MN12.<br /> -As seen in Figure Supplement 2, the expression pattern of Tmc-GAL4 is broader than md-C alone. Therefore, the functional connectivity the authors observe between Tmc expressing neurons and MN11 and 12 cannot be traced to md-C alone<br /> -Example traces of md-C calcium imaging during ingestion in vivo are not included, and evidence that md-C neurons respond to mechanical force is lacking<br /> -A positive control (perhaps demonstrating that sugar sensory neurons respond to sucrose in this preparation) is needed to assess whether the lack of response to sucrose ex vivo in Figure 4K is informative<br /> -Proximity between md-C neurons and muscles is not evidence that they sense stretch<br /> -Reporting of posthoc tests needs to be improved throughout the manuscript, as it is not clear which comparisons are noted with asterisks in the figures.
Overall, this work convincingly shows that swallowing and swallowing rhythms are dependent on several mechanosensory genes. Qin et al. also characterize a candidate neuron, md-C, that is likely to provide mechanosensory feedback to pumping motor neurons, but the results they present here are not sufficient to assign this function to md-C alone. This work will have a positive impact on the field by demonstrating the importance of mechanosensory feedback to swallowing rhythms and providing a potential entry point for future investigation of the identity and mechanisms of swallowing central pattern generators.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The authors aimed to develop an automated tool to easily collect, process, and annotate the biomedical literature for higher efficiency and better reproducibility.
Strengths:
Two charms coming with the efforts made by the team are Pubget (for efficient and reliable grabbing articles from PubMed) and labelbuddy (for annotating text). They make text-mining of the biomedical literature more accessible, effective, and reproducible for streamlined text-mining and meta-science projects. The data were collected and analyzed using solid and validated methodology and demonstrated a very promising direction for meta-science studies.
Weaknesses:
More developments are needed for different resources of literature and strengths of AI-powered functions.
-
Reviewer #1 (Public Review):
Summary:
In this paper, the authors present new tools to collect and process information from the biomedical literature that could be typically used in a meta-analytic framework. The tools have been specifically developed for the neuroimaging literature. However, many of their functions could be used in other fields. The tools mainly enable to downloading of batches of paper from the literature, extracting relevant information along with meta-data, and annotating the data. The tools are implemented in an open ecosystem that can be used from the command line or Python.
Strengths:
The tools developed here are really valuable for the future of large-scale analyses of the biomedical literature. This is a very well-written paper. The presentation of the use of the tools through several examples corresponding to different scientific questions really helps the readers to foresee the potential application of these tools.
Weaknesses:
The tools are command-based and store outcomes locally. So users who prefer to work only with GUI and web-based apps may have some difficulties. Furthermore, the outcomes of the tools are constrained by inherent limitations in the scientific literature, in particular, here the fact that only a small portion of the publications have full text openly available.
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors described the litmining ecosystem that can flexibly combine automatic and manual annotation for meta-research.
Strengths:
Software development is crucial for cumulative science and of great value to the community. However, such works are often greatly under-valued in the current publish-or-perish research culture. Thus, I applaud the authors' efforts devoted to this project. All the tools and repositories are public and can be accessed or installed without difficulty. The results reported in the manuscript are also compelling that the ecosystem is relatively mature.
Weaknesses:
First and foremost, the logic flow of the current manuscript is difficult to follow.
The second issue is the results from the litmining ecosystem were not validated and the efficiency of using litmining was not quantified. To validate the results, it would be better to directly compare the results of litmining with recognized ground truth in each of the examples. To prove the efficiency of the current ecosystem, it would be better to use quantitative indices for comparing the litmining and the other two approaches (in terms of time and/or other costs in a typical meta-research).
The third family of issues is about the functionality of the litmining ecosystem. As the authors mentioned, the ecosystem can be used for multiple purposes, however, the description here is not sufficient for researchers to incorporate the litmining ecosystem into their meta-research project. Imagine that a group of researchers are interested in using the litmining ecosystem to facilitate their meta-analyses, how should they incorporate litmining into their workflow? I have this question because, in a complete meta-analysis, researchers are required to (1) search in more than one database to ensure the completeness of their literature search; (2) screen the articles from the searched articles, which requires inspection of the abstract and the pdf; (3) search all possible pdf file of included articles instead of only relying on the open-access pdf files on PMC database. That said, if researchers are interested in using litmining in a meta-analysis that follows reporting standards such as PRISMA, the following functionalities are crucial:<br /> (a) How to incorporate the literature search results from different databases;<br /> (b) After downloading the meta-data of articles from databases, how to identify whose pdf files can be downloaded from PMC and whose pdf files need to be searched from other resources;<br /> (c) Is it possible to also annotate pdf files that were not downloaded by pubget?<br /> (d) How to maintain and update the meta-data and intermediate data for a meta-analysis by using litmining? For example, after searching in a database using a specific command and conducting their meta-analysis, researchers may need to update the search results and include items after a certain period.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Original Review:
Bischoff et al present a carefully prepared study on a very interesting and relevant topic: the role of ion channels (here a Ca2+-activated K+ channel BK) in regulating mitochondrial metabolism in breast cancer cells. The potential impact of these and similar observations made in other tumor entities has only begun to be appreciated. That being said, the authors pursue in my view an innovative approach to understanding breast cancer cell metabolism.
Considering the following points would further strengthen the manuscript:
Methods:
(1) The authors use an extracellular Ca2+ concentration (2 mM) in their Ringer's solutions that is almost twice as high as the physiologically free Ca2+ concentration (ln 473). Moreover, the free Ca2+ concentration of their pipette solution is not indicated (ln 487).
(2) Ca2+I measurements: The authors use ATP to elicit intracellular Ca2+ signals. Is this then physiological stimulus for Ca2+ signaling in breast cancer? What is the rationale for using ATP? Moreover, it would be nice to see calibrated baseline values of Ca2+i
(3) Membrane potential measurements: It would be nice to see a calibration of the potential measurements; this would allow to correlate IV relationship with membrane potential. Without calibration it is hard to compare unless the identical uptake of the dye is shown.<br /> Do paxilline or IbTx also induce a depolarization?
(4) mito-potential measurements: Why did the authors use such a long time course and preincubated cells mit channel blockers overnight? Why did they not perform paired experiments and record the immediate effect of the BK channel blockers in the mito potential?
(5) MTT assay are also based on mitochondrial function - since modulation of mito function is at the core of this manuscript, an alternative method should be used.
Results:
(1) Fig. 5G: The number of BK "positive" mitoplasts is surprisingly low - how does this affect the interpretation? Did the authors attempt to record mitoBK current in the "whole-mitoplast" mode? How does the mitoBK current density compare with that of the plasma membrane? Is it possible to theoretically predict the number of mitoBK channels per mitochondrium to elicit the observed effects? Can these results be correlated with immuno-localization of mitoBK channels?
(2) There are also reports about other mitoK channels (e.g. Kv1.3, KCa3.1, KATP) playing an important role in mitochondrial function. Did the authors observe them, too? Can the authors speculate on the relative importance of the different channels? Is it known whether they are expressed organ-/tumor-specifically?
Comments on revised version:
The authors responded to all of my comments - except for one - in a satisfactory way so that I have no further concerns. The authors have prepared a very interesting piece of work that advances the field.
However, I disagree with respect to their interpretation of statistics. Individually analyzed cells are not the best biological replicate per se. In my view a true replicate requires the use of an independent batch of cells derived from a new passage. The statistical analysis can only based on the total number of n cells, if each replicate contributes the same number of cells. If this is not the case, the authors will have to calculate the average of each replicate first so that they are equally weighted.
-
Reviewer #2 (Public Review):
Summary:
The large-conductance Ca2+ activated K+ channel (BK) has been reported to promote breast cancer progression, but it is not clear how. The present study, carried out in breast cancer cell lines, concludes that BK located in mitochondria reprograms cells towards the Warburg phenotype, one of the metabolic hallmarks of cancer.
Strengths:
The use of a wide array of modern complementary techniques, including metabolic imaging, respirometry, metabolomics and electrophysiology. On the whole experiments are astute and well designed, and appear carefully done. The use of a BK knock out cells to control for the specificity of the pharmacological tools is a major strength. The manuscript is clearly written. There are many interesting original observations that may give birth to new studies.
Weaknesses: The main conclusion regarding the role of a BK channel located in mitochondria appears is not sufficiently supported. Other perfectible aspects are the interpretation of co-localization experiments and the calibration of Ca2+ dyes. These points are discussed in more detail in the following paragraphs:
(1) May the metabolic effects be ascribed to a BK located in mitochondria? Unfortunately not, at least with the available evidence. While it is clear these cells have a BK in mitochondria (characteristic K+ currents detected in mitoplasts) and it is also well substantiated that the metabolic effects in intact cells are explained by an intracellular BK (paxilline effects absent in the BK KO), it does not follow that both observations are linked. Given that ectopic BK-DEC appeared at the surface, a confounding factor is the likely expression of BK in other intracellular locations such as ER, Golgi, endosomes, etc. To their credit authors acknowledge this limitation several times throughout the text ("...presumably mitoBK...") but not in other important places, particularly in title and abstract.
(2) mitoBK subcellular location. Pearson correlations of 0.6 and about zero were obtained between the locations of mitoGREEN on one side, and mRFP or RFP-GPI on the other (Figs. 1G and S1E). These are nice positive and negative controls. For BK-DECRFP however the Pearson correlation was about 0.2. What is the Z resolution of apotome imaging? Assuming an optimum optical section of 600 nm, as obtained a 1.4 NA objective with a confocal, that mitochondria are typically 100 nm in diameter and that BK-DECRFP appears to stain more structures that mitoGREEN, the positive correlation of 0.2 may not reflect colocalization. For instance, it could be that BK-DECRFP in not just in mitochondria but in a close underlying organelle e.g. the ER. Along the same line, why did BK-RFP also give a positive Pearson? Isn´t that unexpected? Considering that BK-DEC was found by patch clamping at the plasma membrane, the subcellular targeting of the channel is suspect. Could it be that the endogenous BK-DEC does actually reside exclusively in mitochondria (a true mitoBK), but overflows to other membranes upon overexpression? Regarding immunodetection of BK in the mitochondrial Percoll preparation (Fig. S5), absence of NKA demonstrates absence of plasma membrane contamination, but does not inform about contamination by other intracellular membranes.
(3) Calibration of fluorescent probes. The conclusion that BK blockers or BK expression affects resting Ca2+ levels should be better supported. Fluorescent sensors and dyes provide signals or ratios that need be calibrated if comparisons between different cell types or experimental conditions are to be made. This is implicitly acknowledged here when monitoring ER Ca2+, with an elaborate protocol to deplete the organelle in order to achieve a reading at zero Ca2+.
(4) Line 203. "...solely by the expression of BKCa-DECRFP in MCF-7 cells". Granted, the effect of BKCa-DECRFP on the basal FRET ratio appears stronger than that of BK-RFP, but it appears that the latter had some effect. Please provide the statistics of the latter against the control group (after calibration, see above).
The revised version of the manuscript has incorporated my suggestions to a very reasonable degree, in several cases with new experiments. The details of these improvements can be found in the correspondence.
-
Reviewer #3 (Public Review):
The original research article, titled "mitoBKCa is functionally expressed in murine and human breast cancer cells and promotes metabolic reprogramming" by Bischof et al, has demonstrated the underlying molecular mechanisms of alterations in the function of Ca2+ activated K+ channel of large conductance (BKCa) in the development and progression of breast cancer. The authors also proposed that targeting mitoBKCa in combination with established anti-cancer approaches, could be considered as a novel treatment strategy in breast cancer treatment.
The paper is modified according to the reviewer's comments. Most of the queries raised by this reviewer were answered. However, the preclinical implication of this study can also be manifested in combinatorial treatment with known chemotherapeutic drugs which is lacking in this manuscript. Hopefully, the authors will consider this in their future study.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
Neuropeptide signaling is an important component of nervous systems, where neuropeptides typically act via G-protein coupled receptors (GPCRs) to regulate many physiological and behavioral processes. Neuropeptides and their cognate GPCRs have been extensively characterized in bilaterian animals, revealing that a core set of neuropeptide signaling systems originated in common ancestors of extant Bilateria. Neuropeptides have also been identified in cnidarians, which are a sister group to the Bilateria. However, the GPCRs that mediate the effects of neuropeptides in cnidarians have not been identified.
In this paper the authors perform a phylogenetic analysis of GPCRs in metazoans and report that the orthologs of bilaterian neuropeptide receptors are not found in cnidarians. This indicates that neuropeptide signaling systems have largely evolved independently in cnidarians and bilaterians. To accomplish this, they generated a library of putative and known neuropeptides computationally identified in the genome of the cnidarian sea anemone Nematostella vectensis. These peptides were systematically screened for their ability to activate any of the 161 putative Nematostella GPCRs.
This work identified 31 validated GPCRs. These, together with GPCRs that cluster with them, were then used to demonstrate the independent expansion of GPCRs in cnidarian and bilaterian lineages. The authors then mapped validated receptors and ligands to the Nematostella single cell data to provide an overview of the cell types expressing these signaling genes. In addition, the authors have begun to analyze neuropeptide signaling networks in N. vectensis by showing potential signaling connections between cell types expressing neuropeptides and cell types expressing cognate receptors.
This work is the most extensive pharmacological characterization of neuropeptide GPCRs in a cnidarian to date and thus represents an important accomplishment, and is one that will improve our understanding of how peptidergic signaling evolved in animals and its impact on evolution of nervous systems. In addition, this impressive work transforms our knowledge of neuropeptide signaling systems in cnidarians and provides the foundations for extensive functional characterization neuropeptide systems in the context of nervous systems that exhibit radial symmetry, contrasting with the bilaterally symmetrical architecture of the majority of bilaterian nervous systems.
The reviewers did not detect any weaknesses in the work but asked that the authors comment on the following points, which they have done in the revised version.
(1) Clearly, other neuropeptide signaling systems in cnidarians remain to be discovered but this paper represents a huge step forward.
(2) There are limitations in what can be interpreted from single cell transcriptomic data but the data nevertheless provide the foundations for future studies involving i). detailed anatomical analysis of neuropeptide and neuropeptide receptor expression in N. vectensis using mRNA in situ hybridization and/or immunohistochemical methods and ii). functional analysis of the physiological/behavioral roles of neuropeptide signaling systems in N. vectensis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In the resubmitted manuscript by Chen et al. entitled, "Retinal metabolism: Evidence for uncoupling of glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle", the authors look to provide insight on retinal metabolism and substrate utilization but using a murine explant model with various pharmacological treatments in conjunction with metabolomics. The authors conclude that photoreceptors, a specific cell within the explant, which also includes retinal pigment epithelium (RPE) and many other types of cells, are able to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: 1) the mini-Krebs-cycle, fueled by glutamine and branched-chain amino acids; 2) the alanine-generating Cahill-cycle; and 3) the lactate-releasing Cori-cycle. While the authors have toned down some of their bold conclusions made in the original manuscript, they did very little in the way of providing additional well-controlled experiments, including cell-specific treatments, genetic knockouts, or stable isotope tracing to support their conclusions. Rather, the authors proceed to speculate more without additional data. The major issues raised by this reviewer were not adequately addressed. As such, the conclusions continue to be highly speculative and not well supported with evidence.
Strengths of resubmission:
The resubmission toned down some of its bold statements.
Weaknesses of resubmission:
Major weaknesses of this study persist including lack of in vivo supporting data. Also, retinal explant culture metabolomics are done in neuroretina with RPE attached, which are metabolically active and can be altered by the treatments investigated herein, further confounding the claims made regarding the neuroretina. While including the RPE in the explant model is commended, it needs to be separated from the retina prior to metabolomics to get a better sense of each tissues' metabolism. Also, melanin within RPE will hinder immunofluorescence signal, so one cannot state that RPE do not express certain enzymes based solely on immunofluorescence. Pharmacologic treatments are not cell-specific as the enzymes are expressed in numerous cells within the retina and RPE, and/or the treatments have significant off-target effects (such as shikonin). So, it is difficult to ascertain that the metabolic changes are secondary to the effects on photoreceptors alone, which the authors claim. Additionally, the explants are taken at a very early age when photoreceptors are known to still be maturing. No mention or data is presented on how these metabolic changes are altered in retinal explants after photoreceptors have fully matured. Likewise, significant assumptions are made based on a single metabolomics experiment with no stable isotope tracing to support the pathways suggested. In vivo, stable-isotope retinal metabolomics are being done and have been done, so stating this technology is beyond our field is false. Therefore, the conclusions reached in this manuscript are still not supported.
-
Reviewer #2 (Public Review):
Summary:
The authors aim to learn about retinal cell specific metabolic pathways, which could substantially improve the way retinal diseases are understood and treated. They culture ex vivo mouse retinas for 6 days with 2 - 4 days of various drug treatments targeting different metabolic pathways or by removing the RPE/choroid tissue from the neural retina. They then look at photoreceptor survival, stain for various metabolic enzymes/transporters and quantify a broad panel of metabolites. While this is an important question to address, the results are not sufficient to support the conclusions.
Strengths:
The questions the authors are exploring at extremely valuable and I commend the authors and working to learn more about retina metabolism. The different sensitivity of the cones to various drugs is interesting and may suggest key differences between rod and cones. The authors also provide a thoughtful discussion of various metabolic pathways in the context of previous publications.
Weaknesses:
As the authors point out, ex vivo culture models allow for control over multiple aspects of the environment (such as drug delivery) not available in vivo. Ex vivo cultures can provide good hints as to what pathways are available between interacting tissues. However, there are many limitations to ex vivo cultures, including shifting to a very artificial culture media condition that is extremely different than the native environment of the retina. It is well appreciated that cells have flexible metabolism and will adapt to conditions provided. Therefore, observations of metabolic responses obtained under culture conditions need to be interpreted with caution, they indicate what the tissue is doing under those specific conditions (which include cells adapting and dying).
Chen et al use pharmacological interventions are to the impact of various metabolic pathways on photoreceptor survival and "long term" metabolic changes. The dose and timing of these drug treatments are not examined though. It is also hard to know how these drugs penetrate the tissue and it needs to be validated that they intended targets are being accurately hit. These relatively long term treatments should be causing numerous downstream changes to metabolism, cell function and survival, which makes looking at a snap shot of metabolite levels hard to interpret. It would be more valuable to look at multiple time points after drug treatment, especially easy time points (closer to 1 hr). the authors use metabolite ratios to make conclusions about pathway activity. It would be more valuable to directly measure pathway activity by looking a metabolite production rates in the media and/or with metabolic tracers again in time scales closer to minutes and hours instead of days.
While the data is interesting and may give insights into some rod and cone specific metabolic susceptibility, more work is needed to validate these conclusions. Given the limitations of the model the authors have over interpreted their findings and the conclusions are not supported by the results. They need to either dramatically limit the scope of their conclusions or validate these hypotheses with additional models and tools.
-
Reviewer #3 (Public Review):
Summary:
The neural retina is one of the most energetically active tissues in the body and research into retinal metabolism has a rich history. Prevailing dogma in the field is that the photoreceptors of the neural retina (rods and cones) are heavily reliant on glycolysis, and as oxygen tension at the level of photoreceptors is very low, these specialized sensory neurons carry out aerobic glycolysis, akin to the Warburg effect in cancer cells. It has been found that this unique metabolism changes in many retinal diseases, and targeting disease-altered retinal metabolism may be a viable treatment strategy. The neural retina is composed of 11 different cell types, and many research groups over the past century have contributed to our current understanding of cell-specific metabolism of retinal cells. More recently, it has been shown in mouse models and co-culture of the mouse neural retina with human RPE cultures that photoreceptors are reliant on the underlying retinal pigment epithelium for supplying nutrients. Chen and colleagues add to this body of work by studying an ex vivo culture of the developing mouse retina that maintained contact with the retinal pigment epithelium. They exposed such ex vivo cultures to small molecule inhibitors of specific metabolic pathways, performing targeted metabolomics on the tissue and staining tissue with key metabolic enzymes to lay the groundwork for what metabolic pathways may be active in particular cell types of the retina. The authors conclude that rod and cone photoreceptors are reliant on different metabolic pathways to maintain their cell viability - in particular, that rods rely on oxidative phosphorylation and cones rely on glycolysis. Further, their data suggest multiple mechanisms whereby glycolysis may occur simultaneously with anapleurosis to provide abundant energy to photoreceptors. The data from metabolomics revealed several novel findings in retinal metabolism, including the use of glutamine to fuel the mini-Krebs cycle, the utilization of the Cahill cycle in photoreceptors, and a taurine/hypotaurine shuttle between the underlying retinal pigment epithelium and photoreceptors to transfer reducing equivalents from the RPE to photoreceptors. In addition, this study provides quantitative metabolomics datasets that can be compared across experiments and groups. The use of this platform will allow for rapid testing of novel hypotheses regarding the metabolic ecosystem in the neural retina.
Strengths:
The data on differences in susceptibility of rods and cones to mitochondrial dysfunction versus glycolysis provides novel hypothesis-generating conjectures that can be tested in animal models. The multiple mechanisms that allow anapleurosis and glycolysis to run side-by-side add significant novelty to the field of retinal metabolism, setting the stage for further testing of these hypotheses as well.
Weaknesses:
Almost all of the conclusions from the paper are preliminary, based on data showing enzymes necessary for a metabolic process are present and the metabolites for that process are also present. However, to truly prove whether these processes are happening (rather than speculation of the possibility they are happening), further experiments are necessary. As it currently stands, results from this study contradict results from other studies - in particular that cones, not rods, are most reliant of glycolysis. The authors attempt to address these contradictions, but without further experimentation, logical arguments carry only so much weight. At a minimum, the authors have argued that the small molecules they use are exquisitely specific for their intended targets, but validating results with a second small molecule that hits the same target but is structurally different would bolster their claims. Genetically knocking down the intended targets with interfering RNA technology would also be possible, as would explant cultures from knock-out animals. Without these studies to confirm target specificity, combined with the fact that conclusions from this study contradict existing studies in the literature, the results have to be categorized as speculative and hypothesis-generating rather than conclusive.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
Bolivar et al. set out to explore whether four distinct neuronal subtypes within the peripheral nervous system exhibit varying potentials for axon regeneration following nerve injury. To investigate this question, they harnessed the power of four distinct reporter mouse models featuring fluorescent labeling of these neuronal subtypes. Their findings reveal that axons of nociceptor neurons exhibit faster regeneration than those of motor neurons, with mechanoreceptors, and proprioceptors displaying the slowest regeneration rate.
To delve into the molecular mechanisms underlying this divergence in regeneration potential, the authors employed the Ribotag technique in mice. This approach enabled them to dissect the differential translatomes of these four neuronal populations after nerve injury, comparing them to uninjured neurons. Their comprehensive expression profiling data uncovers a remarkably heterogeneous response among these neuron subtypes to axon injury.
To focus on one identified target with a mechanistic experiment as a proof of concept, their analysis highlights a striking upregulation of MED12 in proprioceptors, leading to the hypothesis that this molecule may play an inhibitory role, contributing to the comparatively slower regeneration of proprioceptor axons when compared to other neuronal subtypes. This hypothesis gains support from their in vitro model, where siRNA-mediated downregulation of MED12 results in a significant increase in neurite outgrowth in proprioceptive neurons after plating in cell culture dishes.
Overall, this is an interesting study, and in conjunction with similar work from others will be highly valuable for neurobiologists studying how to modulate the regeneration of axons from distinct neuronal subtypes. The quality of data presentation appears to be very good in general, and the manuscript is appropriately written.
Comments on revised version:
Because there are multiple explanations for the differential regeneration responses, the authors have provided further discussion about how regeneration may be regulated in vitro and in vivo. The detection of a gene, Med12, which is unregulated in proprioceptive neurons, but not nociceptive and mechanoceptors, gives support to the existence of specific programs of responses in the peripheral nervous system after injury. Further investigation is needed to define this responsiveness in detail.
Another response is the role of neurotrophins and their receptors. The authors have considered outcomes as a result of different Trk receptor signaling and also the effect of TGFbeta and IL6 as cytokine modulators. Add to this list is the possibility that axon guidance molecules and downstream substates may also play a role.
The original title was considered to be too broad and did not explain all the mechanistic aspects of this study. Therefore a revised title "Neuron-specific RNA-sequencing reveals different response in peripheral neurons after nerve injury" was used. It is appropriately suitable for the results reported in this manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors are interested in the developmental origin of the neurons of the cerebellar nuclei. They identify a population of neurons with a specific complement of markers that originate in a distinct location from where cerebellar nuclear precursor cells have been thought to originate that show distinct developmental properties. The cerebellar nuclei have been well studied in recent years both to understand their development and through an evolutionary lens, which supports the importance of this study. The discovery of a new germinal zone giving rise to a new population of CN neurons is an exciting finding, and it enriches our understanding of cerebellar development, which has previously been quite straightforward, where cerebellar inhibitory cells arise from the ventricular zone and the excitatory cells arise from the rhombic lip.
Strengths:
One of the strengths of the manuscript is that the authors use a wide range of technical approaches, including transgenic mice that allow them to disentangle the influence of distinct developmental organizers such as ATOH.<br /> Their finding of a novel germinal zone and a novel population of CN neurons is important for developmental neuroscientists, and cerebellar neuroscientists.
Weaknesses:
One important question raised by this work is what these newly identified cells eventually become in the adult cerebellum. Are they excitatory or inhibitory? Do they correspond to a novel cell type or perhaps one of the cell classes that have been recently identified in the cerebellum (e.g. Fujita et al., eLife, 2020)? Understanding this would significantly bolster the impact of this manuscript.
The major weakness of the manuscript is that it is written for a very specialized reader who has a strong background in cerebellar development, making it hard to read for a general audience. It's challenging to follow the logic of some of the experiments as well as to contextualize these findings in the field of cerebellar development.
-
Reviewer #2 (Public Review):
Summary:
Canonically cerebellar neurons are derived from 2 primary germinal zones within the anterior hindbrain (dorsal rhombomere 1). This manuscript identifies an important, previously underappreciated origin for a subset of early cerebellar nuclei neurons - the dorsal mesencephalon. This is an exciting finding. While the conclusions are generally supported, several of the figure panels are of inferior quality and do not readily convey the results the authors assert.
Strengths:
The authors have identified a novel early population of cerebellar neurons with likely novel origin in the midbrain. They have used multiple assays to support their conclusions, including immunohistochemistry and in situ analyses of a number of markers of this population which appear to stream from the midbrain into the dorsal anterior cerebellar anlage.
The inclusion of Otx2-GFP short-term lineage analyses and analysis of Atoh1 -/- animals also provide considerable support for the midbrain origin of these neurons as streams of cells seem to emanate from the midbrain. However, without live imaging, there remains the possibility that these streams of cells are not actually migrating, and rather, gene expression is changing in static cells. Hence the authors have conducted midbrain diI labelling experiments of short-term and long-term cultured embryos showing di-labelled cells in the developing cerebellum. These studies confirm the migration of cells from the midbrain into the early cerebellum.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This interesting study explores the mechanism behind an increased susceptibility of daf-18/PTEN mutant nematodes to paralyzing drugs that exacerbate cholinergic transmission. The authors use state-of-the-art genetics and neurogenetics coupled with locomotor behavior monitoring and neuroanatomical observations using gene expression reporters to show that the susceptibility occurs due to low levels of DAF-18/PTEN in developing inhibitory GABAergic neurons early during larval development (specifically, during the larval L1 stage). DAF-18/PTEN is convincingly shown to act cell-autonomously in these cells upstream of the PI3K-PDK-1-AKT-DAF-16/FOXO pathway, consistent with its well-known role as an antagonist of this conserved signaling pathway. The authors exclude a role for the TOR pathway in this process and present evidence implicating selectivity towards developing GABAergic neurons. Finally, the authors show that a diet supplemented with a ketogenic body, β-hydroxybutyrate, which also counteracts the PI3K-PDK-1-AKT pathway, promoting DAF-16/FOXO activity, partially rescues the proper development (morphology and function) of GABAergic neurons in daf-18/PTEN mutants, but only if the diet is provided early during larval development. This strongly suggests that the critical function of DAF-18/PTEN in developing inhibitory GABAergic neurons is to prevent excessive PI3K-PDK-1-AKT activity during this critical and particularly sensitive period of their development in juvenile L1 stage worms. Whether or not the sensitivity of GABAergic neurons to DAF-18/PTEN function is a defining and widespread characteristic of this class of neurons in C. elegans and other animals, or rather a particularity of the unique early-stage GABAergic neurons investigated remains to be determined.
Strengths:
The study reports interesting and important findings, advancing the knowledge of how daf-18/PTEN and the PI3K-PDK-1-AKT pathway can influence neurodevelopment, and providing a valuable paradigm to study the selectivity of gene activities towards certain neurons. It also defines a solid paradigm to study the potential of dietary interventions (such as ketogenic diets) or other drug treatments to counteract (prevent or revert?) neurodevelopment defects and stimulate DAF-16/FOXO activity.
Weaknesses:
(1 )Insufficiently detailed methods and some inconsistencies between Figure 4 and the text undermine the full understanding of the work and its implications.
The incomplete methods presented, the imprecise display of Figure 4, and the inconsistency between this figure and the text, make it presently unclear what are the precise timings of observations and treatments around the L1 stage. What exactly do E-L1 and L1-L2 mean in the figure? The timing information is critical for the understanding of the implications of the findings because important changes take place with the whole inhibitory GABAergic neuronal system during the L1 stage into the L2 stage. The precise timing of the events such as neuronal births and remodelling events are well-described (e.g., Figure 2 in Hallam and Jin, Nature 1998; Fig 7 in Mulcahy et al., Curr Biol, 2022). Likewise, for proper interpretation of the implication of the findings, it is important to describe the nature of the defects observed in L1 larvae reported in Figure 1E - at present, a representative figure is shown of a branched commissure. What other types of defects, if any, are observed in early L1 larvae? The nature of the defects will be informative. Are they similar or not to the defects observed in older larvae?
(2) The claim of proof of concept for a reversal of neurodevelopment defects is not fully substantiated by data.
The authors state that the work "constitutes a proof of concept of the ability to revert a neurodevelopmental defect with a dietary intervention" (Abstract, Line 56), however, the authors do not present sufficient evidence to distinguish between a "reversal" or prevention of the neurodevelopment defect by the dietary intervention. This clarification is critical for therapeutic purposes and claims of proof-of-concept. From the best of my understanding, reversal formally means the defect was present at the time of therapy, which is then reverted to a "normal" state with the therapy. On the other hand, prevention would imply an intervention that does not allow the defect to develop to begin with, i.e., the altered or defective state never arises. In the context of this study, the authors do not convincingly show reversal. This would require showing "embryonic" GABAergic neuron defects or showing convincing data in newly hatched L1 (0-1h), which is unclear if they do so or not, as I have failed to find this information in the manuscript. Again, the method description needs to be improved and the implications can be very different if the data presented in Figure 2D-E regard newly born L1 animals (0-1h) or L1 animals at say 5-7h after hatching. This is critical because the development of the embryonically-born GABAergic DD neurons, for instance, is not finalized embryonically. Their neurites still undergo outgrowth (albeit limited) upon L1 birth (see DataS2 in Mulcahy et al., Curr Biol 2022), hence they are susceptible to both committing developmental errors and to responding to nutritional interventions to prevent them. In contrast to embryonic GABAergic neurons, embryonic cholinergic neurons (DA/DB) do not undergo neurite outgrowth post-embryonically (Mulcahy et al., Curr Biol 2022), a fact which could provide some mechanistic insight considering the data presented. However, neurites from other post-embryonically-born neurons also undergo outgrowth post-embryonically, but mostly during the second half of the L1 stage following their birth up to mid-L2, with significant growth occurring during the L1-L2 transition. These are the cholinergic (VA/VB and AS neurons) and GABAergic (VD) neurons. The fact that AS neurons undergo a similar amount of outgrowth as VD neurons is informative if VD neurons are or are not susceptible to daf-18/PTEN activity. Independently, DD neurons are still quite unique on other aspects (see below), which could also bring insight into their selective response.
Finally, even adjusting the claim to "constitutes a proof-of-concept of the ability of preventing a neurodevelpmental defect with a dietary intervention" would not be completely precise, because it is unclear how much this work "constitutes a proof of concept". This is because, unless I misunderstood something, dietary interventions are already applied to prevent neurodevelopment defects, such as when folic acid supplementation is recommended to pregnant women to prevent neural tube defects in newborns.
(3) The data presented do not warrant the dismissal of DD remodeling as a contributing factor to the daf-18/PTEN defects.
Inhibitory GABAergic DD neurons are quite unique cells. They are well-known for their very particular property of remodeling their synaptic polarity (DD neurons switch the nature of their pre- and post-synaptic targets without changing their wiring). This process is called DD remodeling. It starts in the second half of the L1 stage and finishes during the L2 stage. Unfortunately, the fact that the authors find a specific defect in early GABAergic neurons (which are very likely these unique DD neurons) is not explored in sufficient detail and depth. The facts that these neurons are not fully developed at L1, that they still undergo limited neurite growth, and that they are poised for striking synaptic plasticity in a few hours set them apart from the other explored neurons, such as early cholinergic neurons, which show a more stable dynamics and connectivity at L1 (see Mulcahy et al., Curr Biol 2022).
The authors use their observation that daf-18/PTEN mutants present morphological defects in GABAergic neurons prior to DD remodeling to dismiss the possibility that the DAF-18/PTEN-dependent effects are "not a consequence of deficient rearrangement during the early larval stages". However, DD remodeling is just another cell-fate-determined process and as such, its timing, for instance, can be affected by mutations in genes that affect cell fates and developmental decisions, such as daf-18 and daf-16, which affect developmental fates such as those related with the dauer fate. Specifically, the authors do not exclude the possibility that the defects observed in the absence of either gene could be explained by precocious DD remodeling. Precocious DD remodeling can occur when certain pathways, such as the lin-14 heterochronic pathway, are affected. Interestingly, lin-14 has been linked with daf-16/FOXO in at least two ways: during lifespan determination (Boehm and Slack, Science 2005) and in the L1/L2 stages via the direct negative regulation of an insulin-like peptide gene ins-33 (Hristova et al., Mol Cell Bio 2005). It is likely that the prevention of DD dysfunction requires keeping insulin signaling in check (downregulated) in DD neurons in early larval stages, which seems to coincide with the critical timing and function of daf-18/PTEN. Hence, it will be interesting to test the involvement of these genes in the daf-18/daf-16 effects observed by the authors.
Discussion on the impact of the work on the field and beyond:
The authors significantly advance the field by bringing insight into how DAF-18/PTEN affects neurodevelopment, but fall short of understanding the mechanism of selectivity towards GABAergic neurons, and most importantly, of properly contextualizing their findings within the state-of-the-art C. elegans biology.
For instance, the authors do not pinpoint which type of GABAergic neuron is affected, despite the fact that there are two very well-described populations of ventral nerve cord inhibitory GABAergic neurons with clear temporal and cell fate differences: the embryonically-born DD neurons and the post-embryonically-born VD neurons. The time point of the critical period apparently defined by the authors (pending clarifications of methods, presentation of all data, and confirmation of inconsistencies between the text and figures in the submitted manuscript) could suggest that DAF-18/PTEN is required in either or both populations, which would have important and different implications. An effect on DD neurons seems more likely because an image is presented (Figure 2D) of a defect in an L1 daf-18/PTEN mutant larva with 6 neurons (which means the larva was processed at a time when VD neurons were not yet born or expressing pUnc-47, so supposedly it is an image of a larva in the first half of the L1 stage (0-~7h?)). DD neurons are also likely the critical cells here because the neurodevelopment errors are partially suppressed when the ketogenic diet is provided at an "early" L1 stage, but not later (e.g., from L2-L3, according to the text, L2-L4 according to the figure? ).
This study brings important contributions to the understanding of GABAergic neuron development in C. elegans, but unfortunately, it is justified and contextualized mostly in distantly-related fields - where the study has a dubious impact at this stage rather than in the central field of the work (post-embryonic development of C. elegans inhibitory circuits) where the study has stronger impact. This study is fundamentally about a cell fate determination event that occurs in a nutritionally-sensitive developmental stage (post-embryonic L1 larval stage) yet the introduction and discussion are focused on more distantly related problems such as excitatory/inhibitory (E/I) balance, pathophysiology of human diseases, and treatments for them. Whereas speculation is warranted in the discussion, the reduced in-depth consideration of the known biology of these neurons and organisms weakens the impact of the study as redacted. For instance, the critical role of DAF-18/PTEN seems to occur at the early L1 larval stage, a stage that is particularly sensitive to nutritional conditions. The developmental progression of L1 larvae is well-known to be sensitive to nutrition - eg, L1 larvae arrest development in the absence of food, something that is explored in nematode labs to synchronize animals at the L1 stage by allowing embryos to hatch into starvation conditions (water). Development resumes when they are exposed to food. Hence, the extensive postembryonic developmental trajectory that GABAergic neurons need to complete is expected to be highly susceptible to nutrition. Is it? The sensitivity towards the ketogenic diet intervention seems to favor this. In this sense, the attribution of the findings to issues with the nutrition-sensitive insulin-like signaling pathway seems quite plausible, yet this possibility seems insufficiently considered and discussed.
Finally, the fact that imbalances in excitatory/inhibitory (E/I) inputs are linked to Autism Spectrum Disorders (ASD) is used to justify the relevance of the study and its findings. Maybe at this stage, the speculation would be more appropriate if restricted to the discussion. In order to be relevant to ASD, for instance, the selectivity of PTEN towards inhibitory neurons should occur in humans too. However, at present, the E/I balance alteration caused by the absence of daf-18/PTEN in C. elegans could simply be a coincidence due to the uniqueness of the post-embryonic developmental program of GABAergic neurons in C. elegans. To be relevant, human GABAergic neurons should also pass through a unique developmental stage that is critically susceptible to the PI3K-PDK1-AKT pathway in order for DAF-18/PTEN to have any role in determining their function. Is this the case? Hence, even in the discussion, where the authors state that "this study provides universally relevant information on.... the mechanisms underlying the positive effects of ketogenic diets on neuronal disorders characterized by GABA dysfunction and altered E/I ratios", this claim seems unsubstantiated as written particularly without acknowledging/mentioning the criteria that would have to be fulfilled and demonstrated for this claim to be true.
-
Reviewer #2 (Public Review):
Summary:
Disruption of the excitatory/inhibitory (E/I) balance has been reported in Autism Spectrum Disorders (ASD), with which PTEN mutations have been associated. Giunti et al choose to explore the impact of PTEN mutations on the balance between E/I signaling using as a platform the C. elegans neuromuscular system where both cholinergic (E) and GABAergic (I) motor neurons regulate muscle contraction and relaxation. Mutations in daf-18/PTEN specifically affect morphologically and functionally the GABAergic (I) system, while leaving the cholinergic (E) system unaffected. The study further reveals that the observed defects in the GABAergic system in daf-18/PTEN mutants are attributed to reduced activity of DAF-16/FOXO during development.
Moreover, ketogenic diets (KGDs), known for their effectiveness in disorders associated with E/I imbalances such as epilepsy and ASD, are found to induce DAF-16/FOXO during early development. Supplementation with β-hydroxybutyrate in the nematode at early developmental stages proves to be both necessary and sufficient to correct the effects on GABAergic signaling in daf-18/PTEN mutants.
Strengths:
The authors combined pharmacological, behavioral, and optogenetic experiments to show the GABAergic signaling impairment at the C. elegans neuromuscular junction in DAF-18/PTEN and DAF-16/FOXO mutants. Moreover, by studying the neuron morphology, they point towards neurodevelopmental defects in the GABAergic motoneurons involved in locomotion. Using the same set of experiments, they demonstrate that a ketogenic diet can rescue the inhibitory defect in the daf-18/PTEN mutant at an early stage.
Weaknesses:
The morphological experiments hint towards a pre-synaptic defect to explain the GABAergic signaling impairment, but it would have also been interesting to check the post-synaptic part of the inhibitory neuromuscular junctions such as the GABA receptor clusters to assess if the impairment is only presynaptic or both post and presynaptic.
Moreover, all observations done at the L4 stage and /or adult stage don't discriminate between the different GABAergic neurons of the ventral nerve cord, ie the DDs which are born embryonically and undergo remodeling at the late L1 stage, and VDs which are born post-embryonically at the end of the L1 stage. Those additional elements would provide information on the mechanism of action of the FOXO pathway and the ketone bodies.
Conclusion:
Giunti et al provide fundamental insights into the connection between PTEN mutations and neurodevelopmental defects through DAF-16/FOXO and shed light on the mechanisms through which ketogenic diets positively impact neuronal disorders characterized by E/I imbalances.
-
Reviewer #3 (Public Review):
Summary:
This is a conceptually appealing study by Giunti et al in which the authors identify a role for PTEN/daf-18 and daf-16/FOXO in the development of inhibitory GABA neurons, and then demonstrate that a diet rich in ketone body β-hydroxybutyrate partially suppresses the PTEN mutant phenotypes. The authors use three assays to assess their phenotypes: (1) pharmacological assays (with levamisole and aldicarb); (2) locomotory assays and (3) cell morphological assays. These assays are carefully performed and the article is clearly written. While neurodevelopmental phenotypes had been previously demonstrated for PTEN/daf-18 and daf-16/FOXO (in other neurons), and while KB β-hydroxybutyrate had been previously shown to increase daf-16/FOXO activity (in the context of aging), this study is significant because it demonstrates the importance of KB β-hydroxybutyrate and DAF-16 in the context of neurodevelopment. Conceptually, and to my knowledge, this is the first evidence I have seen of a rescue of a developmental defect with dietary metabolic intervention, linking, in an elegant way, the underpinning genetic mechanisms with novel metabolic pathways that could be used to circumvent the defects.
Strengths:
What their data clearly demonstrate, is conceptually appealing, and in my opinion, the biggest contribution of the study is the ability of reverting a neurodevelopmental defect with a dietary intervention that acts upstream or in parallel to DAF-16/FOXO.
Weaknesses:
The model shows AKT-1 as an inhibitor of DAF-16, yet their studies show no differences from wildtype in akt-1 and akt-2 mutants. AKT is not a major protein studied in this paper, and it can be removed from the model to avoid confusion, or the result can be discussed in the context of the model to clarify interpretation.
When testing additional genes in the DAF-18/FOXO pathway, there were no significant differences from wild type in most cases. This should be discussed. Could there be an alternate pathway via DAF-18/DAF-16, excluding the PI3K pathway or are there variations in activity of PI3K genes during a ketogenic diet that are hard to detect with current assays?
The consequence of SOD-3 expression in the broader context of GABA neurons was not discussed. SOD-3 was also measured in the pharynx but measuring it in neurons would bolster the claims.
If they want to include AKT-1, seeing its effect on SOD-3 expression could be meaningful to the model.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study presents valuable observations of white matter organisation from diffusion MRI and two types of synchrotron imaging in both monkeys and mice. Cross-modality comparisons are interesting as the different methods are able to probe anatomical structures at different length scales, from single axons in high-resolution synchrotron (ESRF) imaging, to clusters of axons in lower-resolution synchrotron (DEXY) data, to axon populations at the mm-scale in diffusion MRI. By acquiring all modalities in monkey and mouse ex vivo samples, the authors can observe principles of fibre organisation, and characterise how fibre characteristics, such as tortuosity and micro-dispersion, vary across select brain regions and in healthy tissue versus a demyelination model. The results are solid, though some statements (in the abstract/discussion) do not appear to be fully supported, and statistical tests would help confirm whether tissue characteristics are similar/different between different conditions.
One very interesting result is the observation of apparent laminar organisation of fibres in ex vivo monkey white matter samples. DESY data from the corpus callosum shows fibres with two dominant orientations (one L-R, one slightly inclined), clustered in laminar structures within this major fibre bundle. Thanks to the authors providing open data, I was able to look through the raw DESY volume and observe regions with different "textures" (different orientations) in the described laminar arrangement. That this organisation can be observed by eye, as well as by structure tensor, is fairly convincing. As not all readers will download the data themselves, the manuscript could benefit from additional figures/videos to demonstrate (1) the quality of the DESY data and (2) a more 3D visualisation of the laminar structures (where the coronal plane shows convincing columnar structure or stripes). Similarly in Figure 5A, though this nicely depicts two populations with different orientations, it is somewhat difficult to see the laminar structure in the current image.
ESRF data of the centrum semiovale (CS) contributes evidence for similar laminar structures in a crossing fibre region, where primarily AP fibres are shown to cluster in 3 laminar structures. As above, further visualisations of the ESRF volume in the CS (as shown in Figure 4E) would be of value (e.g. showing consistency across the 4 volumes, 2D images showing stripey/columnar patterns along different axes, etc).
A key limitation of this result is that, though the DESY data from the CC seems convincing, the same structures were not observed in high-resolution synchrotron (ESRF) data of the same tissue sample in the corpus callosum. This seems surprising and the manuscript does not provide a convincing explanation for this inconsistency. The authors argue that this is due to the limited FOV of the ESRF data (~200x200x800 microns). However, the observed laminar structures in DESY are ~40 microns thick, and ERSF data from the CST suggests laminar thicknesses in the range of 5-40 microns with a similar FOV. This suggests the ERSF FOV would be sufficient to capture at least a partial description of the laminar organisation. Further, the DESY data from the CC shows columnar variations along the LR axis, which we might expect to be observed along the long axis of the ESFR volume of the same sample. Additional analyses or explanations to reconcile these apparently conflicting observations would be of value. For example, the authors could consider down-sampling the ESRF data in an appropriate manner to make it more similar to the DESY data, and running the same analysis, to see if the observed differences are related to resolution (i.e. the thinner laminar structures cluster in ways that they look like a thicker laminar structure at lower resolution), or crop the DESY data to the size of the ESRF volume, to test whether the observed differences can be explained by differences in FOV.
Laminar structures were not observed in mouse data, though it is unclear if this is due to anatomical differences or somewhat related to differences in data quality across species.
The authors further quantify various other characteristics of the white matter, such as micro-dispersion, tortuosity, and maximum displacement. Notably, the microscopic FA calculated via structure tensor is fairly consistent across regions, though not modalities. When fibre orientations are combined across the sample, they are shown to produce similar FODs to dMRI acquired in the same tissue, which is reassuring. As noted in the text, the estimates of tortuosity and max displacement are dependent on the FOV over which they are calculated. Calculating these metrics over the same FOV, or making them otherwise invariant to FOV, could facilitate more meaningful comparisons across samples and/or modalities.
Though the results seem solid, some statements, particularly in the abstract and discussion, do not seem to be fully supported by the data. For example, the abstract states "Our findings revealed common principles of fibre organisation in the two species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways.", though the results show "no strong indication within the mouse CC of the axonal laminar organisation observed in the monkey". Similarly, the introduction states: "By these means, we demonstrated a new organisational principle of white matter that persists across anatomical length scales and species, which governs the arrangement of axons and axonal fasciculi into sheet-like laminar structures." Further comments on the text are provided below.
One observation not notably discussed in the paper is that the spherical histograms of Figure 3E/H appear to have an anisotropic spread of the white points about 0,0. It would be interesting if the authors could comment on whether this could be interpreted as the FOD having asymmetric dispersion and if so, whether the axis of dispersion relates to the fibre orientations of the laminar structures.
A limitation of the study is that it considers only small ex vivo tissue samples from two locations in a single postmortem monkey brain and slightly larger regions of mouse brain tissue. Consequently, further evidence from additional brain regions and subjects would be required to support more generalised statements about white matter organisation across the brain.
Given the monkey results, the mouse study (section 2.5 onwards) lacks some motivation. In particular, it is unclear why a demyelination model was studied and if/how this would link to the laminar structure observed in the monkey data. Further, it is unclear how comparable tortuosity/max deviation values are across species, considering the differences in data quality and relative resolution, given that the presented results show these values are very modality-dependent.
The paper introduces a new method of "scale-space" parameters for structure tensors. Since, to my understanding, this is the first description of the method, some simple validation of the method would be welcomed. Further, the same scale parameters are not used across monkeys and mice, with a larger kernel used in mice (Table 2) which is surprising given their smaller brain size. Some explanation would be helpful.
-
Reviewer #2 (Public Review):
Summary:<br /> In this work, the authors combine diffusion MRI and high-resolution x-ray synchrotron phase-contrast imaging in monkey and mouse brains to investigate the 3D organization of brain white matter across different scales and species. The work is at the forefront of the anatomical investigation of the human connectome and aligns with several current efforts to bridge the resolution gap between what we can see in vivo at the millimeter scale and the complexity of the human brain at the sub-micron scale. The authors compare the 3D white matter organization across modalities within 2 small regions in one monkey brain (body of the corpus callosum, centrum semiovale) and within one region (splenium of the corpus callosum) in healthy mice and in one murine model of focal demyelination. The study compares measures of tissue anisotropy and fiber orientations across modalities, performs a qualitative comparison of fasciculi trajectories across brain regions and tissue conditions using streamlined tractography based on the structure tensor, and attempts to quantify the shape of fasciculi trajectories by measuring the tortuosity index and the maximum deviation for each reconstructed streamline. Results show measures of anisotropy and fiber orientations largely agree across modalities, especially for larger FOV data. The high-resolution data allows us to explore the fiber trajectories in relation to tissue complexity and pathology. The authors claim the study reveals new common organization principles of white matter fibers across species and scales, for which axonal fasciculi arrange into sheet-like laminar structures.
Strengths:
The aim of the study is of central importance within present efforts to bridge the gap between macroscopic structures observable in vivo in humans using conventional diffusion MRI and the microscopic organization of white matter tissue. Results obtained from this type of study are important to interpret data obtained in vivo, inform the development of novel methodologies, and expand our knowledge of the structural and thus functional organization of brain circuits.
Multi-scale data acquired across modalities within the same sample constitute extremely valuable data that is often hard to acquire and represent a precious resource for validation of both diffusion MRI tractography and microstructure methods.
The inclusion of multi-species data adds value to the study, allowing the exploration of common organization principles across species.
The addition of data from a murine cuprizone model of focal demyelination adds interesting opportunities to study the underlying biological changes that follow demyelination and how these impact tissue anisotropy and fiber trajectories. These data can inform the interpretation and development of diffusion MRI microstructure models.
Weaknesses:
The main claim of a newly discovered laminar organization principle that is consistent across scales and species is not supported strongly enough by the data. The main evidence in support of the claim comes from the larger FOV data obtained from the body of the corpus callosum in the monkey brain. A laminar organization principle is partially shown in the centrum semiovale in the monkey brain and it is not shown in mice data. Additionally, the methods lack details to help the correct interpretation of these findings (e.g., how were these fasciculi defined?; how well do they represent different axonal populations?; what is the effect of blood vessels on the structure tensor reconstruction?; how was laminar separation quantified?) and the discussion does not provide a biological background for this organization. The corpus callosum sample suggests axons within a bundle of fibers are organized in a sheet-like fashion, while data from the centrum semiovale suggest fibers belonging to different fiber bundles are organized in a sheet-like arrangement. While I acknowledge the challenges in acquiring such high-resolution data, additional samples from different regions in the same animals and from different animals would help strengthen this claim.
The main goal of the study is to bridge the organization of white matter across anatomical length scales and species. However, given the substantial difference in FOVs between the two imaging modalities used, and the absence of intermediate-resolution data, it remains difficult to effectively understand how these results can be used to inform conventional diffusion MRI. In this sense, the introduction does not do a good enough job of building a strong motivation for the scientific questions the authors are trying to answer with these experiments and for the specific methodology used.
The cuprizone data represent a unique opportunity to explore the effect of demyelination on white matter tissue. However, this specific part of the study is not well motivated in the introduction and seems to represent a missed opportunity for further exploration of the qualitative and quantitative relationship between diffusion MRI and sub-micron tissue information (although unfortunately not within the same brain sample). This is especially true considering the diffusion MRI protocol for mice would allow extrapolation of advanced measures from different tissue compartments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The work in the manuscript titled " Altered firing output of VIP interneurons and early dysfunctions in CA1 hippocampal circuits in the 3xTg mouse model of Alzheimer's disease" utilized patch-clamp techniques to explore the electrophysiological characteristics of VIP interneurons in the early stages of AD using the 3xTg mouse model. The study revealed that VIP interneurons exhibited prolonged action potentials and reduced firing rates. These changes could not be attributed to modifications in input signals or morphological transformations. The authors attributed aberrant VIP activity to the accumulation of beta-amyloid in those interneurons.
The decreased frequency of VIP inhibitory events was associated with no observed changes in excitatory drive to these interneurons. Consequently, heightened activity in the general population of CA1 interneurons was observed during a decision-making task and an object recognition test. In light of these findings, the authors concluded that the altered firing patterns of VIP interneurons may initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.
Strengths:
Overall the work is novel and moves the field of Alzheimer's disease forward in a significant way. The manuscript reports a novel concept of aberrant activity in VIP interneurons during the early stages of AD thus contributing to dysfunctions of the CA1 microcircuit. This results in the enhancement of the inhibitory tone on the primary cells of CA1. Thus, the disinhibition by VIP interneurons of Principal Cells is dampened. The manuscript was skillfully composed, and the study was of strong scientific rigor featuring well-designed experiments. Necessary controls were present. Both sexes were included.
Limitations:
(1) The authors attributed aberrant circuit activity to the accumulation of "Abeta intracellularly" inside IS-3 cells. That is problematic. 6E10 antibody recognizes amyloid plaques in addition to Amyloid Precursor Protein (APP) as well as the C99 fragment. There are no plaques at the ages 3xTg mice were examined. Thus, the staining shown in Figure 1a is of APP/C99 inside neurons, not abeta accumulations in neurons. At the ages of 3-6 months, 3xTg starts producing abeta oligomers and potentially tau oligomers as well (Takeda et al., 2013 PMID: 23640054; Takeda et al., 2015 PMID: 26458742 and others). Emerging literature suggests that abeta and tau oligomers disrupt circuit function. Thus, a more likely explanation of abeta and tau oligomers disrupting the activity of VIP neurons is plausible.
(2) Authors suggest that their animals do not exhibit loss of synaptic connections and show Figure 3d in support of that suggestion. However, imaging with confocal microscopy of 70-micron thick sections would not allow the resolution of pre- and post-synaptic terminals. More sensitive measures such as electron microscopy or array tomography are the appropriate techniques to pursue. It is important for the authors to either remove that data from the manuscript or address the limitations of their technique in the discussion section. There is a possibility of loss of synaptic connections in their mouse model at the ages examined.
-
Reviewer #2 (Public Review):
Summary:
The submitted manuscript by Michaud and Francavilla et al., is a very interesting study describing early disruptions in the disinhibitory modulation exerted by VIP+ interneurons in CA1, in a triple transgenic model of Alzheimer's disease. They provide a comprehensive analysis at the cellular, synaptic, network, and behavioral level on how these changes correlate and might be related to behavioral impairments during these early stages of the disease.
Main findings:
- 3xTg mice show early Aß accumulation in VIP-positive interneurons.
- 3xTg mice show deficits in a spatially modified version of the novel object recognition test.
- 3xTg mice VIP cells present slower action potentials and diminished firing frequency upon current injection.
- 3xTg mice show diminished spontaneous IPSC frequency with slower kinetics in Oriens / Alveus interneurons.
- 3xTg mice show increased O/A interneuron activity during specific behavioral conditions.
- 3xTg mice show decreased pyramidal cell activity during specific behavioral conditions.
Strengths:
This study is very important for understanding the pathophysiology of Alzheimer´s disease and the crucial role of interneurons in the hippocampus in healthy and pathological conditions.
Weaknesses:
Although results nicely suggest that deficits in VIP physiological properties are related to the differences in network activity, there is no demonstration of causality.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The paper of Mao et al. expands the genetic toolset that was previously developed by the Rao lab (Denfg et al 2019) to introduce the conditional KO or downregulation of neurotransmission components in Drosophila. The authors then use these tools to investigate neurotransmission in the the clock neurons of the Drosophila brain. They first test some known components and then analyze the contribution of the CNMa neuropeptide and its receptor to the circadian behavior. The results indicate that CNMA acts from a subset of DN1ps (dorsal clock neurons) to set the phase of the morning peak of locomotor activity in light:dark cycles, with an advanced morning activity in the absence of the neuropeptide. Interestingly, the receptor for the PDF neuropeptide appears to be acting in some of the CNMa neurons to control morning activity.
Strengths/weaknesses:
This is clearly a very useful new set of tools to restrict the manipulation of these components to specific neuronal populations, and overall (see specific points below), the paper is convincing to show that the tools indeed allow to efficiently and specifically eliminate neuropeptides/receptors from subsets of neurons. The analysis of the CNMa function in the clock network reveals a new and interesting function for CNMa in the control of morning anticipation in LD conditions. This function appears to depend on CNMA_expressing DN1ps.
Comment on revised version:
I believe that the authors properly addressed the main points that were raised in my comment on version 1.
-
Reviewer #2 (Public Review):
Original Review:
In this study Mao and co-workers deliver a substantial suite of genetic tools in support of the senior author's recent proposal to create a "chemoconnectomic" tool kit for the expression mapping and conditional disruption of specific neurotransmitter systems with fly neurons of interest. Specifically, they describe the creation of two toolsets for recombination-based and CRISPR/Cas9-based conditional knockouts of genes supporting neurotransmitter and neuromodulator function and Flp-Out and Split-LexA toolkit for the examination of gene expression within defined subsets of neurons. The authors report the creation of conditional genetic tools for the disruption/mapping of approximately 200 chemoconnectomic gene products, an examination of the general effectiveness of these tools in the fly brain and apply them to the circadian clock network in an attempt to reveal new information regarding the transmitter/modulator systems involved in daily behavioral timing. The authors provide clear evidence of the effectiveness of the new methods along with a transparent assessment of the variability of the tools. In addition, they present evidence that the neuro peptide CNMa influences the morning peak of daily activity in the fly by regulating the timing of activity increases in anticipation of dawn.
A major strength of the study is the transparent assessment of the effectiveness and variability of the conditional genetic approaches developed by the authors. The authors have largely achieved their aims and the study therefore represents a major delivery on the promise of chemoconnectomics made by the senior author in 2019 (Neuron, Vol. 101, p. 876). Though there are some concerns about the variability of knockout effectiveness, off target effects of the knockout strategies, and (especially) the accuracy of the gene expression approach, the tools created for this study will almost certainly be useful for the field and support a great deal of future work.
Comments on revised version:
The authors have responded to each of my concerns. Most importantly, they have made the discrepancies within the study and between the study and previously published work clearer to the reader. they have also corrected statements that are not consistent with the current state of the field. The issue regarding opposing effects of PDF signaling and CNMa, which was also raised by Reviewer One still stands, notwithstanding the edits made to the text.
-
Reviewer #3 (Public Review):
Summary:
Mao and colleagues generated powerful reagents to genetically analyse chemical communication (CCT) in the brain, and in the process uncovered a function for the CNMa neuropeptide expressed in a subset of DN1p neurons that contributes to the temporal organization of locomotor activity, i.e., the timing of morning anticipation.
Strengths:
The strength of the manuscript relies in the generation/characterization of new tools for conditional targeting a well-defined set of CCT genes along with the design and testing of improved versions of Cas9 for efficient knock out. Such invaluable resources will be of interest to the whole community. The authors employed these tools and intersectional genetics to provide an alternative profiling of clock neurons, which is complementary to the ones already published. Furthermore, they uncovered a role for CNMamide, expressed in two DN1ps, in the timing of morning anticipation.
Weaknesses:
All prior concerns have been addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this work, Xie, Prescott and colleagues have reevaluated the role of Nav1.7 in nociceptive sensory neurons excitability. They find that nociceptors can make use of different sodium channel subtypes to reach equivalent excitability. The existence of this degeneracy is critical to understanding the neuronal physiology under normal and pathological conditions and could explain why Nav subtype-selective drugs have failed in clinical trials. More concretely, nociceptor repetitive spiking relies on Nav1.8 at DIV0 (and probably under normal conditions in vivo), but on Nav1.7 and Nav1.3 at DIV4-7 (and after inflammation in vivo).
The conclusions of this paper are mostly well supported by data, and these findings should be of broad interest to scientists working on pain, drug development, neuronal excitability and ion channels.
Strengths:
The authors have employed elegant electrophysiology experiments (including specific pharmacology and dynamic clamp) and computational simulations to study the excitability of a subpopulation of DRGs that would very likely match with nociceptors (they take advantage of using transgenic mice to detect Nav1.8-expressing neurons). They make a strong point showing the degeneracy that occurs at the ion channel expression level in nociceptors, adding this new data to previous observations in other neuronal types. They also demonstrate that the different Nav subtypes functionally overlap and are able to interchange their "typical" roles in action potential generation. As Xie, Prescott and colleagues argue, the functional implications of the degenerate character of nociceptive sensory neurons excitability need to be seriously taken into account regarding drug development and clinical trials with Nav subtype-selective inhibitors.
In this revised version, the quality of the manuscript has been visibly improved. In my opinion, the questions and concerns raised by reviewers have been addressed clearly. After a detailed reading of this version and the comments to the reviewers, I have no additional comments or criticisms.
-
Reviewer #2 (Public Review):
Summary:
The authors have noted in preliminary work that tetrodotoxin (TTX), which inhibits NaV1.7 and several other TTX-sensitive sodium channels, has differential effects on nociceptors, dramatically reducing their excitability under certain conditions but not under others. Partly because of this coincidental observation, the aim of the present work was to re-examine or characterize the role of NaV1.7 in nociceptor excitability and the effects on drug efficacy. The manuscript demonstrates that a NaV1.7-selective inhibitor produces analgesia only when nociceptor excitability is based on NaV1.7. More generally and comprehensively, the results show that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and NaV expression of different NaV subtypes (NaV 1.3/1.7 and 1.8). This can cause widespread changes in the role of a particular subtype over time. The degenerate nature of nociceptor excitability shows functional implications that make the assignment of pathological changes to a particular NaV subtype difficult or even impossible.
Thus, the analgesic efficacy of NaV1.7- or NaV1.8-selective agents depends essentially on which NaV subtype controls excitability at a given time point. These results explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.
Strengths:
The results are clearly and impressively supported by the experiments and data shown. During the revision, the manuscript was consistently improved and the concerns of the first reviews were resolved. All methods are described in detail, and presumably, allow good reproducibility and were suitable to address the scientific question.
The results showing that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and expression of different NaV subtypes are of great importance in the fields of basic and clinical pain research and sodium channel physiology and pharmacology, but also for a broad readership and community. The degenerate nature of nociceptor excitability, which is clearly shown and well supported by data has large functional implications. The results are of great importance because they may explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.
In summary, the authors achieved their overall aim to enlighten the role of the NaV1.7 in nociceptor excitability and the effects on drug efficacy. The data support the conclusions and clinical implications are highlighted as far as is currently justifiable due to the still limited experience in translation. This appears well-considered, not too speculative, and ultimately appropriate.
The main weaknesses of the first version were fixed during the revision:
(i) After revising the manuscript, the initial weakness that the computer model was described superficially has been fixed. Important information was added to the main text and additional information, including the full code and equations and values are deposited on ModelDB or are given in the Supplementary information (Suppl. Table 5 & 6).
(ii) The authors now comment that corresponding studies on protein levels or e.g. neuroinflammatory changes could support the characterization of the time course of membrane expression and cellular changes, but this should be addressed in future studies, as these analyses would also raise new questions, such as about membrane trafficking, post-translational modifications, etc. This is plausible and has now been appropriately addressed in the text.
(iii) During the initial review the authors were asked to discuss the promising role of NaV1.7 in the light of clinical results. In their response, the authors confidently state that they „wish to avoid speculating on which particular clinical results are better explained because our study was not designed for that." They, however, emphasize their take-home message, which is well supported "Instead, our take-home message (which is well supported; see Discussion on lines 309-321) is that NaV1.7-selective drugs may have a variable clinical effect because nociceptors' reliance on NaV1.7 is itself variable - much more than past studies would have readers believe. ... The challenge (as highlighted in the Abstract, lines 21-22) is that identifying the dominant Nav subtype to predict drug efficacy is difficult."
Against the background of this argumentation, it must be admitted that the decision not to present as yet unproven speculations is probably appropriate from a scientific point of view and that this ultimately proves the critical assessment of one's own data and the limitations of the study. This is undoubtedly acceptable and - in retrospect - probably the right way to go.
-
Reviewer #3 (Public Review):
Summary:
In this study the authors used patch-clamp to characterize the implication of various voltage-gated Na+ channels in the firing properties of mouse nociceptive sensory neurons. They claim that depending on the culture conditions NaV1.3, NaV1.7, and NaV1.8 have distinct contributions to action potential firing and that similar firing patterns can result from distinct relative roles of these channels.
Strengths:
The paper addresses the important issue of understanding the lack of success of therapeutic strategies targeting NaV channels in the context of pain. Specifically, the authors test the hypothesis that different NaV channels contribute in a plastic manner to action potential firing, which may be the reason why it is difficult to target pain by inhibiting these channels.
Weaknesses:
(1) - The main claim of this paper is that "nociceptors can achieve equivalent excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8". From this, they allude to the manifestation of "degeneracy", a concept implying that a biological process can occur via distinct sets of underlying components.<br /> In my opinion, the analyses of the data is biased towards the author's interpretation.<br /> - First, when comparing the excitability across neurons one should relate the response (in this case mean firing frequency) to the absolute size of the stimulus, not to the size of the stimulus normalized to the rheobase (see e.g., Figs. 1A). From this particular figure the authors conclude that the excitability is similar in the culture stages DIV0 and DIV4-7, but these data were not directly compared.<br /> - Second, the authors reach their conclusion from the comparison of the (average) firing rate determined over 1 s current stimulation in distinct conditions. However, this is not the only parameter that determines how sensory neurons might convey information. For instance, the time dependence of the instantaneous frequency, the actual firing pattern, maybe also important.<br /> - Third, the use of 1 s of current stimulation might not be sufficient to characterize the firing pattern if one wants to obtain conclusions that could translate to clinical settings (i.e., sustained pain).<br /> - Fourth, out of principle, the gating properties of NaV1.7 and NaV1.8 channels are not identical, and therefore their contributions to excitability should not be the same. A neuron in which NaV1.7 is the main contributor is expected to have a damping firing pattern due to cumulative channel inactivation, whereas another depending mainly on NaV1.8 is expected to display more sustained firing. This is actually seen in the results of the modelling.
(2) - The quality of some recordings is dubious. The currents shown as TTX-sensitive in Fig. 1D look very strange (not like the ones at Baseline DIV4-7). These traces show abnormally fast inactivation and even transient deflections above zero current line. These are obvious artifacts of the subtraction procedure, probably due to unstable current amplitudes along the recording time. Similar odd-looking traces are shown in Fig. 3A.
(3) - I would like to point out that the main Significance Statement of the manuscript reads "The analgesic efficacy of subtype-selective drugs hinges on which subtype controls excitability". I would like to point out that, in addition of being extremely obvious for anyone knowing a bit about pain signaling, the authors did not test the analgesic efficacy of any drug in this study.
(4) - A critical issue in the manuscript is the unnecessary use of phrases that imply that biological entities have some sort of willpower, flirting with anthropomorphism and teleological language.<br /> Sentences such as "Nociceptive sensory neurons convey pain signals to the CNS using action potentials" (see the Abstract) should be avoided. Neurons do not really "use" action potentials, they have no will to do so. Action potentials are not tools or means to be "used" by neurons. There are many other examples of misuse of the verb "use" in many other sentences. These were pointed out during the revision phase, but unfortunately the authors refused to correct them.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In Ryu et al., the authors use a cortical mouse astrocyte culture system to address the functional contribution of astrocytes to circadian rhythms in the brain. The authors' starting point is transcriptional output from serum-shocked culture, comparative informatics with existing tools and existing datasets. After fairly routine pathway analyses, they focus on the calcium homeostasis machinery and one gene, Herp, in particular. They argue that Herp is rhythmic at both mRNA and protein levels in astrocytes. They then use a calcium reporter targeted to the ER, mitochondria, or cytosol and show that Herp modulates calcium signaling as a function of circadian time. They argue that this occurs through the regulation of inositol receptors. They claim that the signaling pathway is clock-controlled by a limited examination of Bmal1 knockout astrocytes. Finally, they switch to calcium-mediated phosphorylation of the gap junction protein Connexin 43 but do not directly connect HERP-mediated circadian signaling to these observations. While these experiments address very important questions related to the critical role of astrocytes in regulating circadian signaling, the mechanistic arguments for HERP function, its role in circadian signaling through inositol receptors, the connection to gap junctions, and ultimately, the functional relevance of these findings is only partially substantiated by experimental evidence.
Strengths:
- The paper provides useful datasets of astrocyte gene expression in circadian time.
- Identifies HERP as a rhythmic output of the circadian clock.
- Demonstrates the circadian-specific sensitivity of ATP -> calcium signaling.
- Identifies possible rhythms in both Connexin 43 phosphorylation and rhythmic movement of calcium between cells.
Weaknesses:
- It is not immediately clear why the authors chose to focus on Ca2+ homeostasis or Herp from their initial screens as neither were the "most rhythmic" pathways in their primary analyses.
- It would have been interesting (and potentially important) to know whether various methods of cellular synchronization would also render HERP rhythmic (e.g., temperature, forskolin, etc). If Herp is indeed relatively astrocyte-specific and rhythmic, it should be easy to assess its rhythmicity in vivo.
- The authors show that Herp suppression reduces ATP-mediated suppression of calcium whereas it initially increases Ca2+ in the cytosol and mitochondria and then suppresses it. The dynamics of the mitochondrial and cytosolic responses are not discussed in any detail and it is unclear what their direct relationship is to Herp-mediated ER signaling. What is the explanation for Herp (which is thought to be ER-specific) to calcium signaling in other organelles?
- What is the functional significance of promoting ATP-mediated suppression of calcium in ER?
- The authors then nicely show that the effect of ATP is dependent on intrinsic circadian timing but do not explain why these effects are antiphase in cytosol or mitochondria. Moreover, the ∆F/F for calcium in mitochondria and cytosol both rise, cross the abscissa, and then diminish - strongly suggesting a biphasic signaling event. Therefore, one wonders whether measuring the area under the curve is the most functionally relevant measurement of the change.
- Why are mitochondrial and cytosolic calcium not also demonstrated for Bmal1 KO astrocytes?
- The authors claim that Herp acts by regulating the degradation of ITPRs but this hypothesis - rather central to the mechanisms proposed in this study - is not experimentally substantiated.
- There is no clear demonstration of the functional relevance of the circadian rhythms of ATP-mediated calcium signaling.
-
Reviewer #2 (Public Review):
Summary:
The article entitled "Circadian regulation of endoplasmic reticulum calcium response in mouse cultured astrocytes" submitted by Ryu and colleagues describes the circadian control of astrocytic intracellular calcium levels in vitro.
Strengths:
The authors used a variety of technical approaches that are appropriate
Weaknesses:
Statistical analysis is poor and could lead to a misinterpretation of the data
Several conceptual issues have been identified.
Overinterpretation of the data should be avoided. This is a mechanistic paper done completely in vitro, all references to the in vivo situation are speculative and should be avoided.
-
Reviewer #3 (Public Review):
Astrocyte biology is an active area of research and this study is timely and adds to a growing body of literature in the field. The RNA-seq, Herp expression, and Ca2+ release data across wild-type, Bmal1 knockout, and Herp knockdown cellular models are robust and lend considerable support to the study's conclusions, highlighting their importance. Despite these strengths, the manuscript presents a gap in elucidating the dynamics of HERP and the involvement of ITPR1/2 in modulating Ca2+ release patterns and their circadian variations, which remains insufficiently supported and characterized. While the Connexin data underscore the importance of rhythmic Ca2+ release triggered by ATP, the relationship here appears correlational and the role of HERP and ITPR in Cx function remains to be characterized. Moreover, enhancing the manuscript's clarity and readability could significantly benefit the presentation and comprehension of the findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This is an interesting and well-written paper reporting on a novel approach to studying cerebellar function based on the idea of selective recruitment using fMRI. The study is well-designed and executed. Analyses are sound and results are properly discussed. The paper makes a significant contribution to broadening our understanding of the role of the cerebellum in human behavior.
- While the authors provide a compelling case for the link between BOLD and the cerebellar cortical input layer, there remains considerable unexplained variance. Perhaps the authors could elaborate a bit more on the assumption that BOLD signals mainly reflect the input side of the cerebellum (see for example King et al., elife. 2023 Apr 21;12:e81511).
- The current approach does not appear to take the non-linear relationships between BOLD and neural activity into account.
- The authors may want to address a bit more the issue of closed loops as well as the underlying neuroanatomy including the deep cerebellar nuclei and pontine nuclei in the context of their current cerebello-cortical correlational approach. But also the contribution of other brain areas such as the basal ganglia and hippocampus.
- What about the direct projections of mossy fibers to the DCN that actually bypasses the cerebellar cortex?
-
Reviewer #2 (Public Review):
Summary:
Shahshahani and colleagues used a combination of statistical modelling and whole-brain fMRI data in an attempt to separate the contributions of cortical and cerebellar regions in different cognitive contexts.
Strengths:
* The manuscript uses a sophisticated integration of statistical methods, cognitive neuroscience, and systems neurobiology.
* The authors use multiple statistical approaches to ensure robustness in their conclusions.
* The consideration of the cerebellum as not a purely 'motor' structure is excellent and important.
Weaknesses:
* Two of the foundation assumptions of the model - that cerebellar BOLD signals reflect granule cells > purkinje neurons and that corticocerebellar connections are relatively invariant - are still open topics of investigation. It might be helpful for the reader if these ideas could be presented in a more nuanced light.
* The assumption that cortical BOLD responses in cognitive tasks should be matched irrespective of cerebellar involvement does not cohere with the idea of 'forcing functions' introduced by Houk and Wise.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this work, the authors set out to ask whether the MYRF family of transcription factors, represented by myrf-1 and myrf-2 in C. elegans, have a role in the temporally controlled expression of the miRNA lin-4. The precisely timed onset of lin-4 expression in the late L1 stage is known to be a critical step in the developmental timing ("heterochronic") pathway, allowing worms to move from the L1 to the L2 stage of development. Despite the importance of this step of the pathway, the mechanisms that control the onset of lin-4 expression are not well understood.
Overall, the paper provides convincing evidence that MYRF factors have a key role in promoting lin-4 expression in young larvae. Using state-of-the-art techniques (knock-in reporters and conditional alleles), the authors show that MYRF factors are essential for lin-4 activation and act cell-autonomously. Results using some unusual gain-of-function alleles are supported by consistent results using other approaches. The authors also provide evidence supporting the idea that MYRF factors activate lin-4 by directly activating its promoter. Because these results are indirect test of this, further experiments will be necessary to conclusively determine whether lin-4 is indeed a direct target of MYRF factors. myrf-1 and myrf-2 likely function redundantly to activate lin-4; potential complex interactions between these two genes will be an interesting area for future work.
Overall, the paper's results are convincing. The important findings on miRNA regulation and the control of developmental timing will make this work of interest to a broad range of developmental biologists.
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors examine how temporal expression of the lin-4 microRNA is transcriptionally regulated.
Comments on revised version:
In the revised manuscript, the authors have suitably addressed my original concerns.
Aims achieved: The aims of the work are now achieved.
Impact: This study shows that a single transcription factor (MYRF-1) is important for the regulation of multiple microRNAs that are expressed early in development to control developmental timing.
-
-
-
Reviewer #2 (Public Review):
Summary:
Larouche et al show that TEs are broadly expressed in thymic cells, especially in mTECs and pDCs. Their data suggest a possible involvement of TEs in thymic gene regulation and IFN-alpha secretion. They also show that at least some TE-derived peptides are presented by MHC-I in the thymus.
Strengths:
The idea of high/broad TE expression in the thymus as a mechanism for preventing TE-mediated autoimmunity is certainly an attractive one, as is their involvement in IFN-alpha secretion therein. The analyses and experiments presented here are therefore a very useful primer for more in-depth experiments, as the authors point out towards the end of the discussion.
Weaknesses:
There are many dangers about analysing RNA-seq data at the subfamily level. Outputs may be greatly confounded by pervasive transcription, DNA contamination, and overlap of TEs with highly expressed genes. Whether TE transcripts are independent units or part of a gene also has important implications for the conclusions drawn. The authors have tried to mitigate against some of these issues, but they have not been completely ruled out.
-
Reviewer #1 (Public Review):
Summary:
Transposable Elements (TEs) are exogenously acquired DNA regions that have played important roles in the evolutional acquisition of various biological functions. TEs may have been important in the evolution of the immune system, but their role in thymocytes has not been fully clarified.
Using the human thymus scRNA dataset, the authors suggest the existence of cell type-specific TE functions in the thymus. In particular, it is interesting to show that there is a unique pattern in the type and expression level of TEs in thymic antigen-presenting cells, such as mTECs and pDCs, and that they are associated with transcription factor activities. Furthermore, the authors suggested that TEs may be non-redundantly regulated in expression by Aire, Fezf2, and Chd4, and that some TE-derived products are translated and present as proteins in thymic antigen-presenting cells. These findings provide important insights into the evolution of the acquired immune system and the process by which the thymus acquires its function as a primary lymphoid tissue.
Strengths:
(1) By performing single-cell level analysis using scRNA-seq datasets, the authors extracted essential information on heterogeneity within the cell population. It is noteworthy that this revealed the diversity of expression not only of known autoantigens but also of TEs in thymic antigen-presenting cells.
(2) The attempt to use mass spectrometry to confirm the existence of TE-derived peptides is worthwhile, even if the authors did not obtain data on as many transcripts as expected.
(3) The use of public data sets and the clearly stated methods of analysis improved the transparency of the results.
Weaknesses:
(1) The authors sometimes made overstatements largely due to the lack or shortage of experimental evidence.
For example in Figure 4, the authors concluded that thymic pDCs produced higher copies of TE-derived RNAs to support the constitutive expression of type-I interferons in thymic pDCs, unlike peripheral pDCs. However, the data was showing only the correlation between the distinct TE expression pattern in pDCs and the abundance of dsRNAs. We are compelled to say that the evidence is totally too weak to mention the function of TEs in the production of interferon. Even if pDCs express a distinct type and amount of TE-derived transcripts, it may be a negligible amount compared to the total cellular RNAs. How many TE-derived RNAs potentially form the dsRNAs? Are they over-expressed in pDCs?<br /> The data interpretation requires more caution to connect the distinct results of transcriptome data to the biological significance.
We contend that our manuscript combines the attributes of a research article (novel concepts) and a resource article (datasets of TEs implicated in various aspects of thymus function). The critical strength of our work is that it opens entirely novel research perspectives. We are unaware of previous studies on the role of TEs in the human thymus. The drawback is that, as with all novel multi-omic systems biology studies, our work provides a roadmap for a multitude of future mechanistic studies that could not be realized at this stage. Indeed, we performed wet lab experiments to validate some but not all conclusions: i) presentation of TE-derived MAPs by TECs and ii) formation of dsRNAs in thymic pDCs. In response to Reviewer #1, we performed supplementary analyses to increase the robustness of our conclusions. Also, we indicated when conclusions relied strictly on correlative evidence and clarified the hypotheses drawn from our observations. Regarding the Reviewer's questions about TE-derived dsRNAs, LINE, LTR, and SINE elements all have the potential to generate dsRNAs, given their highly repetitive nature and bi-directional transcription (1). As ~32% of TE subfamilies are overexpressed in pDCs, we hypothesized that these TE sequences might form dsRNA structures in these cells. To address the Reviewer's concerns regarding the amount of TE-derived RNAs among total cellular RNAs, we also computed the percentage of reads assigned to TEs in the different subsets of thymic APCs (see Reviewer 1 comment #4).<br /> ------
I appreciate the authors' efforts to improve the quality of this valuable paper. The additional data proposed by the authors enhanced the possibility that the non-negligible amount of RNAs in pDCs is derived from TE elements. Their biological roles and significance will be demonstrated in future research.
(2) Lack of generality of specific examples. This manuscript discusses the whole genomic picture of TE expression. In addition, one good way is to focus on the specific example to clearly discuss the biological significance of the acquisition of TEs for the thymic APC functions and the thymic selection.
In Figure 2, the authors focused on ETS-1 and its potential target genes ZNF26 and MTMR3, however, the significance of these genes in NK cell function or development is unclear. The authors should examine and discuss whether the distinct features of TEs can be found among the genomic loci that link to the fundamental function of the thymus, e.g., antigen processing/presentation.
We thank the Reviewer for this highly relevant comment. We investigated the genomic loci associated with NK cell biology to determine if ETS1 peaks would overlap with TE sequences in protein-coding genes' promoter region. Figure 2h illustrates two examples of ETS1 significant peaks overlapping TE sequences upstream of PRF1 and KLRD1. PRF1 is a protein implicated in NK cell cytotoxicity, whereas KLRD1 (CD94) dimerizes with NKG2 and regulates NK cell activation via interaction with the nonclassical MHC-I molecule HLA-E (2, 3). Thus, we modified the section of the manuscript addressing these results to include these new analyses: "Finally, we analyzed publicly available ChIP-seq data of ETS1, an important TF for NK cell development (4), to confirm its ability to bind TE sequences. Indeed, 19% of ETS1 peaks overlap with TE sequences (Figure 2g). Notably, ETS1 peaks overlapped with TE sequences (Figure 2h, in red) in the promoter regions of PRF1 and KLRD1, two genes important for NK cells' effector functions (2, 3)."<br /> ------
I am convinced by the authors' explanation that TE elements may contribute to the functions of NK cells.<br /> However, since I have understood that the main topic of this paper is about the thymus and thymic antigen-presenting cells, the mention of NK cells seems abrupt and unconnected to me. NK cells are a type of innate lymphocyte that arise in the bone marrow, and thymus is dispensable for their development and function. The readers might expect to find something more fundamental regarding the function of the thymus and immunological tolerance.
(3) Since the deep analysis of the dataset yielded many intriguing suggestions, why not add a discussion of the biological reasons and significance? For example, in Figure 1, why is TE expression negatively correlated with proliferation? cTEC-TE is mostly postnatal, while mTEC-TE is more embryonic. What does this mean?
We thank the Reviewer for this comment. To our knowledge, the relationship between cell division and transcriptional activity of TEs has not been extensively studied in the literature. However, a recent study has shown that L1 expression is induced in senescent cells. We therefore added the following sentences to our Discussion: "The negative correlation between TE expression and cell cycle scores in the thymus is coherent with recent data showing that transcriptional activity of L1s is increased in senescent cells (5). A potential rationale for this could be to prevent deleterious transposition events during DNA replication and cell division." We also added several discussion points regarding the regulation of TEs by KZFPs to answer concerns raised by Reviewer 2 (see Reviewer 2 comment #1).<br /> ------
I agree on the possibility suggested by the authors.
(4) To consolidate the experimental evidence about pDCs and TE-derived dsRNAs, one option is to show the amount of TE-derived RNA copies among total RNAs. The immunohistochemistry analysis in Figure 4 requires additional data to demonstrate that overlapped staining was not caused by technical biases (e.g. uneven fixation may cause the non-specifically stained regions/cells). To show this, authors should have confirmed not only the positive stainings but also the negative staining (e.g. CD3, etc.). Another possible staining control was showing that non-pDC (CD303- cell fractions in this case) cells were less stained by the ds-RNA probe.
We thank the Reviewer for this suggestion. We computed the proportion of reads in each cell assigned to two groups of sequences known to generate dsRNAs: TEs and mitochondrial genes (1). These analyses showed that the proportion of reads assigned to TEs is higher in pDCs than other thymic APCs by several orders of magnitude (~20% of all reads). In contrast, reads derived from mitochondrial genes had a lower abundance in pDCs. We included these results in Figure 4 - figure supplement 2 and included the following text in the Results section "To evaluate if these dsRNAs arise from TE sequences, we analyzed in thymic APC subsets the proportion of the transcriptome assigned to two groups of genomic sequences known as important sources of dsRNAs, TEs and mitochondrial genes (1). Strikingly, whereas the percentage of reads from mitochondrial genes was typically lower in pDCs than in other thymic APCs, the proportion of the transcriptome originating from TEs was higher in pDCs (~22%) by several orders of magnitude (Figure 4 - figure supplement 2)." As a negative control for the immunofluorescence experiments, we used CD123- cells. Indeed, flow cytometry analysis of the magnetically enriched CD303+ fraction was around 90% pure, as revealed by double staining with CD123 and CD304 (two additional markers of pDCs): CD123- cells were also CD304-/lo, showing that these cells are non- pDCs. Thus, we decided to compare the dsRNA signal between CD123+ cells (pDCs) and CD123- cells (non-pDCs). The difference between CD123+ and CD123- cells was striking (Figure 4d).<br /> ------
Although the technical concerns about immunostaining were not resolved, it is understandable that it would be difficult to rerun the experiment since the authors used the precious human thymi as the experimental material. Immunostaining co-staining requires careful interpretation so that careful experimental setup is needed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Shotgun data have been analysed to obtain fungal and bacterial organisms abundance. Through their metabolic functions and through co-occurrence networks, a functional relationship between the two types of organisms can be inferred. By means of metabolomics, function-related metabolites are studied in order to deepen the fungus-bacteria synergy.
Strengths:
Data obtained in bacteria correlate with data from other authors.<br /> The study of metabolic "interactions" between fungi and bacteria is quite new.<br /> The inclusion of metabolomics data to support the results is a great contribution.
Weaknesses:
All my concerns have been clarified
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The manuscript by Mullen et al. investigated the gene expression changes in cancer cells treated with the DHODH inhibitor brequinar (BQ), to explore the therapeutic vulnerabilities induced by DHODH inhibition. The study found that BQ treatment causes upregulation of antigen presentation pathway (APP) genes and cell surface MHC class I expression, mechanistically which is mediated by the CDK9/PTEFb pathway triggered by pyrimidine nucleotide depletion. The combination of BQ and immune checkpoint therapy demonstrated a synergistic (or additive) anti-cancer effect against xenografted melanoma, suggesting the potential use of BQ and immune checkpoint blockade as a combination therapy in clinical therapeutics.
The interesting findings in the present study include demonstrating a novel cellular response in cancer cells induced by DHODH inhibition. However, whether the increased antigen presentation by DHODH inhibition actually contributed to the potentiation of the efficacy of immune-check blockade (ICB) is not directly examined is the limitation of the study. Moreover, the mechanism of the increased antigen presentation pathway by pyrimidine depletion mediated by CDK9/PTEFb was not validated by genetic KD or KO targeting by CDK9/PTEFb pathways. Finally, high concentrations of BQ have been reported to show off-target effects, sensitizing cancer cells to ferroptosis, and the authors should discuss whether the dose used in the in vivo study reached the ferroptotic sensitizing dose or not.
Comment on the revised version:
In their response letter, the authors appropriately addressed the reviewer's comments.
However, it is unfortunate that these comments are not reflected in the main text. Consequently, readers may encounter the same questions. Therefore, the reviewer recommends mentioning them in the discussion or limitations of the study, even if briefly, to address readers' concerns. Especially, addressing the comments such as the dosage of BQ being lower than the reported pro-ferroptotic dose (PMID 37407687), and the lack of examining potential impact of immune cell depletion on the efficacy of BQ treatment would be necessary for considering the proposed mechanism. The latter limitation is also raised by the other reviewer.
-
Reviewer #2 (Public Review):
In their manuscript entitled "DHODH inhibition enhances the efficacy of immune checkpoint blockade by increasing cancer cell antigen presentation", Mullen et al. describe an interesting mechanism of inducing antigen presentation. The manuscript includes a series of experiments that demonstrate that blockade of pyrimidine synthesis with DHODH inhibitors (i.e. brequinar (BQ)) stimulates the expression of genes involved in antigen presentation. The authors provide evidence that BQ mediated induction of MHC is independent of interferon signaling. A subsequent targeted chemical screen yielded evidence that CDK9 is the critical downstream mediator that induces RNA Pol II pause release on antigen presentation genes to increase expression. Finally, the authors demonstrate that BQ elicits strong anti-tumor activity in vivo in syngeneic models, and that combination of BQ with immune checkpoint blockade (ICB) results in significant lifespan extension in the B16-F10 melanoma model. Overall, the manuscript uncovers an interesting and unexpected mechanism that influences antigen presentation and provides an avenue for pharmacological manipulation of MHC genes, which is therapeutically relevant in many cancers. However, a few key experiments are needed to ensure that the proposed mechanism is indeed functional in vivo.
Major Points:
(1) According to the proposed model, BQ mediated induction of antigen presentation is a contributing factor to the efficacy of this therapeutic strategy. If this is true, then depletion of immune cells should reduce the therapeutic efficacy of BQ in vivo. The authors should perform the B16-F10 transplant experiments in either Rag null mice (if available) or with CD8/CD4 depletion. The expectation would be that T cell depletion (or MHC loss with genetic manipulation) should reduce the efficacy of BQ treatment. Absent this critical experiment, it is difficult to confidently conclude that induction of antigen presentation is a fundamental component of the in vivo response to DHODH inhibition.
(2) Does BQ treatment induce antigen presentation in non-malignant cells? APCs? If the induction of antigen presentation is not cancer specific and related to a pyrimidine depletion stress response, then there is a possibility that healthy tissues will also exhibit a similar phenotype, raising concerns about the specificity of a de novo immune response. The authors should examine antigen presentation genes in healthy tissues treated with BQ.
(3) In the title, the authors claim that DHODH enhances the efficacy of ICB. However, the experiment shown in Figure 5D does not demonstrate this. The Kaplan Meier curves reflect more of an additive response versus a synergistic combination. Furthermore, the concurrent treatment of BQ and ICB seems to inhibit the efficacy of ICB due to BQ toxicity in immune cells. When concurrently administered, the survival of the mice is the same as with brequinar alone, suggesting that the efficacy of ICB was diminished. However, if ICB is administered following an initial dose of BQ, there is an added survival benefit of a magnitude that is similar to ICB alone. This result seems to contradict the title. Furthermore, the authors should show the longitudinal growth curves of these tumors.
(4) Related to Point 3, the temporal separation of BQ and ICB raises the question of whether the induction of antigen presentation with BQ is persistent during the course of delayed ICB treatment. One explanation for the results is that BQ treatment reduces tumor burden, and then a subsequent course of ICB also reduces tumor burden but not that the two therapies are functioning in synergy. To address this, the authors should measure the duration of BQ mediated induction of antigen presentation after stopping treatment.
(5) In Figure 1, the authors show that DHODH inhibition induces expression of both MHC-I and MHC-II genes at the RNA level. However, they only validate MHC-I by flow cytometry. A simple experiment to evaluate the effect of BQ treatment on MHC-II surface expression would provide important additional mechanistic insight into the immunomodulatory effects of DHODH inhibition, especially given recent literature reinforcing the importance of MHC-II expression on epithelial cancers, including melanoma (Oliveira et al. Nature 2022).
Minor Points:
(1) The authors show ChIP-seq tracks from Tan et al. for HLA-B. However, given the pervasive effect of Ter treatment across many HLA genes, the authors should either show tracks at additional loci, or provide a heatmap of read density across more loci. This would substantiate the mechanistic claim that RNA Pol II occupancy and activity across antigen presentation genes is the major driver of response to DHODH inhibition as opposed to mRNA stabilization/increased translation.
(2) A compelling way to demonstrate a change in antigen presentation is through mass spectrometry based immunopeptidomics. Performing immunopeptidomic analysis of BQ treated cell lines would provide substantial mechanistic insight into the outcome of BQ treatment. While this approach may be outside the scope of the current work, the authors should speculate on how this treatment may specifically alter the antigenic landscape where future directions would include empirical immunopeptidomics measurements.
(3) While the signaling through CDK9 seems convincing, it still does not provide a mechanistic link between depleted pyrimidines and CDK9 activity. The authors should speculate on the mechanism that signals to CDK9.
(4) Related to minor point 2, the authors should consider a genetic approach to confirm the importance of CDK9. While the pharmacological approach, including multiple mechanistically distinct CDK9 inhibitors provides strong evidence, an additional experiment with genetic depletion of CDK9 (CRISPR KO, shRNA, etc) would provide compelling mechanistic confirmation.
(5) The authors should comment in the discussion on how this strategy may be particularly useful in patients harboring genetic or epigenetic loss of interferon signaling, a known mechanism of ICB resistance. Perhaps DHODH inhibition could rescue MHC expression in cells that are deficient in interferon sensing.
Overall, the paper is clearly written and presented. With the additional experiments described above, especially in vivo, this manuscript would provide a strong contribution to the field of antigen presentation in cancer. The distinct mechanisms by which DHODH inhibition induces antigen presentation will also set the stage for future exploration into alternative methods of antigen induction.
Comments on latest version:
The authors address the majority of the points raised in my previous review. However, no additional in vivo experiments were performed, which seems necessary for the major conclusions of the paper.
I disagree with the authors' assessment of Major Point 3 in my review. I have updated the text of Major Point 3 in my public review to further clarify my position.
My final assessment is that if the authors want to claim that DHODH inhibition potentiates immune checkpoint blockade, as is stated in the title, then further in vivo experimentation is needed.
-
Reviewer #3 (Public Review):
Mullen et al present an important study describing how DHODH inhibition enhances efficacy of immune checkpoint blockade by increasing cell surface expression of MHC I in cancer cells. DHODH inhibitors have been used in the clinic for many years to treat patients with rheumatoid arthritis and there has been a growing interest in repurposing these inhibitors as anti-cancer drugs. In this manuscript, the Singh group builds on their previous work defining combinatorial strategies with DHODH inhibitors to improve efficacy. The authors identify an increased expression of genes in the antigen presentation pathway and MHC I after BQ treatment which is mediated strictly by pyrimidine depletion and CDK9/P-TEFb. The authors rationalize that increased MHC I expression induced by DHODH inhibition might favor efficacy of dual immune checkpoint blockade. In fact, this combinatorial treatment prolonged survival in an immunocompetent B16F10 melanoma model.
Previous studies have shown that DHODH inhibitors can increase expression of innate immunity-related genes but the role of DHODH and pyrimidine nucleotides in antigen presentation has not been previously reported. A strength of the manuscript is the solid in vitro mechanistic data supported by analysis in multiple cell lines. The in vivo data show compelling additive effects of DHODH inhibitors and ICB. However, more controls and experiments would be required to define the nature of these effects and to confirm that the mechanistic in vitro data is conserved in vivo.
This is a relevant manuscript proposing a mechanistic link between pyrimidine depletion and MHC I expression and a novel therapeutic approach combining DHODH inhibitors with dual checkpoint blockade. These results might be relevant for the clinical development of DHODH inhibitors in the treatment of solid tumors, a setting where these have not shown optimal efficacy yet.
Comments on revised version:
The authors have addressed my questions regarding validation of gene expression in other cell lines. They have also provided an explanation about why in vivo evaluations could not be performed for the experiment in Figure 5E.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This manuscript by Warfvinge et al. reports the results of CITE-seq to generate single-cell multi-omics maps from BM CD34+ and CD34+CD38- cells from nine CML patients at diagnosis. Patients were retrospectively stratified by molecular response after 12 months of TKI therapy using European Leukemia Net (ELN) recommendations. They demonstrate heterogeneity of stem and progenitor cell composition at diagnosis, and show that compared to optimal responders, patients with treatment failure after 12 months of therapy demonstrate increased frequency of molecularly defined primitive cells at diagnosis. These results were validated by deconvolution of an independent previously published dataset of bulk transcriptomes from 59 CML patients. They further applied a BCR-ABL-associated gene signature to classify primitive Lin-CD34+CD38- stem cells as BCR:ABL+ and BCR:ABL-. They identified variability in the ratio of leukemic to non-leukemic primitive cells between patients, showed differences in expression of cell surface markers and determined that a combination of CD26 and CD35 cell surface markers could be used to prospectively isolate the two populations. The relative proportion of CD26-CD35+ (BCR:ABL-) primitive stem cells was higher in optimal responders compared to treatment failures, both at diagnosis and following 3 months of TKI therapy.
Strengths:
The studies are carefully conducted and the results are very clearly presented. The data generated will be a valuable resource for further studies. The strengths of this study are the application of single-cell multi-omics using CITE-Seq to study individual variations in stem and progenitor clusters at diagnosis that are associated with good versus poor outcomes in response to TKI treatment. These results were confirmed by deconvolution of a historical bulk RNAseq data set. Moreover, they are also consistent with a recent report from Krishnan et al. and are a useful confirmation of those results. The major new contribution of this study is the use of gene expression profiles to distinguish BCR-ABL+ and BCR-ABL- populations within CML primitive stem cell clusters and then applying antibody-derived tag (ADT) data to define molecularly identified BCR:ABL+ and BCR-ABL- primitive cells by expression of surface markers. This approach allowed them to show an association between the ratio of BCR-ABL+ vs BCR-ABL- primitive cells and TKI response and study dynamic changes in these populations following short-term TKI treatment.
Weaknesses:
The number of samples studied by CITE-Seq is limited. However, the authors have confirmed their key observations in additional samples. The BCR-ABL+ versus BCR-ABL- status of cells was not confirmed by direct sequencing for BCR-ABL. However, we recognize that the methodologies to perform these analyses on single cells is still evolving and the authors have shown that CD26 and CD35 expression can consistently identify BCR-ABL+ versus BCR-ABL- cells. It will be of interest to learn whether the GEP and surface markers identified here can distinguish BCR-ABL+ primitive stem cells later in the course of TKI treatment.
-
Reviewer #3 (Public Review):
Summary:
In this study, Warfvinge and colleagues use CITE-seq to interrogate how CML stem cells change between diagnosis and after one year of TKI therapy. This provides important insight into why some CML patients are "optimal responders" to TKI therapy while others experience treatment failure. CITE-seq in CML patients revealed several important findings. First, substantial cellular heterogeneity was observed at diagnosis, suggesting that this is a hallmark of CML. Further, patients who experienced treatment failure demonstrated increased numbers of primitive cells at diagnosis compared to optimal responders. This finding was validated in a bulk gene expression dataset from 59 CML patients, in which it was shown that the proportion of primitive cells versus lineage-primed cells correlates to treatment outcome. Even more importantly, because CITE-seq quantifies cell surface protein in addition to gene expression data, the authors were able to identify the BCR/ABL+ and BCR/ABL- CML stem cells express distinct cell surface markers (CD26+/CD35- and CD26-/CD35+, respectively). In optimal responders, BCR/ABL- CD26-/CD35+ CML stem cells were predominant, while the opposite was true in patients with treatment failure. Together, these findings represent a critical step forward for the CML field and may allow more informed development of CML therapies, as well as the ability to predict patient outcomes prior to treatment.
Strengths:
This is an important, beautifully written, well-referenced study that represents a fundamental advance in the CML field. The data are clean and compelling, demonstrating convincingly that optimal responders and patients with treatment failure display significant differences in the proportion of primitive cells at diagnosis, and the ratio of BCR-ABL+ versus negative LSCs. The finding that BCR/ABL+ versus negative LSCs display distinct surface markers is also key and will allow for more detailed interrogation of these cell populations at a molecular level.
Weaknesses:
CITE-seq was performed in only 9 CML patient samples and 2 healthy donors. Additional samples would greatly strengthen the very interesting and notable findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This is an important manuscript that links gene expression to genetic variants and regions of open chromatin. The mechanisms of genetic gene regulation are essential to understanding how standing genetic variation translates to function and phenotype. This data set has the ability to add substantial insight into the field. In particular, the authors show how the relationships between variants, chromatin, and genes are spatially constrained by topologically associated domains.
-
Reviewer #2 (Public Review):
The experiments described in the manuscript are well designed and executed. Most of the data presented are of high quality, convincing, and in general support the conclusions made in the manuscript. This manuscript should be of great interest to the field of mammalian gene regulation and the approaches used here can have broader applications in studying genetic and epigenetic regulations of gene expression. The key finding reported here, the importance of 3D chromatin structure in controlling gene expression, although not unexpected, offers a better understanding of the physiological roles of TADs.
Comments on revised version:
I think the authors have substantially addressed reviewers' concerns. I have no further comments to add.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Cell type deconvolution is one of the early and critical steps in the analysis and integration of spatial omic and single cell gene expression datasets, and there are already many approaches proposed for the analysis. Sang-aram et al. provide an up-to-date benchmark of computational methods for cell type deconvolution.
In doing so, they provide some (perhaps subtle) additional elements that I would say are above the average for a benchmarking study: i) a full Nextflow pipeline to reproduce their analyses; ii) methods implemented in Docker containers (which can be used by others to run their datasets); iii) a fairly decent assessment of their simulator compared to other spatial omics simulators. A key aspect of their results is that they are generally very concordant between real and synthetic datasets. And, it is important that they authors include an appropriate "simpler" baseline method to compare against and surprisingly, several methods performed below this baseline. Overall, this study also has the potential to also set the standard of benchmarks higher, because of these mentioned elements.
The only weakness of this study that I can readily see is that this is a very active area of research and we may see other types of data start to dominate (CosMx, Xenium) and new computational approaches will surely arrive. The Nextflow pipeline will make the the prospect of including new reference datasets and new computational methods easier.
-
Reviewer #2 (Public Review):
In this manuscript Sangaram et al provide a systematic methodology and pipeline for benchmarking cell type deconvolution algorithms for spatial transcriptomic data analysis in a reproducible manner. They developed a tissue pattern simulator that starts from single-cell RNA-seq data to create silver standards and used spatial aggregation strategies from real in situ-based spatial technologies to obtain gold standards. By using several established metrics combined with different deconvolution challenges they systematically scored and ranked 12 different methods and assessed both functional and usability criteria. Altogether, they present a reusable and extendable platform and reach very similar conclusions to other deconvolution benchmarking paper, including that RCTD, SpatialDWLS and Cell2location typically provide the best results. Major strengths of the simulation engine include the ability to downsample and recapitulate several cell and tissue organization patterns.
More specifically, the authors of this study sought to construct a methodology for benchmarking cell type deconvolution algorithms for spatial transcriptomic data analysis in a reproducible manner. The authors leveraged publicly available scRNA-seq, seqFISH, and STARMap datasets to create synthetic spatial datasets modeled after that of the Visium platform. It should be noted that the underlying experimental techniques of seqFISH and STARMap (in situ hybridization) do not parallel that of Visium (sequencing), which could potentially bias simulated data. Furthermore, to generate the ground truth datasets cells and their corresponding count matrix are represented by simple centroids. Although this simplifies the analysis it might not necessarily accurately reflect Visium spots where cells could lie on a boundary and affect deconvolution results.
The authors thoroughly and rigorously compare methods while addressing situational discrepancies in model performance, indicative of a strong analysis. The authors make a point to address both inter- and intra- dataset reference handling, which has a significant impact on performance, as the authors note in the text and conclusions. Indeed, supplying optimal reference data is - potentially most - important to achieve the best performance and hence it's important to understand that experimental design or sample matching is at least equally important to selecting the ideal deconvolution tool.
Similarly, the authors conclude that many methods are still outperformed by bulk deconvolution methods (e.g. Music or NNLS), however, it needs to be noted that these 'bulk' methods are also among the most sensitive when using an external (inter) dataset (S10), which likely resembles the more realistic scenario for most labs.
As the authors also discuss it's important to realize that deconvolution approaches are typically part of larger exploratory data analysis (EDA) efforts and require users to change parameters and input data multiple times. Thus, running time, computing needs, and scalability are probably key factors that researchers would like to consider when looking to deconvolve their datasets.
The authors achieve their aim to benchmark different deconvolution methods and the results from their thorough analysis support the conclusions that creating cell type deconvolution algorithms that can handle both cell abundance and rarity throughout a given tissue sample are challenging.
The reproducibility of the methods described will have significant utility for researchers looking to develop cell type deconvolution algorithms, as this platform will allow simultaneous replication of the described analysis and comparison to new methods.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
The authors primary objective in this study was to identify differences between patients with preeclampsia and normal patients with respect to the placental syncytiotrophoblast extracellular vesicle proteome.
A strength of this study is that the authors identified novel STB-EV protein markers that are more abundant in the placenta of patients with preeclampsia compared with normal controls. This contributes a little more to what is already known about STB-EV markers and preeclampsia. If these markers can be shown to be more abundant in maternal plasma of preeclampsia patients, it would be very useful for identifying patients who are at high risk for developing early-onset preeclampsia.
Weaknesses include:<br /> (1) The small sample size. There were only 6 patients in the study group and 6 normal controls. However, this can be considered as a pilot study.<br /> (2) The normal controls were not matched with the study patients and the authors did not state how the controls were selected.<br /> (3) The authors state that the placenta samples were obtained at the time of elective cesarean section. However, it is likely that all the preeclampsia patients were delivered for clinical indications rather than electively. This should be clarified.
-
Reviewer #2 (Public Review):
Summary:
Preeclampsia is a disorder of pregnancy that affects 4-5% of pregnancies worldwide. Identifying this condition early is clinically relevant as it will help clinicians to make management decisions to prevent adverse outcomes. The placenta holds a key to many pregnancy-related pathologies including preeclampsia and studies have shown many differences in the placenta of women with preeclampsia as compared to controls. However as the placenta cannot be collected directly during pregnancy, the exosomes secreted by it are considered a good alternative to tissue biopsy. In this study, the authors have compared the proteins in different sizes of exosomes from the placenta of women with and without preeclampsia. The idea is to eventually use these as biomarkers for early detection of preeclampsia.
Strengths:
The novelty factor of this study is the use of two different-sized exosomes which has not been achieved earlier.
Weaknesses:
The study measured the proteins at only a single time point after the disease has already occurred. However, the placenta is an ever-changing tissue throughout pregnancy and different proteins can come up at different times in pregnancy. Thus serial measurements are necessary and a single time point measurement. The has not validated the identified biomarkers in plasma or circulating placental exosomes from women with and without preeclampsia. Thus the utility of these findings in real-life situations can not be judged from this work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors set out to use structural biology (cryo-em), SPR and complement convertase assays to understand the mechanism(s) by which ISG65 dampens the cytotoxicity/cellular clearance to/of trypanosmes opsonised with C3b by the innate immune system.
The cryo-EM structure adds significantly the the author's previous crystallographic data because the latter was limited to the C3d sub-domain of C3b. Further, the in vitro convertase assay adds an additional functional dimension to this study.
The authors have achieved their aims and the results support their conclusions.
The role of complement in immunity to T. brucei (or lack thereof) has been a significant question in molecular parasitology for over 30 years. The identification of ISG65 as the C3 receptor and now this study providing mechanistic insights represents a major advance in the field.
The authors have appropriately put their results into perspective with other recent reports on the role of ISG65.
-
Reviewer #3 (Public Review):
The authors investigate the mechanisms by which ISG65 and C3 recognize and interact with each other. The major strength is the identification of exo-site by determining the cryoEM structure of the complex, which suggests new intervention strategies. This is a solid body of work that has an important impact in parasitology, immunology, and structural biology.
Comments on revised version:
The authors have addressed all the previous concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The goal of this study is to understand the allosteric mechanism of overall activity regulation in an anaerobic ribonucleotide reductase (RNR) that contains an ATP-cone domain. Through cryo-EM structural analysis of various nucleotide-bound states of the RNR, the mechanism of dATP inhibition is found to involve order-disorder transitions in the active site. These effects appear to prevent binding of substrate and a radical transfer needed to initiate the reaction.
Strengths of the manuscript include the comprehensive nature of the work - including both numerous structures of different forms of the RNR and detailed characterization of enzyme activity to establish the parameters of dATP inhibition. The manuscript has been improved in a revision by performing additional experiments to help corroborate certain aspects of the study. But these new experiments do not address all of the open questions about the structural basis for mechanism. Additionally, some questions about the strength of biochemical data and fit of binding or kinetic curves to data that were raised by other referees still remain. Some experimental observations are not consistent with the proposed model. For example, why does dATP enhance Gly radical formation when the proposed mechanism of dATP inhibition involves disorder in the Gly radical domain?
The work is impactful because it reports initial observations about a potentially new mode of allosteric inhibition in this enzyme class. It also sets the stage for future work to understand the molecular basis for this phenomenon in more detail.
-
Reviewer #3 (Public Review):
The manuscript by Bimai et al describes a structural and functional characterization of an anaerobic ribonucleotide reductase (RNR) enzyme from the human microbe, P. copri. More specifically, the authors aimed to characterize the mechanism by how (d)ATP modulates nucleotide reduction in this anaerobic RNR, using a combination of enzyme kinetics, binding thermodynamics, and cryo-EM structural determination, complemented by hydrogen-deuterium exchange (HDX). One of the principal findings of this paper is the ordering of a NxN 'flap' in the presence of ATP that promotes RNR catalysis and the disordering (or increased protein dynamics) of both this flap and the glycyl radical domain (GRD) when the inhibitory effector, dATP, binds. The latter is correlated with a loss of substrate binding, which is the likely mechanism for dATP inhibition. It is important to note that the GRD is remote (>30 Ang) from the binding site of the dATP molecule, suggesting long-range communication of the structural (dis)ordering. The authors also present evidence for a shift in oligomerization in the presence of dATP. The work does provide evidence for new insights/views into the subtle differences of nucleotide modulation (allostery) of RNR, in a class III system, through long-range interactions.
The strengths of the work are the impressive, in-depth structural analysis of the various regulated forms of PcRNR by (d)ATP using cryo-EM. The authors present seven different models in total, with striking differences in oligomerization and (dis)ordering of select structural features, including the GRD that is integral to catalysis. The authors present several, complementary biochemical experiments (ITC, MST, EPR, kinetics) aimed at resolving the binding and regulatory mechanism of the enzyme by various nucleotides. The authors present a good breadth of the literature in which the focus of allosteric regulation of RNRs has been on the aerobic orthologues.
The addition of hydrogen-deuterium exchange mass spectrometry (HDX-MS) complements the results originating from cryo-EM data. Most notably, is the observation of the enhanced exchange (albeit quite subtle) of the GRD domain in the presence of dATP that matches the loss of structural information in this region in the cryo-EM data. The most pronounced and compelling HDX results are seen in the form of dATP-induced protection of peptides immediately adjacent to the b-hairpin at the s-site, where dATP is expected to bind based on cryo-EM. It is clear that the presence of dATP increases the rigidity of this region.
Weaknesses: The discussion of the change in peptide mobility in the N-terminal region is complicated by the presence of bimodal mass spectral features and this may prevent detailed interpretation of the data, especially for select peptide region that shows opposite trends upon nucleotide association. Further, the HDX data in the NxN flap is unchanged upon nucleotide binding (ATP, dATP, or CTP), despite changes observed in the cryo-EM data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In the revised manuscript by Maio et al, the authors examined the bioenergetic mechanisms involved in the delayed migration of DC's during Mtb infection. The authors performed a series of in vitro infection experiments including bioenergetic experiments using the Agilent Seahorse XF, and glucose uptake and lactate production experiments. Also, data from SCENITH is included in the revised manuscript as well as some clinical data. This is a well written manuscript and addresses an important question in the TB field. A remaining weakness is the use of dead (irradiated) Mtb in several of the new experiments and claims where iMtb data were used to support live Mtb data. Another notable weakness lies in the author's insistence on asserting that lactate is the ultimate product of glycolysis, rather than acknowledging a large body of historical data in support of pyruvate's role in the process. This raises a perplexing issue highlighted by the authors: if Mtb indeed upregulates glycolysis, one would expect that inhibiting glycolysis would effectively control TB. However, the reality contradicts this expectation. Lastly, the examination of the bioenergetics of cells isolated from TB patients undergoing drug therapy, rather than studying them at their baseline state is a weakness.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors use insights into the dynamics of the PKA kinase domain, obtained by NMR experiments, to inform MD simulations that generate an energy landscape of PKA kinase domain conformational dynamics.
Strengths:
The authors integrate strong experimental data through the use of state-of-the-art MD studies and derive detailed insights into allosteric communication in PKA kinase. Comparison of wt kinase with a mutant (F100A) shows clear differences in the allosteric regulation of the two proteins. These differences can be rationalized by NMR and MD results. During the revision process, the authors have addressed the reviewers' comments adequately and have improved the accessibility of the manuscript to a wider audience.
-
Reviewer #3 (Public Review):
Summary:
Combining several MD simulation techniques (NMR-constrained replica-exchange metadynamics, Markov State Model, and unbiased MD) the authors identified the aC-beta4 loop of PKA kinase as a switch crucially involved in PKA nucleotide/substrate binding cooperatively. They identified a previously unreported excited conformational state of PKA (ES2), this switch controls and characterized ES2 energetics with respect to the ground state. Based on translating the simulations into chemical shits and NMR characterizing of PKA WT and an aC-beta4 mutant, the author made a convincing case in arguing that the simulation-suggested excited state is indeed an excited state observed by NMR, thus giving the excited state conformational details.
Strengths:
This work incorporates extensive simulation works, new NMR data, and in vitro biochemical analysis. It stands out in its comprehensiveness, and I think it made a great case.
Weaknesses:
The manuscript is somewhat difficult to read even for kinase experts, and even harder for the layman. The difficulty partially arises from mixing the technical description of the simulations with the structural interpretation of the results, which is more intuitive, and partially arises from the assumption that readers are familiar with kinase architecture and its key elements (the aC helix, the APE motif, etc).
-
-
-
Reviewer #1 (Public Review):
Summary:
The authors have implemented Optimal Transport algorithm in GromovMatcher for comparing LC/MS features from different datasets. This paper gains significance in the proteomics field for performing meta-analysis of LC/MS data.
Strengths:
The main strength is that GromovMatcher acheives significant performance metrics compared to other existing methods. The authors have done extensive comparisons to claim that GromovMatcher performs well.
Weaknesses:
The authors might need to add the limitation of datasets and thus have tested/validated their tool using simulated data in the abstract as well.
-
Reviewer #2 (Public Review):
Summary
The goal of untargeted metabolomics is to identify differences between metabolomes of different biological samples.
Untargeted metabolomics identifies features with specific mass-to-charge-ratio (m/z) and retention time (RT). Matching those to specific metabolites based on the model compounds from databases is laborious and not always possible, which is why methods for comparing samples on the level of unmatched features are crucial.<br /> The main purpose of the GromovMatcher method presented here is to merge and compare untargeted metabolomes from different experiments. These larger datasets could then be used to advance biological analyses, for example, for identification of metabolic disease markers.
The main problem that complicates merging different experiments is that m/z and RT vary slightly for the same feature (metabolite).
The main idea behind the GromovMatcher is built on the assumption that if two features match between two datasets (that feature i from dataset 1 matches feature j from dataset 2, and feature k from dataset 1 matches feature l from dataset 2), then the correlations or distances between the two features within each of the datasets (i and k, and j and l) will be similar. The authors then use the Gromov-Wasserstein method to find the best matches matrix from these data.
The variation in m/z between the same features in different experiments is a user-defined value and it is initially set to 0.01 ppm. There is no clear limit for RT deviations, so the method estimates a non-linear deviation (drift) of RT between two studies. GromovMatcher estimates the drift between two studies, and then discards the matching pairs where the drift would deviate significantly from the estimate. It learns the drift from a weighted spline regression.
The authors validate the performance of their GromovMatcher method using a dataset of cord blood. They use 20 different splits and compare the GromovMatcher (both its GM and GMT iterations, whereby GMT version uses the deviation from estimated RT drift to filter the matching matrix) with two other matching methods: M2S and metabCombiner.
The second validation was done using a (scaled and centered) dataset of metabolics from cancer datasets from the EPIC cohort that were manually matched by an expert. This dataset was also used to show that using automated methods can identify more features that are associated with a particular group of samples than what was found by manual matching. Specifically, the authors identify additional features connected to alcohol consumption.
Strengths:
I see the main strength of this work in its combination of all levels of information (m/z, RT, and higher-order information on correlations between features) and using each of the types of information in a way that is appropriate for the measure. The most innovative aspect is using the Gromov-Wasserstein method to match the features based on distance matrices.
The authors of the paper identify two main shortcomings with previously established methods that attempt to match features from different experiments: a) all other methods require fine-tuning of user-defined parameters, and, more importantly, b) do not consider correlations between features. The main strength of the GromovMatcher is that it incorporates the information on distances between the features (in addition to also using m/z and RT).
Weaknesses:
The main weakness is that there seem not to be enough manually curated datasets that could be used for validation. It will, therefore, be important, for the authors, and the field in general to keep validating and improving their methods if more datasets become available.
The second weakness, as emphasized by the authors in the discussion is that the method as it is set up now can be directly used only to compare two datasets. I am confident that the authors will successfully implement novel algorithms to address this issue in the future.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Theoretical principles of viscous fluid mechanics are used here to assess likely mechanisms of transport in the ER. A set of candidate mechanisms is evaluated, making good use of imaging to represent ER network geometries. Evidence is provided that the contraction of peripheral sheets provides a much more credible mechanism than the contraction of individual tubules, junctions, or perinuclear sheets.
The work has been conducted carefully and comprehensively, making good use of underlying physical principles. There is a good discussion of the role of slip; sensible approximations (low volume fraction, small particle size, slender geometries, pragmatic treatment of boundary conditions) allow tractable and transparent calculations; clear physical arguments provide useful bounds; stochastic and deterministic features of the problem are well integrated.
There are just a couple of areas where more discussion might be warranted, in my view.
(1) The energetic cost of tubule contraction is estimated, but I did not see an equivalent estimate for the contraction of peripheral sheets. It might be helpful to estimate the energetic cost of viscous dissipation in generated flows at higher frequencies. The mechanism of peripheral sheet contraction is unclear: do ATP-driven mechanisms somehow interact with thermal fluctuations of membranes?
(2) Mutations are mentioned in the abstract but not (as far as I could see) later in the manuscript. It would be helpful if any consequences for pathologies could be developed in the text.
-
Reviewer #2 (Public Review):
Summary:
This study explores theoretically the consequences of structural fluctuations of the endoplasmic reticulum (ER) morphology called contractions on molecular transport. Most of the manuscript consists of the construction of an interesting theoretical flow field (physical model) under various hypothetical assumptions. The computational modeling is followed by some simulations
Strengths:
The authors are focusing their attention on testing the hypothesis that a local flow in the tubule could be driven by tubular pinching. We recall that trafficking in the ER is considered to be mostly driven by diffusion at least at a spatial scale that is large enough to account for averaging of any random flow occurring from multiple directions [note that this is not the case for plants].
Weaknesses:
The manuscript extensively details the construction of the theoretical model, occupying a significant portion of the manuscript. While this section contains interesting computations, its relevance and utility could be better emphasized, perhaps warranting a reorganization of the manuscript to foreground this critical aspect.
Overall, the manuscript appears highly technical with limited conclusive insights, particularly lacking predictions confirmed by experimental validation. There is an absence of substantial conclusions regarding molecular trafficking within the ER.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this paper, proteomics analysis of the plasma of human subjects that underwent an exercise training regime consisting of a combination of endurance and resistance exercise led to the identification of several proteins that were responsive to exercise training. Confirming previous studies, many exercise-responsive secreted proteins were found to be involved in the extra-cellular matrix. The protein CD300LG was singled out as a potential novel exercise biomarker and the subject of numerous follow-up analyses. The levels of CD300LG were correlated with insulin sensitivity. The analysis of various open-source datasets led to the tentative suggestion that CD300LG might be connected with angiogenesis, liver fat, and insulin sensitivity. CD300LG was found to be most highly expressed in subcutaneous adipose tissue and specifically in venular endothelial cells. In a subset of subjects from the UK Biobank, serum CD300LG levels were positively associated with several measures of physical activity - particularly vigorous activity. In addition, serum CD300LG levels were negatively associated with glucose levels and type 2 diabetes. Genetic studies hinted at these associations possibly being causal. Mice carrying alterations in the CD300LG gene displayed impaired glucose tolerance, but no change in fasting glucose and insulin. Whether the production of CD300LG is changed in the mutant mice is unclear.
Strengths:
The specific proteomics approach conducted to identify novel proteins impacted by exercise training is new. The authors are resourceful in the exploitation of existing datasets to gain additional information on CD300LG.
Weaknesses:
While the analyses of multiple open-source datasets are necessary and useful, they lead to relatively unspecific correlative data that collectively insufficiently advance our knowledge of CD300LG and merely represent the starting point for more detailed investigations. Additional more targeted experiments of CD300LG are necessary to gain a better understanding of the role of CD300LG and the mechanism by which exercise training may influence CD300LG levels. One should also be careful to rely on external data for such delicate experiments as mouse phenotyping. Can the authors vouch for the quality of the data collected?
-
Reviewer #2 (Public Review):
Summary:
This manuscript from Lee-Odegard et al reports proteomic profiling of exercise plasma in humans, leading to the discovery of CD300LG as a secreted exercise-inducible plasma protein. Correlational studies show associations of CD300LG with glycemic traits. Lastly, the authors query available public data from CD300LG-KO mice to establish a causal role for CD300LG as a potential link between exercise and glucose metabolism. However, the strengths of this manuscript were balanced by the moderate to major weaknesses. Therefore in my opinion, while this is an interesting study, the conclusions remain preliminary and are not fully supported by the experiments shown so far.
Strengths:
(1) Data from a well-phenotyped human cohort showing exercise-inducible increases in CD300LG.
(2) Associations between CD300LG and glucose and other cardiometabolic traits in humans, that have not previously been reported.
(3) Correlation to CD300LG mRNA levels in adipose provides additional evidence for exercise-inducible increases in CD300LG.
Weaknesses:
(1) CD300LG is by sequence a single-pass transmembrane protein that is exclusively localized to the plasma membrane. How CD300LG can be secreted remains a mystery. More evidence should be provided to understand the molecular nature of circulating CD300LG. Is it full-length? Is there a cleaved fragment? Where is the epitope where the o-link is binding to CD300LG? Does transfection of CD300LG to cells in vitro result in secreted CD300LG?
(2) There is a growing recognition of specificity issues with both the O-link and somalogic platforms. Therefore it is critical that the authors use antibodies, targeted mass spectrometry, or some other methods to validate that CD300LG really is increased instead of just relying on the O-link data.
(3) It is insufficient simply to query the IMPC phenotyping data for CD300LG; the authors should obtain the animals and reproduce or determine the glucose phenotypes in their own hands. In addition, this would allow the investigators to answer key questions like the phenotype of these animals after a GTT, whether glucose production or glucose uptake is affected, whether insulin secretion in response to glucose is normal, effects of high-fat diet, and other standard mouse metabolic phenotyping assays.
(4) I was unable to find the time point at which plasma was collected at the 12-week time point. Was it immediately after the last bout of exercise (an acute response) or after some time after the training protocol (trained state)?
-
Reviewer #3 (Public Review):
Summary:
This manuscript by Liu et al. presents a case that CAPSL mutations are a cause of familial exudative vitreoretinopathy (FEVR). Attention was initially focused on the CAPSL gene from whole exome sequence analysis of two small families. The follow-up analyses included studies in which CAPSL was manipulated in endothelial cells of mice and multiple iterations of molecular and cellular analyses. Together, the data show that CAPSL influences endothelial cell proliferation and migration. Molecularly, transcriptomic and proteomic analyses suggest that CAPSL influences many genes/proteins that are also downstream targets of MYC and may be important to the mechanisms.
Strengths:
This multi-pronged approach found a previously unknown function for CAPSLs in endothelial cells and pointed at MYC pathways as high-quality candidates in the mechanism.
Weaknesses:
Two issues shape the overall impact for me. First, the unreported population frequency of the variants in the manuscript makes it unclear if CAPSL should be considered an interesting candidate possibly contributing to FEVR, or possibly a cause. Second, it is unclear if the identified variants act dominantly, as indicated in the pedigrees. The studies in mice utilized homozygotes for an endothelial cell-specific knockout, leaving uncertainty about what phenotypes might be observed if mice heterozygous for a ubiquitous knockout had instead been studied.
In my opinion, the following scientific issues are specific weaknesses that should be addressed:
(1) Please state in the manuscript the number of FEVR families that were studied by WES. Please also describe if the families had been selected for the absence of known mutations, and/or what percentage lack known pathogenic variants.
(2) A better clinical description of family 3104 would enhance the manuscript, especially the father. It is unclear what "manifested with FEVR symptoms, according to the medical records" means. Was the father diagnosed with FEVR? If the father has some iteration of a mild case, please describe it in more detail. If the lack of clinical images in the figure is indicative of a lack of medical documentation, please note this in the manuscript.
(3) The TGA stop codon can in some instances also influence splicing (PMID: 38012313). Please add a bioinformatic assessment of splicing prediction to the assays and report its output in the manuscript.
(4) More details regarding utilizing a "loxp-flanked allele of CAPSL" are needed. Is this an existing allele, if so, what is the allele and citation? If new (as suggested by S1), the newly generated CAPSL mutant mouse strain needs to be entered into the MGI database and assigned an official allele name - which should then be utilized in the manuscript and who generated the strain (presumably a core or company?) must be described.
(5) The statement in the methods "All mice used in the study were on a C57BL/6J genetic background," should be better defined. Was the new allele generated on a pure C57BL/6J genetic background, or bred to be some level of congenic? If congenic, to what generation? If unknown, please either test and report the homogeneity of the background, or consult with nomenclature experts (such as available through MGI) to adopt the appropriate F?+NX type designation. This also pertains to the Pdgfb-iCreER mice, which reference 43 describes as having been generated in an F2 population of C57BL/6 X CBA and did not designate the sub-strain of C57BL/6 mice. It is important because one of the explanations for missing heritability in FEVR may be a high level of dependence on genetic background. From the information in the current description, it is also not inherently obvious that the mice studied did not harbor confounding mutations such as rd1 or rd8.
(6) In my opinion, more experimental detail is needed regarding Figures 2 and 3. How many fields, of how many retinas and mice were analyzed in Figure 2? How many mice were assessed in Figure 3?
(7) I suggest adding into the methods whether P-values were corrected for multiple tests.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors have developed marker selection and k-means (k=2) based binary clustering algorithm for the first-level supervised clustering of the CyTOF dataset. They built a seamless pipeline that offers the multiple functionalities required for CyTOF data analysis.
Strengths:
The strength of the study is the potential use of the pipeline for the CyTOF community as a wrapper for multiple functions required for the analysis. The concept of the first line of binary clustering with known markers can be practically powerful.
Weaknesses:
The weakness of the study is that there's little conceptual novelty in the algorithms suggested from the study and the benchmarking is done in limited conditions.
-
Reviewer #1 (Public Review):
Summary:
This manuscript presented a useful toolkit designed for CyTOF data analysis, which integrates 5 key steps as an analytical framework. A semi-supervised clustering tool was developed, and its performance was tested in multiple independent datasets. The tool was compared to human experts as well as supervised and unsupervised methods.
Strengths:
The study employed multiple independent datasets to test the pipeline. A new semi-supervised clustering method was developed.
Weaknesses:
The examination of the whole pipeline is incomplete. Lack of descriptions or justifications for some analyses.
-
Reviewer #3 (Public Review):
Summary:
ImmCellTyper is a new toolkit for Cytometry by time-of-flight data analysis. It includes BinaryClust, a semi-supervised clustering tool (which takes into account prior biological knowledge), designed for automated classification and annotation of specific cell types and subpopulations. ImmCellTyper also integrates a variety of tools to perform data quality analysis, batch effect correction, dimension reduction, unsupervised clustering, and differential analysis.
Strengths:
The proposed algorithm takes into account the prior knowledge.<br /> The results on different benchmarks indicate competitive or better performance (in terms of accuracy and speed) depending on the method.
Weaknesses:
The proposed algorithm considers only CyTOF markers with binary distribution.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study identifies new types of interactions between Drosophila gustatory receptor neurons (GRNs) and shows that these interactions influence sensory responses and behavior. The authors find that HCN, a hyperpolarization-activated cation channel, suppresses the activity of GRNs in which it is expressed, preventing those GRNs from depleting the sensillum potential, and thereby promoting the activity of neighboring GRNs in the same sensilla. HCN is expressed in sugar GRNs, so HCN dampens the excitation of sugar GRNs and promotes the excitation of bitter GRNs. Impairing HCN expression in sugar GRNs depletes the sensillum potential and decreases bitter responses, especially when flies are fed on a sugar-rich diet, and this leads to decreased bitter aversion in a feeding assay. The authors' conclusions are supported by genetic manipulations, electrophysiological recordings, and behavioral assays.
Strengths:
(1) Non-synaptic interactions between neurons that share an extracellular environment (sometimes called "ephaptic" interactions) have not been well-studied, and certainly not in the insect taste system. A major strength of this study is the new insight it provides into how these interactions can impact sensory coding and behavior.
(2) The authors use many different types of genetic manipulations to dissect the role of HCN in GRN function, including mutants, RNAi, overexpression, ectopic expression, and neuronal silencing. Their results convincingly show that HCN impacts the sensillum potential and has both cell-autonomous and nonautonomous effects that go in opposite directions. There are a couple of conflicting or counterintuitive results, but the authors discuss potential explanations.
(3) Experiments comparing flies raised on different food sources suggest an explanation for why the system may have evolved the way that it did: when flies live in a sugar-rich environment, their bitter sensitivity decreases, and HCN expression in sugar GRNs helps to counteract this decrease.
Weaknesses/Limitations:
(1) The genetic manipulations were constitutive (e.g. Ih mutations, RNAi, or misexpression), and depleting Ih from birth could lead to compensatory effects that change the function of the neurons or sensillum. Using tools to temporally control Ih expression could help to confirm the results of this study.
(2) The behavioral experiment shows a striking loss of bitter sensitivity, but it was only conducted for one bitter compound at one concentration. It is not clear how general this effect is. The same is true for some of the bitter GRN electrophysiological experiments that only tested one compound and concentration.
(3) Several experiments using the Gal4/UAS system only show the Gal4/+ control and not the UAS/+ control (or occasionally neither control). Since some of the measurements in control flies seem to vary (e.g., spiking rate), it is important to compare the experimental flies to both controls to ensure that any observed effects are in fact due to the transgene expression.
(4) I was surprised that manipulations of sugar GRNs (e.g. Ih knockdown, Gr64a-f deletion, or Kir silencing) can impact the sensillum potential and bitter GRN responses even in experiments where no sugar was presented. I believe the authors are suggesting that the effects of sugar GRN activity (e.g., from consuming sugar in the fly food prior to the experiment) can have long-lasting effects, but it wasn't entirely clear if this is their primary explanation or on what timescale those long-lasting effects would occur. How much / how long of a sugar exposure do the flies need for these effects to be triggered, and how long do those effects last once sugar is removed?
(5) The authors mention that HCN may impact the resting potential in addition to changing the excitability of the cell through various mechanisms. It would be informative to record the resting potential and other neuronal properties, but this is very difficult for GRNs, so the current study is not able to determine exactly how HCN affects GRN activity.
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors start by showing that HCN loss-of-function mutation causes a decrease in spiking in bitter GRNs (bGRN) while leaving sweet GRN (sGRN) response in the same sensillum intact. They show that a perturbation of HCN channels in sweet-sensing neurons causes a similar decrease while increasing the response of sugar neurons. They were also able to rescue the response by exogenous expression. Ectopic expression of HCN in bitter neurons had no effect. Next, they measure the sensillum potential and find that sensillum potential is also affected by HCN channel perturbation. These findings lead them to speculate that HCN in sGRN increases sGRN spiking which in turn affects bGRNs. To test this idea that carried out multiple perturbations aimed at decreasing sGRN activity. They found that decreasing sGRN activity by either using receptor mutant or by expressing Kir (a K+ channel) in sGRN increased bGRN responses. These responses also increase the sensillum potential. Finally, they show that these changes are behaviorally relevant as conditions that increase sGRN activity decrease avoidance of bitter substances.
Strengths:
There is solid evidence that perturbation of sweet GRNs affects bitter GRN in the same sensillum. The measurement of transsynaptic potential and how it changes is also interesting and supports the authors' conclusion.
Weaknesses:<br /> The ionic basis of how perturbation in GRN affects the transepithelial potential which in turn affects the second neuron is not clear.
-
Reviewer #3 (Public Review):
Ephaptic inhibition between neurons housed in the same sensilla has been long discovered in flies, but the molecular basis underlying this inhibition is underexplored. Specifically, it remains poorly understood which receptors or channels are important for maintaining the transepithelial potential between the sensillum lymph and the hemolymph (known as the sensillum potential), and how this affects the excitability of neurons housed in the same sensilla.
Lee et al. used single-sensillum recordings (SSR) of the labellar taste sensilla to demonstrate that the HCN channel, Ih, is critical for maintaining sensillum potential in flies. Ih is expressed in sugar-sensing GRNs (sGRNs) but affects the excitability of both the sGRNs and the bitter-sensing GRNs (bGRNs) in the same sensilla. Ih mutant flies have decreased sensillum potential, and bGRNs of Ih mutant flies have a decreased response to the bitter compound caffeine. Interestingly, ectopic expression of Ih in bGRNs also increases sGRN response to sucrose, suggesting that Ih-dependent increase in sensillum potential is not specific to Ih expressed in sGRNs. The authors further demonstrated, using both SSR and behavior assays, that exposure to sugars in the food substrate is important for the Ih-dependent sensitization of bGRNs. The experiments conducted in this paper are of interest to the chemosensory field. The observation that Ih is important for the activity in bGRNs albeit expressed in sGRNs is especially fascinating and highlights the importance of non-synaptic interactions in the taste system.
Despite the interesting results, this paper is not written in a clear and easily understandable manner. It uses poorly defined terms without much elaboration, contains sentences that are borderline unreadable even for those in the narrower chemosensory field, and many figures can clearly benefit from more labeling and explanation. It certainly needs a bit of work.
Below are the major points:
(1) Throughout the paper, it is assumed that Ih channels are expressed in sugar-sensing GRNs but not bitter-sensing GRNs. However, both this paper and citation #17, another paper from the same lab, contain only circumstantial evidence for the expression of Ih channels in sGRNs. A simple co-expression analysis, using the Ih-T2A-GAL4 line and Gr5a-LexA/Gr66a-LexA line, all of which are available, could easily demonstrate the co-expression. Including such a figure would significantly strengthen the conclusion of this paper.
(2) Throughout this paper, it is often unclear which class of labellar taste sensilla is being recorded. S-a, S-b, I-a, and I-b sensilla all have different sensitivities to bitters and sugars. Each figure should clearly indicate which sensilla is being recorded. Justification should be provided if recordings from different classes of sensilla are being pooled together for statistics.
(3) In many figures, there is a lack of critical control experiments. Examples include Figures 1C-F (lacking UAS control), Figure 2I-J (lacking UAS control), Figure 4E (lacking the UAS and GAL4 control, and it is also strange to compare Gr64f > RNAi with Gr66a > RNAi, instead of with parental GAL4 and UAS controls.), and Figure 5D (lacking UAS control). Without these critical control experiments, it is difficult to evaluate the quality of the work.
(4) Figure 2A could benefit from more clarification about what exactly is being recorded here. The text is confusing: a considerable amount of text is spent on explaining the technical details of how SP is recorded, but very little text about what SP represents, which is critical for the readers. The authors should clarify in the text that SP is measuring the potential between the sensillar lymph, where the dendrites of GRNs are immersed, and the hemolymph. Adding a schematic figure to show that SP represents the potential between the sensillar lymph and hemolymph would be beneficial.
(5) The sGRN spiking rate in Figure 4B deviates significantly from previous literature (Wang, Carlson, eLife 2022; Jiao, Montell PNAS 2007, as examples), and the response to sucrose in the control flies is not dosage-dependent, which raises questions about the quality of the data. Why are the responses to sucrose not dosage-dependent? The responses are clearly not saturated at these (10 mM to 100 mM) concentrations.
(6) In Figure 4C, instead of showing the average spike rate of the first five seconds and the next 5 seconds, why not show a peristimulus time histogram? It would help the readers tremendously, and it would also show how quickly the spike rate adapts to overexpression and control flies. Also, since taste responses adapt rather quickly, a 500 ms or 1 s bin would be more appropriate than a 5-second bin.
(7) Lines 215 - 220. The authors state that the presence of sugars in the culture media would expose the GRNs to sugar constantly, without providing much evidence. What is the evidence that the GRNs are being activated constantly in flies raised with culture media containing sugars? The sensilla are not always in contact with the food.
(8) Line 223. To show that bGRN spike rates in Ih mutant flies "decreased even more than WT", you need to compare the difference in spike rates between the sorbitol group and the sorbitol + sucrose group, which is not what is currently shown.
(9) To help readers better understand the proposed mechanisms here, including a schematic figure would be helpful. This should show where Ih is expressed, how Ih in sGRNs impacts the sensillum potential, how elevated sensillum potential increases the electrical driving force for the receptor current, and affects the excitability of the bGRNs in the same sensilla, and how exposure to sugar is proposed to affect ion homeostasis in the sensillum lymph.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors used a whole genome CRISPR screen to identify targetable synthetic lethalities associated with PPM1D mutations, known poor prognosis and currently undruggable factors in leukemia. The authors identified the cytosolic superoxide dismutase (SOD1, Cu/Zn SOD) as a major protective factor in PPMD1 mutant vs. wt cells, and their study investigates associated mechanisms of this protection. Using both genetic depletion and small molecule inhibitors of SOD1, the authors conclude that SOD1 loss exacerbates mitochondrial dysfunction, ROS levels and DNA damage phenotypes in PPM1D mutant cells, decreasing cell growth in AML cells. The data strongly support that PPMD1 mutant cells have high levels of total peroxides and elevated DNA breaks, and that genetic depletion of SOD1 decreases cell growth in two AML cell lines. However, the authors don't explain how superoxide radical (which is not damaging by itself) induces such damage, the on-target effects of the SOD1 inhibitors at the concentrations is not clear, the increase in total hydroperoxides is not supported by loss of SOD1, the changes in mitochondrial function are small, and there is no assessment of how the mitochondrial SOD2 expression or function, which dismutates mitochondrial superoxide, is altered. Overall these studies do not distinguish between signal vs. damaging aspects of ROS in their models and do not rule out an alternate hypothesis that loss of SOD1 increases superoxide production by cytosolic NADPH activity which would significantly alter ROS-driven regulation of kinase/phosphatase signal modulation, affecting cell growth and proliferation as well as DNA repair. Additionally, with the exception of growth defects demonstrated with sgSOD1, the majority of data are acquired using two chemical inhibitors, LCS1 and ATN-224, without supporting evidence that these inhibitors are acting in an on-target manner.
Overall, the authors address an important problem by seeking targetable vulnerabilities in PPM1D mutant AML cells, it is clear SOD1 deletion induces strong growth defects in the AML cell lines tested, most of the approaches are appropriate for the outcomes being evaluated, and the data are technically solid and well-presented. The major weakness lies in which redox pathways and ROS species are evaluated, how the resulting data are interpreted, and gaps in the follow-up experiments. Due to these omissions, as currently presented, the broader impact of these findings are unclear.
These specific concerns are outlined in detail below and I offer some suggestions regarding how to clarify the mechanisms underlying their initial observation of SOD1 synthetic lethality:
(1) Fig. 1 - SOD1 appears to be clustered with several other genes in the volcano plot (including FANC proteins). Did any other ROS-detoxifying enzymes show similar fitness scores? The effects of the SOD1 sgRNA are striking, however it would be useful to see qPCR or immunoblot data confirming robust depletion.
Does SOD1 co-expression in PPM1-mutant patient AML correspond to poorer disease outcomes? This can be evaluated in publicly available patient datasets and would support the idea of SOD1 synthetic lethality.
It would also be useful to know (given the subsequent results) whether expression of the SOD2, the mitochondrial superoxide dismutase, is altered in response to SOD1 loss.
(2) Fig. 2 - What are the relative SOD1 levels in the mutant PPM1D vs. wt. cell lines? The effects of the chemical inhibitors are stronger in MOLM-13 than the other two lines. These data could also point to whether LCS-1 and ATN-224 cytotoxicity is on-target or off-target at these concentrations, which is a key issue not currently addressed in these studies. This is a particular concern as the OCI-AML2 line shows a stronger growth defect with CRISPR SOD1 KO (in Fig 1) but the smallest effects with these chemical inhibitors.
While endogenous mitochondrial superoxide levels are elevated in PPM1D mutant lines, it is entirely unclear why SOD1 inhibition should affect mitochondrial superoxide as it detoxifies cytosolic superoxide. Also unclear why DCFDA signal (which measures total hydroperoxides) is *increased* under SOD1 inhibition - SOD1 dismutates superoxide radicals into hydrogen peroxide, therefore unless SOD2 is compensating for SOD1 loss, one might expect hydroperoxides to be lower (unless some entirely different oxidase is increasing their levels). None of these outcomes appear to be considered. Finally, it is not explained how lipid peroxidation, which requires production of hydroxyl or similarly high potency radicals, is being caused by increased superoxide or peroxides. One possibility is there is an increase in labile iron, in which case this phenotype would be rescued by the iron chelator desferal, and by the lipophilic antioxidant, ferrostatin.
Do the sgSOD1 cells also show similar increases in MitoSox green, DCFDA and BODIPY signal? These experiments would clarify whether the effects with the inhibitors are directly related directly to SOD1 loss or if they represent off-target effects from the inhibitors and/or compensatory changes in SOD2.
(3) Fig. 3 - the effects on mitochondrial respiratory parameters, while statistically significant, do not seem biologically striking. Also, these data are shown for OCI-AML2 cells which show the smallest cytotoxic effects with the SOD1 inhibitors among the 3 lines tested. They do however show the most robust growth defect with sgSOD1. This discrepancy could suggest that mitochondrial dysfunction does not underlie the observed growth defect and/or the inhibitor cytotoxicity is not on-target. Ideally mitochondrial profiling should also be carried out on this cell line with inducible SOD1 depletion. Have the authors assessed whether the mitochondrial Bcl family proteins are affected by the inhibitors?
(4) Fig. 4 - Currently the data in this figure do not support the authors claim that PPM1D-mutant cells have impaired antioxidant defense mechanisms, leading to an elevation in ROS levels and reliance on SOD1 for protection. It should be noted that oxidative stress specifically refers to adverse cellular effects of increasing ROS, not baseline levels of various redox parameters. Ideally levels of GSSG/GSH would be a better measure of potential redox stress tolerance than the total antioxidant capacity assay. Finally, oxidative stress can be assessed by challenging the wt and mutant PPM1D cell lines with oxidant stressors such as paraquat which elevates superoxide or drugs like erastin which elevate mitochondrial ROS. The immunoblot shows negligible changes in the antioxidant proteins assayed. Again, this blot should include SOD2 which is the most relevant antioxidant in the context of mitochondrial superoxide.
(5) Fig. 5 - These data support that DNA breaks are elevated in PPM1D mutant vs. wt cells. However, the data with the chemical SOD1 inhibitor again do not convince that the enhanced levels are due to on-target effects on SOD1. Use of the alkaline comet assay is appropriate for these studies and the 8-oxoguanine data do indicate contributions from oxidative DNA base damage. But these are unlikely to result directly from altered superoxide levels, as this species cannot directly oxidize DNA bases or cause DNA strand breaks.
The following points summarize my specific experimental and textual recommendations:
(1) These studies require an assessment of on-target efficacy of the inhibitors at the relevant concentration ranges. Ideally, they should have minimal effects against SOD1 knockout cell lines (acute challenge at a time point before the growth defects become apparent) and show better efficacy in SOD1-overexpressing lines. Key experiments (changes in superoxide, OCR profiling, DNA alkaline comet assay) would be more convincing if they are carried out with SOD1 knockout lines to compare against the inhibitor effects (3-4 days after introducing sgSOD1 when growth defects are not apparent).
(2) Instead of using NAC, which elevates glutathione synthesis but also has several known side-effects, the authors may want to determine whether Tempol, a SOD mimetic can rescue the effects of SOD1 knockout or inhibition. This would directly prove that SOD1 functional loss underlies the observed growth defect and cytotoxicity from genetic SOD1 knockdown or chemical inhibition.
(3) The complete lack of consideration of SOD2 in these studies is a missed opportunity as it reduces mitochondrial superoxide levels but elevates hydrogen peroxide levels. It would be very interesting to see whether SOD1 inhibition leads to compensatory increases in SOD2. SOD2 can be easily measured by immunoblot. Furthermore, measuring total superoxide via hydroethidium in a flow cytometric assay vs. mitochondrial ROS in PPM1D mut vs. wt cells and under SOD1 knockout would enable a determination of which species dominates (cytosolic or mitochondrial). These experiments are required to fill some logical gaps in interpretation of their redox data.
(4) Given the DNA breaks observed in PPM1D mutant cells, it is highly recommended the authors assess whether iron levels are elevated in mut vs. wt cells and whether desferal can rescue observed SOD1 inhibition defects.
(5) The authors may want to assess whether Rac1 or NADPH oxidase activity is altered in the SOD1 KO in wt vs. PPM1D cells. Their results may be the consequence of compromised ROS-driven survival signaling or DNA repair rather than direct ROS-induced damage, which is not caused directly by superoxide (or hydrogen peroxide).
(6) It is recommended the discussion focus more strongly on how the signaling function of superoxide vs. its reactions with other molecular entities to induce genotoxic outcomes could be contributing to the observed phenotypes. The discussion of FANC proteins, which were targets with similar fitness scores but not experimentally investigated at all, is an unwarranted digression.
-
Reviewer #1 (Public Review):
Summary:
Gain-of-function mutations and amplifications of PPM1D are fond across several human cancers and are associated with advanced tumor stage, worse prognosis, and increased lymph node metastasis. This manuscript presents important findings that SOD1 inhibition is a potential strategy to achieve therapeutic synergism for PPM1D-mutant leukemia; and demonstrates the redox landscape of PPM1D-mutant cells.
Strengths:
In this manuscript, Zhang and colleagues investigate the synthetic-lethal dependencies of PPM1D (protein phosphatase, Mg2+/Mn2+ dependent 1D) in leukemia cells using CRISPR/Cas9 screening. They identified that SOD1 (superoxide dismutase-1) as the top hit, whose loss reduces cellular growth in PPM1D-mutant cells, but not wildtype (WT) cells. Consistently, the authors demonstrate that PPM1D-mutant cells are more sensitive to SOD1 inhibitor treatment. By performing different in vitro studies, they show that PPM1D-mutant leukemia cells have elevated level of reactive oxygen species (ROS), decreased basal respiration, increased genomic instability, and impaired non-homologous end-joining repair. These data highlight the potential of SOD1 inhibition as a strategy to achieve therapeutic synergism for PPM1D-mutant leukemia; and demonstrates the redox landscape of PPM1D-mutant cells.
Weaknesses:
While the current study has identified synthetic lethality of PPM1D-mutant leukemia cells upon SOD1 inhibition, the underlying mechanism remains elusive. Although ROS levels have been assessed between wild-type (WT) and PPM1D-mutant leukemia cells, the specific redox alterations induced by SOD1 inhibition in PPM1D mutant versus WT cells have not been elucidated. To address this gap, direct comparisons of ROS levels using various probes should be conducted between PPM1D mutant and WT cells under conditions of SOD1 inhibition.
-
Reviewer #3 (Public Review):
Summary:
Authors performed a genome-wide CRISPR-based screen for synthetic lethal interactions in leukemic cells expressing a mutant form of PPM1D and identified SOD1. Loss of SOD1 or its inhibition with small molecule compounds reduced survival of the cells containing truncated PPM1D. Further analysis revealed that mitochondria are functionally deficient in PPM1D mutant cells resulting in increased levels of ROS. Surprisingly, expression profiling and reverse phase protein arrays revealed that PPM1D mutant cells did not respond appropriately to the increased levels of ROS. The precise molecular mechanism underlying this phenotype remains currently unclear, nevertheless the study convincingly shows that PPM1D mutant cells are vulnerable to oxidative stress.
Strengths:
Experimental procedures used in the study are appropriate and overall the presented data are very convincing. The study identified an important vulnerability of leukemic cells that carry PPM1D mutation and provides a fundamental background for testing SOD1 inhibitors in preclinical research. In the revised version of the manuscript, authors provide several new experiments that support their former conclusions. In particular, they showed that deletion of SOD1 in AML cells improved survival of the transplanted mice and this effect was more prominent when using cells carrying the mutant PPM1D. Further, they included an important control experiment that showed decreased SOD1 activity after treatment with ATN-224 inhibitor.
Weaknesses:
In the opinion of reviewer, there are no obvious weaknesses in this study. In broader view, the findings presented here using in vitro cultures will need to be validated in vivo by future research. Cell lines used in the study were generated by CRSIPR approaches in AML cells that have already been transformed. In addition, genome editing is inheritably connected with a risk of off target effects. It would therefore be great to identify AML samples carrying the PPM1D mutation that has been naturally selected during the transformation process.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors demonstrate that it is possible to carry out eQTL experiments for the model eukaryote S. cerevisiae, in "one pot" preparations, by using single-cell sequencing technologies to simultaneously genotype and measure expression. This is a very appealing approach for investigators studying genetic variation in single-celled and other microbial systems, and will likely inspire similar approaches in non-microbial systems where comparable cell mixtures of genetically heterogeneous individuals could be achieved.
Strengths:
While eQTL experiments have been done for nearly two decades (the corresponding author's lab are pioneers in this field), this single-cell approach creates the possibility for new insights about cell biology that would be extremely challenging to infer using bulk sequencing approaches. The major motivating application shown here is to discover cell occupancy QTL, i.e. loci where genetic variation contributes to differences in the relative occupancy of different cell cycle stages. The authors dissect and validate one such cell cycle occupancy QTL, involving the gene GPA1, a G-protein subunit that plays a role in regulating the mating response MAPK pathway. They show that variation at GPA1 is associated with proportional differences in the fraction of cells in the G1 stage of the cell cycle. Furthermore, they show that this bias is associated with differences in mating efficiency.
Weaknesses:
While the experimental validation of the role of GPA1 variation is well done, the novel cell cycle occupancy QTL aspect of the study is somewhat underexploited. The cell occupancy QTLs that are mentioned all involve loci that the authors have identified in prior studies that involved the same yeast crosses used here. It would be interesting to know what new insights, besides the "usual suspects", the analysis reveals. For example, in Cross B there is another large effect cell occupancy QTL on Chr XI that affects the G1/S stage. What candidate genes and alleles are at this locus? And since cell cycle stages are not biologically independent (a delay in G1, could have a knock-on effect on the frequency of cells with that genotype in G1/S), it would seem important to consider the set of QTLs in concert.
-
Reviewer #2 (Public Review):
Boocock and colleagues present an approach whereby eQTL analysis can be carried out by scRNA-Seq alone, in a one-pot-shot experiment, due to genotypes being able to be inferred from SNPs identified in RNA-Seq reads. This approach obviates the need to isolate individual spores, genotype them separately by low-coverage sequencing, and then perform RNA-Seq on each spore separately. This is a substantial advance and opens up the possibility to straightforwardly identify eQTLs over many conditions in a cost-efficient manner. Overall, I found the paper to be well-written and well-motivated, and have no issues with either the methodological/analytical approach (though eQTL analysis is not my expertise), or with the manuscript's conclusions.
I do have several questions/comments.
393 segregant experiment:<br /> For the experiment with the 393 previously genotyped segregants, did the authors examine whether averaging the expression by genotype for single cells gave expression profiles similar to the bulk RNA-Seq data generated from those genotypes? Also, is it possible (and maybe not, due to the asynchronous nature of the cell culture) to use the expression data to aid in genotyping for those cells whose genotypes are ambiguous? I presume it might be if one has a sufficient number of cells for each genotype, though, for the subsequent one-pot experiments, this is a moot point.
Figure 1B:<br /> Is UMAP necessary to observe an ellipse/circle - I wouldn't be surprised if a simple PCA would have sufficed, and given the current discussion about whether UMAP is ever appropriate for interpreting scRNA-Seq (or ancestry) data, it seems the PCA would be a preferable approach. I would expect that the periodic elements are contained in 2 of the first 3 principal components. Also, it would be nice if there were a supplementary figure similar to Figure 4 of Macosko et al (PMID 26000488) to indeed show the cell cycle dependent expression.
Aging, growth rate, and bet-hedging:<br /> The mention of bet-hedging reminded me of Levy et al (PMID 22589700), where they saw that Tsl1 expression changed as cells aged and that this impacted a cell's ability to survive heat stress. This bet-hedging strategy meant that the older, slower-growing cells were more likely to survive, so I wondered a couple of things. It is possible from single-cell data to identify either an aging, or a growth rate signature? A number of papers from David Botstein's group culminated in a paper that showed that they could use a gene expression signature to predict instantaneous growth rate (PMID 19119411) and I wondered if a) this is possible from single-cell data, and b) whether in the slower growing cells, they see markers of aging, whether these two signatures might impact the ability to detect eQTLs, and if they are detected, whether they could in some way be accounted for to improve detection.
AIL vs. F2 segregants:<br /> I'm curious if the authors have given thought to the trade-offs of developing advanced intercross lines for scRNA-Seq eQTL analysis. My impression is that AIL provides better mapping resolution, but at the expense of having to generate the lines. It might be useful to see some discussion on that.
10x vs SPLit-Seq<br /> 10x is a well established, but fairly expensive approach for scRNA-Seq - I wondered how the cost of the 10x approach compares to the previously used approach of genotyping segregants and performing bulk RNA-Seq, and how those costs would change if one used SPLiT-Seq (see PMID 38282330).
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
The manuscript investigates the role of the membrane-deforming cytoskeletal regulator protein Abba in cortical development and its potential implications for microcephaly. It is a valuable contribution to the understanding of Abba's role in cortical development. The strengths and weaknesses identified in the manuscript are outlined below:
Clinical Relevance:
The authors identified a patient with microcephaly and a patient with an intellectual disability harboring a mutation in the Abba variant (R671W) adding a clinically relevant dimension to the study.
Mechanistic Insights:
The study offers valuable mechanistic insights into the development of microcephaly by elucidating the role of Abba in radial glial cell proliferation, radial fiber organization, and the migration of neuronal progenitors. The identification of Abba's involvement in the cleavage furrow during cell division, along with its interaction with Nedd9 and positive influence on RhoA activity, adds depth to our understanding of the molecular processes governing cortical development. Though the reported results establish the novel interaction between Abba and Nedd9, the authors have not addressed whether the mutant protein loses this interaction and whether that results in the observed effects.
In Vivo Validation:
The overexpression of mutant Abba protein (R671W) resulting in phenotypic similarities to Abba knockdown effects supports the significance of Abba in cortical development.
-
Reviewer #2 (Public Review):
Summary:
Carabalona and colleagues investigated the role of the membrane-deforming cytoskeletal regulator protein Abba (MTSS1L/MTSS2) in cortical development to better understand the mechanisms of abnormal neural stem cell mitosis. The authors used short hairpin RNA targeting Abba20 with a fluorescent reporter coupled with in-utero electroporation of E14 mice to show changes to neural progenitors. They performed flow cytometry for in-depth cell cycle analysis of Abba-shRNA impact on neural progenitors and determined an accumulation in the S phase. Using culture rat glioma cells and live imaging from cortical organotypic slides from mice in utero electroporated with Abba-shRNA, the authors found Abba played a prominent role in cytokinesis. They then used a yeast-two-hybrid screen to identify three high-confidence interactors: Beta-Trcp2, Nedd9, and Otx2. They used immunoprecipitation experiments from E18 cortical tissue coupled with C6 cells to show Abba's requirement for Nedd9 localization to the cleavage furrow/cytokinetic bridge. The authors performed a shRNA knockdown of Nedd9 by in-utero electroporation of E14 mice and observed similar results as with the Abba-shRNA. They tested a human variant of Abba using in-utero electroporation of cDNA and found disorganized radial glial fibers and misplaced, multipolar neurons, but lacked the impact of cell division seen in the shRNA-Abba model.
Strengths:
A fundamental question in biology about the mechanics of neural stem cell division.
Directly connecting effects in Abba protein to downstream regulation of RhoA via Nedd9.
Incorporation of human mutation in ABBA gene.
Use of novel technologies in neurodevelopment and imaging.
Weaknesses:
Unexplored components of the pathway (such as what neurogenic populations are impacted by Abba mutation) and unleveraged aspects of their data (such as the live imaging) limit the scope of their findings and leave significant questions about the effect of ABBA on radial glia development.
(1) The claim of disorganized radial glial fibers lacks quantifications.<br /> On page 11, the authors claim that knockdown of Abba leads to changes in radial glial morphology observed with vimentin staining. Here they claim misoriented apical processes, detached end feet, and decreased number of RGP cells in the VZ. However, they do not provide quantification of process orientation to better support their first claim. Measurements of radial glia fiber morphology (directionality, length) and angle of division would be metrics that can be applied to data. Some of these analyses could be done in their time-lapse microscopy images, such as to quantify the number of cell divisions during their period of analysis (though that is short-15 hours).
(2) It is unclear where the effect is:
-In RG or neuroblasts? Is it in cell cleavage that results in the accumulation of cells at VZ (as sometimes indicated by their data like in Figure 2A or 4D)? Interrogation of cell death (such as by cleaved caspase 3) would also help. Given their time-lapse, can they identify what is happening to the RG fiber? The authors describe a change in "migration" but do not show evidence for this for either progenitor or neuroblast populations. Given they have nice time-lapse imaging data, could they visualize progenitor versus young neuron migration? Analysis of neuroblasts (such as with doublecortin expression in the tissue) would also help understand any issues in migration (of neurons v stem cells).
-At cleavage furrow? In abscission? There is high-resolution data that highlights the cleavage furrow as the location of interest (Figure 3A), however, there is also data (Figure 3B) to suggest Abba is expressed elsewhere as well and there is an overall soma decrease. More detail of the localization of Abba during the division process would be helpful for example, could cleavage furrow proteins, such as Aurora B, co-localization (and potentially co-IP) help delineate subpopulations of Abba protein? Furthermore, the FRET imaging is a unique way to connect their mutation with function - could they measure/quantify differences at furrow compared to the rest of soma to further corroborate that the Abba-associated RhoA effect was furrow-enriched?
-The data highlights nicely that a furrow doesn't clearly form when ABBA expression and subsequent RhoA activity are decreased (in Figure 3 or 5A). Does this lead to cells that can't divide because of poor abscission, especially since "rounding" still occurs? Or abnormal progenitors (with loss of fiber or inability to support neuroblast migration)? Or abnormal progression of progenitors to neuroblasts?
(3) Limited to a singular time point of mouse cortical development
On page 13, the authors outline the results of their Y2H screen with the identification of three high-confidence interactors. Notably, they used an E10.5-E12.5 mouse brain embryo library rather than one that includes E14, the age of their in-utero electroporation mice. Many of the authors' claims focus on in-utero electroporation of shRNA-Abba of E14 mice that are then evaluated at E16-18. Justification for the focus on this age range should be included to support that their findings can then be applied to all mouse corticogenesis.
(4) Detail of the effect of the human variant of the ABBA mutation in mice is lacking.
Their identification of the R671W mutation is interesting and the IUE model warrants more characterization, as they did with their original KD experiments.
-Could they show that Abba protein levels are decreased (in either cell lines or electroporated tissue)?
-While time-lapse morphology might not have been performed, more analysis on cell division phenotype (such as plane of division and radial glia morphology) would be helpful.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This work proposes a new method, DyNetCP, for inferring dynamic functional connectivity between neurons from spike data. DyNetCP is based on a neural network model with a two-stage model architecture of static and dynamic functional connectivity.
This work evaluates the accuracy of the synaptic connectivity inference and shows that DyNetCP can infer the excitatory synaptic connectivity more accurately than a state-of-the-art model (GLMCC) by analyzing the simulated spike trains. Furthermore, it is shown that the inference results obtained by DyNetCP from large-scale in-vivo recordings are similar to the results obtained by the existing methods (jitter-corrected CCG and JPSTH). Finally, this work investigates the dynamic connectivity in the primary visual area VISp and in the visual areas using DyNetCP.
Strengths:
The strength of the paper is that it proposes a method to extract the dynamics of functional connectivity from spike trains of multiple neurons. The method is potentially useful for analyzing parallel spike trains in general, as there are only a few methods (e.g. Aertsen et al., J. Neurophysiol., 1989, Shimazaki et al., PLoS Comput Biol 2012) that infer the dynamic connectivity from spikes. Furthermore, the approach of DyNetCP is different from the existing methods: while the proposed method is based on the neural network, the previous methods are based on either the descriptive statistics (JSPH) or the Ising model.
Weaknesses:
Although the paper proposes a new method, DyNetCP, for inferring the dynamic functional connectivity, its strengths are neither clear nor directly demonstrated in this paper. That is, insufficient analyses are performed to support the usefulness of DyNetCP.
First, this paper attempts to show the superiority of DyNetCP by comparing the performance of synaptic connectivity inference with GLMCC (Figure 2). However, the improvement in the synaptic connectivity inference does not seem to be convincing. While this paper compares the performance of DyNetCP with a state-of-the-art method (GLMCC), there are several problems with the comparison. For example:
(1) This paper focused only on excitatory connections (i.e., ignoring inhibitory neurons).
(2) This paper does not compare with existing neural network-based methods (e.g., CoNNECT: Endo et al. Sci. Rep. 2021; Deep learning: Donner et al. bioRxiv, 2024).
(3) Only a population of neurons generated from the Hodgkin-Huxley model was evaluated.
Thus, the results in this paper are not sufficient to conclude the superiority of DyNetCP in the estimation of synaptic connections. In addition, this paper compares the proposed method with the standard statistical methods Jitter-corrected CCG (Figure 3) and JPSTH (Figure 4). Unfortunately, these results do not show the superiority of the proposed method. It only shows that the results obtained by the proposed method are consistent with those obtained by the existing methods (CCG or JPSTH). This paper also compares the proposed method with standard statistical methods, such as jitter-corrected CCG (Figure 3) and JPSTH (Figure 4). It only shows that the results obtained by the proposed method are consistent with those obtained by the existing methods (CCG or JPSTH), which does not show the superiority of the proposed method.
In summary, although DyNetCP has the potential to infer synaptic connections more accurately than existing methods, the paper does not provide sufficient analysis to make this claim. It is also unclear whether the proposed method is superior to the existing methods for estimating functional connectivity, such as jitter-corrected CCG and JPSTH. Thus, the strength of DyNetCP is unclear.
-
Reviewer #2 (Public Review):
Summary:
Here the authors describe a model for tracking time-varying coupling between neurons from multi-electrode spike recordings. Their approach extends a GLM with static coupling between neurons to include dynamic weights, learned by a long-short-term-memory (LSTM) model. Each connection has a corresponding LSTM embedding and is read out by a multi-layer perceptron to predict the time-varying weight.
Strengths:
This is an interesting approach to an open problem in neural data analysis. I think, in general, the method would be interesting to computational neuroscientists.
Weaknesses:
It is somewhat difficult to interpret what the model is doing. I think it would be worthwhile to add some additional results that make it more clear what types of patterns are being described and how.
Major Issues:
Simulation for dynamic connectivity. It certainly seems doable to simulate a recurrent spiking network whose weights change over time, and I think this would be a worthwhile validation for this DyNetCP model. In particular, I think it would be valuable to understand how much the model overfits, and how accurately it can track known changes in coupling strength. If the only goal is "smoothing" time-varying CCGs, there are much easier statistical methods to do this (c.f. McKenzie et al. Neuron, 2021. Ren, Wei, Ghanbari, Stevenson. J Neurosci, 2022), and simulations could be useful to illustrate what the model adds beyond smoothing.
Stimulus vs noise correlations. For studying correlations between neurons in sensory systems that are strongly driven by stimuli, it's common to use shuffling over trials to distinguish between stimulus correlations and "noise" correlations or putative synaptic connections. This would be a valuable comparison for Figure 5 to show if these are dynamic stimulus correlations or noise correlations. I would also suggest just plotting the CCGs calculated with a moving window to better illustrate how (and if) the dynamic weights differ from the data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, using Staphylococcus aureus as a model organism, Panda et al. aim to understand how organic acids inhibit bacterial growth. Through careful characterization and interdisciplinary collaboration, the authors present valuable evidence that acetic acid specifically inhibits the activity of Ddl enzyme that converts 2 D-alanine amino acids into D-ala-D-ala dipeptide, which is then used to generate the stem pentapeptide of peptidoglycan (PG) precursors in the cytoplasm. Thus, a high concentration of acetic acid weakens the cell wall by limiting PG-crosslinking (which requires a D-ala portion). However, S. aureus maintains a high intracellular D-ala concentration to circumvent acetate-mediated growth inhibition.
Strengths:
The authors utilized a well-established transposon mutant library to screen for mutants that struggle to grow in the presence of acetic acid. This screen allowed authors to identify that a strain lacking intact alr1, which encodes for alanine racemase (converts L-ala to D-ala), is unable to grow well in the presence of acetic acid. This phenotype is rescued by the addition of external D-ala. Next, the authors rule out the contribution of other pathways that could lead to the production of D-ala in the cell. Finally, by analyzing D-ala and D-ala-D-ala concentrations, as well as muropeptide intermediates accumulation in different mutants, the authors pinpoint Ddl as the specific target of acetic acid. In fact, the synthetic overexpression of ddl alone overcomes the toxic effects of acetic acid. Using genetics, biochemistry, and structural biology, the authors show that Ddl activity is specifically inhibited by acetic acid and likely by other biologically relevant organic acids. Interestingly, this mechanism is different from what has been reported for other organisms such as Escherichia coli (where methionine synthesis is affected). It remains to be seen if this mechanism is conserved in other organisms that are more closely related to S. aureus, such as Clostridioides difficile and Enterococcus faecalis.
Weaknesses:
Although the authors have conclusively shown that Ddl is the target of acetic acid, it appears that the acetic acid concentration used in the experiments may not truly reflect the concentration range S. aureus would experience in its environment. Moreover, Ddl is only significantly inhibited at a very high acetate concentration (>400 mM). Thus, additional experiments showing growth phenotypes at lower organic acid concentrations may be beneficial. Another aspect not adequately discussed is the presence of D-ala in the gut environment, which may be protective against acetate toxicity based on the model provided.
-
Reviewer #1 (Public Review):
Summary:
The manuscript entitled "Staphylococcus aureus counters organic acid anion-mediated inhibition of peptidoglycan cross-linking through robust alanine racemase activity" by Panda, S et al. reports an extensive biochemical analysis of the result from a Tn screen that identified alr1 as being required for acetic acid tolerance. In the end, they demonstrate that reduced D-Ala pools in the ∆alr1 mutant lead to a drastic reduction in D-Ala-D-Ala dipeptide. They show that this is due to the ability of organic acid anions to limit the D-Ala-D-Ala ligase enzyme Ddl. They demonstrate that:
(1) Acetate exposure in the ∆alr1 results in reduced D-Ala-D-Ala dipeptide, but not the monomers.
(2) Acetate can bind to purified Ddl in vitro.
(3) This binding results in reduced enzyme activity.
(4) Other organic acid anions such as lactate, proprionate, and itaconitate can also inhibit Ddl.
The experiments are clearly described and logically laid out. I have only a few minor comments to add.
Strengths:
The most significant strength is the exceptional experimental data that supports the authors' hypotheses.
Weaknesses:
Only minor weaknesses were identified by this reviewer.
(1) Which allele is alr1, the one upstream of MazEF or the one in the Lysine biosynthetic operon?
(2) Figure 3B. Where does the C3N2 species come from in the WT and why is it absent in the mutants? It is about 25% of the total dipeptide pool.
(3) Figure 3D could perhaps be omitted. I understand that the authors attained statistical significance in the fitness defect, but biologically this difference is very minor. One would have to look at the isotopomer distribution in the Dat overexpressing strain to make sure that increased flux actually occurred since there are other means of affecting activity (e.g. allosteric modulators).
(4) In Figure 4A, why is the complete subunit UDP-NAM-AEKAA increasing in each strain upon acetate challenge if there was such a stark reduction in D-Ala-D-Ala, particularly in the ∆alr1 mutant? For that matter, why are the levels of UDP-NAM-AEKAA in the ∆alr1 mutant identical to that of WT with/out acetate?
(5) Figure 4B. Is there no significant difference between ddl and murF transcripts between WT and ∆alr1 under acetate stress? This comparison was not labeled if the tests were done.
(6) Although tricky, it is possible to measure intracellular acetate. It might be of interest to know where in the Ddl inhibition curve the cells actually are.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
A subclass of inhibitory heterotrimeric guanine nucleotide-binding protein subunits, GNAI, has been implicated in sensory hair cell formation, namely the establishment of hair bundle (stereocilia) orientation and staircase formation. However, the former role of hair bundle orientation has only been demonstrated in mutants expressing pertussis toxin, which blocks all GNAI subunits, but not in mutants with a single knockout of any of the Gnai genes, suggesting that there is a redundancy among various GNAI proteins in this role. Using various conditional mutants, the authors concluded that GNAI3 is the primary GNAI proteins required for hair bundle morphogenesis, whereas hair bundle orientation requires both GNAI2 and GNAI3.
Strength
Various compound mutants were generated to decipher the contribution of individual GNAI1, GNAI2, GNAI3 and GNAIO in the establishment of hair bundle orientation and morphogenesis. The study is thorough with detailed quantification of hair bundle orientation and morphogenesis, as well as auditory functions.
The revised manuscript has clarified the phenotypic differences raised between the Gnai2/3 double mutants and Ptx mutant phenotypes and resolved the weakness pointed out in the previous submission. These results further illustrate the dynamic requirement of Gnai/O in hair bundle establishment and is an important contribution to the field.
-
Reviewer #2 (Public Review):
Jarysta and colleagues set out to define how similar GNAI/O family members contribute to the shape and orientation of stereocilia bundles on auditory hair cells. Previous work demonstrated that loss of particular GNAI proteins, or inhibition of GNAIs by pertussis toxin, caused several defects in hair bundle morphogenesis, but open questions remained which the authors sought to address. Some of these questions include whether all phenotypes resulting from expression of pertussis toxin stemmed from GNAI inhibition; which GNAI family members are most critical for directing bundle development; whether GNAI proteins are needed for basal body movements that contribute to bundle patterning. These questions are important for understanding how tissue is patterned in response to planar cell polarity cues.
To address questions related to the GNAI family in auditory hair cell development, the authors assembled an impressive and nearly comprehensive collection of mouse models. This approach allowed for each Gnai and Gnao gene to be knocked out individually or in combination with each other. Notably, a new floxed allele was generated for Gnai3 because loss of this gene in combination with Gnai2 deletion was known to be embryonic lethal. Besides these lines, a new knockin mouse was made to conditionally express untagged pertussis toxin following cre induction from a strong promoter. The breadth and complexity involved in generating and collecting these strains makes this study unique, and likely the authoritative last word on which GNAI proteins are needed for which aspect of auditory hair bundle development.
Appropriate methods were employed by the authors to characterize auditory hair bundle morphology in each mouse line. Conclusions were carefully drawn from the data and largely based on excellent quantitative analysis. The main conclusions are that GNAI3 has the largest effect on hair bundle development. GNAI2 can compensate for GNAI3 loss in early development but incompletely in late development. The Gnai2 Gnai3 double mutant recapitulates nearly all the phenotypic effects associated with pertussis toxin expression and also reveals a role for GNAIs in early movement of the basal body. This comprehensive study builds on earlier reports, both uncovering new functions and putting previously putative functions on solid ground.
-
-
arxiv.org arxiv.org
-
Reviewer #2 (Public Review):
In this manuscript, the authors analyze the shapes of cerebral cortices from several primate species, including subgroups of young and old humans, to characterize commonalities in patterns of gyrification, cortical thickness, and cortical surface area. The authors state that the observed scaling law shares properties with fractals, where shape properties are similar across several spatial scales. One way the authors assess this is to perform a "cortical melting" operation that they have devised on surface models obtained from several primate species. The authors also explore differences in shape properties between brains of young (~20 year old) and old (~80) humans. A challenge the authors acknowledge struggling with in reviewing the manuscript is merging "complex mathematical concepts and a perplexing biological phenomenon." This reviewer remains a bit skeptical about whether the complexity of the mathematical concepts being drawn from are justified by the advances made in our ability to infer new things about the shape of the cerebral cortex.
(1) The series of operations to coarse-grain the cortex illustrated in Figure 1 produces image segmentations that do not resemble real brains. The process to assign voxels in downsampled images to cortex and white matter is biased towards the former, as only 4 corners of a given voxel are needed to intersect the original pial surface, but all 8 corners are needed to be assigned a white matter voxel. The reason for introducing this bias (and to the extent that it is present in the authors' implementation) is not provided. The authors provide an intuitive explanation of why thickness relates to folding characteristics, but ultimately an issue for this reviewer is, e.g., for the right-most panel in Figure 2b, the cortex consists of several 4.9-sided voxels and thus a >2 cm thick cortex. A structure with these morphological properties is not consistent with the anatomical organization of typical mammalian neocortex.
(2) For the comparison between 20-year-old and 80-year-old brains, a well-documented difference is that the older age group possesses more cerebral spinal fluid due to tissue atrophy, and the distances between the walls of gyri becomes greater. This difference is born out in the left column of Figure 4b. It seems this additional spacing between gyri in 80 year olds requires more extensive down-sampling (larger scale values in Figure 4a) to achieve a similar shape parameter K as for the 20 year olds. The authors assert that K provides a more sensitive measure (associated with a large effect size) than currently used ones for distinguishing brains of young vs. old people. A more explicit, or elaborate, interpretation of the numbers produced in this manuscript, in terms of brain shape, might make this analysis more appealing to researchers in the aging field.
(3) In the Discussion, it is stated that self-similarity, operating on all length scales, should be used as a test for existing and future models of gyrification mechanisms. Given the lack of association between the abstract mathematical parameters described in this study and explicit properties of brain tissue and its constituents, it is difficult to envision how the coarse-graining operation can be used to guide development of "models of cortical gyrification."
(4) There are several who advocate for analyzing cortical mid-thickness surfaces, as the pial surface over-represents gyral tips compared to the bottoms of sulci in the surface area. The authors indicate that analyses of mid-thickness representations will be taken on in future work, but this seems to be a relevant control for accepting the conclusions of this manuscript.
-
Reviewer #3 (Public Review):
Summary: Through a rigorous methodology, the authors demonstrated that within 11 different primates, the shape of the brain followed a universal scaling law with fractal properties. They enhanced the universality of this result by showing the concordance of their results with a previous study investigating 70 mammalian brains, and the discordance of their results with other folded objects that are not brains. They incidentally illustrated potential applications of this fractal property of the brain by observing a scale-dependant effect of aging on the human brain.
Strengths:<br /> - New hierarchical way of expressing cortical shapes at different scales derived from previous report through implementation of a coarse-graining procedure<br /> - Investigation of 11 primate brains and contextualisation with other mammals based on prior literature<br /> - Proposition of tool to analyse cortical morphology requiring no fine tuning and computationally achievable<br /> - Positioning of results in comparison to previous works reinforcing the validity of the observation.<br /> - Illustration of scale-dependance of effects of brain aging in the human.
Weaknesses:<br /> - The notion of cortical shape, while being central to the article, is not really defined, leaving some interpretation to the reader<br /> - The organization of the manuscript is unconventional, leading to mixed contents in different sections (sections mixing introduction and method, methods and results, results and discussion...). As a result, the reader discovers the content of the article along the way, it is not obvious at what stages the methods are introduced, and the results are sometimes presented and argued in the same section, hindering objectivity.<br /> To improve the document, I would suggest a modification and restructuring of the article such that: 1) by the end of the introduction the reader understands clearly what question is addressed and the value it holds for the community, 2) by the end of the methods the reader understands clearly all the tools that will be used to answer that question (not just the new method), 3) by the end of the results the reader holds the objective results obtained by applying these tools on the available data (without subjective interpretations and justifications), and 4) by the end of the discussion the reader understands the interpretation and contextualisation of the study, and clearly grasps the potential of the method depicted for the better understanding of brain folding mechanisms and properties.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, Lin et al developed a protocol termed HIF-Clear, to perform tissue clearing and labelling on large-scale FFPE mouse brain specimens. They have optimized protocols for dewaxing and adequate delipidation of FFPE tissues to enable deep immunolabelling, even for whole mouse brains. This was useful for the study of disease models such as in an astrocytoma model to evaluate spatial architecture of the tumour and its surrounding microenvironment. It was also used in a traumatic brain injury model to quantify changes in vasculature density and differences in monoaminergic innervation. They have also demonstrated the potential of multi-round immunolabelling using photobleaching, as well as expansion microscopy with FFPE samples using Hif Clear.
Comments on revised version:
The revised manuscript by Lin et al is much improved with a more detailed methods description. There are only a few minor comments for the authors that are still valid:
- Some procedures, including the basic HIF-Clear protocol, seem to produce marked tissue expansion that is not mentioned in the manuscript. Users should take this fact into consideration when making measurements.<br /> - The authors have provided a comparison between mouse and human brain samples in Figure S12. However, it is misleading to mention that the "fluorescent signals are comparable at varying depth" as the figure clearly showed a lack of continuous staining especially for SMI312 at 900um depth, and human brain tissue showed considerably increased background signal (likely due to endogenous lipofuscin which has autofluorescent properties). Also, This is difficult to assess in the present design of the experiment because, at different depths, the tissue and the antigen may change themselves... making it difficult to make a direct staining comparison with other depths.
-
Reviewer #2 (Public Review):
The manuscript details an investigation aimed at developing a protocol to render centimeter-scale formalin-fixed paraffin-embedded specimens optically transparent and suitable for deep immunolabeling. The authors evaluate various detergents and conditions for epitope retrieval such as acidic or basic buffers combined with high temperatures in entire mouse brains that had been paraffin-embedded for months. They use various protein targets to test active immunolabeling and light-sheet microscopy registration of such preparations to validate their protocol. The final procedure, called MOCAT pipeline, briefly involves 1% Tween 20 in citrate buffer, heated in a pressure cooker at 121 {degree sign}C for 10 minutes. The authors also note that part of the delipidation is achieved by the regular procedure.
Major Strengths<br /> - The simplicity and ease of implementation of the proposed procedure using common laboratory reagents distinguish it favorably from more complex methods.
- Direct comparisons with existing protocols and exploration of alternative conditions enhance the robustness and practicality of the methodology.
Final considerations<br /> The evidence presented supports the effectiveness of the proposed method in rendering thick FFPE samples transparent and facilitating repeated rounds of immunolabeling.
The developed procedure holds promise for advancing tissue and 3D-specific determination of proteins of interest in various settings, including hospitals, basic research, and clinical labs, particularly benefiting neuroscience research.
The methodological findings suggest that MOCAT could have broader applications beyond FFPE samples, differentiating it from other tissue-clearing approaches in that the equipment and chemicals needed are broadly accessible.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Working memory is imperfect - memories accrue errors over time and are biased towards certain identities. For example, previous work has shown memory for orientation is more accurate near the cardinal directions (i.e., variance in responses is smaller for horizontal and vertical stimuli) while being biased towards diagonal orientations (i.e., there is a repulsive bias away from horizontal and vertical stimuli). The magnitude of errors and biases increase the longer an item is held in working memory and when more items are held in working memory (i.e., working memory load is higher). Previous work has argued that biases and errors could be explained by increased perceptual acuity at cardinal directions. However, these models are constrained to sensory perception and do not explain how biases and errors increase over time in memory. The current manuscript builds on this work to show how a two-layer neural network could integrate errors and biases over a memory delay. In brief, the model includes a 'sensory' layer with heterogenous connections that lead to the repulsive bias and decreased error in the cardinal directions. This layer is then reciprocally connected with a classic ring attractor layer. Through their reciprocal interactions, the biases in the sensory layer are constantly integrated into the representation in memory. In this way, the model captures the distribution of biases and errors for different orientations that have been seen in behavior and their increasing magnitude with time. The authors compare the two-layer network to a simpler one-network model, showing that the one-model network is harder to tune and shows an attractive bias for memories that have lower error (which is incompatible with empirical results).
Strengths:
The manuscript provides a nice review of the dynamics of items in working memory, showing how errors and biases differ across stimulus space. The two-layer neural network model is able to capture the behavioral effects as well as relate to neurophysiological observations that memory representations are distributed across the sensory cortex and prefrontal cortex.
The authors use multiple approaches to understand how the network produces the observed results. For example, analyzing the dynamics of memories in the low-dimensional representational space of the networks provides the reader with an intuition for the observed effects.
As a point of comparison with the two-layer network, the authors construct a heterogenous one-layer network (analogous to a single memory network with embedded biases). They argue that such a network is incapable of capturing the observed behavioral effects but could potentially explain biases and noise levels in other sensory domains where attractive biases have lower errors (e.g., color).
The authors show how changes in the strength of Hebbian learning of excitatory and inhibitory synapses can change network behavior. This argues for relatively stronger learning in inhibitory synapses, an interesting prediction.
The manuscript is well-written. In particular, the figures are well done and nicely schematize the model and the results.
Weaknesses:
Despite its strengths, the manuscript does have some weaknesses.
First, as far as we can tell, behavioral data is only presented in schematic form. This means some of the nuances of the effects are lost. It also means that the model is not directly capturing behavioral effects. Therefore, while providing insight into the general phenomenon, the current manuscript may be missing some important aspects of the data.
Relatedly, the models are not directly fit to behavioral data. This makes it hard for the authors to exclude the possibility that there is a single network model that could capture the behavioral effects. In other words, it is hard to support the authors' conclusion that "....these evolving errors...require network interaction between two distinct modules." (from the abstract, but similar comments are made throughout the manuscript). Such a strong claim needs stronger evidence than what is presented. Fitting to behavioral data could allow the authors to explore the full parameter space for both the one-layer and two-layer network architectures.
In addition, directly comparing the ability of different model architectures to fit behavioral data would allow for quantitative comparison between models. Such quantitative comparisons are currently missing from the manuscript.
To help broaden the impact of the paper, it would be helpful if the authors provided insight into how the observed behavioral biases and/or network structures influence cognition. For example, previous work has argued that biases may counteract noise, leading to decreased variance at certain locations. Is there a similar normative explanation for why the brain would have repulsive biases away from commonly occurring stimuli? Are they simply a consequence of improved memory accuracy? Why isn't this seen for all stimulus domains?
Previous work has found both diffusive noise and biases increase with the number of items in working memory. It isn't clear how the current model would capture these effects. The authors do note this limitation in the Discussion, but it remains unclear how the current model can be generalized to a multi-item case.
The role of the ring attractor memory network isn't completely clear. There is noise added in this stage, but how is this different from the noise added at the sensory stage? Shouldn't these be additive? Is the noise necessary? Similarly, it isn't clear whether the memory network is necessary - can it be replaced by autapses (self-connections) in the sensory network to stabilize its representation? In short, it would be helpful for the authors to provide an intuition for why the addition of the memory network facilitates the repulsive bias.
Overall:
Overall, the manuscript was successful in building a model that captured the biases and noise observed in working memory. This work complements previous studies that have viewed these effects through the lens of optimal coding, extending these models to explain the effects of time in memory. In addition, the two-layer network architecture extends previous work with similar architectures, adding further support to the distributed nature of working memory representations.
-
Reviewer #2 (Public Review):
In this manuscript, Yang et al. present a modeling framework to understand the pattern of response biases and variance observed in delayed-response orientation estimation tasks. They combine a series of modeling approaches to show that coupled sensory-memory networks are in a better position than single-area models to support experimentally observed delay-dependent response bias and variance in cardinal compared to oblique orientations. These errors can emerge from a population-code approach that implements efficient coding and Bayesian inference principles and is coupled to a memory module that introduces random maintenance errors. A biological implementation of such operation is found when coupling two neural network modules, a sensory module with connectivity inhomogeneities that reflect environment priors, and a memory module with strong homogeneous connectivity that sustains continuous ring attractor function. Comparison with single-network solutions that combine both connectivity inhomogeneities and memory attractors shows that two-area models can more easily reproduce the patterns of errors observed experimentally. This, the authors take as evidence that a sensory-memory network is necessary, but I am not convinced about the evidence in support of this "necessity" condition. A more in-depth understanding of the mechanisms operating in these models would be necessary to make this point clear.
Strengths:
The model provides an integration of two modeling approaches to the computational bases of behavioral biases: one based on Bayesian and efficient coding principles, and one based on attractor dynamics. These two perspectives are not usually integrated consistently in existing studies, which this manuscript beautifully achieves. This is a conceptual advancement, especially because it brings together the perceptual and memory components of common laboratory tasks.
The proposed two-area model provides a biologically plausible implementation of efficient coding and Bayesian inference principles, which interact seamlessly with a memory buffer to produce a complex pattern of delay-dependent response errors. No previous model had achieved this.
Weaknesses:
The correspondence between the various computational models is not fully disclosed. It is not easy to see this correspondence because the network function is illustrated with different representations for different models and the correspondence between components of the various models is not specified. For instance, Figure 1 shows that a specific pattern of noise is required in the low-dimensional attractor model, but in the next model in Figure 2, the memory noise is uniform for all stimuli. How do these two models integrate? What element in the population-code model of Figure 2 plays the role of the inhomogeneous noise of Figure 1? Also, the Bayesian model of Figure 2 is illustrated with population responses for different stimuli and delays, while the attractor models of Figures 3 and 4 are illustrated with neuronal tuning curves but not population activity. In addition, error variance in the Bayesian model appears to be already higher for oblique orientations in the first iteration whereas it is only first shown one second into the delay for the attractor model in Figure 4. It is thus unclear whether variance inhomogeneities appear already at the perceptual stage in the attractor model, as it does in the population-code model. Of course, correspondences do not need to be perfect, but the reader does not know right now how far the correspondence between these models goes.
The manuscript does not identify the mechanistic origin in the model of Figure 4 of the specific noise pattern that is required for appropriate network function (with higher noise variance at oblique orientations). This mechanism appears critical, so it would be important to know what it is and how it can be regulated. In particular, it would be interesting to know if the specific choice of Poisson noise in Equation (3) is important. Tuning curves in Figure 4 indicate that population activity for oblique stimuli will have higher rates than for cardinal stimuli and thus induce a larger variance of injected noise in oblique orientations, based on this Poisson-noise assumption. If this explanation holds, one wonders if network inhomogeneities could be included (for instance in neural excitability) to induce higher firing rates in the cardinal/oblique orientations so as to change noise inhomogeneities independently of the bias and thus control more closely the specific pattern of errors observed, possibly within a single memory network.
The main conclusion of the manuscript, that the observed patterns of errors "require network interaction between two distinct modules" is not convincingly shown. The analyses show that there is a quantitative but not a qualitative difference between the dynamics of the single memory area compared to the sensory-memory two-area network, for specific implementations of these models (Figure 7 - Figure Supplement 1). There is no principled reasoning that demonstrates that the required patterns of response errors cannot be obtained from a different memory model on its own. Also, since the necessity of the two-area configuration is highlighted as the main conclusion of the manuscript, it is inconvenient that the figure that carefully compares these conditions is in the Supplementary Material.
The proposed model has stronger feedback than feedforward connections between the sensory and memory modules. This is not a common assumption when thinking about hierarchical processing in the brain, and it is not discussed in the manuscript.
-
Reviewer #3 (Public Review):
Summary:
The present study proposes a neural circuit model consisting of coupled sensory and memory networks to explain the circuit mechanism of the cardinal effect in orientation perception which is characterized by the bias towards the oblique orientation and the largest variance at the oblique orientation.
Strengths:
The authors have done numerical simulations and preliminary analysis of the neural circuit model to show the model successfully reproduces the cardinal effect. And the paper is well-written overall. As far as I know, most of the studies on the cardinal effect are at the level of statistical models, and the current study provides one possibility of how neural circuit models reproduce such an effect.
Weaknesses:
There are no major weaknesses and flaws in the present study, although I suggest the author conduct further analysis to deepen our understanding of the circuit mechanism of the cardinal effects. Please find my recommendations for concrete comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
A cortico-centric view is dominant in the study of the neural mechanisms of consciousness. This investigation represents the growing interest in understanding how subcortical regions are involved in conscious perception. To achieve this, the authors engaged in an ambitious and rare procedure in humans of directly recording from neurons in the subthalamic nucleus and thalamus. While participants were in surgery for the placement of deep brain stimulation devices for the treatment of essential tremor and Parkinson's disease, they were awakened and completed a perceptual-threshold tactile detection task. The authors identified individual neurons and analyzed single-unit activity corresponding with the task phases and tactile detection/perception. Among the neurons that were perception-responsive, the authors report changes in firing rate beginning ~150 milliseconds from the onset of the tactile stimulation. Curiously, the majority of the perception-responsive neurons had a higher firing rate for missed/not perceived trials. In summary, this investigation is a valuable addition to the growing literature on the role of subcortical regions in conscious perception.
Strengths:
The authors achieved the challenging task of recording human single-unit activity while participants performed a tactile perception task. The methods and statistics are clearly explained and rigorous, particularly for managing false positives and non-normal distributions. The results offer new detail at the level of individual neurons in the emerging recognition of the role of subcortical regions in conscious perception.
Weaknesses:
"Nonetheless, it remains unknown how the firing rate of subcortical neurons changes when a stimulus is consciously perceived." (lines 76-77) The authors could be more specific about what exactly single-unit recordings offer for interrogating the role of subcortical regions in conscious perception that is unique from alternative neural activity recordings (e.g., local field potential) or recordings that are used as proxies of neural activity (e.g., fMRI).
Related comment for the following excerpts:
"After a random delay ranging from 0.5 to 1 s, a "respond" cue was played, prompting participants to verbally report whether they felt a vibration or not. Therefore, none of the reported analyses are confounded by motor responses." (lines 97-99).
"These results show that subthalamic and thalamic neurons are modulated by stimulus onset, irrespective of whether it was reported or not, even though no immediate motor response was required." (lines 188-190).
"By imposing a delay between the end of the tactile stimulation window and the subjective report, we ensured that neuronal responses reflected stimulus detection and not mere motor responses." (lines 245-247).
It is a valuable feature of the paradigm that the reporting period was initiated hundreds of milliseconds after the stimulus presentation so that the neural responses should not represent "mere motor responses". However, verbal report of having perceived or not perceived a stimulus is a motor response and because the participants anticipate having to make these reports before the onset of the response period, there may be motor preparatory activity from the time of the perceived stimulus that is absent for the not perceived stimulus. The authors show sensitivity to this issue by identifying task-selective neurons and their discussion of the results that refer to the confound of post-perceptual processing. Still, direct treatment of this possible confound would help the rigor of the interpretation of the results.
"When analyzing tactile perception, we ensured that our results were not contaminated with spurious behavior (e.g. fluctuation of attention and arousal due to the surgical procedure)." (lines 118-117).
Confidence in the results would be improved if the authors clarified exactly what behaviors were considered as contaminating the results (e.g., eye closure, saccades, and bodily movements) and how they were determined.
The authors' discussion of the thalamic neurons could be more precise. The authors show that only certain areas of the thalamus were recorded (in or near the ventral lateral nucleus, according to Figure S3C). The ventral lateral nucleus has a unique relationship to tactile and motor systems, so do the authors hypothesize these same perception-selective neurons would be active in the same way for visual, auditory, olfactory, and taste perception? Moreover, the authors minimally interpret the location of the task, sensory, and perception-responsive neurons. Figure S3 suggests these neurons are overlapping. Did the authors expect this overlap and what does it mean for the functional organization of the ventral lateral nucleus and subthalamic nucleus in conscious perception?
"We note that, 6 out of 8 neurons had higher firing rates for missed trials than hit trials, although this proportion was not significant (binomial test: p = 0.145)." (lines 215-216).
It appears that in the three example neurons shown in Figure 4, 2 out of 3 (#001 and #068) show a change in firing rate predominantly for the missed stimulations. Meanwhile, #034 shows a clear hit response (although there is an early missed response - decreased firing rate - around 150 ms that is not statistically significant). This is a counterintuitive finding when compared to previous results from the thalamus (e.g., local field potentials and fMRI) that show the opposite response profile (i.e., missed/not perceived trials display no change or reduced response relative to hit/perceived trials). The discussion of the results should address this, including if these seemingly competing findings can be rectified.
The authors report 8 perception-responsive neurons, but there are only 5 recording sites highlighted (i.e., filled-in squares and circles) in Figures S3C and 4D. Was this an omission or were three neurons removed from the perception-responsive analysis?
Could the authors speak to the timing of the responses reported in Figure 4? The statistically significant intervals suggested both early (~160-200ms) to late responses (~300ms). Some have hypothesized that subcortical regions are early - ahead of cortical activation that may be linked with conscious perception. Do these results say anything about this temporal model for when subcortical regions are active in conscious perception?
-
Reviewer #2 (Public Review):
The authors have studied subpopulations of individual neurons recorded in the thalamus and subthalamic nucleus (STN) of awake humans performing a simple cognitive task. They have carefully designed their task structure to eliminate motor components that could confound their analyses in these subcortical structures, given that the data was recorded in patients with Parkinson's Disease (PD) and diagnosed with an Essential Tremor (ET). The recorded data represents a promising addition to the field. The analyses that the authors have applied can serve as a strong starting point for exploring the kinds of complex signals that can emerge within a single neuron's activity. Pereira et. al conclude that their results from single neurons indicate that task-related activity occurs, purportedly separate from previously identified sensory signals. These conclusions are a promising and novel perspective for how the field thinks about the emergence of decisions and sensory perception across the entire brain as a unit.
Despite the strength of the data that was obtained and the relevant nature of the conclusions that were drawn, there are certain limitations that must be taken into consideration:
(1) The authors make several claims that their findings are direct representations of consciousness identifiable in subcortical structures. The current context for consciousness does not sufficiently define how the consciousness is related to the perceptual task.
(2) The current work would benefit greatly from a description and clarification of what all the neurons that have been recorded are doing. The authors' criteria for selecting subpopulations with task-relevant activity are appropriate, but understanding the heterogeneity in a population of single neurons is important for broader considerations that are being studied within the field.
(3) The authors have omitted a proper set of controls for comparison against the active trials, for example, where a response was not necessary. Please explain why this choice was made and what implications are necessary to consider.
-
Reviewer #3 (Public Review):
Summary:
This important study relies on a rare dataset: intracranial recordings within the thalamus and the subthalamic nucleus in awake humans, while they were performing a tactile detection task. This procedure allowed the authors to identify a small but significant proportion of individual neurons, in both structures, whose activity correlated with the task (e.g. their firing rate changed following the audio cue signalling the start of a trial) and/or with the stimulus presentation (change in firing rate around 200 ms following tactile stimulation) and/or with participant's reported subjective perception of the stimulus (difference between hits and misses around 200 ms following tactile stimulation). Whereas most studies interested in the neural underpinnings of conscious perception focus on cortical areas, these results suggest that subcortical structures might also play a role in conscious perception, notably tactile detection.
Strengths:
There are two strongly valuable aspects in this study that make the evidence convincing and even compelling. First, these types of data are exceptional, the authors could have access to subcortical recordings in awake and behaving humans during surgery. Additionally, the methods are solid. The behavioral study meets the best standards of the domain, with a careful calibration of the stimulation levels (staircase) to maintain them around the detection threshold, and an additional selection of time intervals where the behavior was stable. The authors also checked that stimulus intensity was the same on average for hits and misses within these selected periods, which warrants that the effects of detection that are observed here are not confounded by stimulus intensity. The neural data analysis is also very sound and well-conducted. The statistical approach complies with current best practices, although I found that, in some instances, it was not entirely clear which type of permutations had been performed, and I would advocate for more clarity in these instances. Globally the figures are nice, clear, and well presented. I appreciated the fact that the precise anatomical location of the neurons was directly shown in each figure.
Weaknesses:
Some clarification is needed for interpreting Figure 3, top rows: in my understanding the black curve is already the result of a subtraction between stimulus present trials and catch trials, to remove potential drifts; if so, it does not make sense to compare it with the firing rate recorded for catch trials.
I also think that the article could benefit from a more thorough presentation of the data and that this could help refine the interpretation which seems to be a bit incomplete in the current version. There are 8 stimulus-responsive neurons and 8 perception-selective neurons, with only one showing both effects, resulting in a total of 15 individual neurons being in either category or 13 neurons if we exclude those in which the behavior is not good enough for the hit versus miss analysis (Figure S4A). In my opinion, it should be feasible to show the data for all of them (either in a main figure, or at least in supplementary), but in the present version, we get to see the data for only 3 neurons for each analysis. This very small selection includes the only neuron that shows both effects (neuron #001; which is also cue selective), but this is not highlighted in the text. It would be interesting to see both the stimulus-response data and the hit versus miss data for all 13 neurons as it could help develop the interpretation of exactly how these neurons might be involved in stimulus processing and conscious perception. This should give rise to distinct interpretations for the three possible categories. Neurons that are stimulus-responsive but not perception-selective should show the same response for both hits and misses and hence carry out indifferently conscious and unconscious responses. The fact that some neurons show the opposite pattern is particularly intriguing and might give rise to a very specific interpretation: if the neuron really doesn't tend to respond to the stimulus when hits and misses are put together, it might be a neuron that does not directly respond to the stimulus, but whose spontaneous fluctuations across trials affect how the stimulus is perceived when they occur in a specific time window after the stimulus. Finally, neuron #001 responds with what looks like a real burst of evoked activity to stimulation and also shows a difference between hits and misses, but intriguingly, the response is strongest for misses. In the discussion, the interesting interpretation in terms of a specific gating of information by subcortical structures seems to apply well to this last example, but not necessarily to the other categories.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
People with Parkinson's disease often experience a variety of nonmotor symptoms, the biological bases of which remain poorly understood. Johansson et al began to study potential roles of the dorsal raphe nucleus (DRN) degeneration in the pathophysiology of neuropsychiatric symptoms in PD.
Strengths:
Boi et al validated a transgenic reporter mouse line that can reliably label dopaminergic neurons in the DRN. This brain region shows severe neurodegeneration and has been proposed to contribute to the manifestation of neuropsychiatric symptoms in PD. Using this mouse line (and others), Boi and colleagues characterized electrophysiological and morphological phenotypes of dopaminergic and serotoninergic neurons in the raphe nucleus. This study involved very careful topographical registration of recorded neurons to brain slices for post hoc immunohistochemical validation of cell identity, making it an elegant and thorough piece of work.
In relevance to PD pathophysiology, the authors evaluated the physiological and morphological changes of DRN serotoninergic and dopaminergic neurons after a partial loss of nigrostriatal dopamine neurons, which serves as a mouse model of early parkinsonian pathology. Moreover, the authors identified a series of physiological and morphological changes of subtypes of DRN neurons that depend on nigral dopaminergic neurodegeneration, LC noradrenergic neurodegeneration, or both. Indeed this works highlights the importance of LC noradrenergic degeneration in PD pathophysiology.
Overall, this is a well-designed study with high significance to the Parkinson's research field.
-
Reviewer #2 (Public Review):
In this paper, Boi et al. thoroughly classified the electrophysiological and morphological characteristics of serotonergic and dopaminergic neurons in the DRN and examined the alterations of these neurons in the 6-OHDA-induced mouse PD model. Using whole-cell patch clamp recording, they found that 5-HT and dopamine (DA) neurons in the DRN are electrophysiologically well-distinguished from each other. In addition, they characterized distinct morphological features of 5-HT and DA neurons in the DRN. Notably, these specific features of 5-HT and DA neurons in the DRN exhibited different changes in the 6-OHDA-induced PD model. Then the authors utilized desipramine (DMI) to separate the effects of nigrostriatal DA depletion and noradrenalin (NA) depletion which are induced by 6-OHDA. Interestingly, protection from NA depletion by DMI pretreatment reversed the changes in 5-HT neurons, while having a minor impact on the changes in DA neurons in the DRN. These data indicate that the role of NA lesion in the altered properties of DRN 5-HT neurons by 6-OHDA is more critical than the one of DA lesion.
Overall, this study provides foundational data on the 5-HT and DA neurons in the DRN and their potential involvement in PD symptoms. Given the defects of the DRN in PD, this paper may offer insights into the cellular mechanisms that may underlie non-motor symptoms associated with PD. Despite the importance of the primary claim proposed by the authors, however, the interpretation of the authors on some DMI experiments is not explained well.
-
Reviewer #3 (Public Review):
Summary:
Using ex vivo electrophysiology and morphological analysis, Boi et al. investigate the electrophysiological and morphological properties of serotonergic and dopaminergic subpopulations in the dorsal raphe nucleus (DRN). They performed labor-intensive and rigorous electrophysiology with posthoc immunohistochemistry and neuronal reconstruction to delineate the two major cell classes in the DRN: DRN-DA and DRN-5HT, named according to their primary neurotransmitter machinery. They find that the dopaminergic (DRN-DA) and serotonergic (DRN-5HT) neurons are electrophysiologically and morphologically distinct, and are altered following striatal injection of the toxin 6-OHDA. However, these alterations were largely prevented in DRN-5HT neurons by pre-treatment with desipramine. These findings suggest an important interplay between catecholaminergic systems in healthy and parkinsonian conditions, as well as a relationship between neuronal structure and function.
Strengths:
Large, well-validated dataset that will be a resource for others.<br /> Complementary electrophysiological and anatomical characterizations.<br /> Conclusions are justified by the data.<br /> Relevant for basic scientists interested in DRN cell types and physiology<br /> Relevant for those interested in serotonin and/or DRN neurons in Parkinson's Disease
Weaknesses:
Given the scope of the author's questions and hypotheses, I did not identify any major weaknesses.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This is a study on the role of the retrosplenial cortex (RSC) and the hippocampus in working memory. Working memory is a critical cognitive function that allows temporary retention of information for task execution. The RSC, which is functionally and anatomically connected to both primary sensory (especially visual) and higher cognitive areas, plays a key role in integrating spatial-temporal context and in goal-directed behaviors. However, the specific contributions of the RSC and the hippocampus in working memory-guided behaviors are not fully understood due to a lack of studies that experimentally disrupt the connection between these two regions during such behaviors.
In this study, researchers employed eArch3.0 to silence hippocampal axon terminals in the RSC, aiming to explore the roles of these brain regions in working memory. Experiments were conducted where animals with silenced hippocampal axon terminals in the RSC performed a delayed non-match to place (DNMP) task. The results indicated that this manipulation impaired memory retrieval, leading to decreased performance and quicker decision-making in the animals. Notably, the authors observed that the effects of this impairment persisted beyond the light-activation period of the opsin, affecting up to three subsequent trials. They suggest that disrupting the hippocampal-RSC connection has a significant and lasting impact on working memory performance.
Strengths:
They conducted a study exploring the impact of direct hippocampal inputs into the RSC, a region involved in encoding spatial-temporal context and transferring contextual information, on spatial working memory tasks. Utilizing eArch3.0 expressed in hippocampal neurons via the viral vector AAV5-hSyn1-eArch3.0, they aimed to bilaterally silence hippocampal terminals located at the RSC in rats pre-trained in a DNMP task. They discovered that silencing hippocampal terminals in the RSC significantly decreased working memory performance in eArch+ animals, especially during task interleaving sessions (TI) that alternated between trials with and without light delivery. This effect persisted even in non-illuminated trials, indicating a lasting impact beyond the periods of direct manipulation. Additionally, they observed a decreased likelihood of correct responses following TI trials and an increased error rate in eArch+ animals, even after incorrect responses, suggesting an impairment in error-corrective behavior. This contrasted with baseline sessions where no light was delivered, and both eArch+ and control animals showed low error rates.
Weaknesses:
While I agree with the authors that the role of hippocampal inputs to the RSC in spatial working memory is understudied and merits further investigation, I find that the optogenetic experiment, a core part of this manuscript that includes viral injections, could be improved. The effects were rather subtle, rendering some of the results barely significant and possibly too weak to support major conclusions. Additionally, no mechanistic investigation was conducted beyond referencing previous reports to interpret the core behavioral phenotypes.
-
Reviewer #2 (Public Review):
The authors examine the impact of optogenetic inhibition of hippocampal axon terminals in the retrosplenial cortex (RSP) during the performance of a working memory T-maze task. Performance on a delayed non-match-to-place task was impaired by such inhibition. The authors also report that inhibition is associated with faster decision-making and that the effects of inhibition can be observed over several subsequent trials. The work seems reasonably well done and the role of hippocampal projections to retrosplenial cortex in memory and decision-making is very relevant to multiple fields. However, the work should be expanded in several ways before one can make firm conclusions on the role of this projection in memory and behavior.
(1) The work is very singular in its message and the experimentation. Further, the impact of the inhibition on behavior is very moderate. In this sense, the results do not support the conclusion that the hippocampal projection to retrosplenial cortex is key to working memory in a navigational setting.
(2) There are no experiments examining other types of behavior or working memory. Given that the animals used in the studies could be put through a large number of different tasks, this is surprising. There is no control navigational task. There is no working memory test that is non-spatial. Such results should be presented in order to put the main finding in context.
(3) The actual impact of the inhibition on activity in RSP is not provided. While this may not be strictly necessary, it is relevant that the hippocampal projection to RSP includes, and is perhaps dominated by inhibitory inputs. I wonder why the authors chose to manipulate hippocampal inputs to RSP when the subiculum stands as a much stronger source of afferents to RSP and has been shown to exhibit spatial and directional tuning of activity. The points here are that we cannot be sure what the manipulation is really accomplishing in terms of inhibiting RSP activity (perhaps this explains the moderate impact on behavior) and that the effect of inhibiting hippocampal inputs is not an effective means by which to study how RSP is responsive to inputs that reflect environmental locations.
(4) The impact of inhibition on trials subsequent to the trial during which optical stimulation was actually supplied seems trivial. The authors themselves point to evidence that activation of the hyperpolarizing proton pump is rather long-lasting in its action. Further, each sample-test trial pairing is independent of the prior or subsequent trials. This finding is presented as a major finding of the work, but would normally be relegated to supplemental data as an expected outcome given the dynamics of the pump when activated.
(5) In the middle of the first paragraph of the discussion, the authors make reference to work showing RSP responses to "contextual information in egocentric and allocentric reference frames". The citations here are clearly deficient. How is the Nitzan 2020 paper at all relevant here?
(6) The manuscript is deficient in referencing and discussing data from the Smith laboratory that is similar. The discussion reads mainly like a repeat of the results section.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors aimed at elucidating the development of high altitude polycythemia which affects mice and men staying in a hypoxic atmosphere at high altitude (hypobaric hypoxia; HH). HH causes increased erythropoietin production which stimulates the production of red blood cells. The authors hypothesize that increased production is only partially responsible for exaggerated red blood cell production, i.e. polycythemia, but that decreased erythrophagocytosis in the spleen contributes to high red blood cells counts.
The main strength of the study is the use of a mouse model exposed to HH in a hypobaric chamber. However, not all of the reported results are convincing due to some smaller effects which one may doubt to result in the overall increase in red blood cells as claimed by the authors. Moreover, direct proof for reduced erythrophagocytosis is compromised due to a strong spontaneous loss of labelled red blood cells, although effects of labelled E. coli phagocytosis are shown.
Comments on latest version:
The authors have partly addressed my comments.
(1) The response to my question regarding unchanged MCH is a kind of "hand waiving" - maybe it would require substantially more extensive work to clarify this issue
(2) The moderate if not marginal difference in normal vs splenectomy argues against a significant role of the spleen - even if the difference was slightly larger in HH
(3) There is still overinterpretation of data. My Q was: Is the reduced phagocytic capacity in Fig 4B significant? Response: "This is indicative of a diminished phagocytic capacity, particularly when contrasted<br /> with NN conditions." I guess that is a "no"
(4) I assume my question with respect to bi- or trivalent iron chelators was misunderstood.
In general, as indicated above, it is an interesting hypothesis which is corroborated by data in several instances. Maybe the scientific community should decide whether it is all in all conclusive.
-
Reviewer #3 (Public Review):
The manuscript by Yang et al. investigated in mice how hypobaric hypoxia can modify the RBC clearance function of the spleen, a concept that is of interest. Via interpretation of their data, the authors proposed a model that hypoxia causes an increase in cellular iron levels, possibly in RPMs, leading to ferroptosis, and downregulates their erythrophagocytic capacity.
Comments on revised version:
The manuscript has now improved with all the new data, supporting the model proposed by the authors. However, it remains not very easy to follow for the conclusions and experimental details. Some of the most important remaining comments are listed below:
(1) Lines 401-406 - The conclusions in this new fragment sound a bit overstated - the authors do not directly measure erytrophagocytosis capacity, only the total RBC parameters in the circulation. The increase is also very mild biologically between sham and splenectomized mice in HH conditions.
(2) scRNA seq data are still presented in a way that is very difficult to understand. The readers could not see from the graphics that macrophages are depleted. The clusters are not labelled - some clusters in the bin 'macrophahes+DC' seem actually to be more represented in Fig. 3E; Fig. 3F does not correspond to Fig. 3D. It would be maybe more informative to present like in Figure D side by side NN versus HH? The authors could consider moving the data from supplements that relate to RPMs to the main figure and making it consistent for the Clusters - eg, the authors show data for Cluster 0 in the supplement, and the same Cluster is not marked as macrophages in the main figure. This is quite difficult to follow.
(3) Figure 3G has likely mislabeled axis for F4/80 and CD11b - such mistakes should be avoided in a second revised version of the manuscript, and this data is now redundant with the data shown as new Figure 5A.
(4) The data from new Figure 4 should be better mentioned in the main body of the manuscript - all panels are mentioned twice in the text, first speaking about the decline of labelled RBCs and second referring to phagocytic capacity, whereas this figure only illustrates the decline of labelled RBCs, not directly phagocytic capacity of RPMs. What is lacking, as opposed to typical RBC life span assay, is the time '0' ('starting point') - this is particularly important as we can observe a big drop in labelled RBCs for eg 7 days between NN and HH group, actually implying increased removal of labelled RBCs within the first days of hypoxia exposure. What should be better labelled in this figure is that the proportion of RBCs are labelled RBCs not all RBCs (Y axis in individual panels). Overall, the new Figure 4 brings new data to the study, but how it is presented and discussed is not at the 'state-of-the-art' level (eg, missing the time '0') and is not very straightforward to the reader.
(5) In Figure 7, the experiments with Tuftsin are not very easy to follow, especially for the major conclusions. In panels A and B, the focus is the drug itself under NN conditions, with RBC removal as a readout. Then, in the next panels, the authors introduce HH, and then look at the F4/80 and iron staining. What was exactly the major point the authors wanted to make here?
(6) The data from Figure 8 are informative but do not address the individual cell types - eg, a drop in HO1 or FT may be due to the depletion of RPMs. An increase of TFR1 could be due to the retention of RBCs, the same as maybe labile iron. The data from PBMC are only very loosely linked to these phenotypes observed in the total spleen, and the reason for the regulation of the same proteins in PBMC might be different. It goes back to the data in Figure 3A-C, where also total splenocytes are investigated for their viability.
(7) Can the authors provide the data for the purity (eg cell surface markers) of their primary splenic macrophage cultures? Only ensuring that these are macrophages or addressing the readouts from Figure 8 in RPMs could link ferroptosis to RPMs under HH conditions.
(8) All the data are not presented as individual data points which is not widely applied in papers.
(9) No gating strategies are nicely illustrated or described.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
A descriptive manuscript investigating the ability of a peptide, implicated in development, to induce signalling responses indicative of immunity. The work clearly documents the ability of the synthetic peptide to induce these responses, and open future work to link this back to physiology.
Comments on revised version:
Congratulations to the authors for the improvements to the manuscript.
I still have reservations, as raised by other reviewers, about whether the outputs observed can definitively be classified as immune/defence outputs without assaying an impact upon microbial growth. Indeed, this is challenging to address as many of the outputs are shared by multiple pathways. This is especially the case here as the peptide could have different effects in different tissues or cells with different expression levels of the receptors (e.g. hypothetically - no expression = no effect; weak expression - cell wall loosening and susceptibility; high expression - strong response and 'defence' response). I do however appreciate that the authors have toned down some of the conclusions regarding the defence response and also they included further reference to outputs also being from developmental pathways.
-
Reviewer #3 (Public Review):
Previously, it has been shown the essential role of IDA peptide and HAESA receptor families in driving various cell separation processes such as abscission of flowers as a natural developmental process, of leaves as a defense mechanism when plants are under pathogenic attack or at the lateral root emergence and root tip cell sloughing. In this work, Olsson et al. show for the first time the possible role of IDA peptide in triggering plant innate immunity after the cell separation process occurred. Such an event has been previously proposed to take place in order to seal open remaining tissue after cell separation to avoid creating an entry point for opportunistic pathogens. The elegant experiments in this work demonstrate that IDA peptide is triggering the defense-associated marker genes together with immune specific responses including release of ROS and intracellular CA2+. Thus, the work highlights an intriguing direct link between endogenous cell wall remodeling and plant immunity. Moreover, the upregulation of IDA in response to abiotic and especially biotic stimuli are providing a valuable indication for potential involvement of HAE/IDA signalling in other processes than plant development.
Comments on revised version:
We thank the authors for addressing our previous comments. Overall, we are satisfied with the improvements and appreciate the hard work that has gone into this manuscript. We wish you all the best on the further publication pathway.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study presents valuable data on effector proteins (=virulence factors) used by the bacterial pathogen Legionella pneumophila that target host vesicle trafficking GTPases during infection. The evidence supporting the claims of the authors is robust, and the data suggest a sophisticated interplay between multiple effectors with the goal of temporarily exploiting host cell Rab10 during infection.
The authors have done a nice job addressing my earlier concerns. I have no further criticism about the revised paper.
-
Reviewer #2 (Public Review):
This manuscript explores the interplay between Legionella Dot/Icm effectors that modulate ubiquitination of the host GTPase Rab10. Rab10 undergoes phosphoribosyl-ubiquitination (PR-Ub) by the SidE family of effectors which is required for its recruitment to the Legionella containing vacuole (LCV). Through a series of elegant experiments using effector gene knockouts, co-transfection studies and careful biochemistry, Kubori et al further demonstrate that:
(1) The SidC family member SdcB contributes to the polyubiquitination (poly-Ub) of Rab10 and its retention at the LCV membrane.
(2) The transglutaminase effector, MavC acts as an inhibitor of SdcB by crosslinking ubiquitin at Gln41 to lysine residues in SdcB.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study brings new information about the function of serotonin-gated ion channels 5-HT3AR, by describing the conformational changes undergoing during ligands binding. These results can be potentially extrapolated to other members of the Cys-loop ligand-gated ion channels. By combining fluorescence microscopy with electrophysiological recordings, the authors investigate structural changes inside and outside the orthosteric site elicited by agonists, partial agonists, and antagonists. The results are convincing and correlate well with the observations from cryo-EM structures. The work will be of important significance and broad interest to scientists working on channel biophysics but also drug development targeting ligand-gated ion channels.
Strengths:
The authors present an elegant and well-designed study to investigate the conformational changes on 5-HT3AR where they combine electrophysiological and fluorometry recordings. They determined four positions suitable to act as sensors for the conformational changes of the receptor: two inside and two outside the agonist binding site. They make a strong point showing how antagonists produce conformational changes inside the orthosteric site similarly as agonists do but they failed to spread to the lower part of the ECD, in agreement with previous studies and Cryo-EM structures. They also show how some loss-of-function mutant receptors elicit conformational changes (changes in fluorescence) after partial agonist binding but failed to produce measurable ionic currents, pointing to intermediate states that are stabilized in these conditions. The four fluorescence sensors developed in this study may be good tools for further studies on characterizing drugs targeting the 5-HT3R. The major conclusions of the manuscript seem well justified.
Weaknesses:
Weaknesses have been very well addressed during the review process.
-
Reviewer #2 (Public Review):
Summary:
This study focuses on the 5-HT3 serotonin receptor, a pentameric ligand-gated ion channel important in chemical neurotransmission. There are many cryo-EM structures of this receptor with diverse ligands bound, however assignment of functional states to the structures remains incomplete. The team applies voltage-clamp fluorometry to measure, at once, both changes in ion channel activity, and changes in fluorescence. Four cysteine mutants were selected for fluorophore labeling, two near the neurotransmitter site, one in the ECD vestibule, and one at the ECD-TMD junction. Agonists, partial agonists, and antagonists were all found to yield similar changes in fluorescence, a proxy for conformational change, near the neurotransmitter site. The strength of the agonist correlated to a degree with propagation of this fluorescence change beyond the local site of neurotransmitter binding. Antagonists failed to elicit a change in fluorescence in the vestibular of the ECD-TMD junction sites. The VCF results further turned up evidence supporting intermediate (likely pre-active) states.
Strengths:
The experiments appear rigorous, the problem the team tackles is timely and important, the writing and the figures are for the most part very clear. We sorely need approaches orthogonal to structural biology to annotate conformational states and observe conformational transitions in real membranes- this approach, and this study, get right to the heart of what is missing.
Weaknesses:
The weaknesses in the study itself are overall minor, I only suggest improvements geared toward clarity. What we are still missing is application of an approach like this to annotate the conformation of the part of the receptor buried in the membrane; there is an important debate about which structure represents which state, and that is not addressed in the current study.
-
Reviewer #3 (Public Review):
Summary:
The authors have examined the 5-HT3 receptor using voltage clamp fluorometry, which enables them to detect structural changes at the same time as the state of receptor activation. These are ensemble measurements, but they enable an impressive scheme of the action of different agonists and antagonists to be built up. The growing array of structural snapshots of 5-HT3 receptors is used to good effect to understand the results.
Strengths:
The combination of rigorously tested fluorescence reporters with oocyte electrophysiology across a large panel of ligands is a solid development for this receptor type.
Weaknesses:
In their revision, the authors corrected all the weaknesses of the original submission.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
Summary:
This important manuscript investigates a subpopulation of glutamatergic neurons in the suprammamillary nucleus that projects to the pre-optic hypothalamus area (SuM-VGLUT2+::POA). First, they define the neural circuitry of these neurons, which contact many stress/threat-associated brain regions. Then they employ fibre photometry to measure the activity of these neurons during various threatening tasks and find the responses correlate well with threat stimuli. Finally, they stimulate these neurons and find multiple lines of evidence that mice find this aversive and will act to avoid receiving this stimulation. In sum, they provide solid evidence that this neuronal population represents a new node in stress response circuitry that allows the animal to produce flexible behaviours in response to stress, which will be of interest to neuroscientists across several sub-fields.
Strengths:
Overall this is a solid manuscript tackling an important question. Coping with stress by an animal in danger is essential for survival. This manuscript identifies a novel population of neurons in the murine supramamillary nucleus (SuM) projecting to the pre-optic hypothalamus area among other regions that is involved in this important process. The evidence to support the conclusions is solid.
Specific strengths:
• The topic is novel.
• The manuscript follows a logical structure and neatly moves through the central story. Several potential alternate interpretations are well-controlled for.
• The manuscript employs an array of different tasks to provide converging evidence for their conclusions.
• The authors provide excellent evidence of the specificity of the function of this neuronal population, both from anatomical studies and from behavioural studies (e.g. demonstrating that activity of gabaergic neurons in the same region does not correlate with behaviours in the same way).
• The study is well-powered (sample sizes are good) and the effects are convincing.
Weaknesses:
* Not all of the reviewer comments were addressed in the manuscript itself, although this was acknowledged in the author's responses to reviewers. One key example is as follows:
* The authors did not entirely address comments related to rigor but they at least acknowledged it. For example, in multiple places they argue that WT, purchased mice are probably not different in baseline behavior compared to Vgltu2-IRES-Cre because it is unlikely that adding the IRES-Cre will change behavior. However, they do not acknowledge that transgenic lines are not from the exact same genetic background and generation number, and there is ample evidence in the literature that transgenic mice on a B6J background can differ in basal phenotypes from one another and B6J. In one place they show some basal behavior, at least in heat map form though not quantified. Had the authors decided to apply this more pervasively, it would have made the story even more compelling in terms of a stress/threat-induced phenotype.
Comments on revised version from the Reviewing Editor:
The authors have done a thorough job of answering the reviewer queries, and a good job of explaining why they have not answered a particular point. Indeed, there is so much additional information in response to the reviewers that I hope readers of the manuscript will read the reviews and responses as well! I think they add a lot.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
Chang et al. investigated the mechanisms governing collagen fibrillogenesis, firstly demonstrating that cells within tail tendons are able to uptake exogenous collagen and use this to synthesize new collagen-1 fibrils. Using an endocytic inhibitor, the authors next showed that endocytosis was required for collagen fibrillogenesis and that this process occurs in a circadian rhythmic manner. Using knockdown and overexpression assays, it was then demonstrated that collagen fibril formation is controlled by vacuolar protein sorting 33b (VPS33b), and this VPS33b-dependent fibrillogenesis is mediated via Integrin alpha-11 (ITGA11). Finally, the authors demonstrated increased expression of VPS33b and ITGA11 at the gene level in fibroblasts from patients with idiopathic pulmonary fibrosis (IPF), and greater expression of these proteins in both lung samples from IPF patients and in chronic skin wounds, indicating that endocytic recycling is disrupted in fibrotic diseases.
Strengths:
The authors have performed a comprehensive functional analysis of the regulators of endocytic recycling of collagen, providing compelling evidence that VPS33b and ITGA11 are crucial regulators of this process.
Weaknesses:
Throughout the study, several different cell types have been used (immortalised tail tendon fibroblasts, NIHT3T cells, and HEK293T cells). In general, it is not clear which cells have been used for a particular experiment, and the rationale for using these different cell types is not explained. In addition, some experimental details are missing from the methods.
There is also a lack of functional studies in patient-derived IPF fibroblasts which means the link between endocytic recycling of collagen and the role of VPS33b and ITGA11 cannot be fully established.
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors describe a mechanism, by which fluorescently-labelled Collagen type I is taken up by cells via endocytosis and then incorporated into newly synthesized fibers via an ITGA11 and VPS33B-dependent mechanism. The authors claim the existence of this collagen recycling mechanism and link it to fibrotic diseases such as IPF and chronic wounds.
Strengths:
The manuscript is well-written, and experimentally contains a broad variation of assays to support their conclusions. Also, the authors added data of IPF patient-derived fibroblasts, patient-derived lung samples, and patient-derived samples of chronic wounds that highlight a potential in vivo disease correlation of their findings.
The authors were also analyzing the membrane topology of VPS33B and could unravel a likely 'hairpin' like conformation in the ER membrane.
Weaknesses:
Experimental evidence is missing that supports the non-degradative endocytosis of the labeled collagen.
The authors show and mention in the text that the endocytosis inhibitor Dyngo®4a shows an effect on collagen secretion. It is not clear to me how specific this readout is if the inhibitor affects more than endocytosis. This issue was unfortunately not further discussed. The authors use commercial rat tail collagen, it is unclear to me which state the collagen is in when it's endocytosed. Is it fully assembled as collagen fiber or are those single heterotrimers or homotrimers?
The Cy-labeled collagen is clearly incorporated into new fibers, but I'm not sure whether the collagen is needed to be endocytosed to be incorporated into the fibers or if that is happening in the extracellular space mediated by the cells.
In general for the collagen blots, due to the lack of molecular weight markers, what chain/form of collagen type I are you showing here?
Besides the VPS33B siRNA transfected cells the authors also use CRISPR/Cas9-generated KO. The KO cells do not seem to be a clean system, as there is still a lot of mRNA produced. Were the clones sequenced to verify the KO on a genomic level? For the siRNA transfection, a control blot for efficiency would be great to estimate the effect size. To me it is not clear where the endocytosed collagen and VPS33B eventually meet in the cells and whether they interact. Or is ITGA11 required to mediate this process, in case VPS33B is not reaching the lumen?
The authors show an upregulation of ITGA11 and VPS33B in IPF patients-derived fibroblasts, which can be correlated to an increased level of ColI uptake, however, it is not clear whether this increased uptake in those cells is due to the elevated levels of VPS33B and/or ITGA11.
-
Reviewer #1 (Public Review):
Summary:
The authors describe that the endocytic pathway is crucial for ColI fibrillogenesis. ColI is endocytosed by fibroblasts, prior to exocytosis and formation of fibrils, which can include a mixture of endogenous/nascent ColI chains and exogenous ColI. ColI uptake and fibrillogenesis are regulated by circadian rhythm as described by the authors in 2020, thanks to the dependence of this pathway on circadian-clock-regulated protein VPS33B. Cells are capable of forming fibrils with recently endocytosed ColI when nascent chains are not available. Previously identified VPS33B is demonstrated not to have a role in endocytosis of ColI, but to play a role in fibril formation, which the authors demonstrate by showing the loss of fibril formation in VPS33B KO, and an excess of insoluble fibrils - along-side a decrease in soluble ColI secretion - in VPS33B overexpression conditions. A VPS33B binding protein VIPAS39 is also shown to be required for fibrillogenesis and to colocalise with ColI. The authors thus conclude that ColI is internalised into endosomal structures within the cell, and that ColI, VPS33B, and VIPA39 are co-trafficked to the site of fibrillogenesis, where along with ITGA11, which by mass spectrometric analysis is shown to be regulated by VPS33B levels, ColI fibrils are formed. Interestingly, in involved human skin sections from idiopathic pulmonary fibrosis (IPF) patients, ITGA11 and VPS33B expression is increased compared to healthy tissue, while in patient-derived fibroblasts, uptake of fluorescently-labelled ColI is also increased. This suggests that there may be a significant contribution of endocytosis-dependent fibrillogenesis in the formation of fibrotic and chronic wound-healing diseases in humans.
Strengths:
This is an interesting paper that contributes an exciting novel understanding of the formation of fibrotic disease, which despite its high occurrence, still has no robust therapeutic options. The precise mechanisms of fibrillogenesis are also not well understood, so a study devoted to this complex and key mechanism is well appreciated. The dependence of fibrillogenesis on VPS33B and VIPA39 is convincing and robust, while the distinction between soluble ColI secretion and insoluble fibrillar ColI is interesting and informative.
Weaknesses:
There are a number of limitations to this study in its current state. Inhibition of ColI uptake is performed using Dyngo4a, which although proposed as an inhibitor of Clathrin-dependent endocytosis is known to be quite un-specific. This may not be a problem however, as the endocytic mechanism for ColI also does not seem to be well defined in the literature, in fact, the principle mechanism described in the papers referred to by the authors is that of phagocytosis. It would be interesting to explore this important part of the mechanism further, especially in relation to the intracellular destination of ColI. The circadian regulation does not appear as robust as the authors' last paper, however, there could be a larger lag between endocytosis of ColI and realisation of fibrils. The authors state that the endocytic pathway is the mechanism of trafficking and that they show ColI, VPS33B, and VIPA39 are co-trafficked. However, the only link that is put forward to the endosomes is rather tenuously through VPS33B/VIPA39. There is no direct demonstration of ColI localisation to endosomes (ie. immunofluorescence), and this is overstated throughout the text. Demonstrating the intracellular trafficking and localisation of ColI, and its actual relationship to VPS33B and VIPA39, followed by ITGA11, would broaden the relevance of this paper significantly to incorporate the field of protein trafficking. Finally, the "self-formation" of ColI fibrils is discussed in relation to the literature and the concentration of fluorescently-tagged ColI, however as the key message of the paper is the fibrillogenesis from exocytosed colI, I do not feel like it is demonstrated to leave no doubt. Specific inhibition of intracellular trafficking steps, or following the progressive formation of ColI fibrils over time by immunofluorescence would demonstrate without any further doubt that ColI must be endocytosed first, to form fibrils as a secondary step, rather than externally-added ColI being incorporated directly to fibrils, independent of cellular uptake.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors quantitatively describe the complex binding equilibria of BRAF and its inhibitors resulting in some cases in the paradoxical activation of BRAF dimer when bound to ATP competitive inhibitors. The authors use a biophysical tour de force involving FRET binding assays, NMR, kinase activity assays, and DEER spectroscopy.
Strengths:
The strengths of the study are the beautifully conducted assays that allow for a thorough characterization of the allostery in this complex system. Additionally, the use of F-NMR and DEER spectroscopy provides important insights into the details of the process.
The resulting model for binding of inhibitors and dimerization (Figure 4) is very helpful.
Weaknesses:
This is a complex system and its communication is inherently challenging. It might be of interest to the broader readership to understand the implications of the model for drug development and therapy.
-
Reviewer #2 (Public Review):
Summary:
This manuscript uses FRET, 19F-NMR, and DEER/EPR solution measurements to examine the allosteric effects of a panel of BRAF inhibitors (BRAFi). These include first-generation aC-out BRAFi, and more recent Type I and Type II aC-in inhibitors. Intermolecular FRET measurements quantify Kd for BRAF dimerization and inhibitor binding to the first and second subunits. Distinct patterns are found between aC-in BRAFi, where Type I BRAFi binds equally well to the first and second subunits within dimeric BRAF. In contrast, Type II BRAFi shows stronger affinity for the first subunit and weaker affinity for the second subunit, an effect named "allosteric asymmetry". Allosteric asymmetry has the potential for Type II inhibitors to promote dimerization while favoring occupancy of only one subunit (BBD form), leading to the enrichment of an active dimer.
Measurements of in vitro BRAF kinase activity correlate amazingly well with the calculated amounts of the half-site-inhibited BBD forms with Type II inhibitors. This suggests that the allosteric asymmetry mechanism explains paradoxical activation by this class of inhibitors. DEER/EPR measurements further examine the positioning of helix aC. They show systematic outward movement of aC with Type II inhibitors, relative to the aC-in state with Type I inhibitors, and further show that helix aC adopts multiple states and is therefore dynamic in apo BRAF. This makes a strong case that negative cooperativity between sites in the BRAF dimer can account for paradoxical kinase activation by Type II inhibitors by creating a half-site-occupied homodimer, BBD. In contrast, Type I inhibitors and aC-out inhibitors do not fit this model, and are therefore proposed to be explained by previously proposed models involving negative allostery between subunits in BRAF-CRAF heterodimers, RAS priming, and transactivation.
Strengths:
This study integrates orthogonal spectroscopic and kinetic strategies to characterize BRAF dynamics and determine how it impacts inhibitor allostery. The unique combination of approaches presented in this study represents a road map for future work in the important area of protein kinase dynamics. The work represents a worthy contribution not only to the field of BRAF regulation but to protein kinases in general.
Weaknesses:
Some questions remain regarding the proposed model for Type II inhibitors and its comparison to Type I and aC-out inhibitors that would be useful to clarify. Specifically, it would be helpful to address whether the activation of BRAF by Type II inhibitors, while strongly correlated with BBD model predictions in vitro, also depends on CRAF via BRAF-CRAF in cells and therefore overlaps with the mechanisms of paradoxical activation by Type I and aC-out inhibitors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Szathmary and colleagues explore the parabolic growth regime of replicator evolution. Parabolic growth occurs when nucleic acid strain separation is the rate limiting step of the replication process which would have been the case for non-enzymatic replication of short oligonucleotide that could precede the emergence of ribozyme polymerases and helicases. The key result is that parabolic replication is conducive to the maintenance of genetic diversity, that is, coexistence of numerous master sequences (the Gause principle does not apply). Another important finding is that there is no error threshold for parabolic replication except for the extreme case of zero fidelity.
Strengths:
I find both the analytic and the numerical results to be quite convincing and well described. The results of this work are potentially important because they reveal aspects of a realistic evolutionary scenario for the origin of replicators.
Weaknesses:
There are no obvious technical weaknesses. It can be argued that the results represent an incremental advance because many aspects of parabolic replication have been explored previously (the relevant publications are properly cited). Obviously, the work is purely theoretical, experimental study of parabolic replication is due. In the opinion of this reviewer, though, these are understandable limitations that do not actually detract from the value of this work.
-
Reviewer #2 (Public Review):
Summary:
A dominant hypothesis concerning the origin of life is that, before the appearance of the first enzymes, RNA replicated non-enzymatically by templating. However, this replication was probably not very efficient, due to the propensity of single strands to bind to each other, thus inhibiting template replication. This phenomenon, known as product inhibition, has been shown to lead to parabolic growth instead of exponential growth. Previous works have shown that this situation limits competition between alternative replicators and therefore promotes RNA population diversity. The present work examines this scenario in an agent-based model of RNA replication, taking into account finite population size, mutations and differences in GC content. The main results are (1) confirmation that parabolic growth promotes diversity, but that when the population size is small enough, sequences least efficient at replicating may nevertheless go extinct; (2) the observation that fitness is not only controlled by the replicability of sequences, but also by their GC content ; (3) the observation that parabolic growth attenuates the impact of mutations and, in particular, that the error threshold to which exponentially growing sequences are subject can be exceeded, enabling sequence identity to be maintained at higher mutation rates.
Strengths:
The analyses are sound and the observations intriguing. Indeed, while it has been noted previously that parabolic growth promotes coexistence, this is the first work to show that it can also mitigate the error threshold catastrophe, which is often presented as a major obstacle to our understanding of the origin of life.
Weaknesses:
A general weakness, which can however be seen as inherent in an agent-based model that aims to be more realistic than earlier, more phenomenological models, is the proliferation of parameters. The choice and values of these parameters are generally justified and, in many cases, several values are tested to assess the robustness of the results, but it can be difficult for the reader to identify the modeling choices that are truly critical from those that are less so.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #4 (Public Review):
Summary:
Masala N et al showed interesting aberrant calcium microwaves in the hippocampus when synapsin promoter driven GCaMPs were expressed for a long period of time. These aberrant hippocampal Ca2+ micro-waves depend on the viral titre of the GECI. The microwave of Ca2+ was not observed when GECI was expressed only a sparse set of neurons.
Strengths:
These findings are important to wide neuroscience community especially when considering a great number of investigators are using similar approaches. Results look convincing and are consistent across several laboratories.
Weaknesses:
Synapsin promoter labels both excitatory pyramidal neurons and inhibitory neurons. To avoid aberrant Ca2+ microwave, a combination of Flex virus and CaMKII-Cre or Thy-1-GCaMP6s and 6f mice were tested. However, all these approaches limit the number of infected pyramidal neurons. While the comprehensive display of these results is appreciated, one additional important test would be more informative. To distinguish whether the microwave of Ca2+ is sufficiently caused via the expression of GCaMP in interneurons, or just a matter of pyramidal neuron density, testing Flex-GCaMP6 in interneuron specific mouse lines such as PV-Cre and SOM-Cre will provide further clarifications.
-
Reviewer #2 (Public Review):
Summary:
The authors describe and quantify a phenomenon in the CA1 and CA3 of the hippocampus that they call aberrant Ca2+ micro-waves. Micro-waves are sometimes seen during 2-photon calcium imaging of populations of neurons under certain conditions. They are spatially confined slow calcium events that start in a few cells and slowly spread to neighboring groups of cells. This phenomenon has been uttered between researchers in the field at conferences, but no one has taken the time to carefully capture and quantify micro-waves and pin down the causes. The authors show that micro-waves are dependent on the viral titre of the genetically encoded calcium indicators (GECIs), the genetic promoter (synapsin), the neuronal subtype (granule cells in the dentate gyrus do not produce micro-waves and they are not seen in the neocortex), and the density of GECI expression. The authors should be commended for their work and for raising awareness to all labs doing any form of calcium imaging in populations of neurons. The authors also come up with alternative approaches to avoid artifactual micro-waves such as reducing the transduction titre (1:2 dilution of virus) and a transduction method employing sparser and cre-dependent GECI expression in principal cells using a CaMKII promoter.
Strengths:
The micro-waves reported in the paper were robustly observed across 4 laboratories and 3 different countries with various experimenters and calcium imaging set-ups. This adds significant strength to the work.
The age of mice used covered a broad range (from 6 to 43 weeks). This is a strength because it covers most ages that are used in labs that regularly do calcium imaging.
Another strength is they used different GCaMP variants (GCaMP6m, GCaMP6s, GCaMP7f), as well as a red indicator: RCaMP. This shows the micro-waves are not an issue with any particular GECI, as the authors suggest.
The authors include many movies of micro-waves. This is extremely useful for researchers in the field to view them in real-time so they can identify them in their own data.
They provide a useful table with specific details of the virus injected, titre, dilution, and other information along with the incidence of micro-waves. A nice look-up table for researchers to see if their viral strategy is associated with a high or low incidence of micro-waves.
Weaknesses:
The effect of mico-waves on single cell function was not analyzed. It would be useful, for example, if we knew the influence of micro-waves on place fields. Can a place cell still express a place field in a hippocampus that produces micro-waves? What effect might a microwave passing over a cell have on its place field? Mice were not trained in these experiments, so the authors do not have the data. However, they do briefly discuss these ideas.
-
Reviewer #3 (Public Review):
Summary:
The work by Masala and colleagues highlights a striking artifact that can result from a particular viral method for expressing genetically encoded calcium indicators (GECIs) in neurons. In a cross-institutional collaboration, the authors find that viral transduction of GECIs in the hippocampus can result in aberrant slow-traveling calcium (Ca2+) micro-waves. These Ca2+ micro-waves are distinct from previously described ictal activity but nevertheless are likely a pathological consequence of overexpression of virally transduced proteins. Ca2+ micro-waves will most-likely obscure the physiology that most researchers are interested in studying with GECIs, and their presence indicates that the neural circuit is in an unintended pathological state. Interestingly this pathology was not observed using the same viral transduction methods in other brain regions. The authors recommend several approaches that may help other experimenters avoid this confound in their own data such as reducing the titer of viral injections or using recombinase-dependent expression. The intent of this manuscript is to raise awareness of the potential unintended consequences of viral overexpression, particularly for GECIs. A rigorous investigation into the exact causes of Ca2+ micro-waves or the mechanisms supporting them are beyond the authors' intended scope.
Strengths:
The authors clearly demonstrate that Ca2+ micro-waves occur in the CA1 and CA3 regions of the hippocampus following large volume, high titer injections of adeno-associated viruses (AAV1 and AAV9) encoding GECIs. The supplementary videos provide undeniable proof of their existence.
By forming an inter-institutional collaboration, the authors demonstrate that this phenomenon is robust to changes in surgical techniques or imaging conditions.
Weaknesses:
I believe that the weaknesses of the manuscript are appropriately highlighted by the authors themselves in the discussion. The manuscript does not attempt to exhaustively characterize the conditions under which calcium micro-waves occur. Rather, the authors raise awareness of this problem.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This paper identifies GABA cells in the preoptic hypothalamus and others in the posterior hypothalamus which are involved in REM sleep rebound (the increase in REM sleep) after selective REM sleep deprivation. By calcium photometry, these preoptic cells are most active during REM, and show more calcium signals during REM deprivation, suggesting they respond to "REM pressure". Inhibiting these cells ontogenetically diminishes REM sleep. The optogenetic and photometry work is carried out to a high standard, the paper is well written, and the findings are interesting and enhance our understanding of REM sleep regulation. The new findings make it clear that as for the circuitry that regulates NREM sleep, REM sleep circuitry is also quite distributed in the brain. It is unclear if there is a true "REM center". The study of mechanisms of catching up on lost sleep (sleep homeostasis), has previously focused on NREM sleep, where various circuits have been identified. That there is a special mechanism that also tracks time awake and compensates with REM sleep is intriguing.
In a broader context, the existence of REM rebound suggests that REM sleep must have a function, otherwise why catch up on it. There is a lot of literature that suggests REM contributes to emotional processing, for example. The new findings deepen our appreciation of REM regulation. As REM sleep is often disturbed in stress (e.g. post-traumatic stress disorder) and in depression, understanding more about REM regulation could ultimately aid treatments for people living with these conditions.
-
Reviewer #2 (Public Review):
Maurer et al investigated the contribution of GAD2+ neurons in the preoptic area (POA), projecting to the tuberomammillary nucleus (TMN), to REM sleep regulation. They applied an elegant design to monitor and manipulate activity of this specific group of neurons: a GAD2-Cre mouse, injected with retrograde AAV constructs in the TMN, thereby presumably only targeting GAD2+ cells projecting to the TMN. Using this set-up in combination with technically challenging techniques including EEG with photometry and REM sleep deprivation, the authors found that this cell-type studied becomes active shortly (≈40sec) prior to entering REM sleep and remains active during REM sleep. Moreover, optogenetic inhibition of GAD2+ cells inhibits REM sleep by a third, and also impairs the rebound in REM sleep in the following hour. Thus, the data makes a convincing case for a role of GAD2+ neurons in the POA projecting to the TMN in REM sleep regulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Roy et al. investigated the role of non-canonical DNA structures called G-quadruplexes (G4s) in long-range chromatin interactions and gene regulation. Introducing a G4 array into chromatin significantly increased the number of long-range interactions, both within the same chromosome (cis) and between different chromosomes (trans). G4s functioned as enhancer elements, recruiting p300 and boosting gene expression even 5 megabases away. The study proposes a mechanism where G4s directly influence 3D chromatin organization, facilitating communication between regulatory elements and genes.
Strength:
The findings are valuable for understanding the role of G4-DNA in 3D genome organization and gene transcription.
Weaknesses:
The study would benefit from more robust and comprehensive data, which would add depth and clarity.
(1) Lack of G4 Structure Confirmation: The absence of direct evidence for G4 formation within cells undermines the study's foundation. Relying solely on in vitro data and successful gene insertion is insufficient.
(2) Alternative Explanations: The study does not sufficiently address alternative explanations for the observed results. The inserted sequences may not form G4s or other factors like G4-RNA hybrids may be involved.
(3) Limited Data Depth and Clarity: ChIP-qPCR offers limited scope and considerable variation in some data makes conclusions difficult.
(4) Statistical Significance and Interpretation: The study could be more careful in evaluating the statistical significance and magnitude of the effects to avoid overinterpreting the results.
-
Reviewer #3 (Public Review):
Summary:
This paper aims to demonstrate the role of G-quadruplex DNA structures in the establishment of chromosome loops. The authors introduced an array of G4s spanning 275 bp, naturally found within a very well-characterized promoter region of the hTERT promoter, in an ectopic region devoid of G-quadruplex and annotated gene. As a negative control, they used a mutant version of the same sequence in which G4 folding is impaired. Due to the complexity of the region, 3 G4s on the same strand and one on the opposite strand, 12 point mutations were made simultaneously (G to T and C to A). Analysis of the 3D genome organization shows that the WT array establishes more contact within the TAD and throughout the genome than the control array. Additionally, a slight enrichment of H3K4me1 and p300, both enhancer markers, was observed locally near the insertion site. The authors tested whether the expression of genes located either nearby or up to 5 Mb away was up-regulated based on this observation. They found that four genes were up-regulated from 1.5 to 3-fold. An increased interaction between the G4 array compared to the mutant was confirmed by the 3C assay. For in-depth analysis of the long-range changes, they also performed Hi-C experiments and showed a genome-wide increase in interactions of the WT array versus the mutated form.
Strengths:
The experiments were well-executed and the results indicate a statistical difference between the G4 array inserted cell line and the mutated modified cell line.
Weaknesses:
The control non-G4 sequence contains 12 point mutations, making it difficult to draw clear conclusions. These mutations not only alter the formation of G4, but also affect at least three Sp1 binding sites that have been shown to be essential for the function of the hTERT promoter, from which the sequence is derived. The strong intermingling of G4 and Sp1 binding sites makes it impossible to determine whether all the observations made are dependent on G4 or Sp1 binding. As a control, the authors used Locked Nucleic Acid probes to prevent the formation of G4. As for mutations, these probes also interfere with two Sp1 binding sites. Therefore, using this alternative method has the same drawback as point mutations. This major issue should be discussed in the paper. It is also possible that other unidentified transcription factor binding sites are affected in the presented point mutants.
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, Chowdhury and co-workers provide interesting data to support the role of G4-structures in promoting chromatin looping and long-range DNA interactions. The authors achieve this by artificially inserting a G4-containing sequence in an isolated region of the genome using CRISPR-Cas9 and comparing it to a control sequence that does not contain G4 structures. Based on the data provided, the authors can conclude that G4-insertion promotes long-range interactions (measured by Hi-C) and affects gene expression (measured by qPCR) as well as chromatin remodelling (measured by ChIP of specific histone markers).
Whilst the data presented is promising and partially supports the authors' conclusion, this reviewer feels that some key controls are missing to fully support the narrative. Specifically, validation of actual G4-formation in chromatin by ChIP-qPCR (at least) is essential to support the association between G4-formation and looping. Moreover, this study is limited to a genomic location and an individual G4-sequence used, so the findings reported cannot yet be considered to reflect a general mechanism/effect of G4-formation in chromatin looping.
Strengths:
This is the first attempt to connect genomics datasets of G4s and HiC with gene expression. The use of Cas9 to artificially insert a G4 is also very elegant.
Weaknesses:
Lack of controls, especially to validate G4-formation after insertion with Cas9. The work is limited to a single G4-sequence and a single G4-site, which limits the generalisation of the findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The manuscript uses a combination of evolutionary approaches and structural/dynamics observations to provide mechanistic insights in the adaptation of the Spike protein during the evolution of SARS-COV-2 variants. The conclusion that CAP sites should be taken in particular account when considering the impact of the emergence of new strains and mutations is warranted.
Strengths:
The results presented in this work are very well outlined with well-written text, pleasant and well-described pictures, didactical and clear description of the methods, e.g. the discussion of how the MD equilibration procedure is applied and evaluated is clear and well argument.<br /> The citation of relevant similar results with different approaches strengthens the reasoning; in particular, comparing the calculated scores with previous experimentally obtained data is one of the strongest points of the manuscript.
Weaknesses:
There are no replicas of the molecular dynamics (MD) simulations, understandable since it's not a MD-focused paper. However, the comparison of multiple replicas could enhance the reliability of the findings.
-
Reviewer #2 (Public Review):
The authors set out to identify CAPs (Candidate Adaptive Polymorphyisms), i.e., simply put mutations that carry a potential functional advantage, and utilize computational methods based on the perturbation of C-alpha positions with an Elastic Network Model to determine if dynamics of CAP residues are different in any way.
The authors have addressed the main methodological concerns.
However, one point remains. The specific comparison of which CAPs have been previously identified by other means, particularly with other computational methods that look into dynamics is still lacking. It is unfortunate that the authors do not present such analysis, particularly with respect to single point mutational analysis of Teruel et al. in Plos Comp. Bio. If CAP positions were previously identified by other means it adds strength to the methodology used by the authors. The authors also do not discuss their results in light of the work of Lam et al. (Sci. Comm, 2020) where an evolutionary analysis of Spike/ACE2 binding across homologues is performed. I believe that such deeper discussion of the current results in light of previous work, adds strength to the analysis presented in this manuscript as the methodology is different. Even if all results were not new, with the method being different from the other means by which such results were obtained, it would be still a worthy contribution to the field. Furthermore, for the community at large trying to understand the importance of particular positions in Spike, knowing that a particular position identified here was also identified by works X, Y, Z adds a lot of to the field. I can only think that the authors may imagine that if one of their CAPs was identified by other means previously, it takes away from the merit of their work, but it is actually the opposite. I urge the authors to not brush away this. In fact, more important than any methodological aspect of the present work, this strengthening of evidence for particular positions by several independent methods is the most important evidence that the authors can contribute to the field.
-
-
-
Reviewer #1 (Public Review):
The manuscript by Oleh et al. uses in vitro electrophysiology and compartmental modeling (via NEURON) to investigate the expression and function of HCN channels in mouse L2/3 pyramidal neurons. The authors conclude that L2/3 neurons have developmentally regulated HCN channels, the activation of which can be observed when subjected to large hyperpolarizations. They further conclude via blockade experiments that HCN channels in L2/3 neurons influence cellular excitability and pathway-specific EPSP kinetics, which can be neuromodulated. While the authors perform a wide range of slice physiology experiments, concrete evidence that L2/3 cells express functionally relevant HCN channels is limited. There are serious experimental design caveats and confounds that make drawing strong conclusions from the data difficult. Furthermore, the significance of the findings is generally unclear, given modest effect sizes and a lack of any functional relevance, either directly via in vivo experiments or indirectly via strong HCN-mediated changes in known operations/computations/functions of L2/3 neurons.
Specific points:
(1) The interpretability and impact of this manuscript are limited due to numerous methodological issues in experimental design, data collection, and analysis. The authors have not followed best practices in the field, and as such, much of the data is ambiguous and/or weak and does not support their interpretations (detailed below). Additionally, the authors fail to appropriately explain their rationale for many of their choices, making it difficult to understand why they did what they did. Furthermore, many important references appear to be missing, both in terms of contextualizing the work and in terms of approach/method. For example, the authors do not cite Kalmbach et al 2018, which performed a directly comparable set of experiments on HCN channels in L2/3 neurons of both humans and mice. This is an unacceptable omission. Additionally, the authors fail to cite prior literature regarding the specificity or lack thereof of Cs+ in blocking HCN. In describing a result, the authors state "In line with previous reports, we found that L2/3 PCs exhibited an unremarkable amount of sag at 'typical' current commands" but they then fail to cite the previous reports.
(2) A critical experimental concern in the manuscript is the reliance on cesium, a nonspecific blocker, to evaluate HCN channel function. Cesium blocks HCN channels but also acts at potassium channels (and possibly other channels as well). The authors do not acknowledge this or attempt to justify their use of Cs+ and do not cite prior work on this subject. They do not show control experiments demonstrating that the application of Cs+ in their preparation only affects Ih. Additionally, the authors write 1 mM cesium in the text but appear to use 2 mM in the figures. In later experiments, the authors switch to ZD7288, a more commonly used and generally accepted more specific blocker of HCN channels. However, they use a very high concentration, which is also known to produce off-target effects (see Chevaleyre and Castillo, 2002). To make robust conclusions, the authors should have used both blockers (at accepted/conservative concentrations) for all (or at least most) experiments. Using one blocker for some experiments and then another for different experiments is fraught with potential confounds.
(3) A stronger case could be made that HCN is expressed in the somatic compartment of L2/3 cells if the authors had directly measured HCN-isolated currents with outside-out or nucleated patch recording (with appropriate leak subtraction and pharmacology). Whole-cell voltage-clamp in neurons with axons and/or dendrites does not work. It has been shown to produce erroneous results over and over again in the field due to well-known space clamp problems (see Rall, Spruston, Williams, etc.). The authors could have also included negative controls, such as recordings in neurons that do not express HCN or in HCN-knockout animals. Without these experiments, the authors draw a false equivalency between the effects of cesium and HCN channels, when the outcomes they describe could be driven simply by multiple other cesium-sensitive currents. Distortions are common in these preparations when attempting to study channels (see Williams and Womzy, J Neuro, 2011). In Fig 2h, cesium-sensitive currents look too large and fast to be from HCN currents alone given what the authors have shown in their earlier current clamp data. Furthermore, serious errors in leak subtraction appear to be visible in Supplementary Figure 1c. To claim that these conductances are solely from HCN may be misleading.
(4) The authors present current-clamp traces with some sag, a primary indicator of HCN conductance, in Figure 2. However, they do not show example traces with cesium or ZD7288 blockade. Additionally, the normalization of current injected by cellular capacitance and the lack of reporting of input resistance or estimated cellular size makes it difficult to determine how much current is actually needed to observe the sag, which is important for assessing the functional relevance of these channels. The sag ratio in controls also varies significantly without explanation (Figure 6 vs Figure 7). Could this variability be a result of genetically defined subgroups within L2/3? For example, in humans, HCN expression in L2/3 varies from superficial and deep neurons. The authors do not make an effort to investigate this. Regardless of inconsistencies in either current injection or cell type, the sag ratio appears to be rather modest and similar to what has already been reported previously in other papers.
(5) In the later experiments with ZD7288, the authors measured EPSP half-width at greater distances from the soma. However, they use minimal stimulation to evoke EPSPs at increasingly far distances from the soma. Without controlling for amplitude, the authors cannot easily distinguish between attenuation and spread from dendritic filtering and additional activation and spread from HCN blockade. At a minimum, the authors should share the variability of EPSP amplitude versus the change in EPSP half-width and/or stimulation amplitudes by distance. In general, this kind of experiment yields much clearer results if a more precise local activation of synapses is used, such as dendritic current injection, glutamate uncaging, sucrose puff, or glutamate iontophoresis. There are recording quality concerns here as well: the cell pictured in Figure 3a does not have visible dendritic spines, and a substantial amount of membrane is visible in the recording pipette. These concerns also apply to the similar developmental experiment in 6f-h, where EPSP amplitude is not controlled, and therefore, attenuation and spread by distance cannot be effectively measured. The outcome, that L2/3 cells have dendritic properties that violate cable theory, seems implausible and is more likely a result of variable amplitude by proximity.
(6) Minimal stimulation used for experiments in Figures 3d-i and Figures 4g-h does not resolve the half-width measurement's sensitivity to dendritic filtering, nor does cesium blockade preclude only HCN channel involvement. Example traces should be shown for all conditions in 3h; the example traces shown here do not appear to even be from the same cell. These experiments should be paired (with and without cesium/ZD). The same problem appears in Figure 4, where it is not clear that the authors performed controls and drug conditions on the same cells. 4g also lacks a scale bar, so readers cannot determine how much these measurements are affected by filtering and evoked amplitude variability. Finally, if we are to believe that minimal stimulation is used to evoke responses of single axons with 50% fail rates, NMDA receptor activation should be minimal to begin with. If the authors wish to make this claim, they need to do more precise activation of NMDA-mediated EPSPs and examine the effects of ZD7288 on these responses in the same cell. As the data is presented, it is not possible to draw the conclusion that HCN boosts NMDA-mediated responses in L2/3 neurons.
(7) The quality of recordings included in the dataset has concerning variability: for example, resting membrane potentials vary by >15-20 mV and the AP threshold varies by 20 mV in controls. This is indicative of either a very wide range of genetically distinct cell types that the authors are ignoring or the inclusion of cells that are either unhealthy or have bad seals.
(8) The authors make no mention of blocking GABAergic signaling, so it must be assumed that it is intact for all experiments. Electrical stimulation can therefore evoke a mixture of excitatory and inhibitory responses, which may well synapse at very different locations, adding to interpretability and variability concerns.
(9) The investigation of serotonergic interaction with HCN channels produces modest effect sizes and suffers the same problems as described above.
(10) The computational modeling is not well described and is not biologically plausible. Persistent and transient K channels are missing. Values for other parameters are not listed. The model does not seem to follow cable theory, which, as described above, is not only implausible but is also not supported by the experimental findings.
Taken together, there are serious methodological and analytical concerns that need to be addressed before the authors' claims can be supported. Combined with the small effect sizes and high data variability throughout the paper, this makes it hard to see how the manuscript could make a strong contribution to advancing our understanding of L2/3 cortical pyramidal neuron function.
-
Reviewer #2 (Public Review):
Summary:
This paper by Olah et al. uncovers a previously unknown role of HCN channels in shaping synaptic inputs to L2/3 cortical neurons. The authors demonstrate using slice electrophysiology and computational modeling that, unlike layer 5 pyramidal neurons, L2/3 neurons have an enrichment of HCN channels in the proximal dendrites. This location provides a locus of neuromodulation for inputs onto the proximal dendrites from L4 without an influence on distal inputs from L1. The authors use pharmacology to demonstrate the effect of HCN channels on NMDA-mediated synaptic inputs from L4. The authors further demonstrate the developmental time course of HCN function in L2/3 pyramidal neurons. Taken together, this a well-constructed investigation of HCN channel function and the consequences of these channels on synaptic integration in L2/3 pyramidal neurons.
Strengths:
The authors use careful, well-constrained experiments using multiple pharmacological agents to asses HCN channel contributions to synaptic integrations. The authors also use a voltage clamp to directly measure the current through HCN channels across developmental ages. The authors also provide supplemental data showing that their observation is consistent across multiple areas of the cerebral cortex.
Weaknesses:
The gradient of the HCN channel function is based almost exclusively on changes in EPSP width measured at the soma. While providing strong evidence for the presence of HCN current in L2/3 neurons, there are space clamp issues related to the use of somatic whole-cell voltage clamps that should be considered in the discussion.
-
Reviewer #3 (Public Review):
Summary:
The authors study the function of HCN channels in L2/3 pyramidal neurons, employing somatic whole-cell recordings in acute slices of visual cortex in adult mice and a bevy of technically challenging techniques. Their primary claim is a non-uniform HCN distribution across the dendritic arbor with a greater density closer to the soma (roughly opposite of the gradient found in L5 PT-type neurons). The second major claim is that multiple sources of long-range excitatory input (cortical and thalamic) are differentially affected by the HCN distribution. They further describe an interesting interplay of NMDAR and HCN, serotonergic modulation of HCN, and compare HCN-related properties at 1, 2 and 6 weeks of age. Several results are supported by biophysical simulations.
Strengths:
The authors collected data from both male and female mice, at an age (6-10 weeks) that permits comparison with in vivo studies, in sufficient numbers for each condition, and they collected a good number of data points for almost all figure panels. This is all the more positive, considering the demanding nature of multi-electrode recording configurations and pipette-perfusion. The main strength of the study is the question and focus.
Weaknesses:
Unfortunately, in its present form, the main claims are not adequately supported by the experimental evidence: primarily because the evidence is indirect and circumstantial, but also because multiple unusual experimental choices (along with poor presentation of results) undermine the reader's confidence. Additionally, the authors overstate the novelty of certain results and fail to cite important related publications. Some of these weaknesses can be addressed by improved analysis and statistics, resolving inconsistent data across figures, reorganizing/improving figure panels, more complete methods, improved citations, and proofreading. In particular, given the emphasis on EPSPs, the primary data (for example EPSPs, overlaid conditions) should be shown much more.
However, on the experimental side, addressing the reviewer's concerns would require a very substantial additional effort: direct measurement of HCN density at different points in the dendritic arbor and soma; the internal solution chosen here (K-gluconate) is reported to inhibit HCN; bath-applied cesium at the concentrations used blocks multiple potassium channels, i.e. is not selective for HCN (the fact that the more selective blocker ZD7288 was used in a subset of experiments makes the choice of Cs+ as the primary blocker all the more curious); pathway-specific synaptic stimulation, for example via optogenetic activation of specific long-range inputs, to complement / support / verify the layer-specific electrical stimulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Organization of cell surface receptors in membrane nanodomains is important for signaling, but how this is regulated is poorly understood. In this study the authors employ TIRFM single-molecule tracking combined with multiple analyses to show that ligand exposure increases diffusion of the immune receptor FLS2 in the plasma membrane and its co-localization with remorin REM1.3 in a manner dependent on the phosphosite S938. They additionally show that ligand increases dwell time of FLS2, and this is linked to FLS2 endocytosis, also in a manner dependent on S938 phosphorylation. The study uncovers a regulatory mechanism of FLS2 localization in the nanodomain crucial for signaling.
Strengths:
TIRFM single-molecule tracking, FRAP, FRET and endocytosis experiments were nicely done. A role of S938 phosphorylation is convincing.
Weaknesses:
In the previous submission, reviewers pointed out multiple issues, which the reviewers believed the authors can address in the revision. The revised version does improve to some extent but still contains many issues in terms of data analysis and writing.
-
Reviewer #2 (Public Review):
Summary:
The research conducted by Yaning Cui and colleagues delves into understanding FLS2-mediated immunity. This is achieved by comparing the spatiotemporal dynamics of a FLS2-S938A mutant and FLS2-WT, especially in relation to their association with the remorin protein. To delineate the differences between the FLS2-S938A mutant and FLS2-WT, they utilized a plethora of advanced fluorescent imaging techniques. By analyzing surface dynamics and interactions involving the receptor signal co-receptor BAK1 and remorin proteins, the authors propose a model of how FLS2 and BAK1 are assembled and positioned within a remorin-specific nano-enviroment during FLS2 ligand-induced immune responses.
Strengths:
These techniques offer direct visualizations of molecular dynamics and interactions, helping us understand their spatial relationships and interactions during innate immune responses.
Advanced cell biology imaging techniques are crucial for obtaining high-resolution insights into the intracellular dynamics of biomolecules. The demonstrated imaging systems are excellent examples to be used in studying plant immunity by integrating other functional assays.
Weaknesses:
It's essential to acknowledge that every fluorescence-based method, just like biochemical assays, comes with its unique limitations. These often pertain to spatial and temporal resolutions, as well as the sensitivity of the cameras employed in each setup. Meticulous interpretation is pivotal to guarantee an accurate depiction and to steer clear of potential misunderstandings when employing specific imaging systems to analyze molecular attributes. Moreover, a discerning interpretation and accurate image analysis can offer invaluable guidance for future studies on plant signaling molecules using these nice cell imaging techniques.
For instance, although single-particle analysis couldn't conclusively link FLS2 and remorin, FLIM-FRET effectively highlighted their ligand-triggered association and the disengagement brought on by mutations. While these methodologies seemed to present differing outcomes, they were described in the manuscript as harmonious. In reality, these differences could highlight distinct protein populations active in immune responses, each accentuated differently by the respective imaging techniques due to their individual spatial and temporal limitations. Addressing these variations is imperative, especially when designing future imaging explorations of immune complexes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this paper, Misic et al showed that white matter properties can be used to classify subacute back pain patients that will develop persisting pain.
Strengths:
Compared to most previous papers studying associations between white matter properties and chronic pain, the strength of the method is to perform a prediction in unseen data. Another strength of the paper is the use of three different cohorts. This is an interesting paper that provides a valuable contribution to the field.
Weaknesses:
The authors imply that their biomarker could outperform traditional questionnaires to predict pain: "While these models are of great value showing that few of these variables (e.g. work factors) might have significant prognostic power on the long-term outcome of back pain and provide easy-to-use brief questionnaires-based tools, (21, 25) parameters often explain no more than 30% of the variance (28-30) and their prognostic accuracy is limited.(31)". I don't think this is correct; questionnaire-based tools can actually achieve far greater prediction than their model in about half a million individuals from the UK Biobank (Tanguay-Sabourin et al., A prognostic risk score for the development and spread of chronic pain, Nature Medicine 2023).
Moreover, the main weakness of this study is the sample size. It remains small despite having 3 cohorts. This is problematic because results are often overfitted in such a small sample size brain imaging study, especially when all the data are available to the authors at the time of training the model (Poldrack et al., Scanning the horizon: towards transparent and reproducible neuroimaging research, Nature Reviews in Neuroscience 2017). Thus, having access to all the data, the authors have a high degree of flexibility in data analysis, as they can retrain their model any number of times until it generalizes across all three cohorts. In this case, the testing set could easily become part of the training making it difficult to assess the real performance, especially for small sample size studies.
Even if the performance was properly assessed, their models show AUCs between 0.65-0.70, which is usually considered as poor, and most likely without potential clinical use. Despite this, their conclusion was: "This biomarker is easy to obtain (~10 min 18 of scanning time) and opens the door for translation into clinical practice." One may ask who is really willing to use an MRI signature with a relatively poor performance that can be outperformed by self-report questionnaires?
Overall, these criticisms are more about the wording sometimes used and the inference they made. I think the strength of the evidence is incomplete to support the main claims of the paper.
Despite these limitations, I still think this is a very relevant contribution to the field. Showing predictive performance through cross-validation and testing in multiple cohorts is not an easy task and this is a strong effort by the team. I strongly believe this approach is the right one and I believe the authors did a good job.
Minor points:
Methods:
I get the voxel-wise analysis, but I don't understand the methods for the structural connectivity analysis between the 88 ROIs. Have the authors run tractography or have they used a predetermined streamlined form of 'population-based connectome'? They report that models of AUC above 0.75 were considered and tested in the Chicago dataset, but we have no information about what the model actually learned (although this can be tricky for decision tree algorithms).
Minor:<br /> What results are shown in Figure 7? It looks more descriptive than the actual results.
-
Reviewer #2 (Public Review):
The present study aims to investigate brain white matter predictors of back pain chronicity. To this end, a discovery cohort of 28 patients with subacute back pain (SBP) was studied using white matter diffusion imaging. The cohort was investigated at baseline and one-year follow-up when 16 patients had recovered (SBPr) and 12 had persistent back pain (SBPp). A comparison of baseline scans revealed that SBPr patients had higher fractional anisotropy values in the right superior longitudinal fasciculus SLF) than SBPp patients and that FA values predicted changes in pain severity. Moreover, the FA values of SBPr patients were larger than those of healthy participants, suggesting a role of FA of the SLF in resilience to chronic pain. These findings were replicated in two other independent datasets. The authors conclude that the right SLF might be a robust predictive biomarker of CBP development with the potential for clinical translation.
Developing predictive biomarkers for pain chronicity is an interesting, timely, and potentially clinically relevant topic. The paradigm and the analysis are sound, the results are convincing, and the interpretation is adequate. A particular strength of the study is the discovery-replication approach with replications of the findings in two independent datasets.
The following revisions might help to improve the manuscript further.
- Definition of recovery. In the New Haven and Chicago datasets, SBPr and SBPp patients are distinguished by reductions of >30% in pain intensity. In contrast, in the Mannheim dataset, both groups are distinguished by reductions of >20%. This should be harmonized. Moreover, as there is no established definition of recovery (reference 79 does not provide a clear criterion), it would be interesting to know whether the results hold for different definitions of recovery. Control analyses for different thresholds could strengthen the robustness of the findings.
- Analysis of the Chicago dataset. The manuscript includes results on FA values and their association with pain severity for the New Haven and Mannheim datasets but not for the Chicago dataset. It would be straightforward to show figures like Figures 1 - 4 for the Chicago dataset, as well.
- Data sharing. The discovery-replication approach of the present study distinguishes the present from previous approaches. This approach enhances the belief in the robustness of the findings. This belief would be further enhanced by making the data openly available. It would be extremely valuable for the community if other researchers could reproduce and replicate the findings without restrictions. It is not clear why the fact that the studies are ongoing prevents the unrestricted sharing of the data used in the present study.
-
Reviewer #3 (Public Review):
Summary:
Authors suggest a new biomarker of chronic back pain with the option to predict the result of treatment. The authors found a significant difference in a fractional anisotropy measure in superior longitudinal fasciculus for recovered patients with chronic back pain.
Strengths:<br /> The results were reproduced in three different groups at different studies/sites.
Weaknesses:<br /> - The number of participants is still low.<br /> - An explanation of microstructure changes was not given.<br /> - Some technical drawbacks are presented.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Galanti et al. present an innovative new method to determine the susceptibility of large collections of plant accessions towards infestations by herbivores and pathogens. This work resulted from an unplanned infestation of plants in a greenhouse that was later harvested for sequencing. When these plants were extracted for DNA, associated pest DNA was extracted and sequenced as well. In a standard analysis, all sequencing reads would be mapped to the plant reference genome and unmapped reads, most likely originating from 'exogenous' pest DNA, would be discarded. Here, the authors argue that these unmapped reads contain valuable information and can be used to quantify plant infestation loads.
For the present manuscript, the authors re-analysed a published dataset of 207 sequenced accessions of Thlaspi arvense. In this data, 0.5% of all reads had been classified as exogenous reads, while 99.5% mapped to the T. arvense reference genome. In a first step, however, the authors repeated read mapping against other reference genomes of potential pest species and found that a substantial fraction of 'ambiguous' reads mapped to at least one such species. Removing these reads improved the results of downstream GWAs, and is in itself an interesting tool that should be adopted more widely.
The exogenous reads were primarily mapped to the genomes of the aphid Myzus persicae and the powdery mildew Erysiphe cruciferarum, from which the authors concluded that these were the likely pests present in their greenhouse. The authors then used these mapped pest read counts as an approximate measure of infestation load and performed GWA studies to identify plant gene regions across the T. arvense accessions that were associated with higher or lower pest read counts. In principle, this is an exciting approach that extracts useful information from 'junk' reads that are usually discarded. The results seem to support the authors' arguments, with relatively high heritabilities of pest read counts among T. arvense accessions, and GWA peaks close to known defence genes. Nonetheless, I do feel that more validation would be needed to support these conclusions, and given the radical novelty of this approach, additional experiments should be performed.
A weakness of this study is that no actual aphid or mildew infestations of plants were recorded by the authors. They only mention that they anecdotally observed differences in infestations among accessions. As systematic quantification is no longer possible in retrospect, a smaller experiment could be performed in which a few accessions are infested with different quantities of aphids and/or mildew, followed by sequencing and pest read mapping. Such an approach would have the added benefit of allowing causally linking pest read count and pest load, thereby going beyond correlational associations.
On a technical note, it seems feasible that mildew-infested leaves would have been selected for extraction, but it is harder to explain how aphid DNA would have been extracted alongside plant DNA. Presumably, all leaves would have been cleaned of live aphids before they were placed in extraction tubes. What then is the origin of aphid DNA in these samples? Are these trace amounts from aphid saliva and faeces/honeydew that were left on the leaves? If this is the case, I would expect there to be substantially more mildew DNA than aphid DNA, yet the absolute read counts for aphids are actually higher. Presumably read counts should only be used as a relative metric within a pest organism, but this unexpected result nonetheless raises questions about what these read counts reflect. Again, having experimental data from different aphid densities would make these results more convincing.
-
Reviewer #2 (Public Review):
Summary:
Galanti et al investigate genetic variation in plant pest resistance using non-target reads from whole-genome sequencing of 207 field lines spontaneously colonized by aphids and mildew. They calculate significant differences in pest DNA load between populations and lines, with heritability and correlation with climate and glucosinolate content. By genome-wide association analyses they identify known defence genes and novel regions potentially associated with pest load variation. Additionally, they suggest that differential methylation at transposons and some genes are involved in responses to pathogen pressure. The authors present in this study the potential of leveraging non-target sequencing reads to estimate plant biotic interactions, in general for GWAS, and provide insights into the defence mechanisms of Thlaspi arvense.
Strengths:
The authors ask an interesting and important question. Overall, I found the manuscript very well-written, with a very concrete and clear question, a well-structured experimental design, and clear differences from previous work. Their important results could potentially have implications and utility for many systems in phenotype-genotype prediction. In particular, I think the use of unmapped reads for GWAS is intriguing.
Weaknesses:
I found that several of the conclusions are incomplete, not well supposed by the data and/or some methods/results require additional details to be able to be judged. I believe these analyses and/or additional clarifications should be considered.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors establish a recombinant insect cell expression and purification scheme for the antiviral Dicer complex of C. elegans. In addition to Dicer-1, the complex harbors two additional proteins, the RIG-I-like helicase DRH-1 and the dsRNA-binding protein RDE-4. The authors show that the complex prefers blunt-end dsRNA over dsRNAs that contain overhangs. Furthermore, whereas ATP-dependent dsRNA cleavage only exacerbates regular dsRNA cleavage activity, the presence of RDE-4 is essential to ATP-dependent and ATP-independent dsRNA cleavage. Single-particle cryo-EM studies of the ternary C. elegans Dicer complex reveal that the N-terminal domain of DRH-1 interacts with the helicase domain of DCR-1, thereby relieving its autoinhibitory state. Last, the authors show that the ternary complex is able to processively cleave long dsRNA, an activity primarily relying on the helicase activity of DRH-1.
Strengths:
• First thorough biochemical characterization of the antiviral activity of C. elegans Dicer in complex with the RIG-I like helicase DRH-1 and the dsRNA-binding protein RDE-4<br /> • Discovery that RDE-4 is essential to dsRNA processing, whereas ATP hydrolysis is not<br /> • Discovery of an autoinhibitory role of DRH-1's N-terminal domain (in analogy to the CARD domains of RIG-I)<br /> • First structural insights into the ternary complex DCR-1:DRH-1:RDE-4 by cryo-EM to medium resolution<br /> • Trap experiments reveal that the ternary DCR-1 complex cleaves blunt-ended dsRNA processively. Likely, the helicase domain of DRH-1 is responsible for this processive cleavage.
Weaknesses:
• Cryo-EM Structure of the ternary Dicer-1:DRH-1:RED-4 complex to only medium resolution<br /> • High-resolution structure of the C-terminal domain of DRH-1 bound to dsRNA does not reveal the mechanism of how blunt-end dsRNA and overhang-containing one are being discriminated<br /> • The cryo-EM structure of DCR1:DRH-1:RDE-4 in the presence of ATP only reveals the helicase and CTD domains of DRH-1 bound to dsRNA. No information on dsRNA termini recognition is presented. The paragraph seems detached from the general flow of the manuscript.
-
Reviewer #2 (Public Review):
Summary:
To investigate the evolutionary relationship between the RNAi pathway and innate immunity, this study uses biochemistry and structural biology to investigate the trimeric complex of Dicer-1, DRH-1 (a RIGI homologue) and RDE-4 , which exists in C. elegans. The three subunits were co-expressed to promote stable purification of the complex. This complex promoted ATP-dependent cleavage of blunt-ended dsRNAs. A detailed kinetic analysis was also carried out to determine the role of each subunit of the trimeric complex in both the specificity and efficiency of cleavage. These studies indicate that RDE-4 is critical for cleavage while DRC-1 is primarily involved in the specificity of the reaction, and DRH-1 promotes ATP hydrolysis. Finally, a moderate density (6-7 angstrom) cryo-EM structure of the trimeric complex is provided.
Strengths:
(1) Newly described methods for studying the C. elegans DICER complex<br /> (2) New structure, albeit only moderate resolution<br /> (3) Kinetic study of the complex in the presence and absence of individual subunits and mutations, provide detailed insight into the contribution of each subunit
Weaknesses:
(1) Limited insight due to limited structural resolution.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this work, Odenwald and colleagues show that mutant biotin ligases used to perform proximity-dependent biotin identification (TurboID) can be used to amplify signal in fluorescence microscopy and to label phase-separated compartments that are refractory to many immunofluorescence approaches. Using the parasite Trypanosoma brucei, they show that fluorescent methods such as expansion microscopy and CLEM, which require bright signals for optimal detection, benefit from the elevated signal provided by TurboID fusion proteins when coupled with labeled streptavidin. Moreover, they show that phase-separated compartments, where many antibody epitopes are occluded due to limited diffusion and potential sequestration, are labeled reliably with biotin deposited by a TurboID fusion protein that localizes within the compartment. They show successful labeling of the nucleolus, likely phase-separated portions of the nuclear pore, and stress granules. Lastly, they use a panel of nuclear pore-TurboID fusion proteins to map the regions of the T. brucei nuclear pore that appear to be phase-separated by comparing antibody labeling of the protein, which is susceptible to blocking, to the degree of biotin deposition detected by streptavidin, which is not.
Strengths:
Overall, this study shows that TurboID labelling and fluorescent streptavidin can be used to boost signal compared to conventional immunofluorescence in a manner similar to tyramide amplification, but without having to use antibodies. TurboID could prove to be a viable general strategy for labeling phase-separated structures in cells, and perhaps as a means of identifying these structures, which could also be useful.
Weaknesses:
However, I think that this work would benefit from additional controls to address if the improved detection that is being observed is due to the increased affinity and smaller size of streptavidin/biotin compared to IgGs, or if it has to do with the increased amount of binding epitope (biotin) being deposited compared to the number of available antibody epitopes. I also think that using the biotinylation signal produced by the TurboID fusion to track the location of the fusion protein and/or binding partners in cells comes with significant caveats that are not well addressed here, mostly due to the inability to discern which proteins are contributing to the observed biotin signal.
To dissect the contributions of the TurboID fusion to elevating signal, anti-biotin antibodies could be used to determine if the abundance of the biotin being deposited by the TurboID is what is increasing detection, or if streptavidin is essential for this. Alternatively, HaloTag or CLIP tagging could be used to see if diffusion of a small molecule tag other than biotin can overcome the labeling issue in phase-separated compartments. There are Halo-biotin substrates available that would allow the conjugation of 1 biotin per fusion protein, which would allow the authors to dissect the relative contributions of the high affinity of streptavidin from the increased amount of biotin that the TurboID introduces.
The idea of using the biotin signal from the TurboID fusion as a means to track the changing localization of the fusion protein or the location of interacting partners is an attractive idea, but the lack of certainty about what proteins are carrying the biotin signal makes it very difficult to make clear statements. For example, in the case of TurboID-PABP2, the appearance of a biotin signal at the cell posterior is proposed to be ALPH1, part of the mRNA decapping complex. However, because we are tracking biotin localization and biotin is being deposited on a variety of proteins, it is not formally possible to say that the posterior signal is ALPH1 or any other part of the decapping complex. For example, the posterior labeling could represent a localization of PABP2 that is not seen without the additional signal intensity provided by the TurboID fusion. There are also many cytoskeletal components present at the cell posterior that could be being biotinylated, not just the decapping complex. Similar arguments can be made for the localization data pertaining to MLP2 and NUP65/75. I would argue that the TurboID labeling allows you to enhance signal on structures, such as the NUPs, and effectively label compartments, but you lack the capacity to know precisely which proteins are being labeled.
-
Reviewer #2 (Public Review):
Summary:
The authors noticed that there was an enhanced ability to detect nuclear pore proteins in trypanosomes using a streptavidin-biotin-based detection approach in comparison to conventional antibody-based detection, and this seemed particularly acute for phase-separated proteins. They explored this in detail for both standard imaging but also expansion microscopy and CLEM, testing resolution, signal strength, and sensitivity. An additional innovative approach exploits the proximity element of biotin labelling to identify where interacting proteins have been as well as where they are.
Strengths:
The data is high quality and convincing and will have obvious application, not just in the trypanosome field but also more broadly where proteins are tricky to detect or inaccessible due to phase separation (or some other steric limitations). It will be of wide utility and value in many cell biological studies and is timely due to the focus of interest on phase separation, CLEM, and expansion microscopy.
-
Reviewer #3 (Public Review):
Summary:
The authors aimed to investigate the effectiveness of streptavidin imaging as an alternative to traditional antibody labeling for visualizing proteins within cellular contexts. They sought to address challenges associated with antibody accessibility and inconsistent localization by comparing the performance of streptavidin imaging with a TurboID-HA tandem tag across various protein localization scenarios, including phase-separated regions. They aimed to assess the reliability, signal enhancement, and potential advantages of streptavidin imaging over antibody labeling techniques.
Overall, the study provides a convincing argument for the utility of streptavidin imaging in cellular protein visualization. By demonstrating the effectiveness of streptavidin imaging as an alternative to antibody labeling, the study offers a promising solution to issues of accessibility and localization variability. Furthermore, while streptavidin imaging shows significant advantages in signal enhancement and preservation of protein interactions, the authors must consider potential limitations and variations in its application. Factors such as the fact that tagging may sometimes impact protein function, background noise, non-specific binding, and the potential for off-target effects may impact the reliability and interpretation of results. Thus, careful validation and optimization of streptavidin imaging protocols are crucial to ensure reproducibility and accuracy across different experimental setups.
Strengths:
- Streptavidin imaging utilizes multiple biotinylation sites on both the target protein and adjacent proteins, resulting in a substantial signal boost. This enhancement is particularly beneficial for several applications with diluted antigens, such as expansion microscopy or correlative light and electron microscopy.
- This biotinylation process enables the identification and characterization of interacting proteins, allowing for a comprehensive understanding of protein-protein interactions within cellular contexts.
Weaknesses:
- One of the key advantages of antibodies is that they label native, endogenous proteins, i.e. without introducing any genetic modifications or exogenously expressed proteins. This is a major difference from the approach in this manuscript, and it is surprising that this limitation is not really mentioned, let alone expanded upon, anywhere in the manuscript. Tagging proteins often impacts their function (if not their localization), and this is also not discussed.
- Given that BioID proximity labeling encompasses not only the protein of interest but also its entire interacting partner history, ensuring accurate localization of the protein of interest poses a challenge.
- The title of the publication suggests that this imaging technique is widely applicable. However, the authors did not show the ability to track the localization of several distinct proteins on the same sample, which could be an additional factor demonstrating the outperformance of streptavidin imaging compared with antibody labeling. Similarly, the work focuses only on small 2D samples. It would have been interesting to be able to compare this with 3D samples (e.g. cells encapsulated in an extracellular matrix) or to tissues.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The manuscript by Wang et al. investigates the role of Rnf220 in hindbrain development and Hox expression. The authors suggest that Rnf220 controls Hox expression in the hindbrain by regulating WDR5 levels. The authors combine in vivo experiments with experiments in P19 cells to demonstrate this mechanism. However, the in vivo data does not provide strong support for the claims the authors make and the role of Rnf in Hox maintenance and pons development is unclear.
Specific concerns with in vivo data:
A major issue throughout the paper is that Hox expression analysis is done exclusively through quantitative PCR, with values ranging from 2-fold to several thousand-fold upregulation, with no antibody validation for any Hox protein (presumably they are all upregulated).
In Figure 1, massive upregulation of most Hox genes in the brainstem is shown after e16.5 but the paper quickly focuses on analysis of PN nuclei. What are the other consequences of this broad upregulation of Hox genes in the brainstem? There is no discussion of the overall phenotype of the mice, the structure of the brainstem, the migration of neurons, etc. The very narrow focus on motor cortex projections to PN nuclei seems bizarre without broad characterization of the mice, and the brainstem in particular. There is only a mention of "severe motor deficits" from previous studies, but given the broad expression of Rnf220, the fact that is a global knockout, and the effects on spinal cord populations shown previously the justification for focusing on PN nuclei does not seem strong.
It is stated that cluster 7 in scRNA-seq corresponds to the PN nuclei. The modest effect shown on Hox3-5 expression in that data in Figure 1 is inconsistent with the larger effect shown in Figure 2.
Presumably, Hox genes are not the only targets of Rnf220 as shown in the microarray/RNA-sequencing data. There is no definitive evidence that any phenotypes observed (which are also not clear) are specifically due to Hox upregulation. The only assay the authors use to look at a Hox-dependent phenotype in the brainstem is the targeting of PN nuclei by motor cortex axons. This is only done in 2 animals and there are no details as to how the data was analyzed and quantified. The only 2 images shown are not convincing of a strong phenotype, they could be taken at slightly different levels or angles. At the very least, serial sections should be shown and the experiment repeated in more animals. There is also no discussion of how these phenotypes, if real, would relate to previous work by the Rijli group which showed very precise mechanisms of synaptic specificity in this system.
The temporal aspect of this regulation in vivo is not clear. The authors show some expression changes begin at e16.5 but are also present at 2 months. Is the presumed effect on neural circuits a result of developmental upregulation at late embryonic stages or does the continuous overexpression in adult mice have additional influence? Are any of the Hox genes upregulated normally expressed in the brainstem, or PN specifically, at 2 months? Why perform single-cell sequencing experiments at 2 months if this is thought to be mostly a developmental effect? Similarly, the significance of the upregulated WRD5 in the pons and pontine nuclei at 2 months in Figure 3 is not clear.
In Figure 3C the levels of RNF220 in wt and het don't seem to be that different.
Based on the single-cell experiments, and the PN nuclei focus, the rescue experiments are confusing. If the Rnf220 deletion has a sustained effect for up to 2 months, why do the injections in utero? If the focus is the PN nuclei why look at Hox9 expression and not Hox3-5 which are the only Hox genes upregulated in PN based on sc-sequencing? No rescue of behavior or any phenotype other than Hox expression by qPCR is shown and it is unclear whether upregulation of Hox9 paralogs leads to any defects in the first place. The switch to the Nes-cre driver is not explained. Also, it seems that wdr5 mRNA levels are not so relevant and protein levels should be shown instead (same for rescue experiments in P19 cells).
Other:<br /> What is the relationship between Retinoic acid and WRD5? In Figure 3E there is no change in WRD5 levels without RA treatment in Rnf KO but an increase in expression with RA treatment and Rnf KO. However, the levels of WRD5 do not seem to change with RA treatment alone. Does Rnf220 only mediate WDR5 degradation in the presence of RA? This does not seem to be the case in experiments in 293 cells in Figure 4.
Why are the levels of Hox upregulation after RA treatment so different in Figure 5 and Figure Supplement 5?
In Figures 4B+C which lanes are input and which are IP? There is no quantitation of Figure 4D, from the blot it does look that there is a reduction in the last 2 columns as well. The band in the WT flag lane seems to have a bubble. Need to quantitate band intensities. Same for E, the effect does not seem to be completely reversed with MG132.
-
Reviewer #2 (Public Review):
Wang, Liu, et al. identified Rnf220 and Wdr5 as novel regulators of Hox gene expression during pons development. Phenotypic characterization of Rnf220 deficient mice with single-cell transcriptomics, qRT-PCR, and axonal tracing methods show that Rnf220 knockdown causes de-repression of Hox gene expression at multiple stages of pons development to regulate the final formation of the pontine nuclei neural circuit. Additionally, they also perform exhaustive expression analysis of multiple genes in the Hox family cluster to identify specific gene groups that are targeted by Rnf220. Furthermore, they also demonstrate that Rnf220 modulates Hox gene expression by directly binding to Wdr5, thus targeting it for ubiquitination and subsequent degradation. To elucidate the molecular mechanism of this interaction, they perform detailed immunoprecipitation assays and identify the precise Wdr5 amino acid residues that are targeted by Rnf220. Intriguingly, they show that inhibition of Wdr5 in Rnf220 deficient mice reverses the de-repression of Hox gene expression suggesting the direct involvement of Rnf220-Wdr5 interaction in modulating Hox gene expression during pons development. These data highlight the role of a new form of Hox gene regulation via the ubiquitination of epigenetic modulator Wdr5.
The conclusions of this paper are mostly supported by the data provided, but the downstream molecular and tissue-level effects of Wdr5 knockdown/inhibition need to be further characterized to establish its definitive role in pons development.
(1) Figure 1E shows that Rnf220 knockdown alone could not induce an increase in Hox expression without RA, which indicates that Rnf220 might endogenously upregulate Retinoic acid signaling. The authors should test if RA signaling is downstream of Rnf220 by looking at differences in the expression of Retinaldehyde dehydrogenase genes (as a proxy for RA synthesis) upon Rnf220 knockdown.
(2) In Figure 2C-D further explanation is required to describe what criteria were used to segment the tissue into Rostral, middle, and caudal regions. Additionally, it is unclear whether the observed change in axonal projection pattern is caused due to physical deformation and rearrangement of the entire Pons tissue or due to disruption of Hox3-5 expression levels. Labeling of the tissue with DAPI or brightfield image to show the structural differences and similarities between the brain regions of WT and Rnf220 +/- will be helpful.
(3) Line 192-195. These roles of PcG and trxG complexes are inconsistent with their initial descriptions in the text - lines 73-74.
(4) In Figure 4D, the band in the gel seems unclear and erased. Please provide a different one. These data show that neither Rnf220 nor wdr5 directly regulates Hox gene expressions. The effect of double knockdown in the presence of RA suggests that they work together to suppress Hox gene expression via a different downstream target. This point should be addressed in the text and discussion section of the paper. example for the same data which shows a full band with lower intensity.
(5) In Figure 4G the authors could provide some form of quantitation for changes in ubiquitination levels to make it easier for the reader. They should also describe the experimental procedures and conditions used for each of the pull-down and ubiquitination assays in greater detail in the methods section.
(6) Figure 5 shows that neither Rnf220 nor wdr5 directly regulate Hox gene expressions. The effect of double knockdown in the presence of RA suggests that they work together to suppress Hox gene expression via a different downstream target. This point should be addressed in the text and discussion section of the paper.
(7) In Figure 6, while the reversal of changes in Hox gene expression upon concurrent Rnf220; Wdr5 inhibition highlights the importance of Wdr5 in this regulatory process, the mechanistic role of wdr5 and its functional consequences are unclear. To answer these questions, the authors need to: (i) Assay for activated and repressive epigenetic modifications upon double knockdown of Rnf220 and Wdr5 similar to that shown in Figure 4- supplement 1. This will reveal if wdr5 functions according to its intended role as part of the TrxG complex. (ii) The authors need to assay for changes in axon projection patterns in the double knockdown condition to see if Wdr5 inhibition rescues the neural circuit defects in Rnf220 +/- mice.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors were trying to achieve that Tgif1 expression is regulated by EAK1/2 and PTH in a time-dependent manner, and its roles in suppressing Pak3 for facilitating osteoblast adhesion. The authors further tried to achieve that the Tgif1-Pak3 signaling plays a significant role in osteoblast migration to the site of bone repair and bone remodeling.
Strengths:
- In a previous study, they demonstrated that Tgif1 is a target gene of PTH, and the absence of Tgif1 failed to increase bone mass by PTH treatment (Saito et al., Nat Commun., 2019). In this study, they found that Tgif1-Pak3 signaling prompts osteoblast migration through osteoblast adhesion to prompt bone regeneration. This novel finding provides a better understanding of how Tgif1 expression in osteoblasts regulates adherence, spreading, and migration during bone healing and bone remodeling.<br /> - The authors demonstrated that ERK1/2 and PTH regulate Tgif1 expression in a time-dependent manner and its role in suppressing Pak3 through various experimental approaches such as luciferase assay, ChIP assay, and gene silencing. These results contribute to the overall strength of the article.
Weaknesses:
None after substantial revisions especially in vivo parts.
-
Reviewer #2 (Public Review):
Summary:
Bolamperti S. et al. 2023 investigates whether expression of TG-interacting factor (Tgif1) is essential for osteoblastic cellular activity regarding morphology, adherence, migration/recruitment, and repair. Towards this end, germ-line Tgif1 deletion (Tgif1-/-) mice or male mice lacking expression of Tgif1 in mature osteoblastic and osteocytic cells (Dmp1-Cre+; Tgif1fl/fl) and corresponding controls were studied in physiological, bone anabolic, and bone fracture-repair conditions. Both Tgif1-/- and Dmp1-Cre+; Tgif1fl/fl exhibited decreased osteoblasts on cancellous bone surfaces and adherent to collagen I-coated plates. Tgif1-/- mice exhibit impaired healing in the tibial midshaft fracture model, as indicated by decreased bone volume (BV/Cal.V), osteoid (OS/BS), and low osteoblasts (number and surface). Likewise, both Tgif1-/- and Dmp1-Cre+; Tgif1fl/fl show impaired PTH 1-34, (100 µg/kg, 5x/wk for 3 wks) osteoblast activation in vivo, as detected by increases in quiescent bone surfaces. Mechanistic in vitro studies then utilized primary osteoblasts isolated from Tgif1-/- mice and siRNA Tgif1 knockdown OCY454 cells to further investigate and identify the downstream Tgif1 target driving these osteoblastic impairments. In vitro, Tgif1-/- osteoblastic and Tgif1 knockdown OCY454 cells exhibit decreased migration, abnormal morphology, and decreased focal adhesions/cell. Unexpectantly though, localization assays revealed Tgif1 to primarily concentrate in the nucleus and not to co-localize with focal adhesions (paxillin, talin). Also, expression of major focal adhesion components (paxillin, talin, FAK, Src etc.) or the Cdc42 family was not altered by loss of Tgif1 expression. In contrast, PAK3 expression is markedly upregulated by loss of Tgif1. In silico analysis followed by mechanistic molecular assays involving ChIP, siRNA (Tgif1, PAK3), and transfection (rat PAK3 promoter) techniques show that Tgif1 physically binds to a specific site in the PAK3 promoter region. Further, the knockdown of PAK3 rescues the Tgif1-deficient abnormal morphology in OCY454 cells. This is the first study to identify the novel transcriptional repression of PAK3 by Tgif1 as well as the specific Tgif1 binding site within the PAK3 promoter.
Strengths:
This work has a plethora of strengths. The co-authors achieved their aim in eliciting the role of Tgif1 expression to osteoblastic cellular functions (morphology, spreading/attachment, migration). Further, this work is the first to depict the novel mechanism of Tgif1 transcriptional repression of PAK3 by a through usage of mechanistic molecular assays (In silico analysis, ChIP, siRNA, transfection etc.). The conclusions are well supported and justified by these findings, as the appropriate controls, sample sizes (statistical power), statistics, and assays were fully utilized.
Claims and conclusions justified by data? Yes. absolutely
Weaknesses:
None. All reviewer comments were fully addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
in this paper authors show that the degree of pigmentation for RPE cells is not correlated with a level of maturation and function. They suggest that this status could be different in vitro than in vivo but do not provide proper experiments to validate this hypothesis. However, it is the first time that the absence of correlation between pigmentation and function is studied.
Strengths:
The methods are good and experiments very rigorous
Comments on current version:
The authors have modified their title and focus on QC for in vitro process
-
Reviewer #3 (Public Review):
Summary:
Nakai-Futatsugi et al. present a novel method to analyze the correlation between the degree of pigmentation and the gene expression profile of human-induced pluripotent stem cell-derived RPE (iPSC-RPE) cells at the single cell level. This was achieved with the use of ALPS (Automated Live imaging and cell Picking system), an invention developed by the same authors. Briefly, it allows one to choose and photograph a specific cell from a culture dish and proceed to single cell digital RNA-seq. The authors identify clusters of cells that present differential gene expression, but this showed no association with the degree of pigmentation of the cells. Further data analysis allowed the authors to correlate the degree of pigmentation to some degree with the expression of complement and lysosome-related genes.
Strengths:
An important amount of data related to gene expression and heterogeneity of the iPSC-RPE population has been generated in this work.
Weaknesses:
However, the justification of the analysis, and the physiological relevance of the hypothesis and the findings could be strengthened.
Importantly, I fail to grasp from the introduction what is the previous evidence that leads to the hypothesis. Why would color intensity be related to the quality of cell transplantation? In fact, cell transplantation is not evaluated at all in this work. The authors mention "quality metrics for clinical use", but this concept is not further explained. Neither is the concept of "sufficient degree of pigmentation" explained.<br /> On the other hand, the positive correlation of cluster formation with complement and lysosome-related genes is not discussed.
As a consequence it is very difficult to evaluate the impact of these findings on the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
A novel serine protease and a inhibitor pair regulate cell migration in the neural crest.
Strengths:
The reproduction of classical cranial neural crest extirpations and their phenocopy by SerpinE2 morpholino are remarkable. Very scholarly written and data of the highest quality.
Weaknesses:
All were improved upon revision.
-
Reviewer #2 (Public Review):
Summary:
The authors conducted research on the role of SerpinE2 and HtrA1 in neural crest migration using Xenopus embryos. The data presented in this study was of high quality and supported the authors' conclusions. The discovery of the potential molecular connection between SerpinE2 and HtrA1 in neural crest cell migration in vivo is significant, as understanding this pathway could potentially lead to treatments for aggressive cancers and pregnancy-related disorders.
Strengths:
Previous research has shown that SerpinE2 and HtrA1 can have both positive and negative effects on cell migration, but their molecular interplay and role in neural crest migration are not well-established. This study is the first to reveal a potential connection between these two proteins in neural crest cell migration in vivo. The authors found that SerpinE2 promotes neural crest migration by inhibiting HtrA1. Additionally, overexpression of Sdc4 partly alleviates neural crest migration issues caused by SerpinE2 knockdown or HtrA1 overexpression. These findings suggest that the SeprinE2-HtrA1-Sdc4 pathway is crucial for neural crest migration.
Weaknesses:
To further increase the study's credibility, it may be helpful to use techniques like western blotting, qRT-PCR, or in situ hybridization to verify the efficiency of SerpinE2 and HtrA1 knockdown and/or overexpression.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Building upon their famous tool for the deconvolution of human transcriptomics data (EPIC), Gabriel et al. implemented a new methodology for the quantification of the cellular composition of samples profiled with Assay for Transposase-Accessible Chromatin sequencing (ATAC-Seq). To build a signature for ATAC-seq deconvolution, they first created a compendium of ATAC-seq data and derived chromatin accessibility marker peaks and reference profiles for 21 cell types, encompassing immune cells, endothelial cells, and fibroblasts. They then coupled this novel signature with the EPIC deconvolution framework based on constrained least-square regression to derive a dedicated tool called EPIC-ATAC. The method was then assessed using real and pseudo-bulk RNA-seq data from human peripheral blood mononuclear cells (PBMC) and, finally, applied to ATAC-seq data from breast cancer tumors to show it accurately quantifies their immune contexture.
Strengths:
Overall, the work is of very high quality. The proposed tool is timely; its implementation, characterization, and validation are based on rigorous methodologies and resulted in robust results. The newly-generated, validation data and the code are publicly available and well-documented. Therefore, I believe this work and the associated resources will greatly benefit the scientific community.
Weaknesses:
A few aspects can be improved to clarify the value and applicability of the EPIC-ATAC and the transparency of the benchmarking analysis.
Most of the validation results in the main text assess the methods on all cell types together, by showing the correlation, RMSE, and scatterplots of the estimated vs. true cell fractions. This approach is valuable for showing the overall method performance and for detecting systematic biases and noisy estimates. However, it provides very limited insights regarding the capability of the methods to estimate the individual cell types, which is the ultimate aim of deconvolution analysis. This limitation is exacerbated for rare cell types, which could even have a negative correlation with the ground truth fractions, but not weigh much on the overall RMSE and correlation. I would suggest integrating into the main text and figures an in-depth assessment of the individual cell types. In particular, it should be shown and discussed which cell types can be accurately quantified and which ones are less reliable.
In the benchmarking analysis, EPIC-ATAC is compared to several deconvolution methods, most of which were originally developed for transcriptomics data. This comparison is not completely fair unless their peculiarities and the limitations of tweaking them to work with ATAC-seq data are discussed. For instance, some methods (including the original EPIC) correct for cell-type-specific mRNA bias, which is not present in ATAC-seq data and might, thus, result in systematic errors.
On a similar note, it could be made more explicit which adaptations were introduced in EPIC, besides the ad-hoc ATAC-seq signature, to make it applicable to this type of data.
Given that the final applicability of EPIC-ATAC is on real bulk RNA-seq data, whose characteristics might not be completely recapitulated by pseudo-bulk samples, it would be interesting to see EPIC and EPIC-ATAC compared on a dataset with matched, real bulk RNA-seq and ATAC-seq, respectively. It would nicely complement the analysis of Figure 7 and could be used to dissect the commonalities and peculiarities of these two approaches.
-
Reviewer #2 (Public Review):
Summary:
The manuscript expands the current bulk sequencing data deconvolution toolkit to include ATAC-seq. The EPIC-ATAC tool successfully predicts accurate proportions of immune cells in bulk tumour samples and EPIC-ATAC seems to perform well in benchmarking analyses. The authors achieve their aim of developing a new bulk ATAC-seq deconvolution tool.
Strengths:
The manuscript describes simple and understandable experiments to demonstrate the accuracy of EPIC-ATAC. They have also been incredibly thorough with their reference dataset collections. The authors have been robust in their benchmarking endeavours and measured EPIC-ATAC against multiple datasets and tools.
Weaknesses:
Currently, the tool has a narrow applicability in that it estimates the percentage of immune cells in a bulk ATAC-seq experiment.
Comments:
(1) Has any benchmarking been done on the runtime of the tool? Although EPIC-ATAC seems to "win" in benchmarking metrics, sometimes the differences are quite small. If EPIC-ATAC takes forever to run, compared to another tool that is a lot quicker, might some people prefer to sacrifice 0.01 in correlation for a quicker running tool?
(2) In Figure 3B the data points look a bit squashed in the bottom-left corner. Could the plot be replotted with the data point spread out? There also seems to be some inter-patient variability. Could the authors comment on that?
(3) Could the authors comment on the possibility of expanding EPIC-ATAC into more than a percentage prediction tool? Perhaps EPIC-ATAC could remove the immune cell signal from the bulk ATAC-seq data to "purify" the uncharacterised cells in silico, or generate pseudo-ATAC-seq tracks of the identified cell types.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Cellulose is the major component of the plant cell wall and as such is a major component of all plant biomass on the planet. It is made at the cell surface by a large membrane-bound complex known as the cellular synthase complex. It is the structure of the cellulose synthase complex that determines the structure of the cellulose microfibril, the unit of cellulose found in nature. Consequently, while understanding the molecular structure of individual catalytic subunits that synthesise individual beta 1-4 glucose chains is important, to really understand cellulose synthesis it is necessary to understand the structure of the entire complex.
In higher plants, cellulose is synthesised by a large membrane-bound complex composed of three different CESA proteins. During cellulose synthesis in the primary cell wall, this is composed of members of groups CESA1, CESA3, and CESA6. While the authors have previously presented structural data on CESA8, required for cellulose synthesis in the secondary cell wall, here they provide structural and enzymatic analysis of CESA1, CESA3, and CESA6 from soya beans.
The authors have utilised their established protocol to purify trimers for all three classes of CESA proteins and obtain structural information using electron microscopy. The structures reveal some subtle, but interesting differences between the structures obtained in this study and that previously obtained for CESA8. In particular, they identify a change in the position of transmembrane helices 7 that in previous structures formed part of the transmembrane channel. In the structure of CESA1 TM7 is shifted laterally to a position more towards the periphery of the protomer, where it is stabilised by inter-protomer interactions. This creates a large lipid-exposed channel opening that is likely encountered by the growing cellulose chain. In the discussion, the authors speculate this channel might facilitate lateral movement of cellulose chains in the membrane which would allow them to associate to form the microfibril. There is, however, no explanation for why this might be different for CESA proteins involved in primary and secondary cell wall CESA proteins.
Interactions within the trimer as stabilised by the plant conserved regions (PCR), while in common with previous studies that class-specific regions (CSR) are not resolved, are likely highly disordered as has been suggested in previous studies. As the name suggests these regions are likely to be important for determining how different CESA proteins interact, but it remains to be seen how they achieve this. Similarly, the N-terminal domain (NTD) remains rather intriguing. In the CESA3 structure, the NTD forms a stalk that protrudes into the cytoplasm that was previously observed for CESA8, while it remains unresolved in CESA1 and CESA6. The authors suggest the inability to resolve this region is likely the result of the NTD being able to form multiple conformations. Loss of the NTD does not prevent the formation of trimers and CESA1 and CESA3 are still able to interact. Previous bioinformatic studies suggest that the CSR part of the NTD is also highly class-specific (Carrol et al. 2011 Frontiers in Plant Science 2, 5-5) suggesting it is also likely to participate in interactions between different CESA proteins. This analysis provides little new information on the structure of the NTD or how it functions as part of the cellulose synthase complex.
The other important point regarding cellulose synthesis is how the different CESA trimers function during cellulose synthesis and complex assembly. The authors provide biochemical evidence that mixed complexes of two different CESA proteins are able to synergistically increase the rate of cellulose synthesis. This increase is not dramatic, around 2-fold as it is unclear what brings about this increase and whether it results from the ability to form larger complexes favouring greater rates of cellulose synthesis.
It is clear however from electron microscopy that mixing of CESA proteins can lead to the formation of large aggregates not seen with single CESA proteins. The aggregates observed do not form rosette-type shapes but appear to be much more random aggregates of different CESA trimers. The authors suggest that this is likely a result of the fact that the complexes are not constrained in two dimensions by the membrane, however, if these are biologically relevant interactions that form aggregates it is somewhat surprising that they do not form hexameric structures, particularly since they are essentially forming as a single layer.
Overall the study provides some important data and raises a number of important questions.
-
Reviewer #2 (Public Review):
Summary:
In their manuscript entitled "In vitro function, assembly and interaction of primary cell wall cellulose synthase homotrimers" Purushotham et al. purify and functionally and structurally characterize the primary cell wall cellulose synthase isoforms from soybeans. Overall, the manuscript is well-written and contributes several important observations.
Strengths:
The structural and functional characterization of all three primary cell wall CesA isoforms contributes significantly to important problems in plant biochemistry.
The demonstration that the isolated CesA monomers and homotrimers are catalytically active in vitro, interact with each other, and show catalytic cooperativity between the homotrimers.
Weaknesses:
The paper could be further strengthened by addressing the following:
Are the interactions between the homotrimers observed via the pull-down assays stable enough to co-elute on the sizing column or are they transient interactions?
The authors show that the monomeric CesA isoforms can interact with each other using pull-down assays (Figure Supplement 4e). Are these interactions stable or transient? Have the authors tried running the mixed monomers over a sizing column? If you mix all three isoform monomers can you form heterotrimers?
The authors demonstrate via truncation that the N-terminus of the CesA is not involved in the interactions between the isoforms and propose that the CSR hook-like extensions are the primary mediator of trimer-trimer interactions. This argument would be strengthened by equivalent truncation experiments in which the CSR region is removed.
The statement on page 6 that "All CesA isoforms show greatest catalytic activity at neutral pH" seems to contradict the data in Figure 1e and the subsequent statements.
-
Reviewer #3 (Public Review):
Summary:
Cellulose is a major component of the primary cell wall of growing cells and it is made by cellulose synthases (CESAs) organized into multi-subunit complexes in the plasma membrane. Previous results have resolved the structure of secondary cell wall CESAs, which are only active in a subset of cells. Here, the authors evaluate the structure of CESAs from soybeans (Glycine max, Gm) via cryo-EM and compare these structures to secondary cell wall CESAs. First, they expressed GmCESA1, GmCESA3, or GmCESA6 in insect cells, purified these proteins as both monomers and homotrimers and demonstrated their capacity to incorporate 3H-labelled glucose into the cellulase-sensitive product in a pH and divalent cation (e.g., Mg2+) -dependant fashion (Figure 1). Although CESA1, CESA3, and a CESA6-like isoform are essential for cellulose synthesis in Arabidopsis, in this study, monomers and homotrimers both showed catalytic activity, and there was more variation between individual isoforms than between their oligomerization states (i.e., CESA3 monomers and trimers showed similar activities, which were substantially different from CESA1 monomers or trimers).
They next use cryo-EM to solve the structure of each homotrimer to ~3.0 to 3.3 A (Figure 2). They compare this with PttCESA8 and find important similarities, such as the unidentified density at a positively-charged region near Arg449, Lys452, and Arg453, and differences, such as the position and relatively low resolution (suggesting higher flexibility) of TM7, which presumably creates a large lateral lipid-exposed channel opening, rather than the transmembrane pore in PttCESA8. Like PttCESA8, an oligosaccharide in the translocation channel was co-resolved with the protein structure. Neither the N-terminal domains nor the CSRs (a plant-specific insert into the cytosolic loop between TM2 and TM3) are resolved well.
Several previous models have proposed that the cellulose synthase complexes may be composed of multiple heterotrimers, but since the authors were able to isolate beta-glucan-synthesizing homotrimers, their results challenge this model. Using the purified trimers, the authors investigated how the CESA homotrimers might assemble into higher-order complexes. They detected interactions between each pair of CESA homotrimers via pull-down assays (Figure 3), although these same interactions were also detected among monomers (Supplemental Figure 4). Neither catalytic activity nor these inter-homotrimer interactions required the N-terminal domain (Figure 4). When populations of homotrimers were mixed, they formed larger aggregations in vitro (Figure 4) and displayed increased activity, compared to the predicted additive activity of each enzyme alone (Figure 5). Intriguingly, this synergistic behavior is observed even when one trimer is chemically inactivated before mixing (Supplemental Figure 6), suggesting that the synergistic effects are due to structural interactions.
Strengths:
The main strength of this manuscript is its detailed characterization of the structure of multiple CESAs, which complements previous studies of secondary cell wall CESAs. They provide a comprehensive comparison of these new structures with previously resolved CESA structures and discuss several intriguing similarities and differences. The synergistic activity observed when different homotrimers are mixed is a particularly interesting result. These results provide fundamental in vitro support for a cellulose synthase complex comprised of a hexamer of CESA homotrimers.
Weaknesses:
There are several weaknesses in the manuscript. The authors do not present any data to indicate that GmCESA1, GmCESA3, and GmCESA6 are primary cell wall CESAs (e.g. expression patterns, phylogenetic evidence). Furthermore, their evidence that these proteins make cellulose in vitro is limited to the beta-glucanase-sensitive digestion of the product. Previous reports characterizing CESA structures have used multiple independent methods: sensitivity and resistance of the product to various enzymes, linkage analysis, and importantly, TEM of the product to ensure that it makes genuine cellulose microfibrils, rather than amorphous beta-glucan. Without demonstrating that GmCESA1, GmCESA3, and GmCESA6 are genuinely synthesizing cellulose microfibrils (via TEM) and that they are primary cell wall CESAs (via expression patterns & phylogenetic evidence), it is difficult to place the results into context. Finally, the authors indicate that they were unable to isolate heterotrimers in vitro, but they do not present any evidence of these experiments, which is essential to evaluate their conclusion that these CESAs operate as homotrimers in vitro.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This manuscript successfully established a new short-term model of diabetic retinopathy by treating zebrafish embryos with high concentrations of monosaccharides, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy in patients. They found that excessive angiogenesis induced by glucose and noncaloric monosaccharides was achieved by activating the quiescent endothelial cells into proliferating tip cells. Importantly, the authors further confirmed the effects of monosaccharides on inducing excessive angiogenesis were mediated by the foxo1a-marcksl1a pathway.
Strengths:
These results showed the potentially detrimental effects of the noncaloric monosaccharides on blood vessel function and provided novel insights into the underlying mechanisms.
Weaknesses:
The mechanism of noncaloric monosaccharides inducing excessive sprouting angiogenesis is not solid enough.
-
Reviewer #2 (Public Review):
In the manuscript entitled "Noncaloric monosaccharides induce excessive sprouting angiogenesis in zebrafish via foxo1a-marcksl1a signal". Liu et al. observed that glucose and noncaloric monosaccharides can prompt an excessive formation of blood vessels, particularly intersegmental vessels (ISVs). They propose that these branched vessels arise from the ectopic activation of quiescent endothelial cells (ECs) into tip cells. Moreover, through single-cell transcriptome sequencing analysis of embryonic endothelial cells exposed to glucose, they noted an increased proportion of arterial and capillary endothelial cells, proliferative endothelial cells, along with a series of upregulated genes in categories of blood vessel morphogenesis, development, and pro-angiogenesis. The authors provide evidence suggesting that caloric and noncaloric monosaccharides (NMS) induce excessive angiogenesis via the foxo1a-Marcksl1a pathway.
The authors address an important problem about the effects of artificially sweetened beverages such as noncaloric monosaccharides on blood vessels. However, the study lacks adequate experimental data and comprehensive analyses to support the mechanistic conclusions, which require extensive revisions.
-
Reviewer #3 (Public Review):
The authors have investigated the effect of noncaloric monosaccharides on angiogenesis in the zebrafish embryo. These compounds are used as substitutes of sugars to sweeten beverages and they are commonly used by diabetic patients. The authors show that noncaloric monosaccharides and glucose similarly induce excessive blood vessel formation due to the increased formation of tip cells by endothelial cells. The authors show that this excessive angiogenesis involved the foxo1a-marcksl1a pathway.
A limitation of the study is that the mechanism of angiogenesis in the retinal circulation and in peripheral vasculature is certainly different.
This result suggests that these noncaloric monosaccharides share common side effects with glucose. Consequently, more caution should be taken with regard to the use of these artificial sweeteners. This work is of interest for better management of diabetes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This impressive study by Bandet and Winship uses 2-photon imaging in awake behaving mice to examine long-term changes in neural activity and functional connectivity after focal ischemic stroke. The authors discover that there are long-lasting perturbations in neural activity and functional connectivity, specifically within peri-infarct cortex but not more distant cortical regions. Overall I thought the study provided important new findings that were supported by compelling data.
Strengths:
This is a technically challenging study and the experiments appear to be well done. The manuscript was written in a concise manner, and the figures were clearly presented. The analytic tools were rigorous and appropriate, leading to novel insights regarding neural activity patterns during movement or rest. The discovery of long-lasting impairments in neural activity/functional connectivity is important (and often overlooked) given that future stroke studies need to recognize what problems exist in order to properly rectify them. The authors also question the spatial extent to which functional changes occur after stroke, at least at the single cell level. Overall, I think this was a well-executed study whose primary conclusions were justified by the data presented.
Weaknesses:
I found very little in the way of weaknesses. The authors addressed my comments about the methodology, statistical analysis, normalization of data and discussion points about cortical plasticity during stroke recovery.
-
Reviewer #2 (Public Review):
This study investigates the excitability of neurons in the peri-infarct cortex during recovery from ischemic stroke. The excitability of neurons in the peri-infarct cortex during stroke recovery has produced contradictory findings: some studies suggest hyper-excitability to direct-brain stimulation, while others indicate diminished responsiveness to physical stimuli. However, most studies have used anesthetized animals, which can disrupt cortical activity and functional connectivity. The present study used two-photon Ca2+ imaging after focal photothrombotic stroke to examine neural activity patterns in awake mice. The authors found reduced neuronal spiking in the peri-infarct cortex that was strongly correlated with motor performance deficits. Additionally, the authors found disruptions in neural activation, functional connectivity, and assembly architecture in the immediate peri-infarct region but not in the distal cortex regions.
The findings of this study are very important as they show that there is no measurable change in terms of neuronal activation and reorganization in distal regions of remapped cortical response areas after stroke.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This is an interesting study by Xu et al showing the effects of infection with the Treponema pallidum virus (which causes syphilis disease) on neuronal development using iPSC-derived human brain organoids as a model and single-cell RNA sequencing. This work provides an important insight into the impact of the virus on human development, bridging the gap between the phenomena observed in studies using animal models as well as non-invasive human studies showing developmental abnormalities in fetuses infected with the virus in utero through maternal vertical transmission.
Using single-cell RNAseq in combination with qPCR and immunofluorescence techniques, the authors show that T. pallidum infected organoids are smaller in size, in particular during later growth stages, contain a larger number of undifferentiated neuronal lineage cells, and exhibit decreased numbers of specific neuronal subcluster, which the authors have identified as undifferentiated hindbrain neurons.
The study is an important first step in understanding how T. pallidum affects human neuronal development and provides important insight into the potential mechanisms that underlie the neurodevelopmental abnormalities observed in infected human fetuses. Several important weaknesses have also been noted, which need to be addressed to strengthen the study's conclusions.
Strengths:
(1) The study is well written, and the data quality is good for the most part.
(2) The study provides an important first step in utilizing human brain organoids to study the impact of T. pallidum infection on neuronal development.
(3) The study's conclusions may provide important insight to other researchers focused on studying how viral infections impact neuronal development.
Weaknesses:
(1) It is unclear how T. pallidum infection was validated in the organoids. If not all cells are infected, this could have important implications for the study's conclusions, in particular the single-cell RNAseq experiments. Were only cells showing the presence of the virus selected for sequencing? A detailed description of how infection was validated and the process of selection of cells for RNAseq would strongly support the study's conclusions.
(2) The authors show that T. pallidum infection results in impaired development of hindbrain neurons. How does this finding compare to what has already been shown in animal studies? Is a similar deficit in this brain region observed with this specific virus? It would be useful to strengthen the study's conclusions if the authors added a discussion about the observed deficits in hindbrain neuronal development, and prior literature on similar studies conducted in animal models or human patients. Does T. pallidum preferentially target these neurons, or is this a limitation of the current organoid model system?
(3) The authors show that T. pallidum-infected organoids are smaller in size by measuring organoid diameter during later stages of organoid growth, with no change during early stages. Does that represent insufficient infection at the early stages? Is this due to increased cell death or lack of cell division in the infected organoids? Experiments using IHC to quantify levels of cleaved caspase and/or protein markers for cell proliferation would be able to address these questions.
4) In Figure 1D authors show differences in rosette-like structure in the infected organoids. The representative images do not appear to be different in any of the discussed components (e.g., the sox2 signal looks fairly similar between the two conditions). No quantification of these structures was presented. Authors should provide quantification or a more representative image to support their statement.
5) The IHC images shown in Figures 3E, G, and Figure 4E look very similar between the two conditions despite the discussed decrease in the text. A more suitable representative image should be presented, or the analysis should be amended to reflect the observed results.
-
Reviewer #2 (Public Review):
Summary:
This study provides an important overview of infectious etiology for neurodevelopment delay.
Strengths:
Strong RNA evaluation.
Weaknesses:
The study lacks an overview of other infectious agents. The study should address the epigenetic contributors (PMID: 36507115) and the role of supplements in improving outcomes (PMID: 27705610).<br /> Addressing the above - with references included - is recommended.
-
Reviewer #3 (Public Review):
This article is the first report to study the effects of T. pallidum on the neural development of an iSPC-derived brain organoid model. The study indicates that T. pallidum inhibits the differentiation of subNPC1B neurons into hindbrain neurons, hence affecting brain organoid neurodevelopment. Additionally, the TCF3 and notch signaling pathways may be involved in the inhibition of the subNPC1B-hindbrain neuron differentiation axis. While the majority of the data in this study support the conclusions, there are still some questions that need to be addressed and data quality needs to be improved. The study provides valuable insights for future investigations into the mechanisms underlying congenital neurodevelopment disability.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This manuscript aimed to investigate the emergence of emotional sensitivity and its relationship with gestational age. Using an oddball paradigm and event-related potentials, the authors conducted an experiment in 120 healthy neonates with a gestational age range of 35 to 40 weeks. A significant developmental milestone was identified at 37 weeks gestational age, marking a crucial juncture in neonatal emotional responsiveness.
Strengths:
This study has several strengths, by providing profound insights into the early development of social-emotional functioning and unveiling the role of gestational age in shaping neonatal perceptual abilities. The methodology of this study demonstrates rigor and well-controlled experimental design, particularly involving matched control sounds, which enhances the reliability of the research. Their findings not only contribute to the field of neurodevelopment, but also showcase potential clinical applications, especially in the context of autism screening and early intervention for neurodevelopmental disorders.
Weaknesses:
More details should be provided in terms of inclusion and exclusion criteria for the participants, as well as missing data due to the non-cooperation of newborns during the experimental process. Potential differences between preterm and full-term infants are worth exploring. Several aspects of EEG data analyses and data interpretation should be better clarified.
-
Reviewer #2 (Public Review):
Summary:
This is an important and very interesting report on a change in newborns' neural abilities to distinguish auditory signals as a function of the gestational age (GA) of the infant at birth (from 35 weeks GA to 40 weeks GA). The authors tested neural discrimination of sounds that were labeled 'happy' vs 'neutral' by listeners that represent two categories of sound, either human voices or auditory signals that mimic only certain properties of the human vocal signals. The finding is that a change occurs in neural discrimination of the happy and neutral auditory signals for infants born at or after 37 weeks of gestation, and not prior (at 35 or 36 weeks of gestation), and only for discrimination of the human vocal signals; no change occurs in discrimination of the nonhuman signals over the 35- to 40-week gestational ages tested. The neural evidence of discrimination of the vocal happy-neutral distinction and the absence of the discrimination of the control signals is convincing. The authors interpret this as a 'landmark' in infants' ability to detect changes in emotional vocal signals, and remark on the potential value of the test as a marker of the infants' interest in emotional signals, underscoring the fact that children at risk for autism spectrum disorder may not show the discrimination. Although the finding is novel and interesting, additional discussion is essential so that readers understand two potential caveats affecting this interpretation.
Strengths:
The event-related potential (ERP) method and results are clear, well-described, and convincing.
Weaknesses/ Information needed:
First, readers need to see spectrograms that show the 0-4000 Hz in more detail, rather than what is now shown (0-10,000 Hz). The vocal signals in clearer spectrograms will show I believe the initial consonant burst and formant frequencies that are unique to human speech and give rise to the perception of the consonant sounds in the vocal signals like 'dada' and 'tutu' that were tested. The control signals will presumably not show these abrupt acoustic changes at their onset, even though they appear (from the oscillograms) to approximate the amplitude envelope. The primary cue distinguishing the happy and neutral signals in both the vocal and control signals is the pitch of the signals (high vs low), but the burst of energy representing the consonants is only contained in the vocal signals; it has no comparable match in the control signals. It is possible that the presence of a sharp acoustic onset (a unique characteristic of consonants in human speech) is especially alerting to the infants, and that this acoustic cue, in the context of the pitch change, enhances discrimination in the vocal case. One way to test this would be to use only vowel sounds to represent the vocal signals, without consonants. Another critical detail that the authors need to include about the signals is an explanation of how the control signals were generated. The text states that the Fo and amplitude envelope of the vocal signals were mimicked in the control signals, but what was the signal used for the controls? Was a pure tone complex modulated, or was pink noise used to generate the control signals? Or were the original vocal signals simply filtered in some way to create the controls, which would preserve the Fo and amplitude envelope? If merely filtered, the control signals still may be perceived as 'vocal' signals, rather than as nonspeech (the Supplement contains the sounds, and some of the control sounds can be perceived, to my ear, as 'vocal' signals).
Second, there is no information in the manuscript or supplement about the auditory environment of the participants, nor discussion of the fetus' ability to hear in the womb. In the womb, infants are listening to the mothers' bone-conducted speech (which is full of consonant sounds), and we know from published studies that infants can discern differences not only in the prosody of the speech they hear in the womb, but the phonetic characteristics of the mother's speech. The ability at 37 weeks GA or beyond to discriminate the pitch changes in the vocal, but not control signals, could thus be due to additional experience in utero to speech. Another experiential explanation is that the infants born at 37 weeks GA and beyond may be exposed to greater amounts of speech after birth, when compared to those born at 35 and 36 weeks GA, from the attending nurses and from their caregivers, and this speech is also full of consonant sounds. What these infants hear is likely to be 'infant-directed speech,' which is significantly higher in pitch, mirroring the signals tested here. At 37 weeks GA, infants are likely more robust, may sleep less, and are likely more alert. If infants' exposure to speech, either after birth, or their auditory ability to discern differences in speech in utero, is enhanced at 37 weeks GA and beyond, then an 'experience-related' explanation is a viable alternative to a maturational explanation, and should be discussed. Perhaps both are playing a role. As the authors state, many more signals need to be tested to discern how the effect should be interpreted, and other viable interpretations of the current results discussed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors describe a new pipeline to measure changes in vasculature diameter upon opt-genetic stimulation of neurons.
The work is interesting and the topic is quite relevant to better understand the hemodynamic response on the graph/network level.
Strengths:
The manuscript provides a pipeline that allows for the detection of changes in the vessel diameter as well as simultaneously allowing for the location of the neurons driven by stimulation.
The resulting data could provide interesting insights into the graph-level mechanisms of regulating activity-dependent blood flow.
The interesting findings include that vessel radius changes depend on depth from the cortical surface and that dilations on average happen closer to the activated neurons.
Weaknesses:
The utility of a pipeline depends on the generalization properties.
While the proposed pipeline seems to work for the data the authors acquired, it is unclear if this pipeline will actually generalize to novel data sets possibly recorded by a different microscope (e.g. different brand), or different imagining conditions (e.g. illumination or different imagining artifacts) or even to different brain regions or animal species, etc.
The authors provide a 'black-box' approach that might work well for their particular data sets and image acquisition settings but it is left unclear how this pipeline is actually widely applicable to other conditions as such data is not provided.
In my experience, without well-defined image pre-processing steps and without training on a wide range of image conditions pipelines typically require significant retraining, which in turn requires generating sufficient amounts of training data, partly defying the purpose of the pipeline.
It is unclear from the manuscript, how well this pipeline will perform on novel data possibly recorded by a different lab or with a different microscope.
Analysis
Some of the chosen analysis results seem to not fully match the shown data, or the visualization of the data is hard to interpret in the current form. Additionally, some measures seem not fully adapted to the current situation (e.g. the efficiency measure does not consider possible sources or sinks). Thus, some additional analysis work might be required to account for this.
-
Reviewer #2 (Public Review):
Summary:
The authors develop a highly detailed pipeline to analyze hemodynamic signals from in vivo two-photon fluorescence microscopy. This includes motion correction, segmentation of the vascular network, diameter measurements across time, mapping neuronal position relative to the vascular network, and analyzing vascular network properties (interactions between different vascular segments). For the segmentation, the authors use a Convolution Neural Network to identify vessel (or neural) and background pixels and train it using ground truth images based on semi-automated mapping followed by human correction/annotation. Considerable processing was done on the segmented images to improve accuracy, extract vessel center lines, and compute frame-by-frame diameters. The model was tested with artificial diameter increases and Gaussian noise and proved robust to these manipulations.
Network-level properties include Assortativity - a measure of how similar a vessel's response is to nearby vessels - and Efficiency - the ease of flow through the network (essentially, the combined resistance of a path based on diameter and vessel length between two points).
Strengths:
This is a very powerful tool for cerebral vascular biologists as many of these tasks are labor intensive, prone to subjectivity, and often not performed due to the complexity of collecting and managing volumes of vascular signals. Modelling is not my specialty so I cannot speak too specifically, but the model appears to be well-designed and robust to perturbations. It has many clever features for processing the data.
The authors rightly point out that there is a real lack in the field of knowledge of vascular network activity at single-vessel resolution. Network anatomy has been studied, but hemodynamics are typically studied either with coarse resolution or in only one or a few vessels at a time. This pipeline has the potential to change that.
Weaknesses:
The authors apply their method to in vivo data. However, there are some weaknesses in the design that make it hard to accept many of the conclusions and even to see that the method could yield much useful data with this type of application. Primarily, the acquisition of a large volume of tissue is very slow. In order to obtain a network of vascular activity, large volumes are imaged with high resolution. However, the volumes are scanned once every 42 seconds following stimulation. Most vascular responses to neuronal activation have come and gone in 42 seconds so each vessel segment is only being sampled at a single time point in the vascular response. So all of the data on diameter changes are impossible to compare since some vessels are sampled during the initial phase of the vascular response, some during the decay, and many probably after it has already returned to baseline. The authors attempt to overcome this by alternating the direction of the scan (from surface to deep and vice versa). But this only provides two sample points along the vascular response curve and so the problem still remains.
A second problem is the use of optogenetic stimulation to activate the tissue. First, it has been shown that blue light itself can increase blood flow (Rungta et al 2017). The authors note the concern about temperature increases but that is not the same issue. The discussion mentions that non-transgenic mice were used to control for this with "data not shown". This is very important data given these earlier reports that have found such effects and so should be included. Secondly, there doesn't seem to be any monitoring of neural activity following the photo-stimulation. The authors repeatedly mention "activated" neurons and claim that vessel properties change based on distance from "activated" neurons. But I can't find anything to suggest that they know which neurons were active versus just labeled. Third, the stimulation laser is focused at a single depth plane. Since it is single-photon excitation, there is likely a large volume of activated neurons. But there is no way of knowing the spatial arrangement of neural activity and so again, including this as a factor in the analysis of vascular responses seems unjustified.
The study could also benefit from more clear illustration of the quality of the model's output. It is hard to tell from static images of 3-D volumes how accurate the vessel segmentation is. Perhaps some videos going through the volume with the masks overlaid would provide some clarity. Also, a comparison to commercial vessel segmentation programs would be useful in addition to benchmarking to the ground truth manual data.
Another useful metric for the model's success would be the reproducibility of the vessel responses. Seeing such a large number of vessels showing constrictions raises some flags and so showing that the model pulled out the same response from the same vessels across multiple repetitions would make such data easier to accept.
A number of findings are questionable, at least in part due to these design properties.
There are unrealistically large dilations and constrictions indicated. These are likely due to artifacts of the automated platform. Inspection of these results by eye would help understand what is going on.
In Figure 6, there doesn't seem to be much correlation between vessels with large baseline level changes and vessels with large stimulus-evoked changes. It would be expected that large arteries would have a lot of variability in both conditions and veins much less. There is also not much within-vessel consistency. For instance, the third row shows what looks like a surface vessel constricting to stimulation but a branch coming off of it dilating - this seems biologically unrealistic.
As mentioned, the large proportion of constricting capillaries is not something found in the literature. Do these happen at a certain time point following the stimulation? Did the same vessel segments show dilation at times and constriction at other times? In fact, the overall proportion of dilators and constrictors is not given. Are they spatially clustered? The assortativity result implies that there is some clustering, and the theory of blood stealing by active tissue from inactive tissue is cited. However, this theory would imply a region where virtually all vessels are dilating and another region away from the active tissue with constrictions. Was anything that dramatic seen?
As mentioned, the claims about distance to active neurons are not meaningful if there is no measure of which neurons were active and which weren't. But even still, the claim is overly strong as the average distance to the nearest neuron for dilators was ~17 microns and for constrictors it was ~22 microns - about a half a neuronal soma difference.
The distance to the nearest neuron likely will depend on depth as well - neurons are quite sparse superficially and very dense in layer 4. The capillary network varies much less (see Blinder et al 2016 Nature Neuroscience). So the distance of a neuron to the nearest capillary may not vary much with depth, but the distance from the capillary to the nearest neuron might vary quite a lot.<br /> Why were nearly all vessels > 5um diameter not responding >2SD above baseline? Did they have highly variable baselines or small responses? Usually, bigger vessels respond strongly to local neural activity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The work by Ginatt et al. uses genome-scale metabolic modeling to identify and characterize trophic interactions between rhizosphere-associated bacteria. Beyond identifying microbial species associated with specific host and soil traits (e.g., disease tolerance), a detailed understanding of the interactions underlying these associations is necessary for developing targeted microbiome-centered interventions for plant health. It has nonetheless remained challenging to define the roles of specific organisms and metabolic species in natural rhizobiomes. Here, the authors combine microbial compositional data obtained through metagenomic sequencing with a new collection of genome-scale models to predict interactions in the native rhizosphere communities of apple rootstocks. To do this, they have established processes to integrate these sources of data and model specific trophic exchanges, which they use to obtain testable hypotheses for targeted modulation of microbiota members in situ.
The authors carry out a careful model curation process based on metagenomic sequencing data and existing model generation tools, which, together with basing the in silico medium composition on known root exudates, strengthens their predictions of interaction network features. Moreover, its reliance on genome-scale models provides a broader basis for linking sequence-based information to predictions of function on a multispecies level beyond rhizosphere microbiomes.
Having generated a set of predicted trophic interactions, the authors carried out a detailed analysis linking features of these interactions to organism taxonomy and broader ecosystem properties. Intriguingly, the organisms predicted to grow in the first iteration of their framework (i.e., on only root exudates) broadly correspond to taxonomic groups experimentally shown to benefit from these compounds. Additionally, the simulations predicted some patterns of vitamin and amino acid secretion that are known to form the basis for interactions in the rhizosphere. Together, these outcomes underscore the applicability of this method to help disentangle trophic interaction networks in complex microbiomes.
The methodology described in this paper represents a useful and promising framework to better understand the complexity of microbial interaction networks in situ. However, the degree to which the predictions can vary according to environmental composition remains difficult to quantify, and the work does not address the sensitivity of the modeling predictions beyond a simulated medium containing 33 root exudates. I find this especially important given that relatively few (84 of 243) species were predicted to grow even after cross-feeding, suggesting that a richer medium could lead to different interaction network structures. While the authors do state the importance of environmental composition and have carefully designed an in silico medium, I believe that simulating a broader set of resource pools would add necessary insight into both the predictive power of the models themselves and trophic interactions in the rhizosphere more generally.
-
Reviewer #2 (Public Review):
Summary:
The authors present a framework for exploiting shotgun metagenomics and metabolomics data along with constraint-based analysis (CBA) to study, in their case, the dynamics and interactions between the apple rootstock and rhizosphere's microbial community. This study should be considered as a follow-up of Berihu et al. (2022) where the shotgun data were first introduced. A set of 395 Metagenome-Assembled Genomes (MAGs) was derived from those reads and from the latter, using an automatic Genome-scale Metabolic Model (GSMM) reconstruction tool (CarveMe), 243 GSMMs. Metabolomics data from a set of studies were gathered to describe/represent root exudates. Flux Variability Analysis (FVA), a type of constraint-based analysis, was conducted iteratively. Three distinct in silico media were used (optimal, poor, and realistic, with the latter informed by metabolomics data) to examine the potential impact of root exudates on bacterial growth. Additionally, the study investigated the extent to which compounds secreted by bacteria could support the growth of other community members. Further, an exchange network representing all potential metabolic exchanges within the rhizosphere community was built and motifs on it were classified with healthy and/or symptomized soil.
Strengths:
The study provides a great starting point for how one can bring together shotgun metagenomics and other omics technologies such as metabolomics with metabolic modelling approaches. MAGs and the automatic reconstruction of corresponding GSMMs become more and more a common practice and frameworks for their analysis and interpretation are more than needed. The usage of FVA instead of the Flux Balance Analysis allows the authors to get all the range of potentially produced metabolites. The iterative approach can highlight what species are supported by the plant and which need the first to join the community while correlating microbial metabolic interactions with soil performance through differential abundance can bring up valid hypotheses to examine further. On top of that, avoiding modelling approaches that require community objective functions and optimization of that makes the simulation more realistic.
Weaknesses:
There are two main drawback approaches like the one described here, both related only partially to the authors' work yet with great impact in the presented framework. First, the usage of automatic GSMM reconstruction requires great caution. It is indicative of how the semi-curated AGORA models are still considered reconstructions and expect the user to parameterize those in a model. In this study, CarveMe was used. CarveMe is a well-known tool with several pros [1]. Yet, several challenges need to be considered when using it [2]. For example, the biomass function used might lead to an overestimation of auxotrophies. Also, as its authors admit in their reply paper, CarveMe does gap fill in a way [3]; models are constructed to ensure no gaps and also secure a minimum growth. However, curation of such a high number of GSMMs is probably not an option. Further, even if FVA is way more useful than FBA for the authors' aim, it does not yet ensure that when a species secretes one compound (let's say metabolite A), the same flux vector, i.e. the same metabolic functioning profile, secretes another compound (metabolite B) at the same time, even if the FVA solution suggests that metabolite B could be secreted in general.
Besides those challenges, the suggested framework is promising and such approaches can work as the starting point for the next step in microbial ecology studies in general; from soil to marine and host ecosystems. The authors highlight perfectly this angle stating that this framework is currently conceptual and that it can be only used to formulate new hypotheses. Unbiased constraint-based approaches that focus on metabolite exchanges would benefit such approaches.
[1] Mendoza, Sebastián N., et al. "A systematic assessment of current genome-scale metabolic reconstruction tools." Genome biology 20.1 (2019): 1-20.<br /> [2] Price, Morgan. "Erroneous predictions of auxotrophies by CarveMe." Nature Ecology & Evolution 7.2 (2023): 194-195.<br /> [3] Machado, Daniel, and Kiran R. Patil. "Reply to: Erroneous predictions of auxotrophies by CarveMe." Nature Ecology & Evolution 7.2 (2023): 196-197.<br /> [4] Ylva Katarina Wedmark, Jon Olav Vik, Ove Øyås bioRxiv 2023.09.05.556413; doi: https://doi.org/10.1101/2023.09.05.556413
-
Reviewer #3 (Public Review):
Summary:
This study presents a solid framework for the metabolic modeling of microbial species and resources in the rhizosphere environment. It is an ambitious effort to tackle the huge complexity of the rhizosphere and reveal the plant-microbiota interactions therein. Considering previously published data by Berihu et al., going through a series of steps, the framework then finds associations between an apple tree disease state and both microbes and metabolites. The framework is well explained and motivated. I think that further work should be done to validate the method, both using synthetic data, with a known ground truth and following up on key findings experimentally.
Strengths:
- The manuscript is well written with a good balance between detail and readability. The framework steps are well-motivated and explained.
- The authors faithfully acknowledge the limitations of their approach and do not try to "over-sell" their conclusions.
- The presented framework has the potential for significant discovery if the hypotheses generated are followed up with experimental validation.
Weaknesses:
- When presenting a computational framework, best practices include running it on artificial (synthetic) data where the ground truth is known and therefore the precision and accuracy of the method may be assessed. This is not an optional step, the same way that positive/negative controls in lab experiments are not optional. Without this validation step, the manuscript is severely limited. The authors should ask themselves: what have we done to convince the reader that the framework actually works, at least on our minimal synthetic data?
Justification of claims and conclusions:
The claims and conclusions are sufficiently well justified since the limitations of this approach are acknowledged by the authors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Warming and precipitation regime change significantly influences both above-ground and below-ground processes across Earth's ecosystems. Soil microbial communities, which underpin the biogeochemical processes that often shape ecosystem function, are no exception to this, and although research shows they can adapt to this warming, population dynamics and ecophysiological responses to these disturbances are not currently known. The Qinghai-Tibet Plateau, the Third Pole of the Earth, is considered among the most sensitive ecosystems to climate change. The manuscript described an integrated, trait-based understanding of these dynamics with the qSIP data. The experimental design and methods appear to be of sufficient quality. The data and analyses are of great value to the larger microbial ecological community and may help advance our understanding of how microbial systems will respond to global change. There are very few studies in which the growth rates of bacterial populations from multifactorial manipulation experiments on the Qinghai-Tibet Plateau have been investigated via qSIP, and the large quantity of data that comprises the study described in this manuscript, will substantially advance our knowledge of bacterial responses to warming and precipitation manipulations.
-
- Mar 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Osteoarthritis (OA) is associated with painful, chronic inflammation that often leads to severe joint pain and joint stiffness for people over the age of 55. There is no effective therapeutic drug in the treatment of osteoarthritis. The authors found that mice without Cbfβ in their chondrocytes develop spontaneous OA. Authors uncovered that the deficiency of Cbfβ caused increased canonical Wnt signaling and inflammatory response, and decreased Hippo/YAP signaling and TGF-β signaling in articular cartilage. Authors showed that ACLT surgery-induced OA decreased Cbfβ and Yap expression and increased active β-catenin expression in articular cartilage, while local AAV-mediated Cbfβ overexpression promoted Yap expression, diminished active β-catenin expression in OA lesions. The authors demonstrated that AAV-mediated Cbfβ overexpression in knee joints of mice with OA showed the significant protective effect of Cbfβ on articular cartilage in the ACLT OA mouse model. The results from the study demonstrated Cbfβ maintains articular cartilage homeostasis through inhibiting Wnt/β-catenin signaling and increasing Hippo/Yap, and TGFβ signaling. Importantly, the authors proved that local Cbfβ overexpression could be an effective strategy for treatment of OA. The data shown in the study demonstrated that the findings are novel and very significant, and the authors' claims and conclusions are justified by their data. The paper is generally excellent with an interesting scientific premise and strong scientific rigor. The findings in this manuscript are novel, the manuscript is clearly written, and the findings will make a significant impact in the field.
-
Reviewer #2 (Public Review):
In this manuscript, Chen et al. reported that the core binding factor beta (Cbfβ), a heterodimeric subunit of the RUNX family transcription factors (TFs), is crucial in maintaining cartilage homeostasis and counteracting traumatic OA pathology. Using mouse models in which Cbfβ is conditionally inactivated in the Col2a1+ and Acan+ cells, the authors claimed that Cbfβ ablation led to articular cartilage (AC) degeneration, which is associated with aberrant cartilage gene expression and chondrocyte signaling, particularly the elevated Wnt/Catenin and the decreased Hippo/YAP and TGFβ signaling. The authors further showed that Cbfβ transcripts are decreased in human OA cartilage, and sustaining Cbfβ expression in mouse knee joints mitigated the severity of surgery-evoked OA.
On the whole, the work reported is interesting and exciting. Genetic and biochemical data support key statements. Both in vivo and in vitro experiments were well designed with proper controls; semiquantitative data were digitalized and processed for statistical significance. Furthermore, new findings were adequately discussed in contrast to the current available knowledge. However, the conceptual novelty of this study is slightly compromised by recent publications showing that Cbfβ reduction is associated with OA (Che et al. 2023; Li et al. 2021). Also, the authors claimed that multiple signaling pathways were affected by Cbfβ ablation in cartilage cells; many of them, however, are indirect effects given the nature of Cbfβ as a TF. The authors also showed that pSMAD2/3 and active βCatenin decreased and increased upon Cbfβ depletion in the mouse AC cartilage. However, how the deficiency of Cbfβ, a widely expressed TF, affected the posttranslational modification of SMAD2/3 and βCatenin is unclear and needs further discussion. Overall, Cbfβ's role in cartilage and OA pathology is an emerging area of study; the authors provided a set of genetic evidences showing that Cbfβ is indispensable for cartilage homeostasis.
-
Reviewer #3 (Public Review):
The authors comprehensively demonstrated the Cbfβ gene, which is involved in articular cartilage homeostasis, can promote articular cartilage regeneration and repair in osteoarthritis (OA) through regulating Hippo/YAP signaling TGF-β signaling, and canonical Wnt signaling. First, the authors demonstrated the deletion of Cbfβ can induce the OA phenotypes including decreased articular cartilage and osteoblasts, and increased osteoclasts and subchondral bone hyperplasia, and induce the early onset of OA. Additionally, the authors showed that the deficiency of Cbfβ in cartilage can increase canonical Wnt signaling and decrease TGF-β and Hippo signaling. Finally, the authors demonstrated that the overexpression of Cbfβ can inhibit Wnt signaling and enhance Hippo/YAP signaling in knee joints articular cartilage of ACLT-induced OA mice and protect against ACLT-induced OA. The manuscript is overall well-constructed, and the authors provided evidence to support their findings.
In Fig. 7I, it could be better to show the statistical analysis between normal and AAV-mediated Cbfβ ACLT mice groups.
In Fig. 9H-K, in the quantification analysis, the OARSI score in the DMM+AAV-YFP group is higher than in the sham group significantly. However, the SO staining results appear to show no significant difference between the DMM+AAV-luc-YFP group (Fig. 9I) and the sham group (Fig. 9H).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this paper, Nikolaou et al. demonstrated that CYRI-B expression is upregulated in a mouse model of pancreatic ductal adenocarcinoma (PDAC). Interestingly, they found that, while CYRI-B KO promotes the early stages of tumour progression, it prevents the formation of metastasis at later stages. Focusing on the latter, the authors highlight a role for CYRI-B in controlling the membrane availability of the LPA receptor LPAR1, which is required to support PDAC cell chemotaxis towards serum or LPA.
Strengths: the in vivo and imaging data are very solid, and convincingly support the authors' conclusions. The KPC model is well-established in PDAC research and is a very powerful tool to investigate disease onset and progression. The imaging approaches used are of a very high standard. Good data presentation with the use of super-plots.
Weaknesses: the authors focused on chemotaxis, but did not present any evidence with regard to the role of CYRI-B in 3D cell invasion, which is a key process associated with cell invasion. The data presented clearly show a specific effect towards liver metastasis, while diaphragm and bowel metastasis were not affected by CYRI-B deletion. It would be beneficial to include a discussion about this, providing some potential explanation behind this observation.
This work is of interest to cell biologists not only working in pancreatic cancer but also more broadly to researchers interested in vesicular trafficking, plasma membrane receptor dynamics and cell migration.
-
Reviewer #2 (Public Review):
The manuscript expands on the previous work from the lab where novel interactors of Rac1 GTPase (CYRI-A and B) provide localized inhibition by sequestration of activated Rac1. These novel regulators are fascinating as they complement the functions of the classical negative modulators of GTPases, GAPs and GDIs. The current manuscript focuses on the in vivo role of CYRI-B in pancreatic cancer progression, and distinct CYRI-B functions are shown for early and later stages. The in vivo data following CYRI-B depletion (no change in proliferation, reduced metastatic potential) is substantiated with in vitro analyses of receptor uptake, temporal recruitment of CYRI-B on macropinosomes and reduced chemotaxis.
The authors describe in detail the role of CYRI-B in pancreatic adenocarcinoma, building from their prior studies mapping CYRI-B function in the regulation of polarity, motility and chemotaxis. The experiments are well-designed and performed, and the text was clearly written. However, the results partially support some of their conclusions. The interpretation of the data and the discussion in the context of human pancreatic tumours would help the understanding and impact of the work.
The hypothesis is that depletion of CYRI-B would promote localized Rac1 activation at the membrane. However, the authors show that CYRI-B is found overexpressed in PDAC, consistent with other papers where its high expression correlates with poor outcome of many cancers. The prediction is that Rac1 functions modulated by CYRI-B would be inhibited in those tumours where CYRI-B is overexpressed. Is this the case and has it been formally demonstrated?
Most experiments use the depletion of CYRI-B to probe its function. It would be useful to readers and important to elaborate on how the specific CYRI-B functions shown upon depletion would fit with the in vivo observation of CYRI-B overexpressed in tumours. For example, loss of CYRI-B reduces chemotaxis potential. How this result can be conciliated with the predicted increase in Rac1activation in the absence of CYRI-B? Conversely, a prediction of CYRI-B overexpression in human tumours would imply the inactivation of Rac1 whereas chemotaxis is promoted. The discussion could be improved with the addition of the authors' views and further explanations in this context.
Similarly, it is confusing to extrapolate a proposed increase in LPAR1 internalization by macropinocytosis with CYRI-B overexpression in PDAC. It is predicted that Rac1 would be locally inhibited in this scenario, and thus micropinocytosis would be compromised. It will be good to spell out what the authors envisage happens. For example, uptake could be switched to another receptor uptake process that would not involve CYRI-B sequestration of Rac1. Discussion of the potential alternatives will strengthen the manuscript.
"..LPAR1 is a cargo of CYRI-B dependent macropinocytosis" (page 21). This statement reads as an overinterpretation of the specificity of the process. It may suggest that there is a cargo selectivity by CYRI-B, which has not been formally demonstrated or is well accepted. Macropinocytosis is thought to occur as a bulk engulfment of the membrane and thus any receptor at the cell surface would be internalised non-specifically. The demonstrated reduction in LPAR1 uptake could be proportional to the interference with micropinocytosis rate by CYRI-B depletion for example
Furthermore, the readers would benefit from more clear explanations of the differences and similarities between CYRI-A and CYRI-B. It will be important to clarify the specificity of the proposed functions of each protein. Both localize at the macropinosomes, modulate engulfment and regulate integrin a5b1 trafficking. It will be informative to specify if CYRI-A is also upregulated in human tumours, has a similar outcome as CYRI-B in vivo and also regulates LPAR1 uptake.
Upon depletion of CYRI-B in pancreatic tumour cells in vivo, the presence of similar levels of jaundice is confusing. Less metastasis is detected in the mesentery. Are liver metastasis affected in the absence of CYRI-B?
-
Reviewer #3 (Public Review):
The authors first characterize their mouse model of pancreatic cancer and show that CYRI-B mRNA is detectable in pancreatic lesions and that its amount increases over time. They also show that genetic deletion of CYRI-B accelerates pancreatic ductal adenocarcinoma (PDAC), leading to lower survival of mice. This is accompanied by higher levels of phospho-(i.e. activated)-JNK and -ERK, which are likely two of the factors driving cancer cell proliferation. Using in vivo transplantation, the authors further demonstrate that cancer cells depleted for CYRI-B exhibit decreased numbers of metastases in the mesentery, despite showing similar proliferation as control cells.<br /> Cancer cell migration can be driven by LPA, which binds LPAR1 at the surface of PDAC cells. Investigation of chemotactic migration of cancer cells towards fetal bovine serum as a source of LPA further shows that cancer cells depleted for CYRI-B and expressing GFP as control exhibit strongly reduced chemotactic migration, while cells re-expressing CYRI-B-GFP show normal chemotactic migration. Furthermore, this restored migration is blocked by using the LPAR1/3 inhibitor K116425, showing that CYRI-B is required for the chemotactic migration of PDAC cells in a gradient of serum LPA.
Using live cell imaging, the authors show that CYRI-B-GFP and LPAR1-mCherry localize to macropinocytic cups and to macropinosomes, indicating that LPAR1 can be internalized by PDAC cells through macropinocytosis. This notion is supported by immunofluorescence analyses showing that PDAC cells depleted for CYRI-B have reduced LPAR1-mCherry internalization upon stimulation with LPA, compared to cells rescued by CYRI-B-GFP expression. Collectively, the authors suggest that CYRI-B regulates macropinocytic uptake of LPAR1, thus regulating the chemotactic migration of PDAC cells towards LPA, which supports the metastasis of pancreatic cancer.
This is an interesting manuscript that makes a convincing case for the involvement of CYRI-B as a driver of PDAC. A particular strength is the expert use of different mouse models and derived cancer cell lines. The major conclusions are supported by the data presented. The results could be further strengthened by detecting CYRI-B protein (in addition to mRNA) in cancer lesions and also by staining endogenous CYRI-B and LPAR1 in the macropinocytosis experiments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Hoving and colleagues investigated the mechanisms of contact inhibition of locomotion (CIL) in Schwann cells using cell migration assays, in combination with siRNA as well as an ex-vivo model for collective cell migration of the peripheral nervous system. They found that N-cadherin is needed for proper cell repulsion during CIL. Schwann Cells depleted of N-cadherin failed CIL when encountering other Schwann cells depleted of N-cadherin, however they maintained CIL when encountering Schwann cells expressing N-cadherin. Depletion of alpha-catenin and to some degree p120 did not have the same effect as N-cadherin depletion. Further, they determined that the extracellular domain is needed for CIL as well as an interaction with Glypican-4. Glypicans often act as co-receptors for other signaling molecules, and so the authors further narrowed CIL's dependence to Slit signaling. N-cadherin was needed for proper Slit surface expression, again, dependent on the extracellular domain, and depletion of both Slit2 and 3 lead to a cell clumping and rounding phenotype. Finally, using an ex-vivo model of Schawnn cell migration they showed that rSlit lead to a similar cell rounding and clumping phenotype, ultimately leading to an inhibition of cell migration.
Strengths
This was a very methodical examination of what is needed for CIL in cultured Schwann cells. The data presented largely supports the findings and the linking of N-cad to glypican-4 to Slit signaling further illuminates this process helping to define the molecular players. The mechanistic insight goes further in that they demonstrate the Slit does not get to the cell surface without the expression of the extracellular domain of N-cad.
Weaknesses
The conclusions that can be drawn from this study remain a little narrow since only Schwann cells were used. This is not so much a weakness in that authors were indeed investigating the periphery nervous system regeneration but it does limit their findings. The experiments carried out in the ex-vivo system only touch on one aspect of their cell culture work, the mechanism of Slit. No other aspects of their cell culture system was tested ex-vivo which
Tags
Annotators
URL
-