10,000 Matching Annotations
  1. Mar 2024
    1. Reviewer #1 (Public Review):

      Summary:

      The authors aim to address a critical challenge in the field of bioinformatics: the accurate and efficient identification of protein binding sites from sequences. Their work seeks to overcome the limitations of current methods, which largely depend on multiple sequence alignments or experimental protein structures, by introducing GPSite, a multi-task network designed to predict binding residues of various molecules on proteins using ESMFold.

      Strengths:

      (1) Benchmarking. The authors provide a comprehensive benchmark against multiple methods, showcasing the performances of a large number of methods in various scenarios.

      (2) Accessibility and Ease of Use. GPSite is highlighted as a freely accessible tool with user-friendly features on their website, enhancing its potential for widespread adoption in the research community.

      Weaknesses:

      (1) Lack of significant insights. The paper reproduces results and analyses already presented in previous literature, without providing significant novel analysis or interpretation. However, they show a novel method with an original approach.

      The work is useful for the field, especially in disease mechanism elucidation and novel drug design. The availability of genome-scale binding residue annotations GPSite offers is a significant advancement.

    2. Reviewer #2 (Public Review):

      Summary:

      This work provides a new framework, "GPsite" to predict DNA, RNA, peptide, protein, ATP, HEM, and metal ions binding sites on proteins. This framework comes with a webserver and a database of annotations. The core of the model is a Geometric featurizer neural network that predicts the binding sites of a protein. One major contribution of the authors is the fact that they feed this neural network with predicted structure from ESMFold for training and prediction (instead of native structure in similar works) and a high-quality protein Language Model representation. The other major contribution is that it provides the public with a new light framework to predict protein-ligand interactions for a broad range of ligands. It is a convincing outcome of previous efforts to Geometric Deep Learning approaches to model protein-ligand interactions. The authors have demonstrated the interest of their framework with comprehensive ablation studies and benchmarks.

      Strengths:

      - The performance of this framework as well as the provided dataset and web server make it useful to conduct studies.<br /> - The ablations of some core elements of the method, such as the protein Language Model part, the use of multiple ligands in the same model, the input structure, or the use of predicted structure to complement native structure are very insightful. They can help convince the reader that every part of the framework is necessary. This could also guide further developments in the field. As such, the presentation of this part of the work holds a critical place in this work.

      Weaknesses:

      - The authors made an important effort to compare their work to other similar frameworks. Yet, the lack of homogeneity of training methods and data from one work to the other makes the comparison slightly unconvincing, as the authors pointed out. Ablations performed by the authors were able to compensate for this general weakness, as well as the focus on several example structures.

    3. Reviewer #3 (Public Review):

      Summary

      The authors of this work aim to address the challenge of accurately and efficiently identifying protein binding sites from sequences. They recognize that the limitations of current methods, including reliance on multiple sequence alignments or experimental protein structure, and the under-explored geometry of the structure, which limit the performance and genome-scale applications. The authors have developed a multi-task network, GPSite, that predicts binding residues for a range of biologically relevant molecules, including DNA, RNA, peptides, proteins, ATP, HEM, and metal ions, using sequence embeddings from protein language models and ESMFold-predicted structures. The reported results showed to be superior to current sequence-based and structure-based methods in terms of accuracy and efficiency.

      Strengths<br /> (1) The GPSite model's ability to predict binding sites for a wide variety of molecules, including DNA, RNA, peptides, and various metal ions.<br /> (2) Based on the presented results, GPSite outperforms state-of-the-art methods in several benchmark datasets in terms of accuracy and efficiency.<br /> (3) GPSite adopts predicted structure instead of native structures as input, enabling the model to be applied to a wider range of scenarios where native structures are rare.<br /> (4) The low computational cost of GPSite is beneficial, which enables rapid genome-scale binding residue annotations, indicating the model's potential for large-scale downstream applications and discoveries.

      Weaknesses

      There are no major weaknesses after the revision.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors tried to understand the mechanism on how a drug candidate, VLZ, works on a receptor, 5-HTR1A, by activating the SRC/MAPK pathway to promote the formation of platelets.

      Strengths:

      The authors used both computational and experimental methods. This definitely saves time and funds to find a useful drug candidate and its therapeutic marker in the subfield of platelets reduction in cancer patients. The authors achieved the aim to explain the mechanism of VLZ on improving thrombocytopenia by using two cell lines and two animal models.

      Weaknesses:

      Only two cell lines, HEL and Meg-01 cells, were evaluated in this study. However, using more cell lines is really depending on the work flow and the grant situations of the current research team.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript examined the impact of prenatal alcohol exposure on genome-wide DNA methylation in the brain and liver, comparing ethanol-exposed mice to unexposed controls. They also investigated whether a high-methyl diet (HMD) could prevent the DNA methylation alterations caused by alcohol. Using bisulfite sequencing (n=4 per group), they identified 78 alcohol-associated differentially methylated regions (DMRs) in the brain and 759 DMRs in the liver, of which 85% and 84% were mitigated by the HMD group, respectively. The authors further validated 7 DMRs in humans using previously published data from a Canadian cohort of children with FASD.

      Overall, the findings from this study provide new insight into the impact of prenatal alcohol exposure, while also showing evidence for methyl-rich diets as an intervention to prevent the effects of alcohol on the epigenome. Some methodological concerns and confounders limit the robustness of these results, and should be addressed in future studies to further strengthen the conclusions of this study and its applicability to broader settings.

      Strengths:

      - The use of whole genome bisulfite sequencing allowed for the interrogation of the entire DNA methylome and DMR analysis, rather than a subset of CpGs.<br /> - The combination of data from animal models and humans allowed the authors to make stronger inferences regarding their findings<br /> - The authors investigated a potential mechanism (high methyl diet) to buffer against the effects of prenatal alcohol exposure, which increases the relevance and applicability of this research.

      Weaknesses:

      - The sample size was small for the epigenetic analyses, which limits the robustness of the findings.<br /> - The authors could not account for potential confounders in their analyses, including birthweight, alcohol levels, and sex. This is a particular problem for the high-methyl diet analyses, in which the alcohol-exposed mice consumed less alcohol than their non-diet counterparts.

    1. Joint Public Review:

      In this manuscript, Xue and colleagues investigate the fundamental aspects of cellular fate decisions and differentiation, focusing on the dynamic behaviour of gene regulatory networks. It explores the debate between static (noise-driven) and dynamic (signal-driven) perspectives within Waddington's epigenetic landscape, highlighting the essential role of gene regulatory networks in this process. The authors propose an integrated analysis of fate-decision modes and gene regulatory networks, using the Cross-Inhibition with Self-activation (CIS) network as a model. Through mathematical modelling, they differentiate two logic modes and their effect on cell fate decisions: requires both the presence of an activator and absence of a repressor (AA configuration) with one where transcription occurs as long the repressor is not the only species on the promoter (OO configuration).

      The authors establish a relationship between noise profiles, logic-motifs, and fate-decision modes, showing that defining any two of these properties allows the inference of the third. They also identify, under the signal-driven mode, two fundamental patterns of cell fate decisions: either prioritising progression or accuracy in the differentiation process. The authors apply this analysis to available high-throughput datasets of cell fate decisions in hematopoiesis and embryogenesis, proposing the underlying driving force in each case and utilising the observed noise patterns to nominate key regulators.

      The paper significantly advances our understanding of gene regulatory networks through a well-described computational study, where the authors rigorously evaluate assumptions in modelling. Particularly commendable is their introduction of the concept of combinatorial logic, exemplified by the double 'and' and double 'or' (AA/OO) logic motifs, which they successfully map to previously described cell fate decision processes. This theoretical and computational exploration sheds light on the dynamic landscape of epigenetic cell fate decisions, emphasising the role of combinatorial logic in coordinating noise and signal-driven processes. The thorough comparison of two model configurations underscores the importance of integration logic, contributing to a clearer understanding of gene regulatory network dynamics. Importantly, the results of the simulations are presented clearly, enhancing accessibility and intuitive understanding. The paper's strength also lies in its predictive power, as the authors use simulations to make insightful predictions about the regulatory organisation of stem cell differentiation systems. While the exploration is restricted to specific scenarios, these limitations serve to highlight areas for future research rather than detract from the paper's strengths.

      While the paper presents an intriguing framework for understanding gene regulatory networks and cell fate decisions, there are some weaknesses that warrant attention. Firstly, the framework would benefit from validation with more experimental data and application to diverse systems beyond those explored in the study, such as de-differentiation in adult tissues and regeneration processes. Additionally, while the authors successfully make predictions about the regulatory organisation of stem cell differentiation systems, there is a lack of discussion regarding how perturbations in the regulatory network could affect cell fate decisions. Furthermore, the paper could be strengthened by addressing the effects of mutations and other perturbations that may significantly influence cell fate decision-making processes, thus enhancing the robustness of the findings. Finally, there are instances where the clarity of the writing could be improved to enhance understanding and accessibility for readers.

    1. Reviewer #1 (Public Review):

      Induction of beta cell regeneration is a promising approach for the treatment of diabetes. In this study, Massoz et.al., identified calcineurin (CaN) as a new potential modulator of beta cell regeneration by using zebrafish as model. They also showed that calcineurin (CaN) works together with Notch signaling to promote the beta cell regeneration. Overall, the paper is well organized, and technically sound. However, some evidences seem weak to get the conclusion.

    1. Reviewer #1 (Public Review):

      Summary:

      The research study under review investigated the relationship between the gut and identified potential biomarkers derived from the nasopharyngeal and gut microbiota-based that could aid in predicting COVID-19 severity. The study reported significant changes in the richness and Shannon diversity index in nasopharyngeal microbiome associated with severe symptoms. The study showed a high abundance of Bacillota and Pesudomonadota in patients exhibiting severe symptomatology. Positive correlations were also found between Corynebacterium, Acinetobacter, Staphylococcus, and Veillonella, with the severity of SARS-CoV-2 infection.

      Strengths:

      The study successfully identified differences in the microbiome diversity that could indicate or predict disease severity. Furthermore, the authors demonstrated a link between individual nasopharyngeal organisms and the severity of SARS-CoV-2 infection. The density of the nasopharyngeal organism was shown to be a potential predictor of the severity of COVID-19.

      Weaknesses:

      The authors claimed an association between nasopharyngeal organisms and severity of SARS-CoV-2 infection but omitted essential data on the statistical significance of these associations between groups. The authors frequently referred to a p-value < 0.05 without presenting the actual p-values and percentages to show the significance of their results. The discussion is hard to understand (lacked clarity), as it contained an extensive literature review without discussing the study findings. A more focused discussion and results section on the main findings could have improved the overall readability of the paper. The role of potential confounders, such as HIV infection, and ethnicity which impacts the nasopharyngeal microbiome composition, was not included in the paper. Addressing the potential confounders would contribute to a more comprehensive understanding of the study's implications, specifically the role of the nasopharyngeal microbiome as a predictor of COVID-19 severity.

    2. Reviewer #2 (Public Review):

      The study conducted by Benita et al studied the gut and nasopharyngeal microbiome in covid-19 severity. There are a lot of studies on this topic, and this study therefore cannot stand out from a pool of such similar studies. Beyond that, I have a number of major concerns:

      (1) The sample size is limited. There were 3 cohorts, but only ~100 subjects in total. This indicates that there were only a small number of subjects in each cohort (the authors did not list this information), and beyond that, there was a lack of healthy individuals as controls. A cohort-specific effect should usually exist, I believe with such a small number of patients (they were further divided into 3 groups), the authors cannot find reproducible data between cohorts.

      (2) The study did not meet the study goal. The authors say "Many factors have been described to be correlated with its severity but no specific determinants of infection outcome have been identified yet". However, numerous studies have shown the relationship between microbiome and covid. The present study only again showed a correlation between microbiome and covid severity and did not provide further insights, nor did they find specific determinants.

      (3) This study only studied 16s-seq for microbiome profiling, which made this study lack depth and resolution. Many peer papers have used metagenomics sequencing for in-depth interrogation.

      (4) Since there are fecal and nasopharyngeal microbiome data, the authors only listed their respective associations with covid severity yet did not provide further insights into whether and how these two microbiome types are linked to covid, or into whether there is a microbiome priority, resistance or transmission.

      (5) The abstract is amiss where each sentence lacks a key message - I don't understand each of the sentences or the underlying meanings. One example of an unclear expression is "this ratio" - what ratio?

      (6) The figures are all unclear and need significant improvement

    3. Reviewer #3 (Public Review):

      Summary:

      How the microbial composition of the human body is influenced by and influences disease progression is an important topic. For people with COVID-19, symptomatic progression and deterioration can be difficult to predict. This manuscript attempts to associate the nasal and fecal microbiomes of COVID-19 patients with the severity of disease symptoms, with the goal of identifying microbial markers that can predict disease outcomes. However, the value of this work is held back by unclear methods and data presentation.

      Strengths:

      Analysis of microbiomes from two distinct anatomical locations and across three distinct patient groups is a substantial undertaking. How these microbiomes influence and are influenced by COVID-19 disease progression is an important question. In particular, the putative biomarker identified here could be of clinical value with additional research.

      Weaknesses:

      The methods and statistics used for several figures and comparisons are unclear or used in non-standard ways. For instance: the description of the Bray-Curtis test for Figure 1 is inaccurate and conflicts between the text and figure legend; the method used to compare the relative abundance of genera in Figure 2 is not clear; and it is not stated how the "total amount" of detected bacteria is inferred from the data presented in Figures 2C and 2D.

      The description of results for Figure 1 is overstated or unclear for both the alpha diversity among disease groups and the overlap for nasal samples.

      The most abundant phyla from nasal samples cumulatively account for less than 1% of abundance and it is unclear why this would be expected or how it compares to other work. Relatedly, the potential biological relevance of the very small proportional changes among phyla in the nasal samples is also not clear.

      There is no real discussion of how the identified biomarkers might work in practice. While some microbes are detected in one condition but not others, it is unclear whether these organisms are expected to already exist below the detection threshold and then increase in abundance along with disease severity, or if they are picked up from the environment. For instance, would the presence of these 'severe' - associated microbes in patients with mild or moderate disease justify additional treatment to prevent disease progression?

      The authors use the term "nasopharyngeal-faecal axis", but there is no substantial discussion of how these two microbiomes interact to influence disease progression, or how they are jointly affected to yield useful biomarkers. With one exception, correlation values between nasal and fecal microbes range from negligible to modest. It is unclear, then, how much parallel influence disease has on these microbiomes.

    1. Joint Public Review:

      This study investigates the role of Ikaros, a zinc finger family transcription factor related to Helios and Eos, in T-regulatory (Treg) cell functionality in mice. Through genome-wide association studies and chromatin accessibility studies, the authors find that Ikaros shares similar binding sites to Foxp3. Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibits Th1-like gene expression with abnormal expression of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signalling. Further, two models of inflammatory/ autoimmune diseases - Inflammatory Bowel Disease (IBD) and organ transplantation - are employed to examine the functional role of Ikaros in Treg-mediated immune suppression. The authors provide a detailed analysis of the epigenome and transcriptome of Ikaros-deficient Treg cells.

      These studies establish Ikaros as a factor required in Treg for tolerance and the control of inflammatory immune responses. The data are of high quality. Overall, the study is well organized, and reports new data consolidating mechanistic aspects of Foxp3 mediated gene expression program in Treg cells.

      Strengths:

      The authors have performed biochemical studies focusing on mechanistic aspects of molecular functions of the Foxp3-mediated gene expression program and complemented these with functional experiments using two models of autoimmune diseases, thereby strengthening the study. The studies are comprehensive at both the cellular and molecular levels. The manuscript is well organized and presents a plethora of data regarding the transcriptomic landscape of these cells.

      Weakness:

      The findings of markedly increased percentages of activated conventional T cells (CD44hi), major increases in TFH cells, and elevated serum Ig levels indicate disrupted immune homeostasis even in the absence of overt autoimmune manifestations seen in histopathology. Thus, some of the observed genetic changes observed by the authors are likely Treg cell extrinsic. Further, clear conclusions from the genome-wide studies are lacking.

    1. Reviewer #1 (Public Review):

      The manuscript describes the development of a mouse model that co-expresses a fluorescent protein ZsGreen) marker in gene fusion with the FSHR gene.

      The authors are correct in that there is a lack of reliable antibodies against many of the GPCR family members. The approach is novel and interesting, with the potential to help understand the expression pattern of gonadotropin receptors. There has been a very long debate about the expression of gonadotropin receptors in other tissues other than gonads. While their expression of the FSHR in some of those tissues has been detected by a variety of methods, their physiological, or pathophysiological, function(s) remain elusive.

      The authors in this manuscript assume that the expression of ZsGren and the FSHR are equal. While this is correct genetically (transcription->translation) it does not go hand in hand with other posttranslational processes.

      (1) One of the shocking observations in this manuscript is the expression of FSHR in Leydig cells. Other observations are in the osteoblasts and endothelial cells as well as epithelial cells in different organs. The expression of ZsGreen in these tissues seems high and one shall start questioning if there are other mechanisms at play here.

      First, the turnover of fluorescent proteins is long, longer than 48h, which means that they accumulate at a different speed than the endogenous FSHR This means that ZsGreen will accumulate in time while the FSHR receptor might be degraded almost immediately. This correlated with mRNA expression (by the authors) but does not with the results of other studies in single-cell sequencing (see below).

      The expression of ZsGreen in Leydig cells seems much higher than in Sertoli cells, this is "disturbing" to put it mildly. This is visible in both the ZsGreen expression and the FISH assay (Figure 2 B-D).

      (2) The expression in WAT and BAT is also questionable as the expression of ZsGreen is high everywhere. That makes it difficult to believe that the images are truly informative. For example, the stainings of aorta show the ZsGreen expression where elastin and collagen fibres are - these are not "cells" and therefore are not expressing ZsGreen.

      (3) FISH expression (for FSHR) in WT mice is missing.

      Also, the tissue sections were stained with the IgG only (neg control) but in practice both the KI and the WT tissues should be stained with the primary and secondary antibodies. The only control that I could think of to truly get a sense of this would be a tagged receptor (N-terminal) that could then be analysed by immunohistochemistry.

      (4) The authors also claim:<br /> To functionally prove the presence of FSHR in osteoblasts/osteocytes, we also deleted FSHR in osteocytes using an inducible model. The conditional knockout of FSHR triggered a much more profound increase in bone mass and decrease in fat mass than blockade by FSHR antibodies (unpublished data).

      This would be a good control for all their images. I think it is necessary to make the large claim of extragonadal expression, as well as intragonadal such as Leydig cells.

      (5) Claiming that the under-developed Leydig cells in FSHR KO animals are due to a direct effect of the FSHR, and not via a cross-talk between Sertoli and Leydig cells, is too much of a claim. It might be speculated to some degree but as written at the moment it suggests this is "proven".

      (6) We also do not know if this FSHR expressed is a spliced form that would also result in the expression of ZsGreen but in a non-functional FSHR, or whether the FSHR is immediately degraded after expression. The insertion of the ZsGreen might have disturbed the epigenetics, transcription, or biosynthesis of the mRNA regulation.

      (7) The authors should go through single-cell data of WT mice to show the existence of the FSHR transcript(s).<br /> For example here:<br /> https://www.nature.com/articles/sdata2018192

    2. Reviewer #2 (Public Review):

      The authors developed an original knock-in reporter mice line expressing ZSGreen under the control of endogenous FSHR promoter. The existence of FSHR in various extra-gonadal tissues and the physio-pathological consequences indeed remains a debated question and could potentially have an important impact on many high-incidence diseases occurring in menopausal women. Unfortunately, the provided data set lacks crucial controls and therefore does not provide a robust/convincing answer to the above-mentioned question.

      Summary:<br /> The authors investigated the expression pattern of the FSHR in the gonads, where its expression has been demonstrated for decades, but also in many extra-gonadal tissues. The question is important since the expression of FSHR outside of the gonads has been increasingly reported and associated with the dramatic increase of circulating FSH after menopause, and has been suggested to play an important role in the advent of multiple diseases occurring with high incidence in post-menopausal women. However, the reality of such extra-gonadal expression of FSHR remains debated, mainly because this receptor is expressed at a low level and because the specificity/affinity of the available anti-FSHR antibodies is questionable.

      Strengths:<br /> The development of reporter mice expressing ZsGreen fluorescent protein under the control of endogenous FSHR promoter is an original and potentially powerful approach to tackle the problem.

      Weaknesses:<br /> The data provided are provocative since the FSHR seems to be expressed in all tested tissues. In the testis, for instance, the authors report very high levels of FSHR in interstitial cells and germ cells. In the ovary, there seems to be no difference in FSHR expression between granulosa cells and the other cell types. These findings alone contradict all the knowledge on FSH expression patterns in the gonads that have been accumulated over decades by many independent labs. In view of such results, the validity of the reporter mice line should be questioned thoroughly:

      (1) Is the FSHR expression pattern affected by the knockin mice (no side-by-side comparison between wt and GSGreen mice, using in situ hybridization and ddRTPCR, at least in the gonads, is provided)?

      (2) Is the splicing pattern of the FSHR affected in the knockin compared to wt mice, at least in the gonads?

      (3) Are there any additional off-target insertions of GSGreen in these mice?

      (4) Are similar results observed in separate founder mice?

      (5) How long is GSGreen half-life? Could a very long half-life be a major reason for the extremely large expression pattern observed?

      In the absence of answers to these questions, the data produced in extra-gonadal tissues using the same reporter mice, are not convincing and do not support the authors' claims.

    1. Reviewer #1 (Public Review):

      As a pathogen, S. aureus has evolved strategies to evade the host's immune system. It effectively remains 'under the radar' in the host until it reaches high population densities, at which point it triggers virulence mechanisms, enabling it to spread within the host. The agr quorum sensing system is central to this process, as it coordinates the pathogen's virulence in response to its cell density.

      In this study, Podkowik and colleagues suggest that cells activating agr signaling also benefit from protection against H2O2 stress, whereas inactivation of agr increases cell death. The underlying cause of this lack of protection is tied to an ATP deficit in the agr mutant, leading to increased glucose consumption and NADH production, ultimately resulting in a redox imbalance. In response to this imbalance, the agr mutant increases respiration, resulting in the endogenous production of ROS which synergizes with H2O2 to mediate killing of the agr mutant. Suppressing respiration in the agr mutant restored protection against H2O2 stress.

      Additionally, the authors establish that agr-dependent protection against oxidative stress is also linked to RNAIII activation, and the subsequent block of Rot translation. However, the specific protective genes regulated by Rot remain unidentified. Thus, according to the evidence provided, agr triggers intrinsic mechanisms that not only decrease harmful ROS production within the cell but also alleviate its detrimental effects.

      Interestingly, these protective mechanisms are long-lived, and guard the cells against external oxidative stressors such as H2O2, even after the agr system has been 'turned off' in the population.

    2. Reviewer #2 (Public Review):

      In their study, Podkowik et al. elucidate the protective role of the accessory gene regulator (agr) system in Staphylococcus aureus against hydrogen peroxide (H2O2) stress. Their findings demonstrate that agr safeguards the bacterium by controlling the accumulation of reactive oxygen species (ROS), independent of agr activation kinetics. This protection is facilitated through a regulatory interaction between RNAIII and Rot, impacting virulence factor production and metabolism, thereby influencing ROS levels. Notably, the study highlights the remarkable adaptive capabilities of S. aureus conferred by agr. The protective effects of agr extend beyond the peak of agr transcription at high cell density, persisting even during the early log-phase. This indicates the significance of agr-mediated protection throughout the infection process. The absence of agr has profound consequences, as observed by the upregulation of respiration and fermentation genes, leading to increased ROS generation and subsequent cellular demise. Interestingly, the study also reveals divergent effects of agr deficiency on susceptibility to hydrogen peroxide compared to ciprofloxacin. While agr deficiency heightens vulnerability to H2O2, it also upregulates the expression of bsaA, countering the endogenous ROS induced by ciprofloxacin. These findings underscore the complex and context-dependent nature of agr-mediated protection. Furthermore, in vivo investigations using murine models provide valuable insights into the importance of agr in promoting S. aureus fitness, particularly in the context of neutrophil-mediated clearance, with notable emphasis on the pulmonary milieu. Overall, this study significantly advances our understanding of agr-mediated protection in S. aureus and sheds light on the sophisticated adaptive mechanisms employed by the bacterium to fortify itself against oxidative stress encountered during infection.

      The conclusions drawn in this paper are generally well-supported by the data.

    1. Reviewer #1 (Public Review):

      Summary:

      Del Rosario et al characterized the extent and cell types of sibling chimerism in marmosets. To do so, they took advantage of the thousands of SNPs that are transcribed in single-nucleus RNA-seq (snRNA-seq) data to identify the sibling genotype of origin for all sequenced cells across 4 tissues (blood, liver, kidney, and brain) from many marmosets. They found that chimerism is prevalent and widespread across tissues in marmosets, which has previously been shown. However, their snRNA-seq approach allowed them to identify precisely which cells were of sibling origin, and which were not. In doing so they definitively show that sibling chimerism across tissues is limited to cells of myeloid and lymphoid lineages. The authors then focus on a large sample of microglia sequenced across many brain regions to quantify: (1) variation in chimerism across brain regions in the same individual, and (2) the relative importance of genetic vs. environmental context on microglia function/identity.

      (1) Much like across different tissues in the same individual, they found that the proportion of chimeric microglia varies across brain regions collected from the same individuals (as well as differing from the proportion of sibling cells found in the blood of the same animals), suggesting that cells from different genetic backgrounds may differ in their recruitment and/or proliferation across regions and local tissue contexts, or that this may be linked to stochastic bottleneck effects during brain development.

      (2) Their (admittedly smaller sample size) analyses of host-sibling gene expression showed that the local environment dominates genotype.

      All told, this thoughtful and thorough manuscript accomplishes two important goals. First, it all but closes a previously open question on the extent and cell origins of sibling chimerism. Second, it sets the stage for using this unique model system to examine, in a natural context, how genetic variation in microglia may impact brain development, function, and disease.

      The conclusions of this paper are well supported by the data, and the authors exert appropriate care when extrapolating their results that come from smaller samples. However, there are a few concerns that should be addressed.

      The "modest correlation" mentioned in lines 170-172 does not take into account the uncertainty in estimates of each chimeric cell proportion (although the plot shows those estimates nicely). This is particularly important for the macrophages, which are far less abundant. Perhaps a more appropriate way to model this would be in a binomial framework (with a random effect for individuals of origin). Here, you could model the sibling identity of each macrophage as a function of the proportion of sibling-origin microglia and then directly estimate the percent variance explained.

      A similar (albeit more complicated because of the number of regions being compared) approach could be applied to more rigorously quantify the variation in chimerism across brain regions (L198-215; Figure 4). This would also help to answer the question of whether specific brain regions are more "amenable" to microglia chimerism than others.

      While the sample size is small, it would be exciting to see if any microglia eQTL are driven by sibling chimerism across the marmosets.

      L290-292: The authors should propose ways in which they could test the two different explanations proposed in this paragraph. For instance, a simulation-based modeling approach could potentially differentiate more stochastic bottleneck effects from recruitment-like effects.

      While intriguing, the gene expression comparison (Figure 5) is extremely underpowered. It would be helpful to clarify this and note the statistical thresholds used for identifying DEGs (the black points in the figure).

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript reports a novel and quite important study of chimerism among common marmosets. As the authors discuss, it has been known for years that marmosets display chimerism across a number of tissues. However, as the authors also recognize, the scope and details of this chimerism have been controversial. Some prior publications have suggested that the chimerism only involves cells derived from hematopoietic stem cells, while other publications have suggested more cell types can also be chimeric, including a wide range of cell types present in multiple organs. The present authors address this question and several other important issues by using snRNA-seq to track the expression of host and sibling-derived mRNAs across multiple tissues and cell types. The results are clear and provide strong evidence that all chimeric cells are derived from hematopoietic cell lineages.

      This work will have an impact on studies using marmosets to investigate various biological questions but will have the biggest impact on neuroscience and studies of cellular function within the brain. The demonstration that microglia and macrophages from different siblings from a single pregnancy, with different genomes expressing different transcriptomes, are commonly present within specific brain structures of a single individual opens a number of new opportunities to study microglia and macrophage function as well as interactions between microglia, macrophages, and other cell types.

      Strengths:

      The paper has a number of important strengths. This analysis employs the first unambiguous approach providing a clear answer to the question of whether sibling-derived chimeric cells arise only from hematopoietic lineages or from a wider array of embryonic sources. That is a long-standing open question and these snRNA-seq data seem to provide a clear answer, at least for the brain, liver, and kidney. In addition, the present authors investigate quantitative variation in chimeric cell proportions across several dimensions, comparing the proportion of chimeric cells across individual marmosets, across organs within an individual, and across brain regions within an individual. All these are significant questions, and the answers have important implications for multiple research areas. Marmosets are increasingly being used for a range of neuroscience studies, and a better understanding of the process that leads to the chimerism of microglia and macrophages in the marmoset brain is a valuable and timely contribution. But this work also has implications for other lines of study. Third, the snRNA-seq data will be made available through the Brain Initiative NeMO portal and the software used to quantify host vs. sibling cell proportions in different biosamples will be available through GitHub.

      Weaknesses:

      I find no major weaknesses, but several minor ones. First, the main text of the manuscript provides no information about the specific animals used in this study, other than sex. Some basic information about the sources of animals and their ages at the time of study would be useful within the main paper, even though more information will be available in the supplementary material. Second, it is not clear why only 14 pairs of animals were used for estimating the correlation of chimerism levels in microglia and macrophages. Is this lower than the total number of pairwise comparisons possible in order to avoid using non-independent samples? Some explanation would be helpful. Finally, I think more analysis of the consistency and variability of gene expression in microglia across different regions of the brain would be valuable. Are there genetic pathways expressed similarly in host and sibling microglia, regardless of region of the brain? Are there pathways that are consistently expressed differently in host vs sibling microglia regardless of brain region?

    1. Reviewer #1 (Public Review):

      Summary:<br /> The study presented by Atsumi et al. is about using smartphone-driven, community-sourced data to enhance biodiversity monitoring. The idea is to leverage the widespread use of smartphones to gather data from the community quickly, contributing to a more comprehensive understanding of biodiversity. The authors discuss the importance of ecosystem services linked to biodiversity and the threats posed by human activities. It emphasizes the need for comprehensive biodiversity data to implement the Kunming-Montreal Global Biodiversity Framework. The 'Biome' mobile app, launched in Japan, uses species identification algorithms and gamification to gather over 6 million observations since 2019. While community-sourced data may have biases, incorporating it into Species Distribution Models (SDMs) improves accuracy, especially for endangered species. The app covers urban-natural gradients uniformly, enhancing traditional survey data biased towards natural areas. Combining these sources provides valuable insights into species distributions for conservation, protected area designation, and ecosystem service assessment.

      Strengths:

      The use of a smartphone app ('Biome') for community-driven species occurrence data collection represents an innovative and inclusive approach to biodiversity monitoring, leveraging the widespread use of smartphones. The app has successfully accumulated a large volume of species occurrence data since its launch in 2019, showcasing its effectiveness in rapidly gathering information from diverse locations. Despite challenges with certain taxa, the study highlights high species identification accuracy, especially for birds, reptiles, mammals, and amphibians, making the 'Biome' app a reliable tool for species observation. The integration of community-sourced data into Species Distribution Models (SDMs) improves the accuracy of predicting species distributions. This has implications for conservation planning, including the designation of protected areas and assessment of ecosystem services. The rapid accumulation of data and advancements in machine learning methods open up opportunities for conducting time-series analyses, contributing to the understanding of ecosystem stability and interaction strength over time. The study emphasizes the collaborative nature of the platform, fostering collaboration among diverse stakeholders, including local communities, private companies, and government agencies. This inclusive approach is essential for effective biodiversity assessment and decision-making. The platform's engagement with various stakeholders, including local communities, supports biodiversity assessment, management planning, and informed decision-making. Additionally, the app's role in fostering nature-positive awareness in society is highlighted as a significant contribution to creating a sustainable society.

      Weaknesses:

      While the studies make significant contributions to biodiversity monitoring, they also have some weaknesses. Firstly, relying on smartphone-driven, community-sourced data may introduce spatial and taxonomic biases. The 'Biome' app, for example, showed lower accuracy for certain taxa like seed plants, molluscs, and fishes, potentially impacting the reliability of the gathered data. Furthermore, the effectiveness of Species Distribution Models (SDMs) relies on the assumption that biases in community-sourced data can be adequately accounted for. The unique distribution patterns of the 'Biome' data, covering urban-natural gradients uniformly, might not fully represent the diversity of certain ecosystems, potentially leading to inaccuracies in the models. Moreover, the divergence in data distribution patterns along environmental gradients between 'Biome' data and traditional survey data raises concerns. The app data shows a more uniform distribution across natural-urban gradients, while traditional data is biased towards natural areas. This discrepancy may impact the representation of certain ecosystems and influence the accuracy of Species Distribution Models (SDMs). While the integration of 'Biome' data into SDMs improves accuracy, the study notes that controlling the sampling efforts is crucial. Spatially-biased sampling efforts in community-sourced data need careful consideration, and efforts to control biases are essential for reliable predictions.

    1. Reviewer #3 (Public Review):

      This study explores sensory prediction errors in the sensory cortex. It focuses on the question of how these signals are shaped by non-hierarchical interactions, specifically multimodal signals arising from same-level cortical areas. The authors used 2-photon imaging of mouse auditory cortex in head-fixed mice that were presented with sounds and/or visual stimuli while moving on a ball. First, responses to pure tones, visual stimuli, and movement onset were characterized. Then, the authors made the running speed of the mouse predictive of sound intensity and/or visual flow. Mismatches were created through the interruption of sound and/or visual flow for 1 second while the animal moved, disrupting the expected sensory signal given the speed of movement. As a control, the same sensory stimuli triggered by the animal's movement were presented to the animal decoupled from its movement. The authors suggest that auditory responses to the unpredicted silence reflect mismatch responses. That these mismatch responses were enhanced when the visual flow was congruently interrupted, indicates the cross-modal influence of prediction error signals.

      This study's strengths are the relevance of the question and the design of the experiment. The authors are experts in the techniques used. The analysis explores neither the full power of the experimental design nor the population activity recorded with 2-photon, leaving open the question of to what extent what the authors call mismatch responses are not sensory responses to sound interruption. The auditory system is sensitive to transitions and indeed responses to the interruption of the sound are similar in quality, if not quantity, in the predictive and the control situation.

    2. Reviewer #2 (Public Review):

      In this study, Solyga and Keller use multimodal closed-loop paradigms in conjunction with multiphoton imaging of cortical responses to assess whether and how sensorimotor prediction errors in one modality influence the computation of prediction errors in another modality. Their work addresses an important open question pertaining to the relevance of non-hierarchical (lateral cortico-cortical) interactions in predictive processing within the neocortex.

      Specifically, they monitor GCaMP6f responses of layer 2/3 neurons in the auditory cortex of head-fixed mice engaged in VR paradigms where running is coupled to auditory, visual, or audio-visual sensory feedback. The authors find strong auditory and motor responses in the auditory cortex, as well as weak responses to visual stimuli. Further, in agreement with previous work, they find that the auditory cortex responds to audiomotor mismatches in a manner similar to that observed in visual cortex for visuomotor mismatches. Most importantly, while visuomotor mismatches by themselves do not trigger significant responses in the auditory cortex, simultaneous coupling of audio-visual inputs to movement non-linearly enhances mismatch responses in the auditory cortex.

      Their results thus suggest that prediction errors within a given sensory modality are non-trivially influenced by prediction errors from another modality. These findings are novel, interesting, and important, especially in the context of understanding the role of lateral cortico-cortical interactions and in outlining predictive processing as a general theory of cortical function.

      In its current form, the manuscript lacks sufficient description of methodological details pertaining to the closed-loop training and the overall experimental design. In several scenarios, while the results per se are convincing and interesting, their exact interpretation is challenging given the uncertainty about the actual experimental protocols (more on this below). Second, the authors are laser-focused on sensorimotor errors (mismatch responses) and focus almost exclusively on what happens when stimuli deviate from the animal's expectations.

      While the authors consistently report strong running-onset responses (during open-loop) in the auditory cortex in both auditory and visual versions of the task, they do not discuss their interpretation in the different task settings (see below), nor do they analyze how these responses change during closed-loop i.e. when predictions align with sensory evidence.

      However, I believe all my concerns can be easily addressed by additional analyses and incorporation of methodological details in the text.

      Major concerns:

      (1) Insufficient analysis of audiomotor mismatches in the auditory cortex:

      Lack of analysis of the dependence of audiomotor mismatches on the running speed: it would be helpful if the authors could clarify whether the observed audiomotor mismatch responses are just binary or scale with the degree of mismatch (i.e. running speed). Along the same lines, how should one interpret the lack of dependence of the playback halt responses on the running speed? Shouldn't we expect that during playback, the responses of mismatch neurons scale with the running speed?

      Slow temporal dynamics of audiomotor mismatches: despite the transient nature of the mismatches (1s), auditory mismatch responses last for several seconds. They appear significantly slower than previous reports for analogous visuomotor mismatches in V1 (by the same group, using the same methods) and even in comparison to the multimodal mismatches within this study (Figure 4C). What might explain this sustained activity? Is it due to a sustained change in the animal's running in response to the auditory mismatch?

      (2) Insufficient analysis and discussion of running onset responses during audiomotor sessions: The authors report strong running-onset responses during open-loop in identified mismatch neurons. They also highlight that these responses are in agreement with their model of subtractive prediction error, which relies on subtracting the bottom-up sensory evidence from top-down motor-related predictions. I agree, and, thus, assume that running-onset responses during the open loop in identified 'mismatch' neurons reflect the motor-related predictions of sensory input that the animal has learned to expect. If this is true, one would expect that such running-onset responses should dampen during closed-loop, when sensory evidence matches expectations and therefore cancels out this prediction. It would be nice if the authors test this explicitly by analyzing the running-related activity of the same neurons during closed-loop sessions.

      (3) Ambiguity in the interpretation of responses in visuomotor sessions.

      Unlike for auditory stimuli, the authors show that there are no obvious responses to visuomotor mismatches or playback halts in the auditory cortex. However, the interpretation of these results is somewhat complicated by the uncertainty related to the training history of these mice. Were these mice exclusively trained on the visuomotor version of the task or also on the auditory version? I could not find this info in the Methods. From the legend for Figure 4D, it appears that the same mice were trained on all versions of the task. Is this the case? If yes, what was the training sequence? Were the mice first trained on the auditory and then the visual version?

      The training history of the animals is important to outline the nature of the predictions and mismatch responses that one should expect to observe in the auditory cortex during visuomotor sessions. Depending on whether the mice in Figure 3 were trained on visual only or both visual and auditory tasks, the open-loop running onset responses may have different interpretations.

      a) If the mice were trained only on the visual task, how should one interpret the strong running onset responses in the auditory cortex? Are these sensorimotor predictions (presumably of visual stimuli) that are conveyed to the auditory cortex? If so, what may be their role?

      b) If the mice were also trained on the auditory version, then a potential explanation of the running-onset responses is that they are audiomotor predictions lingering from the previously learned sensorimotor coupling. In this case, one should expect that in the visual version of the task, these audiomotor predictions (within the auditory cortex) would not get canceled out even during the closed-loop periods. In other words, mismatch neurons should constantly be in an error state (more active) in the closed-loop visuomotor task. Is this the case?

      If so, how should one then interpret the lack of a 'visuomotor mismatch' aligned to the visual halts, over and above this background of continuous errors?<br /> As such, the manuscript would benefit from clearly stating in the main text the experimental conditions such as training history, and from discussing the relevant possible interpretations of the responses.

      (4) Ambiguity in the interpretation of responses in multimodal versus unimodal sessions.

      The authors show that multimodal (auditory + visual) mismatches trigger stronger responses than unimodal mismatches presented in isolation (auditory only or visual only). Further, they find that even though visual mismatches by themselves do not evoke a significant response, co-presentation of visual and auditory stimuli non-linearly augments the mismatch responses suggesting the presence of non-hierarchical interactions between various predictive processing streams.

      In my opinion, this is an important result, but its interpretation is nuanced given insufficient details about the experimental design. It appears that responses to unimodal mismatches are obtained from sessions in which only one stimulus is presented (unimodal closed-loop sessions). Is this actually the case? An alternative and perhaps cleaner experimental design would be to create unimodal mismatches within a multimodal closed-loop session while keeping the other stimulus still coupled to the movement.

      Given the current experiment design (if my assumption is correct), it is unclear if the multimodal potentiation of mismatch responses is a consequence of nonlinear interactions between prediction/error signals exchanged across visual and auditory modalities. Alternatively, could this result from providing visual stimuli (coupled or uncoupled to movement) on top of the auditory stimuli? If it is the latter, would the observed results still be evidence of non-hierarchical interactions between various predictive processing streams?

      Along the same lines, it would be interesting to analyze how the coupling of visual as well as auditory stimuli to movement influences responses in the auditory cortex in close-loop in comparison to auditory-only sessions. Also, do running onset responses change in open-loop in multimodal vs. unimodal playback sessions?

      Minor concerns and comments:

      (1) Rapid learning of audiomotor mismatches: It is interesting that auditory mismatches are present even on day 1 and do not appear to get stronger with learning (same on day 2). The authors comment that this could be because the coupling is learned rapidly (line 110). How does this compare to the rate at which visuomotor coupling is learned? Is this rapid learning also observable in the animal's behavior i.e. is there a change in running speed in response to the mismatch?

      (2) The authors should clarify whether the sound and running onset responses of the auditory mismatch neurons in Figure 2E were acquired during open-loop. This is most likely the case, but explicitly stating it would be helpful.

      (3) In lines 87-88, the authors state 'Visual responses also appeared overall similar but with a small increase in strength during running ...'. This statement would benefit from clarification. From Figure S1 it appears that when the animal is sitting there are no visual responses in the auditory cortex. But when the animal is moving, small positive responses are present. Are these actually 'visual' responses - perhaps a visual prediction sent from the visual cortex to the auditory cortex that is gated by movement? If so, are they modulated by features of visual stimuli eg. contrast, intensity? Or, do these responses simply reflect motor-related activity (running)? Would they be present to the same extent in the same neurons even in the dark?

      (4) The authors comment in the text (lines 106-107) about cessation of sound amplitude during audiomotor mismatches as being analogous to halting of visual flow in visuomotor mismatches. However, sound amplitude versus visual flow are quite different in nature. In the visuomotor paradigm, the amount of visual stimulation (photons per unit time) does not necessarily change systematically with running speed. Whereas, in the audiomotor paradigm, the SNR of the stimulus itself changes with running speed which may impact the accuracy of predictions. On a broader note, under natural settings, while the visual flow is coupled to movement, sound amplitude may vary more idiosyncratically with movement.

      Perhaps such differences might explain why unlike in the case of visual cortex experiments, running speed does not affect the strength of playback responses in the auditory cortex.

    3. Reviewer #1 (Public Review):

      Summary:

      The manuscript presents a short report investigating mismatch responses in the auditory cortex, following previous studies focused on the visual cortex. By correlating the mouse locomotion speed with acoustic feedback levels, the authors demonstrate excitatory responses in a subset of neurons to halts in expected acoustic feedback. They show a lack of responses to mismatch in the visual modality. A subset of neurons show enhanced mismatch responses when both auditory and visual modalities are coupled to the animal's locomotion.

      While the study is well-designed and addresses a timely question, several concerns exist regarding the quantification of animal behavior, potential alternative explanations for recorded signals, correlation between excitatory responses and animal velocity, discrepancies in reported values, and clarity regarding the identity of certain neurons.

      Strengths:

      (1) Well-designed study addressing a timely question in the field.

      (2) Successful transition from previous work focused on the visual cortex to the auditory cortex, demonstrating generic principles in mismatch responses.

      (3) The correlation between mouse locomotion speed and acoustic feedback levels provides evidence for a prediction signal in the auditory cortex.

      (4) Coupling of visual and auditory feedback shows putative multimodal integration in the auditory cortex.

      Weaknesses:

      (1) Lack of quantification of animal behavior upon mismatches, potentially leading to alternative interpretations of recorded signals.

      (2) Unclear correlation between excitatory responses and animal velocity during halts, particularly in closed-loop versus playback conditions.

      (3) Discrepancies in reported values in a few figure panels raise questions about data consistency and interpretation.

      (4) Ambiguity regarding the identity of the [AM+VM] MM neurons.

    1. Reviewer #3 (Public Review):

      Summary:

      In this article, Hermannova et al catalog the changes in ribosome association with mRNAs when the eukaryotic translation initiation factor 3 is disrupted by knocking down subunits of the multisubunit protein. They find that RNAs relying on TOP motifs for translation, such as ribosomal protein RNAs, and RNAs encoding proteins that modify other proteins in the ER or components of the lysosome are upregulated. In contrast, proteins encoding components of MAP kinase cascades are downregulated when subunits of eIF3 are knocked down.

      Strengths:

      The authors use ribosome profiling of well-characterized mutants lacking subunits of eIF3 and assess the changes in translation that take place. They supplement the ribosome association studies with western blotting to determine protein level changes of affected transcripts. They analyze what is being encoded by the transcripts undergoing translation changes, which is important for understanding more broadly how translation initiation factor levels affect cancer cell translatomes.

      Weaknesses:

      (1) The data are presented as a catalog of effects, and the paper would be strengthened if there were a clear model tying the various effects together or linking individual subunit knockdown to cancerous phenotypes. It is unclear what the hypothesis is for cells having more MAPK activity with less of the MAPK proteins being translated, so the main findings of the paper become observational without context.

      (2) The conclusions drawn are presented as very generalized other than in the last paragraph, but the experiments were only done in Hela cells. Since conclusions are being made about how translation changes affect MAP kinase signaling and there is mention in the abstract that dysregulation of these subunits is observed in cancer, at least one other cell line would need to be analyzed to provide evidence that the effects of subunit knockdown aren't cell-line specific.

      (3) It is also unclear how replicates were performed and how many replicates were performed for several experiments. Biological replicates are mentioned, but what the authors did for biological replicates isn't defined and the description of the collection of cells for polysome/ribosome footprint/RNA seq samples makes it unclear whether the "biological replicates" are samples from separate transfections (true biological replicates) or different aliquots or wells from a single transfection (technical replicates) being run over a separate gradient. If using technical replicates, the data comparing the effects of knocking down D vs E vs H subunits are substantially weakened because subunit-specific differences could be the result of non-specific events that occurred in a transfection. It's also notable that while the pooled siRNAs will increase the potency of knockdown, it is possible that one or more of the siRNAs could have off-target effects, and analyzing individual siRNAs would be better for ensuring effects are specific.

      (4) Many of the changes in protein levels reported by Western are subtle. Data from all western blots making claims of quantitative differences should really be quantified relative to nontreated over-loading control or total protein quantified from the gel, and presented with a degree of error from biological replicates to make conclusions about differences in protein levels between samples.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Herrmannova et al explore changes in translation upon individual depletion of three subunits of the eIF3 complex (d, e, and f) in mammalian cells. The authors provide a detailed analysis of regulated transcripts, followed by validation by RT-qPCR and/or Western blot of targets of interest, as well as GO and KKEG pathway analysis. The authors confirm prior observations that eIF3, despite being a general translation initiation factor, functions in mRNA-specific regulation, and that eIF3 is important for translation re-initiation. They show that the global effects of eIF3e and eIF3d depletion on translation and cell growth are concordant. Their results support and extend previous reports suggesting that both factors control the translation of 5'TOP mRNAs. Interestingly, they identify MAPK pathway components as a group of targets coordinately regulated by eIF3 d/e. The authors also discuss discrepancies with other reports analyzing eIF3e function.

      Strengths:

      Altogether, a solid analysis of eIF3 d/e/h-mediated translation regulation of specific transcripts. The data will be useful for scientists working in the Translation field.

      Weaknesses:

      The authors could have explored in more detail some of their novel observations, as well as their impact on cell behavior.

    3. Reviewer #2 (Public Review):

      Summary:

      mRNA translation regulation permits cells to rapidly adapt to diverse stimuli by fine-tuning gene expression. Specifically, the 13-subunit eukaryotic initiation factor 3 (eIF3) complex is critical for translation initiation as it aids in 48S PIC assembly to allow for ribosome scanning. In addition, eIF3 has been shown to drive transcript-specific translation by binding mRNA 5' cap structures through the eIF3d subunit. Dysregulation of eIF3 has been implicated in oncogenesis, however the precise eIF3 subunit contributions are unclear. Here, Herrmannová et al. aim to investigate how eIF3 subcomplexes, generated by knockdown (KD) of either eIF3e, eIF3d, or eIF3h, affect the global translatome. Using Ribo-seq and RNA-seq, the authors identified a large number of genes that exhibit altered translation efficiency upon eIF3d/e KD, while translation defects upon eIF3h KD were mild. eIF3d/e KD share multiple dysregulated transcripts, perhaps due to both subcomplexes lacking eIF3d. Both eIF3d/e KD increase the translation efficiency (TE) of transcripts encoding lysosomal, ER, and ribosomal proteins. This suggests a role of eIF3 in ribosome biogenesis and protein quality control. Many transcripts encoding ribosomal proteins harbor a TOP motif, and eIF3d KD and eIF3e KD cells exhibit a striking induction of these TOP-modified transcripts. On the other hand, eIF3d KD and eIF3e KD lead to a reduction of MAPK/ERK pathway proteins. Despite this downregulation, eIF3d KD and eIF3e KD activate MAPK/ERK signaling as ERK1/2 and c-Jun phosphorylation were induced. Finally, in all three knockdowns, MDM2 and ATF4 protein levels are reduced. This is notable because MDM2 and ATF4 both contain short uORFs upstream of the start codon, and further support a role of eIF3 in reinitiation. Altogether, Herrmannová et al. have gained key insights into precise eIF3-mediated translational control as it relates to key signaling pathways implicated in cancer.

      Strengths:

      The authors have provided a comprehensive set of data to analyze RNA and ribosome footprinting upon perturbation of eIF3d, eIF3e, and eIF3h. As described above in the summary, these data present many interesting starting points for understanding additional roles of the eIF3 complex and specific subunits in translational control.

      Weaknesses:

      - The differences between eIF3e and eIF3d knockdown are difficult to reconcile, especially since eIF3e knockdown leads to a reduction in eIF3d levels.

      - The paper would be strengthened by experiments directly testing what RNA determinants allow for transcript-specific translation regulation by the eIF3 complex. This would allow the paper to be less descriptive.

      - The paper would have more biological relevance if eIF3 subunits were perturbed to mimic naturally occurring situations where eIF3 is dysregulated. For example, eIF3e is aberrantly upregulated in certain cancers, and therefore an overexpression and profiling experiment would have been more relevant than a knockdown experiment.

    1. Reviewer #3 (Public Review):

      These studies reveal an S-phase requirement for the PARG dePARylation enzyme in removing ADP-ribosylation from PAR-modified proteins whose PARylation is promoted by the presence of unligated Okazaki fragments. The excessive protein ADP-ribosylation observed in S-phase of PARG-depleted human cells leads to trapping of the PARP1 ADP-ribosylation enzyme on chromatin. The findings would be strengthened by identification of the relevant ADP-ribosylation substrates of PARG whose dePARylation is needed for progression through S-phase.

      Comments on revised version:

      In the revised version the authors have addressed some of the reviewers' concerns, but, despite the new explanatory paragraph on page 16, the paper remains confusing because as shown in Figure 7 at the end of the Results the PARG KO 293A cells that were analyzed at the beginning of the Results are not true PARG knockouts. The authors stated that they did not rewrite the Results because they wanted to describe the experiments in the order in which they were carried out, but there is no imperative for the experiments to be described in the order in which they were done, and it would be much easier for the uninitiated reader to appreciate the significance of these studies if the true PARG KO cell data were presented at the beginning, as all three of the original reviewers proposed.

      While the authors have to some extent clarified the nature of the PARG KO alleles, they have not been able to identify the source of the residual PARG activity in the PARG KO cells, in part because different commercial PARG antibodies give different and conflicting immunoblotting results. Additional sequence characterization of PARG mRNAs expressed in the PARG cKO cells, and also in-depth proteomic analysis of the different PARG bands could provide further insight into the origins and molecular identities of the various PARG proteins expressed from the different KO PARG alleles, and determine which of them might retain catalytic activity.

      The authors have made no progress in identifying which are the key PARG substrates required for S phase progression, although they suggest that PARP1 itself may be an important target.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript Nie et al investigate the effect of PARG KO and PARG inhibition (PARGi) on pADPR, DNA damage, cell viability and synthetic lethal interactions in HEK293A and Hela cells. Surprisingly, the authors report that PARG KO cells are sensitive to PARGi and show higher pADPR levels than PARG KO cells, which is abrogated upon deletion or inhibition of PARP1/PARP2. The authors explain the sensitivity of PARG KO to PARGi through incomplete PARG depletion and demonstrate complete loss of PARG activity when incomplete PARG KO cells are transfected with additional gRNAs in the presence of PARPi. Furthermore, the authors show that the sensitivity of PARG KO cells to PARGi is not caused by NAD depletion but by S-phase accumulation of pADPR on chromatin coming from unligated Okazaki fragments, which are recognized and bound by PARP1. Consistently, PARG KO or PARG inhibition show synthetic lethality with Pol beta, which is required for Okazaki fragment maturation. PARG expression levels in ovarian cancer cell lines correlate negatively with their sensitivity to PARGi.

    1. Reviewer #2 (Public Review):

      The authors aimed to understand how epistasis influences the genetic architecture of the DNA-binding domain (DBD) of steroid hormone receptor. An ordinal regression model was developed in this study to analyze a published deep mutational scanning dataset that consists of all combinatorial amino acid variants across four positions (i.e. 160,000 variants). This published dataset measured the binding of each variant to the estrogen receptor response element (ERE, sequence: AGGTCA) as well as the steroid receptor response element (SRE, sequence: AGAACA). This model has major strengths of being reference free and able to account for global nonlinearity in the genotype-phenotype relationship. Thorough analyses of the modelling results have performed, which provided convincing results to support the importance of epistasis in promoting evolution of protein functions. This conclusion is impactful because many previous studies have shown that epistasis constrains evolution. The novelty this study will likely stimulate new ideas in the field. The model will also likely be utilized by other groups in the community.

    2. Reviewer #1 (Public Review):

      Metzger et al develop a rigorous method filling an important unmet need in protein evolution - analysis of protein genetic architecture and evolution using data from combinatorially complete 20^N variant libraries. Addressing this need has become increasingly valuable, as experimental methods for generating these datasets expand in scope and scale. Their method integrates two key features - (1) it reports the effects of mutations relative to the average across all variants, rather than a particular genotype, making it useful for examining global genetic architecture, and (2) it does this for all possible 20 states at each site, in contrast to the binary analyses in prior work. These features are not individually novel but integrating them into a single analysis framework is novel and will be valuable to the protein evolution community. Using a previously published dataset generated by two of the authors, they conclude that (1) changes in function are largely attributable to pairwise but not higher-order interactions, and (2) epistasis potentiates, rather than constrains, evolutionary paths. These findings are well-supported by the data. Overall, this work has important implications for predicting the relationship between genotype and phenotype, which is of considerable interest to protein biochemistry, evolutionary biology, and numerous other fields.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors were trying to understand the relation between the development of large trunks and longirrostrine mandibles in bunodont proboscideans of Miocene, and how it reflects the variation in diet patterns.

      Strengths:

      The study is very well supported, written, and illustrated, with plenty Supplementary materials. The authors included all Asian bunodont proboscideans with long mandibles and I suggest that they should use the expression "bunodont proboscideans" instead of gomphotheres.

      Weaknesses:

      I believe that the only weakness is the lack of discussion comparing their results with the development of gigantism and long limbs in proboscideans from the same epoch.

      The authors reviewed the manuscript according to my suggestions and responded well to all my comments.

    1. Reviewer #3 (Public Review):

      This study investigates subtelomeric repetitive sequences in the budding yeast Saccharomyces cerevisiae, known as Y' and X-elements. Taking advantage of yeast strain SY12 that contains only 3 chromosomes and six telomeres (normal yeast strains contain 32 telomeres) the authors are able to generate a strain completely devoid of Y'- and X-elements.

      Strengths:

      They demonstrate that the SY12 delta XY strain displays normal growth, with stable telomeres of normal length that were transcriptionally silenced, a key finding with wide implications for telomere biology. Inactivation of telomerase in the SY12 and SY12 delta XY strains frequently resulted in survivors that had circularized all three chromosomes, hence bypassing the need for telomeres altogether. They show that survivors with fused chromosomes and so-called atypical survivors arise independently of the central recombination protein Rad52. The SY12 and SY12 delta XY yeast strains can become a useful tool for future studies of telomere biology. The conclusions of this manuscript are well supported by the data and are valuable for researchers studying telomeres.

      Weaknesses:

      A weakness of the manuscript is the analysis of telomere transcriptional silencing. They state: "The results demonstrated a significant increase in the expression of the MPH3 and HSP32 upon Sir2 deletion, indicating that telomere silencing remains effective in the absence of X and Y'-elements". However, for the SY12 strain, their analyses indicate that the difference between the WT and sir2 strains is nonsignificant. In addition, a striking observation is that the SY12 strain (with only three chromosomes) express much less of both MPH3 and HSP32 than the parental strain BY4742 (16 chromosomes), both in the presence and absence of Sir2.

    2. Reviewer #1 (Public Review):

      The authors have generated a set of yeast S. cerevisiae strains containing different numbers of chromosomes.<br /> Elimination of telomerase activates homologous recombination (HR) to maintain telomeres in cells containing the original 16 chromosomes. However, elimination of telomerase leads to circularization of cells containing a single or two chromosomes. The authors examined whether the subtelomeric sequences X and Y' promote HR-mediated telomere maintenance using the strain SY12 carrying three chromosomes. They found that the subtelomeric sequences X and Y' are dispensable for cell proliferation and HR-mediated telomere maintenance in telomerase-minus SY12 cells. They conclude that subtelomeric X and Y' sequences do not play essential roles in both telomerase-proficient and telomerase-null cells and propose that these sequences represent remnants of genome evolution.

      Interestingly, telomerase-minus SY12 generates survivors that are different from well-established Type I or Type II survivors. The authors uncover atypical telomere formation which does not depend on the Rad52 homologous recombination pathway.

      Strengths:

      The authors examined whether the subtelomeric sequences X and Y' promote HR-mediated telomere maintenance using the strain SY12 carrying three chromosomes. They show that subtelomeres do not have essential roles in telomere maintenance and cell proliferation.

      Weaknesses:

      It is not fully addressed how atypical survivors are generated independently of Rad52-mediated homologous recombination.<br /> It remains possible that X and Y elements influence homologous recombination, type 1 and type 2 (type X), at telomeres. In particular, the presence of X and Y elements appears to be important for promoting type 1 recombination, although the authors conclude "Elimination of subtelomeric repeat sequences exerts little effect on telomere functions".

    3. Reviewer #2 (Public Review):

      Summary:

      In this work, Hu and colleagues investigate telomerase-independent survival in Saccharomyces cerevisiae strains engineered to have different chromosome numbers. The authors describe the molecular patterns of survival that change with fewer chromosomes and that differ from the well-described canonical Type I and Type II, including chromosome circularization and other atypical outcomes. They then take advantage of the strain with 3 chromosomes to examine the effect of deleting all the subtelomeric elements, called X and Y'. For most of the tested phenotypes, they find no significant effect of the absence of X- and Y'-element, and show that they are not essential for survivor formation. They speculate that X- and Y'-elements are remnants of ancient telomere maintenance mechanisms.

      Strengths:

      This work advances our understanding of the telomerase-independent strategies available to the cell by altering the structure of the genome and of the subtelomeres, a feat that was enabled by the set of strains they engineered previously. By using strains with non-standard genome structures, several alternative survival mechanisms are uncovered, revealing the diversity and plasticity of telomere maintenance mechanisms. Overall, the conclusions are well supported by the data, with adequate sample sizes for investigating survivors. The assessment of the genetic requirements for survivors in strains with different chromosome numbers greatly improved the quality of this work. The molecular analyses based on Southern blots are also very well-conducted.

      Weaknesses:

      The authors discovered alternative telomerase-independent survival strategies beyond the well-described type I and II (including circularization, type X and atypical, as they called them) at play in the context of reduced number of chromosomes. Their work provides a molecular and a partial genetic characterization of these survival pathways. A more thorough analysis of the frequency of each type of survivors and their genetic requirements would have advanced our understanding or the diversity of survival strategies in the absence of telomerase. However, as noted by the authors, the quantification of the rate of emergence of survivors (and their subtypes) is very difficult to achieve. This comment is therefore not meant as a criticism but rather as a perspective on exciting future research avenues.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors revealed that genetic deficiencies of ACK1 and BRK are associated with human SLE. First, the authors found that compound heterozygous deleterious variants in the kinase domains of the non-receptor tyrosine kinases (NRTK) TNK2/ACK1 in one multiplex family and PTK6/BRK in another family. Then, by an experimental blockade of ACK1 or BRK in a mouse SLE model, they found an increase in glomerular IgG deposits and circulating autoantibodies. Furthermore, they reported that ACK and BRK variants from the SLE patients impaired the MERTK-mediated anti-inflammatory response to apoptotic cells in human induced pluripotent stem cells (hiPSC)-derived macrophages. This work identified new SLE-associated ACK and BRK variants and a role for the NRTK TNK2/ACK1 and PTK6/BRK in efferocytosis, providing a new molecular and cellular mechanism of SLE pathogenesis.

      Strengths:

      This work identified new SLE-associated ACK and BRK variants and a role for the NRTK TNK2/ACK1 and PTK6/BRK in efferocytosis, providing a new molecular and cellular mechanism of SLE pathogenesis.

      Weaknesses:

      Although the manuscript is well-organized and clearly stated, there are some points below that should be considered:

      * In this study, the authors used forward genetic analyses to identify novel gene mutations that may cause SLE, combined with GWAS studies of SLE. To further explore the importance of these variants, haplotype analysis of two candidate genes could be performed, to observe the evolution and selection relationship of candidate genes in the population (UK 1000 biobank, for example).

      * Although the authors focused on SLE and macrophage efferocytosis in their studies, direct evidence of how macrophage efferocytosis significantly affects SLE is lacking. This point should at least be explicitly introduced and discussed by citing appropriate literature.

      * It is still not clear how the target molecules identified in this paper may influence macrophage efferocytosis. More direct evidence should be established.

      * For some transcriptional repressors mentioned in their studies, the authors should check whether there is clear experimental evidence. If not, it is recommended to supplement the experimental verifications for clarity.

      * In Figures 4C and 4D, it is seen that the usage of inhibitors causes cytoskeletal changes, however this reviewer would not have expected such large change. Did the authors check whether the cells die after heavy treatment by the inhibitors?

    2. Reviewer #1 (Public Review):

      Summary:

      The authors report compound heterozygous deleterious variants in the kinase domains of the non-receptor tyrosine kinases (NRTK) TNK2/ACK1 in familial SLE. They suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis.

      Strengths:

      The identification of similar mutations in non-receptor tyrosine kinases (NRTKs) in two different families with familial SLE is a significant finding in human disease. Furthermore, the paper provides a detailed analysis of the molecular mechanisms behind the impairment of efferocytosis caused by mutations in ACK1 and BRK.

      Weaknesses:

      A critical point in this paper is whether the loss of function of ACK1 or BRK contributes to the onset of familial SLE. The authors emphasize that inhibitors of ACK1/BRK worsened IgG deposition in the kidneys in a pristane-induced SLE model, which contributes not to the onset but to the exacerbation of SLE, thus only partially supporting their claim.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript investigates the regulation of chlorophyll biosynthesis in rice embryos, focusing on the role of OsNF-YB7. The rigorous experimental approach, combining genetic, biochemical, and molecular analyses, provides a robust foundation for these findings. The research achieves its objectives, offering new insights into chlorophyll biosynthesis regulation, with the results convincingly supporting the authors' conclusions.

      Strengths:

      The major strengths include the detailed experimental design and the findings regarding OsNF-YB7's inhibitory role.

      Weaknesses:

      However, the manuscript's discussion on the practical implications for agriculture and the evolutionary analysis of regulatory mechanisms could be expanded.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors set out to establish the role of the rice LEC1 homolog OsNF-YB7 in embryo development, especially as it pertains to the development of photosynthetic capacity, with chlorophyll production as a primary focus.

      Strengths:

      The results are well-supported and each approach used complements each other. There are no major questions left unanswered and the central hypothesis is addressed in every figure.

      Weaknesses:

      There are a handful of sections that could use clarifying for readers, but overall this is a solidly composed manuscript.

      The authors clearly achieved their aims; the results compellingly establish a disparity between how this system operates in rice and Arabidopsis. Conclusions are thoroughly supported by the provided data and interpretations. This work will force a reconsideration of the value of Arabidopsis as a model organism for embryo chlorophyll biosynthesis and possibly photosynthesis during embryo maturation more broadly, as rice is a major crop organism and it very clearly does not follow the Arabidopsis model. It will thus be useful to carry out similar tests in other organisms rather than relying on Arabidopsis and attempting to more fully establish the regulatory mechanism in rice.

    3. Reviewer #3 (Public Review):

      Summary:

      In this study, the authors set out to understand the mechanisms behind chlorophyll biosynthesis in rice, focusing in particular on the role of OsNF-YB7, an ortholog of Arabidopsis LEC1, which is a positive regulator of chlorophyll (Chl) biosynthesis in Arabidopsis. They showed that OsNF-YB7 loss-of-function mutants in rice have chlorophyll-rich embryos, in contrast to Arabidopsis LEC1 loss-of-function mutants. This contrasting phenotype led the authors to carry out extensive molecular studies on OsNF-YB7, including in vitro and in vivo protein interaction studies, gene expression profiling, and protein-DNA interaction assays. The evidence provided well supported the core arguments of the authors, emphasising that OsNF-YB7 is a negative regulator of Chl biosynthesis in rice embryos by mediating the expression of OsGLK1, a transcription factor that regulates downstream Chl biosynthesis genes. In addition, they showed that OsNF-YB7 interacts with OsGLK1 to negatively regulate the expression of OsGLK1, demonstrating the broad involvement of OsNF-YB7 in rice Chl biosynthetic pathways.

      Strengths:

      This study clearly demonstrated how OsNF-YB7 regulates its downstream pathways using several in vitro and in vivo approaches. For example, gene expression analysis of OsNF-YB7 loss-of-function and gain-of-function mutants revealed the expression of selected downstream chl biosynthetic genes. This was further validated by EMSA on the gel. The authors also confirmed this using luciferase assays in rice protoplasts. These approaches were used again to show how the interaction of OsNF-YB7 and OsGLK1 regulates downstream genes. The main idea of this study is very well supported by the results and data.

      Weaknesses:

      From an evolutionary perspective, it is interesting to see how two similar genes have come to play opposite roles in Arabidopsis and rice. It would have been more interesting if the authors had carried out a cross-species analysis of AtLEC1 and OsNF-YB7. For example, overexpressing AtLEC1 in an osnf-yb7 mutant to see if the phenotype is restored or enhanced. Such an approach would help us understand how two similar proteins can play opposite roles in the same mechanism within their respective plant species.

    1. Reviewer #1 (Public Review):

      The authors observed a decline in autophagy and proteasome activity in the context of Milton knockdown. Through proteomic analysis, they identified an increase in the protein levels of eIF2β, subsequently pinpointing a novel interaction within eIF subunits where eIF2β contributes to the reduction of eIF2α phosphorylation levels. Furthermore, they demonstrated that overexpression of eIF2β suppresses autophagy and leads to diminished motor function. It was also shown that in a heterozygous mutant background of eIF2β, Milton knockdown could be rescued. This work represents a novel and significant contribution to the field, revealing for the first time that the loss of mitochondria from axons can lead to impaired autophagy function via eIF2β, potentially influencing the acceleration of aging. To further support the authors' claims, several improvements are necessary, particularly in the methods of quantification and the points that should be demonstrated quantitatively. It is crucial to investigate the correlation between aging and the proteins eIF2β and eIF2α.

    2. Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion). In the text, the authors simply state the observation of their LC3 blotting. The manuscript lacks an explanation of how to evaluate the LC3-II/LC3-I ratio. Also, the manuscript lacks an elaboration on what the results of the LC3 blotting indicate about the state of autophagy by the depletion of axonal mitochondria.

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

      The manuscript consists of several weaknesses in its data and explanation regarding translation.

      (1) The authors are likely misunderstanding the effect of phosphorylation of eIF2α on translation. The P-eIF2α is inhibitory for translation initiation. However, the authors seem to be mistaken that the down-regulation of P-eIF2α inhibits translation.

      (2) The result of polysome profiling in Figure 4H is implausible. By 10%-25% sucrose density gradient, polysomes are not expected to be observed. The authors should have used a gradient with much denser sucrose, such as 10-50%.

      (3) Also on the polysome profiling, as in the method section, the authors seemed to fractionate ultra-centrifuged samples from top to bottom and then measured A260 by a plate reader. In that case, the authors should have provided a line plot with individual data points, not the smoothly connected ones in the manuscript.

      (4) For both the results from polysome profiling and puromycin incorporation (Figure 4H and I), the difference between control siRNA and Milton siRNA are subtle, if not nonexistent. This might arise from the lack of spatial resolution in their experiment as the authors used head lysate for these data but the ratio of Phospho-eIF2α/eIF2α only changes in the axons, based on their results in Figure 4E-G. The authors could have attempted to capture the spatial resolution for the axonal translation to see the difference between control siRNA and Milton siRNA.

    1. Reviewer #1 (Public Review):

      Here the authors discuss mechanisms of ligand binding and conformational changes in GlnBP (a small E Coli periplasmic binding protein, which binds and carries L-glutamine to the inner membrane ATP-binding cassette (ABC) transporter). The authors have distinguished records in this area and have published seminal works. They include experimentalists and computational scientists. Accordingly, they provide comprehensive, high-quality, experimental and computational work.

      They observe that apo- and holo- GlnBP does not generate detectable exchange between open and (semi-) closed conformations on timescales between 100 ns and 10 ms. Especially, the ligand binding and conformational changes in GlnBP that they observe are highly correlated. Their analysis of the results indicates a dominant induced-fit mechanism, where the ligand binds GlnBP prior to conformational rearrangements. They then suggest that an approach resembling the one they undertook can be applied to other protein systems where the coupling mechanism of conformational changes and ligand binding.

      They argue that the intuitive model where ligand binding triggers a functionally relevant conformational change was challenged by structural experiments and MD simulations revealing the existence of unliganded closed or semi-closed states and their dynamic exchange with open unbound conformations, discuss alternative mechanisms that were proposed, their merits and difficulties, concluding that the findings were controversial, which, they suggest is due to insufficient availability of experimental evidence to distinguish them. As to further specific conclusions they draw from their results, they determine that a conformational selection mechanism is incompatible with their results, but induced fit is. They thus propose induced fit as the dominant pathway for GlnBP, further supported by the notion that the open conformation is much more likely to bind substrate than the closed one based on steric arguments.

      Considering the landscape of substrate-free states, in my view, the closed state is likely to be the most stable and, thus most highly populated. As the authors note and I agree that state can be sterically infeasible for a deep-pocketed substrate. As indeed they also underscore, there is likely to be a range of open states. If the populations of certain states are extremely low, they may not be detected by the experimental (or computational) methods. The free energy landscape of the protein can populate all possible states, with the populations determined by their relative energies. In principle, the protein can visit all states. Whether a particular state is observed depends on the time the protein spends in that state. The frequencies, or propensities, of the visits can determine the protein function. As to a specific order of events, in my view, there isn't any. It is a matter of probabilities which depend on the populations (energies) of the states. The open conformation that is likely to bind is the most favorable, permitting substrate access, followed by minor, induced fit conformational changes. However, a key factor is the ligand concentration. Ligand binding requires overcoming barriers to sustain the equilibrium of the unliganded ensemble, thus time. If the population of the state is low, and ligand concentration is high (often the case in in vitro experiments, and high drug dosage scenarios) binding is likely to take place across a range of available states.

      This is however a personal interpretation of the data. The paper here, which clearly embodies massive careful, and high-quality work, is extensive, making use of a range of experimental approaches, including isothermal titration calorimetry, single-molecule Förster resonance energy transfer, and surface-plasmon resonance spectroscopy. The problem the authors undertake is of fundamental importance.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Han et al and Cordes is a tour-de-force effort to distinguish between induced fit and conformational selection in glutamine binding protein (GlnBP). It is important to say that I don't agree that a decision needs to be made between these two limiting possibilities in the sense that whether a minor population can be observed depends on the experiment and the energy difference between the states. That said, the authors make an important distinction which is that it is not sufficient to observe both states in the ligand-free solution because it is likely that the ligand will not bind to the already closed state. The ligand binds to the open state and the question then is whether the ligand sufficiently changes the energy of the open state to effectively cause it to close. The authors point out that this question requires both a kinetic and a thermodynamic answer. Their "method" combines isothermal titration calorimetry, single-molecule FRET including key results from multi-parameter photon-by-photon hidden Markov modelling (mpH2MM), and SPR. The authors present this "method" of combination of experiments as an approach to definitively differentiate between induced fit and conformational selection. I applaud the rigor with which they perform all of the experiments and agree that others who want to understand the exact mechanism of protein conformational changes connected to ligand binding need to do such a multitude of different experiments to fully characterize the process. However, the situation of GlnBP is somewhat unique in the high affinity of the Gln (slow off-rate) as compared to many small molecule binding situations such as enzyme-substrate complexes. It is therefore not surprising that the kinetics result in an induced fit situation. In the case of the E-S complexes I am familiar with, the dissociation is much more rapid because the substrate binding affinity is in the micromolar range and therefore the re-equilibration of the apo state is much faster. In this case, the rate of closing and opening doesn't change much whether ligand is present or not. Here, of course, once the ligand is bound the re-equilibration is slow. Therefore, I am not sure if the conclusions based on this single protein are transferrable to most other protein-small molecule systems. I am also not sure if they are transferrable to protein-protein systems where both molecules the ligand and the receptor are expected to have multiscale dynamics that change upon binding.

      Strengths:

      The authors provide beautiful ITC data and smFRET data to explore the conformational changes that occur upon Gln binding. Figure 3D and Figure 4 (mpH2MM data) provide the really critical data. The multi-parameter photon-by-photon hidden Markov modelling (mpH2MM) data. In the presence of glutamine concentrations near the Kd, two FRET-active sub-populations are identified that appear to interconvert on timescales slower than 10 ms. They then do a whole bunch of control experiments to look for faster dynamics (Figure 5). They also do TIRF smFRET to try to compare their results to those of previous publications. Here, they find several artifacts are occurring including inactivation of ~50% of the proteins. They also perform SPR experiments to measure the association rate of Gln and obtain expectedly rapid association rates on the order of 10^8 M-1s-1.

      Weaknesses:

      Looking at the traces presented in the supplementary figures, one can see that several of the traces have more than one molecule present. The authors should make sure that they use only traces with a single photobleaching event for each fluorophore. One can see steps in some of the green traces that indicate two green fluorophors (likely from 2 different molecules) in the traces. This is one of the frequent problems with TIRF smFRET with proteins, that only some of the spots represent single molecules and the rest need to be filtered out of the analysis.

      The NMR experiments that the authors cite are not in disagreement with the work presented here. NMR is capable of detecting "invisible states" that occur in 1-5% of the population. SmFRET is not capable of detecting these very minor states. I am quite sure that if NMR spectroscopists could add very high concentrations of Gln they would also see a conversion to the closed population.

    1. Reviewer #1 (Public Review):

      Summary:

      The paper measures the prevalence and mortality of stroke and its comorbidities across geographic regions in order to find differences in risks that may lead to more effective guidance for these subpopulations. It also does a genetic analysis to look for variants that may drive these phenotypic variations.

      Strengths:

      The data provided here will provide a foundation for a lot of future research into the causes of the observed correlations as well as whether the observed differences in comorbidities across regions have clinically relevant effects on risk management.

      Weaknesses:

      As with any cross-national analysis of rates, the data is vulnerable to differences in classification and reporting across jurisdictions. Furthermore, given the increased death rate from COVID-19 associated with many of these comorbid conditions and the long-term effects of COVID-19 infection on vascular health, it is expected that many of the correlations observed in this dataset will shift along with the shifting health of the underlying populations.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors have analyzed ethnogeographic differences in the comorbidity factors, such as diabetes and heart disease, for the incidences of stroke and whether it leads to mortality.

      Strengths:<br /> The idea is interesting and the data are compelling. The results are technically solid.

      The authors identify specific genetic loci that increase the risk of a stroke and how they differ by region.

      Weaknesses:

      The presentation is not focused. It would be better to include p-values and focus presentation on the main effects of the dataset analysis.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Duilio M. Potenza et al. explores the role of Arginase II in cardiac aging, majorly using whole-body arg-ii knock-out mice. In this work, the authors have found that Arg-II exerts non-cell-autonomous effects on aging cardiomyocytes, fibroblasts, and endothelial cells mediated by IL-1b from aging macrophages. The authors have used arg II KO mice and an in vitro culture system to study the role of Arg II. The authors have also reported the cell-autonomous effect of Arg-II through mitochondrial ROS in fibroblasts that contribute to cardiac aging. These findings are sufficiently novel in cardiac aging and provide interesting insights. While the phenotypic data seems strong, the mechanistic details are unclear. How Arg II regulates the IL-1b and modulates cardiac aging is still being determined. The authors still need to determine whether Arg II in fibroblasts and endothelial contributes to cardiac fibrosis and cell death. This study also lacks a comprehensive understanding of the pathways modulated by Arg II to regulate cardiac aging.

      Strengths:

      This study provides interesting information on the role of Arg II in cardiac aging.

      The phenotypic data in the arg II KO mice is convincing, and the authors have assessed most of the aging-related changes.

      The data is supported by an in vitro cell culture system.

      Weaknesses:

      The manuscript needs more mechanistic details on how Arg II regulates IL-1b and modulates cardiac aging.

      The authors used whole-body KO mice, and the role of macrophages in cardiac aging is not studied in this model. A macrophage-specific arg II Ko would be a better model.

      Experiments need to validate the deficiency of Arg II in cardiomyocytes.

      The authors have never investigated the possibility of NO involvement in this mice model.

      A co-culture system would be appropriate to understand the non-cell-autonomous functions of macrophages.

      The Myocardial infarction data shown in the mice model may not be directly linked to cardiac aging.

    2. Reviewer #2 (Public Review):

      Summary:

      The results from this study demonstrated a cell-specific role of mitochondrial enzyme arginase-II (Arg-II) in heart aging and revealed a non-cell-autonomous effect of Arg-II on cardiomyocytes, fibroblasts, and endothelial cells through the crosstalk with macrophages via inflammatory factors, such as by IL-1, as well as a cell-autonomous effect of Arg-II through mtROS in fibroblasts contributing to cardiac aging phenotype. These findings highlight the significance of non-cardiomyocytes in the heart and bring new insights into the understanding of pathologies of cardiac aging. It also provides new evidence for the development of therapeutic strategies, such as targeting the ArgII activation in macrophages.

      Strengths:

      This study targets an important clinical challenge, and the results are interesting and innovative. The experimental design is rigorous, the results are solid, and the representation is clear. The conclusion is logical and justified.

      Weaknesses:

      The discussion could be extended a little bit to improve the realm of the knowledge related to this study.

    1. Reviewer #1 (Public Review):

      Summary:

      Semenova et al. have studied a large cross-sectional cohort of people living with HIV on suppressive ART, N=115, and performed high dimensional flow cytometry to then search for associations between immunological and clinical parameters and intact/total HIV DNA levels.

      A number of interesting data science/ML approaches were explored on the data and the project seems a serious undertaking. However, like many other studies that have looked for these kinds of associations, there was not a very strong signal. Of course, the goal of unsupervised learning is to find new hypotheses that aren't obvious to human eyes, but I felt in that context, there were (1) results slightly oversold, (2) some questions about methodology in terms mostly of reservoir levels, and (3) results were not sufficiently translated back into meaning in terms of clinical outcomes.

      Strengths:

      The study is evidently a large and impressive undertaking and combines many cutting-edge statistical techniques with a comprehensive experimental cohort of people living with HIV, notably inclusive of populations underrepresented in HIV science. A number of intriguing hypotheses are put forward that could be explored further. Sharing the data could create a useful repository for more specific analyses.

      Weaknesses:

      Despite the detailed experiments and methods, there was not a very strong signal for the variable(s) predicting HIV reservoir size. The Spearman coefficients are ~0.3, (somewhat weak, and acknowledged as such) and predictive models reach 70-80% prediction levels, though sometimes categorical variables are challenging to interpret.

      There are some questions about methodology, as well as some conclusions that are not completely supported by results, or at minimum not sufficiently contextualized in terms of clinical significance.

      On associations: the false discovery rate correction was set at 5%, but data appear underdetermined with fewer observations than variables (144vars > 115ppts), and it isn't always clear if/when variables are related (e.g inverses of one another, for instance, %CD4 and %CD8).

      The modeling of reservoir size was unusual, typically intact and defective HIV DNA are analyzed on a log10 scale (both for decays and predicting rebound). Also sometimes in this analysis levels are normalized (presumably to max/min?, e.g. S5), and given the large within-host variation of level we see in other works, it is not trivial to predict any downstream impact of normalization across population vs within-person.

      Also, the qualitative characterization of low/high reservoir is not standard and naturally will split by early/later ART if done as above/below median. Given the continuous nature of these data, it seems throughout that predicting above/below median is a little hard to translate into clinical meaning.

      Lastly, the work is comprehensive and appears solid, but the code was not shared to see how calculations were performed.

    2. Reviewer #2 (Public Review):

      Summary:

      Semenova et. al., performed a cross-sectional analysis of host immunophenotypes (using flow cytometry) and the peripheral CD4+ T cell HIV reservoir size (using the Intact Proviral DNA Assay, IPDA) from 115 people with HIV (PWH) on ART. The study mostly highlights the machine learning methods applied to these host and viral reservoir datasets but fails to interpret these complex analyses into (clinically, biologically) interpretable findings. For these reasons, the direct translational take-home message from this work is lost amidst a large list of findings (shown as clusters of associated markers) and sentences such as "this study highlights the utility of machine learning approaches to identify otherwise imperceptible global patterns" - lead to overinterpretation of their data.

      Strengths:

      Measurement of host immunophenotyping measures (multiparameter flow cytometry) and peripheral HIV reservoir size (IPDA) from 115 PWH on ART.

      Major Weaknesses:

      (1) Overall, there is little to no interpretability of their machine learning analyses; findings appear as a "laundry list" of parameters with no interpretation of the estimated effect size and directionality of the observed associations. For example, Figure 2 might actually give an interpretation of each X increase in immunophenotyping parameter, we saw a Y increase/decrease in HIV reservoir measure.

      (2) The correlations all appear to be relatively weak, with most Spearman R in the 0.30 range or so.

      (3) The Discussion needs further work to help guide the reader. The sentence: "The correlative results from this present study corroborate many of these studies, and provide additional insights" is broad. The authors should spend some time here to clearly describe the prior literature (e.g., describe the strength and direction of the association observed in prior work linking PD-1 and HIV reservoir size, as well as specify which type of HIV reservoir measures were analyzed in these earlier studies, etc.) and how the current findings add to or are in contrast to those prior findings.

      (4) The most interesting finding is buried on page 12 in the Discussion: "Uniquely, however, CD127 expression on CD4 T cells was significantly inversely associated with intact reservoir frequency." The authors should highlight this in the abstract, and title, and move this up in the Discussion. The paper describes a very high dimensional analysis and the key takeaways are not clear; the more the author can point the reader to the take-home points, the better their findings can have translatability to future follow-up mechanistic and/or validation studies.

      (5) The authors should avoid overinterpretation of these results. For example in the Discussion on page 13 "The existence of two distinct clusters of PWH with different immune features and reservoir characteristics could have important implications for HIV cure strategies - these two groups may respond differently to a given approach, and cluster membership may need to be considered to optimize a given strategy." It is highly unlikely that future studies will be performing the breadth of parameters resulting here and then use these directly for optimizing therapy.

      (6) There are only TWO limitations listed here: cross-sectional study design and the use of peripheral blood samples. (The subsequent paragraph notes an additional weakness which is misclassification of intact sequences by IPDA). This is a very limited discussion and highlights the need to more critically evaluate their study for potential weaknesses.

      (7) A major clinical predictor of HIV reservoir size and decay is the timing of ART initiation. The authors should include these (as well as other clinical covariate data - see #12 below) in their analyses and/or describe as limitations of their study.

    3. Reviewer #3 (Public Review):

      Summary:

      This valuable study by Semenova and colleagues describes a large cross-sectional cohort of 115 individuals on ART. Participants contributed a single blood sample which underwent IPDA, and 25-color flow with various markers (pre and post-stimulation). The authors then used clustering, decision tree analyses, and machine learning to look for correlations between these immunophenotypic markers and several measures of HIV reservoir volume. They identified two distinct clusters that can be somewhat differentiated based on total HIV DNA level, intact HIV DNA level, and multiple T cell cellular markers of activation and exhaustion.

      The conclusions of the paper are supported by the data but the relationships between independent and dependent variables in the models are correlative with no mechanistic work to determine causality. It is unclear in most cases whether confounding variables could explain these correlations. If there is causality, then the data is not sufficient to infer directionality (ie does the immune environment impact the HIV reservoir or vice versa or both?). In addition, even with sophisticated and appropriate machine learning approaches, the models are not terribly predictive or highly correlated. For these reasons, the study is very much hypothesis-generating and will not impact cure strategies or HIV reservoir measurement strategies in the short term.

      Strengths:

      The study cohort is large and diverse in terms of key input variables such as age, gender, and duration of ART. Selection of immune assays is appropriate. The authors used a wide array of bioinformatic approaches to examine correlations in the data. The paper was generally well-written and appropriately referenced.

      Weaknesses:

      (1) The major limitation of this work is that it is highly exploratory and not hypothesis-driven. While some interesting correlations are identified, these are clearly hypothesis-generating based on the observational study design.

      (2) The study's cross-sectional nature limits the ability to make mechanistic inferences about reservoir persistence. For instance, it would be very interesting to know whether the reservoir cluster is a feature of an individual throughout ART, or whether this outcome is dynamic over time.

      (3) A fundamental issue is that I am concerned that binarizing the 3 reservoir metrics in a 50/50 fashion is for statistical convenience. First, by converting a continuous outcome into a simple binary outcome, the authors lose significant amounts of quantitative information. Second, the low and high reservoir outcomes are not actually demonstrated to be clinically meaningful: I presume that both contain many (?all) data points above levels where rebound would be expected soon after interruption of ART. Reservoir levels would also have no apparent outcome on the selection of cure approaches. Overall, dividing at the median seems biologically arbitrary to me.

      (4) The two reservoir clusters are of potential interest as high total and intact with low % intact are discriminated somewhat by immune activation and exhaustion. This was the most interesting finding to me, but it is difficult to know whether this clustering is due to age, time on ART, other co-morbidity, ART adherence, or other possible unmeasured confounding variables.

      (5) At the individual level, there is substantial overlap between clusters according to total, intact, and % intact between the clusters. Therefore, the claim in the discussion that these 2 cluster phenotypes may require different therapeutic approaches seems rather speculative. That said, the discussion is very thoughtful about how these 2 clusters may develop with consideration of the initial insult of untreated infection and / or differences in immune recovery.

      (6) The authors state that the machine learning algorithms allow for reasonable prediction of reservoir volume. It is subjective, but to me, 70% accuracy is very low. This is not a disappointing finding per se. The authors did their best with the available data. It is informative that the machine learning algorithms cannot reliably discriminate reservoir volume despite substantial amounts of input data. This implies that either key explanatory variables were not included in the models (such as viral genotype, host immune phenotype, and comorbidities) or that the outcome for testing the models is not meaningful (which may be possible with an arbitrary 50/50 split in the data relative to median HIV DNA volumes: see above).

      (7) The decision tree is innovative and a useful addition, but does not provide enough discriminatory information to imply causality, mechanism, or directionality in terms of whether the immune phenotype is impacting the reservoir or vice versa or both. Tree accuracy of 80% is marginal for a decision tool.

      (8) Figure 2: this is not a weakness of the analysis but I have a question about interpretation. If total HIV DNA is more predictive of immune phenotype than intact HIV DNA, does this potentially implicate a prior high burden of viral replication (high viral load &/or more prolonged time off ART) rather than ongoing reservoir stimulation as a contributor to immune phenotype? A similar thought could be applied to the fact that clustering could only be detected when applied to total HIV DNA-associated features. Many investigators do not consider defective HIV DNA to be "part of the reservoir" so it is interesting to speculate why these defective viruses appear to have more correlation with immunophenotype than intact viruses.

      (9) Overall, the authors need to do an even more careful job of emphasizing that these are all just correlations. For instance, HIV DNA cannot be proven to have a causal effect on the immunophenotype of the host with this study design. Similarly, immunophenotype may be affecting HIV DNA or the correlations between the two variables could be entirely due to a separate confounding variable.

      (10) In general, in the intro, when the authors refer to the immune system, they do not consistently differentiate whether they are referring to the anti-HIV immune response, the reservoir itself, or both. More specifically, the sentence in the introduction listing various causes of immune activation should have citations. (To my knowledge, there is no study to date that definitively links proviral expression from reservoir cells in vivo to immune activation as it is next to impossible to remove the confounding possible imprint of previous HIV replication.) Similarly, it is worth mentioning that the depletion of intact proviruses is quite slow such that provial expression can only be stimulating the immune system at a low level. Similarly, the statement "Viral protein expression during therapy likely maintains antigen-specific cells of the adaptive immune system" seems hard to dissociate from the persistence of immune cells that were reactive to viremia.

      (11) Given the many limitations of the study design and the inability of the models to discriminate reservoir volume and phenotype, the limitations section of the discussion seems rather brief.

    1. Reviewer #1 (Public Review):

      Summary:

      The current study aims to quantify associations between the regular use of proton-pump inhibitors (PPI) - defined as using PPI most days of the week during the last 4 weeks at one cross-section in time - with several respiratory outcomes up to several years later in time. There are 6 respiratory outcomes included: risk of influenza, pneumonia, COVID-19, other respiratory tract infections, as well as COVID-19 severity and mortality).

      Strengths:

      Several sensitivity analyses were performed, including i) estimation of the e-value to assess how strong unmeasured confounders should be to explain observed effects, ii) comparison with another drug with a similar indication to potentially reduce (but not eliminate) confounding by indication.

      Weaknesses:

      (1) The main exposure of interest seems to be only measured at one time-point in time (at study enrollment) while patients are considered many years at risk afterwards without knowing their exposure status at the time of experiencing the outcome. As indicated by the authors, PPI are sometimes used for only short amounts of time. It seems biologically implausible that an infection was caused by using PPI for a few weeks many years ago.

      (2) Previous studies have shown that by focusing on prevalent users of drugs, one often induces several biases such as collider stratification bias, selection bias through depletion of susceptible, etc.

      (3) It seems Kaplan Meier curves are not adjusted for confounding through e.g. inverse probability weighting. As such the KM curves are currently not informative (or the authors need to make clearer that curves are actually adjusted for measured confounding).

      (4) Throughout the manuscript the authors seem to misuse the term multivariate (using one model with e.g. correlated error terms to assess multiple outcomes at once) when they seem to mean multivariable.

      (5) Given multiple outcomes are assessed there is a clear argument for accounting for multiple testing, which following the logic of the authors used in terms of claiming there is no association when results are not significant may change their conclusions. More high-level, the authors should avoid the pitfall of stating there is evidence of absence if there is only an absence of evidence in a better way (no statistically significant association doesn't mean no relationship exists).

      (6) While the authors claim that the quantitative bias analysis does show results are robust to unmeasured confounding, I would disagree with this. The e-values are around 2 and it is clearly not implausible that there are one or more unmeasured risk factors that together or alone would have such an effect size. Furthermore, if one would use the same (significance) criteria as used by the authors for determining whether an association exists, the required effect size for an unmeasured confounder to render effects 'statistically non-significant' would be even smaller.

      (7) Some patients are excluded due to the absence of follow-up, but it is unclear how that is determined. Is there potentially some selection bias underlying this where those who are less healthy stop participating in the UK biobank?

      (8) Given that the exposure is based on self-report how certain can we be that patients e.g. do know that their branded over-the-counter drugs are PPI (e.g. guardium tablets)? Some discussion around this potential issue is lacking.

      (9) Details about the deprivation index are needed in the main text as this is a UK-specific variable that will be unfamiliar to most readers.

      (10) It is unclear how variables were coded/incorporated from the main text. More details are required, e.g. was age included as a continuous variable and if so was non-linearity considered and how?

      (11) The authors state that Schoenfeld residuals were tested, but don't report the test statistics. Could they please provide these, e.g. it would already be informative if they report that all p-values are above a certain value.

      (12) The authors would ideally extend their discussion around unmeasured confounding, e.g. using the DAGs provided in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832226/, in particular (but not limited to) around severity and not just presence/absence of comorbidities.

      (13) The UK biobank is known to be highly selected for a range of genetic, behavioural, cardiovascular, demographic, and anthropometric traits. The potential problems this might create in terms of collider stratification bias - as highlighted here for example: https://www.nature.com/articles/s41467-020-19478-2 - should be discussed in greater detail and also appreciated more when providing conclusions.

    2. Reviewer #2 (Public Review):

      Summary:

      Zeng et al investigate in an observational population-based cohort study whether the use of proton pump inhibitors (PPIs) is associated with an increased risk of several respiratory infections among which are influenza, pneumonia, and COVID-19. They conclude that compared to non-users, people regularly taking PPIs have increased susceptibility to influenza, pneumonia, as well as COVID-19 severity and mortality. By performing several different statistical analyses, they try to reduce bias as much as possible, to end up with robust estimates of the association.

      Strengths:

      The study comprehensively adjusts for a variety of critical covariates and by using different statistical analyses, including propensity-score-matched analyses and quantitative bias analysis, the estimates of the associations can be considered robust.

      Weaknesses:

      As it is an observational cohort study there still might be bias. Information on the dose or duration of acid suppressant use was not available, but might be of influence on the results. The outcome of interest was obtained from primary care data, suggesting that only infections as diagnosed by a physician are taken into account. Due to the self-limiting nature of the outcome, differences in health-seeking behavior might affect the results.

    1. Reviewer #1 (Public Review):

      The manuscript, "A versatile high-throughput assay based on 3D ring-shaped cardiac tissues generated from human induced pluripotent stem cell-derived cardiomyocytes," developed a unique culture platform with PEG hydrogel that facilitates the in-situ measurement of contractile dynamics of the engineered cardiac rings. The authors optimized the tissue seeding conditions, demonstrated tissue morphology with expressions of cardiac and fibroblast markers, mathematically modeled the equation to derive contractile forces and other parameters based on imaging analysis, and concluded by testing several compounds with known cardiac responses.

      The authors answered my questions with appropriate experiments and explanation.

      (1) This paper presents an intriguing platform that creates miniature cardiac rings with merely thousands of cardiomyocytes per tissue in a 96-well plate format. The shape of the ring and the squeezing motion can recapitulate the contraction of the cardiac chamber to a certain degree. However, Thavandiran et al. (PNAS 2013) created a larger version of the cardiac ring and found that electrical propagation revealed spontaneous infinite loop-like cycles of activation propagation traversing the ring. This model was used to mimic a reentrant wave during arrhythmia. Therefore, there are concerns about whether a large number of cardiac tissues experience arrhythmia due to geometry-induced re-entry current and cannot be used as a healthy tissue model.

      In the new experiment, the authors demonstrated with voltage-sensitive dye that these miniaturized tissues do not experience any arrhythmia, potentially due to their small size.

      (2) The platform can produce 21 cardiac rings per well in 96-well plates, with the throughput being the highest among competing platforms. The resulting tissues exhibit good sarcomere striation due to the strain from the pillars. However, emerging questions pertain to culture longevity and reproducibility among tissues. According to Figure 1E, uneven ring formation around the pillar leads to tissue thinning and breakage. Only 50% survival is observed after 20 days of culture in the optimized seeding group. Are there any strategies to improve this survival rate? Additionally, do the cardiac rings detach from the glass slides and roll up, given the two compartments with cardiac and fibroblast-rich regions where fibroblasts maintain attachment to the glass slides? Moreover, the standard deviation of force measurement is a quarter of the value, which is suboptimal given the high replicate number. As the platform utilizes imaging analysis to derive contractile dynamics, calibration based on the angle and distance of the camera lens to individual tissues should be conducted to reduce error. On the other hand, how reproducible are the pillars? It is highly recommended to mechanically evaluate the consistency of the hydrogel-based pillars across different wells and within wells to understand the variance.

      The authors stated that the platform has been tested and improved with multiple cell lines to enhance tissue survival rates. The methodology of image capture and calculation of contractile dynamics were explained in detail to address concerns. Moreover, the reproducibility of the pillars was demonstrated by consistent results of Young's Modulus (AFM) from each pillar, showing low standard deviations.

      (3) Does the platform allow the observation of non-synchronized beating when testing with compounds? This can be extremely important as the intended applications of this platform are drug testing and cardiac disease modeling. The author should elaborate on the method in the manuscript and explain the obtained results in detail.

      Referring to Question #1, the platform does not present arrythmia potentially due to the small size of the tissue.

      (4) The results of drug testing are interesting. Isoperenoral is typically causing positive chronotropic and positive inotropic responses, where inotropic responses are difficult to obtain due to low tissue maturity. It is inconsistent with other reported results that cardiac rings do not exhibit increased beating frequency, but slightly increased forces only.

      The authors repeated the experiment with the same results and hypothesized that the results would be line-dependent, since the maturation of iPSC-CM is not consistent. The additional dose curves provided more information on the tissue behaviors against well-known compounds.

      Overall, the manuscript is well-written, and the designed platform presents unique advantages for high-throughput cardiac tissue culture. The paper has adequate data to demonstrate the proof-of-concept study of the platform. The throughput, consistency of the tissue, and the potential integration of high-throughput automation would be the highlights of this platform.

    1. Reviewer #1 (Public Review):

      Thermogenic adipocyte activity associate with cardiometabolic health in humans, but decline with age. Identifying the underlying mechanisms of this decline is therefore highly important.

      To address this task, Holman and co-authors present compelling data from their investigations of the effects of two major determinants of thermogenic activity: cold, which induce thermogenic de novo differentiation as well as conversion of dormant thermogenic inguinal adipocytes: and aging, which strongly reduce thermogenic activity. The authors study young and middle-aged mice at thermoneutrality and following cold exposure.

      Using linage tracing, the authors conclude that the older group produce less thermogenic adipocytes from progenitor differentiation. However, they found no differences between thermogenic differentiation capacity between the age groups when progenitors are isolated and differentiated in vitro. This finding is consistent with previous findings in humans, demonstrating that progenitor cells derived from dormant perirenal brown fat of humans differentiate into thermogenic adipocytes in vitro. Taken together, this underscores that age-related changes in the microenvironment rather than autonomous alterations in the ASPCs explain the age related decline in thermogenic capacity, This is an important finding in terms of identifying new approaches to switch dormant adipocytes into an active thermogenic phenotype.

      To gain insight into the age-related changes, the authors use single cell and single nuclei RNA sequencing mapping of their two age groups, comparing thermoneutral and cold conditions between the two groups. Interestingly, where the literature previously demonstrated that de novo lipogenesis (DNL) occurs in relation to thermogenic activation, the authors show that DNL in fact is activated in a white adipocyte cell type, whereas the beige thermogenic adipocytes form a separate cluster.

      Considering recent findings, that adipose tissue contains several subtypes of ASPCs and adipocytes, mapping the changes at single cell resolution following cold intervention provides an important contribution to the field, in particular as an older group with limited thermogenic adaptation is analyzed in parallel with a younger, more responsive group. This model also allowed for detection of microenvironment as a determining factor of thermogenic response.

      The use of only two time points (young and middle-aged) along the aging continuum limits the conclusions that can be made on aging as the only driver of the observed differences between the groups. Furthermore, as the authors also discuss, aging is a complex phenotype, and in this case the older mice were heavier and had larger fat depots, which should be taken into consideration when interpreting the data.

      In conclusion, this study provides an important resource for further studies, which should investigate how the findings can be translated into humans for reactivation of dormant thermogenic fat and a potential improvement of metabolic health.

    2. Reviewer #2 (Public Review):

      This manuscript focused on why aging leads to decreased beiging of white adipose tissue. The authors used an inducible lineage tracing system and provided in vivo evidence that de novo beige adipogenesis from Pdgfra+ adipocyte progenitor cells is blocked during early aging in subcutaneous fat. Single-cell RNA sequencing of adipocyte progenitor cells and in vitro assays showed that these cells have similar beige adipogenic capacities in vitro. Single-cell nucleus RNA sequencing of mature adipocytes indicated that aged mice have more Npr3 high-expressing adipocytes in the subcutaneous fat from aged mice. Meanwhile, adipocytes from aged mice have significantly lower expression of genes involved in de novo lipogenesis, which may contribute to the declined beige adipogenesis.

      The mechanism that leads to age-related impairment of white adipose tissue beiging is not very clear. The finding that Pdgfra+ adipocyte progenitor cells contribute to beige adipogenesis is novel and interesting. It is more intriguing that the aging process represses Pdgfra+ adipocyte progenitor cells from differentiating into beige adipocytes during cold stimulation. Mature adipocytes that have high de novo lipogenesis activity may support beige adipogenesis is also novel and worth further pursuing. The study was carried out with a nice experimental design, and the authors provided sufficient data to support the major conclusions. I only have a few comments that could potentially improve the manuscript.

      (1) It is interesting that after three days of cold exposure, aged mice also have much fewer beige adipocytes. Is de novo adipogenesis involved at this early stage? Or does the previous beige adipocyte that acquired white morphology have a better "reactivation" in young mice? It would be nice if the author could discuss the possibilities.

      (2) Is the absolute number of Pdgfra+ cells decreased in aged mice? It would be nice to include quantifications of the percentage of tomato+ beige adipocytes in total tomato+ cells to reflect the adipogenic rate.

    1. Reviewer #1 (Public Review):

      Summary: In this article, Mirza et al developed a continuum active gel model of actomyosin cytoskeleton that account for nematic order and density variations in actomyosin. Using this model, they identify the requirements for the formation of dense nematic structures. In particular, they show that self-organization into nematic bundles requires both flow-induced alignment and active tension anisotropy in the system. By varying model parameters that control active tension and nematic alignment, the authors show that their model reproduces a rich variety of actomyosin structures, including tactoids, fibres, asters as well as crystalline networks. Additionally, discrete simulations are employed to calculate the activity parameters in the continuum model, providing a microscopic perspective on the conditions driving the formation of fibrillar patterns.

      Strengths: The strength of the work lies in its delineation of the parameter ranges that generate distinct types of nematic organization within actomyosin networks. The authors pinpoint the physical mechanisms behind the formation of fibrillar patterns, which may offer valuable insights into stress fiber assembly. Another strength of the work is connecting activity parameters in the continuum theory with microscopic simulations.

      Weaknesses: This paper is a very difficult read for nonspecialists, especially if you are not well-versed in continuum hydrodynamic theories. Efforts should be made to connect various elements of theory with biological mechanisms, which is mostly lacking in this paper. The comparison with experiments is predominantly qualitative. It is unclear if the theory is suited for in vitro or in vivo actomyosin systems. The justification for various model assumptions, especially concerning their applicability to actomyosin networks, requires a more thorough examination. The classification of different structures demands further justification. For example, the rationale behind categorizing structures as sarcomeric remains unclear when nematic order is perpendicular to the axis of the bands. Sarcomeres traditionally exhibit a specific ordering of actin filaments with alternating polarity patterns. Similarly, the criteria for distinguishing between contractile and extensile structures need clarification, as one would expect extensile structures to be under tension contrary to the authors' claim. Additionally, its unclear if the model's predictions for fiber dynamics align with observations in cells, as stress fibers exhibit a high degree of dynamism and tend to coalesce with neighboring fibers during their assembly phase. Finally, it seems that the microscopic model is unable to recapitulate the density patterns predicted by the continuum theory, raising questions about the suitability of the simulation model.

    2. Reviewer #2 (Public Review):

      Summary:

      The article by Waleed et al discusses the self organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self organized structures can emerge. While the context is interesting, I am not sure whether the physics is new. Hence I have reservations about recommending this article.

      Strengths:

      (i) Analytical calculations complemented with simulations (ii) Theory for cytoskeletal network

      Weaknesses:

      Not placed in the context or literature on active nematics.

    3. Reviewer #3 (Public Review):

      The manuscript "Theory of active self-organization of dense nematic structures in the actin cytoskeleton" analysis self-organized pattern formation within a two-dimensional nematic liquid crystal theory and uses microscopic simulations to test the plausibility of some of the conclusions drawn from that analysis. After performing an analytic linear stability analysis that indicates the possibility of patterning instabilities, the authors perform fully non-linear numerical simulations and identify the emergence of stripe-like patterning when anisotropic active stresses are present. Following a range of qualitative numerical observations on how parameter changes affect these patterns, the authors identify, besides isotropic and nematic stress, also active self-alignment as an important ingredient to form the observed patterns. Finally, microscopic simulations are used to test the plausibility of some of the conclusions drawn from continuum simulations.

      The paper is well written, figures are mostly clear and the theoretical analysis presented in both, main text and supplement, is rigorous. Mechano-chemical coupling has emerged in recent years as a crucial element of cell cortex and tissue organization and it is plausible to think that both, isotropic and anisotropic active stresses, are present within such effectively compressible structures. Even though not yet stated this way by the authors, I would argue that combining these two is of the key ingredients that distinguishes this theoretical paper from similar ones. The diversity of patterning processes experimentally observed is nicely elaborated on in the introduction of the paper, though other closely related previous work could also have been included in these references (see below for examples).

      To introduce the continuum model, the authors exclusively cite their own, unpublished pre-print, even though the final equations take the same form as previously derived and used by other groups working in the field of active hydrodynamics (a certainly incomplete list: Marenduzzo et al (PRL, 2007), Salbreux et al (PRL, 2009, cited elsewhere in the paper), Jülicher et al (Rep Prog Phys, 2018), Giomi (PRX, 2015),...). To make better contact with the broad active liquid crystal community and to delineate the present work more compellingly from existing results, it would be helpful to include a more comprehensive discussion of the background of the existing theoretical understanding on active nematics. In fact, I found it often agrees nicely with the observations made in the present work, an opportunity to consolidate the results that is sometimes currently missed out on. For example, it is known that self-organised active isotropic fluids form in 2D hexagonal and pulsatory patterns (Kumar et al, PRL, 2014), as well as contractile patches (Mietke et al, PRL 2019), just as shown and discussed in Fig. 2. It is also known that extensile nematics, \kappa<0 here, draw in material laterally of the nematic axis and expel it along the nematic axis (the other way around for \kappa>0, see e.g. Doostmohammadi et al, Nat Comm, 2018 "Active Nematics" for a review that makes this point), consistent with all relative nematic director/flow orientations shown in Figs. 2 and 3 of the present work.

      The results of numerical simulations are well-presented. Large parts of the discussion of numerical observations - specifically around Fig. 3 - are qualitative and it is not clear why the analysis is restricted to \kappa<0. Some of the observations resonate with recent discussions in the field, for example the observation of effectively extensile dynamics in a contractile system is interesting and reminiscent of ambiguities about extensile/contractile properties discussed in recent preprints (https://arxiv.org/abs/2309.04224). It is convincingly concluded that, besides nematic stress on top of isotropic one, active self-alignment is a key ingredient to produce the observed patterns.

      I compliment the authors for trying to gain further mechanistic insights into this conclusion with microscopic filament simulations that are diligently performed. It is rightfully stated that these simulations only provide plausibility tests and, within this scope, I would say the authors are successful. At the same time, it leaves open questions that could have been discussed more carefully. For example, I wonder what can be said about the regime \kappa>0 (which is dropped ad-hoc from Fig. 3 onward) microscopically, in which the continuum theory does also predict the formation of stripe patterns - besides the short comment at the very end? How does the spatial inhomogeneous organization the continuum theory predicts fit in the presented, microscopic picture and vice versa?

      Overall, the paper represents a valuable contribution to the field of active matter and, if strengthened further, might provide a fruitful basis to develop new hypothesis about the dynamic self-organisation of dense filamentous bundles in biological systems.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Liu et al. used scRNA-seq to characterize cell type-specific responses during allergic contact dermatitis (ACD) in a mouse model, specifically the hapten-induced DNFB model. Using the scRNA-seq data, they deconvolved the cell types responsible for the expression of major inflammatory cytokines such as IFNG (from CD4 and CD8 T cells), IL4/13 (from basophils), IL17A (from gd T cells), and IL1B from neutrophils and macrophages. They found the highest upregulation of a type 1 inflammatory response, centering around IFNG produced by CD4 and CD8 T cells. They further identified a subpopulation of dermal fibroblasts that upregulate CXCL9/10 during ACD and provided functional genetic evidence in their mouse model that disrupting IFNG signaling to fibroblasts decreases CD8 T cell infiltration and overall inflammation. They identify an increase in IFNG-expressing CD8 T cells in human patient samples of ACD vs. healthy control skin and co-localization of CD8 T cells with PDGFRA+ fibroblasts, which suggests this mechanism is relevant to human ACD. This mechanism is reminiscent of recent work (Xu et al., Nature 2022) showing that IFNG signaling in dermal fibroblasts upregulates CXCL9/10 to recruit CD8 T cells in a mouse model of vitiligo. Overall, this is a very well-presented, clear, and comprehensive manuscript. The conclusions of the study are mostly well supported by data, but some aspects of the work could be improved by additional clarification of the identity of the cell types shown to be involved, including the exact subpopulation discovered by scRNA-seq and the subtype of CD8 T cell involved. The study was limited by its use of one ACD model (DNFB), which prevents an assessment of how broadly relevant this axis is. The human sample validation is slightly circumstantial and limited by the multiplexing capacity of immunofluorescence markers.

      Strengths:

      Through deep characterization of the in vivo ACD model, the authors were able to determine which cell types were expressing the major cytokines involved in ACD inflammation, such as IFNG, IL4/13, IL17A, and IL1B. These analyses are well-presented and thoughtful, showing first that the response is IFNG-dominant, then focusing on deeper characterization of lymphocytes, myeloid cells, and fibroblasts, which are also validated and complemented by FACS experiments using canonical markers of these cell types as well as IF staining. Crosstalk analyses from the scRNA-seq data led the authors to focus on IFNG signaling fibroblasts, and in vitro experiments demonstrate that CXCL9 and CXCL10 are expressed by fibroblasts stimulated by IFNG. In vivo functional genetic evidence demonstrates an important role for IFNG signaling in fibroblasts, as KO of Ifngr1 using Pdgfra-Cre Ifngr1 fl/fl mice, showed a reduction in inflammation and CD8 T cell recruitment.

      Weaknesses:

      The use of one model limits an understanding of how broad this fibroblast-T cell axis is during ACD. However, the authors chose the most commonly employed model and cited additional work in a vitiligo model (another type 1 immune response). The identity of the involved fibroblasts and T cells in the mouse model is difficult to assess as scRNA-seq identified subpopulations of these cell types, but most work in the Pdgfra-Cre Ifngr1 fl/fl mice used broad markers for these cell types as opposed to matched subpopulation markers from their scRNA-seq data. Human patient samples of ACD were co-stained with two markers at a time, demonstrating the presence of CD8+IFNG+ T cells, PDGFRA+CXCL10+ fibroblasts, and co-localization of PDGFRA+ fibroblasts and CD8+ T cells. However, no IF staining demonstrates co-expression of all 4 markers at once; thus, the human validation of co-localization of CD8+IFNG+ T cells and PDGFRA+CXCL10+ fibroblasts is ultimately indirect, although not a huge leap of faith. Although n=3 samples of healthy control and ACD samples are used, there is no quantification of any results to demonstrate the robustness of differences.

    2. Reviewer #2 (Public Review):

      Summary:

      The investigators apply scRNA seq and bioinformatics to identify biomarkers associated with DNFB-induced contact dermatitis in mice. The bioinformatics component of the study appears reasonable and may provide new insights regarding TH1-driven immune reactions in ACD in mice. However, the IF data and images of tissue sections are not clear and should be improved to validate the model.

      Strengths:

      The bioinformatics analysis.

      Weaknesses:

      The IF data presented in 4H, 6H, 7E and 7F are not convincing and need to be correlated with routine staining on histology and different IF markers for PDGFR. Some of the IF staining data demonstrates a pattern inconsistent with its target.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors employed direct RNA sequencing with nanopores, enhanced by 5' end adaptor ligation, to comprehensively interrogate the human transcriptome at single-molecule and nucleotide resolution. They conclude that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Contrary to the literature, they found that, unlike typical RNA decay models in normal conditions, stress-induced RNA decay is dependent on XRN1 but does not depend on the removal of the poly(A) tail. The findings presented are interesting but a substantial amount of work is needed to fully establish these paradigm-shifting findings.

      Strengths:

      These are paradigm-shifting observations using cutting-edge technologies.

      Weaknesses:

      The conclusions do not appear to be fully supported by the data presented.

    2. Reviewer #2 (Public Review):

      In the manuscript "Full-length direct RNA sequencing uncovers stress-granule dependent RNA decay upon cellular stress", Dar, Malla, and colleagues use direct RNA sequencing on nanopores to characterize the transcriptome after arsenite and oxidative stress. They observe a population of transcripts that are shortened during stress. The authors hypothesize that this shortening is mediated by the 5'-3' exonuclease XRN1, as XRN1 knockdown results in longer transcripts. Interestingly, the authors do not observe a polyA-tail shortening, which is typically thought to precede decapping and XRN1-mediated transcript decay. Finally, the authors use G3BP1 knockout cells to demonstrate that stress granule formation is required for the observed transcript shortening.

      The manuscript contains intriguing findings of interest to the mRNA decay community. That said, it appears that the authors at times overinterpret the data they get from a handful of direct RNA sequencing experiments. To bolster some of the statements additional experiments might be desirable.

      A selection of comments:

      (1) Considering that the authors compare the effects of stress, stress granule formation, and XRN1 loss on transcriptome profiles, it would be desirable to use a single-cell system (and validated in a few more). Most of the direct RNAseq is performed in HeLa cells, but the experiments showing that stress granule formation is required come from U2OS cells, while short RNAseq data showing loss of coverage on mRNA 5'ends is reanalyzed from HEK293 cells. It may be plausible that the same pathways operate in all those cells, but it is not rigorously demonstrated.

      (2) An interesting finding of the manuscript is that polyA tail shortening is not observed prior to transcript shortening. The authors would need to demonstrate that their approach is capable of detecting shortened polyA tails. Using polyA purified RNA to look at the status of polyA tail length may not be ideal (as avidity to oligodT beads may increase with polyA tail length and therefore the authors bias themselves to longer tails anyway). At the very least, the use of positive controls would be desirable; e.g. knockdown of CCR4/NOT.

      (3) The authors use a strategy of ligating an adapter to 5' phosphorylated RNA (presumably the breakdown fragments) to be able to distinguish true mRNA fragments from artifacts of abortive nanopore sequencing. This is a fantastic approach to curating a clean dataset. Unfortunately, the authors don't appear to go through with discarding fragments that are not adapter-ligated (presumably to increase the depth of analysis; they do offer Figure 1e that shows similar changes in transcript length for fragments with adapter, compared to Figure 1d). It would be good to know how many reads in total had the adapter. Furthermore, it would be good to know what percentage of reads without adapters are products of abortive sequencing. What percentage of reads had 5'OH ends (could be answered by ligating a different adapter to kinase-treated transcripts). More read curation would also be desirable when building the metagene analysis - why do the authors include every 3'end of sequenced reads (their RNA purification scheme requires a polyA tail, so non-polyadenylated fragments are recovered in a non-quantitative manner and should be discarded).

      (4) The authors should come to a clear conclusion about what "transcript shortening" means. Is it exonucleolytic shortening from the 5'end? They cannot say much about the 3'ends anyway (see above). Or are we talking about endonucleolytic cuts leaving 5'P that then can be attached by XRN1 (again, what is the ratio of 5'P and 5'OH fragments; also, what is the ratio of shortened to full-length RNA)?

      (5) The authors should clearly explain how they think the transcript shortening comes about. They claim it does not need polyA shortening, but then do not explain where the XRN1 substrate comes from. Does their effect require decapping? Or endonucleolytic attacks?

      (6) XRN1 KD results in lengthened transcripts. That is not surprising as XRN1 is an exonuclease - and XRN1 does not merely rescue arsenite stress-mediated transcript shortening, but results in a dramatic transcript lengthening.

    3. Reviewer #3 (Public Review):

      The work by Dar et al. examines RNA metabolism under cellular stress, focusing on stress-granule-dependent RNA decay. It employs direct RNA sequencing with a Nanopore-based method, revealing that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy but is independent of the shortening of the poly(A) tail. This decay, however, is dependent on XRN1 and enriched in the stress granule transcriptome. Notably, inhibiting stress granule formation in G3BP1/2-null cells restores the RNA length to the same level as wild-type. It suppresses stress-induced decay, identifying RNA decay as a critical determinant of RNA metabolism during cellular stress and highlighting its dependence on stress-granule formation.

      This is an exciting and novel discovery. I am not an expert in sequencing technologies or sequencing data analysis, so I will limit my comments purely to biology and not technical points. The PI is a leader in applying innovative sequencing methods to studying mRNA decay.

      One aspect that appeared overlooked is that poly(A) tail shortening per se does lead to decapping. It is shortening below a certain threshold of 8-10 As that triggers decapping. Therefore, I found the conclusion that poly(A) tail shortening is not required for stress-induced decay to be somewhat premature. For a robust test of this hypothesis, the authors should consider performing their analysis in conditions where CNOT7/8 is knocked down with siRNA.

      Similarly, as XRN1 requires decapping to take place, it necessitates the experiment where a dominant-negative DCP2 mutant is over-expressed.

      Are G3BP1/2 stress granules required for stress-induced decay or simply sites for storage? This part seems unclear. A very worthwhile test here would be to assess in XRN1-null background.

      Finally, the authors speculate that the mechanism of stress-induced decay may have evolved to relieve translational load during stress. But why degrade the 5' end when removing the cap may be sufficient? This returns to the question of assessing the role of decapping in this mechanism.

    1. Reviewer #1 (Public Review):

      In this study Cacho-Navas et al. describes the role of ICAM-1 expressed on the apical membrane of bile canaliculi and its function to control the homeostasis of the bile canaliculi (BCs). This is a previously unrecognized function of this protein in hepatocytes. The same authors have previously shown that basolateral ICAM-1 plays a role in controlling lymphocyte adhesion to hepatocytes during inflammation and that this interaction is responsible on the loss of polarity of hepatocytes during the disease.<br /> In this new study they show that ICAM-1, is mainly localized in the apical domain of the BC and in association with EBP-50, comunicates with the subapical acto-myosin ring to regulate the size and morphology of the BC.<br /> In this study they used the well-known immortal cell line of liver cells (HepG2) in which they knocked-out ICAM-1 using CRISPR-Cas9 editing and hepatic organoid derived from WT and ICAM-1-KO mice. alternating knocking-out as well as rescue experiments they show that in the absence of apical ICAM-1, the BC dimension and shape are altered.<br /> The conclusions of the study are sufficiently supported by the data.

      Comments on revision:

      The authors have addressed most of the reviewer's comments in the re-submission, however the use of the organoids as a model to study bile canaliculi is still not convincing.<br /> The HA-4 staining and the space wehere CFDA is secreted does not overlap considering the nuclei position in the middle z-stack section. Also, the interdigitations between cells identified by EM do not form an enclosed space as we should expect for a bile canaliculi.<br /> I understand that other studies have used these organoids to show some hepatocytic functions but at the same time none has characterized before the formation of bile canaliculi as suggested in this study. Therefore a characterization showing the expression of specific markers (i.e mrp2, bsep) should be provided to support this claim.<br /> I would suggest the authors to carefully read the helpful review by Marsee et al., Cell Stem Cell 2021 that clearly and carefully address the classification and validation of liver organoids from experts in the field.

    1. Reviewer #3 (Public Review):

      This study from the Flores group aims at understanding neuronal circuit changes during adolescence which is an ill-defined, transitional period involving dramatic changes in behavior and anatomy. They focus on DA innervation of the prefrontal cortex, and their interaction with the guidance cue Netrin-1. They propose DA axons in the PFC increase in the postnatal period, and their density is reduced in a Netrin 1 knockdown, suggesting that Netrin abets the development of this mesocortical pathway. In such mice impulsivity gauged by a go-no go task is reduced. They then provide some evidence that Unc5c is developmentally regulated in DA axons. Finally they use an interesting hamster model, to study the effect of light hours on mesocortical innervation, and make some interesting observations about the timing of innervation and Unc5c expression, and the fact that females housed in winter day length conditions display an accelerated innervation of the prefrontal cortex.

      Comments on the revision. Several points were addressed; some remain to be addressed.

      4. It's not clear to me that TH doesnt stain noradrenergic axons in the PFC. See Islam and Blaess, 2021, and references therein.

      6. The Netrin knockdown data provided is from a previous study/samples.

      8. While the authors make the argument that the behavior is linked to DA, they still haven't formally tested it, in my opinion.

      13. Fig 3, UNc 5c levels are not yet quantified. Furthermore, I agree with the previous reviewer that Unc5C knockdown would corroborate key aspects of the model.

      New - Developmental trajectory of prefrontal TH-positive axons from early adolescence to adulthood is similar in male and female rats, (Willing Juraska et al., 2017). This needs discussion.

    2. Reviewer #1 (Public Review):

      In this study, Hoops et al. showed that Netrin-1 and UNC5c can guide dopaminergic innervation from nucleus accumbens to cortex during adolescence in rodent models. They found that these dopamine axons project to the prefrontal cortex in a Netrin-1 dependent manner and knocking down Netrin-1 disrupted motor and learning behaviors in mice. Furthermore, the authors used hamsters, a seasonal model that is affected by the length of daylight, to demonstrate that the guidance of dopamine axons is mediated by the environmental factor such as daytime length and in sex dependent manner.

      Regarding the cell type specificity of Netrin-1 expression, the authors began by stating "this question is not the focus of the study and we consider it irrelevant to the main issue we are addressing, which is where in the forebrain regions we examined Netrin-1+ cells are present." This statement contradicts the exact issue regarding the specificity issue I raised. They then went on to show the RNAscope data for Netriin-1 in Figure 2, which showed Netrin-1 mRNA was actually expressed quite ubiquitously in anterior cingulate cortex, dorsopeduncular cortex, infralimbic cortex, prelimbic cortex, etc. In addition, contrary to the authors' statement that Netrin-1 is a "secreted protein", the confocal images in Figure 1 in the rebuttal letter actually show Netrin-1 present in "granule-like" organelles inside the cytoplasm of neurons. Finally, the authors presented Figure 7 to indicate the location where virus expressing Netrin-1 shRNA might be located. Again, the brain region targeted was quite focal and most likely did not cover all the Netrin-1+ brain regions in Figure 2. Collectively, these results raised more questions regarding the specificity of Netrin-1 expression in brain regions that are behaviorally relevant to this study.

      With respect to the effectiveness of Netrin-1 knockdown in the animals in this study, the authors cited data in HEK293 cells (Figure 5), which did not include any statistics, and previously published in vivo data in a separate, independent study (Figure 6). They do not provide any data regarding the effectiveness of Netrin-1 knockdown in THIS study.

      Similar concerns regarding UNC5C knockdown (points #6, #7, and #8) were not adequately addressed.

      In brief, while this study provides a potential role of Netrin-1-UNC5C in target innervation of dopaminergic neurons and its behavioral output in risk-taking, the data lack sufficient evidence to firmly establish the cause-effect relationship.

    3. Reviewer #2 (Public Review):

      In this manuscript, Hoops et al., using two different model systems, identified key developmental changes in Netrin-1 and UNC5C signaling that correspond to behavioral changes and are sensitive to environmental factors that affect the timing of development. They found that Netrin-1 expression is highest in regions of the striatum and cortex where TH+ axons are travelling, and that knocking down Netrin-1 reduces TH+ varicosities in mPFC and reduces impulsive behaviors in a Go-No-Go test. Further, they show that the onset of Unc5 expression is sexually dimorphic in mice, and that in Siberian hamsters, environmental effects on development are also sexually dimorophic. This study addresses an important question using approaches that link molecular, circuit and behavioral changes. Understanding developmental trajectories of adolescence, and how they can be impacted by environmental factors, is an understudied area of neuroscience that is highly relevant to understanding the onset of mental health disorders. I appreciated the inclusion of replication cohorts within the study.

    1. Reviewer #2 (Public Review):

      Summary:

      In this work, Song et al. propose a locus-based framework for performing GWAS and related downstream analyses including finemapping and polygenic risk score (PRS) estimation. GWAS are not sufficiently powered to detect phenotype associations with low-frequency variants. To overcome this limitation, the manuscript proposes a method to aggregate variant impacts on chromatin and transcription across a 4096 base pair (bp) loci in the form of a haplotype function score (HFS). At each locus, an association is computed between the HFS and trait. Computing associations at the level of imputed functional genomic scores enables integration of information across variants spanning the allele frequency spectrum and bolster the power of GWAS.

      The HFS for each locus is derived from a sequence-based predictive model - Sei. Sei predicts 21,907 chromatin and TF binding tracks, which can be projected onto 40 pre-defined sequence classes ( representing promoters, enhancers etc.). For each 4096 bp haplotype in their UKB cohort, the proposed method uses the Sei sequence class scores to derive the haplotype function score (HFS). The authors apply their method to 14 polygenic traits, identifying ~16,500 HFS-trait associations. They finemap these trait-associated loci with SuSie, as well perform target gene/pathway discovery and PRS estimation.

      Strengths:

      Sequence-based deep learning predictors of chromatin status and TF binding have become increasingly accurate over the past few years. Imputing aggregated variant impact using Sei, and then performing an HFS-trait association is therefore an interesting approach to bolster power in GWAS discovery. The manuscript demonstrates that region-level associations can be identified at the level of an aggregated functional score using sequence-based deep learning models. The finemapping and pathway identification analyses suggest that HFS-based associations identify relevant causal pathways and genes from an association study. Identifying associations at the level of functional genomics increases portability of PRSs across populations. Imputing functional genomic predictions using a sequence-based deep learning model does not suffer from the limitation of TWAS where gene expression is imputed from a limited size reference panel such as GTEx and is an interesting direction to bolster discovery power.

      However, a few limitations to this method in its current form are:

      (1) HFS-based association is going to miss coding variation as well as noncoding regulatory variants such as splicing variants/polyadenylation variants which are not modeled by Sei. This will lead to false negatives in the HFS-based association and additionally false negatives + associated false positives in the finemapping. Going forward, it'll therefore be important to characterize how this influences the genome-wide finemapping.

      (2) Sei predicts chromatin status / ChIP-seq peaks in the center of a 4kb region. It is thus not clear therefore whether the functional effects of variants not in the center of the 4kb region would be captured in a single Sei score. It also remains unclear how much the choice of window affects the association tests / finemapping.

      (3) There are going to be cases where there's an association driven by a variant that is correlated with a Sei prediction in a neighboring window. These would represent false positives for the method, it would be useful to identify or characterize these cases.

      Minor Concerns:<br /> (1) Sequence based deep learning model predictions can be miscalibrated for insertions and deletions (INDELs) as compared to SNPs. It'll be important to note that model INDEL scores may not be calibrated, which might also lead to false positives / false negatives in the finemapping.

    2. Reviewer #1 (Public Review):

      Summary:

      In this paper, Song, Shi, and Lin use an existing deep learning-based sequence model to derive a score for each haplotype within a genomic region, and then perform association tests between these scores and phenotypes of interest. The authors then perform some downstream analyses (fine-mapping, various enrichment analyses, building polygenic scores) to ensure that these associations are meaningful. The authors find that their approach allows them to find additional associations, the associations have biologically interpretable enrichments in terms of tissues and pathways, and can slightly improve polygenic scores when combined with standard SNP-based PRS.

      Strengths:

      - I found the central idea of the paper to be conceptually straightforward and an appealing way to use the power of sequence models in an association testing framework.

      - The findings are largely biologically interpretable, and it seems like this could be a promising approach to boost power for some downstream applications.

      Weaknesses:

      - While not a weakness of the manuscript, the proposed method is computationally intensive.

    1. Reviewer #2 (Public Review):

      In this manuscript, Yao et al. present a series of experiments aiming at generating a cellular atlas of the human hippocampus across aging, and how it may be affected by injury, in particular, stroke. Although the aim of the study is interesting and relevant for a larger audience, due to the ongoing controversy around the existence of adult hippocampal neurogenesis in humans, a number or technical weaknesses result in a poor support for many of the conclusions made from the results of these experiments.<br /> In particular, a recent meta analysis of five previous studies applying similar techniques to human samples has identified different aspects of sample size as main determinants of the statistical power needed to make significant conclusions. Some of this aspects are the number of nuclei sequenced and subject stratification. These two aspects are of concern in Yao's study. First, the number of sequenced nuclei is lower than the calculated numbers of nuclei required for detecting rare cell types. However, Yao et al. report succeeding in detecting rare populations, including several types of neural stem cells in different proliferation states, which have been demonstrated to be extremely scarce by previous studies. It would be very interesting to read how the authors interpret these differences. Secondly, the number of donors included in some of the groups is extremely low (n=1) and the miscellaneous information provided about the donors is practically inexistent. As individual factors such as chronic conditions, medication, lifestyle parameters, etc... are considered determinant for the variability of adult hippocampal neurogenesis levels across individuals, this represents a series limitation of the current study. Overall, several technical weaknesses severely limit the relevance of this study and the ability of the authors to achieve their experimental aims.

      After a first review round, the manuscript is still lacking a clear discussion of its several technical limitations, which will help the audience to grasp the relevance of the findings. In particular, detailed information about individual patients health status and relevant lifestyle parameters that may have affected it is lacking. The authors make the point themselves that the discrepancies among studies might be caused by health state differences across hippocampi, which subsequently lead to different degrees of hippocampal neurogenesis." So, even in the authors own interpretation this is a serious limitation to the manuscript, that however out of the authors control, impacts on the quality of their findings.

    2. Reviewer #1 (Public Review):

      In this manuscript, Yao et al. explored the transcriptomic characteristics of neural stem cells (NSCs) in the human hippocampus and their changes under different conditions using single-nucleus RNA sequencing (snRNA-seq). They generated single-nucleus transcriptomic profiles of human hippocampal cells from neonatal, adult, and aging individuals, as well as from stroke patients. They focused on the cell groups related to neurogenesis, such as neural stem cells and their progeny. They revealed genes enriched in different NSC states and performed trajectory analysis to trace the transitions among NSC states and towards astroglial and neuronal lineages in silico. They also examined how NSCs are affected by aging and injury using their datasets and found differences in NSC numbers and gene expression patterns across age groups and injury conditions. One major issue of the manuscript is questionable cell type identification. For example, more than 50% of the cells in the astroglial lineage clusters are NSCs, which is extremely high and inconsistent with classic histology studies.

      While the authors have made efforts to address previous critics, major concerns have not been adequately addressed, including a very limited sample size and patient information. In addition, some analytical approaches are still questionable and the authors acknowledge some issues they cannot address. Therefore, while the topic is interesting, some results are preliminary and some conclusions are not fully supported by the data presented.

    1. Reviewer #2 (Public Review):

      Summary:

      In this study, Ghafari et al. explored the correlation between hemispheric asymmetry in the volume of various subcortical regions and lateralization of posterior alpha band oscillations in a spatial attention task with varying cognitive demands. To this end, they combined structural MRI and task MEG to investigate the relationship between hemispheric differences in volume of basal ganglia, thalamus, hippocampus and amygdala and hemisphere-specific modulation of alpha-band power. The authors report that differences in the thalamus, caudate nucleus and globus pallidus volume are linked to the attention-related changes in alpha band oscillations with differential correlations for different regions in different conditions of the design (depending on the salience of the distractor and/or the target).

      The manuscript contributes to filling an important gap in current research on attention allocation which commonly focuses exclusively on cortical structures. Because it is not possible to reliably measure subcortical activity with non-invasive electrophysiological methods, they correlate volumetric measurements of the relevant subcortical regions with cortical measurements of alpha band power. Specifically, they build on their own previous finding showing a correlation between hemispheric asymmetry of basal ganglia volumes and alpha lateralization by assessing a task without an explicit reward component. Furthermore, the authors use differences in saliency and perceptual load to disentangle the individual contributions of the subcortical regions. These remain somewhat hard to interpret, given their post hoc nature, and the lack of statistical power to compare task demand effects directly, but the results raise interesting new hypotheses for future work.

    2. Reviewer #1 (Public Review):

      Summary:

      The authors re-analysed the data of a previous study in order to investigate the relation between asymmetries of subcortical brain structures and the hemispheric lateralization of alpha oscillations during visual spatial attention. The visual spatial attention task crossed the factors of target load and distractor salience, which made it possible to also test the specificity of the relation of subcortical asymmetries to lateralized alpha oscillations for specific attentional load conditions. Asymmetry of globus pallidus, caudate nucleus, and thalamus explained inter-individual differences in attentional alpha modulation in the left versus right hemisphere. Multivariate regression analysis revealed that the explanatory potential of these regions' asymmetries varies as a function of target load and distractor salience.

      In the revision of the article, the authors addressed my concerns.

      However, my concern with regard to the statistical analysis of the specificity of certain subcortical regions predicting HLM seems to be not fully addressed. The authors added an additional statistical analysis for "testing the null hypothesis that a given regressor does not impact all dependent variables". To my understanding, this is a somewhat unusual definition of a null hypothesis. Typically, the null hypothesis is the hypothesis of no effect, meaning here it should state that the effect is the same across predictors.

      In the new statistical analysis, the authors seem to take non-significant results (p>.05) as evidence for the specificity of subcortical regions in predicting HLM. The rationale of this statistical approach is difficult to follow and was somewhat unclear to me.

      A much simpler and more straight-forward approach would be to contrast beta-estimates per subcortical region between experimental conditions. For instance, if the beta estimates in the thalamus for the "low-load target, non-salient distractor" condition would be significantly larger than the beta estimates for the other conditions, this would speak to specificity.

    1. Reviewer #2 (Public Review):

      Summary:

      This study investigates the neural substrates of syntax variation in Bengalese finch song. Here, the authors tested the effects of bilateral lesions of mMAN, a brain area with inputs to HVC, a premotor area required for song production. Lesions in mMAN induce variability in syntactic elements of song specifically through increased transition entropy, variability within stereotyped song elements known as chunks and increases in the repeat number of individual syllables. These results suggest that mMAN projections to HVC contribute to multiple aspects of song syntax in the Bengalese finch. Overall the experiments are well-designed, the analysis excellent, and the results are of high interest.

      Strengths:

      The study identifies a novel role for mMAN, medial magnocellular nucleus of the anterior nidopallium, in the control of syntactic variation within adult Bengalese finch song. This is of particular interest as multiple studies previously demonstrated that mMAN lesions to do not effect song structure in zebra finches. The study undertakes a thorough analysis to characterise specific aspects of variability within the song of lesioned animals. The conclusions are well supported by the data.

    2. Reviewer #1 (Public Review):

      Summary:

      Songbirds provide a tractable system to examine neural mechanisms of sequence generation and variability. In past work, the projection from LMAN to RA (output of the anterior forebrain pathway) was shown to be critical for driving vocal variability during babbling, learning, and adulthood. LMAN is immediately adjacent to MMAN, which projects to HVC. MMAN is less well understood but, anatomically, appears to resemble LMAN in that it is the cortical output of a BG-thalamocortical loop. Because it projects to HVC, a major sequence generator for both syllable phonology and sequence, a strong prediction would be that MMAN drives sequence variability in the same way that LMAN drives phonological variability. This hypothesis predicts that MMAN lesions in a Bengalese finch would reduce sequence variability. Here, the authors test this hypothesis. They provide a surprising and important result that is well motivated and well analyzed: MMAN lesions increase sequence variability - this is exactly the opposite result from what would be predicted based on the functions of LMAN.

      Strengths:

      (1) A very important and surprising result shows that lesions of a frontal projection from MMAN to HVC, a sequence generator for birdsong, increase syntactical variability.

      (2) The choice of Bengalese finches, which have complex transition structures, to examine the mechanisms of sequence generation, enabled this important discovery.

      (3) The idea that frontal outputs of BG-cortical loops can generate vocal variability comes from lesions/inactivations of a parallel pathway from LMAN to RA. The difference between MMAN and LMAN functions is striking and important.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, L&S investigates the important general question of how humans achieve invariant behavior over stimuli belonging to one category given the widely varying input representation of those stimuli and more specifically, how they do that in arbitrary abstract domains. The authors start with the hypothesis that this is achieved by invariance transformations that observers use for interpreting different entries and furthermore, that these transformations in an arbitrary domain emerge with the help of the transformations (e. g. translation, rotation) within the spatial domain by using those as "scaffolding" during transformation learning. To provide the missing evidence for this hypothesis, L&S used behavioral category learning studies within and across the spatial, auditory and visual domains, where rotated and translated 4-element token sequences had to be learned to categorize and then the learned transformation had to applied in new feature dimensions within the given domain. Through single- and multiple-day supervised training and unsupervised tests, L&S demonstrated by standard computational analyses that in such setups, space and spatial transformations can, indeed, help with developing and using appropriate rotational mapping whereas the visual domain cannot fulfill such a scaffolding role.

      Strengths:

      The overall problem definition and the context of spatial mapping-driven solution to the problem is timely. The general design of testing the scaffolding effect across different domains is more advanced than any previous attempts clarifying the relevance of spatial coding to any other type of representational codes. Once the formulation of the general problem in a specific scientific framework is done, the following steps are clearly and logically defined and executed. The obtained results are well interpretable, and they could serve as a good steppingstone for deeper investigations. The analytical tools used for the interpretations are adequate. The paper is relatively clearly written.

      Weaknesses:

      Some additional effort to clarify the exact contribution of the paper, the link between analyses and the claims of the paper and its link to previous proposals would be necessary to better assess the significance of the results and the true nature of the proposed mechanism of abstract generalization.

      (1) Insufficient conceptual setup: The original theoretical proposal (the Tolman-Eichenbaum-Machine, Whittington et al., Cell 2020) that L&S relate their work proposes that just as in the case of memory for spatial navigation, humans and animal create their flexible relational memory system of any abstract representation by a conjunction code that combines on the one hand, sensory representation and on the other hand, a general structural representation or relational transformation. The TEM also suggest that the structural representation could contain any graph-interpretable spatial relations, albeit in their demonstration 2D neighbor relations were used. The goal of L&S's paper is to provide behavioral evidence for this suggestion by showing that humans use representational codes that are invariant to relational transformations of non-spatial abstract stimuli and moreover, that humans obtain these invariances by developing invariance transformers with the help of available spatial transformers. To obtain such evidence, L&S use the rotational transformation. However, the actual procedure they used actually solved an alternative task: instead of interrogating how humans develop generalizations in abstract spaces, they demonstrated that if one defines rotation in an abstract feature space embedded in visual or auditory modality that is similar to the 2D space (i.e. has two independent dimensions that are clearly segregable and continuous), humans cannot learn to apply rotation of 4-piece temporal sequences in those spaces while they can do it in 2D space, and with co-associating a one-to-one mapping between locations in those feature spaces with locations in the 2D space an appropriate shaping mapping training will lead to successful application of rotation in the given task (and in some other feature spaces in the given domain). While this is an interesting and challenging demonstration, it does not shed light on how humans learn and generalize only that humans CAN do learning and generalization in this, highly constrained scenario. This result is a demonstration of how a stepwise learning regiment can make use of one structure for mapping a complex input into a desired output. The results neither clarify how generalizations would develop in abstract spaces nor the question if this generalization uses transformations developed in the abstract space. The specific training procedure ensures success in the presented experiments but the availability and feasibility of an equivalent procedure in natural setting is a crucial part of validating the original claim and that has not been done in the paper.

      (2) Missing controls: The asymptotic performance in Exp 1 after training in the three tasks was quite different in the three tasks (intercepts 2.9, 1.9, 1.6 for spatial, visual and auditory, respectively; p. 5. para. 1, Fig 2BFJ). It seems that the statement "However, or main question was how participants would generalise learning to novel, rotated exemplars of the same concept." assumes that learning and generalization are independent. Wouldn't it be possible, though, that the level of generalization depends on the level of acquiring a good representation of the "concept" and after obtaining an adequate level of this knowledge, generalization would kick in without scaffolding? If so, a missing control is to equate the levels of asymptotic learning and see whether there is a significant difference in generalization. A related issue is that we have no information what kind of learning in the three different domains were performed, albeit we probably suspect that in space the 2D representation was dominant while in the auditory and visual domains not so much. Thus, a second missing piece of evidence is the model fitting results of the ⦰ condition that would show which way the original sequences were encoded (similar to Fig 2 CGK and DHL). If the reason for lower performance is not individual stimulus difficulty but the natural tendency to encode the given stimulus type by a combo of random + 1D strategy that would clarify that the result of the cross-training is, indeed, transferring the 2D-mapping strategy.

    2. Reviewer #1 (Public Review):

      Summary:

      This manuscript reports a series of experiments examining category learning and subsequent generalization of stimulus representations across spatial and nonspatial domains. In Experiment 1, participants were first trained to make category judgments about sequences of stimuli presented either in nonspatial auditory or visual modalities (with feature values drawn from a two-dimensional feature manifold, e.g., pitch vs timbre), or in a spatial modality (with feature values defined by positions in physical space, e.g., Cartesian x and y coordinates). A subsequent test phase assessed category judgments for 'rotated' exemplars of these stimuli: i.e., versions in which the transition vectors are rotated in the same feature space used during training (near transfer) or in a different feature space belonging to the same domain (far transfer). Findings demonstrate clearly that representations developed for the spatial domain allow for representational generalization, whereas this pattern is not observed for the nonspatial domains that are tested. Subsequent experiments demonstrate that if participants are first pre-trained to map nonspatial auditory/visual features to spatial locations, then rotational generalization is facilitated even for these nonspatial domains. It is argued that these findings are consistent with the idea that spatial representations form a generalized substrate for cognition: that space can act as a scaffold for learning abstract nonspatial concepts.

      Strengths:

      I enjoyed reading this manuscript, which is extremely well written and well presented. The writing is clear and concise throughout, and the figures do a great job of highlighting the key concepts. The issue of generalization is a core topic in neuroscience and psychology, relevant across a wide range of areas, and the findings will be of interest to researchers across areas in perception and cognitive science. It's also excellent to see that the hypotheses, methods and analyses were pre-registered.

      The experiments that have been run are ingenious and thoughtful; I particularly liked the use of stimulus structures that allow for disentangling of one-dimensional and two-dimensional response patterns. The studies are also well powered for detecting effects of interest. The model-based statistical analyses are thorough and appropriate throughout (and it's good to see model recovery analysis too). The findings themselves are clear-cut: I have little doubt about the robustness and replicability of these data.

      Weaknesses:

      In my original review I raised a concern related to a potential alternative interpretation of the findings: the idea that participants have substantial experience of representing space in terms of multiple, independent, and separable dimensions, whereas this may not be the case for the visual and auditory stimuli used here. As I noted in that prior review, on this view "the impact of spatial pre-training and (particularly) mapping is simply to highlight to participants that the auditory / visual stimuli comprise two separable (and independent) dimensions."

      In addressing this point, the authors note that performance in the visual/auditory "mapping" task in Experiments 2c and 3c suggests that most participants were paying attention to both dimensions of auditory and visual stimuli. I agree that seems to have been the case. But there is a difference between making use of information from both dimensions, and realizing that ***the two dimensions are separable and independent*** (which is what is required for rotational generalization in this task).

      As an analogy, suppose I have a task where participants have to map a pillow and a shuttlecock to category A, and a surfboard and a bicycle to category B. A participant could learn to do this just by memorizing the correct response for each item considered as a "whole thing". Or they could realize that the items contain component information, learning that "things with feathers" belong in category A, and "things that can carry people" go in category B. Performance may be the same in both cases, but the underlying process is quite different.

      The "attention to dimensions" account that I advanced in my previous review was referring to something more like the latter (feathers/vehicle) case: that spatial pre-training helps people to understand that items can be decomposed into separable pieces of information. Above-chance performance in the visual-auditory mapping task does not (necessarily) demonstrate this ability because it could reflect memorization of "whole" stimuli rather than reflecting decomposition into separable component parts. I agree that it does at least show that participants were paying attention to and making use of information from both dimensions when making their mapping decisions; it's just that they may not have *realized* that they were using information from two separable dimensions.

    1. Reviewer #1 (Public Review):

      Tu et al investigated how LFPs recorded simultaneously with rsfMRI explain the spatiotemporal patterns of functional connectivity in sedated and awake rats. They find that connectivity maps generated from gamma band LFPs (from either area) explain very well the spatial correlations observed in rsfMRI signals, but that the temporal variance in rsfMRI data is more poorly explained by the same LFP signals. The authors excluded the effects of sedation in this effect by investigating rats in the awake state (a remarkable feat in the MRI scanner), where the findings generally replicate. The authors also performed a series of tests to assess multiple factors (including noise, outliers, and nonlinearity of the data) in their analysis.

      This apparent paradox is then explained by a hypothetical model in which LFPs and neurovascular coupling are generated in some sense "in parallel" by different neuron types, some of which drive LFPs and are measured by ePhys, while others (nNOS, etc.) have an important role in neurovascular coupling but are less visible in Ephys data. Hence the discrepancy is explained by the spatial similarity of neural activity but the more "selective" LFPs picked up by Ephys account for the different temporal aspects observed.

      This is a deep, outstanding study that harnesses multidisciplinary approaches (fMRI and ephys) for observing brain activity. The results are strongly supported by the comprehensive analyses done by the authors, which ruled out many potential sources for the observed findings. The study's impact is expected to be very large.

      There are very few weaknesses in the work, but I'd point out that the 1-second temporal resolution may have masked significant temporal correlations between LFPs and spontaneous activity, for instance, as shown by Cabral et al Nature Communications 2023, and even in earlier QPP work from the Keilholz Lab. The synchronization of the LFPs may correlate more with one of these modes than the total signal. Perhaps a kind of "dynamic connectivity" analysis on the authors' data could test whether LFPs correlate better with the activity at specific intervals. However, this could purely be discussed and left for future work, in my opinion.

    2. Reviewer #2 (Public Review):

      The authors address a question that is interesting and important to the sub-field of rsfMRI that examines electrophysiological correlates of rsfMRI. That is, while electrophysiology-produced correlation maps often appear similar to correlation maps produced from BOLD alone (as has been shown in many papers) is this actually coming from the same source of variance, or independent but spatially-correlated sources of variance? To address this, the authors recorded LFP signals in 2 areas (M1 and ACC) and compared the maps produced by correlating BOLD with them to maps produced by BOLD-BOLD correlations. They then attempt to remove various sources of variance and see the results.

      The basic concept of the research is sound, though primarily of interest to the subset of rsfMRI researchers who use simultaneous electrophysiology. However, there are major problems in the writing, and also a major methodological problem.

      Major problems with writing:

      (1) There is substantial literature on rats on site-specific LFP recording compared to rsfMRI, and much of it already examined removing part of the LFP and examining rsfMRI, or vice versa. The authors do not cover it and consider their work on signal removal more novel than it is.

      (2) The conclusion of the existence of an "electrophysiology-invisible signal" is far too broad considering the limited scope of this study. There are many factors that can be extracted from LFP that are not used in this study (envelope, phase, infraslow frequencies under 0.1Hz, estimated MUA, etc.) and there are many ways of comparing it to the rsfMRI data that are not done in this study (rank correlation, transformation prior to comparison, clustering prior to comparison, etc.). The one non-linear method used, mutual information, is low sensitivity and does not cover every possible nonlinear interaction. Mutual information is also dependent upon the number of bins selected in the data. Previous studies (see 1) have seen similar results where fMRI and LFP were not fully commensurate but did not need to draw such broad conclusions.

      (3) The writing refers to the spatial extent of correlation with the LFP signal as "spatial variance." However, LFP was recorded from a very limited point and the variance in the correlation map does not necessarily reflect underlying electrophysiological spatial distributions (e.g. Yu et al. Nat Commun. 2023 Mar 24;14(1):1651.)

      Major method problem:

      (4) Correlating LFP to fMRI is correlating two biological signals, with unknown but presumably not uniform distributions. However, correlating CC results from correlation maps is comparing uniform distributions. This is not a fair comparison, especially considering that the noise added is also uniform as it was created with the rand() function in MATLAB.

    1. Reviewer #1 (Public Review):

      In this paper, the authors developed an image analysis pipeline to automatically identify individual ‎‎neurons within a population of fluorescently tagged neurons. This application is optimized to deal with ‎‎multi-cell analysis and builds on a previous software version, developed by the same team, to resolve ‎‎individual neurons from whole-brain imaging stacks. Using advanced statistical approaches and ‎‎several heuristics tailored for C. elegans anatomy, the method successfully identifies individual ‎‎neurons with a fairly high accuracy. Thus, while specific to C. elegans, this method can ‎become ‎instrumental for a variety of research directions such as in-vivo single-cell gene expression ‎analysis ‎and calcium-based neural activity studies.‎

    2. Reviewer #2 (Public Review):

      The authors succeed in generalizing the pre-alignment procedure for their cell identification method to allow it to work effectively on data with only small subsets of cells labeled. They convincingly show that their extension accurately identifies head angle, based on finding auto florescent tissue and looking for a symmetric l/r axis. Their demonstrated method works to allow the identification of a particular subset of neurons. Their approach should be a useful one for researchers wishing to identify subsets of head neurons in C. elegans, and the ideas might be useful elsewhere.

      The authors also assess the relative usefulness of several atlases for making identity predictions. They attempt to give some additional general insights on what makes a good atlas, and clearly demonstrate the value of more data. Some insights seem less clear as available data do not allow for experiments that cleanly decouple: 1) the number of examples in the atlas; 2) the completeness of the atlas; and 3) the match in strain and imaging modality discussed. In the presented experiments the custom atlas, besides the strain and imaging modality congruence discussed is also the only complete atlas with more than one example. The main neuroPAL atlas is an imperfect stand-in since a significant fraction of cells could not be identified in these data sets, making it a 60/40 mix of Openworm and a hypothetical perfect neuroPAL comparison. The alternate neuroPal atlases shown in supplemental figure 4 are complete but provide only one point cloud.

      It is striking that in the best available apples to apples match the single data set glr-1 atlas produces qualitatively better results than the single (complete) neuroPAL atlas. This is a clear performance advantage given the ground truth. This is as good an evaluation as is possible given current data however given the inexact nature of assigning ground truth identities I think it is difficult from results to tease out if this is due to strain, imaging conditions or systematically different identifications of cells from different sources.

      The experiments do usefully explore the volume of data needed. Though generalization to other arbitrary cell subsets remains to be shown the insight is useful for future atlas building that for the specific (small) set of cells labeled in the experiments 5-10 examples is sufficient to build an accurate atlas.

    1. Reviewer #1 (Public Review):

      The authors show that concurrently presenting foreign words and their translations during sleep leads to the ability to semantically categorize the foreign words above chance. Specifically, this procedure was successful when stimuli were delivered during slow oscillation troughs as opposed to peaks, which has been the focus of many recent investigations into the learning & memory functions of sleep. Finally, further analyses showed that larger and more prototypical slow oscillation troughs led to better categorization performance, which offers hints to others on how to improve or predict the efficacy of this intervention.

      Comments on the revised version:

      I applaud the authors on a nice rebuttal. Many responses use solid arguments based on the existing literature, such as their response regarding the possibility that low-level acoustic characteristics explaining EEG differences between conditions. Their new analyses also clarify the paper. Additionally, I appreciate their labeling their more speculative claims as such. Below are my remaining thoughts:

      Major point:

      The largest remaining issue for me regards the term 'episodic'. Before I begin, I should say that I imagine the authors have thought considerably about this definition and may disagree with what I will say. That would be fine - it's their choice at this journal. My main point in writing this is to help them clarify their case further. R3 had a similar concern on the first round of review, and I imagine others holding the "traditional" view of episodic memory would be similarly skeptical. If the authors have a great rebuttal to these points, I imagine it will address others' concerns too.<br /> I believe I understand the authors' argument: I read the Henke (2010, Nature Reviews Neuroscience) piece years back with great interest and again now, and I've gone back to read their other papers cited in this manuscript. Again, I applaud the authors on producing a large collection of fascinating findings expanding knowledge of what can be accomplished via unconscious learning. That includes this paper! But I still disagree with the term 'episodic' for what is measured here. The authors state in the Methods section that they prompted participants to 'guess whether the presented pseudoword designates an animal, a tool, or a place'. IMHO, the main issue of using 'episodic' is the nature of the memory representation - 'guessing' does not ask participants anything about the source (the who-what-when-why-where) of the information (anything about an episode).<br /> Notably, it does seem to fit their own definition from Henke (2010). Rapid? I believe so - 4 trial-learning is fairly quick. Certainly, there are studies of supposed episodic memory that use a few rounds of learning the same stimuli (rather than single trial learning) and one can still get away with calling the nature of the memories 'episodic'. Flexible? I believe the authors mean that their task is flexible because participants learn a category exemplar during sleep (e.g., 'aryl'-'bird') but then only respond based on its category membership ('animal'?). If this is the case, I agree that the representations are flexible. Reliant on the 'episodic memory system' (lines 495-9)? Reasonably likely, given their prior findings (e.g., Züst et al., 2019). However, there is considerable data suggesting the hippocampus contributes to functions beyond episodic memory, including statistical learning (e.g., Schapiro et al., 2013, Current Biology), motor learning (e.g., Schendan et al., 2003, Neuron; Dohring et al., 2017, Cortex; Jacobacci et al., 2020, PNAS), attention (e.g., Aly & Turk-Browne, 2016, Cerebral Cortex), perception (e.g., Lee et al., 2012), and semantic memory (e.g., Cutler et al., 2019, Frontiers in Human Neuroscience). Therefore, given that the hippocampus contributes to other tasks too, saying the task is episodic in part because it likely relies on the hippocampus (the 'episodic memory system') is an incorrect reverse inference. But regardless of this concern, it seems true to me that the term fits 'episodic' according to Henke (2010).<br /> So, it seems I'm raising an issue with this entire way of defining memory. IMHO, the biggest issue is that there is no reason to assume the participant relies upon any source-related information in making their guess. There is room in the field for a new type of rapid, unconscious, flexible, hippocampal-dependent learning that does not need to align with the term, 'episodic', for it to be important and fascinating! The term, 'episodic', is convenient for a reason - namely, for labeling the behavioral output of what it measures, not the process that underlies it. The authors have continually made an excellent case for rapid, unconscious, flexible, hippocampal-dependent learning, and it would seem even more beneficial for the field for the authors to just call this its own thing.

      A related point:<br /> - I see that the authors do not use 'episodic' in prior papers with similar tasks (e.g., Züst et al., 2019), and I am curious if anything changed in their thinking or why they use the term now. They can ignore this if they'd like, but it would perhaps give useful context.

      Other points:<br /> IMHO, the issue of repeated tests is more legitimate than the authors suggest. They state in their response letter, "However, recent literature suggests that retrieval practice is only beneficial when corrective feedback is provided (Belardi et al., 2021; Metcalfe, 2017)." This is incorrect. While retrieval practice is often less effective without feedback, it can be effective without feedback if retrieval accuracy is high and if the experimenters later employ a long enough retention interval to witness long-term effects. This is clear in various papers (e.g., Roediger & Karpicke, 2006, Psychological Science; Karpicke & Roediger, 2008, Science) and there is a nice theoretical model explaining how these complex effects could arise (Halamish & Bjork, 2011, JEP:LMC; Kornell et al., 2011, JML). The authors do not heavily rely on this in their paper, but they could consider tempering their claims that it is 'unlikely' (line 509) that delayed retrieval was affected by the first retrieval.<br /> The authors claim that fast spindles are part of a speculative model underlying their learning effects (lines 605-6). However, they did not find any differential spindle effects in determining later performance, so they could consider keeping just points #1&2 or mentioning that spindles differ by condition but may not directly influence the learning effects here.

    2. Reviewer #3 (Public Review):

      This is a revision in response to the reviewer's comments. The authors provided new analyses and try to acknowledge limitations, overall doing a good job, but the interpretation still seems to me going above the available evidence, especially for the claim that it is episodic memory formation during sleep. I still believe the paper will be fairer in dropping this speculative part and omitting the word "episodic" from the title (like actually they did in the abstract). The argument of the authors is that they refer to a computational definition of episodic memory, which is to some extent valid, but I am afraid it is not the way it will be understood by most readers, and it will thus indirectly contribute to an erroneous (or at least, not substantiated) interpretation of the brain's sleeping capabilities.

      My main concern is that I have not seen any proposal for a control condition allowing to exclude the alternative, simpler hypothesis that mere perceptual associations between two elements (foreign word and translation) have been created and stored during sleep (which, I repeat, is already in itself an interesting finding). The authors argue that it seems to them not an efficient processing, but this an opinion, not a demonstration.

    1. Reviewer #1 (Public Review):

      This manuscript from Clayton and co-authors, entitled "Mechanism of dimer selectivity and binding cooperativity of BRAF inhibitors", aims to clarify the molecular mechanism of BRAF dimer selectivity. Indeed, first-generation BRAF inhibitors, targeting monomeric BRAFV600E, are ineffective in treating resistant dimeric BRAF isoforms. Here, the authors employed molecular dynamics simulations to study the conformational dynamics of monomeric and dimeric BRAF, in the presence and absence of inhibitors. Multi-microsecond MD simulations showed an inward shift of the αC helix in the BRAFV600E mutant dimer. This helped in identifying a hydrogen bond between the inhibitors and the BRAF residue Glu501 as critical for dimer compatibility. The stability of the aforementioned interaction seems to be important to distinguish between dimer-selective and equipotent inhibitors.

      The study is overall valuable and robust. The authors used the recently developed particle mesh Ewald constant pH molecular dynamics, a state-of-the-art method, to investigate the correct histidine protonation considering the dynamics of the protein. Then, multi-microsecond simulations showed differences in the flexibility of the αC helix and DFG motif. The dimerization restricts the αC position in the inward conformation, in agreement with the result that dimer-compatible inhibitors can stabilize the αC-in state. Noteworthy, the MD simulations were used to study the interactions between the inhibitors and the protein, suggesting a critical role for a hydrogen bond with Glu501. Finally, simulations of a mixed state of BRAF (one protomer bound to the inhibitor and the other apo) indicate that the ability to stabilize the inward αC state of the apo protomer could be at the basis of the positive cooperativity of PHI1.

      One potential weakness in the manuscript is the lack of reported uncertainties related to the analyzed quantities. Providing this information would significantly enhance the clarity regarding the reliability of the analyses and the confidence in the claims presented.

    2. Reviewer #2 (Public Review):

      The authors employ molecular dynamics simulations to understand the selectivity of FDA-approved inhibitors within dimeric and monomeric BRAF species. Through these comprehensive simulations, they shed light on the selectivity of BRAF inhibitors by delineating the main structural changes occurring during dimerization and inhibitor action. Notably, they identify the two pivotal elements in this process: the movement and conformational changes involving the alpha-C helix and the formation of a hydrogen bond involving the Glu-501 residue. These findings find support in the analyses of various structures crystallized from dimers and co-crystallized monomers in the presence of inhibitors. The elucidation of this mechanism holds significant potential for advancing our understanding of kinase signaling and the development of future BRAF inhibitor drugs.

      The authors employ a diverse array of computational techniques to characterize the binding sites and interactions between inhibitors and the active site of BRAF in both dimeric and monomeric forms. They combine traditional and advanced molecular dynamics simulation techniques such as CpHMD (all-atom continuous constant pH molecular dynamics) to provide mechanistic explanations. Additionally, the paper introduces methods for identifying and characterizing the formation of the hydrogen bond involving the Glu501 residue without the need for extensive molecular dynamics simulations. This approach facilitates the rapid identification of future BRAF inhibitor candidates.

      The use of molecular dynamics yields crucial structural insights and outlines a mechanism to elucidate dimer selectivity and cooperativity in these systems. However, the authors could consider the adoption of free energy methods to estimate the values of hydrogen bond energies and hydrophobic interactions, thereby enhancing the depth of their analysis.

    1. Reviewer #1 (Public Review):

      Zhang et al. tackle the important topic of primate-specific structural features of the brain and the link with functional specialization. The authors explore and compare gyral peaks of the human and macaque cortex through non-invasive neuroimagery, using convincing techniques that have been previously validated elsewhere. They show that nearly 60% of the macaque peaks are shared with humans, and use a multi-modal parcellation scheme to describe the spatial distribution of shared and unique gyral peaks in both species.

      The claim is made that shared peaks are mainly located in lower-order cortical areas whereas unique peaks are located in higher-order regions, however, no systematic comparison is made. The authors then show that shared peaks are more consistently found across individuals than unique peaks, and show a positive but small and non-significant correlation between cross-individual counts of the shared peaks of the human and the macaque i.e. the authors show a non-significant trend for shared peaks that are more consistently found across humans to be those that are also more found across macaques.

      In order to identify if unique and shared peaks could be identified based on the structural features of the cortical regions containing them, the authors compared them with t-tests. A correction for multiple comparisons should be applied and t-values reported. Graph-theoretical measures were applied to functional connectivity datasets (resting-state fMRI) and compared between unique and shared peak regions for each species separately. Again the absence of multiple comparison correction and t-values make the results hard to interpret. The same comment applies to the analysis reporting that shared peaks are surrounded by a larger number of brain regions than unique peaks. Finally, the potentially extremely interesting results about differential human gene expression of shared and unique peaks regions are not systematically reported e.g. the 28 genes identified are not listed and the selection procedure of 7 genes is not fully reported.

      The paper is well written and the methods used for data processing are very compelling i.e. the peak cluster extraction pipeline and cross-species registration.

      Comments on revision:

      The authors have convincingly addressed all my previous concerns such that, as the revised paper stands now, the presented results provide solid support for the conclusions of the authors. The revised paper is now of interest for a large part of the neuroscience community and specifically for those interested in primate-specific structural features of the brain and the link with functional specialization.

    1. Reviewer #1 (Public Review):

      SUMMARY:

      Parkinson's disease (PD) and other synucleinopathies, including Parkinson's Disease Dementia (PDD), Dementia with Lewy Bodies (DLB), and Multiple System Atrophy (MSA), pose significant challenges for early diagnosis, as their clinical manifestations often emerge after substantial neurodegeneration has occurred. In this context, the Alpha-Synuclein Seeding Amplification Assay (SAA) has garnered considerable attention for its potential as a diagnostic tool, capable of detecting pathological forms of alpha-synuclein (αSyn) even before the onset of classical clinical symptoms and signs. The assay exploits αSyn's intrinsic property to convert healthy forms into pathological ones, subsequently amplifying these pathological forms for visualization. This study aims to investigate the efficacy of SAA in accurately identifying subtypes of synucleinopathies, including PD, PDD, DLB, and MSA. To achieve this, the results from the patient brain-derived αSyn SAA are compared with those obtained through conformational stability assays, immunolabeling, and electron microscopy. Study shows that brain-derived αSyn fibrils exhibit significant differences across various synucleinopathies in their conformation, biochemical profile and phosphorylation patterns. Importantly, the SAA method appears to fall short in capturing these distinctions.

      The study's findings are highly relevant given the rapidly advancing landscape of utilizing the SAA for the diagnosis and differentiation of various forms of PD and synucleinopathies using patient biofluids. It is somewhat surprising that the authors primarily characterize SAA as a research tool without delving into its potential as a biomarker detection assay, especially in the context of the field's excitement about its diagnostic applications. Additionally, a missed opportunity lies in not referencing a recent study that employed SAA successfully to diagnose PD and subtype the condition using a vast sample size. To further strengthen the results, the inclusion of healthy control brains in the biochemical and immunostaining/immunoblot experiments would provide more robust comparisons. Overall, the authors have conducted their experiments diligently, and their study offers valuable insights that align with the ongoing efforts to enhance early diagnosis and subtype differentiation in the domain of synucleinopathies.

      STRENGTH:

      The strengths of this research article are indeed notable and contribute to the credibility and significance of the study:

      Important Research Question: The study addresses a crucial question in the field of neurodegenerative diseases by evaluating the effectiveness of the αSyn SAA in diagnosing and differentiating synucleinopathies. This question is of significant clinical and scientific interest.<br /> Comprehensive Introduction: The article provides a thorough and well-structured introduction to the topic with an illustration, setting the stage for the research. It ensures that readers, including those unfamiliar with the subject matter, can grasp the context and significance of the study.<br /> Use of Patient Brain Tissue: The use of patient-derived brain tissue samples from various synucleinopathies, including PD, PDD, DLB, and MSA, enhances the clinical relevance and applicability of the findings.<br /> Replication and Statistical Significance: Conducting the experiments six times for each sample demonstrates the rigor of the study and the robustness of the results, and increases the confidence in the conclusions drawn.<br /> Clarity in Experimental Results and Discussion: The authors have presented the experimental results in a clear and understandable manner. I was personally impressed by images showing twisted and straight conformations of αSyn, as well as immunogold labeling for phosphorylation of αSyn, which aids in conveying the findings effectively to the readers. The results clearly show distinct differences in the characteristics of αSyn fibrils across different synucleinopathies. It also highlights the more aggressive seeding capacities and higher biochemical stability of αSyn in PDD and DLB patients, offering valuable insights into the pathophysiology of these conditions. The authors also clearly show that SAA fails in differentiating the disease types within the synucleinopathies.<br /> Clinical relevance: The study underscores the importance of considering complementary diagnostic methods alongside SAA for a more comprehensive understanding of synucleinopathy subtypes. The study might also play an important role in potential FDA approval of SAA as a diagnostic tool for synucleinopathies, especially for PD.<br /> These strengths collectively make the study a valuable contribution to the field of neurodegenerative diseases, shedding light on the limitations and potential applications of SAA in the diagnosis and differentiation of various synucleinopathies.

      WEAKNESS:

      While this study is overall robust, there are several aspects that could further enhance the quality and interpretation of the findings.

      Clinical Data on Patient Brain Samples: The inclusion of specific details such as post-mortem intervals and the age at disease onset for patient brain samples would be valuable. These factors could significantly affect the quality of the tissues and their relevance to the study. Moreover, given the large variation in disease duration between PD and PDD, it's important to consider disease duration as a potential confounding factor, especially when concluding that PDD patients have a more severe form of synucleinopathy compared to PD.<br /> Inclusion of Healthy Controls in Multiple Tests: Given the importance of healthy controls in scientific studies, especially those involving human brain samples, the authors could consider using healthy controls in more tests to strengthen the robustness of the findings. Expanding the use of healthy controls in biochemical profiling and phosphorylation profiles would provide a better basis for comparison and clarify the significance of results in a disease context.<br /> This will help the authors to elaborate on the interpretation of results, for example, in Figure 3, where the authors claim that PD brains show mostly monomeric αSyn forms (line 119 and 120, and also in 222 and 223). Whether it implies the absence of alpha-syn pathology in PD brains? If there are differences from healthy controls? What are these low molecular weight bands (<15kD) (line 125-126) and whether they are also present in healthy controls? Also, we do not have a perfect pS129-specific (anti-p𝛼Syn) antibody. They are known for non-specific labeling. Investigating the phosphorylation levels in healthy controls and comparing them to PD brains, especially considering the predominance of monomeric (healthy αSyn?) in PD brains, would help clarify the observed changes.<br /> Age of Healthy Controls: Providing information about the age at death for healthy controls is crucial, as age can impact the accumulation of αSyn. Also include if the brain samples were age-matched, or analyses were age-adjusted.<br /> Braak Staging Discrepancy: The study reports the same Braak staging for both PD and PDD, despite the significant difference in disease duration. Maybe other reviewers with clinical experience might have a better take on this. This observation merits discussion in the paper, allowing readers to better understand the implications of this finding.<br /> Citation of Relevant Studies: The paper should consider citing and discussing a recent celebrated study on PD biomarkers that used thousands of cerebrospinal fluid (CSF) samples from different PD patient cohorts to demonstrate the effectiveness of SAA as a biochemical assay for diagnosing PD and its subtypes (https://doi.org/10.1016/S1474-4422(23)00109-6).<br /> In summary, these suggestions aim to enhance the study's quality and the clarity of its findings, ultimately contributing to a more comprehensive understanding of synucleinopathies and the diagnostic potential of SAA.

    2. Reviewer #2 (Public Review):

      Most neurodegenerative diseases are characterized by the self-templated misfolding of a particular protein in a manner that enables progressive spread throughout the central nervous system. In diseases including Parkinson's disease (PD) and multiple system atrophy (MSA), the protein alpha-synuclein misfolds into unique shapes, or strains, which use this self-replicating mechanism to encode disease-specific information. Previous research suggests that a major contributor to the lack of successful clinical trials across neurodegenerative diseases is the lack of disease-relevant strains used in preclinical testing. While MSA patient samples are known to replicate efficiently in cell and mouse models of disease, Lewy body disease (LBD) patient samples do not. To overcome this obstacle, the seeding amplification assay (SAA) uses recombinant alpha-synuclein to amplify the misfolded protein structure present in a human patient sample. The resulting fibrils are then widely used by many laboratories as a model of PD. In this manuscript, Lee et al., set out to compare the strain properties of alpha-synuclein fibrils isolated from LBD and MSA patient samples with the resulting amplified fibrils following SAA. Using orthogonal biochemical and structural approaches to strengthen their analyses, the authors report that the SAA-amplified fibrils do not recapitulate the disease-relevant strains present in the patient samples. Moreover, their data suggest that regardless of which strain is used to seed the SAA reaction, the same strain is generated. These results clearly demonstrate that the SAA-amplified material is not disease-relevant. SAA fibrils are broadly used in academic and pharmaceutical laboratories. They are used in ongoing drug discovery efforts and recombinant fibrils broadly inform much of what is known about alpha-synuclein strain biology in LBD patients. The implications of the reported work are, therefore, expansive. These findings add to the growing ledger of reasons that the use of SAA fibrils in research should be halted until improved methods for amplification with high fidelity are developed.

    3. Reviewer #3 (Public Review):

      Summary:

      This interesting manuscript presents a comparison of biophysical properties, TEM appearances, and phosphorylation patterns of brain-derived synuclein fibrils from 3 subjects each with Parkinson Disease (PD), Parkinson Disease with Dementia (PDD), Dementia with Lewy bodies (DLB) and Multiple System Atrophy (MSA), the effects of studying these brain-derived fibrils in a Seeding Aggregation Assay (SAA), and a comparison of the seeded and resultant fibers. The results are not unexpected.

      Strengths:

      The work explores an important question. Namely, what is the fidelity of synuclein fibrils produced during an SAA reaction to the starting material if that material has been extracted from the brains of deceased patients with synucleinopathies.

      Weaknesses:

      The work suffers from several methodological flaws

      The experiments are missing two important controls. 1) what to fibrils generated by different in vitro fibril preparations made from recombinant synclein protein look like; and 2) the use of CSF from the same patients whose brain tissue was used to assess whether CSF and brain seeds look and behave identically. The latter is perhaps the most important question of all - namely how representative are CSF seeds of what is going on in patients' brains?

      In their discussion the authors do not comment on the obvious differences in the conditions leading to the formation of seeds in the brain and in the artificial conditions of the seeding assay. Why should the two sets of conditions be expected to yield similar morphologies, especially since the extracted fibrils are subjected to harsh conditions for solubilization and re-suspension.

      Finally, the key experiment was not performed - would the resultant seeds from SAA preparations from the different nosological entities produce different pathologies when injected into animal brains? But perhaps this is the subject of a future manuscript.

      Furthermore, the authors comment on phosphorylation patterns, stating that the resultant seeds are less heavy phosphorylated than the original material. Again, this should not be surprising, since the SAA assay conditions are not known to contain the enzymes necessary to phosphorylate synuclein. The discussion of PTMs is limited to pS-129 phosphorylation. What about other PTMs? How does the pattern of PTMs affect the seeding pattern.

      Lastly, the manuscript contains no data on how the diagnostic categories were assigned at autopsy. This information should be included in the supplementary material.

    1. Reviewer #1 (Public Review):

      Summary:

      This is an interesting report examining activity patterns in mouse ACC and in the OFC neurons projecting to ACC. In addition, the effects of inactivation are examined. In aggregate, the results provide new and interesting information about these two brain areas and they translate motivation into action - a function that it seems intuitively plausible that ACC might perform but, despite this intuition, there have been comparatively few direct tests of the idea and little is known of the specific mechanisms. The study is performed carefully and is written up clearly. There were just a few points where I wondered if a little more clarification might be helpful.

      Strengths:

      The combination of recording and inactivation/inhibition experiments and the combination of investigation of ACC neurons and of OFC regions projecting to ACC are very impressive.

      Weaknesses:

      These are all minor points of clarification.

      (1) An important conclusion (Figure 4) is that when mice are trained to run through no reward (N) cues in order to reach reward (R) cues, the OFC neurons projecting to ACC each respond to different specific events in a manner that ensures that collectively they tile the extended behavioural sequence. What I was less sure of was whether the ACC neurons do the same or not. Figure 3 suggests that on average ACC neurons maintain activity across N cues in order to get to R cues but I was not sure whether this was because all individual neurons did this or whether some had activity patterns like the OFC neurons projecting to ACC.

      (2) Figure 1 versus Figure 2: There does not seem to be a particular motivation for whether chemogenetic inactivation or optogenetic inhibition were used in different experiments. I think that this is not problematic but, if I am wrong and there were specific reasons for performing each experiment in a certain way, then further clarification as to why these decisions were made would be useful. If there is no particular reason, then simply explaining that this is the case might stop readers from seeking explanations.

      (3) P5, paragraph 2. The authors argue that OFC and anteriomedial (AM) thalamic inputs into ACC are especially important for mediating motivation through N cues in order to reach R cues. Is this based on a statistical comparison between the activity in OFC or AM inputs as opposed to the other inputs?

      (4) P3, paragraph 2. Some papers by Khalighinejad and colleagues (eg Neuron 2020, Current Biology, 2022) might be helpful here in as much as they assess ACC roles in determining action frequency, initiation, and speed and mediating the relationship between reward availability and action frequency and speed.

      (5) Paragraph 1 "This learning is of a more deliberate, informed nature than habitual learning, as they are sensitive to the current value of outcomes and can lead to a novel sequence of actions for a desired outcome1-3." Should "they" be "it"?

    2. Reviewer #2 (Public Review):

      Summary:

      Regalado et al. studied how an extended motivational state, necessary for maintaining behavioural drive despite unrewarding experiences, could be encoded in the ACC and its potential causal implications for learning discriminatory behaviour and avoiding unrewarding stimuli. They designed a self-initiated learning task and identified bulk neural responses tuned specifically to reward delivery as well as trial initiation. Interestingly, in both cases, neural activity precedes behavioural onset, indicating the encoding of a motivational signal. To investigate the neural encoding of motivational signals during unrewarded, distracting stimuli presentation, they created a discrimination task by introducing 'no reward' cues, during which animals need to learn not to reduce running speed and not engage in licking. Interestingly, with mice learning to increase running speed and reduce licking rates after 'no reward' cues, the preceding ACC activity also gradually increased. Importantly, only the increase in running speed after 'no reward' cues was impaired upon optogenetic inhibition of ACC activity during early training, linking the extended motivational signal in ACC and learning to maximise rewards by actively avoiding distracting and unrewarded stimuli. Such motivational signals could also be observed in OFC-ACC projecting neurons. Especially the continuous ramping of activity upon repeated 'non-reward' cues, which could be exclusively observed in the 'fast learner' subgroup, provides an interesting concept of how an extended motivational signal necessary for learning avoidance of unrewarded stimuli could be implemented in ACC. The shift in the temporal activity of initially reward-responsive neurons towards the preceding 'no reward' cue, provides a potential mechanism linking extended motivation to reward maximisation. This mechanism seems to be particularly important in periods of persistent 'non-reward' cues, as demonstrated in the impairment of running speed increase after two consecutive 'non-reward' cues.

      Appraisal:

      The authors provide convincing experimental evidence to support their claims of an extended motivational signal encoded in the ACC that is implemented by OFC-ACC signalling and critically involved in learning avoidance of unrewarded stimuli. The newly designed task seems appropriate to identify correlates of relevant cognitive and behavioural variables (e.g. sustained motivation). The combination of recording Ca2+ transients (bulk as well as longitudinal single neuron recordings) to identify potential neural responses and subsequent evaluation of their causal role in establishing and maintaining this persistent motivational state using opto- and pharmacogenetic manipulations is generally accepted.

      Impact:

      The findings will be valuable for further research on the impact of motivational states on behaviour and cognition. The authors provided a promising concept of how persistent motivational states could be maintained, as well as established a novel, reproducible task assay. While experimental methods used are currently state-of-the-art, theoretical analysis seems to be incomplete/not extensive.

    1. Reviewer #1 (Public Review):

      Summary:

      Wang and colleagues present a study aimed at demonstrating the feasibility of repeated ultrasound localization microscopy (ULM) recording sessions on mice chronically implanted with a cranial window transparent to ultrasound. They provided quantitative information on their protocol, such as the required number of contrast-enhancing microbubbles (MBs) to get a clear image of the vasculature of a brain coronal section. Also, they quantified the co-registration quality over time-distant sessions and the vasodilator effect of isoflurane.

      Strengths:

      The study showed a remarkable performance in recording precisely the same brain coronal section over repeated imaging sessions. In addition, it sheds light on the vasodilator effect of isoflurane (an anesthetic whose effects are not fully understood) on the different brain vasculature compartments, although, as the authors stated, some insights in this aspect have already been published with other imaging techniques. The experimental setting and protocol are very well described.

      Weaknesses:

      While the title is fair with respect to the data shown, in the summary and the rest of the paper, the comparison between anesthetized and awake conditions is systematically stated, while more caution should be used.

      First, isoflurane is one of the (many) anesthetics commonly used in pre-clinical research, and its effect on the brain vasculature cannot be generalized to all the anesthetics. Indeed, other anesthesia approaches do not produce evident vasodilation; see ketamine + medetomidine mixtures. Second, the imaged awake state is head-fixed and body-constrained in mice. A condition that can generate substantial stress in the animals. In this study, there is no evaluation of the stress level of the mice. In addition, the awake imaging sessions were performed a few minutes after the mouse woke up from isoflurane induction, which is necessary to inject the MB bolus. It is known that the vasodilator effects of isoflurane last a long time after its withdrawal. This aspect would have influenced the results, eventually underestimating the difference with respect to the awake state.

      These limitations should be clearly described in the Discussion.

      Looking at Figure 2e, it takes more than 5' to reach the 5 Millions MB count useful for good imaging. However, the MB count per pixel drops to a few % at that time. This information tells me that (i) repeated measurements are feasible but with limited brain coverage since a single 'wake up' is needed to acquire a single brain section and (ii) this approach cannot fit the requirements of functional ULM that requires to merge the responses to multiple stimuli to get a complete functional image. Of course, a chronic i.v. catheter would fix the issue, but this configuration is not trivial to test in the experimental setup proposed by the authors, hindering the extension of the approach to fULM.

      Statistics are often poor or not properly described. The legend and the text referring to Figure 2 do not report any indication of the number of animals analyzed. I assume it is only one, which makes the findings strongly dependent on the imaging quality of THAT mouse in THAT experiment. Three mice have been displayed in Figure 3, as reported in the text, but it is not clear whether it is a mouse for each shown brain section. Figure 5 reports quantitative data on blood vessels in awake VS isoflurane states but: no indication about the number of tested mice is provided, nor the number of measured blood vessels per type and if statistics have been done on mice or with a multivariate method. Also, a T-test is inappropriate when the goal is to compare different brain regions and blood vessel types. Similar issues partially apply to Figure 6, too.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors present a very interesting collection of methods and results using brain ultrasound localization microscopy (ULM) in awake mice. They emphasize the effect of the level of anesthesia on the quantifiable elements assessable with this technique (i.e. vessel diameter, flow speed, in veins and arteries, area perfused, in capillaries) and demonstrate the possibility of achieving longitudinal cerebrovascular assessment in one animal during several weeks with their protocol.

      Strengths:

      Even if the methods elements considered separately are not new (brain ULM in rodents, setup for longitudinal awake imaging similar to those used in fUS imaging, quantification of vessel diameters/bubble flow/vessel area), when masterfully combined as it is done in this paper, they answer two questions that have been long-running in the community: what is the impact of anesthesia on the parameters measured by ULM (and indirectly in fUS and other techniques)? Is it possible to achieve ULM in awake rodents for longitudinal imaging? The authors answer quite exhaustively the first question. The manuscript is well-constructed and well-written, and the graphics are appealing.

      Weaknesses:

      The only major comment (calling for further work) I would like to make is the relative weakness of the manuscript regarding longitudinal imaging (mostly Figure 6), compared to the exhaustive review of the effect of isoflurane on the vasculature (3 rats, 3 imaging planes, quantification on a large number of vessels, in 9 different brain regions). The 6 cortical vessels evaluated in Figure 6 feel really disappointing. As longitudinal imaging is supposed to be the salient element of this manuscript (first word appearing in the title), it should be as good and trustworthy as the first part of the paper. Figure 6c. is of major importance, and should be supported by a more extensive vessel analysis, including various brain areas, and validated on several animals to validate the robustness of longitudinal positioning with several instances of the surgical procedure. Figure 6d estimates the reliability of flow measurements on 3 vessels only. Therefore I recommend showing something similar to what is done in Figures 4 and 5: 3 animals, and more extensive quantification in different brain regions.

    3. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Wang et al. performed a study looking at vascular changes in response to anesthesia in awake mice using ultrasound localization microscopy (ULM). The authors report a reduction of vascularity and blood flow velocity in the awake state. In addition, they demonstrate the reproducibility of ULM measurements in time.

      Strengths:

      Demonstration that high-quality, state-of-the-art ULM images can be performed using cranial windows in awake animals.<br /> Demonstration that repeated imaging in time produces comparable images.

      Weaknesses:

      It is unclear whether multiple animals were used in the statistical analysis.<br /> Generalizations are sometimes drawn from what seems to be the analysis of a single vessel.<br /> The description of the statistical analysis is mostly qualitative.<br /> Some terms used are insufficiently defined.<br /> Additional limitations should be included in the discussion.<br /> Some technical details are lacking.

      Without information about whether the results obtained come from multiple animals, it is difficult to conclude that the authors generally achieved their aim. They do achieve it in a single animal.

      The results that are shown are interesting and could have an impact on the ULM community and beyond. In particular, the experimental setup they used along with the high reproducibility they report could become very important for the use of ULM in larger animal cohorts.

    1. Reviewer #2 (Public Review):

      The authors combine genetic tools, dye fills and connectome analysis techniques to generate a "first-of-its-kind", near complete, synaptic resolution map of the head bristle neurons of Drosophila. While some of the BMN anatomy was already known based on previous work by the authors and other researchers, this is the first time a near complete map has been created for the head BMNs at electron microscopy resolution.

      Strengths:

      (1) The authors cleverly use techniques that allow moving back and forth between periphery (head bristle location) and brain, as well as moving between light microscopy and electron microscopy data. This allows them to first characterize the pathways taken by different head BMNs to project to the brain and also characterize anatomical differences among individual neurons at the level of morphology and connectivity.<br /> (2) The work is very comprehensive and results in a near complete map of all head BMNs.<br /> (3) Authors also complement this anatomical characterization with a first-level functional analysis using optogenetic activation of BMNs that results in expected directed grooming behavior.

      Weaknesses:<br /> (1) While not strictly needed here, it could help provide context if authors revealed some of the important downstream pathways that could explain optogenetics behavioral phenotypes: This point was addressed by authors in the revisions and I agree a detailed description of downstream circuits is not needed at this point.<br /> (2) In contrast to the rigorous quantitative analysis of the anatomical data, the behavioral data is analyzed using much more subjective methods. While I do not think it is necessary to perform a rigorous analysis of behaviors in this anatomy focused manuscript, the conclusions based on behavioral analysis should be treated as speculative in the current form e.g. calling "nodding + backward motions" as an avoidance response is not justified as it currently stands. Strong optogenetic activation could lead to sudden postural changes that due to purely biomechanical constraints could lead to a couple of backward steps as seen in the example videos. Moreover since the quantification is manual, it is not clear what the analyst interprets as backward walking or nodding. Interpretation is also concerning because controls show backward walking (although in fewer instances based on subjective quantification): This point was addressed by the authors during revisions and I'm mostly satisfied with their response, where authors agree that the behavioral results are currently used to speculate about the role of BMNs in aversive behaviors. Still, the fact that controls show some "backward motions" is a bit concerning when talking about "significant differences" between control and test groups based on manual annotations and I would recommend future studies focusing on these behaviors to use more unbiased quantitative analysis wherever possible.

      Summary:

      The authors end up generating a near-complete map of head BMNs that will serve as a long-standing resource to the Drosophila research community. This will directly shape future experiments aimed at modeling or functionally analyzing the head grooming circuit to understand how somatotopy guides behaviors. I appreciate the authors taking the time to revise the manuscript and address reviewer concerns.

    2. Reviewer #3 (Public Review):

      Eichler et al. set out to catalog the mechanosensory bristles of the fly head in an effort to understand the extent to which their organization is consistent with the parallel model of hierarchical suppression in the context of grooming behavior. They map the locations of the mechanosensory bristles on the fly head, examine the axonal morphology of the bristle mechanosensory neurons (BMNs) that innervate them, and match these to electron microscopy reconstructions of the same BMNs in a previously published EM volume of the female adult fly brain. They use BMN synaptic connectivity information to create clusters of BMNs that they show occupy different regions of the subesophageal zone brain region and use optogenetic activation of subsets of BMNs to evaluate the behaviors evoked by specific activation of BMN subpopulations innervating the head.

      The authors have beautifully cataloged the mechanosensory bristles and the projection paths and patterns of the corresponding BMN axons in the brain using detailed and painstaking methods. The result is a neuroanatomy resource that will be an important community resource. To match BMNs reconstructed in an electron microscopy volume of the adult fly brain, the authors matched clustered reconstructed BMNs with light-level BMN classes observed using precise dye-fills and stochastic labeling techniques. The authors then employ a variety of clustering methods to demonstrate that BMN populations that innervate different regions of the head project into the subesophageal zone and terminate in distinctive yet, in some cases, partially overlapping zones. By clustering BMNs on the basis of their synaptic partners, the authors find that BMNs from distant areas of the head have non-overlapping synaptic partners while those from neighbor areas have overlapping synaptic partners. This result calls into question the scale at which the parallel model of hierarchical suppression may be operating. Finally, the authors use tools that were generated during the light-level characterization of BMN projections to show that activating BMNs that innervate specific areas of the head leads to grooming of the innervated regions and neighboring regions, consistent with the observed overlap in downstream circuits between BMNs innervating neighboring regions of the head. This result suggests that while the parallel model could be operating on a broad scale, additional circuit mechanisms may be operating on a finer scale to produce grooming of the area surrounding the source of mechanosensory input.

      This work will have a positive impact on the field by contributing a complete accounting of the mechanosensory bristles of the fruit fly head, describing the brain projection patterns of the BMNs that innervate them, and linking them to BMN sensory projections in an electron microscopy volume of the adult fly brain. It will also have a positive impact on the field by providing genetic tools to help functionally subdivide the contributions of different BMN populations to circuit computations and behavior. This contribution will pave the way for further mechanistic study of central circuits that subserve grooming circuits.

    1. Reviewer #1 (Public Review):

      Summary:

      The motivating questions are an accurate reflection of the current state of knowledge surrounding striatal pathway function. The comparisons of pathway function across striatal subregion, activation & inhibition, and task context are laudable and extremely important for advancing the subfield. Had these manipulations, to the largest extent possible been performed in single animals (e.g. activate dSPNs of DMS or DLS in the same mouse across the 3 tasks), this would have significantly strengthened the impact and conclusions that could be drawn by making this set of studies even more so internally consistent and directly comparable. While this is no longer possible, a conceptually related and fantastic contribution to the subfield (and likely beyond in terms of Opto manipulations of brain areas) would be to directly demonstrate that within their studies their DMS pathway manipulations do not impact nearby DLS activity (and vice versa). This is a significant and non-essential request. More feasibly and reasonably, it would be fantastic and strengthen the conclusions here to more fully detail their opsin expression patterns in DMS vs DLS groups and perhaps attempt to relate individual opsin profiles and fiberoptic targeting with behavioral outcomes across tests.

      Strengths:

      A comprehensive and paired comparison of inhibition and activation of striatal pathways across subregions and tasks is a very important and meaningful step towards reconciling contradictory results on striatal pathway function that are observed across labs (who typically focus on one subregion, one task setting, and often do not directly report comparisons of activation and inhibition).

      Weaknesses:

      Figure 1A - the example DMS vs DLS opsin expression and fiber targeting are not terribly convincing that the manipulations will be specific to each subregion (the example in Figure 2A is a little better but I have a similar concern still). The specificity of these manipulations is key to interpretation and conclusions and I strongly feel they should be strengthened here. The best evidence would be direct neural recordings (light in DMS, no effect in DLS, and vice versa), but this is a tall ask and not expected. The next best option, which is readily feasible, is to show not only fiberoptic targeting summaries (as in Figure 1A, Figure 2A) but also a summary of opsin spread for all animals (especially given the two examples appear to have significant spread across DMS and DLS). It would be of great benefit to the field to have these in the Allen Common Coordinate Framework. It would also be fine and useful to utilize the authors' current classical histological atlas alignment methods (e.g. Paxinos pdf). These histological summary figures would also benefit from being larger and more visible (perhaps as separate supplemental figures associated with the main figures).

      Related to the above, it is a concern that the classic view is supported or not because of individual variations in virus/fiber targeting to striatal subregions which likely have greater granularity than the traditional dorsal medial vs lateral (e.g. Hunnicutt et al 2016, Foster et al 2021, Hintiryan et al 2016). Although there may not be enough animals or variation in targeting in the present study to find meaningful relationships, it would strengthen the paper and be a great benefit to the field to know whether for key findings if the strength of behavioral effects correlated with anterior/posterior or medial/lateral or dorsal/ventral fiberoptic coordinates (or the volume of opsin expression profiles).

      Conceptually, a clear new idea or integrative interpretation of prior work (nor even the large body of results within this work) comes to the fore, save for the already appreciated fact that the classic view of opposing pathways is sometimes supported and sometimes not. Two tangible suggestions that I believe would facilitate the influence of this study - (1) can the authors more thoughtfully bridge the logical steps in their results sections and the prior context around them (some topic sentences jump right into results, e.g. line 195: "The inhibition experiment showed), and (2) in discussion, rather than emphasizing when/where the classic view is supported and not, more content on precisely why would be helpful. Some questions more specifically, if DMS/DLS pathway activation/inhibition is *mostly* oppositely appetitive/aversive, what does that mean in the context of spontaneous or reward-guided locomotion? Self-initiated pathway activation/inhibition is in part learned (with very intriguing differences across pathways in the expression across learning) - how should we think about striatal pathway function with regards to learning, spontaneous/innate behaviors, vs over-trained behaviors? When the classic view fails in the dorsal striatum - why? And is a complimentary "model" an actual alternative concept, a distinct mode of circuit function, or just a negative result on the classic view?

    2. Reviewer #2 (Public Review):

      Summary:

      Cuevas et al. investigate the involvement of DMS and DLS direct and indirect pathways in locomotion and action selection using optogenetic manipulation techniques. They show that optical excitation of dSPNs in both DMS and DLS induces place preference, with optical inhibition resulting in the opposite effect. Interestingly, and somewhat not coming as a surprise given many previous data on this, optical excitation of iSPNs in both regions resulted in place aversion - in line with the classical view of functional opposition.

      Then, the authors performed a two-choice task in which animals would have to choose between pressing in a lever alone or in a lever+stim to obtain a food reward. Again, and not surprisingly, they show that optical activation of dSPNs results in selection from pressing in the lever+stim with the opposite being observed for iSPN, in both DMS and DLS. What was concerting was the increase in lever pressing when inhibiting dSPNs in the DMS, since before authors show that it should cause aversion. When looking at locomotor effects, the authors report an increase in spontaneous displacement when exciting dSPNs in DMS, and the opposite in DLS. Contrary, the excitation of iSPNs either in DMS or DLS increased spontaneous displacement. In reward-seeking, displacement excitation of either dSPNs or iSPNs in both regions resulted in decreased locomotion.

      Strengths:

      Overall this manuscript brings a new light to the involvement of DLS SPNs in both locomotion and behavioral preference.

      Weaknesses:

      Some of the main claims would benefit from further discussion or new data on the effect of optogenetic manipulation on the activity of SPNs. This could allow for the creation of a clearer picture of the involvement of iSPNs and dSPNs of DMS and DLS for behavior.

    1. Reviewer #1 (Public Review):

      Gazula and co-workers presented in this paper a software tool for 3D structural analysis of human brains, using slabs of fixed or fresh brains. This tool will be included in Freesurfer, a well-known neuroimaging processing software. It is possible to reconstruct a 3D surface from photographs of coronal sliced brains, optionally using a surface scan as model. A high-resolution segmentation of 11 brain regions is produced, independent of the thickness of the slices, interpolating information when needed. Using this method, the researcher can use the sliced brain to segment all regions, without the need of ex vivo MRI scanning.

      The software suite is freely available and includes 3 modules. The first accomplishes preprocessing steps, for correction of pixel sizes and perspective. The second module is a registration algorithm that registers a 3D surface scan obtained prior to sectioning (reference) to the multiple 2D slices. It is not mandatory to scan the surface, -a probabilistic atlas can also be used as reference- however the accuracy is lower. The third module uses machine learning to perform the segmentation of 11 brain structures in the 3D reconstructed volume. This module is robust, dealing with different illumination conditions, cameras, lens and camera settings. This algorithm ("Photo-SynthSeg") produces isotropic smooth reconstructions, even in high anisotropic datasets (when the in-plane resolution of the photograph is much higher than the thickness), interpolating the information between slices.

      To verify the accuracy and reliability of the toolbox, the authors reconstructed 3 datasets, using real and synthetic data. Real data of 21 postmortem confirmed Alzheimer's disease cases from the Massachusetts Alzheimer's Disease Research Center (MADRC)and 24 cases from the AD Research at the University of Washington(who were MRI scanned prior to processing)were employed for testing. These cases represent a challenging real-world scenario. Additionally, 500 subjects of the Human Connectome project were used for testing error as a continuous function of slice thickness. The segmentations were performed with the proposed deep-learning new algorithm ("Photo-SynthSeg") and compared against MRI segmentations performed to "SAMSEG" (an MRI segmentation algorithm, computing Dice scores for the segmentations. The methods are sound and statistically showed correlations above 0.8, which is good enough to allow volumetric analysis. The main strengths of the methods are the datasets used (real-world challenging and synthetic) and the statistical treatment, which showed that the pipeline is robust and can facilitate volumetric analysis derived from brain sections and conclude which factors can influence in the accuracy of the method (such as using or not 3D scan and using constant thickness).

      Although very robust and capable of handling several situations, the researcher has to keep in mind that processing has to follow some basic rules in order for this pipeline to work properly. For instance, fiducials and scales need to be included in the photograph, and the slabs should be photographed against a contrasting background. Also, only coronal slices can be used, which can be limiting for certain situations.

      The authors achieved their aims, and the statistical analysis confirms that the machine learning algorithm performs segmentations comparable to the state-of-the-art of automated MRI segmentations.<br /> Those methods will be particularly interesting to researchers who deal with post-mortem tissue analysis and do not have access to ex vivo MRI. Quantitative measurements of specific brain areas can be performed in different pathologies and even in the normal aging process. The method is highly reproducible, and cost-effective since allows the pipeline to be applied by any researcher with small pre-processing steps.

    2. Reviewer #2 (Public Review):

      Summary

      The authors proposed a toolset Photo-SynthSeg to the software FreeSurfer which performs 3D reconstruction and high-resolution 3D segmentation on a stack of coronal dissection photographs of brain tissues. To prove the performance of the toolset, three experiments were conducted, including volumetric comparison of brain tissues on AD and HC groups from MADRC, quantitative evaluation of segmentation on UW-ADRC and quantitative evaluation of 3D reconstruction on HCP digitally sliced MRI data.

      Strengths

      To guarantee the successful workflow of the toolset, the authors clearly mentioned the prerequisites of dissection photograph acquisition, such as fiducials or rulers in the photos and tissue placement of brain slices with more than one connected component. The quantitative evaluation of segmentation and reconstruction on synthetic and real data demonstrates the accuracy of the methodology. Also, the successful application of this toolset on two brain banks with different slice thicknesses, tissue processing and photograph settings demonstrates its robustness. By working with tools of the SynthSeg pipeline, Photo-SynthSeg could further support volumetric cortex parcellation. The toolset also benefits from its adaptability of different 3D references, such as surface scan, ex vivo MRI and even probabilistic atlas, suiting the needs for different brain banks.

      Weaknesses

      Certain weaknesses are already covered in the manuscript. Cortical tissue segmentation could be further improved. The quantitative evaluation of 3D reconstruction is quite optimistic due to random affine transformations. Manual edits of slice segmentation task are still required and take a couple of minutes per photograph. Finally, the current toolset only accepts coronal brain slices and should adapt to axial or sagittal slices in future work.

    1. Reviewer #1 (Public Review):

      The authors have developed and optimized a footprinting assay to monitor the recruitment of mRNAs to a reconstituted translation initiation system. This assay is named Recruitment-Sequencing (Rec-Seq) and enables the analysis of many purified mRNAs in the reconstituted system.

      This system possesses the ability to determine how competition occurs between mRNAs for the initiation machinery. This is the first approach using a reconstituted system that enables this important feature, and this is an important advance for the field.

      Using purified mRNAs in a fully reconstituted system together with the ability to monitor start site selection is an important advance. The method enables one to observe for the first time how competition between mRNAs is altered in response to the absence or presence of different initiation components or accessory proteins.

      Start site fidelity in purified reconstituted systems can be altered in different buffer conditions and by the concentration of various initiation factors involved in start site fidelity. Future experiments will reveal how these variables can regulate start site selection in this powerful system.

      Comments on revised version:

      The authors have addressed all of my original comments. This is an impressive manuscript.

    2. Reviewer #2 (Public Review):

      Summary:

      Zhou et al report development of a new method, Rec-Seq, that allows rigorous quantitation of the efficiency of 48S ribosomal pre-initiation complex (PIC) formation on messenger RNAs at transcriptome scale in vitro. With a next-generation deep-sequencing approach, Rec-Seq allows precisely targeted dissection of the roles of translation initiation factors in PIC assembly. This level of molecular precision is important to understanding mechanisms of translational control, making Rec-Seq a significant methodological advance. The authors leverage Rec-Seq to investigate the relative roles of two key helicase enzymes, Ded1p and eIF4A. While past work has pointed to differing roles for Ded1p and eIF4A helicase activity in PIC assembly, unambiguous interpretation of prior in-vivo data has been hindered by technical requirements for performing the experiments in cells. Rec-Seq circumvents these challenges, providing robust mechanistic insights. The authors find that Ded1p stimulates PIC formation selectively on mRNAs with long, structured leaders in the Rec-Seq system, while eIF4A provides much more general stimulation across mRNAs. The findings substantiate the past in-vivo results, along with adding new insights. They contrast with evidence that Ded1p promotes translation by suppressing inhibitory upstream initiation through structural remodeling, or through formation of intracellular, phase-separated granules. The conclusions of the study are well-supported by the data, and are likely to be of broad interest.

      Strengths:

      The quantitative nature of Rec-Seq, which uses an internal standard to measure absolute recruitment efficiencies, is an important strength.

      The methodology decisively overcomes past experimental limitations, allowing the authors to make clear conclusions with regard to the relative roles of Ded1p and eIF4A in PIC formation. An important and useful addition to the toolbox for studying translation and translational control mechanisms, Rec-Seq substantially expands the throughput and scope of mechanistic analyses for translation initiation.

      One significant finding to emerge is that the in-vitro reconstituted system used here recapitulates effects of in-vivo perturbations of translation initiation. Despite the lack of a cellular environment and its components, PIC formation appears to operate much as it does in the cell. Importantly, this highlights an inherent "modularity" to the system that is especially of interest in the context of how regulatory machinery beyond the PIC may control translation.

      Weaknesses:

      The study finds that Ded1p stimulates accumulation of PICs at internal AUG codons, i.e., within mRNA coding sequences, at an incidence of up to ~50% - thus, bypassing "canonical" translation start sites. Understanding the physiological significance of this activity will require further study. The authors address this in the text.

      A limitation of the methodology is that, as an endpoint assay, Rec-Seq does not readily decouple effects of Ded1p on PIC-mRNA loading from those on the subsequent scanning step where the PIC locates the start codon. Considering that Ded1p activity may influence each of these initiation steps through distinct mechanisms - i.e., binding to the mRNA cap-recognition factor eIF4F, or direct mRNA interaction outside eIF4F - additional studies will be needed to gain deeper mechanistic insights. The authors discuss this in the text.

      Comments on revised version:

      In revising their manuscript, the authors have responded very thoughtfully and insightfully to the initial review. The final manuscript is an important contribution to the field, and I am sure it will be of broad interest.

    1. Reviewer #1 (Public Review):

      Summary:

      The CPC plays multiple essential roles in mitosis such as kinetochore-microtubule attachment regulation, kinetochore assembly, spindle assembly checkpoint activation, anaphase spindle stabilization, cytokinesis, and nuclear envelope formation, as it dynamically changes its mitotic localization: it is enriched at inner centromeres from prophase to metaphase but it is relocalized at the spindle midzone in anaphase. The business end of the CPC is Aurora B and its allosteric activation module IN-box, which is located at the C-terminus of INCENP. In most well-studied eukaryotic species, Aurora B activity is locally controlled by the localization module of the CPC, Survivin, Borealin and the N-terminal portion of INCENP. Survivin and Borealin, which bind the N-terminus of INCENP, recognize histone residues that are specifically phosphorylated in mitosis, while anaphase spindle midzone localization is supported by the direct microtubule-binding capacity of the SAH (single alpha helix) domain of INCENP and other microtubule-binding proteins that specifically interact with INCENP during anaphase, which are under the regulation of CDK activity. One of these examples includes the kinesin-like protein MKLP2 in vertebrates. Trypanosoma is an evolutionarily interesting species to study mitosis since its kinetochore and centromere proteins do not show any similarity to other major branches of eukaryotes, while orthologs of Aurora B and INCENP have been identified. Combining molecular genetics, imaging, biochemistry, cross-linking IP-MS (IP-CLMS), and structural modeling, this manuscript reveals that two orphan kinesin-like proteins KIN-A and KIN-B act as localization modules of the CPC in Trypanosoma brucei. The IP-CLMS, AlphaFold2 structural predictions, and domain deletion analysis support the idea that (1) KIN-A and KIN-B form a heterodimer via their coiled-coil domains, (2) Two alpha helices of INCENP interact with the coiled-coil of the KIN-A-KIN-B heterodimer, (3) conserved KIN-A C-terminal CD1 and CD2 interact with the heterodimeric KKT9-KKT11 complex, which is a submodule of the KKT7-KKT8 kinetochore complex composed of KKT7, KKT8, KKT9, KKT11, and KKT12 unique to Trypanosoma, (4) KIN-A and KIN-B coiled-coil domains and the KKT7-KKT8 complex are required for CPC localization at the centromere, (5) CD1 and CD2 domains of KIN-A support its centromere localization. The authors further introduced a KIN-A rigor mutant and knocked-down wild-type KIN-A to show that the ATPase activity of KIN-A seems dispensable for centromere targeting but critical for spindle midzone enrichment of the CPC. The imaging data of the KIN-A rigor mutant suggest that dynamic KIN-A-microtubule interaction is required for metaphase alignment of the kinetochores and proliferation. Overall, the study reveals novel pathways of CPC localization regulation via KIN-A and KIN-B by multiple complementary approaches.

      Strengths:

      The major conclusion is collectively supported by multiple approaches, combining CRISPR-mediated gene deletion and complementation/site specific genome engineering, epistasis analysis of cellular localization, AlphaFold2 structure prediction of protein complexes, IP-CLMS and biochemical reconstitution (the complex of KKT8, KKT9, KKT11 and KKT12)

      Weaknesses:

      Minor weakness. The authors imply that KIN-A, but not KIN-B, interacts with microtubules based on microtubule pelleting assay (Fig. S6), but the substantial insoluble fractions of 6HIS-KINA and 6HIS-KIN-B make it difficult to conclusively interpret the data. It is possible that these two proteins are not stable unless they form a heterodimer.

    2. Reviewer #2 (Public Review):

      How the chromosomal passenger complex (CPC) and its subunit Aurora B kinase regulate kinetochore-microtubule attachment, and how the CPC relocates from kinetochores to the spindle midzone as a cell transitions from metaphase to anaphase are questions of great interest. In this study, Ballmer and Akiyoshi take a deep dive into the CPC in T. brucei, a kinetoplastid parasite with a kinetochore composition that varies greatly from other organisms.

      Using a combination of approaches, most importantly in silico protein predictions using alphafold multimer and light microscopy in dividing T. brucei, the authors convincingly present and analyse the composition of the T. brucei CPC. This includes the identification of KIN-A and KIN-B, proteins of the kinesin family. This is a clear advancement over earlier work, for example by Li and colleagues in 2008. The involvement of KIN-A and KIN-B is of particular interest, as it provides a clue for the (re)localization of the CPC during the cell cycle. The evolutionary perspective makes the paper potentially interesting for a wide audience of cell biologists, a point that the authors bring across properly in the title, the abstract, and their discussion.

      The evolutionary twist of the paper would be strengthened 'experimentally' by predictions of the structure of the CPC beyond T. brucei. Depending on how far the authors can extend their in-silico analysis, it would be of interest to discuss a) available/predicted CPC structures in well-studied organisms and b) structural predictions in other euglenozoa. What are the general structural properties of the CPC (e.g. flexible linkers, overall dimensions, structural differences when subunits are missing etc.)? How common is the involvement of kinesin-like proteins?

    3. Reviewer #3 (Public Review):

      Summary:

      The protein kinase, Aurora B, is a critical regulator of mitosis and cytokinesis in eukaryotes, exhibiting a dynamic localisation. As part of the Chromosomal Passenger Complex (CPC), along with the Aurora B activator, INCENP, and the CPC localisation module comprised of Borealin and Survivin, Aurora B travels from the kinetochores at metaphase to the spindle midzone at anaphase, which ensures its substrates are phosphorylated in a time- and space-dependent manner. In the kinetoplastid parasite, T. brucei, the Aurora B orthologue (AUK1), along with an INCENP orthologue known as CPC1, and a kinetoplastid-specific protein CPC2, also displays a dynamic localisation, moving from the kinetochores at metaphase, to the spindle midzone at anaphase, to the anterior end of the newly synthesised flagellum attachment zone (FAZ) at cytokinesis. However, the trypanosome CPC lacks orthologues of Borealin and Survivin, and T. brucei kinetochores also have a unique composition, being comprised of dozens of kinetoplastid-specific proteins (KKTs). Of particular importance for this study are KKT7 and the KKT8 complex (comprising KKT8, KKT9, KKT11, and KKT12). Here, Ballmer and Akiyoshi seek to understand how the CPC assembles and is targeted to its different locations during the cell cycle in T. brucei.

      Strengths & Weaknesses:

      Using immunoprecipitation and mass-spectrometry approaches, Ballmer and Akiyoshi show that AUK1, CPC1, and CPC2 associate with two orphan kinesins, KIN-A and KIN-B, and with the use of endogenously expressed fluorescent fusion proteins, demonstrate for the first time that KIN-A and KIN-B display a dynamic localisation pattern similar to other components of the CPC, providing compelling evidence for KIN-A and KIN-B being bona fide CPC proteins.

      They then demonstrate, by using RNAi to deplete individual components, that the CPC proteins have hierarchical interdependencies for their localisation to the kinetochores at metaphase. These experiments appear to have been well performed.

      Ballmer and Akiyoshi then go on to determine the kinetochore localisation domains of KIN-A and KIN-B. Using ectopically expressed GFP-tagged truncations, they show that coiled coil domains within KIN-A and KIN-B, as well as a disordered C-terminal tail present only in KIN-A, but not the N-terminal motor domains of KIN-A or KIN-B, are required for kinetochore localisation. These data are strengthened by immunoprecipitating CPC complexes and crosslinking them prior to mass spectrometry analysis (IP-CLMS), a state-of-the-art approach, to determine the contacts between the CPC components. Structural predictions of the CPC structure are also made using AlphaFold2, suggesting that coiled coils form between KIN-A and KIN-B, and that KIN-A/B interact with the N termini of CPC1 and CPC2. Experimental results showing that CPC1 and CPC2 are unable to localise to kinetochores if they lack their N-terminal domains are consistent with these predictions. Altogether these data provide compelling evidence of the protein domains required for CPC kinetochore localisation and CPC protein interactions and indicate that both KIN-A and KIN-B have a role to play.

      Next, using a mixture of RNAi depletion and LacI-LacO recruitment experiments, the authors show that kinetochore proteins KKT7 and KKT9 are required for AUK1 to localise to kinetochores (other KKT8 complex components were not tested here) and that all components of the KKT8 complex are required for KIN-A kinetochore localisation. Further, both KKT7 and KKT8 were able to recruit AUK1 to an ectopic locus in S phase, and KKT7 recruited KKT8 complex proteins, indicating it is upstream of KKT8, in line with previous work showing kinetochore localization of KKT7 is unaffected by disruption of the KKT8 complex. This leads to the conclusion that the KKT8 complex is likely the main kinetochore receptor of the CPC.

      Further IP-CLMS experiments, in combination with recombinant protein pull down assays and structural predictions, suggested that within the KKT8 complex, there are two subcomplexes of KKT8:KKT12 and KKT9:KKT11, and that KKT7 interacts with KKT9:KKT11 to recruit the remainder of the KKT8 complex. The authors also assess the interdependencies between KKT8 complex components for localisation and expression, showing that all four subunits are required for the assembly of a stable KKT8 complex and present AlphaFold2 structural modelling data to support the two subcomplex model. In general, these data are of high quality and convincing, although it is a shame that data showing the effects of KKT8, KKT9 and KKT12 depletion on KKT11 localisation and abundance could not be presented alongside the reciprocal experiments in Fig S4I-L.

      The authors also convincingly show that AlphaFold2 predictions of interactions between KKT9:KKT11 and a conserved domain (CD1) in the C-terminal tail of KIN-A are correct, with CD1 and a second conserved domain, CD2, identified through sequence analysis, acting synergistically to promote KIN-A kinetochore localisation at metaphase, but not being required for KIN-A to move to the central spindle at anaphase. They then hypothesise that the kinesin motor domain of KIN-A (but not KIN-B which is predicted to be inactive based on non-conservation of residues key for activity) determines its central spindle localisation at anaphase through binding to microtubules. In support of this hypothesis, the authors show that KIN-A, but not KIN-B can bind microtubules in vitro and in vivo. However, ectopically expressed GFP-NLS fusions of full length KIN-A or KIN-A motor domain did not localise to the central spindle at anaphase. The authors suggest this is due to the GFP fusion disrupting the ATPase activity of the motor domain, although they provide no evidence that this is the case. Instead, they replace endogenous KIN-A with a predicted ATPase-defective mutant (G210A), showing that while this still localises to kinetochores, the kinetochores were frequently misaligned at metaphase, and that it no longer concentrates at the central spindle (with concomitant mis-localisation of AUK1), causing cells to accumulate at anaphase. From these data, the authors conclude that KIN-A ATPase activity is required for chromosome congression to the metaphase plate and its central spindle localisation at anaphase. While these data are highly suggestive that KIN-A possesses ATPase activity, and that this activity is essential for its function, definitive biochemical evidence of KIN-A's ATPase activity is still lacking.

      Impact:

      Overall, this work uses a wide range of cutting edge molecular and structural predictive tools to provide a significant amount of new and detailed molecular data that shed light on the composition of the unusual trypanosome CPC and how it is assembled and targeted to different cellular locations during cell division. Given the fundamental nature of this research, it will be of interest to many parasitology researchers as well as cell biologists more generally, especially those working on aspects of mitosis and cell division, and those interested in the evolution of the CPC.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a follow-up study to the authors' previous eLife report about the roles of an alpha-arrestin called protein thioredoxin interacting protein (Txnip) in cone photoreceptors and in the retinal pigment epithelium. The findings are important because they provide new information about the mechanism of glucose and lactate transport to cone photoreceptors and because they may become the basis for therapies for retinal degenerative diseases.

      Strengths:

      Overall, the study is carefully done and, although the analysis is fairly comprehensive with many different versions of the protein analyzed, it is clearly enough described to follow. Figure 4 greatly facilitated my ability to follow, understand and interpret the study. The authors have appropriately addressed a few concerns about statistical significance and the relationship between their findings and previous studies of the possible roles of Txnip on GLUT1 expression and localization on the surfaces of RPE cells.

    2. Reviewer #2 (Public Review):

      The hard work of the authors is much appreciated. With overexpression of a-arrestin Txnip in RPE, cones and the combined respectively, the authors show a potential gene agnostic treatment that can be applied to retinitis pigmentosa. Furthermore, since Txnip is related to multiple intracellular signaling pathway, this study is of value for research in the mechanism of secondary cone dystrophy as well.

      There are a few areas in which the article may be improved through further analysis and application of the data, as well as some adjustments that should be made in to clarify specific points in the article.

      Strengths

      - The follow-up study builds on innovative ground by exploring the impact of TxnipC247S and its combination with HSP90AB1 knockdown on cone survival, offering novel therapeutic pathways.<br /> - Testing of different Txnip deletion mutants provides a nuanced understanding of its functional domains, contributing valuable insights into the mechanism of action in RP treatment.<br /> - The findings regarding GLUT1 clearance and the differential effects of Txnip mutants on cone and RPE cells lay the groundwork for targeted gene therapy in RP.

      Weaknesses

      - The focus on specific mutants and overexpression systems might overlook broader implications of Txnip interactions and its variants in the wider context of retinal degeneration.<br /> - The study's reliance on cell count and GLUT1 expression as primary outcomes misses an opportunity to include functional assessments of vision or retinal health, which would strengthen the clinical relevance.<br /> - The paper could benefit from a deeper exploration of why certain treatments (like Best1-146 Txnip.C247S) do not lead to cone rescue and the potential for these approaches to exacerbate disease phenotypes through glucose shortages.<br /> - Minor inconsistencies, such as the missing space in text references and the need for clarification on data representation (retinas vs. mice), should be addressed for clarity and accuracy.<br /> - The observation of promoter leakage and potential vector tropism issues raise questions about the specificity and efficiency of the gene delivery system, necessitating further discussion and validation.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Sang et al. proposed a pair of IR60b-expressing pharyngeal neurons in Drosophila use IR25a, IR76b, and IR60b channels to detect high Na+ and limit its consumption. Some of the key findings that support this thesis are: 1) animals that lacked any one of these channels - or with their IR60b-expressing neurons selectively silenced - showed much reduced rejection of high Na+, but restored rejection when these channels were reintroduced back in the IR60b neurons; 2) animals with TRPV artificially expressed in their IR60b neurons rejected capsaicin-laced food whereas WT did not; 3) IR60b-expressing neurons exhibited increased Ca2+ influx in response to high Na+ and such response went away when animals lacked any of the three channels.

      The experiments were thorough and well designed and further improved after revision. The results are compelling and support the main claim. The development and the use of the DrosoX two-choice assay put forward for a more quantitative and automatic/unbiased assessment for ingestion volume and preference.

    2. Reviewer #2 (Public Review):

      Summary:

      In this paper, Sang et al. set out to identify gustatory receptors involved in salt taste sensation in Drosophila melanogaster. In a two-choice assay screen of 30 Ir mutants, they identify that Ir60b is required for avoidance of high salt. In addition, they demonstrate that activation of Ir60b neurons is sufficient for gustatory avoidance using either optogenetics or TRPV1 to specifically activate Ir60b neurons. Then, using tip recordings of labellar gustatory sensory neurons and proboscis extension response behavioral assays in Ir60b mutants, the authors demonstrate that Ir60b is dispensable for labellar taste neuron responses to high salt and the suppression of proboscis extension by high salt. Since external gustatory receptor neurons (GRNs) are not implicated, they look at Poxn mutants, which lack external chemosensory sensilla but have intact pharyngeal GRNs. High salt avoidance was reduced in Poxn mutants but was still greater than Ir60b mutants, suggesting that pharyngeal gustatory sensory neurons alone are sufficient for high salt avoidance. The authors use a new behavioral assay to demonstrate that Ir60b mutants ingest a higher volume of sucrose mixed with high salt than control flies do, suggesting that the action of Ir60b is to limit high salt ingestion. Finally, they identify that Ir60b functions within a single pair of gustatory sensory neurons in the pharynx, and that these neurons respond to high salt but not bitter tastants.

      Strengths:

      A great strength of this paper is that it rigorously corroborates previously published studies that have implicated specific Irs in salt taste sensation. It further introduces a new role for Ir60b in limiting high salt ingestion, demonstrating that Ir60b is necessary and sufficient for high salt avoidance and convincingly tracing the action of Ir60b to a particular subset of gustatory receptor neurons. Overall the authors have achieved their aim by identifying a new gustatory receptor involved in limiting high salt ingestion. They use rigorous genetic, imaging, and behavioral studies to achieve this aim, often confirming a given conclusion with multiple experimental approaches. They have further done a great service to the field by replicating published studies and corroborating the roles of a number of other Irs in salt taste sensation.

    3. Reviewer #3 (Public Review):

      Sang et al. successfully demonstrate that a set of single sensory neurons in the pharynx of Drosophila promotes avoidance of food with high salt concentrations, complementing previous findings on Ir7c neurons with an additional internal sensing mechanism. The experiments are well-conducted and presented, convincingly supporting their important findings and extending the understanding of internal sensing mechanisms.

      The authors convincingly demonstrate the avoidance phenotype using different behavioral assays, thus comprehensively analyzing different aspects of the behavior. The experiments are straightforward and well-contextualized within existing literature.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors found two endosomal fusion modes by live cell imaging of endosomes in yolk sac lateral endoderm cells of 8.5-day-old embryonic mice and described the fusion modes by mathematical models and simulations. They also showed that actin polymerization is involved in the regulation of one of the fusion modes.

      Strengths:

      The strength of this study is that the authors' claims are well supported by beautiful live cell images and theoretical models. By using specialized cells, yolk sac visceral endoderm cells, the live images of endosomal fusion, localization of actin-related molecules, and validation data from multiple inhibitor experiments are clear.

      Weaknesses:

      This study does not include any assessment of whether the two types of endosome fusions claimed by the authors occur in general cells, so the article is limited to showing a phenomenon specific to yolk sac lateral endoderm cells. Also, the study does not show the physiological importance of the two types of fusion. There are some unclear points in the method of image analysis and some of the descriptions in the text are not logical.

    2. Reviewer #1 (Public Review):

      Summary:

      This manuscript employs yolk sac visceral endoderm cells as a novel model for studying endosomal fusion, observing two distinct fusion behaviors: quick homotypic fusion between late endosomes, and slower heterotypic fusion between late endosomes and lysosomes. The mathematical modeling suggests that vesicle size critically influences the mode of fusion. Further investigations reveal that actin filaments are dynamically associated with late endosomal membranes, and are oriented in the x-y plane and along the apical-basal axis. Actin and Arf2/3 were shown to appear at the rear end of the endosomes along the moving direction suggesting polymerization of actin may provide force for the movement of endosomes. Additionally, the authors found that actin dynamics regulate homotypic and heterotypic fusion events in a different manner. The authors also provide evidence to suggest that Cofilin-dependent actin dynamics are involved in late endosome fusion.

      Strengths:

      The unique feature of this study is that the authors use yolk sac visceral endoderm cells to study endosomal fusion. Yolk sac visceral endoderm cells have huge endocytic vesicles, endosomes, and lysosomes, offering an excellent system to explore endosomal fusion dynamics and the assembly of cellular factors on membranes. The manuscript provides a valuable and convincing observation of the modes of endosomal fusion and the roles of actin dynamics in this process, and the conclusions of the study are justified by the data.

      Weaknesses:

      While the study offers compelling observations, it falls short of delivering clear mechanistic insights. Key questions remain unaddressed, such as the functional significance of actin filaments that extend apically in positioning late endosomes, the ways in which actin dynamics influence fusion events, and the functional implications of the slower bridge fusion process.

    3. Reviewer #2 (Public Review):

      Summary:

      Seiichi Koike et al. studied two fusion models, explosive fusion, and bridge fusion, utilizing yolk sac visceral endoderm cells. They elucidated these two fusion models in vivo by employing mathematical modeling and incorporating fluctuations derived from actin dynamics as a key regulator for rapid homotypic fusion between late endosomes.

      Strengths:

      This study uncovered the role of actin dynamics in regulating the transition of fusion models in homotypic fusion between late endosomes and introduced a method for observing the fusion of single vesicles with two different targets. The role of actin dynamics in vesicle fusion in other systems has been extensively studied. This study could offer useful insights for research on vesicle fusion.

      Weaknesses:<br /> The physiological significance of different fusion models is lacking.

    1. Joint Public Review:

      The present study focuses on the structure and function of human PURA, a regulator of gene transcription and mRNA transport and translation whose mutation causes the neurodevelopmental PURA syndrome, characterized by developmental delay, intellectual disability, hypotonia, epileptic seizures, a.o. deficits. The authors combined structural biology, molecular dynamics simulation, and various cell biological assays to study the effects of disease-causing PURA mutations on protein structure and function. The corresponding data reveal a highly dynamic PURA structure and show that disease-related mutations in PURA cause complex defects in folding, DNA-unwinding activity, RNA binding, dimerization, and partitioning into processing bodies. These findings provide first insights into how very diverse PURA mutations can cause penetrant molecular, cellular, and clinical defects. This will be of substantial interest to cell biologists, neurogeneticists, and neurologists alike.

      A particular strength of the present study is the structural characterization of human PURA, which is a challenging target for structural biology approaches. The molecular dynamics simulations are state-of-the-art, allowing a statistically meaningful assessment of the differences between wild-type and mutant proteins. The functional consequences of PURA mutations at the cellular level are fascinating, particularly the differential compartmentalization of wild-type and mutant PURA variants into certain subcellular condensates.

    1. Reviewer #4 (Public Review):

      Summary:

      Walker et al. investigated the function of TMEM127 on RET regulation and function that could contribute to the development of pheochromocytoma (PCC). The authors showed that deletion of TMEM127 causes RET protein accumulation on the cell surface and, thereby, increased its constitutive ligand-independent activity and downstream signaling. They also unveiled the mechanism of how TMEM127 regulates cell membrane dynamics, particularly focusing on clathrin distribution and its effects on cargo internalization.

      Strengths:

      They showed that the deletion of TMEM127 affected multiple classes of transmembrane proteins, including RTKs (RET, EGFR), cell adhesion molecules (N-Cadherin, Integrin Beta-3), and carrier proteins (Transferrin Receptor-1), suggesting a global effect on cell surface proteins. This, at least in part, may explain how TMEM127 mutations act as drivers in PCC as well as in other cancers, such as renal cell carcinoma, where RET is not highly expressed. Overall, these findings provide new insights into the understanding of pheochromocytoma pathogenesis and potentially other cancers.

      Weaknesses:

      The major weakness of this study is the lack of human PCC cell lines for evaluating the function of TMEM127. Currently, the cell line models for pheochromocytoma are unavailable, and manipulation of patient-derived organoids is challenging. To complement this weakness, they provided immunohistochemical data showing that RET protein is highly expressed in TMEM127-mutant PCC.

      Furthermore, some of the authors in this manuscript recently published a paper titled 'TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation' (Guo et al. Cell Reports 42, 113070, 2023, which is also cited in the current manuscript). In this manuscript, they showed that TMEM127 binds to RET and recruits the NEDD4 E3 ubiquitin ligase for RET ubiquitination and degradation via TMEM127. In general, the ubiquitination of proteins is highly specific to each molecule. In the current version of the manuscript, there is no description of the relevance between these two potentially different mechanisms (clathrin-mediated or ubiquitin-mediated) of accumulating RET and/or other proteins mentioned in two separate papers. I believe the authors should at least discuss this.

    2. Reviewer #5 (Public Review):

      Summary:

      The manuscript by Walker et al., nicely demonstrated a role of TMEM127 in regulating membrane dynamics of RET, a receptor tyrosine kinase and oncogene for multiple cancers, particularly in pheochromocytoma (PCC). They provided compelling cellular and biochemical evidence on how TMEM127 deficiency reduces RET internalization and degradation in specific cancer cell lines, thus stabilizing cell surface RET and promoting its signaling related to cell proliferation. Moreover, TMEM127 may have a broad function beyond RET, and may affect other surface protein activity such as EGFR etc. These findings provided novel mechanisms and key insights to the field of cancer biology.

      Strengths:

      Very interesting findings that nicely explained the mechanistic link between TMEM127 and tumorigenesis by RET regulation...the biochemical analysis was quite thorough and impressive.... the general messages delivered by this study are considered as important to the field of TMEM127 biology and tumorigenesis.

      Weaknesses:

      As acknowledged by the authors, the role of TMEM127 can be conditional and beyond RET modulation, the authors may need to include more discussion that why the loss of TMEM127 is more linked to the development of PCC compared to other cancer types, and why TMEM127 can have such a broad effects in those membrane molecules...in addition, TMEM127 deficiency has been recently linked to enhanced MHC-I-mediated tumor immunity and tumor eradication, in some cancer types...it is then worthwhile to discuss the dual effects of TMEM127 in tumor control in the context of immunity...<br /> Moreover, the authors may need to tune down their "ligand independent" claim on the loss of TMEM127 in driving RET signaling, which should be more related to the level of RET expression/strength of clustering...

    1. Reviewer #2 (Public Review):

      The manuscript from deHaro-Arbona et al, entitled "Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind", uses single molecule microscopy imaging in live tissues to understand the dynamics and molecular determinants of transcription factor recruitment to the E(spl)-C locus in Drosophila salivary gland cells under Notch-ON and -OFF conditions. Previous studies have identified the major players that are involved in transcription regulation in the Notch pathway, as well as the importance of general transcriptional coregulators, such as CBP/P300 and the Mediator CDK module, but the detailed steps and dynamics involved in these processes are poorly defined. The authors present a wealth of single molecule data that provides significant insights into Notch pathway activation, including:

      (1) Activation complexes, containing CSL and Mam, have slower dynamics than the repressor complexes, containing CSL and Hairless.<br /> (2) Contribution of CSL, NICD, and Mam IDRs to recruitment.<br /> (3) CSL-Mam slow-diffusing complexes are recruited and form a hub of high protein concentrations around the target locus in Notch-ON conditions.<br /> (4) Mam recruitment is not dependent on transcription initiation or RNA production.<br /> (5) CBP/P300 or its associated HAT activity is not required for Mam recruitment<br /> (6) Mediator CDK module and CDK8 activity is required for Mam recruitment, and vice-versa, but not CSL recruitment.<br /> (7) Mam is not required for chromatin accessibility but is dependent on CSL and NICD.<br /> (8) CSL recruitment and increased chromatin accessibility persist after NICD removal and loss of Mam, which confers a memory state that enables rapid re-activation in response to subsequent Notch activation<br /> (9) Differences in the proportions of nuclei with both Pol II and with Mam enrichment, which results in transcription being probabilistic/stochastic. These data demonstrate that presence of Mam-complexes is not sufficient to drive all the steps required for transcription in every Notch-ON nucleus.<br /> (10) The switch from more stochastic to robust transcription initiation was elicited when ecdysone was added.

      Overall, the manuscript is well written, concise, and clear, and makes significant contributions to the Notch field, which are also important for a general understanding of transcription factor regulation and behavior in the nucleus. The authors have satisfactorily addressed all my criticisms of their initial submission and therefore congratulate the authors on an excellent paper.

    2. Reviewer #3 (Public Review):

      Summary:

      DeHaro-Arbona and colleagues investigate the in vivo dynamics of Notch-dependent transcriptional activation with a focus on the role of the Mastermind (MAM) transcriptional co-activator. They use GFP and HALO-tagged versions of the CSL DNA-binding protein and MAM to visualize the complex, and Int/ParB to visualize the site of Notch-dependent E(Spl)-C transcription. They make several conclusions. First, MAM accumulates at E(Spl)-C when Notch signaling is active, just like CSL. Second, MAM recruits the CDK module of Mediator but does not initiate chromatin accessibility. Third, after signaling is turned off, MAM leaves the site quickly but CSL and chromatin accessibility are retained. Fourth, RNA pol II recruitment, Mediator recruitment and active transcription were similar and stochastic. Fifth, ecdysone enhance the probability of transcriptional initiation.

      Strengths:

      The conclusions are well supported by multiple lines of extensive data that is carefully executed and controlled. A major strength is the strategic combination of Drosophila genetics, imaging and quantitative analyses to conduct compelling and easily interpretable experiments. A second major strength is the focus on MAM to gain insights into dynamics of transcriptional activation specifically.

      Weaknesses:

      Weaknesses were minor. and have been addressed in the revised manuscript.

    1. Reviewer #1 (Public Review):

      In this paper, N'Guessan et al report a study of expression QTL (eQTL) mapping in yeast using single cells. The authors make use of advances in single-cell RNAseq (scRNAseq) in yeast to increase the efficiency with which this type of analysis can be undertaken. Building on prior research led by the senior author that entailed genotyping and fitness profiling of almost 100,000 cells derived from a cross between two yeast strains (BY and RM) they performed scRNAseq on a subset of 4,489 individual cells. To address the sparsity of genotype data in the expression profiling they used a Hidden Markov Model (HMM) to infer genotypes and then identify the most likely known lineage genotype from the original dataset. To address the relationship between variance in fitness and gene expression the authors partition the variance to investigate the sources of variation. They then perform eQTL mapping and study the relationship between eQTL and fitness QTL identified in the earlier study.

      This paper seeks to address the challenging question of how quantitative trait variation and expression variation are related. scRNAseq represents an appealing approach to eQTL mapping as it is possible to simultaneously genotype individual cells and measure expression in the same cell. As eQTL mapping requires large sample sizes to identify statistical relationships, this approach is likely to dramatically increase the statistical power of such studies. However, there are several technical challenges associated with scRNAseq and the authors' study is focused on addressing those challenges. Although the authors present results suggesting the feasibility of the approach there are limitations in the conclusions that can be drawn in the current study owing to the lack of clarity in the presentation of the results. Ultimately, this study presents a proof of concept with limited novel biological insights that would nonetheless make a useful contribution to the literature if the following major points were addressed:

      (1) There is insufficient information provided about the nature of data. At a minimum, the following information should be provided to enable assessment of the study: What is the total library size, how many genes are identified per cell, how many UMIs are found per cell, what is the doublet rate, and how are doublets identified (e.g. on the basis of heterozygous calls at polymorphic loci?), how many times is each genotype observed, and how many polymorphic sites are identified per cell that are the basis of genotype inferences?

      (2) The prior study analyzed 18 different conditions, whereas this study only assays expression in a single condition. However, the power of the authors' approach is that its efficiency enables testing eQTLs in multiple conditions. The study would be greatly strengthened through analysis of at least one more condition, and ideally several more conditions. The previous fitness study would be a useful guide for choosing additional conditions as identifying those conditions that result in the greatest contrasts in fitness QTL would be best suited to testing the generalizations that can be drawn from the study.

      (3) Alternatively, the authors could demonstrate the power of their approach by applying it to a cross between two other yeast strains. As the cross between BY and RM has been exhaustively studied, applying this approach to a different cross would increase the likelihood of making novel biological discoveries.

      (4) Figure 1 is misleading as A presents the original study from 2022 without important details such as how genotypes were identified. It is unclear what the barcode is in this study and how it is used in the analysis. Is the barcode for each lineage transcribed so that it is identified in the scRNAseq data? Or, does the barcode in B refer to the cell index barcode? A clearer presentation and explanation of terms are needed to understand the method.

      (5) The rationale for the analysis reported in Figure 2B is unclear. The fitness data are from the previous study and the goal is to estimate the heritability using the genotyping data from the scRNAseq data. What is the explanation for why the data don't agree for only one condition, i.e. 37C? And, what are we to understand from the overall result?

      (6) Figure 3 presents an analysis of variance partitioning as a Venn diagram. This summarized result is very hard to understand in the absence of any examples of what the underlying raw data look like. For example, what does trait variation look like if only genotype explains the variance or if only gene expression explains the variance? The presented highly summarized data is not intuitive and its presentation is poor - the result that is currently provided would be easier to read in a table format, but the reader needs more information to be able to interpret and understand the result.

      (7) I am concerned about the conclusions that can be drawn about expression heritability. The authors claim that expression heritability is correlated with expression levels. It seems likely that this reflects differing statistical power. How can this possibility be excluded?

      (8) Conversely, the authors claim that the genes with the lowest heritability are genes involved in the cell cycle. However, uniquely in scRNAseq, cell cycle regulated genes appear to have the highest variance in the data as they are only expressed in a subset of cells. Without incorporating this fact one would erroneously conclude that the variation is not heritable. To test the heritability of cell cycle regulation genes the authors should partition the cells into each cell cycle stage based on expression.

      (9) I do not understand Figure S5 and how eQTL sites are assigned to these specific classes given that the authors say that causative variation cannot be resolved because of linkage disequilibrium.

      (10) The paragraph starting at line 305 is very confusing. In particular, the authors state that they identify a hotspot of regulation at the mating type locus. It is not obvious why this would be the case. Moreover, they claim that they find evidence for both MATa and MATalpha gene expression. Information is not provided about how segregants were isolated, but assuming that the authors did not dissect 25,000 tetrads to obtain 100,000 segregants I would infer that random spore using SGA was used. In that case, all cells should be MATa. The authors should clarify and explain this observation.

      (11) Ultimately, it is not clear what new biological findings the authors have made. There are no novel findings with respect to causative variation underlying eQTLs and I would encourage the authors to make clearer statements in their abstract, introduction, and conclusion about the key discoveries. E.g. What are the "new associations between phenotypic and transcriptomic variations" mentioned in the abstract?

      The following minor points should be addressed:

      (1) The segregants should be referred to as F2 segregants as they are derived from an F1 cross.

      (2) The connections to eQTLs in other organisms should be addressed in the introduction and conclusion. For example, in humans, there has been little evidence for trans eQTLs in contrast to what has been found in yeast.

      (3) The authors state that an advantage of scRNAseq over bulk is that it captures rare cell populations (line 79), but this advantage is not exploited in this study.

      (4) The authors use ~5% of the lineages from the original study. There is no rationale for why this is an appropriate sample size. Is there an argument for using more cells in eQTL mapping or conversely could the authors ask if fewer cells would provide similar conclusions by downsampling?

      (5) I do not agree that the use of UMIs overcomes the challenges of low sequencing depth. UMIs mitigate the possible technical artifacts due to massive PCR amplification.

      (6) There is an inadequate reference to prior work on scRNAseq in yeast that established the methods used by the authors and eQTL mapping in human cells using scRNAseq.

      (7) The use of empty quotes in Figure 4A is confusing and an alternative presentation method should be used.

      (8) The authors speculate about the use of predicted fitness instead of observed fitness, but this is something they could explicitly address in their current study.

    2. Reviewer #2 (Public Review):

      Summary:

      The experiments and analysis appear to be carefully done. My concerns center on the impact of the work in its current form on the research community.

      The focal yeast cross here has been the subject of many previous publications (for smaller sets of recombinant progeny), by the last author and others, including phenotyping, genotyping, transcriptomics, and proteomics. This mini-literature has proven relevant to the community because it has empirically pinpointed exactly how many variants underlie a given trait, both molecular and cellular. That is, whereas in more complex organisms we try our best to estimate/infer the full genetic architecture of varying traits from the results of mapping of necessarily weaker power, the highly-powered yeast system can access a more comprehensive mapping of the dozens of loci impinging on a given trait and learn from it. The question is what exactly we learn from the current study?

      Strengths and weaknesses:

      Most of the figures center on methods development and validation for the authors' single-cell RNA-seq in the yeast cross, including generating the large raw data set; analysis pipelines for mapping and genotyping (Figure 1); and higher-level analyses that recapitulate previously reported trends in heritability (Figure 2) and eQTL mapping (Figure 3 and Figure 4B-C). One potential novelty of the study is the methods per se: that is, showing that scRNA-seq works for concomitant genotyping and gene expression profiling in the natural variation context. The authors' rigor and effort notwithstanding: in my view, this can be described as modest in terms of principles. That is, the authors did a good job putting the scRNA-seq idea into practice, but their success is perhaps not surprising or highly relevant for work outside of yeast (as the discussion says). The more substantive claim by the authors for the impact of the study is that they make new observations about the role of expression in phenotype (lines 333-335). The major display item of the manuscript on this theme is Figure 4A, reporting which loci that control growth phenotype (from an earlier paper) also control expression. This is solid but I regret to say that the results strike me as modest. The discussion makes some perhaps fairly big claims that the work has helped "bridge understanding of how genetic variation influences transcriptomic variation" and ultimately cellular phenotype. But with the data as they stand, the authors have missed an opportunity to crystallize exactly how a given variant affects expression (perhaps in waves of regulators affecting targets that affect more regulators) and then phenotype, except for the speculations in the text on lines 305-319. The field started down this road years ago with Bayesian causality inference methods applied to eQTL and phenotype mapping (via e.g. the work of Eric Schadt). The authors could now try Mendelian randomization-type fine-grained detailed models for more firepower toward the same end, and/or experimental tests of the genotype-to-expression-to-phenotype relationship. I would see these directions, motivated by fundamental questions that are relevant to the field at large, as leading to a major advance for this very crowded field. As it stands, I felt their absence in this manuscript especially if the authors are selling principles about linking expression and phenotype as their take-home. I also wonder whether the co-mapping of expression and growth traits in Figure 4A would have been possible with e.g. the bulk RNA-seq from Albert et al., 2018, and I recommend that the authors repeat the Figure 4A-type analyses with the latter to justify their statement that their massive scRNA data set would actually be necessary for them to bear fruit (lines 386-388).

      I also read the discussion of the manuscript as bringing to the fore some of the challenges a reader has in judging the current state of the results to be of actionable impact. The discussion, and the manuscript, will be improved if the authors can put the work in context, posing concrete questions from the field and stating how they are addressed here and what's left to do.

    1. Reviewer #1 (Public Review):

      Summary:

      This is an experimentally soundly designed work and a very well-written manuscript. There is a very clear logic that drives the reader from one experiment to the next, the experimental design is clearly explained throughout and the relevance of the acquired data is well analyzed and supports the claims made by the authors. The authors made an evident effort to combine imaging, genetic, and molecular data to describe previously unknown early embryonic movement patterns and to identify regulatory mechanisms that control several aspects of it.

      Strengths:

      The authors develop a new method to analyze, quantitatively, the onset of movement during the latter embryonic stages of Drosophila development. This setup allows for a high throughput analysis of general movement dynamics based on the capture of variations of light intensity reflected by the embryo. This setup is capable of imaging several embryos simultaneously and provides a detailed measure of movement over time, which proves to be very useful for further discoveries in the manuscript. This setup already provides a thorough and quantifiable description of a process that is little known and identifies two different phases during late embryonic movements: a myogenic phase and a neurogenic phase, which they elegantly prove is dependent on neuronal activity by knocking down action potentials across the nervous system.

      However, in this system, movement is detected as a whole, and no further description of the type of movement is provided beyond frequency and amplitude; it would be interesting to know from the authors if a more precise description of the movements that take place at this stage can be achieved with this method (e.g. motion patterns across the A-P body axis).

      Importantly, this highly quantitative experimental setup is an excellent system for performing screenings of motion regulators during late embryonic development, and its use could be extended to search for different modulators of the process, beyond miRNAs (genetic mutants, drugs, etc.).

      Using their newly established motion detection pipeline, the authors identify miR-2b-1 as required for proper larval and embryonic motion, and identify an overall reduction in the quantity of both myogenic and neurogenic movements, as well as an increased frequency in neurogenic movement "pulses".

      Focusing on the neurogenic movement phenotype the authors use in situ probes and perform RT-PCR on FACS-sorted CNS cells to unambiguously detect miR-2b-1 expression in the embryonic nervous system. The neurogenic motion defects observed in miR-2b-1 mutant embryos and early larvae can be completely rescued by the expression of ectopic miR-2b-1 specifically in the nervous system, providing solid evidence of the requirement and sufficiency of miR-2b-1 expressed in the nervous system to regulate these phases of movement.

      To explore the mechanism through which miR-2b-1 impacts embryonic movement, the authors use a state-of-the-art bioinformatic approach to identify potential targets of miR-2b-1, and find that the expression levels of an uncharacterized gene, CG3638, are indeed regulated by miR-2b-1. Furthermore, they prove that by knocking down the expression of CG3638 in a miR-2b-1 mutant background, the neurogenic embryonic movement defects are rescued, pointing that the repression of CG3638 by miR-2b-1 is necessary for correct motion patterns in wild-type embryos. Therefore, this paper provides the first functional characterization of CG3638, and names this gene Janus.

      Finally, the authors aim to discriminate which elements of the embryonic motor system miR-2b-1/Janus are required. Using directed overexpression of miR-2b-1 and Janus knockdown in the motor neurons and the chordotonal (sensory) organs, they prove that the miR-2b-1/Janus regulatory axis is specifically required in the sensory organs to promote normal embryonic and larval movement.

      Weaknesses:

      The authors do not describe properly how the miRNA screening was performed and just claim that only miR-2b-1 mutants presented a defective motion phenotype in early L1. How many miRNAs were tested, and how candidates were selected is never explicitly mentioned in the text or the Methods section.

      The initial screening to identify miRNAs involved in motion behaviors is performed in early larval movement. The logic presented by the authors is clear - it is assumed that early larval movement cannot proceed normally in the absence of previous embryonic motion - and ultimately helped them identify a miRNA required for modulation of embryonic movement. However, it is possible that certain miRNAs play a role in the modulation of embryonic movement while being dispensable for early L1 behaviors. Such regulators might have been missed with the current screening setup.

      Although similar changes to those described for the neurogenic phase of embryonic movement are described for the myogenic phase in miR-2b-1 mutants (reduction in motion amplitude), this phenotype goes unexplored. This is not a big issue, as the authors convincingly demonstrate later that miR-2b-1 is specifically required in the nervous system for proper embryonic and larval movement, and the effects of miR-2b-1 on myogenic movement might as well be the focus of future work. However, it will be interesting to discuss here the implications of a reduced myogenic movement phase, especially as miR-2b-1 is specifically involved in regulating the activity of the chordotonal system - which precisely detects early myogenic movements.

      FACS-sorting of neuronal cells followed by RT-PCR convincingly detects the presence of miR-2b-1 in the embryonic CNS. However, control of non-neuronal cells would be required to explore whether miR-2b-1 is not only present but enriched in the nervous system compared to other tissues. This is also the case in the miR-2b-1 and Janus expression analysis in the chordotonal organs: a control sample from the motor neurons would help discriminate whether miR-2b-1/Janus regulatory axis is specifically enriched in chordotonal organs or whether both genes are expressed throughout the CNS but operate under a different regulation or requirements for the movement phenotypes.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The manuscript, "A microRNA that controls the emergence of embryonic movement" by Menzies, Chagas, and Alonso provides evidence that Drosophila miR-2b-1 is expressed in neurons and controls the expression of the predicted chloride channel CG3638, here named "Janus". Loss of the miRNA leads to movement phenotypes that can be rescued by downregulation of Janus; using specific drivers, the authors show that a larval movement phenotype (slower movement) can be rescued by knockdown of Janus in the chordotonal organs, suggesting that the increase in Janus found in the chordotonal organs is likely the root of the movement defects. Overall, I found the data presented in the manuscript of reasonable quality and are well enough supported by the presented data. That being said, I do have a few problems with the manuscript, mostly stemming from what I feel is an inflated presentation of the importance of the findings.

      Strengths:<br /> The genetic and phenotypic analysis seems to be correct. The nicest part of the manuscript is the connection between the loss of a miRNA and finding its likely target in generating a phenotype. The authors also develop some protocols for the analysis of the movement phenotypes which may be useful for others.

      Weaknesses:<br /> As I mentioned above, I felt the presentation was a bit overstated. The authors present their data in a way that focuses on movement, the emergence of movement, and how their miRNA of interest is at the center of this topic. I only point to the title and name that they wish to give the target of their miRNA to emphasize this point. "Janus" the god of movement and change. The results and discussion section starts with a paragraph saying, "Movement is the main output of the nervous system... how developing embryos manage to organise the necessary molecular, cellular, and physiological processes to initiate patterned movement is still unknown. Although it is clear that the genetic system plays a role, how genes control the formation, maturation and function of the cellular networks underlying the emergence of motor control remains poorly understood." While there is nothing inherently untrue about these statements, it is a question of levels of understanding. One can always argue that something in biology is still unknown at a certain level. However, one could also argue that much is known about the molecular nature of movement. Next, I am not sure how much this work impacts the area of study regarding the emergence of movement. The authors show that a reduction of a miRNA can affect something about certain neurons, that affects movement. The early movements, although slightly diminished, still emerge. Thus, their work only suggests that the function of some neurons, or perhaps the development of these neurons may impact the early movements. This is not new as it was known already from early work from the Bate lab.

      Later larval movements were also shown to be modified in the miRNA mutants and were traced to "janus" overexpression in the chordotonal organs. As neurons are quite sensitive to the levels of Cl- and Janus is thought to be a Cl- channel, this could lead to a slight dysfunction of the chordotonal neurons. So, based on this, the work suggests that dysfunction of the chordotonal organs could impact larval movement. This was, of course, already known. The novelty of this work is in the genes being studied (important or not). We now know that miR 2b-1 and Janus are expressed in the early neurons and larval chordotonal neurons and their removal is consistent with a role for these genes in the functioning of these neurons. This is not to trivialize these findings, simply to state that these results are not significantly changing our overall understanding of movement and the emergence of movement. I would call it a stretch to say that this miRNA 'controls' the emergence of movement, as in the title.

      Finally, the name Janus should be changed as it is already being used. A quick scan of flybase shows that there is a Janus A and B in flies (phosphatases) and I am surprised the authors did not check this. I was initially worried about the Janus kinase (JAK) when I performed the search. While I understand that none are only called Janus, studies of the jan A and B genes refer to the locus as the janus region, which could lead to confusion. The completely different molecular functions of the genes relative to CG3638 add to the confusion. Thus, I ask that the authors change the name of CG3638 to something else.

    1. Reviewer #1 (Public Review):

      This work provides new mechanistic insights into the competitive inhibition in the mammalian P2X7 receptors using structural and functional approaches. The authors solved the structure of panda (pd) P2X7 in the presence of the classical competitive antagonists PPNDS and PPADS. They find that both the drugs bind to the orthosteric site employed by the physiological agonist ATP. However, owing to the presence of a single phosphate group, they prevent movements in the flipper domain required for channel opening. The authors performed structure based mutational analysis together with electrophysiological characterization to understand the subtype specific binding of these drugs. It is known from previous studies that P2X1 and P2X3 are more sensitive to these drugs as compared to P2X7, hence, the residues adjacent to the ATP binding site in pdP2X7 were mutated to those present in P2X1. They observed that mutations of Q143, I214 and Q248 into lysine (hP2X1) increased the P2X7 sensitivity to PPNDS, whereas in P2X1, mutations of these lysines to alanine reduced sensitivity to PPNDS, suggesting that these key residues contribute to the subunit specific sensitivity to these drugs. Similar experiments were done in hP2X3 to demonstrate its higher sensitivity to PPNDS. This preprint provides a useful framework for developing subtype specific drugs for the family of P2X receptor channels, an area that is currently relatively unexplored.<br /> The conclusions of the paper are well supported.

      The revised manuscript is well written and presents its data with more clarity.

    2. Reviewer #2 (Public Review):

      Summary:

      P2X receptors play pivotal roles in physiological processes such as neurotransmission and inflammation, making them promising drug targets. This study, through cryo-EM and functional experiments, reveals the structural basis of the competitive inhibition of the PPNDS and PPADS on mammalian P2X7 receptors. Key findings include the identification of the orthosteric site for these antagonists, the revelation of how PPADS/PPNDS binding impedes channel-activating conformational changes, and the pinpointing of specific residues in P2X1 and P2X3 subtypes that determine their heightened sensitivity to these antagonists. These insights present a comprehensive understanding that could guide the development of improved drugs targeting P2X receptors. This work will be a valuable addition to the field.

      Strengths:

      The combination of structural experiments and mutagenesis analyses offers a deeper understanding of the mechanism. While the inclusion of MD simulation is appreciated, providing more insights from the simulation might further strengthen this already compelling story.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript describes the crystal structures of Streptococcus pneumoniae NOXs. Crystals were obtained for the wild-type and mutant dehydrogenase domain, as well as for the full-length protein comprising the membrane domain. The manuscript further carefully studies the enzyme's kinetics and substrate-specificity properties. Streptococcus pneumoniae NOX is a non-regulated enzyme, and therefore, its structure should provide a view of the NOX active conformation. The structural and biochemical data are discussed on this ground.

      Strengths:

      This is very solid work. The protein chemistry and biochemical analysis are well executed and carefully described. Similarly, the crystallography must be appreciated given the difficulty of obtaining good enzyme preparations and the flexibility of the protein. Even if solved at medium resolution, the crystal structure of the full-length protein conveys relevant information. The manuscript nicely shows that the domain rotations are unlikely to be the main mechanistic element of NOX regulation. It rather appears that the NADPH-binding conformation is pivotal to enzyme activation. The paper extensively refers to the previous literature and analyses the structures comprehensively with a comparison to previously reported structures of eukaryotic and prokaryotic NOXs.

    2. Reviewer #2 (Public Review):

      The authors describe the structure of the S. pneumoniae Nox protein (SpNOX). This is a first. The relevance of it to the structure and function of eukaryotic Noxes is discussed in depth.

      One of the strengths of this work is the effort put into preparing a pure and functionally active SpNOX preparation. The protein was expressed in E. coli and the purification and optimization of its thermostability and activity are described in detail, involving salt concentration, glycerol concentration, and pH.

      Comments on revised version:

      This reviewer would like to compliment the authors for the conscientious revision of the manuscript. Their response to the comments and the detailed explanations of the issues that did not appear clear enough to the reviewer are much appreciated. Their reaction to the review was not only superbly competent but also prominently good natured.

      The revised version is perfect and represents a major contribution to our understanding of the molecular details of Nox function. As for the questions not yet answered, I shall quote the authors: "Time will tell".

    1. Reviewer #2 (Public Review):

      Summary:

      In this paper, the authors set out to better understand the mechanism by which the FtsZ-associated protein ZapD crosslinks FtsZ filaments to assemble a large scale cytoskeletal assembly. For this aim, they use purified proteins in solution and a combination of biochemical, biophysical experiments and cryo-EM. The most significant finding of this study is the observation of FtsZ toroids that form at equimolar concentrations of the two proteins.

      Strengths:

      Many experiments in this paper confirm previous knowledge about ZapD. For example, it shows that ZapD promotes the assembly of FtsZ polymers, that ZapD bundles FtsZ filaments, that ZapD forms dimers and that it reduces FtsZ's GTPase activity.

      The most novel discovery is the observation of different assemblies as a function of ZapD:FtsZ ratio. In addition, using CryoEM to describe the structure of toroids and bundles, the papers provides some information about the orientation of ZapD in relation to FtsZ filaments. For example, they found that the organization of ZapD in relation to FtsZ filaments is "intrinsic heterogeneous" and that FtsZ filaments were crosslinked by ZapD dimers pointing in all directions. The authors conclude that it is this plasticity that allows for the formation of toroids and its stabilization. Unfortunately, a high-resolution structure of the protein organization was not possible.

      Weaknesses:

      While the data is convincing, their interpretation has some substantial weaknesses that the authors should address for the final version of this paper.

      For example, as the authors are the first to describe FtsZ-ZapD toroids, a discussion why this has not been observed in previous studies would be very interesting, i.e. is it due to buffer conditions, sample preparation?

      At parts of the manuscript, the authors try a bit too hard to argue for the physiological significance of these toroids. This, however, is at least very questionable, because:<br /> The typical diameter is in the range of 0.25-1.0 μm, which requires some flexibility of the filaments to be able to accommodate this. It's difficult to see how a FtsZ-ZapD toroid, which appears to be quite rigid with a narrow size distribution of 502 nm {plus minus} 55 nm could support cell division rather than stalling it at that cell diameter. which the authors say is similar to the E. coli cell.

      For cell division, FtsZ filaments are recruited to the membrane surface via an interaction of FtsA or ZipA the C-terminal peptide of FtsZ. As ZapD also binds to this peptide, the question arises who wins this competition or where is ZapD when FtsZ is recruited to the membrane surface? Can such a toroidal structure of FtsZ filaments form on the membrane surface? Additional experiments would be helpful, but a more detailed discussion on how the authors think ZapD could act on membrane-bound filaments would be essential.

      The authors conclude that the FtsZ filaments are dynamic, which is essential for cell division. But the evidence for dynamic FtsZ filaments within these toroids seems rather weak, as it is solely the partial reassembly after addition of GTP. As ZapD significantly slows down GTP hydrolysis, I am not sure it's obvious to make this conclusion.

      On a similar note, on page 5 the authors claim that ZapD would transiently interact with FtsZ filaments. What is the evidence for this? They also say that this transient interaction could have a "mechanistic role in the functionality of FtsZ macrostructures." Could they elaborate?

      The author should also improve in putting their findings into the context of existing knowledge. For example:

      The authors observe a straightening of filament bundles with increasing ZapD concentration. This seems consistent with what was found for ZapA, but this is not explicitly discussed (Caldas et al 2019)

      A paragraph summarizing what is known about the properties of ZapD in vivo would be essential: i.e. what has been found regarding its intracellular copy number, location and dynamics?

      In the introduction, the authors write that "GTP binding and hydrolysis induce a conformational change in each monomer that modifies its binding potential, enabling them to follow a treadmilling behavior". This seems inaccurate, as shown by Wagstaff et al. 2022, the conformational change of FtsZ is not associated with the nucleotide state. In addition, they write that FtsZ polymerization depends on the GTPase activity. It would be more accurate to write that polymerization depends on GTP, and disassembly on GTPase activity.

      On page 2 they also write that "the mechanism underlying bundling of FtsZ filaments is unknown". I would disagree, the underlying mechanism is very well known (see for example Schumacher, MA JBC 2017), but how this relates to the large-scale organization of FtsZ filaments was not clear.

      The authors describe the toroid as a dense 3D mesh, how would this be compatible with the Z-ring and its role for cell division? I don't think this corresponds to the current model of the Z-ring (McQuillen & Xiao, 2020). Apart from the fact it's a ring, I don't think the organization of FtsZ obviously similar to the current of the Z-ring in the bacterial cell, in particular because it's not obvious how FtsZ filaments can bind ZapD and membrane anchors simultaneously.

      The authors write that "most of these modulators" interact with FtsZ's CTP, but then later that ZapD is the only Zap protein that binds CTP. This seems to be inconsistent. Why not write that membrane anchors usually bind the CTP, most Zaps do not, but ZapD is the exception?

      I also have some comments regarding the experiments and their analysis:

      Regarding cryoET: the filaments appear like flat bands, even in the absence of ZapD, which further elongates these bands. Is this due to an anisotropic resolution? This distortion makes the conclusion that ZapD forms bi-spherical dimers unconvincing.

      The authors say that the cryoET visualization provides crucial information on the length of the filaments within this toroid. How long are they? Could the authors measure it?

      Regarding the dimerization mutant of ZapD: there is actually no direct confirmation that mZapD is monomeric. Did the authors try SEC MALS or AUC? Accordingly, the statement that dimerization is "essential" seems exaggerated (although likely true).

      What do the authors mean that toroid formation is compatible with robust persistence length? I.e. What does robust mean? It was recently shown that FtsZ filaments are actually surprisingly flexible, which matches well the fact that the diameter of the Z-ring must continuously decrease during cell division (Dunajova et al Nature Physics 2023).

      the authors claim that their observations suggest „that crosslinkers ... allows filament sliding in an organized fashion". As far as I know there is no evidence of filament sliding, as FtsZ monomers in living cells and in vitro are static.

      What is the „proto-ring FtsA protein"?

      The authors refer to „increasing evidence" for „alternative network remodling mechanisms that do not rely on chemical energy consumption as those in which entropic forces act through diffusible crosslinkers, similar to ZapD and FtsZ polymers." A reference should be given, I assume the authors refer to the study by Lansky et al 2015 of PRC on microtubules. However, I am not sure how the authors made the conclusion that this applies to FtsZ and ZapD, on which evidence is this assumption based?

      Some inconsistencies in supplementary figure 3: The normalized absorbances in panel a do not seem to agree with the absolute absorbance shown in panel e, i.e. compare maximum intensity for ZapD = 20 µM and 5 µM in both panels.

      It's not obvious to me why the structure formed by ZapD and FtsZ disassembles after some time even before GTP is exhausted, can the authors explain? As the structures disassemble, how is the "steady-state turbidity" defined? Do the structures also disassemble when they use a non-hydrolyzable analog of GTP?

      Conclusion:

      Despite some weaknesses in the interpretation of their findings, I think this paper will likely motivate other structural studies on large scale assemblies of FtsZ filaments and its associated proteins. A systematic comparison of the effects of ZapA, ZapC and ZapD and how their different modes of filament crosslinking can result in different filament networks will be very useful to understand their individual roles and possible synergistic behavior.

    2. Reviewer #1 (Public Review):

      Summary:

      The major result in the manuscript is the observation of the higher order structures in a cryoET reconstruction that could be used for understanding the assembly of toroid structures. The cross-linking ability of ZapD dimers result in bending of FtsZ filaments to a constant curvature. Many such short filaments are stitched together to form a toroid like structure. The geometry of assembly of filaments - whether they form straight bundles or toroid like structures - depends on the relative concentrations of FtsZ and ZapD.

      Strengths:

      In addition to a clear picture of the FtsZ assembly into ring-like structures, the authors have carried out basic biochemistry and biophysical techniques to assay the GTPase activity, the kinetics of assembly, and the ZapD to FtsZ ratio.

      Weaknesses:

      The discussion does not provide an overall perspective that correlates the cryoET structural organisation of filaments with the biophysical data.

      The crosslinking nature of ZapD is already established in the field. The work carried out is important to understand the ring assembly of FtsZ. However, the availability of the cryoET observations can be further analysed in detail to derive many measurements that will help validate the model, and obtain new insights.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors provide the first image analysis by cryoET of toroids assembled by FtsZ crosslinked by ZapD. Previously toroids of FtsZ alone have been imaged only in projection by negative stain EM. The authors attempt to distinguish ZapD crosslinks from the underlying FtsZ filaments. I did not find this distinction convincing, especially because it seems inconsistent with the 1:1 stoichiometry demonstrated by pelleting. I was intrigued by one image showing straight filament pairs, which may suggest a new model for how ZapD crosslinks FtsZ filaments.

      Strengths:

      (1) The first image analysis of FtsZ toroids by cryoET.<br /> (2) The images are accompanied by pelleting assays that convincingly establish a 1:1 stoichiometry of FtsZ:ZapD subunits.<br /> (3) Fig. 5 shows an image of a pair of FtsZ filaments crosslinked by ZapD. This seems to have higher resolution than the toroids. Importantly, it suggests a new model for the structure of FtsZ-ZapD that resolves previously unrecognized conflicts. (This is discussed below under weaknesses, because it is so far only supported by a single image.)

      Weaknesses:

      This paper reports a study by cryoEM of polymers and bundles assembled from FtsZ plus ZapD. Although previous studies by other labs have focused on straight bundles of filaments, the present study found toroids mixed with these straight bundles, and they focused most of their study on the toroids. In the toroids they attempt to delineate FtsZ filaments and ZapD crosslinks. A major problem here is with the stoichiometry. Their pelleting assays convincingly established a stoichiometry of 1:1, while the mass densities identified as ZapD are sparse and apparently well below the number of FtsZ (FtsZ subunits are not resolved in the reconstructions, but the continuous sheets or belts seem to have a lot more mass than the identified crosslinks.) Apart from the stoichiometry I don't find the identification of crosslinks to be convincing. It is missing an important control - cryoET of toroids assembled from pure FtsZ, without ZapD.

      However, if I ignore these and jump to Fig. 5, I think there is an important discovery that resolves controversies in the present study as well as previous ones, controversies that were not even recognized. The controversy is illustrated by the Schumacher 2017 model (their Fig. 7), which is repeated in a simplified version in Fig. 1a of the present mss. That model has a two FtsZ filaments in a plane facing ZapD dimers which bridge them. In this planar model the C-terminal linker, and the ctd of FtsZ that binds ZapD facing each other and the ZapD in the middle, with. The contradiction arises because the C-terminus needs to face the membrane in order to attach and generate a bending force. The two FtsZ filaments in the planar model are facing 90{degree sign} away from the membrane. A related contradiction is that Houseman et al 2016 showed that curved FtsZ filaments have the C terminus on the outside of the curve. In a toroid the C termini should all be facing the outside. If the paired filaments had the C termini facing each other, they could not form a toroid because the two FtsZ filaments would be bending in opposite directions.

      Fig. 5 of the present mss seems to resolve this by showing that the two FtsZ filaments and ZapD are not planar, but stacked. The two FtsZ filaments have their C termini facing the same direction, let's say up, toward the membrane, and ZapD binds on top, bridging the two. The spacing of the ctd binding sites on the Zap D dimer is 6.5 nm, which would fit the ~8 nm width of the paired filament complex observed in the present cryoEM (Fig S13). In the Schumacher model the width would be about 20 nm. Importantly, the stack model has the ctd of each filament facing the same direction, so the paired filaments could attach to the membrane and bend together (using ctd's not bound by ZapD). Finally, the new arrangement would also provide an easy way for the complex to extend from a pair of filaments to a sheet of three or four or more.

      A problem with this new model from Fig. 5 is that it is supported by only a single example of the paired FtsZ-ZapD complex. If this is to be the basis of the interpretation, more examples should be shown. Maybe examples could be found with three or four FtsZ filaments in a sheet.

      What then should be done with the toroids? I am not convinced by the identification of ZapD as "connectors." I think it is likely that the ZapD is part of the belts that I discuss below, although the relative location of ZapD in the belts is not resolved. It is likely that the resolution in the toroid reconstructions of Fig. 4, S8,9 is less than that of the isolated pf pair in Fig. 5c.

      Importantly, If the authors want to pursue the location of ZapD in toroids, I suggest they need to compare their ZapD-containing toroids with toroids lacking ZapD. Popp et al 2009 have determined a variety of solution conditions that favor the assembly of toroids by FtsZ with no added protein crosslinker. It would be very interesting to investigate the structure of these toroids by the present cryoEM methods, and compare them to the FtsZ-ZapD toroids. I suspect that the belts seen in the ZapD toroids will not be found in the pure FtsZ toroids, confirming that their structure is generated by ZapD.

    1. Reviewer #1 (Public Review):

      Using a pharmacological and knock-down approach, the authors could demonstrate that ROCK activity is required for the normal development of the larval skeleton. The presence of ROCK in the pluteus stage depends on the activity of VEGF that is responsible for the formation of the tubular syncytial sheath of the calcifying primary mesenchyme cells in which the skeleton forms. The importance of ROCK in skeleton formation was confirmed in cell culture experiments, demonstrating that ROCK inhibition leads to decreased elongation and abnormal branching of spicules. µCT analyses underline this finding demonstrating that the inhibition of ROCK mainly affects elongation of spicules while growth in girth is little affected. F-actin labeling experiments could demonstrate that ROCK inhibition interferes with the organization of the actomyosin network in the early phase of skeleton formation, while f-actin organization in the tips of the elongating spicule is unaffected by the pharmacological inhibition of ROCK. Finally, ROCK inhibition strongly affects the expression of major regulatory and calcification-related genes in the calcifying cells. Based on these findings the authors propose a model for the regulatory interaction between the skeletogenic GRN, ROCK and the f-actin system relevant for skeletogenesis.

      Comments on revised version:

      In their manuscript Hijaze et al. adequately addressed the majority of my previous concerns in a satisfactory manner. In particular, they validated their morpholino knock-down experiments by explaining how they determined the optimal concentrations and provided an immunohistological evidence for the reduction in ROCK protein abundance. The authors also added new antibody stainings providing evidence that ROCK and F-actin do not interact directly but likely through other kinases that modulate f-actin, and that the localization of f-actin at the spicule tips remains unaffected by the knock-down. In addition, the authors revised their discussion to not overstate their observations, and by focusing on the potential mechanisms by which ROCK may affect biomineralization (i.e. mechano sensing and exocytosis of vesicles). Here I would like to add, that f-actin mediated exocytosis does not necessarily target mineral baring vesicles but may also promote the exocytosis of matrix proteins that are essential for the normal formation of the spicules and that are an integral component of other biominerals, as well. I strongly encourage the authors to continue on this exciting research, including the development of methods to analyze the molecular mechanisms that control vesicular trafficking in mineralizing systems.

    2. Reviewer #2 (Public Review):

      This project is on the role of ROCK in skeletogenesis during sea urchin development. That skeleton is produced by a small number of cells in the embryo with signaling inputs from the ectoderm providing patterning cues. The skeleton is built from secretion of CaCO3 by the skeletogenic cells. The authors conclude that ROCK is involved in the regulation of skeletogenesis with a role both in regulating actomyosin in the process, and in the gene regulatory network (GRN) underlying the entire sequence of events.

      The strength of the paper is that they show in detail how perturbations of ROCK results in abnormal actomyosin activity in the skeletogenic cells, and they show alterations both in expression of transcription factors of the GRN, and expression of genes involved in assembly of the skeletal matrix. Two different approaches lead to this conclusion: morpholino perturbations and the actions of a selective inhibitor of the kinase activity. Thus, they achieved their goal which was to test the hypothesis that ROCK is involved in the process of skeletogenesis. Those tests support the hypothesis with data that was quantitatively significant.

      The discussion was transparent regarding where the analysis ended and where the next phase of work should begin. While actomyosin involvement was altered when ROCK was perturbed, it isn't known how direct or indirect the role of ROCK might be. Also, while the regulatory input to spicule initiation and growth is affected when ROCK is inhibited, it isn't clear exactly where ROCK is involved.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors want to understand fundamental steps in ligand binding to muscle nicotinic receptors using computational methods. Overall, although the work provides new information and support for existing models of ligand activation of this receptor type, some limitations in the methods and approach mean that the findings are not as conclusive as hoped.

      Strengths:

      The strengths include the number of ligands tried, and the comparison to the existing mature analysis of receptor function from the senior author's lab.

      Weaknesses:

      The weakness are the brevity of the simulations, the concomitant lack of scope of the simulations, the lack of depth in the analysis and the incomplete relation to other relevant work. The free energy methods use seem to lack accuracy - they are only correct for 2 out of 4 ligands.

    2. Reviewer #2 (Public Review):

      Summary:

      The aim of this manuscript is to use molecular dynamics (MD) simulations to describe the conformational changes of the neurotransmitter binding site of a nicotinic receptor. The study uses a simplified model including the alpha-delta subunit interface of the extracellular domain of the channel and describes the binding of four agonists to observe conformational changes during the weak to strong affinity transition.

      Strength:

      The 200 ns-long simulations of this model suggest that the agonist rotates about its centre in a 'flip' motion, while loop C 'flops' to restructure the site. The changes appear to reproduced across simulations and different ligands and are thus a strong point of the study.

      Weaknesses:

      After carrying out all-atom molecular dynamics, the authors revert to a model of binding using continuum Poisson-Boltzmann, surface area and vibrational entropy. The motivations for and limitations associated with this approximate model for the thermodynamics of binding, rather than using modern atomistic MD free energy methods (that would fully incorporate configurational sampling of the protein, ligand and solvent) could be provided. Despite this, the authors report correlation between their free energy estimates and those inferred from experiment. This did, however, reveal shortcomings for two of the agonists. The authors mention their trouble getting correlation to experiment for Ebt and Ebx and refer to up to 130% errors in free energy. But this is far worse than a simple proportional error, because -24 Vs -10 kcal/mol is a massive overestimation of free energy, as would be evident if it the authors were to instead to express results in terms of KD values (which would have error exceeding a billion fold). The MD analysis could be improved with better measures of convergence, as well as more careful discussion of free energy maps as function of identified principal components, as described below. Overall, however, the study has provided useful observations and interpretations of agonist binding that will help understand pentameric ligand-gated ion channel activation.

      Main points:

      Regarding the choice of model, some further justification of the reduced 2 subunit ECD-only model could be given. On page 5 the authors argue that, because binding free energies are independent of energy changes outside the binding pocket, they could remove the TMD and study only an ECD subunit dimer. While the assumption of distant interactions being small seems somewhat reasonable, provided conformational changes are limited and localised, how do we know the packing of TMD onto the ECD does not alter the ability of the alpha-delta interface to rearrange during weak or strong binding? They further write that "fluctuations observed at the base of the ECD were anticipated because the TMD that offers stability here was absent.". As the TMD-ECD interface is the "gating interface" that is reshaped by agonist binding, surely the TMD-ECD interface structure must affect binding. It seems a little dangerous to completely separate the agonist binding and gating infrastructure, based on some assumption of independence. Given the model was only the alpha and delta subunits and not the pentamer with TMD, I am surprised such a model was stable without some heavy restraints. The authors state that "as a further control we carried out MD simulation of a pentamer docked with ACh and found similar structural changes at the binding pocket compared to the dimer." Is this sufficient proof of the accuracy of the simplified model? How similar was the model itself with and without agonist in terms of overall RMSD and RMSD for the subunit interface and the agonist binding site, as well as the free energy of binding to each model to compare?

      Although the authors repeatedly state that they have good convergence with their MD, I believe the analysis could be improved to convince us. On page 8 the authors write that the RMSD of the system converged in under 200 ns of MD. However, I note that the graph is of the entire ECD dimer, not a measure for the local binding site region. An additional RMSD of local binding site would be much more telling. You could have a structural isomerisation in the site and not even notice it in the existing graph. On page 9 the authors write that the RMSF in Fig.S2 showed instability mainly in loops C and F around the pocket. Given this flexibility at the alpha-delta interface, this is why collecting those regions into one group for the calculation of RMSD convergence analysis would have been useful. They then state "the final MD configuration (with CCh) was well-aligned with the CCh-bound cryo-EM desensitized structure (7QL6)... further demonstrating that the simulation had converged." That may suggest a change occurred that is in common with the global minimum seen in cryo EM, which is good, but does not prove the MD has "converged". I would also rename Fig.S3 accordingly.

      The authors draw conclusions about the dominant states and pathways from their PCA component free energy projections that need clarification. It is important first to show data to demonstrate that the two PCA components chosen were dominant and accounted for most of the variance. Then when mapping free energy as a function of those two PCA components, to prove that those maps have sufficient convergence to be able to interpret them. Moreover, that if the free energies themselves cannot be used to measure state stability (as seems to be the case), that the limitations are carefully explained. First, was PCA done on all MD trajectories combined to find a common PC1 & PC2, or were they done separately on each simulation? If so, how similar are they? The authors write "the first two principal components (PC-1 and PC-2) that capture the most pronounced C. displacements". How much of the total variance did these two components capture? The authors write the changes mostly concern loop C and loop F, but which data proves this? e.g. A plot of PC1 and PC2 over residue number might help?

      The authors map the -kTln rho as a free energy for each simulation as function of PC1 & PC2. It is important to reveal how well that PC1-2 space was sampled, and how those maps converged over time. The shapes of the maps and the relative depths of the wells look very different for each agonist. If the maps were sampled well and converged, the free energies themselves would tell us the stabilities of each state. Instead, the authors do not even mention this and instead talk about "variance" being the indicator of stability, stating that m3 is most stable in all cases. While I can believe 200ns could not converge a PC1-2 map and that meaningful delta G values might not be obtained from them, the issue of lack of sampling must be dealt with. On page 12 they write "Although the bottom of the well for 3 energy minima from PCA represent the most stable overall conformation of the protein, they do not convey direct information regarding agonist stability or orientation". The reasons why not must be explained; as they should do just that if the two order parameters PC1 and PC2 captured the slowest degrees of freedom for binding and sampling was sufficient. The authors write that "For all agonists and trajectories, m3 had the least variance (was most stable), again supporting convergence by 200 ns." Again the issue of actual free energy values in the maps needs to be dealt with. The probabilities expressed as -kTln rho in kcal/mol might suggest that m2 is the most stable. Instead, the authors base stability only on variance (I guess breadth of the well?), where m3 may be more localised in the chosen PC space, despite apparently having less preference during the MD (not the lowest free energy in the maps).

      The motivations and justifications for use of approximate PBSA energetics instead of atomistic MD free energies should be dealt with in the manuscript, with limitations more clearly discussed. Rather than using modern all-atom MD free energy methods for relative or absolute binding free energies, the author select clusters from their identified states and do Poisson-Boltzmann estimates (electrostatic, vdW, surface area, vibrational entropy). I do believe the following sentence does not begin to deal with the limitations in that method: "there are limitations with regard to MM-PBSA accurately predicting absolute binding free energies (Genheden & Ryde, 2015; Hou et al., 2011) that depends on parameterization of the ligand (Oostenbrink et al., 2004)." What are the assumptions and limitations in taking a continuum electrostatics (presumably with parameters for dielectric constants and their assignments to regions after discarding solvent), surface area (with its assumptions and limitations) and of course assuming vibration of a normal mode can capture entropy. On page 30, regarding their vibrational entropy estimate, they write that the "entropy term provides insights into the disorder within the system, as well as how this disorder changes during the binding process". It is important that the extent of disorder captured by the vibrational estimate be discussed, as it is not obvious that it has captured entropy involving multiple minima on the system's true 3N-dimensional energy surface, and especially the contribution from solvent disorder in bound Vs dissociated states.

      As discussed above, errors in the free energy estimates need to be more faithfully represented, as fractional errors are not meaningful. On page 21 the authors write "The match improved when free energy ratios rather than absolute values were compared." But a ratio of free energies is not a typical or expected measure of error in delta G. They also write "For ACh and CCh, there is good agreement between.Gm1 and GLA and between.Gm3 and GHA. For these agonists, in silico values overestimated experimental ones only by ~8% and ~25%. The agreement was not as good for the other 2 agonists, as calculated values overestimated experimental ones by ~45%(Ebt) and ~130% (Ebt). However, the fractional overestimation was approximately the same for GLA and GHA." See above comment on how this may misrepresent the error. On page 21 they write, in relation to their large fractional errors, that they "do not know the origin of this factor but speculate that it could be caused by errors in ligand parameterization". But the estimates from the PBSA approach are, by design, only approximate. Both errors in parameterisation (and their likely origin) and the approximate model used, need discussion.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors use docking and molecular dynamics (MD) simulations to investigate transient conformations that are otherwise difficult to resolve experimentally. The docking and simulations suggest an interesting series of events whereby agonists initially bind to the low affinity site and then flip 180 degrees as the site contracts to its high affinity conformation. This work will be of interest to the ion channel community and to biophysical studies of pentameric ligand-gated channels.

      Strengths:

      I find the premise for the simulations to be good, starting with an antagonist bound structure as an estimate of the low affinity binding site conformation, then docking agonists into the site and using MD to allow the site to relax to a higher affinity conformation that is similar to structures in complex with agonists. The predictions are interesting and provide a view into what a transient conformation that is difficult to observe experimentally might be like.

      Weaknesses:

      A weakness is that the relevance of the initial docked low affinity orientations depend solely on in silco results, for which simulated vs experimental binding energies deviate substantially for two of the four ligands tested. This raises some doubt as to the validity of the simulations. I acknowledge that the calculated binding energies for two of the ligands were closer to experiment, and simulated efficiencies were a good representation of experimental measures, which gives some support to the relevance of the in silico observations. Regardless, some of the reviewers comments regarding the simulation methodology were not seriously addressed.

    4. Reviewer #4 (Public Review):

      Summary:

      In their revised manuscript "Conformational dynamics of a nicotinic receptor neurotransmitter binding site," Singh and colleagues present molecular docking and dynamics simulations to explore the initial conformational changes associated with agonist binding in the muscle nicotinic acetylcholine receptor, in context with the extensive experimental literature on this system. Their central findings are of a consistently preferred pose for agonists upon initial association with a resting channel, followed by a dramatic rotation of the ligand and contraction of a critical loop over the binding site. Principal component analysis also suggests the formation of an intermediate complex, not yet captured in structural studies. Binding free energy estimates are consistent with the evolution of a higher-affinity complex following agonist binding, with a ligand efficiency notably similar to experimental values. Snapshot comparisons provide a structural rationale for these changes on the basis of pocket volume, hydration, and rearrangement of key residues at the subunit interface.

      Strengths:

      Docking results are clearly presented and remarkably consistent. Simulations are produced in triplicate with each of four different agonists, providing an informative basis for internal validation. They identify an intriguing transition in ligand pose, not well documented in experimental structures, and potentially applicable to mechanistic or even pharmacological modeling of this and related receptor systems. The paper seems a notable example of integrating quantitative structure-function analysis with systematic computational modeling and simulations, likely applicable to the wider journal audience.

      Weaknesses:

      The response to initial review is somewhat disappointing, declining in some places to implement suggested clarifications, and propagating apparent errors in at least one table (Fig 2-source data 1). Some legends (e.g. Fig 2-supplement 4, Fig 3, Fig 4) and figure shadings (e.g. Fig 2-supplement 2, Fig 6-supplement 2) remain unclear. Apparent convergence of agonist-docked simulations towards a desensitized state (l 184) is difficult to interpret in absence of comparative values with other states, systems, etc. In more general concerns, aside from the limited timescales (200 ns) that do not capture global rearrangements, it is not obvious that landscapes constructed on two principal components to identify endpoint and intermediate states (Fig 3) are highly robust or reproducible, nor whether they relate consistently to experimental structures.

    1. Reviewer #1 (Public Review):

      Summary:

      The work by Joseph et al "Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia" seeks to comparatively analyze the effect of a range of covalent and noncovalent clinical BTK inhibitors upon BTK conformation. The novel aspect of this manuscript is that it seeks to evaluate the differential resistance mutations that arise distinctly from each of the inhibitors.

      Strengths:

      This is an exciting study that builds upon the fundamental notion of ensemble behavior in solutions for enzymes such as BTK. The HDX-MS and NMR experiments are adequately and comprehensively presented.

      Weaknesses:

      While I commend the novelty of the study, the absence of important controls greatly tempers my enthusiasm for this work. As stated in the abstract, there are no broad takeaways for how resistance mutation bias operated from this study, although the mechanism of action of 2 common resistance mutations is useful. How these 2 resistance mutations connect to ensemble behavior, is not obvious. This is partly because BTK does not populate just binary "open"/"closed" conformations, but there are likely multiple intermediate conformations. Each inhibitor appears to preferentially "select" conformations by the authors' own assessment (line 236) and this carries implications for the emergence of resistance mutations. The most important control that would help is to use ADP or nonhydrolyzable and ATP as a baseline to establish the "inactive" and "active" conformations. All of the HDX-MS and NMR studies use protein that has no nucleotide present. A major question that remains is whether each of the inhibitors preferentially favors/blocks ADP or ATP binding. This then means it is not equivalent to correlate functional kinase assay conditions with either HDX-MS or NMR experiments.

    2. Reviewer #2 (Public Review):

      Summary:

      Previous NMR and HDX-MS studies on full-length (FL) BTK showed that the covalent BTKi, ibrutinib, causes long-range effects on the conformation of BTK consistent with disruption of the autoinhibited conformation, based on HDX deuterium uptake patterns and NMR chemical shift perturbations. This study extends the analyses to four new covalent BTKi, acalabrutinib, zanubrutinib, tirabrutinib/ONO4059, and a noncovalent ATP competitive BTKi, pirtobrutinib/LOXO405.

      The results show distinct conformational changes that occur upon binding each BTKi. The findings show consistent NMR and HDX changes with covalent inhibitors, which move helix aC to an 'out' position and disrupt SH3-kinase interactions, in agreement with X-ray structures of the BTKi complexed with the BTK kinase domain. In contrast, the solution measurements show that pirtobrutinib maintains and even stabilizes the helix aC-in and autoinhibited conformation, even though the BTK:pritobrutinib crystallizes with helix aC-out. This and unexpected variations in NMR and HDX behavior between inhibitors highlight the need for solution measurements to understand drug interactions with the full-length BTK. Overall the findings present good evidence for allosteric effects by each BTKi that induce distal conformational changes which are sensitive to differences in inhibitor structure.

      The study goes on to examine BTK mutants T474I and L528W, which are known to confer resistance to pirtobrutinib, zanubritinib, and tirabrutinib. T474I reduces and L528W eliminates BTK autophosphorylation at pY551, while both FL-BTK-WT and FL-BTK-L528W increase HCK autophosphorylation and PLCg phosphorylation. These show that mutants partially or completely inactivate BTK and that inactive FL-BTK can activate HCK, potentially by direct BTK-HCK interactions. But they do not explain drug resistance. However, HDX and NMR show that each mutant alters the effects of BTKi binding compared to WT. In particular, T474I alters the effects of all three inhibitors around W395 and the activation loop, while L528W alters interactions around W395 with tirabrutinib and pirtobrutinib, and does not appear to bind zanubrutinib at all. The study concludes that the mutations might block drug efficacy by reducing affinity or altering binding mode.

      Strengths:

      The work presents convincing evidence that BTK inhibitors alter the conformation of regions distal to their binding sites, including those involved in the SH3-kinase interface, the activation loop, and a substrate binding surface between helix aF and helix aG. The findings add to the growing understanding of allosteric effects of kinase inhibitors, and their potential regulation of interactions between kinase and binding proteins.

      Weaknesses:

      The interpretation of HDX, NMR, and kinase assays is confusing in some places, due to ambiguity in quantifying how much kinase is bound to the inhibitor. It would be helpful to confirm binding occupancy, in order to clarify if mutants lower the amount of BTK complexed with BTKi as implied in certain places, or if they instead alter the binding mode. In addition, the interpretation of the mutant effects might benefit from a more detailed examination of how each inhibitor occupies the ATP pocket and how substitutions of T474 and L528 with Ile and Trp respectively might change the contacts with each inhibitor.

    1. Reviewer #1 (Public Review):

      The Calcium Homeostasis Modulators (CALHM) are a family of large pore channels, of which the physiological role of CALHM1 and 3 is well understood, in particular their key role in taste sensation via the release of the neurotransmitter ATP. The activation mechanism of CALHM1 involves membrane depolarization and a decrease in extracellular Ca concentration, allowing the passage of large cellular metabolites. However, the activation mechanism and physiological roles of other family members are much less well understood. Many structures of homomeric CALHM proteins have been determined, revealing distinct oligomeric assemblies despite a common transmembrane domain topology. CALHM1 and 3 have been shown functionally to form heteromeric assemblies with properties distinct from those of homomeric CALHM1. However, the structural basis of heteromeric CALHM1 and 3 remains unexplored.

      In this paper, Drozdzyk et al. present an important study on the structures of heteromeric channels composed of CALHM2 and CALHM4, extending the structural understanding of the CALHM family beyond homomeric channels. The study relies primarily on cryo-EM. Despite the inherent challenges of structural determination due to the similar structural features of CALHM2 and CALHM4, the authors innovatively use synthetic nanobodies to distinguish between the subunits. Their results show a broad distribution of different heteromeric assemblies, with CALHM4 conformation similar to its homomeric form and CALHM2 conformation influenced by its proximity to CALHM4, and provide detailed insights into the interaction between CALHM2 and CALHM4.

      The manuscript is well-structured and presents clear results that support the conclusions drawn. The discovery of heteromeric CALHM channels, although currently limited to an overexpressed system, represents a significant advance in the field of large-pore channels and will certainly encourage further investigation into the physiological relevance and roles of heteromeric CALHM channels. The manuscript would benefit from further insight into the functional properties of these heteromeric channels. However, this is not a weakness as the identification of precise activation stimuli for CALHM2 and 4 is beyond the scope of this work.

      A challenge noted is the wide distribution of heteromeric assemblies in the 3D classification, resulting in insufficient particles for high-resolution structure determination of each assembly. The authors choose to combine particles from assemblies with 2-4 copies of CALHM4, which reveals the interface between CALHM2 and 4 but may compromise the quality of structural details. I recommend an alternative data processing strategy. First, refine particles with 2-4 CALHM4 subunits with symmetry imposed. This is followed by symmetry expansion, signal subtraction of two adjacent subunits, and subsequent classification and refinement of the subtracted particles. This approach, while not guaranteed, can potentially provide a clearer definition of CALHM2 and CALHM4 interfaces and show whether CALHM2 subunits adopt different conformations based on their proximity to CALHM4 subunits.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors identified that two of the placental CALHM orthologs, CALHM2 and CALHM4 can form heterooligomeric channels that are stable following detergent solubilization. By adding fiducial markers that specifically recognize either CALHM2 or CALHM4, the authors determine a cryo-EM density map of heterooligomeric CALHM2/CALHM4 from which they can determine how the channel is assembled. Surprisingly, the two orthologs segregate into two distinct segments of the channel. This segregation enables the interfacial subunits to ease the transition between the preferred conformations of each ortholog, which are similar to the confirmation that each ortholog adopts in homooligomeric channels.

      Strengths:

      Through the use of fiducial markers, the authors can clearly distinguish between the CALHM2 and CALHM4 promoters in the heterooligomeric channels, strengthening their assignment of most of the promoters. The authors take appropriate caution in identifying two subunits that are likely a mix of the two orthologs in the channel.

      Weaknesses:

      Despite the authors' efforts, no currents could be observed that corresponded to CALHM2/CALHM4 channels and thus the functional effect of their interaction is not known.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper shows that E. coli exhibits a chemotactic response to potassium by measuring both the motor response (using a bead assay) and the intracellular signaling response (CheY phosporylation level via FRET) to step changes in potassium concentration. They find increase in potassium concentration induces a considerable attractant response, with amplitude comparable to aspartate, and cells can quickly adapt (and generally over-adapt). The authors propose that the mechanism for potassium response is through modifying intracellular pH; they find both that potassium modifies pH and other pH modifiers induce similar attractant responses. It is also shown, using Tar- and Tsr-only mutants, that these two chemoreceptors respond to potassium differently. Tsr has a standard attractant response, while Tar has a biphasic response (repellent-like then attractant-like). Finally, the authors use computer simulations to study the swimming response of cells to a periodic potassium signal secreted from a biofilm and find a phase delay that depends on the period of oscillation.

      Strengths:

      The finding that E. coli can sense and adapt to potassium signals and the connection to intracellular pH is quite interesting and this work should stimulate future experimental and theoretical studies regarding the microscopic mechanisms governing this response. The evidence (from both the bead assay and FRET) that potassium induces an attractant response is convincing, as is the proposed mechanism involving modification of intracellular pH. The updated manuscript controls for the impact of pH on the fluorescent protein brightness that can bias the measured FRET signal. After correction the response amplitude and sharpness (hill coefficient) are comparable to conventional chemoattractants (e.g. aspartate), indicating the general mechanisms underlying the response may be similar. The authors suggest that the biphasic response of Tar mutants may be due to pH influencing the activity of other enzymes (CheA, CheR or CheB), which will be an interesting direction for future study.

      Weaknesses:

      The measured response may be biased by adaptation, especially for weak potassium signals. For other attractant stimuli, the response typically shows a low plateau before it recovers (adapts). In the case of potassium, the FRET signal does not have an obvious plateau following the stimuli of small potassium concentrations, perhaps due to the faster adaptation compared to other chemoattractants. It is possible cells have already partially adapted when the response reaches its minimum, so the measured response may be a slight underestimate of the true response. Mutants without adaptation enzymes appear to be sensitive to potassium only at much larger concentrations, where the pH significantly disrupts the FRET signal; more accurate measurements would require development of new mutants and/or measurement techniques.

    2. Reviewer #2 (Public Review):

      Zhang et al investigated the biophysical mechanism of potassium-mediated chemotactic behavior in E coli. Previously, it was reported by Humphries et al that the potassium waves from oscillating B subtilis biofilm attract P aeruginosa through chemotactic behavior of motile P aeruginosa cells. It was proposed that K+ waves alter PMF of P aeruginosa. However, the mechanism was this behaviour was not elusive. In this study, Zhang et al demonstrated that motile E coli cells accumulate in regions of high potassium levels. They found that this behavior is likely resulting from the chemotaxis signalling pathway, mediated by an elevation of intracellular pH. Overall, a solid body of evidence is provided to support the claims. However, the impacts of pH on the fluorescence proteins need to be better evaluated. In its current form, the evidence is insufficient to say that the fluoresce intensity ratio results from FRET. It may well be an artefact of pH change.

      The authors now carefully evaluated the impact of pH on their FRET sensor by examining the YFP and CFP fluorescence with no-receptor mutant. The authors used this data to correct the impact of pH on their FRET sensor. This is an improvement, but the mathematical operation of this correction needs clarification. This is particularly important because, looking at the data, it is not fully convincing if the correction was done properly. For instance, 3mM KCl gives 0.98 FRET signal both in Fig3 and FigS4, but there is almost no difference between blue and red lines in Fig 3. FigS4 is very informative, but it does not address the concern raised by both reviewers that FRET reporter may not be a reliable tool here due to pH change.

      The authors show the FRET data with both KCl and K2SO4, concluding that the chemotactic response mainly resulted from potassium ions. However, this was only measured by FRET. It would be more convincing if the motility assay in Fig1 is also performed with K2SO4. The authors did not address this point. In light of complications associated with the use of the FRET sensor, this experiment is more important.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper provides a straightforward mechanism of how mycobacterial cAMP level is increased under stressful conditions and shows that the increase is important for the survival of the bacterium in animal hosts. The cAMP level is increased by decreasing the expression of an enzyme that degrades cAMP.

      Strengths:

      The paper shows that under different stresses the response regulator PhoP represses a phosphodiesterase (PDE) that degrades cAMP specifically. Identification of<br /> PhoP as a regulator of cAMP is significant progress in understanding Mtb pathogenesis, as increase in cAMP apparently increases bacterial survival upon infection. On the practical side, reduction of cAMP by increasing PDE can be a means to attenuate the growth of the bacilli. The results have wider implications since PhoP is implicated in controlling diverse mycobacterial stress responses and many bacterial pathogens modulate host cell cAMP level. The results here are straightforward, internally consistent, and of both theoretical and applied interests. The results also open considerable future work, especially how increases in cAMP level help to increase survival of the pathogen.

      Weaknesses:

      It is not clear whether PhoP-PDE Rv0805 is the only pathway to regulate cAMP level under stress.

    2. Reviewer #2 (Public Review):

      Summary: In the manuscript, the authors have presented new mechanistic details to show how intracellular cAMP levels are maintained linked to the phosphodiesterase enzyme which in turn is controlled by PhoP. Later, they showed the physiological relevance linked to altered cAMP concentrations.

      Strengths: Well thought out experiments. The authors carefully planned the experiments well to uncover the molecular aspects of it diligently.

      Weaknesses: Some fresh queries were made based on the author's previous responses and hope to get satisfactory answers this time.

    1. Reviewer #1 (Public Review):

      Summary:

      This work describes the mechanism of protein disaggregation by the ClpL AAA+ protein of Listeria monocytogenes. Using several model subtrate proteins the authors first show that ClpL possesses a robust disaggregase activity that does not further require the endogenous DnaK chaperone in vitro. In addition, they found that ClpL is more thermostable than the endogenous L. monocytogenes DnaK and has the capacity to unfold tightly folded protein domains. The mechanistic basis for the robust disaggregase activity of ClpL was also dissected in vitro and in some cases, supported by in vivo data performed in chaperone-deficient E. coli strains. The data presented show that the two AAA domains, the pore-2 site and the N-terminal domain (NTD) of ClpL are critical for its disaggregase activity. Remarkably, grafting the NTD of ClpL to ClpB converted ClpB into an autonomous disaggregase, highlighting the importance of such a domain in the DnaK-independent disaggregation of proteins. The role of the ClpL NTD domain was further dissected, identifying key residues and positions necessary for aggregates recognition and disaggregation. Finally, using sets of SEC and negative staining EM experiments combined with conditional covalent linkages and disaggregation assays the authors found that ClpL shows significant structural plasticity, forming dynamic hexameric and heptameric active single rings that can further form higher assembly states via their middle domains.

      Strengths:

      The manuscript is well written and the experimental work well executed. It contains a robust and complete set of in vitro data that push further our knowledge of such important disaggregases. It shows the importance of the atypical ClpL N-terminal domain in the disaggregation process as well as the structural malleability of such AAA+ proteins. More generally, this work expands our knowledge of heat resistance in bacterial pathogens.

      Weaknesses:

      There is no specific weakness in this work, although it would have helped to have a drawing model showing how ClpL performs protein disaggregation based on their new findings. The function of the higher assembly states of ClpL remains unresolved and will need further extensive research. Similarly, it will be interesting in the future to see whether the sole function of the plasmid encoded ClpL is to cope with general protein aggregates under heat stress.

    2. Reviewer #2 (Public Review):

      The manuscript by Bohl et al. is an interesting and carefully done study on the biochemical properties and mode of action of potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes. ClpL is encoded on plasmids. It shows high thermal stability and provides Listeria monocytogenes food-pathogen substantial increase in resistance to heat. The authors show that ClpL interacts with aggregated proteins through the aromatic residues present in its N-terminal domain and subsequently unfolds proteins from aggregates translocating polypeptide chains through the central pore in its oligomeric ring structure. The structure of ClpL oligomers was also investigated in the manuscript. The results suggest that mono-ring structure and not dimer or tetramer of rings, observed in addition to mono-ring structures under EM, is an active specie of disaggregase. In the revised version additional data is presented suggesting that dimer or tetramer of ClpL rings play a protective role in cell by restricting ClpL activity.

      Presented experiments are conclusive and well controlled. I think the presentation and discussion of results are better in revised version.<br /> The study's strength lies in the direct comparison of ClpL biochemical properties with autonomous ClpG disaggregase present in selected Gram-negative bacteria and well-studied E. coli system consisting of ClpB disaggregase and DnaK and its cochaperones. This puts the results in a broader context.

    3. Reviewer #3 (Public Review):

      Summary:

      This manuscript details the characterization of ClpL from L. monocytogenes as a potent and autonomous AAA+ disaggregase. The authors demonstrate that ClpL has potent and DnaK-independent disaggregase activity towards a variety of aggregated model substrates, and that this disaggregase activity appears to be greater than that observed with the canonical DnaK/ClpB co-chaperone. Furthermore, LmClpL appears to have greater thermostability as compared to LmDnaK, suggesting that ClpL-expressing cells may be able to withstand more severe heat stress conditions. Interestingly, LmClpL can provide thermotolerance to E. coli that have been genetically depleted of either ClpB or in cells expressing a mutant DnaK103. The authors further characterized the mechanisms by which ClpL interacts with protein aggregates, identifying that the N-terminal domain of ClpL is essential for disaggregase function. Lastly, by EM and mutagenesis analysis the authors report that ClpL can exist in a variety of larger macromolecular complexes, including dimer or trimers of hexamers/heptamers, and they provide evidence that the N-terminal domains of ClpL prevent dimer ring formation, thus promoting an active and substrate-binding ClpL complex. Throughout this manuscript the authors compare LmClpL to ClpG, another potent and autonomous disaggregase found in gram-negative bacteria that has been reported on previously, demonstrating that these two enzymes share homologous activity and qualities. Taken together this report clearly establishes ClpL as a novel and autonomous disaggregase.

      Analysis:

      The work presented in this report amounts to a significant body of novel and significant work that will be of interest to protein chaperone community. Furthermore, by providing examples of how ClpL can provide in vivo thermotolerance to both E. coli and L. gasseri the authors have expanded the significance of this work and provides novel insight into potential mechanisms responsible for thermotolerance in food-borne pathogens. The figures are clearly depicted, well-labeled, and easy to understand, and the manuscript is well-written. Experimentally the work was performed to a high standard with excellent controls, aiding in the ability for the audience to understand the major findings and conclusions. Additionally, the authors have effectively and efficiently expanded on their work through the peer review process, further increasing the understandability and significance of their work. Overall, the data presented, and analysis thereof, support the authors' conclusions, and thus this study represents an important addition to our understanding of molecular chaperone biochemistry. Lastly, this study establishes new avenues for research into autonomous disaggregates, their role in in vivo thermotolerance, and the mechanisms by which AAA+ chaperones recognize and interact with substrate proteins.

    1. Joint Public Review:

      Summary:

      Previously, this group showed that Tgfbr1 regulates the reorganization of the epiblast and primitive streak into the chordo-neural hinge and tailbud during the trunk-to-tail transition. Gdf11 signaling plays a crucial role in orchestrating the transition from trunk to tail tissues in vertebrate embryos, including the reallocation of axial progenitors into the tailbud and Tgfbr1 plays a key role in mediating its signaling activity. Progenitors that contribute to the extension of the neural tube and paraxial mesoderm into the tail are located in this region. In this work, the authors show that Tgfbr1 also regulates the reorganization of the posterior primitive streak/base of allantois and the endoderm as well.

      By analyzing the morphological phenotypes and marker gene expression in Tgfbr1 mutant mouse embryos, they show that it regulates the merger of somatic and splanchnic layers of the lateral plate mesoderm, the posterior streak derivative. They also present evidence suggesting that Tgfbr1 acts upstream of Isl1 (key effector of Gdf11 signaling for controlling differentiation of lateral mesoderm progenitors) and regulates the remodelling of the major blood vessels, the lateral plate mesoderm and endoderm associated with the trunk-to-tail transition. Through a detailed phenotypic analysis, the authors observed that, similarly to Isl1 mutants, the lack of Tgfbr1 in mouse embryos hinders the activation of hindlimb and external genitalia maker genes and results in a failure of lateral plate mesoderm layers to converge during tail development. As a result, they interpret that ventral lateral mesoderm, which generates the peri cloacal mesenchyme and genital tuberculum, fails to specify.

      They also show defects in the morphogenesis of the dorsal aorta at the trunk/tail juncture, resulting in an aberrant embryonic/extraembryonic vascular connection. Endoderm reorganization defects following abnormal morphogenesis of the gut tube in the Tgfbr1 mutants cause failure of tailgut formation and cloacal enlargement. Thus, Tgfbr1 activity regulates the morphogenesis of the trunk/tail junction and the morphogenetic switch in all germ layers required for continuing post-anal tail development. Taken together with the previous studies, this work places Gdf11/8 - Tgfbr1 signaling at the pivot of trunk-to-tail transition and the authors speculate that critical signaling through Tgfbr1 occurs in the posterior-most part of the caudal epiblast, close to the allantois.

      Strengths:

      The data shown is solid with excellent embryology/developmental biology. This work demonstrates meticulous execution and is presented in a comprehensive and coherent manner. Although not completely novel, the results/conclusions add to the known function of Gdf11 signaling during the trunk-to-tail transition.

      Weaknesses:

      The authors rely on the expression of a small number of key regulatory genes to interpret the developmental defects. The alternative possibilities remain to be ruled out thoroughly. The manuscript is also quite descriptive and would benefit from more focused highlighting of the novelty regarding the absence of Tgfbr1 in the mouse embryo. They should also strengthen some of their conclusions with more details in the results.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In the present study, Rincon-Torroella et al. developed ME3BP-7, a microencapsulated formulation of 3BP, as an agent to target MCT1 overexpressing PDACs. They provided evidence showing the specific killing of PDAC cells with MCT1 overexpressing in vitro, along with demonstrating the safety and anti-tumor efficacy of ME3BP-7 in PDAC orthotopic mouse models.

      Strengths:<br /> * Developed a novel agent.<br /> * Well-designed experiments and an organized presentation of data that support the conclusions drawn.

      Weaknesses:<br /> There are some minor issues that could enhance the clarity and completeness of the study:

      (1) Statistical results should be visually presented in Figure 4 and Figure S1.

      (2) Given the tumor heterogeneity and the identification of focal high expression of MCT1 in Figure 7 and Figure S5B, it is suggested that the authors include the results of immunohistochemical (IHC) analysis of MCT1 expression in both control and ME3BP-7 treated tumor tissues. This addition may offer insight into whether the remaining tumors are composed of PDAC cells with negative MCT1 expression, while the cells with relatively high levels of MCT1 expression were eliminated by ME3BP-7 treatment.

      (3.)The authors are encouraged to discuss the future directions for improving the efficacy of this study. For example, exploring the combination of ME3BP-7 with a glutaminase-1 inhibitor (PMID 37891897) could be a valuable avenue for further research.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In the manuscript by Rincon-Torroella et al, the authors evaluated the therapeutic potential of ME3BP-7, a microencapsulated formulation of 3BP which specifically targets MCT-1 high tumor cells, in pancreatic cancer models. The authors showed that, compared to 3BP, ME3BP-7 exhibited much-enhanced stability in serum. In addition, the authors confirmed the specificity of ME3BP-7 toward MCT-1 high tumor cells and demonstrated the in vivo anti-tumor effect of ME3BP-7 in orthotopic xenograft of human PDAC cell line and PDAC PDX model.

      Strengths:<br /> (1) The study convincingly demonstrated the superior stability of ME3BP-7 in serum.<br /> (2) The specificity of ME3BP-7 and 3BP toward MCT-1 high PDAC cells was clearly demonstrated with CRISPR-mediated knockout experiments.

      Weaknesses:<br /> The advantage of ME3BP-7 over 3BP under an in vivo situation was not fully established.

    1. Reviewer #1 (Public Review):

      Summary:

      This work presents an in-depth characterization of the factors that influence the structural dynamics of the Clostridium botulinum guanidine-IV riboswitch (riboG). Using a single-molecule FRET, the authors demonstrate that riboG undergoes ligand and Mg2+ dependent conformational changes consistent with the dynamic formation of a kissing loop (KL) in the aptamer domain. Formation of the KL is attenuated by Mg2+ and Gua+ ligand at physiological concentrations as well as the length of the RNA. Interestingly, the KL is most stable in the context of just the aptamer domain compared to longer RNAs capable of forming the terminator stem. To attenuate transcription, binding of Gua+ and formation of the KL must occur rapidly after transcription of the aptamer domain but before transcription of the rest of the terminator stem.

      Strengths:

      (1) Single-molecule FRET microscopy is well suited to unveil the conformational dynamics of KL formation and the authors provide a wealth of data to examine the effect of the ligand and ions on riboswitch dynamics. The addition of complementary transcriptional readthrough assays provides further support for the author's proposed model of how the riboswitch dynamics contribute to function.

      (2) The single-molecule data strongly support that the effect of Gua+ ligand and Mg2+ influence the RNA structure differently for varying lengths of the RNA. The authors also demonstrate that this is specific for Mg2+ as Na+ and K+ ions have little effect.

      (3) The PLOR method utilized is clever and well adapted for both dual labeling of RNAs and examining RNA at various lengths to mimic co-transcriptional folding. Using PLOR, they demonstrate that a change in the structural dynamics and ligand binding can occur after the extension of the RNA transcript by a single nucleotide. Such a tight window of regulation has intriguing implications for kinetically controlled riboswitches.

      Weaknesses:

      (1) The authors use only one mutant to confirm that their FRET signal indicates the formation of the KL. Importantly, this mutation does not involve the nucleotides that are part of the KL interaction. It would be more convincing if the authors used mutations in both strands of the KL and performed compensatory mutations that restore base pairing. Experiments like this would solidify the structural interpretation of the work, particularly in the context of the full-length riboG RNA or in the co-transcriptional mimic experiments, which appear to have more conformational heterogeneity.

      (2) The existence of the pre-folded state (intermediate FRET ~0.5) is not well supported in their data and could be explained by an acquisition artifact. The dwell times are very short often only a single frame indicating that there could be a very fast transition (< 0.1s) from low to high FRET that averages to a FRET efficiency of 0.5. To firmly demonstrate that this intermediate FRET state is metastable and not an artifact, the authors need to perform measurements with a faster frame rate and demonstrate that the state is still present.

      (3) The PLOR method employs a non-biologically relevant polymerase (T7 RNAP) to mimic transcription elongation and folding near the elongation complex. T7 RNAP has a shorter exit channel than bacterial RNAPs and therefore, folding in the exit channel may be different between different RNAPs. Additionally, the nascent RNA may interact with bacterial RNAP differently. For these reasons, it is not clear how well the dynamics observed in the T7 ECs recapitulate riboswitch folding dynamics in bacterial ECs where they would occur in nature.

    2. Reviewer #2 (Public Review):

      Summary:

      Gao et al. used single-molecule FRET and step-wise transcription methods to study the conformations of the recently reported guanidine-IV class of bacterial riboswitches that upregulate transcription in the presence of elevated guanidine. Using three riboswitch lengths, the authors analyzed the distributions and transitions between different conformers in response to different Mg2+ and guanidine concentrations. These data led to a three-state kinetic model for the structural switching of this novel class of riboswitches whose structures remain unavailable. Using the PLOR method that the authors previously invented, they further examined the conformations, ligand responses, and gene-regulatory outcomes at discrete transcript lengths along the path of vectorial transcription. These analyses uncover that the riboswitch exhibits differential sensitivity to ligand-induced conformational switching at different steps of transcription, and identify a short window where the regulatory outcome is most sensitive to ligand binding.

      Strengths:

      Dual internal labeling of long RNA transcripts remains technically very challenging but essential for smFRET analyses of RNA conformations. The authors should be commended for achieving very high quality and purity in their labelled RNA samples. The data are extensive, robust, thorough, and meticulously controlled. The interpretations are logical and conservative. The writing is reasonably clear and the illustrations are of high quality. The findings are significant because the paradigm uncovered here for this relatively simple riboswitch class is likely also employed in numerous other kinetically regulated riboswitches. The ability to quantitatively assess RNA conformations and ligand responses at multiple discrete points along the path towards the full transcript provides a rare and powerful glimpse into co-transcriptional RNA folding, ligand-binding, and conformational switching.

      Weaknesses:

      The use of T7 RNA polymerase instead of a near-cognate bacterial RNA polymerase in the termination/antitermination assays is a significant caveat. It is understandable as T7 RNA polymerase is much more robust than its bacterial counterparts, which probably will not survive the extensive washes required by the PLOR method. The major conclusions should still hold, as the RNA conformations are probed by smFRET at static, halted complexes instead of on the fly. However, potential effects of the cognate RNA polymerase cannot be discerned here, including transcriptional rates, pausing, and interactions between the nascent transcript and the RNA exit channel, if any. The authors should refrain from discussing potential effects from the DNA template or the T7 RNA polymerase, as these elements are not cognate with the riboswitch under study.

    3. Reviewer #3 (Public Review):

      Summary:

      In this article, Gao et. al. uses single-molecule FRET (smFRET) and position-specific labelling of RNA (PLOR) to dissect the folding and behavioral ligand sensing of the Guanidine-IV riboswitch in the presence and absence of the ligand guanidine and the cation Mg2+. The results provided valuable information on the mechanistic aspects of the riboswitch, including the confirmation of the kissing loop present in the structure as essential for folding and riboswitch activity. Co-transcriptional investigations of the system provided key information on the ligand-sensing behavior and ligand-binding window of the riboswitch. A plausible folding model of the Guanidine-IV riboswitch was proposed as a final result. The evidence presented here sheds additional light on the mode of action of transcriptional riboswitches.

      Strengths:

      The investigations were very thorough, providing data that supports the conclusions. The use of smFRET and PLOR to investigate RNA folding has been shown to be a valuable tool for the understanding of folding and behavior properties of these structured RNA molecules. The co-transcriptional analysis brought important information on how the riboswitch works, including the ligand-sensing and the binding window that promotes the structural switch. The fact that investigations were done with the aptamer domain, aptamer domain + terminator/anti-terminator region, and the full-length riboswitch were essential to inform how each domain contributes to the final structural state if in the presence of the ligand and Mg2+.

      Weaknesses:

      The system has its own flaws when compared to physiological conditions. The RNA polymerase used (the study uses T7 RNA polymerase) is different from the bacterial RNA polymerase, not only in complexity, but also in transcriptional speed, which can directly interfere with folding and ligand-sensing. Additionally, rNTPs concentrations were much lower than physiological concentrations during transcription, likely causing a change in the polymerase transcriptional speed. These important aspects and how they could interfere with results are important to be addressed to the broad audience. Another point of consideration to be aware of is that the bulky fluorophores attached to the nucleotides can interfere with folding to some extent.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Zeng and Staley provide a valuable analysis of the molecular requirements for the export of a reporter mRNA that contains a lariat structure at its 5' end in the budding yeast S. cerevisiae. The authors provide evidence that this is regulated by the main mRNA export machinery (Yra1, Mex67, Nab2, Npl3, Tom1, and Mlp1). Of note, Mlp1 has been mainly implicated in the nuclear retention of unspliced pre-mRNA (i.e. quality control), and relatively little has been done to investigate its role in mRNA export in budding yeast.

      Strengths:

      There is relatively little information in the current literature about the nuclear export of splicing intermediates. This paper provides one of the first analyses of this process and dissects the molecular components that promote this form of RNA export. Overall, the strength of the data presented in the manuscript is solid. The paper is well written and the message is clear and of general interest to the mRNA community.

      Weaknesses:

      There are three problems with the paper, although these are not major and likely would not affect the final model as most aspects of the molecular details are confirmed by multiple complementary assays.

      (1) The brG reporter produces both unspliced pre-mRNA and a lariat-containing intermediate RNA. Based on the primer extension assay the authors claim that only 33% of the final product is in pre-mRNA form and that this "is insufficient to account for the magnitude of the cytoplasmic signal from the brG reporter (83%)". Nevertheless, it is possible that primer extension is incomplete or that the lariat-containing RNA is inaccessible for smFISH. The authors could easily perform a dual smFISH experiment (similar to Adivarahan et l., Molecular Cell 2018) where exon 1 is labelled with probes of one color, and the region that overlaps the lariat-containing intermediate is labelled with probes of a second color. If the authors are correct, then one-third of the smFISH foci should have both labels and the rest would have only the second label. This would also confirm that the latter (i.e. the lariat-containing RNAs) are exported to the cytoplasm. Using this approach, the authors could then show that MLP1-depletion (or depletion of any of the other factors) affect(s) one pool of RNAs (i.e. those that are lariat-containing) but not the other (i.e. pre-mRNA). Including these experiments would make the evidence for their model more convincing.

      (2) In some cases, the number of smFISH foci appears to change drastically depending on the genetic background. This could either be due to the stochastic nature of mRNA expression between cells or reflect real differences between the genetic backgrounds that could alter the interpretation of the other observations.

      (3) The authors state in the discussion that "the general mRNA export pathway transports discarded lariat intermediates into the cytoplasm". Although this appears to be the case for the reporters that are investigated in this paper, I don't think that the authors should make such a broad sweeping claim. It may be that some discarded lariat intermediates are exported to the cytoplasm while others are targeted for nuclear retention and/or decay.

    2. Reviewer #2 (Public Review):

      In this report, Zeng and Staley have used an elegant combination of RNA imaging approaches (single molecule FISH), RNA co-immunoprecipitations, and translation reporters to characterize the factors and pathways involved in the nuclear export of splicing intermediates in budding yeast. Their study notably involves the use of specific reporter genes, which lead to the accumulation of pre-mRNA and lariat species, in a battery of mutants impacting mRNA export and quality control.

      The authors convincingly demonstrate that mRNA species expressed from such reporters are exported to the cytoplasm in a manner depending on the canonical mRNA export machinery (Mex67 and its adaptors) and the nuclear pore complex (NPC) basket (Mlp1). Interestingly, they provide evidence that the export of splicing intermediates requires docking and subsequent undocking at the nuclear basket, a step possibly more critical than for regular mRNAs.

      However, their assays do not always allow us to define whether the impacted mRNA species correspond to lariats and/or pre-mRNAs. This is all the more critical since their findings apparently contradict previous reports that supported a role for the nuclear basket in pre-mRNA quality control. These earlier studies, which were similarly based on the use of dedicated yet distinct reporters, had found that the nuclear basket subunit Mlp1, together with different cofactors, prevents the export of unspliced mRNA species. It would be important to clarify experimentally and discuss the possible reasons for these discrepancies.

    3. Reviewer #3 (Public Review):

      Summary:

      Zeng and Stanley show that in yeast, intron-lariat intermediates that accumulated due to defects in pre-mRNA splicing, are transported to the cytoplasm using the canonical mRNA export pathway. Moreover, they demonstrate that export requires the nuclear basket, a sub-structure of the nuclear pore complex previously implicated with the retention of immature mRNAs. These observations are important as they put into question a longstanding model that the main role of the nuclear basket is to ensure nuclear retention of immature or faulty mRNAs.

      Strengths:

      The authors elegantly combine genetic, biochemical, and single-molecule resolution microscopy approaches to identify the cellular pathway that mediates the cytoplasmic accumulation of lariat intermediates. Cytoplasmic accumulation of such splicing intermediates had been observed in various previous studies but how these RNAs reach the cytoplasm had not yet been investigated. By using smFISH, the authors present compelling, and, for the first time, direct evidence that these intermediates accumulate in the cytoplasm and that this requires the canonical mRNA export pathway, including the RNA export receptor Mex67 as well as various RNA-binding proteins including Yra1, Npl3 and Nab2. Moreover, they show that the export of lariat intermediates, but not mRNAs, requires the nuclear basket (Mlp1) and basket-associated proteins previously linked to the mRNP rearrangements at the nuclear pore. This is a surprising and important observation with respect to a possible function of the nuclear basket in mRNA export and quality control, as it challenges a longstanding model that the role of the basket in mRNA export is primarily to act as a gatekeeper to ensure that immature mRNAs are not exported. As discussed by the authors, their finding suggests a role for the basket in promoting the export of certain types of RNAs rather than retention, a model also supported by more recent studies in mammalian cells. Moreover, their findings also collaborate with a recent paper showing that in yeast, not all nuclear pores contain a basket (PMID: 36220102), an observation that also questioned the gatekeeper model of the basket, as it is difficult to imagine how the basket can serve as a gatekeeper if not all nuclear pore contain such a structure.

      Weaknesses:

      One weakness of this study is that all their experiments rely on using synthetic splicing reporter containing a lacZ gene that produces a relatively long transcript compared to the average yeast mRNA.

      The rationale for using a reporter containing the brG (G branch point) resulting in more stable lariat intermediates due to them being inefficient substrates for the debranching enzyme Dbr1 could be described earlier in the manuscript, as this otherwise only becomes clear towards the end, what is confusing.

      Discussion of their observation in the context that, in yeast, not all pores contain a basket would be useful.

    1. Reviewer #1 (Public Review):

      Summary:

      Hippo pathway activity is required for pancreas morphogenesis, but its role in endocrine pancreas function remains elusive. The author aims to study the function of the TEAD1 gene in b-cells.

      Strengths:

      The authors generated TEAD1 conditional knockout animals by crossing the TEAD1f/f mice with three Cre strains (RIP-Cre, Ins1-Cre, and MIP-CreERT). In all of them, the KO animals showed progressive loss of insulin secretion with normal beta cell mass. Further characterization of the animals indicated glucose-induced insulin secretion defect and increased beta cell proliferation rate. RNA-Seq and ChIP-Seq experiments identified Pdx1, MafA, and Glut2, etc. as direct targets of TEAD1, which might be responsible for the insulin secretion defect in the animals. Of interest, the authors also uncovered the cell cycle-related gene p16 as a direct target of TEAD1. Reduction of p16 is likely to drive the beta cell proliferation in the TEAD1 knockout model. Thus, they proposed that TEAD1 is a regulator of the proliferative quiescence process in beta cells. Overall, the evidence provided by the authors is highly relevant and supports their conclusion.

      Weaknesses:

      (1) The authors don't explicitly mention that some results appeared in a previous publication (https://doi.org/10.1093/nar/gkac1063) from them.

      (2) The authors begin their story by introducing TEAD1 as part of the Hippo pathway. They showed Taz expression data in Figure 1. Did they do any experiments to detect Taz in their TEAD1 model? Did the authors detect any expression changes in CTGF following TEAD1 knockout? I could not see this changed. The phenotype characterization data presented here contrasts with what has been shown in TAZ b-cell knockout mice (https://doi.org/10.1101/2022.05.31.494216). Based on the data presented here, Hippo is not involved, which should at least be discussed in length.

      (3) Figure 1B - TAZ staining looks different in the three-month age group.

      (4) TEAD ChIP-seq data doesn't look very convincing to me. It's hard to tell whether those highlighted regions in Figures 3A and 5J were signals or background noise. Although the authors also performed ChIP-qPCR in MIN6, it's unclear whether these binding events occur in vivo. The analysis of ChIP-seq dataset is limited as well. How many peaks called? What proportion of differentially expressed genes are bound by TEAD1? Was TEAD1 also detectable at NGN3 and NEUROD1 gene regions? If acquiring enough cells is not possible, the authors could try CUT&RUN or CUT&Tag to improve the data quality.

      (5) The authors should perform RNA-seq or gene expression studies in MIP-CreERT to confirm, which could help narrow down the actual targets of TEAD1 as well.

      (6) Figure 6 - the experiment lacks a control: Ezh2 beta cell KO. In addition to p16, Ezh2, and PRC2 have other targets in beta-cells, the authors could not rule out the contribution of those to the phenotype, so the implication of this experiment is vague.

    2. Reviewer #2 (Public Review):

      In this manuscript, Lee et al. assessed the role of Tead1 in mouse beta cells using three Cre-driver lines: Rip-Cre, Ins-Cre, and Mip-CreERT. The authors demonstrate that loss of TEAD1 during development and in mature beta cells leads to increased cell-autonomous beta cell proliferation and reduced insulin secretion. The phenotype of Tead1 knockout is not surprising, given that it is a key player in the Hippo pathway - a well-characterized pathway controlling cell proliferation. However, as the authors suggested, the phenotype observed in Tead1 might be through other non-Hippo pathway factors as well. The authors further convincingly established PDX1 and p16 as the target of Tead1 in controlling beta cell function and proliferation correspondingly. I have the following specific comments:

      (1) As the authors mentioned, there are concerns over the usage of some Cre transgenic lines. Another useful control would be the naive Cre line that is not bred to floxed mutant, in addition to the floxed mice used by the authors in the manuscript here.

      (2) The logic to rely on the deletion of Ezh2 to restore p16 in the Tead1 knockout mice is unclear. Ezh2 has so many more targets than p16. Why not a direct rescue experiment by overexpression of p16?

      (3) The observed correlation of PDX1 and TEAD1 in expression in human islets is intriguing. But does this correlation translate to beta cell proliferation and function? Does TEAD1 knockout in human islets elicit a similar proliferation versus function response?

      (4) The argument of Tead1 only controls maturation but not differentiation and that maturation function versus proliferation phenotype is independently controlled is weak. It appears that this conclusion is only based on that "many disallowed genes...were not altered in Tead1-deficient islets". Perhaps the authors can perform a formal comparison between the transcriptomic changes of Tead1 knockout and Myc overexpressing/Notch gain of function beta cells and show that these two processes are different. In addition, what are the signatures of genes that are upregulated in Tead1 knockout compared with controls?

    1. Reviewer #1 (Public Review):

      Summary:

      Ewing sarcoma is an aggressive pediatric cancer driven by the EWS-FLI oncogene. Ewing sarcoma cells are addicted to this chimeric transcription factor, which represents a strong therapeutic vulnerability. Unfortunately, targeting EWS-FLI has proven to be very difficult, and a better understanding of how this chimeric transcription factor works is critical to achieving this goal. Towards this perspective, the group had previously identified a DBD-𝛼4 helix (DBD) in FLI that appears to be necessary to mediate EWS-FLI transcriptomic activity. Here, the authors used multi-omic approaches, including CUT&tag, RNAseq, and MicroC to investigate the impact of this DBD domain. Importantly, these experiments were performed in the A673 Ewing sarcoma model where endogenous EWS-FLI was silenced, and EWS-FLI-DBD proficient or deficient isoforms were re-expressed (isogenic context). They found that the DBD domain is key to mediating EWS-FLI cis activity (at msat) and to generating the formation of specific TADs. Furthermore, cells expressing DBD-deficient EWS-FLI display very poor colony-forming capacity, highlighting that targeting this domain may lead to therapeutic perspectives.

      Strengths:

      The group has strong expertise in Ewing sarcoma genetics and epigenetics and also in using and analyzing this model (Theisen et al., 2019; Boone et al., 2021; Showpnil et al., 2022).

      They aim at better understanding how EWS-FLI mediated its oncogenic activity, which is critical to eventually identifying novel therapies against this aggressive cancer.

      They use the most recent state-of-the-art omics methods to investigate transcriptome, epigenetics, and genome conformation methods. In particular, Micro-C enables achieving up to 1kb resolved 3D chromatin structures, making it possible to investigate a large number of TADs and sub-TADs structures where EWS-FLI1 mediates its oncogenic activity.

      They performed all their experiments in an Ewing sarcoma genetic background (A673 cells) which circumvents bias from previously reported approaches when working in non-orthologous cell models using similar approaches.

      Weaknesses:

      The main weakness comes from the poor reproducibility of Micro-C data. Indeed, it appears that the distances/clustering observed between replicates are typically similar or even larger than between biological conditions. For instance, in Figure 1B, I do not see any clustering when considering DBD1, DBD2, DBD+1, DBD+2.

      Lanes 80-83: "KD replicates clustered together with DBD replicate 1 on both axes and with DBD replicate 2 on the y-axis. DBD+ replicates, on the other hand, clustered away from both KD and DBD replicates. These observations suggest that the global chromatin structure of DBD replicates is more similar to KD than DBD+ replicates."

      When replacing DBD replicate 1 with DBD replicate 2, their statement would not be true anymore.

      Additional replicates to clarify this aspect seem absolutely necessary since those data are paving the way for the entire manuscript.

      Similarly:<br /> - In Figure 1C, how would the result look when comparing DBD2/KD2/DBD+2? Same when comparing DBD 1 with KD1 and DBD+1. Would the difference go in the same direction?<br /> - Figure 1D-E. How would these plots look like when comparing each replicate to each other's? How much difference would be observed when comparing, for instance, DBD1/DBD2 ? or DBD1/DBD+1?<br /> - Figure 2: again, how would these analyses look like when performing the analysis with only DBD1/DBD+1/KD1 or DBD2/DBD+2/KD?

      Another major question is the stability of EWS-FLI DBD vs EWS-FLI DBD+ proteins. Indeed, it seems that they have more FLAG (i.e., EWS-FLI) peaks in the DBD+ condition compared to the DBD condition (Figure 2B). In the WB, FLAG intensities seem also higher (2/3 replicates) in DBD+ condition compared to the DBD condition (Figure S1B).

      Would it be possible that DBD+ is just more expressed or more stable than DBD? The higher stability of the re-expressed DBD+ could also partially explain their results independently of the 3D conformational change. In other words, can they exclude that DBD+ and DBD binding are not related to their respective protein stability or their global re-expression levels?

      Surprisingly, WB FLI bands in DBD+ conditions are systematically (3/3 replicates) fainter than in DBD conditions (Figure S1B). How do the authors explain these opposite results between FLI and FALG in the WB?

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Bayanjargal et al. entitled "The DBD-alpha4 helix of EWS::FLI is required for GGAA microsatellite binding that underlies genome regulation in Ewing sarcoma" reports on the critical role of a small alpha helix in the DNA binding domain (DBD) of the FLI1 portion of EWS::FLI1 that is critical for binding to repetitive stretches of GGAA-motifs, i.e. GGAA microsatellites, which serve as potent neoenhancers in Ewing sarcoma.

      Strengths:

      The paper is generally well-written, and easy to follow and the data presented are of high quality, well-described and underpin the conclusions of the authors. The report sheds new light on how EWS::FLI1 mechanistically binds to and activates GGAA microsatellite enhancers, which is of importance to the field.

      Weaknesses:

      While there are no major weaknesses in this paper, there are a few minor issues that the authors may wish to address:

      (1) While the official protein symbol for the gene EWSR1 is indeed EWS, the protein symbol for the gene FLI1 is identical, i.e. FLI1. The authors nominate the fusion oncoprotein EWS::FLI1 (even in the title) but it appears more adequate to use EWS::FLI1.

      (2) The used cell lines should be spelled according to their official nomenclature (e.g. A-673 instead of A673).

      (3) It appears as if the vast majority of results were generated in a single Ewing sarcoma cell line (A-673) which is an atypical Ewing sarcoma cell line harboring an activating BRAF mutation and may be genomically quite unstable as compared to other Ewing sarcoma cell lines (Kasan et al. 2023 preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2023.11.20.567802v1). Hence, it may be supportive for the paper to recapitulate/cross-validate a few key results in other Ewing sarcoma cell lines, e.g. by using EWS::ERG-positive cell lines. Perhaps the authors could make use of available published data.

      (4) Figure 6 and Supplementary Figure 5 are very interesting but focus on two selected target genes of the fusion (FCGRT and CCND1). It would be interesting to see whether these findings also extend to common EWS::ETS transcriptional signatures that have been reported. The authors could explore their data and map established consensus EWS::ETS signatures to investigate which other hubs might be affected at relevant target genes.

      (5) Table 1 is a bit hard to read. In my opinion, it is not necessary to display P-values with up to 8 decimal positions. The gene symbols should be displayed in italic font.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors provide strong evidence that the cell surface E3 ubiquitin ligases RNF43 and ZNRF3, which are well known for their role in regulating cell surface levels of WNT receptors encoded by FZD genes, also target EGFR for degradation. This is a newly identified function for these ubiquitin ligases beyond their role in regulating WNT signaling. Loss of RNF43/ZNRF3 expression leads to elevated EGFR levels and signaling, suggesting a potential new axis to drive tumorigenesis, whereas overexpression of RNF43 or ZNRF3 decreases EGFR levels and signaling. Furthermore, RNF43 and ZNRF3 directly interact with EGFR through their extracellular domains.

      Strengths:

      The data showing that RNF43 and ZNRF3 interact with EGFR and regulate its levels and activity are thorough and convincing, and the conclusions are largely supported.

      Weaknesses:

      While the data support that EGFR is a target for RNF43/ZNRF3, some of the authors' interpretations of the data on EGFR's role relative to WNT's roles downstream of RNF43/ZNRF3 are overstated. The authors, perhaps not intentionally, promote the effect of RNF43/ZNRF3 on EGFR while minimizing their role in WNT signaling. This is the case in most of the biological assays (cell and organoid growth and mouse tumor models). For example, the conclusion of "no substantial activation of Wnt signaling" (page 14) in the prostate cancer model is currently not supported by the data and requires further examination. In fact, examination of the data presented here indicates effects on WNT/b-catenin signaling, consistent with previous studies.<br /> Cancers in which RNF43 or ZNRF3 are deleted are often considered to be "WNT addicted", and inhibition of WNT signaling generally potently inhibits tumor growth. In particular, treatment of WNT-addicted tumors with Porcupine inhibitors leads to tumor regression. The authors should test to what extent PORCN inhibition affects tumor (and APC-min intestinal organoid) growth. If the biological effects of RNF43/ZNRF3 loss are mediated primarily or predominantly through EGFR, then PORCN inhibition should not affect tumor or organoid growth.

    2. Reviewer #2 (Public Review):

      Using proteogenomic analysis of human cancer datasets, Yu et al, found that EGFR protein levels negatively correlate with ZNFR3/RNF43 expression across multiple cancers. Interestingly, they found that CRC harbouring the frequent RNF43 G659Vfs*41 mutation exhibits higher levels of EGFR when compared to RNF43 wild-type tumors. This is highly interesting since this mutation is generally not thought to influence Frizzled levels and Wnt-bcatenin pathway activity. Using CRISPR knockouts and overexpression experiments, the authors show that EGFR levels are modulated by ZNRF3/RNF43. Supporting these findings, modulation of ZNRF3/RNF43 activity using Rspondin also leads to increased EGFR levels. Mechanistically, the authors, show that ZNRF3/RNF43 ubiquitinate EGFR and leads to degradation. Finally, the authors present functional evidence that loss of ZNRF3/RNF43 unleashes EGFR-mediated cell growth in 2D culture and organoids and promotes tumor growth in vivo.

      Overall, the conclusions of the manuscript are well supported by the data presented, but some aspects of the mechanism presented need to be reinforced to fully support the claims made by the authors. Additionally, the title of the paper suggests that ZNRF3 and RNF43 loss leads to the hyperactivity of EGFR and that its signalling activity contributes to cancer initiation/progression. I don't think the authors convincingly showed this in their study.

      Major points:

      (1) EGFR ubiquitination. All of the experiments supporting that ZNFR3/RNF43 mediates EGFR ubiquitination are performed under overexpression conditions. A major caveat is also that none of the ubiquitination experiments are performed under denaturing conditions. Therefore, it is impossible to claim that the ubiquitin immunoreactivity observed on the western blots presented in Figure 4 corresponds to ubiquitinated-EGFR species.

      Another issue is that in Figure 4A, the experiments suggest that the RNF43-dependent ubiquitination of EGFR is promoted by EGF. However, there is no control showing the ubiquitination of EGFR in the absence of EGF but under RNF43 overexpression. According to the other experiments presented in Figures 4B, 4C, and 4F, there seems to be a constitutive ubiquitination of EGFR upon overexpression. How do the authors reconcile the role of ZNRF3/RNF43 vs c-cbl ?

      (2) EGFR degradation vs internalization. In Figure 3C, the authors show experiments that demonstrate that RNF43 KO increases steady-state levels of EGFR and prevents its EGF-dependent proteolysis. Using flow cytometry they then present evidence that the reduction in cell surface levels of EGFR mediated by EGF is inhibited in the absence of RNF43. The authors conclude that this is due to inhibition of EGF-induced internalization of surface EGF. However, the experiments are not designed to study internalization and rather merely examine steady-state levels of surface EGFR pre and post-treatment. These changes are an integration of many things (retrograde and anterograde transport mechanisms presumable modulated by EGF). What process(es) is/are specifically affected by ZNFR3/RNF43 ? Are these processes differently regulated by c-cbl ? If the authors are specifically interested in internalization/recycling, the use of cell surface biotinylation experiments and time courses are needed to examine the effect of EGF in the presence or absence of the E3 ligases.

      (3) RNF43 G659fs*41. The authors make a point in Figure 1D that this mutant leads to elevated EGFR in cancers but do not present evidence that this mutant is ineffective in mediated ubiquitination and degradation of EGFR. As this mutant maintains its ability to promote Frizzled ubiquitination and degradation, it would be important to show side by side that it does not affect EGFR. This would perhaps imply differential mechanisms for these two substrates.

      (4) "Unleashing EGFR activity". The title of the paper implies that ZNRF3/RNF43 loss leads to increased EGFR expression and hence increased activity that underlies cancer. However, I could find only one direct evidence showing that increased proliferation of the HT29 cell line mutant for RNF43 could be inhibited by the EGFR inhibitor Erlotinib. All the other evidence presented that I could find is correlative or indirect (e.g. RPPA showing increased phosphorylation of pathway members upon RNF43 KO, increased proliferation of a cell line upon ZNRF3/ RNF43 KO, decreased proliferation of a cell line upon ZNRF3/RNF43 OE in vitro or in xeno...). Importantly, the authors claim that cancer initiation/ progression in ZNRF3/RNF43 mutants may in some contexts be independent of their regulation of Wnt-bcatenin signaling and relying on EGFR activity upregulation. However, this has not been tested directly. Could the authors leverage their znrf3/RNF43 prostate cancer model to test whether EGFR inhibition could lead to reduced cancer burden whereas a Frizzled or Wnt inhibitor does not?

      More broadly, if EGFR signaling were to be unleashed in cancer, then one prediction would be that these cells would be more sensitive to EGFR pathway inhibition. Could the authors provide evidence that this is the case? Perhaps using isogenic cell lines or a panel of patient-derived organoids (with known genotypes).

    1. Reviewer #1 (Public Review):

      Wang and colleagues conducted a study to determine the neurotransmitter identity of all neurons in C. elegans hermaphrodites and males. They used CRISPR technology to introduce fluorescent gene expression reporters into the genomic loci of NT pathway genes. This approach is expected to better reflect in vivo gene expression compared to other methods like promoter- or fosmid-based transgenes, or available scRNA datasets. The study presents several noteworthy findings, including sexual dimorphisms, patterns of NT co-transmission, neuronal classes that likely use NTs without direct synthesis, and potential identification of unconventional NTs (e.g. betaine releasing neurons). The data is well-described and critically discussed, including a comparison with alternative methods. Although many of the observations and proposals have been previously discussed by the Hobert lab, the current study is particularly valuable due to its comprehensiveness. This NT atlas is the most complete and comprehensive of any nervous system that I am aware of, making it an extremely useful tool for the community.

    2. Reviewer #2 (Public Review):

      Summary:

      Together with the known anatomical connectivity of C. elegans, a neurotransmitter atlas paves the way toward a functional connectivity map. This study refines the expression patterns of key genes for neurotransmission by analyzing the expression patterns from CRISPR-knocked-in GFP reporter strains using the color-coded Neuropal strain to identify neurons. Along with data from previous scRNA sequencing and other reporter strains, examining these expression patterns enhances our understanding of neurotransmitter identity for each neuron in hermaphrodites and the male nervous system. Beyond the known neurotransmitters (GABA, Acetylcholine, Glutamate, dopamine, serotonin, tyramine, octopamine), the atlas also identifies neurons likely using betaine and suggests sets of neurons employing new unknown monoaminergic transmission, or using exclusively peptidergic transmission.

      Strengths:

      The use of CRISPR reporter alleles and of the Neuropal strain to assign neurotransmitter usage to each neuron is much more rigorous than previous analysis and reveals intriguing differences between scRNA seq, fosmid reporter, and CRISPR knock-in approaches. Among other mechanisms, these differences between approaches could be attributed to 3'UTR regulatory mechanisms for scRNA vs. knockin or titration of rate-limited negative regulatory mechanisms for fosmid vs. knockin. It would be interesting to discuss this and highlight the occurrences of these potential phenomena for future studies.

      Weaknesses:

      For GABAergic transmission, one shortcoming arises from the lack of improved expression pattern by a knockin reporter strain for the GABA recapture symporter snf-11. In its absence, it is difficult to make a final conclusion on GABA recapture vs GABA clearance for all neurons expressing the vesicular GABA transporter neurons (unc-47+) but not expressing the GAD/UNC-25 gene e.g. SIA or R2A neurons. At minima, a comparison of the scRNA seq predictions versus the snf-11 fosmid reporter strain expression pattern would help to better judge the proposed role of each neuron in GABA clearance or recycling.

      Considering the complexities of different tagging approaches, like T2A-GFP and SL2-GFP cassettes, in capturing post-translational and 3'UTR regulation is important. The current formulation is simplistic. e.g. after SL2 trans-splicing the GFP RNA lacks the 5' regulatory elements, T2A-GFP self-cleavage has its own issues, and the his-44-GFP reporter protein does certainly have a different post-translational life than vesicular transporters or cytoplasmic enzymes.

      Do all splicing variants of neurotransmitter-related genes translate into functional proteins? The possibility that some neurons express a non-functional splice variant, leading to his-74-GFP reporter expression without functional neurotransmitter-related protein production is not addressed. Also, one tagged splice variant of unc-25 is expected to fail to produce a GFP reporter, can this cause trouble?

    3. Reviewer #3 (Public Review):

      Summary:

      In this paper, Wang et al. provide the most comprehensive description and comparison of the expression of the different genes required to synthesize, transport, and recycle the most common neurotransmitters (Glutamate, Acetylcholine, GABA, Serotonin, Dopamine, Octopamine, and Tyramine) used by hermaphrodite and male C. elegans. This paper will be a seminal reference in the field. Building and contrasting observations from previous studies using fosmid, multicopy reporters, and single-cell sequencing, they now describe CRISPR/Cas-9-engineered reporter strains that, in combination with the multicolor pan-neuronal labeling of all C. elegans neurons (NeuroPAL), allows rigorous elucidation of neurotransmitter expression patterns. These novel reporters also illuminate previously unappreciated aspects of neurotransmitter biology in C. elegans, including sexual dimorphism of expression patterns, co-transmission, and the elucidation of cell-specific pathways that might represent new forms of neurotransmission.

      Strengths:

      The authors set out to establish neurotransmitter identities in C. elegans males and hermaphrodites via varying techniques, including integration of previous studies, examination of expression patterns, and generation of endogenous CRISPR-labeled alleles. Their study is comprehensive, detailed, and rigorous, and achieves the aims. It is an excellent reference for the field, particularly those interested in biosynthetic pathways of neurotransmission and their distribution in vivo, in neuronal and non-neuronal cells.

      Weaknesses:

      No weaknesses were noted. The authors do a great job linking their characterizations with other studies and techniques, giving credence to their findings. As the authors note, there are sexually dimorphic differences across animals and varying expression patterns of enzymes. While it is unlikely there will be huge differences in the reported patterns across individual animals, it is possible that these expression patterns could vary developmentally, or based on physiological or environmental conditions. It is unclear from the study how many animals were imaged for each condition, and if the authors noted changes across individuals during development (could be further acknowledged in the discussion?)

    1. Reviewer #1 (Public Review):

      Summary:

      Dong et al here have studied the impact of the small Ras-like GTPase Rab10 on the exocytosis of dense core vesicles (DVC), which are important mediators of neuropeptide signaling in the brain. They use optical imaging to show that lentiviral depletion of Rab10 in mouse hippocampal neurons in culture independent of the established defects in neurite outgrowth hamper DCV exocytosis. They further demonstrate that such defects are paralleled by changes in ER morphology and defective ER-based calcium buffering as well as reduced ribosomal protein expression in Rab10-depleted neurons. Re-expression of Rab10 or supplementation of exogenous L-leucine to restore defective neuronal protein synthesis rescues impaired DCV secretion. Based on these results they propose that Rab10 regulates DCV release by maintaining ER calcium homeostasis and neuronal protein synthesis.

      Strengths:

      This work provides interesting and potentially important new insights into the connection between ER function and the regulated secretion of neuropeptides via DCVs. The authors combine advanced optical imaging with light and electron microscopy, biochemistry, and proteomics approaches to thoroughly assess the effects of Rab10 knockdown at the cellular level in primary neurons. The proteomic dataset provided may be valuable in facilitating future studies regarding Rab10 function. This work will thus be of interest to neuroscientists and cell biologists.

      Weaknesses:

      While the main conclusions of this study are comparably well supported by the data, I see three major weaknesses:

      (1) For some of the data the statistical basis for analysis remains unclear. I.e. is the statistical assessment based on N= number of experiments or n = number of synapses, images, fields of view etc.? As the latter cannot be considered independent biological replicates, they should not form the basis of statistical testing.

      (2) As it stands the paper reports on three partially independent phenotypic observations, the causal interrelationship of which remains unclear. Based on prior studies (e.g. Mercan et al 2013 Mol Cell Biol; Graves et al JBC 1997) it is conceivable that defective ER-based calcium signaling and the observed reduction in protein synthesis are causally related. For example, ER calcium release is known to promote pS6K1 phosphorylation, a major upstream regulator of protein synthesis and ribosome biogenesis. Conversely, L-leucine supplementation is known to trigger calcium release from ER stores via IP3Rs. Given the reported impact of Rab10 on axonal transport of autophagosomes and, possibly, lysosomes via JIP3/4 or other mediators (see e.g. Cason and Holzbaur JCB 2023) and the fact that mTORC1, the alleged target of leucine supplementation, is located on lysosomes, which in turn form membrane contacts with the ER, it seems worth analyzing whether the various phenotypes observed are linked at the level of mTORC1 signaling.

      (3) The claimed lack of effect of Rab10 depletion on SV exocytosis is solely based on very strong train stimulation with 200 Aps, a condition not very well suited to analyze defects in SV fusion. The conclusion that Rab10 loss does not impact SV fusion thus seems premature.

    2. Reviewer #2 (Public Review):

      Summary:

      In this paper, the authors assess the function of Rab10 in dense core vesicle (DCV) exocytosis using RNAi and cultured neurons. The author provides evidence that their knockdown (KD) is effective and provides evidence that DCV is compromised. They also perform proteomic analysis to identify potential pathways that are affected upon KD of Rab10 that may be involved in DCV release. Upon focusing on ER morphology and protein synthesis, the authors conclude that defects in protein synthesis and ER Ca2+ homeostasis contributes to the DVC release defect upon Rab10 KD. The authors claim that Rab10 is not involved in synaptic vesicle (SV) release and membrane homeostasis in mature neurons.

      Strengths:

      The data related to Rab10's role in DCV release seems to be strong and carried out with rigor. While the paper lacks in vivo evidence that this gene is indeed involved in DCV in a living mammalian organism, I feel the cellular studies have value. The identification of ER defect in Rab10 manipulation is not truly novel but it is a good conformation of studies performed in other systems. The finding that DCV release defect and protein synthesis defect seen upon Rab10 KD can be significantly suppressed by Leucine supplementation is also a strength of this work.

      Weaknesses:

      The data showing Rab10 is NOT involved in SV exocytosis seems a bit weak to me. Since the proteomic analysis revealed so many proteins that are involved in SV exo/encodytosis to be affected upon Rab10, it is a bit strange that they didn't see an obvious defect. Perhaps this could have been because of the protocol that the authors used to trigger SV release (I am not an E-phys expert but perhaps this could have been a 'sledge-hammer' manipulation that may mask any subtle defects)? Perhaps the authors can claim that DCV is more sensitive to Rab10 KD than SV, but I am not sure whether the authors should make a strong claim about Rab10 not being important for SV exocytosis.

      Also, the authors mention "Rab10 does not regulate membrane homeostasis in mature neurons" but I feel this is an overstatement. Since the authors only performed KD experiments, not knock-out (KO) experiments, I believe they should not make any conclusion about it not being required, especially since there is some level of Rab10 present in their cells. If they want to make these claims, I believe the authors will need to perform conditional KO experiments, which are not performed in this study.

      Finally, the authors show that protein synthesis and ER Ca2+ defects seem to contribute to the defect but they do not discuss the relationship between the two defects. If the authors treat the Rab10 KD cells with both ionomycin and Leucine, do they get a full rescue? Or is one defect upstream of the other (e.g. can they see rescue of ER morphology upon Leucine treatment)? While this is not critical for the conclusions of the paper, several additional experiments could be performed to clarify their model, especially considering there is no clear model that explains how Rab10, protein synthesis, ER homeostasis, and Ca2+ are related to DCV (but not SV) exocytosis.

    3. Reviewer #3 (Public Review):

      In the submitted manuscript, Dong and colleagues set out to dissect the role of the Rab10 small GTPase on the intracellular trafficking and exocytosis of dense core vesicles (DCVs). While the authors have already shown that Rab3 plays a central role in the exocytosis of DVC in mammalian neurons, the roles of several other Rab-members have been identified genetically, but their precise mechanism of action in mammalian neurons remains unclear. In this study, the authors use a carefully designed and thoroughly executed series of experiments, including live-cell imaging, functional calcium-imaging, proteomics, and electron microscopy, to identify that DCV secretion upon Rab10 depletion in adult neurons is primarily a result of dysregulated protein synthesis and, to a lesser extent, disrupted intracellular calcium buffering. Given that the full deletion of Rab10 has a deleterious effect on neurons and that Rab10 has a major role in axonal development, the authors cautiously employed the knock-down strategy from 7 DIV, to focus on the functional impact of Rab10 in mature neurons. The experiments in this study were meticulously conducted, incorporating essential controls and thoughtful considerations, ensuring rigorous and comprehensive results.

    1. Reviewer #1 (Public Review):

      Summary:

      Zhang et al., investigated the relationship between monocular and binocular responses of V1 superficial-layer neurons using two-photon calcium imaging. They found a strong relationship in their data: neurons that exhibited a greater preference for one eye or the other (high ocular dominance) were more likely to be suppressed under binocular stimulation, whereas neurons that are more equivalently driven by each other (low ocular dominance) were more likely to be enhanced by binocular stimulation. This result chiefly demonstrates the relationship between ocular dominance and binocular responses in V1, corroborating what has been shown previously using electrophysiological techniques with now much finer spatial resolution. The binocular responses were well-fitted by a model that institutes divisive normalization between the eyes that accounts for both the suppression and enhancement phenomena observed in the subpopulation of binocular neurons. In so doing, the authors reify the importance of incorporating ocular dominance in computational models of binocular combination.

      The conclusions of this paper are well supported by the data. The authors deftly contextualize these important findings in the literature while also acknowledging the limitations of the methodology employed. Future work would do well to combine the spatial power of 2P imaging with the temporal power of electrophysiology to assess ocular dominance-dependent binocular combination across the V1 laminar microcircuit.

      Strengths:

      The two-photon imaging technique used to resolve the activity of individual neurons within intact brain tissue grants a host of advantages. Foremost, two-photon imaging confers considerably high spatial resolution. As a result, the authors were able to sample and analyze the activity from thousands of verified superficial-layer V1 neurons. The animal model used, awake macaques, is also highly relevant for the study of binocular combination. Macaques, like humans, are binocular animals, meaning they have forward-facing eyes that confer overlapping visual fields. Importantly, macaque V1 is organized into cortical columns that process specific visual features from the separate eyes just like in humans. In combination with a powerful imaging technique, this allowed the authors to evaluate the monocular and binocular response profiles of V1 neurons that are situated within neighboring ocular dominance columns, a novel feat. To this aim, the approach was well-executed and should instill confidence in the notion that V1 neurons combine monocular information in a manner that is dependent on the strength of their ocular dominance.

      Weaknesses:

      This study suffers no major weaknesses. The authors address the limitations of the methodology and have calibrated the interpretations accordingly.

    2. Reviewer #2 (Public Review):

      Summary:

      This study examines the pattern of responses produced by the combination of left-eye and right-eye signals in V1. For this, they used calcium imaging of neurons in V1 of awake, fixating monkeys. They take advantage of calcium imaging, which yields large populations of neurons in each field of view. With their data set, they observe how response magnitude relates to ocular dominance across the entire population. They analyze carefully how the relationship changed as the visual stimulus switched from contra-eye only, ipsi-eye only, and binocular. As expected, the contra-eye dominated neurons responded strongly with a contra-eye only stimulus. The ipsi-eye dominated neurons responded strongly with an ipsi-eye only stimulus. The surprise was responses to a binocular stimulus. The responses were similarly weak across the entire population, regardless of each neuron's ocular dominance. They conclude that this pattern of responses could be explained by interocular divisive normalization, followed by binocular summation.

      Strengths:

      A major strength of this work is that the model-fitting was done on a large population of simultaneously recorded neurons. This approach is an advancement over previous work, which did model-fitting on individual neurons. The fitted model in the manuscript represents the pattern observed across the large population in V1, and washes out any particular property of individual neurons. Given the large neuronal population from which the conclusion was drawn, the authors provide solid evidence supporting their conclusion. They also observed consistency across 5 field of views.

      The experiments were designed and executed appropriately to test their hypothesis. Their data support their conclusion.

      Weaknesses:

      The nonlinear interocular suppression found in this study, could potentially be partially exaggerated by the nonlinear properties of calcium signals. One of the authors of this study has previously reported that the particular GCaMP used in this study has a nice proportional relationship with firing rate of a neuron. So the concern of exaggeration probably does not apply to this particular study. The concern would apply to others who try similar measurements with other versions of GCaMP.

      The implication of their finding is that strong ocular dominance is the result of release from interocular suppression by a monocular stimulus, rather than the lack of binocular combination as many traditional studies have assumed. This could significantly advance our understanding of the binocular combination circuitry of V1. The entire population of neurons could be part of a binocular combination circuitry present in V1.

    3. Reviewer #3 (Public Review):

      Summary

      The authors have made simultaneous recordings of the responses of large numbers of neurons from the primary visual cortex of macaque monkeys using optical two-photon imaging of calcium signals from the superficial layers of the cortex. Recordings were made to compare the responses of the cortical neurons under normal binocular viewing of a flat screen with both eyes open and monocular viewing of the same screen with one eye's view blocked by a translucent filter. The screen displayed visual stimuli comprising small contrast patches of Gabor function distributions of luminance, a stimulus that is known to excite cortical neurons.

      Strengths

      This is an important data set, given the large number of neurons recorded. The authors present a simple model to explain binocular combination of neuronal signals from the right and left eyes. The work advances the use of two-photon imaging in the cerebral neocortex. The research design adds valuable information to our understanding of the organization of binocular vision in macaque monkeys, which are the only realistic animal model of human vision for the study of binocular interactions.

      Limitations and Weaknesses

      (1) Given that these recordings are made optically, these results reflect primarily activations of neurons in the superficial layers of the cortex. This limitation arises from the usual constraints (depth of cortex, degree of myelination) on optical imaging in the macaque cortex. This means that the sample of neurons forming this data set is not fully representative of the population of binocular neurons within the visual cortex. This limitation is important in comparing the outcome of these experiments with the results from other studies of binocular combination, which have used single-electrode recording. Electrode recording will result in a sample of neurons that is drawn from many layers of the cortex, rather than just the superficial layers, noting that electrode recordings also carry different risks of sampling bias.

      (2) Single neuron recording of binocular neurons in the primary visual cortex has shown that these neurons often have some spontaneous activity. Assessment of this spontaneous level of firing is important for accurate model fitting [1]. The present imaging approach works exclusively with differential measurements of neuronal signals, so assessment of the level of spontaneous activity is not feasible.

      (3) The arrangements for visual stimulation and comparison of binocular and monocular responses mean that the stereoscopic disparity of the binocular stimuli is always at zero or close to zero. The consequence is that the experimental design does not test the cortical response over a range of different binocular depths.

      The animal's fixation point is in the centre of a single display that is viewed binocularly. The fixation point is, by definition, at zero disparity.. Provided that the animals accurately converged their eyes on the binocular fixation point, then the disparity of the visual stimuli across the whole display will always be at or close to zero. However, we already know from earlier work that neurons in the visual cortex exhibit a range of selectivity for binocular disparity. Some neurons have their peak response at non-zero disparities, representing binocular depths nearer than the fixation depth or beyond it.

      There are also other neurons whose response is maximally suppressed by disparities at the depth of the fixation point (so-called Tuned Inhibitory [TI] neurons). The simple model and analysis presented in the paper for the summation of monocular responses to predict binocular responses will perform adequately for neurons that are tuned to zero disparity, so-called tuned excitatory neurons [TE], but is necessarily compromised when applied to neurons that have other, different tuning profiles for binocular disparity. Specifically, when neurons are stimulated binocularly with a non-preferred disparity, the binocular response may be lower than the monocular response [2, 3]. The same limitation applies to another recent paper [4].

      This more realistic view of binocular responses needs to be considered further to gain a full picture of the operation of the visual cortex in responding to binocular depth

      Citations

      1. Prince, S.J.D., Pointon, A.D., Cumming, B.G., and Parker, A.J., (2002). Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. Journal of Neurophysiology, 87: 191-208.

      2. Prince, S.J.D., Cumming, B.G., and Parker, A.J., (2002). Range and mechanism of encoding of horizontal disparity in macaque V1. Journal of Neurophysiology, 87: 209-221.

      3. Poggio, G.F. and Fischer, B., (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. Journal of Neurophysiology, 40: 1392-1405 doi 10.1152/jn.1977.40.6.1392.

      4. B. A. Mitchell, K. Dougherty, J. A. Westerberg, B. M. Carlson, L. Daumail, A. Maier, et al. (2022) Stimulating both eyes with matching stimuli enhances V1 responses.<br /> iScience 2022 Vol. 25 Issue 5 DOI: 10.1016/j.isci.2022.104182

    1. Reviewer #1 (Public Review):

      Summary:

      This study examines lipid profiles in cancer patients treated with the neurotoxic chemotherapy paclitaxel. Multiple methods, including machine learning as well as more conventional statistical modelling, were used to classify lipid patterns before and after paclitaxel treatment and in conjunction with neuropathy status. Lipid profiles before and after paclitaxel therapy were analysed from 31 patients. The study aimed to characterize from the lipid profile if plasma samples were collected pre-paclitaxel or post-paclitaxel and their relevance to neuropathy status. Sphingolipids including sphinganine-1-phosphate (SA1P) differed between patients with and without neuropathy. To examine the potential role of SA1P, it was applied to murine primary sensory neuron cultures, and produced calcium transients in a proportion of neurons. This response was abolished by the application of a TRPV1 antagonist. The number of neurons responding to SA1P was partially reduced by the sphingosine 1-phosphate receptor (S1PR1) modulator fingolimod.

      Strengths:

      The strengths of this study include the use of multiple methods to classify lipid patterns and the attempt to validate findings from the clinical cohort in a preclinical model using primary sensory neurons.

      Weaknesses:

      There are a number of weaknesses in the study. The small sample size is a significant limitation of the study. Out of 31 patients, only 17 patients were reported to develop neuropathy, with significant neuropathy (grade 2/3) in only 5 patients. The authors acknowledge this limitation in the results and discussion sections of the manuscript, but it limits the interpretation of the results. Also acknowledged is the limited method used to assess neuropathy.

      Potentially due to this small number of patients with neuropathy, the machine learning algorithms could not distinguish between samples with and without neuropathy. Only selected univariate analyses identified differences in lipid profiles potentially related to neuropathy.

      Three sphingolipid mediators including SA1P differed between patients with and without neuropathy at the end of treatment. These sphingolipids were elevated at the end of treatment in the cohort with neuropathy, relative to those without neuropathy. However, across all samples from pre to post-paclitaxel treatment, there was a significant reduction in SA1P levels. It is unclear from the data presented what the underlying mechanism for this result would be. If elevated SA1P is associated with neuropathy development, it would be expected to increase in those who develop neuropathy from pre to post-treatment time points.

      Primary sensory neuron cultures were used to examine the effects of SA1P application. SA1P application produced calcium transients in a small proportion of sensory neurons. It is not clear how this experimental model assists in validating the role of SA1P in neuropathy development as there is no assessment of sensory neuron damage or other hallmarks of peripheral neuropathy. These results demonstrate that some sensory neurons respond to SA1P and that this activity is linked to TRPV1 receptors. However, further studies will be required to determine if this is mechanistically related to neuropathy.

      Impact:

      Taken in total, the data presented do not provide sufficient evidence to support the contention that SA1P has an important role in paclitaxel-induced peripheral neuropathy. Further, the results do not provide evidence to support the use of S1PR1 receptor antagonists as a therapeutic strategy. It is important to be careful with language use in the discussion, as the significance of the present results is overstated.

      However, based on the results of previous studies, it is likely that sphingolipid metabolism plays a role in chemotherapy-induced peripheral neuropathy. Based on this existing evidence, the S1PR1 receptor antagonist fingolimod has already been examined in experimental models and clinical trials. Further work is needed to examine the links between lipid mediators and neuropathy development and identify additional strategies for intervention.

    2. Reviewer #2 (Public Review):

      Summary:

      The study investigates the mechanisms underlying chemotherapy-induced peripheral neuropathy (CIPN), a notable side effect of commonly used anticancer drugs like paclitaxel. It aims to comprehend the putative mechanisms through lipidomics analysis of plasma samples from cancer patients pre and post-paclitaxel treatment, drawing inspiration from preclinical studies highlighting the role of sphingolipids. While the use of patient plasma samples stands out as a major strength, shortcomings in the result presentation undermine the study's significance. The introduction lacks a robust rationale, failing to articulate the utility of machine learning methods over conventional lipidomics analysis and the relevance of broader neuropathy in the context of the study's goal of investigating peripheral neuropathy. The failure to robustly link neuropathy to paclitaxel treatment, with only around 50% of patients developing neuropathy, mostly at Grade 1, with no or mild symptoms that require no intervention, weakens the study's impact. The presentation of results lacks clarity on sphingolipid dysregulation, leaving uncertainty regarding downregulation or upregulation. Furthermore, no clarity in validation for the machine learning-based analysis with conventional methods and an overall weakness in result representation weaken the study, despite addressing an important question in the field.

      Strengths:

      The study leverages patient plasma samples before and after paclitaxel treatment, enhancing the translatability of findings to patient impact. The attempt to employ machine learning (ML) methods for analyzing biological samples and classifying patient groups is commendable, pushing the biomedical sciences towards ML applications for handling complex data. The chosen topic of investigating chemotherapy-induced peripheral neuropathy (CIPN) is clinically important, offering potential benefits for cancer patients undergoing chemotherapy treatment.

      Weaknesses:

      The article is poorly written, hindering a clear understanding of core results. While the study's goals are apparent, the interpretation of sphingolipids, particularly SA1P, as key mediators of paclitaxel-induced neuropathy lacks robust evidence. The introduction fails to establish the significance of general neuropathy or peripheral neuropathy in anticancer drug-treated patients, and crucial details, such as the percentage of patients developing general neuropathy or peripheral neuropathy, are omitted. This omission is particularly relevant given that only around 50% of patients developed neuropathy in this study, primarily of mild Grade 1 severity with negligible symptoms, contradicting the study's assertion of CIPN as a significant side effect. The lack of clarity in distinguishing results obtained by lipidomics using machine learning methods and conventional methods adds to the confusion. The poorly written results section fails to specify SA1P's downregulation or upregulation, and the process of narrowing down to sphingolipids and SA1P is inadequately explained. Integrating a significant portion of the discussion section into the results section could enhance clarity. An explanation of the utility of machine learning in classifying patient groups over conventional methods and the citation of original research articles, rather than relying on review articles, may also add clarity to the usefulness of the study.

    1. Reviewer #2 (Public Review):

      Summary:

      Previous work has shown subjects can use a form of short-term sensory memory, known as 'iconic memory', to accurately remember stimuli over short periods of time (several hundred milliseconds). Working memory maintains representations for longer periods of time but is strictly limited in its capacity. While it has long been assumed that sensory information acts as the input to working memory, a process model of this transfer has been missing. To address this, Tomic and Bays present the Dynamic Neural Resource (DyNR) model. The DyNR model captures the dynamics of processing sensory stimuli, transferring that representation into working memory, the diffusion of representations within working memory, and the selection of a memory for report.

      The DyNR model captures many of the effects observed in behavior. Most importantly, psychophysical experiments found the greater the delay between stimulus presentation and the selection of an item from working memory, the greater the error. This effect also depended on working memory load. In the model, these effects are captured by the exponential decay of sensory representations (i.e., iconic memory) following the offset of the stimulus. Once the selection cue is presented, residual information in iconic memory can be integrated into working memory, improving the strength of the representation and reducing error. This selection process takes time, and is slower for larger memory loads, explaining the observation that memory seems to decay instantly. The authors compare the DyNR model to several variants, demonstrating the importance of persistence of sensory information in iconic memory, normalization of representations with increasing memory load, and diffusion of memories over time.

      Strengths:

      The manuscript provides a convincing argument for the interaction of iconic memory and working memory, as captured by the DyNR model. The analyses are cutting-edge and the results are well captured by the DyNR model. In particular, a strength of the manuscript is the comparison of the DyNR model to several alternative variants.

      The results provide a process model for interactions between iconic memory and working memory. This will be of interest to neuroscientists and psychologists studying working memory. I see this work as providing a foundation for understanding behavior in continuous working memory tasks, from either a mechanistic, neuroscience, perspective or as a high-water mark for comparison to other psychological process models.

      Finally, the manuscript is well written. The DyNR model is nicely described and an intuition for the dynamics of the model are clearly shown in Figures 2 and 4.

      Weaknesses:

      The manuscript appropriately acknowledges and addresses several minor weaknesses that are due to the limited ability of the approach to disambiguate underlying neural mechanisms. Nevertheless, the manuscript adds significant value to the literature on working memory.

    2. Reviewer #3 (Public Review):

      Summary

      The authors set out to formally contrast several theoretical models of working memory, being particularly interested in comparing the models regarding their ability to explain cueing effects at short cue durations. These benefits are traditionally attributed to the existence of a high capacity, rapidly decaying sensory storage which can be directly read out following short latency retro-cues. Based on the model fits, the authors alternatively suggest that cue-benefits arise from a freeing of working memory resources, which at short cue latencies can be utilized to encode additional sensory information into VWM.

      A dynamic neural population model consisting of separate sensory and VWM populations was used to explain temporal VWM fidelity of human behavioral data collected during several working memory tasks. VWM fidelity was probed at several timepoints during encoding, while sensory information was available and maintenance, when sensory information was no longer available. Furthermore, set size and exposure durations were manipulated to disentangle contributions of sensory and visual working memory.

      Overall, the model explained human memory fidelity well, accounting for set size, exposure time, retention time, error distributions and swap errors. Crucially the model suggests that recall at short delays is due to post-cue integration of sensory information into VWM as opposed to direct readout from sensory memory. The authors formally address several alternative theories, demonstrating that models with reduced sensory persistence, direct readout from sensory memory, no set-size dependent delays in cue processing and constant accumulation rate provide significantly worse fits to the data.

      I congratulate the authors for this rigorous scientific work. All my remarks were thoroughly addressed.

    1. Reviewer #1 (Public Review):

      Summary:

      This study assumes but also demonstrates that auditory rhythm processing is produced by internal oscillating systems and evaluates the properties of internal oscillators across individuals. The authors designed an experiment and performed analyses that address individuals' preferred rate and flexibility, with a special focus on how much past rhythms influence subsequent trials. They find evidence for such historical dependence and show that we adapt less well to new rhythms as we age. While I have some doubts about the entrainment-based interpretation of the results, this work offers a useful contribution to our understanding of individual differences in rhythm processing regardless.

      Strengths:

      The inclusion of two tasks -- a tapping and a listening task -- complement each other methodologically. By analysing both the production and tracking of rhythms, the authors emphasize the importance of the characteristics of the receiver, the external world, and their interplay. The relationship between the two tasks and components within tasks are explored using a range of analyses. The visual presentation of the results is very clear. The age-related changes in flexibility are useful and compelling.

      The paper includes a discussion of the study assumptions, and it contextualizes itself more explicitly as taking entrainment frameworks as a starting point. As such, even if the entrainment of oscillators cannot be decisively shown, it is now clear that this is nevertheless adopted as a useful theoretical lens.

      Weaknesses:

      The newly included analyses that justify an entrainment or oscillator-based interpretation of the result could be presented in a clearer manner so that readers can parse their validity better. For example, in line with an entrainment interpretation, the regression lines in Figure 2B show accuracy increases as the IOI moves towards the preferred rate -- but then beyond the preferred rate, accuracy appears to increase further still. Furthermore, the additional analyses on harmonic relationships could be enriched with justification and explanation of each of its steps.

    2. Reviewer #2 (Public Review):

      Summary:

      The current work describes a set of behavioral tasks to explore individual differences in the preferred perceptual and motor rhythms. Results show a consistent individual preference for a given perceptual and motor frequency across tasks and, while these were correlated, the latter is slower than the former one. Additionally, the adaptation accuracy to rate changes is proportional to the amount of rate variation and, crucially, the amount of adaptation decreases with age.

      Strengths:

      Experiments are carefully designed to measure individual preferred motor and perceptual tempo. Furthermore, the experimental design is validated by testing the consistency across tasks and test-retest, what makes the introduced paradigm a useful tool for future research.<br /> The obtained data is rigorously analyzed using a diverse set of tools, each adapted to the specificities across the different research questions and tasks.<br /> This study identifies several relevant behavioral features: (i) each individual shows a preferred and reliable motor and perceptual tempo and, while both are related, the motor is consistently slower than the pure perceptual one; (ii) the presence of hysteresis in the adaptation to rate variations; and (iii) the decrement of this adaptation with age. All these observations are valuable for the auditory-motor integration field of research, and they could potentially inform existing biophysical models to increase their descriptive power.

      Weaknesses:

      To get a better understanding of the mechanisms underlying the behavioral observations, it would have been useful to compare the observed pattern of results with simulations done with existing biophysical models. However, this point is addressed if the current study is read along with this other publication of the same research group: Kaya, E., & Henry, M. J. (2024, February 5). Modeling rhythm perception and temporal adaptation: top-down influences on a gradually decaying oscillator. https://doi.org/10.31234/osf.io/q9uvr

    1. Reviewer #1 (Public Review):

      Summary:

      The paper presents a nice study investigating the impairments of biological motion perception in individuals with ADHD in comparison with neurotypical controls. Motivated by the idea that there is a relationship between biological motion perception and social capabilities, the authors investigated the impairments of local and global (holistic) biological motion perception, the diagnosis status, and several additional behavioral variables that are affected in ADHS (IQ, social responsiveness, and attention / impulsivity). As well local as global biological motion perception is impaired in ADHD individuals. In addition, the study demonstrates a significant correlation between local biological motion perception skills and the social responsiveness score in the ADHD group, but not in controls. A path analysis in the ADHD group suggests that general performance in<br /> biological motion perception is influenced mainly by global biological motion perception performance and attentional and perceptual reasoning skills.

      Strengths:

      It is true that there exists not much work on biological motion perception and ADHD. Therefore, the presented study contributes an interesting new result to the biological motion literature, and adds potentially also new behavioral markers for this clinical group. The design of the study is straightforward and technically sound, and the drawn conclusions are supported by the presented results.

      Weaknesses:

      Some of the claims about the relationship between genetic factors and ADHD and the components of biological motion processing have to remain speculative at this point because genetic influences were not explicitly tested in this paper. Specifically, the hypothesis that the perception of human social interaction is critically based on a local mechanism for the detection of asymmetry in foot trajectories of walkers (this is what 'BL-local' really measures), or on the detection of live agents in cluttered scenes seems not very plausible.

      Based on my last comments, now the discussion has been changed in a way that tries to justify the speculative claims by citing a lot of other speculative papers, which does not really address the problem. For example, the fact that chicks walk towards biological motion stimuli is interesting. To derive that this verifies a fundamental mechanism in human biological motion processing is extremely questionable, given that birds do not even have a cortex. Taking the argumentation of the authors serious, one would have to assume that the 'Local BM' mechanism is probably located in the mesencephalon in humans, and then would have to interact in some way with social perception differences of ADHD children. To me all this seems to make very strong (over-)claims. I suggest providing a much more modest interpretation of the interesting experimental result, based on what has been really experimentally shown by the authors and closely related other data, rather than providing lots of far-reaching speculations.

      In the same direction, in my view, go claims like 'local BM is an intrinsic trait' (L. 448) , which is not only imprecise (maybe better 'mechanisms of processing of local BM cues') but also rather questionable. Likely, this' local processing of BM' is a lower level mechanisms, located probably in early and mid-levels of the visual cortex, with a possible influence of lower structures. It seems not really plausible that this is related to a classical trait variables in the sense of psychology, like personality, as seems to be suggested here. Also here I suggest a much more moderate and less speculative interpretation of the results.

    2. Reviewer #2 (Public Review):

      Summary:

      Tian et al. aimed to assess differences in biological motion (BM) perception between children with and without ADHD, as well as relationships to indices of social functioning and possible predictors of BM perception (including demographics, reasoning ability and inattention). In their study, children with ADHD showed poorer performance relative to typically developing children in three tasks measuring local, global, and general BM perception. The authors further observed that across the whole sample, performance in all three BM tasks was negatively correlated with scores on the social responsiveness scale (SRS), whereas within groups a significant relationship to SRS scores was only observed in the ADHD group and for the local BM task. Local and global BM perception showed a dissociation in that global BM processing was predicted by age, while local BM perception was not. Finally, general (local & global combined) BM processing was predicted by age and global BM processing, while reasoning ability mediated the effect of inattention on BM processing.

      Strengths:

      Overall, the manuscript is presented in a clear fashion and methods and materials are presented with sufficient detail so the study could be reproduced by independent researchers. The study uses an innovative, albeit not novel, paradigm to investigate two independent processes underlying BM perception. The results are novel and have the potential to have wide-reaching impact on multiple fields.

      Weaknesses:

      The manuscript has greatly improved in clarity and methodological considerations in response to the review. There are only a few minor points which deserve the authors' attention:

      When outlining the moviation for the current study, results from studies in ADHD and ASD are used too interchangeably. The authors use a lack of evidence for contributing (psychological/developmental) factors on BM processing in ASD to motivate the present study and refer to evidence for differences between typical and non-typical BM processing using studies in both ASD and ADHD. While there are certainly overlapping features between the two conditions/neurotypes, they are not to be considered identical and may have distinct etiologies, therefore the distinction between the two should be made clearer.

      In the first/main analysis, is unclear to me why in the revised manuscript the authors changed the statistical method from ANOVA/ANCOVA to independent samples t-tests (unless the latter were only used for post-hoc comparisons, then this needs to be stated). Furthermore, although p-values look robust, for this analysis too it should be indicated whether and how multiple comparison problems were accounted for.

    3. Reviewer #3 (Public Review):

      Strengths:

      The authors present differences between ADHD and TD children in biological motion processing, and this question has not received as much attention as equivalent processing capabilities in autism. They use a task that appears well controlled. They raise some interesting mechanistic possibilities for differences in local and global motion processing, which are distinctions worth exploring. The group differences will therefore be of interest to those studying ADHD, as well as other developmental conditions, and those examining biological motion processing mechanisms in general.

      Weaknesses:

      The data are not strong enough to support claims about differences between global and lobal processing wrt social communication skills and age. The mechanistic possibilities for why these abilities may dissociate in such a way are interesting, but the crucial tests of differences between correlations do not present a clear picture. Further empirical work would be needed to test the authors' claims. Specifics:

      The authors state frequently that it was the local BM task that related to social communication skills (SRS) and not the global tasks. However, the results section shows a correlation between SRS and all three tasks. The only difference is that when looking specifically within the ADHD group, the correlation is only significant for the local task. The supplementary materials demonstrate that tests of differences between correlations present an incomplete picture. Currently they have small samples for correlations, so this is unsurprising.

      Theoretical assumptions. The authors make some statements about local vs global biological motion processing that should still be made more tentatively. They assume that local processing is specifically genetically whereas global processing is a product of experience. These data in newborn chicks are controversial and confounded - I cannot remember the specifics but I think there an upper vs lower visual field complexity difference here.

      Readability. The manuscript needs very careful proofreading and correction for grammar. There are grammatical errors throughout.

    1. Reviewer #1 (Public Review):

      This paper presents a cognitive model of out-of-distribution generalisation, where the representational basis is grid-cell codes. In particular, the authors consider the tasks of analogies, addition, and multiplication, and the out-of-distribution tests are shifting or scaling the input domain. The authors utilise grid cell codes, which are multi-scale as well as translationally invariant due to their periodicity. To allow for domain adaptation, the authors use DPP-A which is, in this context, a mechanism of adapting to input scale changes. The authors present simulations results demonstrating this model can perform out-of-distribution generalisation to input translations and re-scaling, whereas other models fail.

      This paper makes the point it sets out to - that there are some underlying representational bases, like grid cells, that when combined with a domain adaptation mechanism, like DPP-A, can facilitate out-of-generalisation. I don't have any issues with the technical details.

      The paper nicely demonstrates how neural codes can be transformed into a common representational space so that analogies, and presumably other useful tasks/computations, can be performed.

    1. Reviewer #1 (Public Review):

      It is known that aberrant habit formation is a characteristic of obsessive-compulsive disorder (OCD). Habits can be defined according to the following features (Balleine and Dezfouli, 2019): rapid execution, invariant response topography, action 'chunking' and resistance to devaluation.

      The extent to which OCD behavior is derived from enhanced habit formation relative to deficits in goal-directed behavior is a topic of debate in the current literature. This study examined habit-learning specifically (cf. deficits in goal-directed behavior) by regularly presenting, via smartphone, sequential learning tasks to patients with OCD and healthy controls. Participants engaged in the tasks every day over the course of a month. Automaticity, including the extent to which individual actions in the sequence become part of a unified 'chunk', was an important outcome variable. Following the 30 days of training, in-laboratory tasks were then administered to examine 1) if performing the learned sequences themselves had become rewarding 2) differences in goal-directed vs. habitual behavior.

      Several hypotheses were tested, including:<br /> Patients would have impaired procedural learning vs. healthy volunteers (this was not supported, possibly because there were fewer demands on memory in the task used here)<br /> Once the task had been learned, patients would display automaticity faster (unexpectedly, patients were slower to display automaticity)<br /> Habits would form faster under a continuous (vs. variable) reinforcement schedule

      Exploratory analyses were also conducted: an interesting finding was that OCD patients with higher self-reported symptoms voluntarily completed more sessions with the habit-training app and reported a reduction in symptoms.

      Strengths

      This paper is well situated theoretically within the habit learning/OCD literature.<br /> Daily training in a motor-learning task, delivered via smartphone, was innovative, ecologically valid and more likely to assay habitual behaviors specifically. Daily training is also more similar to studies with non-humans, making a better link with that literature. The use of a sequential-learning task (cf. tasks that require a single response) is also more ecologically valid.<br /> The in-laboratory tests (after the 1 month of training) allowed the researchers to test if the OCD group preferred familiar, but more difficult, sequences over newer, simpler sequences.

      Weaknesses

      The authors were not able to test one criterion of habits, namely resistance to devaluation, due to the nature of the task.<br /> The sample size was relatively small. Some potentially interesting individual differences within the OCD group could have been examined more thoroughly with a bigger sample (e.g., preference for familiar sequences). A larger sample may have allowed the statistical testing of any effects due to medication status.

      The authors achieved their aims in that two groups of participants (patients with OCD and controls) engaged with the task over the course of 30 days. The repeated nature of the task meant that 'overtraining' was almost certainly established, and automaticity was demonstrated. This allowed the authors to test their hypotheses about habit learning. The results are supportive of the author's conclusions.

      This article is likely to be impactful -- the delivery of a task across 30 days to a patient group is innovative and represents a new approach for the study of habit learning that is superior to an in-laboratory approach.

      An interesting aspect of this manuscript is that it prompts a comparison with previous studies of goal-directed/habitual responding in OCD that used devaluation protocols, and which may have had their effects due to deficits in goal-directed behavior and not enhanced habit learning per se.

    1. Reviewer #3 (Public Review):

      Summary:

      This study aimed to investigate whether the development of functional connectivity (FC) is modulated by early physical growth and whether these might impact cognitive development in childhood. This question was investigated by studying a large group of infants (N=204) assessed in Gambia with fNIRS at 5 visits between 5 and 24 months of age. Given the complexity of data acquisition at these ages and following data processing, data could be analyzed for 53 to 97 infants per age group. FC was analyzed considering 6 ensembles of brain regions and thus 21 types of connections. Results suggested that: i) compared to previously studied groups, this group of Gambian infants have different FC trajectory, in particular with a change in frontal inter-hemispheric FC with age from positive to null values; ii) early physical growth, measured through weight-for-length z-scores from birth on, is associated with FC at 24 months. Some relationships were further observed between FC during the first two years and cognitive flexibility at 4-5 years of age, but results did not survive corrections for multiple comparisons.

      Strengths:

      The question investigated in this article is important for understanding the role of early growth and undernutrition on brain and behavioral development in infants and children. The longitudinal approach considered is highly relevant to investigate neurodevelopmental trajectories. Furthermore, this study targets a little-studied population from a low-/middle-income country, which was made possible by the use of fNIRS outside the lab environment. The collected dataset is thus impressive and it opens up a wide range of analytical possibilities.

      Weaknesses:

      - Analyzing such a huge amount of collected data at several ages is not an easy task to test developmental relationships between growth, FC, and behavioral capacities. In its present form, this study and the performed analyses lack clarity, unity and perhaps modeling, as it suggests that all possible associations were tested in an exploratory way without clear mechanistic hypotheses. Would it be possible to specify some hypotheses to reduce the number of tests performed? In particular, considering metrics at specific ages or changes in the metrics with age might allow us to test different hypotheses: the authors might clarify what they expect specifically for growth-FC-behaviour associations. Since some FC measures and changes might be related to one another, would it be reasonable to consider a dimensionality reduction approach (e.g., ICA) to select a few components for further correlation analyses?

      - It seems that neurodevelopmental trajectories over the whole period (5-24 months) are little investigated, and considering more robust statistical analyses would be an important aspect to strengthen the results. The discussion mentions the potential use of structural equation modelling analyses, which would be a relevant way to better describe such complex data.

      - Given the number of analyses performed, only describing results that survive correction for multiple comparisons is required. Unifying the correction approach (FDR / Bonferroni) is also recommended. For the association between cognitive flexibility and FC, results are not significant, and one might wonder why FC at specific ages was considered rather than the change in FC with age. One of the relevant questions of such a study would be whether early growth and later cognitive flexibility are related through FC development, but testing this would require a mediation analysis that was not performed.

      - Growth is measured at different ages through different metrics. Justifying the use of weight-for-length z-scores would be welcome since weight-for-age z-scores might be a better marker of growth and possible undernutrition (this impacting potentially both weight and length). Showing the distributions of these z-scores at different ages would allow the reader to estimate the growth variability across infants.

      - Regarding FC, clarifications about the long-range vs short-range connections would be welcome, as well as drawing a summary of what is expected in terms of FC "typical" trajectory, for the different brain regions and connections, as a marker of typical development. For instance, the authors suggest that an increase in long-range connectivity vs a decrease in short-range is expected based on previous fNIRS studies. However anatomical studies of white matter growth and maturation would suggest the reverse pattern (short-range connections developing mostly after birth, contrarily to long-range connections prenatally).

      The authors test associations between FC and growth, but making sense of such modulation results is difficult without a clearer view of developmental changes per se (e.g., what does an early negative FC mean? Is it an increase in FC when the value gets close to 0? In particular, at 24m, it seems that most FC values are not significantly different from 0, Figure 2B). Observing positive vs negative association effects depending on age is quite puzzling. It is also questionable, for some correlation analyses with cognitive flexibility, to focus on FC that changes with age but to consider FC at a given age.

      - The manuscript uses inappropriate terms "to predict", "prediction" whereas the conducted analyses are not prediction analyses but correlational.

    2. Reviewer #1 (Public Review):

      Summary:

      Cognitive and brain development during the first two years of life is vast and determinant for later development. However, longitudinal infant studies are complicated and restricted to occidental high-income countries. This study uses fNIRS to investigate the developmental trajectories of functional connectivity networks in infants from a rural community in Gambia. In addition to resting-state data collected from 5 to 24 months, the authors collected growing measures from birth until 24 months and administrated an executive functioning task at 3 or 5 years old.

      The results show left and right frontal-middle and right frontal-posterior negative connections at 5 months that increase with age (i.e., become less negative). Interestingly, contrary to previous findings in high-income countries, there was a decrease in frontal interhemispheric connectivity. Restricted growth during the first months of life was associated with stronger frontal interhemispheric connectivity and weaker right frontal-posterior connectivity at 24 months. Additionally, the study describes that some connectivity patterns related to better cognitive flexibility at pre-school age.

      Strengths:

      - The authors analyze data from 204 infants from a rural area of Gambia, already a big sample for most infant studies. The study might encourage more research on different underrepresented infant populations (i.e., infants not living in occidental high-income countries).

      - The study shows that fNIRS is a feasible instrument to investigate cognitive development when access to fMRI is not possible or outside a lab setting.

      - The fNIRS data preprocessing and analysis are well-planned, implemented, and carefully described. For example, the authors report how the choices in the parameters for the motion artifacts detection algorithm affect data rejection and show how connectivity stability varies with the length of the data segment to justify the threshold of at least 250 seconds free of artifacts for inclusion.

      - The authors use proper statistical methods for analysis, considering the complexity of the dataset.

      Weaknesses:

      - No co-registration of the optodes is implemented. The authors checked for correct placement by looking at pictures taken during the testing session. However, head shape and size differences might affect the results, especially considering that the study involves infants from 5 months to 24 months and that the same fNIRS array was used at all ages.

      - The authors regress the global signal to remove systemic physiological noise. While the authors also report the changes in connectivity without global signal regression, there are some critical differences. In particular, the apparent decrease in frontal inter-hemispheric connections is not present when global signal regression is omitted, even though it is present for deoxy-Hb. The authors use connectivity results obtained after applying global signal regression for further analysis. The choice of regressing the global signal is questionable since it has been shown to introduce anti-correlations in fMRI data (Murphy et al., 2009), and fNIRS in young infants does not seem to be highly affected by physiological noise (Emberson et al., 2016). Systemic physiological noise might change at different ages, which makes its remotion critical to investigate functional network development. However, global signal regression might also affect the data differently. The study would have benefited from having short separation channels to measure the systemic psychological component in the data.

      - I believe the authors bypass a fundamental point in their framing. When discussing the results, the authors compare the developmental trajectories of the infants tested in a rural area of Gambia with the trajectories reported in previous studies on infants growing in occidental high-income countries (likely in urban contexts) and attribute the differences to adverse effects (i.e., nutritional deficits). Differences in developmental trajectories might also derive from other environmental and cultural differences that do not necessarily lead to poor cognitive development.

      - While the study provides a solid description of the functional connectivity changes in the first two years of life at the group level, the evidence regarding the links between adverse situations, developmental trajectories, and later cognitive capacities is weaker. The authors find that early restricted growth predicts specific connectivity patterns at 24 months and that certain connectivity patterns at specific ages predict cognitive flexibility. However, the link between development trajectories (individual changes in connectivity) with growth and later cognitive capacities is missing. To address this question adequately, the study should have compared infants with different growing profiles or those who suffered or did not from undernutrition. However, as the authors discussed, they lacked statistical power.

    3. Reviewer #2 (Public Review):

      Summary and strengths:

      The article pertains to a topic of importance, specifically early life growth faltering, a marker of undernutrition, and how it influences brain functional connectivity and cognitive development. In addition, the data collection was laborious, and data preprocessing was quite rigorous to ensure data quality, utilizing cutting-edge preprocessing methods.

      Weaknesses:

      However, the subsequent analysis and explanations were not very thorough, which made some results and conclusions less convincing. For example, corrections for multiple tests need to be consistently maintained; if the results do not survive multiple corrections, they should not be discussed as significant results. Additionally, alternative plans for analysis strategies could be worth exploring, e.g., using ΔFC in addition to FC at a certain age. Lastly, some analysis plans lacked a strong theoretical foundation, such as the relationship between functional connectivity (FC) between certain ROIs and the development of cognitive flexibility.

      Thus, as much as I admire the advanced analysis of connectivity that was conducted and the uniqueness of longitudinal fNIRS data from these samples (even the sheer effort to collect fNIRS longitudinally in a low-income country at such a scale!), I have reservations about the importance of this paper's contribution to the field in its present form. Major revisions are needed, in my opinion, to enhance the paper's quality.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, participants completed two different tasks. A perceptual choice task in which they compared the sizes of pairs of items and a value-different task in which they identified the higher value option among pairs of items with the two tasks involving the same stimuli. Based on previous fMRI research, the authors sought to determine whether the superior frontal sulcus (SFS) is involved in both perceptual and value-based decisions or just one or the other. Initial fMRI analyses were devised to isolate brain regions that were activated for both types of choices and also regions that were unique to each. Transcranial magnetic stimulation was applied to the SFS in between fMRI sessions and it was found to lead to a significant decrease in accuracy and RT on the perceptual choice task but only a decrease in RT on the value-different task. Hierarchical drift-diffusion modelling of the data indicated that the TMS had led to a lowering of decision boundaries in the perceptual task and a lower of non-decision times on the value-based task. Additional analyses show that SFS covaries with model-derived estimates of cumulative evidence and that this relationship is weakened by TMS.

      Strengths:

      The paper has many strengths including the rigorous multi-pronged approach of causal manipulation, fMRI and computational modelling which offers a fresh perspective on the neural drivers of decision making. Some additional strengths include the careful paradigm design which ensured that the two types of tasks were matched for their perceptual content while orthogonalizing trial-to-trial variations in choice difficulty. The paper also lays out a number of specific hypotheses at the outset regarding the behavioural outcomes that are tied to decision model parameters and are well justified.

      Weaknesses:

      Unless I have missed it, the SFS does not actually appear in the list of brain areas significantly activated by the perceptual and value tasks in Supplementary Tables 1 and 2. Its presence or absence from the list of significant activations is not mentioned by the authors when outlining these results in the main text. What are we to make of the fact that it is not showing significant activation in these initial analyses?

      The value difference task also requires identification of the stimuli, and therefore perceptual decision-making. In light of this, the initial fMRI analyses do not seem terribly informative for the present purposes as areas that are activated for both types of tasks could conceivably be specifically supporting perceptual decision-making only. I would have thought brain areas that are playing a particular role in evidence accumulation would be best identified based on whether their BOLD response scaled with evidence strength in each condition which would make it more likely that areas particular to each type of choice can be identified. The rationale for the authors' approach could be better justified.

      TMS led to reductions in RT in the value-difference as well as the perceptual choice task. DDM modelling indicated that in the case of the value task, the effect was attributable to reduced non-decision time which the authors attribute to task learning. The reasoning here is a little unclear. If task learning is the cause, then why are similar non-decision time effects not observed in the perceptual choice task? Given that the value-task actually requires perceptual decision-making, is it not possible that SFS disruption impacted the speed with which the items could be identified, hence delaying the onset of the value-comparison choice?

      The sample size is relatively small. The authors state that 20 subjects is 'in the acceptable range' but it is not clear what is meant by this.

    2. Reviewer #3 (Public Review):

      Summary:

      Garcia et al., investigated whether the human left superior frontal sulcus (SFS) is involved in integrating evidence for decisions across either perceptual and/or value-based decision-making. Specifically, they had 20 participants perform two decision-making tasks (with matched stimuli and motor responses) in an fMRI scanner both before and after they received continuous theta burst transcranial magnetic stimulation (TMS) of the left SFS. The stimulation thought to decrease neural activity in the targeted region, led to reduced accuracy on the perceptual decision task only. The pattern of results across both model-free and model-based (Drift diffusion model) behavioural and fMRI analyses suggests that the left SLS plays a critical role in perceptual decisions only, with no equivalent effects found for value-based decisions. The DDM-based analyses revealed that the role of the left SLS in perceptual evidence accumulation is likely to be one of decision boundary setting. Hence the authors conclude that the left SFS plays a domain-specific causal role in the accumulation of evidence for perceptual decisions. These results are likely to add importance to the literature regarding the neural correlates of decision-making.

      Strengths:

      The use of TMS strengthens the evidence for the left SFS playing a causal role in the evidence accumulation process. By combining TMS with fMRI and advanced computational modelling of behaviour, the authors go beyond previous correlational studies in the field and provide converging behavioural, computational, and neural evidence of the specific role that the left SFS may play.

      Sophisticated and rigorous analysis approaches are used throughout.

      Weaknesses:

      Though the stimuli and motor responses were equalised between the perception and value-based decision tasks, reaction times (according to Figure 1) and potential difficulty (Figure 2) were not matched. Hence, differences in task difficulty might represent an alternative explanation for the effects being specific to the perception task rather than domain-specificity per se.

      No within- or between-participants sham/control TMS condition was employed. This would have strengthened the inference that the apparent TMS effects on behavioural and neural measures can truly be attributed to the left SFS stimulation and not to non-specific peripheral stimulation and/or time-on-task effects.

      No a priori power analysis is presented.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors set out to test whether a TMS-induced reduction in excitability of the left Superior Frontal Sulcus influenced evidence integration in perceptual and value-based decisions. They directly compared behaviour - including fits to a computational decision process model - and fMRI pre and post-TMS in one of each type of decision-making task. Their goal was to test domain-specific theories of the prefrontal cortex by examining whether the proposed role of the SFS in evidence integration was selective for perceptual but not value-based evidence.

      Strengths:

      The paper presents multiple credible sources of evidence for the role of the left SFS in perceptual decision-making, finding similar mechanisms to prior literature and a nuanced discussion of where they diverge from prior findings. The value-based and perceptual decision-making tasks were carefully matched in terms of stimulus display and motor response, making their comparison credible.

      Weaknesses:<br /> More information on the task and details of the behavioural modelling would be helpful for interpreting the results. I had the following concerns:

      (1) The evidence for a choice and 'accuracy' of that choice in both tasks was determined by a rating task that was done in advance of the main testing blocks (twice for each stimulus). For the perceptual decisions, this involved asking participants to quantify a size metric for the stimuli, but the veracity of these ratings was not reported, nor was the consistency of the value-based ones. It is my understanding that the size ratings were used to define the amount of perceptual evidence in a trial, rather than the true size differences, and without seeing more data the reliability of this approach is unclear. More concerning was the effect of 'evidence level' on behaviour in the value-based task (Figure 3a). While the 'proportion correct' increases monotonically with the evidence level for the perceptual decisions, for the value-based task it increases from the lowest evidence level and then appears to plateau at just above 80%. This difference in behaviour between the two tasks brings into question the validity of the DDM which is used to fit the data, which assumes that the drift rate increases linearly in proportion to the level of evidence.

      (2) The paper provides very little information on the model fits (no parameter estimates, goodness of fit values or simulated behavioural predictions). The paper finds that TMS reduced the decision bound for perceptual decisions but only affected non-decision time for value-based decisions. It would aid the interpretation of this finding if the relative reliability of the fits for the two tasks was presented.

      (3) Behaviourally, the perceptual task produced decreased response times and accuracy post-TMS, consistent with a reduced bound and consistent with some prior literature. Based on the results of the computational modelling, the authors conclude that RT differences in the value-based task are due to task-related learning, while those in the perceptual task are 'decision relevant'. It is not fully clear why there would be such significantly greater task-related learning in the value-based task relative to the perceptual one. And if such learning is occurring, could it potentially also tend to increase the consistency of choices, thereby counteracting any possible TMS-induced reduction of consistency?

    1. Reviewer #1 (Public Review):

      Summary and strength:

      The authors undertook to assemble and annotate the genome sequence of the Malabar grouper fish, with the aim of providing molecular resources for fundamental and applied research. Even though this is more mainstream, the task is still daunting and labor-intensive. Currently, high-quality and fully annotated genome sequences are of strategic importance in modern biology. The authors make use of the resource to address the endocrine control of an ecologically and developmentally relevant life cycle transition, metamorphosis. As opposed to amphibian and flat fish where body plan changes, fish metamorphosis is anatomically more subtle and much less known, although it is clear that thyroid hormone (TH) signaling is a key player. The authors thus provide a repertoire of TH-relevant gene expression changes during development and across metamorphosis and correlate developmental stages with changes in gene expression. Overall, this work has a strong potential to meet its target.

      Weaknesses:

      The manuscript needs proper editing and is not complete. Some wordings lack precision and make it difficult to follow (e.g. line 98 "we assembled a chromosome-scale genome of ..." should read instead "we assembled a chromsome-scla genome sequence of ...". Also, panel Figure 2E is missing.

      The shortcomings of the manuscripts are not limited to the writing style, and important technical and technological information is missing or not clear enough, thereby preventing a proper evaluation of the resolution of the genomic resources provided:

      - Several RNASeq libraries from different tissues have been built to help annotate the genome and identify transcribed regions. This is fine. But all along the manuscript, gene expression changes are summarized into a single panel where it is not clear at all which tissue this comes from (whole embryo or a specific tissue ?), or whether it is a cumulative expression level computed across several tissues (and how it was computed) etc. This is essential information needed for data interpretation.

      - The bioinformatic processing, especially of the assemble and annotation, is very poorly described. This is also a sensitive topic, as illustrated by the numerous "assemblathon" and "annotathon" initiatives to evaluate tools and workflows. Importantly, providing configuration files and in-depth description of workflows and parameter settings is highly recommended. This can be made available through data store services and documents even benefit from DOIs. This provides others with more information to evaluate the resolution of this work. No doubt that it is well done,<br /> but especially in the field of genome assembly and annotation, high resolution is VERY cost and time-intensive. Not surprisingly, most projects are conditioned by trade-offs between cost, time, and labor. The authors should provide others with the information needed to evaluate this.

      - Quantifications of T3 and T4 levels look fairly low and not so convincing. The work would clearly benefit from a discussion about why the signal is so low and what are the current technological limitations of these quantifications. This would really help (general) readers.

      - Differential analysis highlights up to ~ 15,000 differentially expressed genes (DEG), out of a predicted 26k genes. This corresponds to more than half of all genes. ANOVA-based differential analysis relies on the simple fact that only a minority of genes are DEG. Having >50% DEG is well beyond the validity of the method. This should be addressed, or at least discussed.

    2. Reviewer #3 (Public Review):

      Summary:

      The manuscript by Huerlimann et al. entitled "The transcriptional landscape underlying metamorphosis in the Malabar grouper (Epinephelus malabaricus)." describes the transcriptional landscape of the Malabar grouper during selected metamorphic stages. The authors find evidence of dynamic regulation of HPT axis genes, TH signalling genes, and HPA and metabolic-related genes during post-natal development. Finally, the authors argue that the HPA is involved in grouper metamorphosis, given the related genes' dynamic expression during this developmental time.

      Strengths:

      The work is technically very good, and the methodology applied is solid.

      Weaknesses:

      However, the authors make substantial considerations that are not proven by experimental or functional data. In fact, this is a descriptive study that does not provide any functional evidence to support the claims made.

      The consideration that cortisol is involved in metamorphosis in teleosts has never been shown, and the only example cited by the authors (REF 20) clearly states that cortisol alone does not induce flatfish metamorphosis. In that work, the authors clearly state that in vivo cortisol treatment had no synergistic effect with TH in inducing metamorphosis. Moreover, in Senegalensis, the sole pre-otic CRH neuron number decreases during metamorphosis, further arguing that, at least in flatfish, cortisol is not involved in flatfish metamorphosis (PMID: 25575457). Furthermore, the authors need to recognise that the transcriptomic analysis is whole-body and that HPA axis genes are upregulated, which does not mean they are involved in regulating the HPT axis. The authors do not show that in thyrotrophs, any CRH receptor is expressed or in any other HPT axis-relevant cells and that changes in these genes correlate with changes in TSH expression. An in-situ hybridisation experiment showing co-expression on thyrotrophs of HPA genes and TSH could be a good start. However, the best scenario would be conducting cortisol treatment experiments to see if this hormone affects grouper metamorphosis.

      High TSH and Tg levels usually parallel whole-body TH levels during teleost metamorphosis. However, in this study, high Tg expression levels are only achieved at the juvenile stage, whereas high TSH is achieved at D32, and at the juvenile stage, they are already at their lowest levels.

      It is very difficult to conclude anything with the TH and cortisol levels measurements. The authors only measured up until D10, whereas they argue that metamorphosis occurs at D32. In this way, these measurements could be more helpful if they focus on the correct developmental time. The data is irrelevant to their hypothesis.

      Moreover, as stated in the previous review, a classical sign of teleost metamorphosis is the upregulation of TSHb and Tg, which does not occur at D32 therefore, it is very hard for me to accept that this is the metamorphic stage. With the lack of TH measurements, I cannot agree with the authors. I think this has to be toned down and made clear in the manuscript that D32 might be a putative metamorphic climax but that several aspects of biology work against it. Moreover, in D10, the authors show the highest cortisol level and lowest T4 and T3 levels. These observations are irreconcilable, with cortisol enhancing or participating in TH-driven metamorphosis.

      Given this, the authors should quantify whole-body TH levels throughout the entire developmental window considered to determine where the peak is observed and how it correlates with the other hormonal genes/systems in the analysis.

      Even though this is a solid technical paper and the data obtained is excellent, the conclusions drawn by the authors are not supported by their data, and at least hormonal levels should be present in parallel to the transcriptomic data. Furthermore, toning down some affirmations or even considering the different hypotheses available that are different from the ones suggested would be very positive.

    1. Reviewer #1 (Public Review):

      Summary:

      In their manuscript, "Nicotine enhances the stemness and tumorigenicity in intestinal stem cells via Hippo-YAP/TAZ and Notch signal pathway", authors Isotani et al claimed that this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggest the use of DBZ as a potential therapeutic strategy for treating intestinal tumors. However, the presented data do not support the primary claims.

      Weaknesses:

      My main reservation is that the quality of the results presented in the manuscript may not fully substantiate their conclusions. For instance, in Figure 2 A and B, it is challenging to discern a healthy organoid. This is significant, as the entirety of Figure 2 and several panels in Figures 3 - 5 are based on these organoid assays. Additionally, there seems to be a discrepancy in the quality of results from the western blot, as the lanes of actin do not align with other proteins (Figure 6B).

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Isotani et al characterizes the hyperproliferation of intestinal stem cells (ISCs) induced by nicotine treatment in vivo. Employing a range of small molecule inhibitors, the authors systematically investigated potential receptors and downstream pathways associated with nicotine-induced phenotypes through in vitro organoid experiments. Notably, the study specifically highlights a signaling cascade involving α7-nAChR/PKC/YAP/TAZ/Notch as a key driver of nicotine-induced stem cell hyperproliferation. Utilizing a Lgr5CreER Apcfl/fl mouse model, the authors extend their findings to propose a potential role of nicotine in stem cell tumorgenesis. The study posits that Notch signaling is essential during this process.

      Strengths and Weaknesses:

      One noteworthy research highlight in this study is the indication, as shown in Figure 2 and S2, that the trophic effect of nicotine on ISC expansion is independent of Paneth cells. In the Discussion section, the authors propose that this independence may be attributed to distinct expression patterns of nAChRs in different cell types. To further substantiate these findings, it is suggested that the authors perform tissue staining of various nAChRs in the small intestine and colon. This additional analysis would provide more conclusive evidence regarding how stem cells uniquely respond to nicotine. It is also recommended to present the staining of α7-nAChR from different intestinal regions. This will provide insights into the primary target sites of nicotine in the gut tract. Additionally, it is recommended that the authors consider rephrasing the conclusion in this section (lines 123-124). The current statement implies that nicotine does not affect Paneth cells, which may be inaccurate based on the suggestion in line 275 that nicotine might influence Paneth cells through α2β4-nAChR. Providing a more nuanced conclusion would better reflect the complexity of nicotine's potential impact on Paneth cells.

      As shown in the same result section, the effect of nicotine on ISC organoid formation appears to be independent of CHIR99021, a Wnt activator. Despite this, the authors suggest a potential involvement of Wnt/β-catenin activation downstream of nicotine in Figure 4F. In the Lgr5CreER Apcfl/fl mouse model, it is known that APC loss results in a constitutive stabilization of β-catenin, thus the hyperproliferation of ISCs by nicotine treatment in this mouse model is likely beyond Wnt activation. Therefore, it is recommended that the authors reconsider the inclusion of Wnt/β-catenin as a crucial signaling pathway downstream of nicotine, given the experimental evidence provided in this study.

      In Figure 4, the authors investigate ISC organoid formation with a pan-PKC inhibitor, revealing that PKC inhibition blocks nicotine-induced ISC expansion. It's noteworthy that PKC inhibitors have historically been used successfully to isolate and maintain stem cells by promoting self-renewal. Therefore, it is surprising to observe no effect or reversal effect on ISCs in this context. A previous study demonstrated that the loss of PKCζ leads to increased ISC activity both in vivo and in vitro (DOI: 10.1016/j.celrep.2015.01.007). Additionally, to strengthen this aspect of the study, it would be beneficial for the authors to present more evidence, possibly using different PKC inhibitors, to reproduce the observed results with Gö 6983. This could help address potential concerns or discrepancies and contribute to a more comprehensive understanding of the role of PKC in nicotine-induced ISC expansion.

      An additional avenue that could enhance the clinical relevance of the study is the exploration of human datasets. Specifically, leveraging scRNA-seq datasets of the human intestinal epithelium (DOI: 10.1038/s41586-021-03852-1) could provide valuable insights. Analyzing the expression patterns of nAChRs across diverse regions and cell types in the human intestine may offer a potential clinical implication.

      In summary, the results generally support the authors' conclusions that nicotine directly influences ISC growth, potentially contributing to tumorgenesis. The identification of the α7-nAChR/PKC/YAP/TAZ/Notch pathway adds significant mechanistic insight. However, certain aspects of the experimental evidence, such as the receptor expression pattern, PKC inhibition response, and the involvement of Wnt/β-catenin activation, may require further clarification and exploration, especially considering previous literature suggesting potential discrepancies.

    1. Reviewer #1 (Public Review):

      The authors sought to test whether anterior insular cortex neurons increase or decrease firing during fear behavior and freezing, bi-directionally control fear via separate, anatomically defined outputs. Using a fairly simple behavior where mice were exposed to tone-shock pairings, they found roughly equal populations that do indeed either increase or decrease firing during freezing. Next, they sought to test whether these distinct populations may also have distinct outputs. Using retrograde tracers they found that the anterior insular cortex contains non-overlapping neurons which project to the mediodorsal thalamus or amygdala. Mediodorsal thalamus-projecting neurons tended to cluster in deep cortical layers while amygdala-projecting neurons were primarily in more superficial layers. Stimulation of insula-thalamus projection decreased freezing behavior, and stimulation of insula-amygdala projections increased fear behavior. Given that the neurons that increased firing were located in deep layers, that thalamus projections occurred in deep layers, and that stimulation of insula-thalamus neurons decreased freezing, the authors concluded that the increased firing neurons may be thalamus projections. Similarly, given that decreased-firing neurons tended to occur in more superficial layers, that insula-amygdala projections were primarily superficial, and that insula-amygdala stimulation increased freezing behavior, authors concluded that the decreased firing cells may be amygdala projections. The study has several strengths though also some caveats.

      Strengths:

      The potential link between physiological activity, anatomy, and behavior is well laid out and is an interesting question. The activity contrast between the units that increase/decrease firing during freezing is clear.

      It is nice to see the recording of extracellular spiking activity, which provides a clear measure of neural output, whereas similar studies often use bulk calcium imaging, a signal that rarely matches real neural activity even when anatomy suggests it might (see London et al 2018 J Neuro - there are increased/decreased spiking striatal populations, but both D1 and D2 striatal neurons increase bulk calcium).

      Weaknesses:

      The link between spiking, anatomy, and behavior requires assumptions/inferences: the anatomically/genetically defined neurons which had distinct outputs and opposite behavioral effects can only be assumed the increased/decreased spiking neurons, based on the rough area of the cortical layer they were recorded.

      The behavior would require more control to fully support claims about the associative nature of the fear response (see Trott et al 2022 eLife) - freezing, in this case, could just as well be nonassociative. In a similar vein, fixed intertrial intervals, though common practice in the fear literature, pose a problem for neurophysiological studies. The first is that animals learn the timing of events, and the second is that neural activity is dynamic and changes over time. Thus it is very difficult to determine whether changes in neural activity are due to learning about the tone-shock contingency, timing of the task, simply occur because of time and independently of external events, or some combination of the above.

    2. Reviewer #2 (Public Review):

      In this study, the authors aim to understand how neurons in the anterior insular cortex (insula) modulate fear behaviors. They report that the activity of a subpopulation of insula neurons is positively correlated with freezing behaviors, while the activity of another subpopulation of neurons is negatively correlated to the same freezing episodes. They then used optogenetics and showed that activation of anterior insula excitatory neurons during tones predicting a footshock increases the amount of freezing outside the tone presentation, while optogenetic inhibition had no effect. Finally, they found that two neuronal projections of the anterior insula, one to the amygdala and another to the medial thalamus, are increasing and decreasing freezing behaviors respectively. While the study contains interesting and timely findings for our understanding of the mechanisms underlying fear, some points remain to be addressed.

    1. Reviewer #1 (Public Review):

      Summary:

      Cheong et al. use a synapse-resolution wiring map of the fruit fly nerve cord to comprehensively investigate circuitry between descending neurons (DNs) from the brain and motor neurons (MNs) that enact different behaviours. These neurons were painstakingly identified, categorised, and linked to existing genetic driver lines; this allows the investigation of circuitry to be informed by the extensive literature on how flights walk, fly, and escape from looming stimuli. New motifs and hypotheses of circuit function were presented. This work will be a lasting resource for those studying nerve cord function.

      Strengths:

      The authors present an impressive amount of work in reconstructing and categorising the neurons in the DN to MN pathways. There is always a strong link between the circuitry identified and what is known in the literature, making this an excellent resource for those interested in connectomics analysis or experimental circuits neuroscience. Because of this, there are many testable hypotheses presented with clear predictions, which I expect will result in many follow-up publications. Most MNs were mapped to the individual muscles that they innervate by linking this connectome to pre-existing light microscopy datasets. When combined with past fly brain connectome datasets (Hemibrain, FAFB) or future ones, there is now a tantalising possibility of following neural pathways from sensory inputs to motor neurons and muscle.

      Weaknesses:

      As with all connectome datasets, the sample size is low, limiting statistical analyses. Readers should keep this in mind, but note that this is the current state-of-the-art. Some figures are weakened by relying too much on depictions of wiring diagrams as evidence of circuit function, similarity between neuropils, etc. without additional quantitative justification.

    2. Reviewer #2 (Public Review):

      Summary:

      In Cheong et al., the authors analyze a new motor system (ventral nerve cord) connectome of Drosophila. Through proofreading, cross-referencing with another female VNC connectome, they define key features of VNC circuits with a focus on descending neurons (DNs), motor neurons (MNs), and local interneuron circuits. They define DN tracts, MNs for limb and wing control, and their nerves (although their sample suffers for a subset of MNs). They establish connectivity between DNs and MNs (minimal). They perform topological analysis of all VNC neurons including interneurons. They focus specifically on identifying core features of flight circuits (control of wings and halteres), leg control circuits with a focus on walking rather than other limbed behaviors (grooming, reaching, etc.), and intermediate circuits like those for escape (GF). They put these features in the context of what is known or has been posited about these various circuits.

      Strengths:

      Some strengths of the manuscript include the matching of new DN and MN types to light microscopy, including the serial homology of leg motor neurons. This is a valuable contribution that will certainly open up future lines of experimental work.

      Also, the analysis of conserved connectivity patterns within each leg neuromere and interconnecting connectivity patterns between neuromeres will be incredibly valuable. The standard leg connectome is very nice.

      Finally, the finding of different connectivity statistics (degrees of feedback) in different neuropils is quite interesting and will stimulate future work aimed at determining its functional significance.

      Weaknesses:

      First, it seems like quite a limitation that the neurotransmitter predictions were based on training data from a fairly small set of cells, none of which were DNs. It's wonderful that the authors did the experimental work to map DN neurotransmitter identity using FISH, and great that the predictions were overall decently accurate for both ACh and Glu, but unfortunate that they were not accurate for GABA. I hope there are plans to retrain the neurotransmitter predictions using all of this additional ground truth experimental data that the authors collected for DNs, in order to provide more accurate neurotransmitter type predictions across more cell types.

      Second, the degradation of many motor neurons is unfortunate. Figure 5 Supplement 1 shows that roughly 50% of the leg motor neurons have significantly compromised connectivity data, whereas, for non-leg motor neurons, few seem to be compromised. If that is the correct interpretation of this figure, perhaps a sentence like this that includes some percentages (~50% of leg MNs, ~5% of other MNs) could be added to the main text so that readers can get a sense of the impact more easily.

      As well, Figure 5 Supplement 1 caption says "Note that MN groups where all members of the group have reconstruction issues may not be flagged" - could the authors comment on how common they think this is based on manual inspection? If it changes the estimate of the percentage of affected leg motor neurons from 50% to 75% for example, this caveat in the current analysis would need to be addressed more directly. Comparing with FANC motor neurons could perhaps be an alternative/additional approach for estimating the number of motor neurons that are compromised.

      This analysis might benefit from some sort of control for true biological variability in the number of MN synapses between left and right or across segments. I assume the authors chose the threshold of 0.7 because it seemed to do a good job of separating degraded neurons from differences in counts that could just be due to biological variability or reconstruction imperfections, but perhaps there's some way to show this more explicitly. For example, perhaps show how much variability there is in synapse counts across all homologs for one or two specific MN types that are not degraded and are reconstructed extremely well, so any variability in input counts for those neurons is likely to be biologically real. Especially because the identification of serial homologs among motor neurons is a key new contribution of this paper, a more in-depth analysis of similarities and differences in homologous leg MNs across segments could be interesting to the field if the degradation doesn't preclude it.

      Fourth, the infomap communities don't seem to be so well controlled/justified. Community detection can be run on any graph - why should I believe that the VNC graph is actually composed of discrete communities? Perhaps this comes from a lack of familiarity with the infomap algorithm, but I imagine most readers will be similarly unfamiliar with it, so more work should be done to demonstrate the degree to which these communities are really communities that connect more within than across communities.

      I think the length of this manuscript reduces its potential for impact, as I suspect the reality is that many people won't read through all 140 pages and 21 main figures of (overall excellent) work and analysis.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper reports the first results on the effects of a novel waveform for weak transcranial magnetic stimulation, which they refer to as "perturbation" (kTMP). The waveform is sinusoidal at kHz frequency with subthreshold intensities of 2V/m, instead of the suprathreshold pulses used in conventional TMS (~100V/m). The effect reported here concerns motor-evoked potentials (MEPs) elicited on the hand with single-pulse TMS. These MEPs are considered a marker of "corotico-spinal excitability. The manuscripts report that kTMP at 3.5kHz enhances MEPs with a medium effect size, and reports independent replications of this fining on 3 separate cohorts of subjects (N=16, 15, 16). This result is important for the field of non-invasive brain stimulation. The evidence in support of this claim is compelling.

      Strengths:

      • This is a novel modality for non-invasive brain stimulation.

      • Knowing the history in this field, is likely to lead to a large number of follow-up studies in basic and clinical research.

      • The modality cases practically no sensation which makes it perfectly suitable for control conditions. Indeed, the study itself used a persuasive double-blinding procedure.

      • The replication of the main result in two subsequent experiments is very compelling.

      • The effect size of Cohen's d=0.5 is very promising.

      • It is nice the E-fields were actually measured on a phantom, not just modeled.

      Weakness:

      • The within-subject design may have carry-over effects, although a 2-day gap is probably enough for washout.

      • It would have been nice to assess washout by comparing the per-conditions between days. Particularly problematic are the paired-pulse effects that are done within sessions in experiments 2 and 3 which could have carried over to the main metric of interest, which was the single pulse MEP.

      • Statistical analysis combining Experiments 1, 2, and 3 is a little muddled.

      • Related, the biorxiv version history of this work as experiments 1-3 came together to point to diverging results, and changing analysis methods. Specifically, an earlier version of the work claims that modulated kHz sinusoids are more effective than un-modulated sinusoids, yet the current version says that no differences were detected - which seems consistent with the data presented in this version. However, it does raise concerns about analytic methods, which seem to have shifted over time.

      • While sensation has been documented nicely, it does not seem like blinding has been directly assessed, by asking participants at the end which group they thought to be in.

    2. Reviewer #2 (Public Review):

      Summary:

      kTMP is a novel method of stimulating the brain using electromagnetic fields. It has potential benefits over existing technology because it is safe and easy. It explores a range of brain frequencies that have not been explored in depth before (2-5kHz) and thus offers new opportunities.

      Strengths:

      This work relied on standard methods and was carefully and conservatively performed.

      Weaknesses:

      The sham condition was prepared as well as could be done, but sham is always challenging in a treatment with sound and sensation and with knowledgeable operators. New technology, also, is very exciting to subjects and it is difficult to achieve a natural experiment. These difficulties are related to the technology, however, and not to the execution of these experiments.

    1. Reviewer #1 (Public Review):

      Summary:

      The work by Zeng et al. comprehensively explored the differences in the effects of leaf and soil microbes on the seed germination, seedling survival, and seedling growth of an invasive forb, Ageratina Adenophora, and found evidence of stronger effects of leaf microbes on Ageratina compared with soil microbes, which were negative for seed germination and seedling survival but positive for seedling growth. By further DNA sequencing and fungal strain cultivation, the authors were able to identify some of the key microbial guilds that may facilitate such negative and positive feedback.

      Strengths:

      (1) The theoretic framework is well-established.

      (2) Relating the direction of plant-microbe feedback to certain microbial guilds is always hard, but the authors have done a great job of identifying and interpreting such relationships.

      Weaknesses:

      (1) In the G0 and G21 inoculation experiments, allelopathic effects from leaf litters had not been accounted for, while these two experiments happened to be the ones where negative feedback was detected.

      (2) The authors did not compare the fungal strains accumulated in dead seedlings to those accumulated in live seedlings to prove that the live seedlings indeed accumulated lower abundances of the strains that were identified to increase seedling mortality.

      (3) The data of seed germination and seedling mortality could have been analyzed in the same manner as that of seedling growth, which makes the whole result section more coherent. I don't understand why the authors had not calculated the response index (RI) for germination/mortality rate and conducted analyses on the correlation between these RIs with microbial compositions.

      (4) The language of the manuscript could be improved to increase clarity.

    2. Reviewer #2 (Public Review):

      Summary:

      The study provides strong evidence that leaf microbes mediate self-limitation at an early life stage. It highlights the importance of leaf microbes in population establishment and community dynamics.

      The authors conducted three experiments to test their hypothesis, elucidating the effects of leaf and soil microbial communities on the seedling growth of A. adenophora at different stages, screening potential microbial sources associated with seed germination and seedling performance, and identifying the fungus related to seedling mortality. The conclusions are justified by their results. Overall, the paper is well-structured, providing clear and comprehensive information.

    1. Reviewer #1 (Public Review):

      Summary:

      This finding shows a connection between cancer-associated beta-catenin mutations and extracellular vesicle secretion. A link between the beta-catenin mutation and expression of trafficking and exocytosis machinery. They used a multidisciplinary approach to explore expression levels of relevant proteins and single-particle imaging to directly explore the release of extracellular vesicles. These results suggest a role of extracellular vesicles in immune evasion in liver cancer with the role needing to be further explored in other forms of cancer. I find this work to be compelling and of strong significance.

      Strengths:

      This paper uses multidisciplinary methods to demonstrate the compelling role of beta-catenin mutations in suppressing EV secretion in tumors. The results and imaging are extremely convincing and compelling.

      Weaknesses:

      There is no major weakness in this work. There are only things that left me more intrigued about this work. While the role of Rab27 was strongly examined, the hits of the VAMP proteins were not explored in detail. I was wondering if the decrease in the presence of VAMPS directly suggests the final step of membrane fusion in the exocytosis of EVs is what is being impaired. Or if it is other trafficking steps along the EV secretion pathway.

    2. Reviewer #2 (Public Review):

      Summary:

      Dantzer and colleagues are investigating the pivotal role of ß-catenin, a gene that undergoes mutation in various cancer cells, and its influence on promoting the evasion of immune cells. In their initial experiments, the authors developed a HepG2 mutated ß-catenin KD model, conducting transcriptional and proteomic analyses. The results revealed that the silencing of mutated ß-catenin in HepG2 cells led to an up-regulation in the expression of exosome biogenesis genes.

      Furthermore, the researchers verified that these KD cells exhibited increased production of exosomes, with the mutant form of ß-catenin concurrently decreasing the expression of SDC4 and Rab27a. Intriguingly, applying a GSK inhibitor to the cells resulted in reduced expression of SDC4 and Rab27a. Subsequent findings indicated that mutated ß-catenin actively facilitates immune escape through exosomes, and silencing exosome biogenesis correlates with a decrease in immune cell infiltration.<br /> In a crucial clinical correlation, the study demonstrated that patients with ß-catenin mutations exhibited low levels of exosome biogenesis.

      Strengths:

      Overall, the data robustly supports the outlined conclusions, and the study is commendably designed and executed. However, there are a few suggestions for manuscript improvement.

      Weaknesses:<br /> No weaknesses were identified by this reviewer.