- Mar 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Regalado et al. studied how an extended motivational state, necessary for maintaining behavioural drive despite unrewarding experiences, could be encoded in the ACC and its potential causal implications for learning discriminatory behaviour and avoiding unrewarding stimuli. They designed a self-initiated learning task and identified bulk neural responses tuned specifically to reward delivery as well as trial initiation. Interestingly, in both cases, neural activity precedes behavioural onset, indicating the encoding of a motivational signal. To investigate the neural encoding of motivational signals during unrewarded, distracting stimuli presentation, they created a discrimination task by introducing 'no reward' cues, during which animals need to learn not to reduce running speed and not engage in licking. Interestingly, with mice learning to increase running speed and reduce licking rates after 'no reward' cues, the preceding ACC activity also gradually increased. Importantly, only the increase in running speed after 'no reward' cues was impaired upon optogenetic inhibition of ACC activity during early training, linking the extended motivational signal in ACC and learning to maximise rewards by actively avoiding distracting and unrewarded stimuli. Such motivational signals could also be observed in OFC-ACC projecting neurons. Especially the continuous ramping of activity upon repeated 'non-reward' cues, which could be exclusively observed in the 'fast learner' subgroup, provides an interesting concept of how an extended motivational signal necessary for learning avoidance of unrewarded stimuli could be implemented in ACC. The shift in the temporal activity of initially reward-responsive neurons towards the preceding 'no reward' cue, provides a potential mechanism linking extended motivation to reward maximisation. This mechanism seems to be particularly important in periods of persistent 'non-reward' cues, as demonstrated in the impairment of running speed increase after two consecutive 'non-reward' cues.
Appraisal:
The authors provide convincing experimental evidence to support their claims of an extended motivational signal encoded in the ACC that is implemented by OFC-ACC signalling and critically involved in learning avoidance of unrewarded stimuli. The newly designed task seems appropriate to identify correlates of relevant cognitive and behavioural variables (e.g. sustained motivation). The combination of recording Ca2+ transients (bulk as well as longitudinal single neuron recordings) to identify potential neural responses and subsequent evaluation of their causal role in establishing and maintaining this persistent motivational state using opto- and pharmacogenetic manipulations is generally accepted.
Impact:
The findings will be valuable for further research on the impact of motivational states on behaviour and cognition. The authors provided a promising concept of how persistent motivational states could be maintained, as well as established a novel, reproducible task assay. While experimental methods used are currently state-of-the-art, theoretical analysis seems to be incomplete/not extensive.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Wang and colleagues present a study aimed at demonstrating the feasibility of repeated ultrasound localization microscopy (ULM) recording sessions on mice chronically implanted with a cranial window transparent to ultrasound. They provided quantitative information on their protocol, such as the required number of contrast-enhancing microbubbles (MBs) to get a clear image of the vasculature of a brain coronal section. Also, they quantified the co-registration quality over time-distant sessions and the vasodilator effect of isoflurane.
Strengths:
The study showed a remarkable performance in recording precisely the same brain coronal section over repeated imaging sessions. In addition, it sheds light on the vasodilator effect of isoflurane (an anesthetic whose effects are not fully understood) on the different brain vasculature compartments, although, as the authors stated, some insights in this aspect have already been published with other imaging techniques. The experimental setting and protocol are very well described.
Weaknesses:
While the title is fair with respect to the data shown, in the summary and the rest of the paper, the comparison between anesthetized and awake conditions is systematically stated, while more caution should be used.
First, isoflurane is one of the (many) anesthetics commonly used in pre-clinical research, and its effect on the brain vasculature cannot be generalized to all the anesthetics. Indeed, other anesthesia approaches do not produce evident vasodilation; see ketamine + medetomidine mixtures. Second, the imaged awake state is head-fixed and body-constrained in mice. A condition that can generate substantial stress in the animals. In this study, there is no evaluation of the stress level of the mice. In addition, the awake imaging sessions were performed a few minutes after the mouse woke up from isoflurane induction, which is necessary to inject the MB bolus. It is known that the vasodilator effects of isoflurane last a long time after its withdrawal. This aspect would have influenced the results, eventually underestimating the difference with respect to the awake state.
These limitations should be clearly described in the Discussion.
Looking at Figure 2e, it takes more than 5' to reach the 5 Millions MB count useful for good imaging. However, the MB count per pixel drops to a few % at that time. This information tells me that (i) repeated measurements are feasible but with limited brain coverage since a single 'wake up' is needed to acquire a single brain section and (ii) this approach cannot fit the requirements of functional ULM that requires to merge the responses to multiple stimuli to get a complete functional image. Of course, a chronic i.v. catheter would fix the issue, but this configuration is not trivial to test in the experimental setup proposed by the authors, hindering the extension of the approach to fULM.
Statistics are often poor or not properly described. The legend and the text referring to Figure 2 do not report any indication of the number of animals analyzed. I assume it is only one, which makes the findings strongly dependent on the imaging quality of THAT mouse in THAT experiment. Three mice have been displayed in Figure 3, as reported in the text, but it is not clear whether it is a mouse for each shown brain section. Figure 5 reports quantitative data on blood vessels in awake VS isoflurane states but: no indication about the number of tested mice is provided, nor the number of measured blood vessels per type and if statistics have been done on mice or with a multivariate method. Also, a T-test is inappropriate when the goal is to compare different brain regions and blood vessel types. Similar issues partially apply to Figure 6, too.
-
Reviewer #2 (Public Review):
Summary:
The authors present a very interesting collection of methods and results using brain ultrasound localization microscopy (ULM) in awake mice. They emphasize the effect of the level of anesthesia on the quantifiable elements assessable with this technique (i.e. vessel diameter, flow speed, in veins and arteries, area perfused, in capillaries) and demonstrate the possibility of achieving longitudinal cerebrovascular assessment in one animal during several weeks with their protocol.
Strengths:
Even if the methods elements considered separately are not new (brain ULM in rodents, setup for longitudinal awake imaging similar to those used in fUS imaging, quantification of vessel diameters/bubble flow/vessel area), when masterfully combined as it is done in this paper, they answer two questions that have been long-running in the community: what is the impact of anesthesia on the parameters measured by ULM (and indirectly in fUS and other techniques)? Is it possible to achieve ULM in awake rodents for longitudinal imaging? The authors answer quite exhaustively the first question. The manuscript is well-constructed and well-written, and the graphics are appealing.
Weaknesses:
The only major comment (calling for further work) I would like to make is the relative weakness of the manuscript regarding longitudinal imaging (mostly Figure 6), compared to the exhaustive review of the effect of isoflurane on the vasculature (3 rats, 3 imaging planes, quantification on a large number of vessels, in 9 different brain regions). The 6 cortical vessels evaluated in Figure 6 feel really disappointing. As longitudinal imaging is supposed to be the salient element of this manuscript (first word appearing in the title), it should be as good and trustworthy as the first part of the paper. Figure 6c. is of major importance, and should be supported by a more extensive vessel analysis, including various brain areas, and validated on several animals to validate the robustness of longitudinal positioning with several instances of the surgical procedure. Figure 6d estimates the reliability of flow measurements on 3 vessels only. Therefore I recommend showing something similar to what is done in Figures 4 and 5: 3 animals, and more extensive quantification in different brain regions.
-
Reviewer #3 (Public Review):
Summary:
In this manuscript, Wang et al. performed a study looking at vascular changes in response to anesthesia in awake mice using ultrasound localization microscopy (ULM). The authors report a reduction of vascularity and blood flow velocity in the awake state. In addition, they demonstrate the reproducibility of ULM measurements in time.
Strengths:
Demonstration that high-quality, state-of-the-art ULM images can be performed using cranial windows in awake animals.<br /> Demonstration that repeated imaging in time produces comparable images.
Weaknesses:
It is unclear whether multiple animals were used in the statistical analysis.<br /> Generalizations are sometimes drawn from what seems to be the analysis of a single vessel.<br /> The description of the statistical analysis is mostly qualitative.<br /> Some terms used are insufficiently defined.<br /> Additional limitations should be included in the discussion.<br /> Some technical details are lacking.
Without information about whether the results obtained come from multiple animals, it is difficult to conclude that the authors generally achieved their aim. They do achieve it in a single animal.
The results that are shown are interesting and could have an impact on the ULM community and beyond. In particular, the experimental setup they used along with the high reproducibility they report could become very important for the use of ULM in larger animal cohorts.
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Reviewer #2 (Public Review):
The authors combine genetic tools, dye fills and connectome analysis techniques to generate a "first-of-its-kind", near complete, synaptic resolution map of the head bristle neurons of Drosophila. While some of the BMN anatomy was already known based on previous work by the authors and other researchers, this is the first time a near complete map has been created for the head BMNs at electron microscopy resolution.
Strengths:
(1) The authors cleverly use techniques that allow moving back and forth between periphery (head bristle location) and brain, as well as moving between light microscopy and electron microscopy data. This allows them to first characterize the pathways taken by different head BMNs to project to the brain and also characterize anatomical differences among individual neurons at the level of morphology and connectivity.<br /> (2) The work is very comprehensive and results in a near complete map of all head BMNs.<br /> (3) Authors also complement this anatomical characterization with a first-level functional analysis using optogenetic activation of BMNs that results in expected directed grooming behavior.
Weaknesses:<br /> (1) While not strictly needed here, it could help provide context if authors revealed some of the important downstream pathways that could explain optogenetics behavioral phenotypes: This point was addressed by authors in the revisions and I agree a detailed description of downstream circuits is not needed at this point.<br /> (2) In contrast to the rigorous quantitative analysis of the anatomical data, the behavioral data is analyzed using much more subjective methods. While I do not think it is necessary to perform a rigorous analysis of behaviors in this anatomy focused manuscript, the conclusions based on behavioral analysis should be treated as speculative in the current form e.g. calling "nodding + backward motions" as an avoidance response is not justified as it currently stands. Strong optogenetic activation could lead to sudden postural changes that due to purely biomechanical constraints could lead to a couple of backward steps as seen in the example videos. Moreover since the quantification is manual, it is not clear what the analyst interprets as backward walking or nodding. Interpretation is also concerning because controls show backward walking (although in fewer instances based on subjective quantification): This point was addressed by the authors during revisions and I'm mostly satisfied with their response, where authors agree that the behavioral results are currently used to speculate about the role of BMNs in aversive behaviors. Still, the fact that controls show some "backward motions" is a bit concerning when talking about "significant differences" between control and test groups based on manual annotations and I would recommend future studies focusing on these behaviors to use more unbiased quantitative analysis wherever possible.
Summary:
The authors end up generating a near-complete map of head BMNs that will serve as a long-standing resource to the Drosophila research community. This will directly shape future experiments aimed at modeling or functionally analyzing the head grooming circuit to understand how somatotopy guides behaviors. I appreciate the authors taking the time to revise the manuscript and address reviewer concerns.
-
Reviewer #3 (Public Review):
Eichler et al. set out to catalog the mechanosensory bristles of the fly head in an effort to understand the extent to which their organization is consistent with the parallel model of hierarchical suppression in the context of grooming behavior. They map the locations of the mechanosensory bristles on the fly head, examine the axonal morphology of the bristle mechanosensory neurons (BMNs) that innervate them, and match these to electron microscopy reconstructions of the same BMNs in a previously published EM volume of the female adult fly brain. They use BMN synaptic connectivity information to create clusters of BMNs that they show occupy different regions of the subesophageal zone brain region and use optogenetic activation of subsets of BMNs to evaluate the behaviors evoked by specific activation of BMN subpopulations innervating the head.
The authors have beautifully cataloged the mechanosensory bristles and the projection paths and patterns of the corresponding BMN axons in the brain using detailed and painstaking methods. The result is a neuroanatomy resource that will be an important community resource. To match BMNs reconstructed in an electron microscopy volume of the adult fly brain, the authors matched clustered reconstructed BMNs with light-level BMN classes observed using precise dye-fills and stochastic labeling techniques. The authors then employ a variety of clustering methods to demonstrate that BMN populations that innervate different regions of the head project into the subesophageal zone and terminate in distinctive yet, in some cases, partially overlapping zones. By clustering BMNs on the basis of their synaptic partners, the authors find that BMNs from distant areas of the head have non-overlapping synaptic partners while those from neighbor areas have overlapping synaptic partners. This result calls into question the scale at which the parallel model of hierarchical suppression may be operating. Finally, the authors use tools that were generated during the light-level characterization of BMN projections to show that activating BMNs that innervate specific areas of the head leads to grooming of the innervated regions and neighboring regions, consistent with the observed overlap in downstream circuits between BMNs innervating neighboring regions of the head. This result suggests that while the parallel model could be operating on a broad scale, additional circuit mechanisms may be operating on a finer scale to produce grooming of the area surrounding the source of mechanosensory input.
This work will have a positive impact on the field by contributing a complete accounting of the mechanosensory bristles of the fruit fly head, describing the brain projection patterns of the BMNs that innervate them, and linking them to BMN sensory projections in an electron microscopy volume of the adult fly brain. It will also have a positive impact on the field by providing genetic tools to help functionally subdivide the contributions of different BMN populations to circuit computations and behavior. This contribution will pave the way for further mechanistic study of central circuits that subserve grooming circuits.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #2 (Public Review):
The authors address a question that is interesting and important to the sub-field of rsfMRI that examines electrophysiological correlates of rsfMRI. That is, while electrophysiology-produced correlation maps often appear similar to correlation maps produced from BOLD alone (as has been shown in many papers) is this actually coming from the same source of variance, or independent but spatially-correlated sources of variance? To address this, the authors recorded LFP signals in 2 areas (M1 and ACC) and compared the maps produced by correlating BOLD with them to maps produced by BOLD-BOLD correlations. They then attempt to remove various sources of variance and see the results.
The basic concept of the research is sound, though primarily of interest to the subset of rsfMRI researchers who use simultaneous electrophysiology. However, there are major problems in the writing, and also a major methodological problem.
Major problems with writing:
(1) There is substantial literature on rats on site-specific LFP recording compared to rsfMRI, and much of it already examined removing part of the LFP and examining rsfMRI, or vice versa. The authors do not cover it and consider their work on signal removal more novel than it is.
(2) The conclusion of the existence of an "electrophysiology-invisible signal" is far too broad considering the limited scope of this study. There are many factors that can be extracted from LFP that are not used in this study (envelope, phase, infraslow frequencies under 0.1Hz, estimated MUA, etc.) and there are many ways of comparing it to the rsfMRI data that are not done in this study (rank correlation, transformation prior to comparison, clustering prior to comparison, etc.). The one non-linear method used, mutual information, is low sensitivity and does not cover every possible nonlinear interaction. Mutual information is also dependent upon the number of bins selected in the data. Previous studies (see 1) have seen similar results where fMRI and LFP were not fully commensurate but did not need to draw such broad conclusions.
(3) The writing refers to the spatial extent of correlation with the LFP signal as "spatial variance." However, LFP was recorded from a very limited point and the variance in the correlation map does not necessarily reflect underlying electrophysiological spatial distributions (e.g. Yu et al. Nat Commun. 2023 Mar 24;14(1):1651.)
Major method problem:
(4) Correlating LFP to fMRI is correlating two biological signals, with unknown but presumably not uniform distributions. However, correlating CC results from correlation maps is comparing uniform distributions. This is not a fair comparison, especially considering that the noise added is also uniform as it was created with the rand() function in MATLAB.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The motivating questions are an accurate reflection of the current state of knowledge surrounding striatal pathway function. The comparisons of pathway function across striatal subregion, activation & inhibition, and task context are laudable and extremely important for advancing the subfield. Had these manipulations, to the largest extent possible been performed in single animals (e.g. activate dSPNs of DMS or DLS in the same mouse across the 3 tasks), this would have significantly strengthened the impact and conclusions that could be drawn by making this set of studies even more so internally consistent and directly comparable. While this is no longer possible, a conceptually related and fantastic contribution to the subfield (and likely beyond in terms of Opto manipulations of brain areas) would be to directly demonstrate that within their studies their DMS pathway manipulations do not impact nearby DLS activity (and vice versa). This is a significant and non-essential request. More feasibly and reasonably, it would be fantastic and strengthen the conclusions here to more fully detail their opsin expression patterns in DMS vs DLS groups and perhaps attempt to relate individual opsin profiles and fiberoptic targeting with behavioral outcomes across tests.
Strengths:
A comprehensive and paired comparison of inhibition and activation of striatal pathways across subregions and tasks is a very important and meaningful step towards reconciling contradictory results on striatal pathway function that are observed across labs (who typically focus on one subregion, one task setting, and often do not directly report comparisons of activation and inhibition).
Weaknesses:
Figure 1A - the example DMS vs DLS opsin expression and fiber targeting are not terribly convincing that the manipulations will be specific to each subregion (the example in Figure 2A is a little better but I have a similar concern still). The specificity of these manipulations is key to interpretation and conclusions and I strongly feel they should be strengthened here. The best evidence would be direct neural recordings (light in DMS, no effect in DLS, and vice versa), but this is a tall ask and not expected. The next best option, which is readily feasible, is to show not only fiberoptic targeting summaries (as in Figure 1A, Figure 2A) but also a summary of opsin spread for all animals (especially given the two examples appear to have significant spread across DMS and DLS). It would be of great benefit to the field to have these in the Allen Common Coordinate Framework. It would also be fine and useful to utilize the authors' current classical histological atlas alignment methods (e.g. Paxinos pdf). These histological summary figures would also benefit from being larger and more visible (perhaps as separate supplemental figures associated with the main figures).
Related to the above, it is a concern that the classic view is supported or not because of individual variations in virus/fiber targeting to striatal subregions which likely have greater granularity than the traditional dorsal medial vs lateral (e.g. Hunnicutt et al 2016, Foster et al 2021, Hintiryan et al 2016). Although there may not be enough animals or variation in targeting in the present study to find meaningful relationships, it would strengthen the paper and be a great benefit to the field to know whether for key findings if the strength of behavioral effects correlated with anterior/posterior or medial/lateral or dorsal/ventral fiberoptic coordinates (or the volume of opsin expression profiles).
Conceptually, a clear new idea or integrative interpretation of prior work (nor even the large body of results within this work) comes to the fore, save for the already appreciated fact that the classic view of opposing pathways is sometimes supported and sometimes not. Two tangible suggestions that I believe would facilitate the influence of this study - (1) can the authors more thoughtfully bridge the logical steps in their results sections and the prior context around them (some topic sentences jump right into results, e.g. line 195: "The inhibition experiment showed), and (2) in discussion, rather than emphasizing when/where the classic view is supported and not, more content on precisely why would be helpful. Some questions more specifically, if DMS/DLS pathway activation/inhibition is *mostly* oppositely appetitive/aversive, what does that mean in the context of spontaneous or reward-guided locomotion? Self-initiated pathway activation/inhibition is in part learned (with very intriguing differences across pathways in the expression across learning) - how should we think about striatal pathway function with regards to learning, spontaneous/innate behaviors, vs over-trained behaviors? When the classic view fails in the dorsal striatum - why? And is a complimentary "model" an actual alternative concept, a distinct mode of circuit function, or just a negative result on the classic view?
-
Reviewer #2 (Public Review):
Summary:
Cuevas et al. investigate the involvement of DMS and DLS direct and indirect pathways in locomotion and action selection using optogenetic manipulation techniques. They show that optical excitation of dSPNs in both DMS and DLS induces place preference, with optical inhibition resulting in the opposite effect. Interestingly, and somewhat not coming as a surprise given many previous data on this, optical excitation of iSPNs in both regions resulted in place aversion - in line with the classical view of functional opposition.
Then, the authors performed a two-choice task in which animals would have to choose between pressing in a lever alone or in a lever+stim to obtain a food reward. Again, and not surprisingly, they show that optical activation of dSPNs results in selection from pressing in the lever+stim with the opposite being observed for iSPN, in both DMS and DLS. What was concerting was the increase in lever pressing when inhibiting dSPNs in the DMS, since before authors show that it should cause aversion. When looking at locomotor effects, the authors report an increase in spontaneous displacement when exciting dSPNs in DMS, and the opposite in DLS. Contrary, the excitation of iSPNs either in DMS or DLS increased spontaneous displacement. In reward-seeking, displacement excitation of either dSPNs or iSPNs in both regions resulted in decreased locomotion.
Strengths:
Overall this manuscript brings a new light to the involvement of DLS SPNs in both locomotion and behavioral preference.
Weaknesses:
Some of the main claims would benefit from further discussion or new data on the effect of optogenetic manipulation on the activity of SPNs. This could allow for the creation of a clearer picture of the involvement of iSPNs and dSPNs of DMS and DLS for behavior.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Gazula and co-workers presented in this paper a software tool for 3D structural analysis of human brains, using slabs of fixed or fresh brains. This tool will be included in Freesurfer, a well-known neuroimaging processing software. It is possible to reconstruct a 3D surface from photographs of coronal sliced brains, optionally using a surface scan as model. A high-resolution segmentation of 11 brain regions is produced, independent of the thickness of the slices, interpolating information when needed. Using this method, the researcher can use the sliced brain to segment all regions, without the need of ex vivo MRI scanning.
The software suite is freely available and includes 3 modules. The first accomplishes preprocessing steps, for correction of pixel sizes and perspective. The second module is a registration algorithm that registers a 3D surface scan obtained prior to sectioning (reference) to the multiple 2D slices. It is not mandatory to scan the surface, -a probabilistic atlas can also be used as reference- however the accuracy is lower. The third module uses machine learning to perform the segmentation of 11 brain structures in the 3D reconstructed volume. This module is robust, dealing with different illumination conditions, cameras, lens and camera settings. This algorithm ("Photo-SynthSeg") produces isotropic smooth reconstructions, even in high anisotropic datasets (when the in-plane resolution of the photograph is much higher than the thickness), interpolating the information between slices.
To verify the accuracy and reliability of the toolbox, the authors reconstructed 3 datasets, using real and synthetic data. Real data of 21 postmortem confirmed Alzheimer's disease cases from the Massachusetts Alzheimer's Disease Research Center (MADRC)and 24 cases from the AD Research at the University of Washington(who were MRI scanned prior to processing)were employed for testing. These cases represent a challenging real-world scenario. Additionally, 500 subjects of the Human Connectome project were used for testing error as a continuous function of slice thickness. The segmentations were performed with the proposed deep-learning new algorithm ("Photo-SynthSeg") and compared against MRI segmentations performed to "SAMSEG" (an MRI segmentation algorithm, computing Dice scores for the segmentations. The methods are sound and statistically showed correlations above 0.8, which is good enough to allow volumetric analysis. The main strengths of the methods are the datasets used (real-world challenging and synthetic) and the statistical treatment, which showed that the pipeline is robust and can facilitate volumetric analysis derived from brain sections and conclude which factors can influence in the accuracy of the method (such as using or not 3D scan and using constant thickness).
Although very robust and capable of handling several situations, the researcher has to keep in mind that processing has to follow some basic rules in order for this pipeline to work properly. For instance, fiducials and scales need to be included in the photograph, and the slabs should be photographed against a contrasting background. Also, only coronal slices can be used, which can be limiting for certain situations.
The authors achieved their aims, and the statistical analysis confirms that the machine learning algorithm performs segmentations comparable to the state-of-the-art of automated MRI segmentations.<br /> Those methods will be particularly interesting to researchers who deal with post-mortem tissue analysis and do not have access to ex vivo MRI. Quantitative measurements of specific brain areas can be performed in different pathologies and even in the normal aging process. The method is highly reproducible, and cost-effective since allows the pipeline to be applied by any researcher with small pre-processing steps.
-
Reviewer #2 (Public Review):
Summary
The authors proposed a toolset Photo-SynthSeg to the software FreeSurfer which performs 3D reconstruction and high-resolution 3D segmentation on a stack of coronal dissection photographs of brain tissues. To prove the performance of the toolset, three experiments were conducted, including volumetric comparison of brain tissues on AD and HC groups from MADRC, quantitative evaluation of segmentation on UW-ADRC and quantitative evaluation of 3D reconstruction on HCP digitally sliced MRI data.
Strengths
To guarantee the successful workflow of the toolset, the authors clearly mentioned the prerequisites of dissection photograph acquisition, such as fiducials or rulers in the photos and tissue placement of brain slices with more than one connected component. The quantitative evaluation of segmentation and reconstruction on synthetic and real data demonstrates the accuracy of the methodology. Also, the successful application of this toolset on two brain banks with different slice thicknesses, tissue processing and photograph settings demonstrates its robustness. By working with tools of the SynthSeg pipeline, Photo-SynthSeg could further support volumetric cortex parcellation. The toolset also benefits from its adaptability of different 3D references, such as surface scan, ex vivo MRI and even probabilistic atlas, suiting the needs for different brain banks.
Weaknesses
Certain weaknesses are already covered in the manuscript. Cortical tissue segmentation could be further improved. The quantitative evaluation of 3D reconstruction is quite optimistic due to random affine transformations. Manual edits of slice segmentation task are still required and take a couple of minutes per photograph. Finally, the current toolset only accepts coronal brain slices and should adapt to axial or sagittal slices in future work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors have developed and optimized a footprinting assay to monitor the recruitment of mRNAs to a reconstituted translation initiation system. This assay is named Recruitment-Sequencing (Rec-Seq) and enables the analysis of many purified mRNAs in the reconstituted system.
This system possesses the ability to determine how competition occurs between mRNAs for the initiation machinery. This is the first approach using a reconstituted system that enables this important feature, and this is an important advance for the field.
Using purified mRNAs in a fully reconstituted system together with the ability to monitor start site selection is an important advance. The method enables one to observe for the first time how competition between mRNAs is altered in response to the absence or presence of different initiation components or accessory proteins.
Start site fidelity in purified reconstituted systems can be altered in different buffer conditions and by the concentration of various initiation factors involved in start site fidelity. Future experiments will reveal how these variables can regulate start site selection in this powerful system.
Comments on revised version:
The authors have addressed all of my original comments. This is an impressive manuscript.
-
Reviewer #2 (Public Review):
Summary:
Zhou et al report development of a new method, Rec-Seq, that allows rigorous quantitation of the efficiency of 48S ribosomal pre-initiation complex (PIC) formation on messenger RNAs at transcriptome scale in vitro. With a next-generation deep-sequencing approach, Rec-Seq allows precisely targeted dissection of the roles of translation initiation factors in PIC assembly. This level of molecular precision is important to understanding mechanisms of translational control, making Rec-Seq a significant methodological advance. The authors leverage Rec-Seq to investigate the relative roles of two key helicase enzymes, Ded1p and eIF4A. While past work has pointed to differing roles for Ded1p and eIF4A helicase activity in PIC assembly, unambiguous interpretation of prior in-vivo data has been hindered by technical requirements for performing the experiments in cells. Rec-Seq circumvents these challenges, providing robust mechanistic insights. The authors find that Ded1p stimulates PIC formation selectively on mRNAs with long, structured leaders in the Rec-Seq system, while eIF4A provides much more general stimulation across mRNAs. The findings substantiate the past in-vivo results, along with adding new insights. They contrast with evidence that Ded1p promotes translation by suppressing inhibitory upstream initiation through structural remodeling, or through formation of intracellular, phase-separated granules. The conclusions of the study are well-supported by the data, and are likely to be of broad interest.
Strengths:
The quantitative nature of Rec-Seq, which uses an internal standard to measure absolute recruitment efficiencies, is an important strength.
The methodology decisively overcomes past experimental limitations, allowing the authors to make clear conclusions with regard to the relative roles of Ded1p and eIF4A in PIC formation. An important and useful addition to the toolbox for studying translation and translational control mechanisms, Rec-Seq substantially expands the throughput and scope of mechanistic analyses for translation initiation.
One significant finding to emerge is that the in-vitro reconstituted system used here recapitulates effects of in-vivo perturbations of translation initiation. Despite the lack of a cellular environment and its components, PIC formation appears to operate much as it does in the cell. Importantly, this highlights an inherent "modularity" to the system that is especially of interest in the context of how regulatory machinery beyond the PIC may control translation.
Weaknesses:
The study finds that Ded1p stimulates accumulation of PICs at internal AUG codons, i.e., within mRNA coding sequences, at an incidence of up to ~50% - thus, bypassing "canonical" translation start sites. Understanding the physiological significance of this activity will require further study. The authors address this in the text.
A limitation of the methodology is that, as an endpoint assay, Rec-Seq does not readily decouple effects of Ded1p on PIC-mRNA loading from those on the subsequent scanning step where the PIC locates the start codon. Considering that Ded1p activity may influence each of these initiation steps through distinct mechanisms - i.e., binding to the mRNA cap-recognition factor eIF4F, or direct mRNA interaction outside eIF4F - additional studies will be needed to gain deeper mechanistic insights. The authors discuss this in the text.
Comments on revised version:
In revising their manuscript, the authors have responded very thoughtfully and insightfully to the initial review. The final manuscript is an important contribution to the field, and I am sure it will be of broad interest.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The CPC plays multiple essential roles in mitosis such as kinetochore-microtubule attachment regulation, kinetochore assembly, spindle assembly checkpoint activation, anaphase spindle stabilization, cytokinesis, and nuclear envelope formation, as it dynamically changes its mitotic localization: it is enriched at inner centromeres from prophase to metaphase but it is relocalized at the spindle midzone in anaphase. The business end of the CPC is Aurora B and its allosteric activation module IN-box, which is located at the C-terminus of INCENP. In most well-studied eukaryotic species, Aurora B activity is locally controlled by the localization module of the CPC, Survivin, Borealin and the N-terminal portion of INCENP. Survivin and Borealin, which bind the N-terminus of INCENP, recognize histone residues that are specifically phosphorylated in mitosis, while anaphase spindle midzone localization is supported by the direct microtubule-binding capacity of the SAH (single alpha helix) domain of INCENP and other microtubule-binding proteins that specifically interact with INCENP during anaphase, which are under the regulation of CDK activity. One of these examples includes the kinesin-like protein MKLP2 in vertebrates. Trypanosoma is an evolutionarily interesting species to study mitosis since its kinetochore and centromere proteins do not show any similarity to other major branches of eukaryotes, while orthologs of Aurora B and INCENP have been identified. Combining molecular genetics, imaging, biochemistry, cross-linking IP-MS (IP-CLMS), and structural modeling, this manuscript reveals that two orphan kinesin-like proteins KIN-A and KIN-B act as localization modules of the CPC in Trypanosoma brucei. The IP-CLMS, AlphaFold2 structural predictions, and domain deletion analysis support the idea that (1) KIN-A and KIN-B form a heterodimer via their coiled-coil domains, (2) Two alpha helices of INCENP interact with the coiled-coil of the KIN-A-KIN-B heterodimer, (3) conserved KIN-A C-terminal CD1 and CD2 interact with the heterodimeric KKT9-KKT11 complex, which is a submodule of the KKT7-KKT8 kinetochore complex composed of KKT7, KKT8, KKT9, KKT11, and KKT12 unique to Trypanosoma, (4) KIN-A and KIN-B coiled-coil domains and the KKT7-KKT8 complex are required for CPC localization at the centromere, (5) CD1 and CD2 domains of KIN-A support its centromere localization. The authors further introduced a KIN-A rigor mutant and knocked-down wild-type KIN-A to show that the ATPase activity of KIN-A seems dispensable for centromere targeting but critical for spindle midzone enrichment of the CPC. The imaging data of the KIN-A rigor mutant suggest that dynamic KIN-A-microtubule interaction is required for metaphase alignment of the kinetochores and proliferation. Overall, the study reveals novel pathways of CPC localization regulation via KIN-A and KIN-B by multiple complementary approaches.
Strengths:
The major conclusion is collectively supported by multiple approaches, combining CRISPR-mediated gene deletion and complementation/site specific genome engineering, epistasis analysis of cellular localization, AlphaFold2 structure prediction of protein complexes, IP-CLMS and biochemical reconstitution (the complex of KKT8, KKT9, KKT11 and KKT12)
Weaknesses:
Minor weakness. The authors imply that KIN-A, but not KIN-B, interacts with microtubules based on microtubule pelleting assay (Fig. S6), but the substantial insoluble fractions of 6HIS-KINA and 6HIS-KIN-B make it difficult to conclusively interpret the data. It is possible that these two proteins are not stable unless they form a heterodimer.
-
Reviewer #2 (Public Review):
How the chromosomal passenger complex (CPC) and its subunit Aurora B kinase regulate kinetochore-microtubule attachment, and how the CPC relocates from kinetochores to the spindle midzone as a cell transitions from metaphase to anaphase are questions of great interest. In this study, Ballmer and Akiyoshi take a deep dive into the CPC in T. brucei, a kinetoplastid parasite with a kinetochore composition that varies greatly from other organisms.
Using a combination of approaches, most importantly in silico protein predictions using alphafold multimer and light microscopy in dividing T. brucei, the authors convincingly present and analyse the composition of the T. brucei CPC. This includes the identification of KIN-A and KIN-B, proteins of the kinesin family. This is a clear advancement over earlier work, for example by Li and colleagues in 2008. The involvement of KIN-A and KIN-B is of particular interest, as it provides a clue for the (re)localization of the CPC during the cell cycle. The evolutionary perspective makes the paper potentially interesting for a wide audience of cell biologists, a point that the authors bring across properly in the title, the abstract, and their discussion.
The evolutionary twist of the paper would be strengthened 'experimentally' by predictions of the structure of the CPC beyond T. brucei. Depending on how far the authors can extend their in-silico analysis, it would be of interest to discuss a) available/predicted CPC structures in well-studied organisms and b) structural predictions in other euglenozoa. What are the general structural properties of the CPC (e.g. flexible linkers, overall dimensions, structural differences when subunits are missing etc.)? How common is the involvement of kinesin-like proteins?
-
Reviewer #3 (Public Review):
Summary:
The protein kinase, Aurora B, is a critical regulator of mitosis and cytokinesis in eukaryotes, exhibiting a dynamic localisation. As part of the Chromosomal Passenger Complex (CPC), along with the Aurora B activator, INCENP, and the CPC localisation module comprised of Borealin and Survivin, Aurora B travels from the kinetochores at metaphase to the spindle midzone at anaphase, which ensures its substrates are phosphorylated in a time- and space-dependent manner. In the kinetoplastid parasite, T. brucei, the Aurora B orthologue (AUK1), along with an INCENP orthologue known as CPC1, and a kinetoplastid-specific protein CPC2, also displays a dynamic localisation, moving from the kinetochores at metaphase, to the spindle midzone at anaphase, to the anterior end of the newly synthesised flagellum attachment zone (FAZ) at cytokinesis. However, the trypanosome CPC lacks orthologues of Borealin and Survivin, and T. brucei kinetochores also have a unique composition, being comprised of dozens of kinetoplastid-specific proteins (KKTs). Of particular importance for this study are KKT7 and the KKT8 complex (comprising KKT8, KKT9, KKT11, and KKT12). Here, Ballmer and Akiyoshi seek to understand how the CPC assembles and is targeted to its different locations during the cell cycle in T. brucei.
Strengths & Weaknesses:
Using immunoprecipitation and mass-spectrometry approaches, Ballmer and Akiyoshi show that AUK1, CPC1, and CPC2 associate with two orphan kinesins, KIN-A and KIN-B, and with the use of endogenously expressed fluorescent fusion proteins, demonstrate for the first time that KIN-A and KIN-B display a dynamic localisation pattern similar to other components of the CPC, providing compelling evidence for KIN-A and KIN-B being bona fide CPC proteins.
They then demonstrate, by using RNAi to deplete individual components, that the CPC proteins have hierarchical interdependencies for their localisation to the kinetochores at metaphase. These experiments appear to have been well performed.
Ballmer and Akiyoshi then go on to determine the kinetochore localisation domains of KIN-A and KIN-B. Using ectopically expressed GFP-tagged truncations, they show that coiled coil domains within KIN-A and KIN-B, as well as a disordered C-terminal tail present only in KIN-A, but not the N-terminal motor domains of KIN-A or KIN-B, are required for kinetochore localisation. These data are strengthened by immunoprecipitating CPC complexes and crosslinking them prior to mass spectrometry analysis (IP-CLMS), a state-of-the-art approach, to determine the contacts between the CPC components. Structural predictions of the CPC structure are also made using AlphaFold2, suggesting that coiled coils form between KIN-A and KIN-B, and that KIN-A/B interact with the N termini of CPC1 and CPC2. Experimental results showing that CPC1 and CPC2 are unable to localise to kinetochores if they lack their N-terminal domains are consistent with these predictions. Altogether these data provide compelling evidence of the protein domains required for CPC kinetochore localisation and CPC protein interactions and indicate that both KIN-A and KIN-B have a role to play.
Next, using a mixture of RNAi depletion and LacI-LacO recruitment experiments, the authors show that kinetochore proteins KKT7 and KKT9 are required for AUK1 to localise to kinetochores (other KKT8 complex components were not tested here) and that all components of the KKT8 complex are required for KIN-A kinetochore localisation. Further, both KKT7 and KKT8 were able to recruit AUK1 to an ectopic locus in S phase, and KKT7 recruited KKT8 complex proteins, indicating it is upstream of KKT8, in line with previous work showing kinetochore localization of KKT7 is unaffected by disruption of the KKT8 complex. This leads to the conclusion that the KKT8 complex is likely the main kinetochore receptor of the CPC.
Further IP-CLMS experiments, in combination with recombinant protein pull down assays and structural predictions, suggested that within the KKT8 complex, there are two subcomplexes of KKT8:KKT12 and KKT9:KKT11, and that KKT7 interacts with KKT9:KKT11 to recruit the remainder of the KKT8 complex. The authors also assess the interdependencies between KKT8 complex components for localisation and expression, showing that all four subunits are required for the assembly of a stable KKT8 complex and present AlphaFold2 structural modelling data to support the two subcomplex model. In general, these data are of high quality and convincing, although it is a shame that data showing the effects of KKT8, KKT9 and KKT12 depletion on KKT11 localisation and abundance could not be presented alongside the reciprocal experiments in Fig S4I-L.
The authors also convincingly show that AlphaFold2 predictions of interactions between KKT9:KKT11 and a conserved domain (CD1) in the C-terminal tail of KIN-A are correct, with CD1 and a second conserved domain, CD2, identified through sequence analysis, acting synergistically to promote KIN-A kinetochore localisation at metaphase, but not being required for KIN-A to move to the central spindle at anaphase. They then hypothesise that the kinesin motor domain of KIN-A (but not KIN-B which is predicted to be inactive based on non-conservation of residues key for activity) determines its central spindle localisation at anaphase through binding to microtubules. In support of this hypothesis, the authors show that KIN-A, but not KIN-B can bind microtubules in vitro and in vivo. However, ectopically expressed GFP-NLS fusions of full length KIN-A or KIN-A motor domain did not localise to the central spindle at anaphase. The authors suggest this is due to the GFP fusion disrupting the ATPase activity of the motor domain, although they provide no evidence that this is the case. Instead, they replace endogenous KIN-A with a predicted ATPase-defective mutant (G210A), showing that while this still localises to kinetochores, the kinetochores were frequently misaligned at metaphase, and that it no longer concentrates at the central spindle (with concomitant mis-localisation of AUK1), causing cells to accumulate at anaphase. From these data, the authors conclude that KIN-A ATPase activity is required for chromosome congression to the metaphase plate and its central spindle localisation at anaphase. While these data are highly suggestive that KIN-A possesses ATPase activity, and that this activity is essential for its function, definitive biochemical evidence of KIN-A's ATPase activity is still lacking.
Impact:
Overall, this work uses a wide range of cutting edge molecular and structural predictive tools to provide a significant amount of new and detailed molecular data that shed light on the composition of the unusual trypanosome CPC and how it is assembled and targeted to different cellular locations during cell division. Given the fundamental nature of this research, it will be of interest to many parasitology researchers as well as cell biologists more generally, especially those working on aspects of mitosis and cell division, and those interested in the evolution of the CPC.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This is a follow-up study to the authors' previous eLife report about the roles of an alpha-arrestin called protein thioredoxin interacting protein (Txnip) in cone photoreceptors and in the retinal pigment epithelium. The findings are important because they provide new information about the mechanism of glucose and lactate transport to cone photoreceptors and because they may become the basis for therapies for retinal degenerative diseases.
Strengths:
Overall, the study is carefully done and, although the analysis is fairly comprehensive with many different versions of the protein analyzed, it is clearly enough described to follow. Figure 4 greatly facilitated my ability to follow, understand and interpret the study. The authors have appropriately addressed a few concerns about statistical significance and the relationship between their findings and previous studies of the possible roles of Txnip on GLUT1 expression and localization on the surfaces of RPE cells.
-
Reviewer #2 (Public Review):
The hard work of the authors is much appreciated. With overexpression of a-arrestin Txnip in RPE, cones and the combined respectively, the authors show a potential gene agnostic treatment that can be applied to retinitis pigmentosa. Furthermore, since Txnip is related to multiple intracellular signaling pathway, this study is of value for research in the mechanism of secondary cone dystrophy as well.
There are a few areas in which the article may be improved through further analysis and application of the data, as well as some adjustments that should be made in to clarify specific points in the article.
Strengths
- The follow-up study builds on innovative ground by exploring the impact of TxnipC247S and its combination with HSP90AB1 knockdown on cone survival, offering novel therapeutic pathways.<br /> - Testing of different Txnip deletion mutants provides a nuanced understanding of its functional domains, contributing valuable insights into the mechanism of action in RP treatment.<br /> - The findings regarding GLUT1 clearance and the differential effects of Txnip mutants on cone and RPE cells lay the groundwork for targeted gene therapy in RP.
Weaknesses
- The focus on specific mutants and overexpression systems might overlook broader implications of Txnip interactions and its variants in the wider context of retinal degeneration.<br /> - The study's reliance on cell count and GLUT1 expression as primary outcomes misses an opportunity to include functional assessments of vision or retinal health, which would strengthen the clinical relevance.<br /> - The paper could benefit from a deeper exploration of why certain treatments (like Best1-146 Txnip.C247S) do not lead to cone rescue and the potential for these approaches to exacerbate disease phenotypes through glucose shortages.<br /> - Minor inconsistencies, such as the missing space in text references and the need for clarification on data representation (retinas vs. mice), should be addressed for clarity and accuracy.<br /> - The observation of promoter leakage and potential vector tropism issues raise questions about the specificity and efficiency of the gene delivery system, necessitating further discussion and validation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, Sang et al. proposed a pair of IR60b-expressing pharyngeal neurons in Drosophila use IR25a, IR76b, and IR60b channels to detect high Na+ and limit its consumption. Some of the key findings that support this thesis are: 1) animals that lacked any one of these channels - or with their IR60b-expressing neurons selectively silenced - showed much reduced rejection of high Na+, but restored rejection when these channels were reintroduced back in the IR60b neurons; 2) animals with TRPV artificially expressed in their IR60b neurons rejected capsaicin-laced food whereas WT did not; 3) IR60b-expressing neurons exhibited increased Ca2+ influx in response to high Na+ and such response went away when animals lacked any of the three channels.
The experiments were thorough and well designed and further improved after revision. The results are compelling and support the main claim. The development and the use of the DrosoX two-choice assay put forward for a more quantitative and automatic/unbiased assessment for ingestion volume and preference.
-
Reviewer #2 (Public Review):
Summary:
In this paper, Sang et al. set out to identify gustatory receptors involved in salt taste sensation in Drosophila melanogaster. In a two-choice assay screen of 30 Ir mutants, they identify that Ir60b is required for avoidance of high salt. In addition, they demonstrate that activation of Ir60b neurons is sufficient for gustatory avoidance using either optogenetics or TRPV1 to specifically activate Ir60b neurons. Then, using tip recordings of labellar gustatory sensory neurons and proboscis extension response behavioral assays in Ir60b mutants, the authors demonstrate that Ir60b is dispensable for labellar taste neuron responses to high salt and the suppression of proboscis extension by high salt. Since external gustatory receptor neurons (GRNs) are not implicated, they look at Poxn mutants, which lack external chemosensory sensilla but have intact pharyngeal GRNs. High salt avoidance was reduced in Poxn mutants but was still greater than Ir60b mutants, suggesting that pharyngeal gustatory sensory neurons alone are sufficient for high salt avoidance. The authors use a new behavioral assay to demonstrate that Ir60b mutants ingest a higher volume of sucrose mixed with high salt than control flies do, suggesting that the action of Ir60b is to limit high salt ingestion. Finally, they identify that Ir60b functions within a single pair of gustatory sensory neurons in the pharynx, and that these neurons respond to high salt but not bitter tastants.
Strengths:
A great strength of this paper is that it rigorously corroborates previously published studies that have implicated specific Irs in salt taste sensation. It further introduces a new role for Ir60b in limiting high salt ingestion, demonstrating that Ir60b is necessary and sufficient for high salt avoidance and convincingly tracing the action of Ir60b to a particular subset of gustatory receptor neurons. Overall the authors have achieved their aim by identifying a new gustatory receptor involved in limiting high salt ingestion. They use rigorous genetic, imaging, and behavioral studies to achieve this aim, often confirming a given conclusion with multiple experimental approaches. They have further done a great service to the field by replicating published studies and corroborating the roles of a number of other Irs in salt taste sensation.
-
Reviewer #3 (Public Review):
Sang et al. successfully demonstrate that a set of single sensory neurons in the pharynx of Drosophila promotes avoidance of food with high salt concentrations, complementing previous findings on Ir7c neurons with an additional internal sensing mechanism. The experiments are well-conducted and presented, convincingly supporting their important findings and extending the understanding of internal sensing mechanisms.
The authors convincingly demonstrate the avoidance phenotype using different behavioral assays, thus comprehensively analyzing different aspects of the behavior. The experiments are straightforward and well-contextualized within existing literature.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The authors found two endosomal fusion modes by live cell imaging of endosomes in yolk sac lateral endoderm cells of 8.5-day-old embryonic mice and described the fusion modes by mathematical models and simulations. They also showed that actin polymerization is involved in the regulation of one of the fusion modes.
Strengths:
The strength of this study is that the authors' claims are well supported by beautiful live cell images and theoretical models. By using specialized cells, yolk sac visceral endoderm cells, the live images of endosomal fusion, localization of actin-related molecules, and validation data from multiple inhibitor experiments are clear.
Weaknesses:
This study does not include any assessment of whether the two types of endosome fusions claimed by the authors occur in general cells, so the article is limited to showing a phenomenon specific to yolk sac lateral endoderm cells. Also, the study does not show the physiological importance of the two types of fusion. There are some unclear points in the method of image analysis and some of the descriptions in the text are not logical.
-
Reviewer #1 (Public Review):
Summary:
This manuscript employs yolk sac visceral endoderm cells as a novel model for studying endosomal fusion, observing two distinct fusion behaviors: quick homotypic fusion between late endosomes, and slower heterotypic fusion between late endosomes and lysosomes. The mathematical modeling suggests that vesicle size critically influences the mode of fusion. Further investigations reveal that actin filaments are dynamically associated with late endosomal membranes, and are oriented in the x-y plane and along the apical-basal axis. Actin and Arf2/3 were shown to appear at the rear end of the endosomes along the moving direction suggesting polymerization of actin may provide force for the movement of endosomes. Additionally, the authors found that actin dynamics regulate homotypic and heterotypic fusion events in a different manner. The authors also provide evidence to suggest that Cofilin-dependent actin dynamics are involved in late endosome fusion.
Strengths:
The unique feature of this study is that the authors use yolk sac visceral endoderm cells to study endosomal fusion. Yolk sac visceral endoderm cells have huge endocytic vesicles, endosomes, and lysosomes, offering an excellent system to explore endosomal fusion dynamics and the assembly of cellular factors on membranes. The manuscript provides a valuable and convincing observation of the modes of endosomal fusion and the roles of actin dynamics in this process, and the conclusions of the study are justified by the data.
Weaknesses:
While the study offers compelling observations, it falls short of delivering clear mechanistic insights. Key questions remain unaddressed, such as the functional significance of actin filaments that extend apically in positioning late endosomes, the ways in which actin dynamics influence fusion events, and the functional implications of the slower bridge fusion process.
-
Reviewer #2 (Public Review):
Summary:
Seiichi Koike et al. studied two fusion models, explosive fusion, and bridge fusion, utilizing yolk sac visceral endoderm cells. They elucidated these two fusion models in vivo by employing mathematical modeling and incorporating fluctuations derived from actin dynamics as a key regulator for rapid homotypic fusion between late endosomes.
Strengths:
This study uncovered the role of actin dynamics in regulating the transition of fusion models in homotypic fusion between late endosomes and introduced a method for observing the fusion of single vesicles with two different targets. The role of actin dynamics in vesicle fusion in other systems has been extensively studied. This study could offer useful insights for research on vesicle fusion.
Weaknesses:<br /> The physiological significance of different fusion models is lacking.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
The present study focuses on the structure and function of human PURA, a regulator of gene transcription and mRNA transport and translation whose mutation causes the neurodevelopmental PURA syndrome, characterized by developmental delay, intellectual disability, hypotonia, epileptic seizures, a.o. deficits. The authors combined structural biology, molecular dynamics simulation, and various cell biological assays to study the effects of disease-causing PURA mutations on protein structure and function. The corresponding data reveal a highly dynamic PURA structure and show that disease-related mutations in PURA cause complex defects in folding, DNA-unwinding activity, RNA binding, dimerization, and partitioning into processing bodies. These findings provide first insights into how very diverse PURA mutations can cause penetrant molecular, cellular, and clinical defects. This will be of substantial interest to cell biologists, neurogeneticists, and neurologists alike.
A particular strength of the present study is the structural characterization of human PURA, which is a challenging target for structural biology approaches. The molecular dynamics simulations are state-of-the-art, allowing a statistically meaningful assessment of the differences between wild-type and mutant proteins. The functional consequences of PURA mutations at the cellular level are fascinating, particularly the differential compartmentalization of wild-type and mutant PURA variants into certain subcellular condensates.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #4 (Public Review):
Summary:
Walker et al. investigated the function of TMEM127 on RET regulation and function that could contribute to the development of pheochromocytoma (PCC). The authors showed that deletion of TMEM127 causes RET protein accumulation on the cell surface and, thereby, increased its constitutive ligand-independent activity and downstream signaling. They also unveiled the mechanism of how TMEM127 regulates cell membrane dynamics, particularly focusing on clathrin distribution and its effects on cargo internalization.
Strengths:
They showed that the deletion of TMEM127 affected multiple classes of transmembrane proteins, including RTKs (RET, EGFR), cell adhesion molecules (N-Cadherin, Integrin Beta-3), and carrier proteins (Transferrin Receptor-1), suggesting a global effect on cell surface proteins. This, at least in part, may explain how TMEM127 mutations act as drivers in PCC as well as in other cancers, such as renal cell carcinoma, where RET is not highly expressed. Overall, these findings provide new insights into the understanding of pheochromocytoma pathogenesis and potentially other cancers.
Weaknesses:
The major weakness of this study is the lack of human PCC cell lines for evaluating the function of TMEM127. Currently, the cell line models for pheochromocytoma are unavailable, and manipulation of patient-derived organoids is challenging. To complement this weakness, they provided immunohistochemical data showing that RET protein is highly expressed in TMEM127-mutant PCC.
Furthermore, some of the authors in this manuscript recently published a paper titled 'TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation' (Guo et al. Cell Reports 42, 113070, 2023, which is also cited in the current manuscript). In this manuscript, they showed that TMEM127 binds to RET and recruits the NEDD4 E3 ubiquitin ligase for RET ubiquitination and degradation via TMEM127. In general, the ubiquitination of proteins is highly specific to each molecule. In the current version of the manuscript, there is no description of the relevance between these two potentially different mechanisms (clathrin-mediated or ubiquitin-mediated) of accumulating RET and/or other proteins mentioned in two separate papers. I believe the authors should at least discuss this.
-
Reviewer #5 (Public Review):
Summary:
The manuscript by Walker et al., nicely demonstrated a role of TMEM127 in regulating membrane dynamics of RET, a receptor tyrosine kinase and oncogene for multiple cancers, particularly in pheochromocytoma (PCC). They provided compelling cellular and biochemical evidence on how TMEM127 deficiency reduces RET internalization and degradation in specific cancer cell lines, thus stabilizing cell surface RET and promoting its signaling related to cell proliferation. Moreover, TMEM127 may have a broad function beyond RET, and may affect other surface protein activity such as EGFR etc. These findings provided novel mechanisms and key insights to the field of cancer biology.
Strengths:
Very interesting findings that nicely explained the mechanistic link between TMEM127 and tumorigenesis by RET regulation...the biochemical analysis was quite thorough and impressive.... the general messages delivered by this study are considered as important to the field of TMEM127 biology and tumorigenesis.
Weaknesses:
As acknowledged by the authors, the role of TMEM127 can be conditional and beyond RET modulation, the authors may need to include more discussion that why the loss of TMEM127 is more linked to the development of PCC compared to other cancer types, and why TMEM127 can have such a broad effects in those membrane molecules...in addition, TMEM127 deficiency has been recently linked to enhanced MHC-I-mediated tumor immunity and tumor eradication, in some cancer types...it is then worthwhile to discuss the dual effects of TMEM127 in tumor control in the context of immunity...<br /> Moreover, the authors may need to tune down their "ligand independent" claim on the loss of TMEM127 in driving RET signaling, which should be more related to the level of RET expression/strength of clustering...
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The manuscript from deHaro-Arbona et al, entitled "Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind", uses single molecule microscopy imaging in live tissues to understand the dynamics and molecular determinants of transcription factor recruitment to the E(spl)-C locus in Drosophila salivary gland cells under Notch-ON and -OFF conditions. Previous studies have identified the major players that are involved in transcription regulation in the Notch pathway, as well as the importance of general transcriptional coregulators, such as CBP/P300 and the Mediator CDK module, but the detailed steps and dynamics involved in these processes are poorly defined. The authors present a wealth of single molecule data that provides significant insights into Notch pathway activation, including:
(1) Activation complexes, containing CSL and Mam, have slower dynamics than the repressor complexes, containing CSL and Hairless.<br /> (2) Contribution of CSL, NICD, and Mam IDRs to recruitment.<br /> (3) CSL-Mam slow-diffusing complexes are recruited and form a hub of high protein concentrations around the target locus in Notch-ON conditions.<br /> (4) Mam recruitment is not dependent on transcription initiation or RNA production.<br /> (5) CBP/P300 or its associated HAT activity is not required for Mam recruitment<br /> (6) Mediator CDK module and CDK8 activity is required for Mam recruitment, and vice-versa, but not CSL recruitment.<br /> (7) Mam is not required for chromatin accessibility but is dependent on CSL and NICD.<br /> (8) CSL recruitment and increased chromatin accessibility persist after NICD removal and loss of Mam, which confers a memory state that enables rapid re-activation in response to subsequent Notch activation<br /> (9) Differences in the proportions of nuclei with both Pol II and with Mam enrichment, which results in transcription being probabilistic/stochastic. These data demonstrate that presence of Mam-complexes is not sufficient to drive all the steps required for transcription in every Notch-ON nucleus.<br /> (10) The switch from more stochastic to robust transcription initiation was elicited when ecdysone was added.
Overall, the manuscript is well written, concise, and clear, and makes significant contributions to the Notch field, which are also important for a general understanding of transcription factor regulation and behavior in the nucleus. The authors have satisfactorily addressed all my criticisms of their initial submission and therefore congratulate the authors on an excellent paper.
-
Reviewer #3 (Public Review):
Summary:
DeHaro-Arbona and colleagues investigate the in vivo dynamics of Notch-dependent transcriptional activation with a focus on the role of the Mastermind (MAM) transcriptional co-activator. They use GFP and HALO-tagged versions of the CSL DNA-binding protein and MAM to visualize the complex, and Int/ParB to visualize the site of Notch-dependent E(Spl)-C transcription. They make several conclusions. First, MAM accumulates at E(Spl)-C when Notch signaling is active, just like CSL. Second, MAM recruits the CDK module of Mediator but does not initiate chromatin accessibility. Third, after signaling is turned off, MAM leaves the site quickly but CSL and chromatin accessibility are retained. Fourth, RNA pol II recruitment, Mediator recruitment and active transcription were similar and stochastic. Fifth, ecdysone enhance the probability of transcriptional initiation.
Strengths:
The conclusions are well supported by multiple lines of extensive data that is carefully executed and controlled. A major strength is the strategic combination of Drosophila genetics, imaging and quantitative analyses to conduct compelling and easily interpretable experiments. A second major strength is the focus on MAM to gain insights into dynamics of transcriptional activation specifically.
Weaknesses:
Weaknesses were minor. and have been addressed in the revised manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this paper, N'Guessan et al report a study of expression QTL (eQTL) mapping in yeast using single cells. The authors make use of advances in single-cell RNAseq (scRNAseq) in yeast to increase the efficiency with which this type of analysis can be undertaken. Building on prior research led by the senior author that entailed genotyping and fitness profiling of almost 100,000 cells derived from a cross between two yeast strains (BY and RM) they performed scRNAseq on a subset of 4,489 individual cells. To address the sparsity of genotype data in the expression profiling they used a Hidden Markov Model (HMM) to infer genotypes and then identify the most likely known lineage genotype from the original dataset. To address the relationship between variance in fitness and gene expression the authors partition the variance to investigate the sources of variation. They then perform eQTL mapping and study the relationship between eQTL and fitness QTL identified in the earlier study.
This paper seeks to address the challenging question of how quantitative trait variation and expression variation are related. scRNAseq represents an appealing approach to eQTL mapping as it is possible to simultaneously genotype individual cells and measure expression in the same cell. As eQTL mapping requires large sample sizes to identify statistical relationships, this approach is likely to dramatically increase the statistical power of such studies. However, there are several technical challenges associated with scRNAseq and the authors' study is focused on addressing those challenges. Although the authors present results suggesting the feasibility of the approach there are limitations in the conclusions that can be drawn in the current study owing to the lack of clarity in the presentation of the results. Ultimately, this study presents a proof of concept with limited novel biological insights that would nonetheless make a useful contribution to the literature if the following major points were addressed:
(1) There is insufficient information provided about the nature of data. At a minimum, the following information should be provided to enable assessment of the study: What is the total library size, how many genes are identified per cell, how many UMIs are found per cell, what is the doublet rate, and how are doublets identified (e.g. on the basis of heterozygous calls at polymorphic loci?), how many times is each genotype observed, and how many polymorphic sites are identified per cell that are the basis of genotype inferences?
(2) The prior study analyzed 18 different conditions, whereas this study only assays expression in a single condition. However, the power of the authors' approach is that its efficiency enables testing eQTLs in multiple conditions. The study would be greatly strengthened through analysis of at least one more condition, and ideally several more conditions. The previous fitness study would be a useful guide for choosing additional conditions as identifying those conditions that result in the greatest contrasts in fitness QTL would be best suited to testing the generalizations that can be drawn from the study.
(3) Alternatively, the authors could demonstrate the power of their approach by applying it to a cross between two other yeast strains. As the cross between BY and RM has been exhaustively studied, applying this approach to a different cross would increase the likelihood of making novel biological discoveries.
(4) Figure 1 is misleading as A presents the original study from 2022 without important details such as how genotypes were identified. It is unclear what the barcode is in this study and how it is used in the analysis. Is the barcode for each lineage transcribed so that it is identified in the scRNAseq data? Or, does the barcode in B refer to the cell index barcode? A clearer presentation and explanation of terms are needed to understand the method.
(5) The rationale for the analysis reported in Figure 2B is unclear. The fitness data are from the previous study and the goal is to estimate the heritability using the genotyping data from the scRNAseq data. What is the explanation for why the data don't agree for only one condition, i.e. 37C? And, what are we to understand from the overall result?
(6) Figure 3 presents an analysis of variance partitioning as a Venn diagram. This summarized result is very hard to understand in the absence of any examples of what the underlying raw data look like. For example, what does trait variation look like if only genotype explains the variance or if only gene expression explains the variance? The presented highly summarized data is not intuitive and its presentation is poor - the result that is currently provided would be easier to read in a table format, but the reader needs more information to be able to interpret and understand the result.
(7) I am concerned about the conclusions that can be drawn about expression heritability. The authors claim that expression heritability is correlated with expression levels. It seems likely that this reflects differing statistical power. How can this possibility be excluded?
(8) Conversely, the authors claim that the genes with the lowest heritability are genes involved in the cell cycle. However, uniquely in scRNAseq, cell cycle regulated genes appear to have the highest variance in the data as they are only expressed in a subset of cells. Without incorporating this fact one would erroneously conclude that the variation is not heritable. To test the heritability of cell cycle regulation genes the authors should partition the cells into each cell cycle stage based on expression.
(9) I do not understand Figure S5 and how eQTL sites are assigned to these specific classes given that the authors say that causative variation cannot be resolved because of linkage disequilibrium.
(10) The paragraph starting at line 305 is very confusing. In particular, the authors state that they identify a hotspot of regulation at the mating type locus. It is not obvious why this would be the case. Moreover, they claim that they find evidence for both MATa and MATalpha gene expression. Information is not provided about how segregants were isolated, but assuming that the authors did not dissect 25,000 tetrads to obtain 100,000 segregants I would infer that random spore using SGA was used. In that case, all cells should be MATa. The authors should clarify and explain this observation.
(11) Ultimately, it is not clear what new biological findings the authors have made. There are no novel findings with respect to causative variation underlying eQTLs and I would encourage the authors to make clearer statements in their abstract, introduction, and conclusion about the key discoveries. E.g. What are the "new associations between phenotypic and transcriptomic variations" mentioned in the abstract?
The following minor points should be addressed:
(1) The segregants should be referred to as F2 segregants as they are derived from an F1 cross.
(2) The connections to eQTLs in other organisms should be addressed in the introduction and conclusion. For example, in humans, there has been little evidence for trans eQTLs in contrast to what has been found in yeast.
(3) The authors state that an advantage of scRNAseq over bulk is that it captures rare cell populations (line 79), but this advantage is not exploited in this study.
(4) The authors use ~5% of the lineages from the original study. There is no rationale for why this is an appropriate sample size. Is there an argument for using more cells in eQTL mapping or conversely could the authors ask if fewer cells would provide similar conclusions by downsampling?
(5) I do not agree that the use of UMIs overcomes the challenges of low sequencing depth. UMIs mitigate the possible technical artifacts due to massive PCR amplification.
(6) There is an inadequate reference to prior work on scRNAseq in yeast that established the methods used by the authors and eQTL mapping in human cells using scRNAseq.
(7) The use of empty quotes in Figure 4A is confusing and an alternative presentation method should be used.
(8) The authors speculate about the use of predicted fitness instead of observed fitness, but this is something they could explicitly address in their current study.
-
Reviewer #2 (Public Review):
Summary:
The experiments and analysis appear to be carefully done. My concerns center on the impact of the work in its current form on the research community.
The focal yeast cross here has been the subject of many previous publications (for smaller sets of recombinant progeny), by the last author and others, including phenotyping, genotyping, transcriptomics, and proteomics. This mini-literature has proven relevant to the community because it has empirically pinpointed exactly how many variants underlie a given trait, both molecular and cellular. That is, whereas in more complex organisms we try our best to estimate/infer the full genetic architecture of varying traits from the results of mapping of necessarily weaker power, the highly-powered yeast system can access a more comprehensive mapping of the dozens of loci impinging on a given trait and learn from it. The question is what exactly we learn from the current study?
Strengths and weaknesses:
Most of the figures center on methods development and validation for the authors' single-cell RNA-seq in the yeast cross, including generating the large raw data set; analysis pipelines for mapping and genotyping (Figure 1); and higher-level analyses that recapitulate previously reported trends in heritability (Figure 2) and eQTL mapping (Figure 3 and Figure 4B-C). One potential novelty of the study is the methods per se: that is, showing that scRNA-seq works for concomitant genotyping and gene expression profiling in the natural variation context. The authors' rigor and effort notwithstanding: in my view, this can be described as modest in terms of principles. That is, the authors did a good job putting the scRNA-seq idea into practice, but their success is perhaps not surprising or highly relevant for work outside of yeast (as the discussion says). The more substantive claim by the authors for the impact of the study is that they make new observations about the role of expression in phenotype (lines 333-335). The major display item of the manuscript on this theme is Figure 4A, reporting which loci that control growth phenotype (from an earlier paper) also control expression. This is solid but I regret to say that the results strike me as modest. The discussion makes some perhaps fairly big claims that the work has helped "bridge understanding of how genetic variation influences transcriptomic variation" and ultimately cellular phenotype. But with the data as they stand, the authors have missed an opportunity to crystallize exactly how a given variant affects expression (perhaps in waves of regulators affecting targets that affect more regulators) and then phenotype, except for the speculations in the text on lines 305-319. The field started down this road years ago with Bayesian causality inference methods applied to eQTL and phenotype mapping (via e.g. the work of Eric Schadt). The authors could now try Mendelian randomization-type fine-grained detailed models for more firepower toward the same end, and/or experimental tests of the genotype-to-expression-to-phenotype relationship. I would see these directions, motivated by fundamental questions that are relevant to the field at large, as leading to a major advance for this very crowded field. As it stands, I felt their absence in this manuscript especially if the authors are selling principles about linking expression and phenotype as their take-home. I also wonder whether the co-mapping of expression and growth traits in Figure 4A would have been possible with e.g. the bulk RNA-seq from Albert et al., 2018, and I recommend that the authors repeat the Figure 4A-type analyses with the latter to justify their statement that their massive scRNA data set would actually be necessary for them to bear fruit (lines 386-388).
I also read the discussion of the manuscript as bringing to the fore some of the challenges a reader has in judging the current state of the results to be of actionable impact. The discussion, and the manuscript, will be improved if the authors can put the work in context, posing concrete questions from the field and stating how they are addressed here and what's left to do.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This is an experimentally soundly designed work and a very well-written manuscript. There is a very clear logic that drives the reader from one experiment to the next, the experimental design is clearly explained throughout and the relevance of the acquired data is well analyzed and supports the claims made by the authors. The authors made an evident effort to combine imaging, genetic, and molecular data to describe previously unknown early embryonic movement patterns and to identify regulatory mechanisms that control several aspects of it.
Strengths:
The authors develop a new method to analyze, quantitatively, the onset of movement during the latter embryonic stages of Drosophila development. This setup allows for a high throughput analysis of general movement dynamics based on the capture of variations of light intensity reflected by the embryo. This setup is capable of imaging several embryos simultaneously and provides a detailed measure of movement over time, which proves to be very useful for further discoveries in the manuscript. This setup already provides a thorough and quantifiable description of a process that is little known and identifies two different phases during late embryonic movements: a myogenic phase and a neurogenic phase, which they elegantly prove is dependent on neuronal activity by knocking down action potentials across the nervous system.
However, in this system, movement is detected as a whole, and no further description of the type of movement is provided beyond frequency and amplitude; it would be interesting to know from the authors if a more precise description of the movements that take place at this stage can be achieved with this method (e.g. motion patterns across the A-P body axis).
Importantly, this highly quantitative experimental setup is an excellent system for performing screenings of motion regulators during late embryonic development, and its use could be extended to search for different modulators of the process, beyond miRNAs (genetic mutants, drugs, etc.).
Using their newly established motion detection pipeline, the authors identify miR-2b-1 as required for proper larval and embryonic motion, and identify an overall reduction in the quantity of both myogenic and neurogenic movements, as well as an increased frequency in neurogenic movement "pulses".
Focusing on the neurogenic movement phenotype the authors use in situ probes and perform RT-PCR on FACS-sorted CNS cells to unambiguously detect miR-2b-1 expression in the embryonic nervous system. The neurogenic motion defects observed in miR-2b-1 mutant embryos and early larvae can be completely rescued by the expression of ectopic miR-2b-1 specifically in the nervous system, providing solid evidence of the requirement and sufficiency of miR-2b-1 expressed in the nervous system to regulate these phases of movement.
To explore the mechanism through which miR-2b-1 impacts embryonic movement, the authors use a state-of-the-art bioinformatic approach to identify potential targets of miR-2b-1, and find that the expression levels of an uncharacterized gene, CG3638, are indeed regulated by miR-2b-1. Furthermore, they prove that by knocking down the expression of CG3638 in a miR-2b-1 mutant background, the neurogenic embryonic movement defects are rescued, pointing that the repression of CG3638 by miR-2b-1 is necessary for correct motion patterns in wild-type embryos. Therefore, this paper provides the first functional characterization of CG3638, and names this gene Janus.
Finally, the authors aim to discriminate which elements of the embryonic motor system miR-2b-1/Janus are required. Using directed overexpression of miR-2b-1 and Janus knockdown in the motor neurons and the chordotonal (sensory) organs, they prove that the miR-2b-1/Janus regulatory axis is specifically required in the sensory organs to promote normal embryonic and larval movement.
Weaknesses:
The authors do not describe properly how the miRNA screening was performed and just claim that only miR-2b-1 mutants presented a defective motion phenotype in early L1. How many miRNAs were tested, and how candidates were selected is never explicitly mentioned in the text or the Methods section.
The initial screening to identify miRNAs involved in motion behaviors is performed in early larval movement. The logic presented by the authors is clear - it is assumed that early larval movement cannot proceed normally in the absence of previous embryonic motion - and ultimately helped them identify a miRNA required for modulation of embryonic movement. However, it is possible that certain miRNAs play a role in the modulation of embryonic movement while being dispensable for early L1 behaviors. Such regulators might have been missed with the current screening setup.
Although similar changes to those described for the neurogenic phase of embryonic movement are described for the myogenic phase in miR-2b-1 mutants (reduction in motion amplitude), this phenotype goes unexplored. This is not a big issue, as the authors convincingly demonstrate later that miR-2b-1 is specifically required in the nervous system for proper embryonic and larval movement, and the effects of miR-2b-1 on myogenic movement might as well be the focus of future work. However, it will be interesting to discuss here the implications of a reduced myogenic movement phase, especially as miR-2b-1 is specifically involved in regulating the activity of the chordotonal system - which precisely detects early myogenic movements.
FACS-sorting of neuronal cells followed by RT-PCR convincingly detects the presence of miR-2b-1 in the embryonic CNS. However, control of non-neuronal cells would be required to explore whether miR-2b-1 is not only present but enriched in the nervous system compared to other tissues. This is also the case in the miR-2b-1 and Janus expression analysis in the chordotonal organs: a control sample from the motor neurons would help discriminate whether miR-2b-1/Janus regulatory axis is specifically enriched in chordotonal organs or whether both genes are expressed throughout the CNS but operate under a different regulation or requirements for the movement phenotypes.
-
Reviewer #2 (Public Review):
Summary:<br /> The manuscript, "A microRNA that controls the emergence of embryonic movement" by Menzies, Chagas, and Alonso provides evidence that Drosophila miR-2b-1 is expressed in neurons and controls the expression of the predicted chloride channel CG3638, here named "Janus". Loss of the miRNA leads to movement phenotypes that can be rescued by downregulation of Janus; using specific drivers, the authors show that a larval movement phenotype (slower movement) can be rescued by knockdown of Janus in the chordotonal organs, suggesting that the increase in Janus found in the chordotonal organs is likely the root of the movement defects. Overall, I found the data presented in the manuscript of reasonable quality and are well enough supported by the presented data. That being said, I do have a few problems with the manuscript, mostly stemming from what I feel is an inflated presentation of the importance of the findings.
Strengths:<br /> The genetic and phenotypic analysis seems to be correct. The nicest part of the manuscript is the connection between the loss of a miRNA and finding its likely target in generating a phenotype. The authors also develop some protocols for the analysis of the movement phenotypes which may be useful for others.
Weaknesses:<br /> As I mentioned above, I felt the presentation was a bit overstated. The authors present their data in a way that focuses on movement, the emergence of movement, and how their miRNA of interest is at the center of this topic. I only point to the title and name that they wish to give the target of their miRNA to emphasize this point. "Janus" the god of movement and change. The results and discussion section starts with a paragraph saying, "Movement is the main output of the nervous system... how developing embryos manage to organise the necessary molecular, cellular, and physiological processes to initiate patterned movement is still unknown. Although it is clear that the genetic system plays a role, how genes control the formation, maturation and function of the cellular networks underlying the emergence of motor control remains poorly understood." While there is nothing inherently untrue about these statements, it is a question of levels of understanding. One can always argue that something in biology is still unknown at a certain level. However, one could also argue that much is known about the molecular nature of movement. Next, I am not sure how much this work impacts the area of study regarding the emergence of movement. The authors show that a reduction of a miRNA can affect something about certain neurons, that affects movement. The early movements, although slightly diminished, still emerge. Thus, their work only suggests that the function of some neurons, or perhaps the development of these neurons may impact the early movements. This is not new as it was known already from early work from the Bate lab.
Later larval movements were also shown to be modified in the miRNA mutants and were traced to "janus" overexpression in the chordotonal organs. As neurons are quite sensitive to the levels of Cl- and Janus is thought to be a Cl- channel, this could lead to a slight dysfunction of the chordotonal neurons. So, based on this, the work suggests that dysfunction of the chordotonal organs could impact larval movement. This was, of course, already known. The novelty of this work is in the genes being studied (important or not). We now know that miR 2b-1 and Janus are expressed in the early neurons and larval chordotonal neurons and their removal is consistent with a role for these genes in the functioning of these neurons. This is not to trivialize these findings, simply to state that these results are not significantly changing our overall understanding of movement and the emergence of movement. I would call it a stretch to say that this miRNA 'controls' the emergence of movement, as in the title.
Finally, the name Janus should be changed as it is already being used. A quick scan of flybase shows that there is a Janus A and B in flies (phosphatases) and I am surprised the authors did not check this. I was initially worried about the Janus kinase (JAK) when I performed the search. While I understand that none are only called Janus, studies of the jan A and B genes refer to the locus as the janus region, which could lead to confusion. The completely different molecular functions of the genes relative to CG3638 add to the confusion. Thus, I ask that the authors change the name of CG3638 to something else.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This work provides new mechanistic insights into the competitive inhibition in the mammalian P2X7 receptors using structural and functional approaches. The authors solved the structure of panda (pd) P2X7 in the presence of the classical competitive antagonists PPNDS and PPADS. They find that both the drugs bind to the orthosteric site employed by the physiological agonist ATP. However, owing to the presence of a single phosphate group, they prevent movements in the flipper domain required for channel opening. The authors performed structure based mutational analysis together with electrophysiological characterization to understand the subtype specific binding of these drugs. It is known from previous studies that P2X1 and P2X3 are more sensitive to these drugs as compared to P2X7, hence, the residues adjacent to the ATP binding site in pdP2X7 were mutated to those present in P2X1. They observed that mutations of Q143, I214 and Q248 into lysine (hP2X1) increased the P2X7 sensitivity to PPNDS, whereas in P2X1, mutations of these lysines to alanine reduced sensitivity to PPNDS, suggesting that these key residues contribute to the subunit specific sensitivity to these drugs. Similar experiments were done in hP2X3 to demonstrate its higher sensitivity to PPNDS. This preprint provides a useful framework for developing subtype specific drugs for the family of P2X receptor channels, an area that is currently relatively unexplored.<br /> The conclusions of the paper are well supported.
The revised manuscript is well written and presents its data with more clarity.
-
Reviewer #2 (Public Review):
Summary:
P2X receptors play pivotal roles in physiological processes such as neurotransmission and inflammation, making them promising drug targets. This study, through cryo-EM and functional experiments, reveals the structural basis of the competitive inhibition of the PPNDS and PPADS on mammalian P2X7 receptors. Key findings include the identification of the orthosteric site for these antagonists, the revelation of how PPADS/PPNDS binding impedes channel-activating conformational changes, and the pinpointing of specific residues in P2X1 and P2X3 subtypes that determine their heightened sensitivity to these antagonists. These insights present a comprehensive understanding that could guide the development of improved drugs targeting P2X receptors. This work will be a valuable addition to the field.
Strengths:
The combination of structural experiments and mutagenesis analyses offers a deeper understanding of the mechanism. While the inclusion of MD simulation is appreciated, providing more insights from the simulation might further strengthen this already compelling story.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The manuscript describes the crystal structures of Streptococcus pneumoniae NOXs. Crystals were obtained for the wild-type and mutant dehydrogenase domain, as well as for the full-length protein comprising the membrane domain. The manuscript further carefully studies the enzyme's kinetics and substrate-specificity properties. Streptococcus pneumoniae NOX is a non-regulated enzyme, and therefore, its structure should provide a view of the NOX active conformation. The structural and biochemical data are discussed on this ground.
Strengths:
This is very solid work. The protein chemistry and biochemical analysis are well executed and carefully described. Similarly, the crystallography must be appreciated given the difficulty of obtaining good enzyme preparations and the flexibility of the protein. Even if solved at medium resolution, the crystal structure of the full-length protein conveys relevant information. The manuscript nicely shows that the domain rotations are unlikely to be the main mechanistic element of NOX regulation. It rather appears that the NADPH-binding conformation is pivotal to enzyme activation. The paper extensively refers to the previous literature and analyses the structures comprehensively with a comparison to previously reported structures of eukaryotic and prokaryotic NOXs.
-
Reviewer #2 (Public Review):
The authors describe the structure of the S. pneumoniae Nox protein (SpNOX). This is a first. The relevance of it to the structure and function of eukaryotic Noxes is discussed in depth.
One of the strengths of this work is the effort put into preparing a pure and functionally active SpNOX preparation. The protein was expressed in E. coli and the purification and optimization of its thermostability and activity are described in detail, involving salt concentration, glycerol concentration, and pH.
Comments on revised version:
This reviewer would like to compliment the authors for the conscientious revision of the manuscript. Their response to the comments and the detailed explanations of the issues that did not appear clear enough to the reviewer are much appreciated. Their reaction to the review was not only superbly competent but also prominently good natured.
The revised version is perfect and represents a major contribution to our understanding of the molecular details of Nox function. As for the questions not yet answered, I shall quote the authors: "Time will tell".
-
-
arstechnica.com arstechnica.com
-
The AI-generated feedback goes to teacher review before being passed on to students so that a human remains in the loop.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this paper, the authors set out to better understand the mechanism by which the FtsZ-associated protein ZapD crosslinks FtsZ filaments to assemble a large scale cytoskeletal assembly. For this aim, they use purified proteins in solution and a combination of biochemical, biophysical experiments and cryo-EM. The most significant finding of this study is the observation of FtsZ toroids that form at equimolar concentrations of the two proteins.
Strengths:
Many experiments in this paper confirm previous knowledge about ZapD. For example, it shows that ZapD promotes the assembly of FtsZ polymers, that ZapD bundles FtsZ filaments, that ZapD forms dimers and that it reduces FtsZ's GTPase activity.
The most novel discovery is the observation of different assemblies as a function of ZapD:FtsZ ratio. In addition, using CryoEM to describe the structure of toroids and bundles, the papers provides some information about the orientation of ZapD in relation to FtsZ filaments. For example, they found that the organization of ZapD in relation to FtsZ filaments is "intrinsic heterogeneous" and that FtsZ filaments were crosslinked by ZapD dimers pointing in all directions. The authors conclude that it is this plasticity that allows for the formation of toroids and its stabilization. Unfortunately, a high-resolution structure of the protein organization was not possible.
Weaknesses:
While the data is convincing, their interpretation has some substantial weaknesses that the authors should address for the final version of this paper.
For example, as the authors are the first to describe FtsZ-ZapD toroids, a discussion why this has not been observed in previous studies would be very interesting, i.e. is it due to buffer conditions, sample preparation?
At parts of the manuscript, the authors try a bit too hard to argue for the physiological significance of these toroids. This, however, is at least very questionable, because:<br /> The typical diameter is in the range of 0.25-1.0 μm, which requires some flexibility of the filaments to be able to accommodate this. It's difficult to see how a FtsZ-ZapD toroid, which appears to be quite rigid with a narrow size distribution of 502 nm {plus minus} 55 nm could support cell division rather than stalling it at that cell diameter. which the authors say is similar to the E. coli cell.
For cell division, FtsZ filaments are recruited to the membrane surface via an interaction of FtsA or ZipA the C-terminal peptide of FtsZ. As ZapD also binds to this peptide, the question arises who wins this competition or where is ZapD when FtsZ is recruited to the membrane surface? Can such a toroidal structure of FtsZ filaments form on the membrane surface? Additional experiments would be helpful, but a more detailed discussion on how the authors think ZapD could act on membrane-bound filaments would be essential.
The authors conclude that the FtsZ filaments are dynamic, which is essential for cell division. But the evidence for dynamic FtsZ filaments within these toroids seems rather weak, as it is solely the partial reassembly after addition of GTP. As ZapD significantly slows down GTP hydrolysis, I am not sure it's obvious to make this conclusion.
On a similar note, on page 5 the authors claim that ZapD would transiently interact with FtsZ filaments. What is the evidence for this? They also say that this transient interaction could have a "mechanistic role in the functionality of FtsZ macrostructures." Could they elaborate?
The author should also improve in putting their findings into the context of existing knowledge. For example:
The authors observe a straightening of filament bundles with increasing ZapD concentration. This seems consistent with what was found for ZapA, but this is not explicitly discussed (Caldas et al 2019)
A paragraph summarizing what is known about the properties of ZapD in vivo would be essential: i.e. what has been found regarding its intracellular copy number, location and dynamics?
In the introduction, the authors write that "GTP binding and hydrolysis induce a conformational change in each monomer that modifies its binding potential, enabling them to follow a treadmilling behavior". This seems inaccurate, as shown by Wagstaff et al. 2022, the conformational change of FtsZ is not associated with the nucleotide state. In addition, they write that FtsZ polymerization depends on the GTPase activity. It would be more accurate to write that polymerization depends on GTP, and disassembly on GTPase activity.
On page 2 they also write that "the mechanism underlying bundling of FtsZ filaments is unknown". I would disagree, the underlying mechanism is very well known (see for example Schumacher, MA JBC 2017), but how this relates to the large-scale organization of FtsZ filaments was not clear.
The authors describe the toroid as a dense 3D mesh, how would this be compatible with the Z-ring and its role for cell division? I don't think this corresponds to the current model of the Z-ring (McQuillen & Xiao, 2020). Apart from the fact it's a ring, I don't think the organization of FtsZ obviously similar to the current of the Z-ring in the bacterial cell, in particular because it's not obvious how FtsZ filaments can bind ZapD and membrane anchors simultaneously.
The authors write that "most of these modulators" interact with FtsZ's CTP, but then later that ZapD is the only Zap protein that binds CTP. This seems to be inconsistent. Why not write that membrane anchors usually bind the CTP, most Zaps do not, but ZapD is the exception?
I also have some comments regarding the experiments and their analysis:
Regarding cryoET: the filaments appear like flat bands, even in the absence of ZapD, which further elongates these bands. Is this due to an anisotropic resolution? This distortion makes the conclusion that ZapD forms bi-spherical dimers unconvincing.
The authors say that the cryoET visualization provides crucial information on the length of the filaments within this toroid. How long are they? Could the authors measure it?
Regarding the dimerization mutant of ZapD: there is actually no direct confirmation that mZapD is monomeric. Did the authors try SEC MALS or AUC? Accordingly, the statement that dimerization is "essential" seems exaggerated (although likely true).
What do the authors mean that toroid formation is compatible with robust persistence length? I.e. What does robust mean? It was recently shown that FtsZ filaments are actually surprisingly flexible, which matches well the fact that the diameter of the Z-ring must continuously decrease during cell division (Dunajova et al Nature Physics 2023).
the authors claim that their observations suggest „that crosslinkers ... allows filament sliding in an organized fashion". As far as I know there is no evidence of filament sliding, as FtsZ monomers in living cells and in vitro are static.
What is the „proto-ring FtsA protein"?
The authors refer to „increasing evidence" for „alternative network remodling mechanisms that do not rely on chemical energy consumption as those in which entropic forces act through diffusible crosslinkers, similar to ZapD and FtsZ polymers." A reference should be given, I assume the authors refer to the study by Lansky et al 2015 of PRC on microtubules. However, I am not sure how the authors made the conclusion that this applies to FtsZ and ZapD, on which evidence is this assumption based?
Some inconsistencies in supplementary figure 3: The normalized absorbances in panel a do not seem to agree with the absolute absorbance shown in panel e, i.e. compare maximum intensity for ZapD = 20 µM and 5 µM in both panels.
It's not obvious to me why the structure formed by ZapD and FtsZ disassembles after some time even before GTP is exhausted, can the authors explain? As the structures disassemble, how is the "steady-state turbidity" defined? Do the structures also disassemble when they use a non-hydrolyzable analog of GTP?
Conclusion:
Despite some weaknesses in the interpretation of their findings, I think this paper will likely motivate other structural studies on large scale assemblies of FtsZ filaments and its associated proteins. A systematic comparison of the effects of ZapA, ZapC and ZapD and how their different modes of filament crosslinking can result in different filament networks will be very useful to understand their individual roles and possible synergistic behavior.
-
Reviewer #1 (Public Review):
Summary:
The major result in the manuscript is the observation of the higher order structures in a cryoET reconstruction that could be used for understanding the assembly of toroid structures. The cross-linking ability of ZapD dimers result in bending of FtsZ filaments to a constant curvature. Many such short filaments are stitched together to form a toroid like structure. The geometry of assembly of filaments - whether they form straight bundles or toroid like structures - depends on the relative concentrations of FtsZ and ZapD.
Strengths:
In addition to a clear picture of the FtsZ assembly into ring-like structures, the authors have carried out basic biochemistry and biophysical techniques to assay the GTPase activity, the kinetics of assembly, and the ZapD to FtsZ ratio.
Weaknesses:
The discussion does not provide an overall perspective that correlates the cryoET structural organisation of filaments with the biophysical data.
The crosslinking nature of ZapD is already established in the field. The work carried out is important to understand the ring assembly of FtsZ. However, the availability of the cryoET observations can be further analysed in detail to derive many measurements that will help validate the model, and obtain new insights.
-
Reviewer #3 (Public Review):
Summary:
The authors provide the first image analysis by cryoET of toroids assembled by FtsZ crosslinked by ZapD. Previously toroids of FtsZ alone have been imaged only in projection by negative stain EM. The authors attempt to distinguish ZapD crosslinks from the underlying FtsZ filaments. I did not find this distinction convincing, especially because it seems inconsistent with the 1:1 stoichiometry demonstrated by pelleting. I was intrigued by one image showing straight filament pairs, which may suggest a new model for how ZapD crosslinks FtsZ filaments.
Strengths:
(1) The first image analysis of FtsZ toroids by cryoET.<br /> (2) The images are accompanied by pelleting assays that convincingly establish a 1:1 stoichiometry of FtsZ:ZapD subunits.<br /> (3) Fig. 5 shows an image of a pair of FtsZ filaments crosslinked by ZapD. This seems to have higher resolution than the toroids. Importantly, it suggests a new model for the structure of FtsZ-ZapD that resolves previously unrecognized conflicts. (This is discussed below under weaknesses, because it is so far only supported by a single image.)
Weaknesses:
This paper reports a study by cryoEM of polymers and bundles assembled from FtsZ plus ZapD. Although previous studies by other labs have focused on straight bundles of filaments, the present study found toroids mixed with these straight bundles, and they focused most of their study on the toroids. In the toroids they attempt to delineate FtsZ filaments and ZapD crosslinks. A major problem here is with the stoichiometry. Their pelleting assays convincingly established a stoichiometry of 1:1, while the mass densities identified as ZapD are sparse and apparently well below the number of FtsZ (FtsZ subunits are not resolved in the reconstructions, but the continuous sheets or belts seem to have a lot more mass than the identified crosslinks.) Apart from the stoichiometry I don't find the identification of crosslinks to be convincing. It is missing an important control - cryoET of toroids assembled from pure FtsZ, without ZapD.
However, if I ignore these and jump to Fig. 5, I think there is an important discovery that resolves controversies in the present study as well as previous ones, controversies that were not even recognized. The controversy is illustrated by the Schumacher 2017 model (their Fig. 7), which is repeated in a simplified version in Fig. 1a of the present mss. That model has a two FtsZ filaments in a plane facing ZapD dimers which bridge them. In this planar model the C-terminal linker, and the ctd of FtsZ that binds ZapD facing each other and the ZapD in the middle, with. The contradiction arises because the C-terminus needs to face the membrane in order to attach and generate a bending force. The two FtsZ filaments in the planar model are facing 90{degree sign} away from the membrane. A related contradiction is that Houseman et al 2016 showed that curved FtsZ filaments have the C terminus on the outside of the curve. In a toroid the C termini should all be facing the outside. If the paired filaments had the C termini facing each other, they could not form a toroid because the two FtsZ filaments would be bending in opposite directions.
Fig. 5 of the present mss seems to resolve this by showing that the two FtsZ filaments and ZapD are not planar, but stacked. The two FtsZ filaments have their C termini facing the same direction, let's say up, toward the membrane, and ZapD binds on top, bridging the two. The spacing of the ctd binding sites on the Zap D dimer is 6.5 nm, which would fit the ~8 nm width of the paired filament complex observed in the present cryoEM (Fig S13). In the Schumacher model the width would be about 20 nm. Importantly, the stack model has the ctd of each filament facing the same direction, so the paired filaments could attach to the membrane and bend together (using ctd's not bound by ZapD). Finally, the new arrangement would also provide an easy way for the complex to extend from a pair of filaments to a sheet of three or four or more.
A problem with this new model from Fig. 5 is that it is supported by only a single example of the paired FtsZ-ZapD complex. If this is to be the basis of the interpretation, more examples should be shown. Maybe examples could be found with three or four FtsZ filaments in a sheet.
What then should be done with the toroids? I am not convinced by the identification of ZapD as "connectors." I think it is likely that the ZapD is part of the belts that I discuss below, although the relative location of ZapD in the belts is not resolved. It is likely that the resolution in the toroid reconstructions of Fig. 4, S8,9 is less than that of the isolated pf pair in Fig. 5c.
Importantly, If the authors want to pursue the location of ZapD in toroids, I suggest they need to compare their ZapD-containing toroids with toroids lacking ZapD. Popp et al 2009 have determined a variety of solution conditions that favor the assembly of toroids by FtsZ with no added protein crosslinker. It would be very interesting to investigate the structure of these toroids by the present cryoEM methods, and compare them to the FtsZ-ZapD toroids. I suspect that the belts seen in the ZapD toroids will not be found in the pure FtsZ toroids, confirming that their structure is generated by ZapD.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Using a pharmacological and knock-down approach, the authors could demonstrate that ROCK activity is required for the normal development of the larval skeleton. The presence of ROCK in the pluteus stage depends on the activity of VEGF that is responsible for the formation of the tubular syncytial sheath of the calcifying primary mesenchyme cells in which the skeleton forms. The importance of ROCK in skeleton formation was confirmed in cell culture experiments, demonstrating that ROCK inhibition leads to decreased elongation and abnormal branching of spicules. µCT analyses underline this finding demonstrating that the inhibition of ROCK mainly affects elongation of spicules while growth in girth is little affected. F-actin labeling experiments could demonstrate that ROCK inhibition interferes with the organization of the actomyosin network in the early phase of skeleton formation, while f-actin organization in the tips of the elongating spicule is unaffected by the pharmacological inhibition of ROCK. Finally, ROCK inhibition strongly affects the expression of major regulatory and calcification-related genes in the calcifying cells. Based on these findings the authors propose a model for the regulatory interaction between the skeletogenic GRN, ROCK and the f-actin system relevant for skeletogenesis.
Comments on revised version:
In their manuscript Hijaze et al. adequately addressed the majority of my previous concerns in a satisfactory manner. In particular, they validated their morpholino knock-down experiments by explaining how they determined the optimal concentrations and provided an immunohistological evidence for the reduction in ROCK protein abundance. The authors also added new antibody stainings providing evidence that ROCK and F-actin do not interact directly but likely through other kinases that modulate f-actin, and that the localization of f-actin at the spicule tips remains unaffected by the knock-down. In addition, the authors revised their discussion to not overstate their observations, and by focusing on the potential mechanisms by which ROCK may affect biomineralization (i.e. mechano sensing and exocytosis of vesicles). Here I would like to add, that f-actin mediated exocytosis does not necessarily target mineral baring vesicles but may also promote the exocytosis of matrix proteins that are essential for the normal formation of the spicules and that are an integral component of other biominerals, as well. I strongly encourage the authors to continue on this exciting research, including the development of methods to analyze the molecular mechanisms that control vesicular trafficking in mineralizing systems.
-
Reviewer #2 (Public Review):
This project is on the role of ROCK in skeletogenesis during sea urchin development. That skeleton is produced by a small number of cells in the embryo with signaling inputs from the ectoderm providing patterning cues. The skeleton is built from secretion of CaCO3 by the skeletogenic cells. The authors conclude that ROCK is involved in the regulation of skeletogenesis with a role both in regulating actomyosin in the process, and in the gene regulatory network (GRN) underlying the entire sequence of events.
The strength of the paper is that they show in detail how perturbations of ROCK results in abnormal actomyosin activity in the skeletogenic cells, and they show alterations both in expression of transcription factors of the GRN, and expression of genes involved in assembly of the skeletal matrix. Two different approaches lead to this conclusion: morpholino perturbations and the actions of a selective inhibitor of the kinase activity. Thus, they achieved their goal which was to test the hypothesis that ROCK is involved in the process of skeletogenesis. Those tests support the hypothesis with data that was quantitatively significant.
The discussion was transparent regarding where the analysis ended and where the next phase of work should begin. While actomyosin involvement was altered when ROCK was perturbed, it isn't known how direct or indirect the role of ROCK might be. Also, while the regulatory input to spicule initiation and growth is affected when ROCK is inhibited, it isn't clear exactly where ROCK is involved.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors want to understand fundamental steps in ligand binding to muscle nicotinic receptors using computational methods. Overall, although the work provides new information and support for existing models of ligand activation of this receptor type, some limitations in the methods and approach mean that the findings are not as conclusive as hoped.
Strengths:
The strengths include the number of ligands tried, and the comparison to the existing mature analysis of receptor function from the senior author's lab.
Weaknesses:
The weakness are the brevity of the simulations, the concomitant lack of scope of the simulations, the lack of depth in the analysis and the incomplete relation to other relevant work. The free energy methods use seem to lack accuracy - they are only correct for 2 out of 4 ligands.
-
Reviewer #2 (Public Review):
Summary:
The aim of this manuscript is to use molecular dynamics (MD) simulations to describe the conformational changes of the neurotransmitter binding site of a nicotinic receptor. The study uses a simplified model including the alpha-delta subunit interface of the extracellular domain of the channel and describes the binding of four agonists to observe conformational changes during the weak to strong affinity transition.
Strength:
The 200 ns-long simulations of this model suggest that the agonist rotates about its centre in a 'flip' motion, while loop C 'flops' to restructure the site. The changes appear to reproduced across simulations and different ligands and are thus a strong point of the study.
Weaknesses:
After carrying out all-atom molecular dynamics, the authors revert to a model of binding using continuum Poisson-Boltzmann, surface area and vibrational entropy. The motivations for and limitations associated with this approximate model for the thermodynamics of binding, rather than using modern atomistic MD free energy methods (that would fully incorporate configurational sampling of the protein, ligand and solvent) could be provided. Despite this, the authors report correlation between their free energy estimates and those inferred from experiment. This did, however, reveal shortcomings for two of the agonists. The authors mention their trouble getting correlation to experiment for Ebt and Ebx and refer to up to 130% errors in free energy. But this is far worse than a simple proportional error, because -24 Vs -10 kcal/mol is a massive overestimation of free energy, as would be evident if it the authors were to instead to express results in terms of KD values (which would have error exceeding a billion fold). The MD analysis could be improved with better measures of convergence, as well as more careful discussion of free energy maps as function of identified principal components, as described below. Overall, however, the study has provided useful observations and interpretations of agonist binding that will help understand pentameric ligand-gated ion channel activation.
Main points:
Regarding the choice of model, some further justification of the reduced 2 subunit ECD-only model could be given. On page 5 the authors argue that, because binding free energies are independent of energy changes outside the binding pocket, they could remove the TMD and study only an ECD subunit dimer. While the assumption of distant interactions being small seems somewhat reasonable, provided conformational changes are limited and localised, how do we know the packing of TMD onto the ECD does not alter the ability of the alpha-delta interface to rearrange during weak or strong binding? They further write that "fluctuations observed at the base of the ECD were anticipated because the TMD that offers stability here was absent.". As the TMD-ECD interface is the "gating interface" that is reshaped by agonist binding, surely the TMD-ECD interface structure must affect binding. It seems a little dangerous to completely separate the agonist binding and gating infrastructure, based on some assumption of independence. Given the model was only the alpha and delta subunits and not the pentamer with TMD, I am surprised such a model was stable without some heavy restraints. The authors state that "as a further control we carried out MD simulation of a pentamer docked with ACh and found similar structural changes at the binding pocket compared to the dimer." Is this sufficient proof of the accuracy of the simplified model? How similar was the model itself with and without agonist in terms of overall RMSD and RMSD for the subunit interface and the agonist binding site, as well as the free energy of binding to each model to compare?
Although the authors repeatedly state that they have good convergence with their MD, I believe the analysis could be improved to convince us. On page 8 the authors write that the RMSD of the system converged in under 200 ns of MD. However, I note that the graph is of the entire ECD dimer, not a measure for the local binding site region. An additional RMSD of local binding site would be much more telling. You could have a structural isomerisation in the site and not even notice it in the existing graph. On page 9 the authors write that the RMSF in Fig.S2 showed instability mainly in loops C and F around the pocket. Given this flexibility at the alpha-delta interface, this is why collecting those regions into one group for the calculation of RMSD convergence analysis would have been useful. They then state "the final MD configuration (with CCh) was well-aligned with the CCh-bound cryo-EM desensitized structure (7QL6)... further demonstrating that the simulation had converged." That may suggest a change occurred that is in common with the global minimum seen in cryo EM, which is good, but does not prove the MD has "converged". I would also rename Fig.S3 accordingly.
The authors draw conclusions about the dominant states and pathways from their PCA component free energy projections that need clarification. It is important first to show data to demonstrate that the two PCA components chosen were dominant and accounted for most of the variance. Then when mapping free energy as a function of those two PCA components, to prove that those maps have sufficient convergence to be able to interpret them. Moreover, that if the free energies themselves cannot be used to measure state stability (as seems to be the case), that the limitations are carefully explained. First, was PCA done on all MD trajectories combined to find a common PC1 & PC2, or were they done separately on each simulation? If so, how similar are they? The authors write "the first two principal components (PC-1 and PC-2) that capture the most pronounced C. displacements". How much of the total variance did these two components capture? The authors write the changes mostly concern loop C and loop F, but which data proves this? e.g. A plot of PC1 and PC2 over residue number might help?
The authors map the -kTln rho as a free energy for each simulation as function of PC1 & PC2. It is important to reveal how well that PC1-2 space was sampled, and how those maps converged over time. The shapes of the maps and the relative depths of the wells look very different for each agonist. If the maps were sampled well and converged, the free energies themselves would tell us the stabilities of each state. Instead, the authors do not even mention this and instead talk about "variance" being the indicator of stability, stating that m3 is most stable in all cases. While I can believe 200ns could not converge a PC1-2 map and that meaningful delta G values might not be obtained from them, the issue of lack of sampling must be dealt with. On page 12 they write "Although the bottom of the well for 3 energy minima from PCA represent the most stable overall conformation of the protein, they do not convey direct information regarding agonist stability or orientation". The reasons why not must be explained; as they should do just that if the two order parameters PC1 and PC2 captured the slowest degrees of freedom for binding and sampling was sufficient. The authors write that "For all agonists and trajectories, m3 had the least variance (was most stable), again supporting convergence by 200 ns." Again the issue of actual free energy values in the maps needs to be dealt with. The probabilities expressed as -kTln rho in kcal/mol might suggest that m2 is the most stable. Instead, the authors base stability only on variance (I guess breadth of the well?), where m3 may be more localised in the chosen PC space, despite apparently having less preference during the MD (not the lowest free energy in the maps).
The motivations and justifications for use of approximate PBSA energetics instead of atomistic MD free energies should be dealt with in the manuscript, with limitations more clearly discussed. Rather than using modern all-atom MD free energy methods for relative or absolute binding free energies, the author select clusters from their identified states and do Poisson-Boltzmann estimates (electrostatic, vdW, surface area, vibrational entropy). I do believe the following sentence does not begin to deal with the limitations in that method: "there are limitations with regard to MM-PBSA accurately predicting absolute binding free energies (Genheden & Ryde, 2015; Hou et al., 2011) that depends on parameterization of the ligand (Oostenbrink et al., 2004)." What are the assumptions and limitations in taking a continuum electrostatics (presumably with parameters for dielectric constants and their assignments to regions after discarding solvent), surface area (with its assumptions and limitations) and of course assuming vibration of a normal mode can capture entropy. On page 30, regarding their vibrational entropy estimate, they write that the "entropy term provides insights into the disorder within the system, as well as how this disorder changes during the binding process". It is important that the extent of disorder captured by the vibrational estimate be discussed, as it is not obvious that it has captured entropy involving multiple minima on the system's true 3N-dimensional energy surface, and especially the contribution from solvent disorder in bound Vs dissociated states.
As discussed above, errors in the free energy estimates need to be more faithfully represented, as fractional errors are not meaningful. On page 21 the authors write "The match improved when free energy ratios rather than absolute values were compared." But a ratio of free energies is not a typical or expected measure of error in delta G. They also write "For ACh and CCh, there is good agreement between.Gm1 and GLA and between.Gm3 and GHA. For these agonists, in silico values overestimated experimental ones only by ~8% and ~25%. The agreement was not as good for the other 2 agonists, as calculated values overestimated experimental ones by ~45%(Ebt) and ~130% (Ebt). However, the fractional overestimation was approximately the same for GLA and GHA." See above comment on how this may misrepresent the error. On page 21 they write, in relation to their large fractional errors, that they "do not know the origin of this factor but speculate that it could be caused by errors in ligand parameterization". But the estimates from the PBSA approach are, by design, only approximate. Both errors in parameterisation (and their likely origin) and the approximate model used, need discussion.
-
Reviewer #3 (Public Review):
Summary:
The authors use docking and molecular dynamics (MD) simulations to investigate transient conformations that are otherwise difficult to resolve experimentally. The docking and simulations suggest an interesting series of events whereby agonists initially bind to the low affinity site and then flip 180 degrees as the site contracts to its high affinity conformation. This work will be of interest to the ion channel community and to biophysical studies of pentameric ligand-gated channels.
Strengths:
I find the premise for the simulations to be good, starting with an antagonist bound structure as an estimate of the low affinity binding site conformation, then docking agonists into the site and using MD to allow the site to relax to a higher affinity conformation that is similar to structures in complex with agonists. The predictions are interesting and provide a view into what a transient conformation that is difficult to observe experimentally might be like.
Weaknesses:
A weakness is that the relevance of the initial docked low affinity orientations depend solely on in silco results, for which simulated vs experimental binding energies deviate substantially for two of the four ligands tested. This raises some doubt as to the validity of the simulations. I acknowledge that the calculated binding energies for two of the ligands were closer to experiment, and simulated efficiencies were a good representation of experimental measures, which gives some support to the relevance of the in silico observations. Regardless, some of the reviewers comments regarding the simulation methodology were not seriously addressed.
-
Reviewer #4 (Public Review):
Summary:
In their revised manuscript "Conformational dynamics of a nicotinic receptor neurotransmitter binding site," Singh and colleagues present molecular docking and dynamics simulations to explore the initial conformational changes associated with agonist binding in the muscle nicotinic acetylcholine receptor, in context with the extensive experimental literature on this system. Their central findings are of a consistently preferred pose for agonists upon initial association with a resting channel, followed by a dramatic rotation of the ligand and contraction of a critical loop over the binding site. Principal component analysis also suggests the formation of an intermediate complex, not yet captured in structural studies. Binding free energy estimates are consistent with the evolution of a higher-affinity complex following agonist binding, with a ligand efficiency notably similar to experimental values. Snapshot comparisons provide a structural rationale for these changes on the basis of pocket volume, hydration, and rearrangement of key residues at the subunit interface.
Strengths:
Docking results are clearly presented and remarkably consistent. Simulations are produced in triplicate with each of four different agonists, providing an informative basis for internal validation. They identify an intriguing transition in ligand pose, not well documented in experimental structures, and potentially applicable to mechanistic or even pharmacological modeling of this and related receptor systems. The paper seems a notable example of integrating quantitative structure-function analysis with systematic computational modeling and simulations, likely applicable to the wider journal audience.
Weaknesses:
The response to initial review is somewhat disappointing, declining in some places to implement suggested clarifications, and propagating apparent errors in at least one table (Fig 2-source data 1). Some legends (e.g. Fig 2-supplement 4, Fig 3, Fig 4) and figure shadings (e.g. Fig 2-supplement 2, Fig 6-supplement 2) remain unclear. Apparent convergence of agonist-docked simulations towards a desensitized state (l 184) is difficult to interpret in absence of comparative values with other states, systems, etc. In more general concerns, aside from the limited timescales (200 ns) that do not capture global rearrangements, it is not obvious that landscapes constructed on two principal components to identify endpoint and intermediate states (Fig 3) are highly robust or reproducible, nor whether they relate consistently to experimental structures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The work by Joseph et al "Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia" seeks to comparatively analyze the effect of a range of covalent and noncovalent clinical BTK inhibitors upon BTK conformation. The novel aspect of this manuscript is that it seeks to evaluate the differential resistance mutations that arise distinctly from each of the inhibitors.
Strengths:
This is an exciting study that builds upon the fundamental notion of ensemble behavior in solutions for enzymes such as BTK. The HDX-MS and NMR experiments are adequately and comprehensively presented.
Weaknesses:
While I commend the novelty of the study, the absence of important controls greatly tempers my enthusiasm for this work. As stated in the abstract, there are no broad takeaways for how resistance mutation bias operated from this study, although the mechanism of action of 2 common resistance mutations is useful. How these 2 resistance mutations connect to ensemble behavior, is not obvious. This is partly because BTK does not populate just binary "open"/"closed" conformations, but there are likely multiple intermediate conformations. Each inhibitor appears to preferentially "select" conformations by the authors' own assessment (line 236) and this carries implications for the emergence of resistance mutations. The most important control that would help is to use ADP or nonhydrolyzable and ATP as a baseline to establish the "inactive" and "active" conformations. All of the HDX-MS and NMR studies use protein that has no nucleotide present. A major question that remains is whether each of the inhibitors preferentially favors/blocks ADP or ATP binding. This then means it is not equivalent to correlate functional kinase assay conditions with either HDX-MS or NMR experiments.
-
Reviewer #2 (Public Review):
Summary:
Previous NMR and HDX-MS studies on full-length (FL) BTK showed that the covalent BTKi, ibrutinib, causes long-range effects on the conformation of BTK consistent with disruption of the autoinhibited conformation, based on HDX deuterium uptake patterns and NMR chemical shift perturbations. This study extends the analyses to four new covalent BTKi, acalabrutinib, zanubrutinib, tirabrutinib/ONO4059, and a noncovalent ATP competitive BTKi, pirtobrutinib/LOXO405.
The results show distinct conformational changes that occur upon binding each BTKi. The findings show consistent NMR and HDX changes with covalent inhibitors, which move helix aC to an 'out' position and disrupt SH3-kinase interactions, in agreement with X-ray structures of the BTKi complexed with the BTK kinase domain. In contrast, the solution measurements show that pirtobrutinib maintains and even stabilizes the helix aC-in and autoinhibited conformation, even though the BTK:pritobrutinib crystallizes with helix aC-out. This and unexpected variations in NMR and HDX behavior between inhibitors highlight the need for solution measurements to understand drug interactions with the full-length BTK. Overall the findings present good evidence for allosteric effects by each BTKi that induce distal conformational changes which are sensitive to differences in inhibitor structure.
The study goes on to examine BTK mutants T474I and L528W, which are known to confer resistance to pirtobrutinib, zanubritinib, and tirabrutinib. T474I reduces and L528W eliminates BTK autophosphorylation at pY551, while both FL-BTK-WT and FL-BTK-L528W increase HCK autophosphorylation and PLCg phosphorylation. These show that mutants partially or completely inactivate BTK and that inactive FL-BTK can activate HCK, potentially by direct BTK-HCK interactions. But they do not explain drug resistance. However, HDX and NMR show that each mutant alters the effects of BTKi binding compared to WT. In particular, T474I alters the effects of all three inhibitors around W395 and the activation loop, while L528W alters interactions around W395 with tirabrutinib and pirtobrutinib, and does not appear to bind zanubrutinib at all. The study concludes that the mutations might block drug efficacy by reducing affinity or altering binding mode.
Strengths:
The work presents convincing evidence that BTK inhibitors alter the conformation of regions distal to their binding sites, including those involved in the SH3-kinase interface, the activation loop, and a substrate binding surface between helix aF and helix aG. The findings add to the growing understanding of allosteric effects of kinase inhibitors, and their potential regulation of interactions between kinase and binding proteins.
Weaknesses:
The interpretation of HDX, NMR, and kinase assays is confusing in some places, due to ambiguity in quantifying how much kinase is bound to the inhibitor. It would be helpful to confirm binding occupancy, in order to clarify if mutants lower the amount of BTK complexed with BTKi as implied in certain places, or if they instead alter the binding mode. In addition, the interpretation of the mutant effects might benefit from a more detailed examination of how each inhibitor occupies the ATP pocket and how substitutions of T474 and L528 with Ile and Trp respectively might change the contacts with each inhibitor.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The Calcium Homeostasis Modulators (CALHM) are a family of large pore channels, of which the physiological role of CALHM1 and 3 is well understood, in particular their key role in taste sensation via the release of the neurotransmitter ATP. The activation mechanism of CALHM1 involves membrane depolarization and a decrease in extracellular Ca concentration, allowing the passage of large cellular metabolites. However, the activation mechanism and physiological roles of other family members are much less well understood. Many structures of homomeric CALHM proteins have been determined, revealing distinct oligomeric assemblies despite a common transmembrane domain topology. CALHM1 and 3 have been shown functionally to form heteromeric assemblies with properties distinct from those of homomeric CALHM1. However, the structural basis of heteromeric CALHM1 and 3 remains unexplored.
In this paper, Drozdzyk et al. present an important study on the structures of heteromeric channels composed of CALHM2 and CALHM4, extending the structural understanding of the CALHM family beyond homomeric channels. The study relies primarily on cryo-EM. Despite the inherent challenges of structural determination due to the similar structural features of CALHM2 and CALHM4, the authors innovatively use synthetic nanobodies to distinguish between the subunits. Their results show a broad distribution of different heteromeric assemblies, with CALHM4 conformation similar to its homomeric form and CALHM2 conformation influenced by its proximity to CALHM4, and provide detailed insights into the interaction between CALHM2 and CALHM4.
The manuscript is well-structured and presents clear results that support the conclusions drawn. The discovery of heteromeric CALHM channels, although currently limited to an overexpressed system, represents a significant advance in the field of large-pore channels and will certainly encourage further investigation into the physiological relevance and roles of heteromeric CALHM channels. The manuscript would benefit from further insight into the functional properties of these heteromeric channels. However, this is not a weakness as the identification of precise activation stimuli for CALHM2 and 4 is beyond the scope of this work.
A challenge noted is the wide distribution of heteromeric assemblies in the 3D classification, resulting in insufficient particles for high-resolution structure determination of each assembly. The authors choose to combine particles from assemblies with 2-4 copies of CALHM4, which reveals the interface between CALHM2 and 4 but may compromise the quality of structural details. I recommend an alternative data processing strategy. First, refine particles with 2-4 CALHM4 subunits with symmetry imposed. This is followed by symmetry expansion, signal subtraction of two adjacent subunits, and subsequent classification and refinement of the subtracted particles. This approach, while not guaranteed, can potentially provide a clearer definition of CALHM2 and CALHM4 interfaces and show whether CALHM2 subunits adopt different conformations based on their proximity to CALHM4 subunits.
-
Reviewer #2 (Public Review):
Summary:
The authors identified that two of the placental CALHM orthologs, CALHM2 and CALHM4 can form heterooligomeric channels that are stable following detergent solubilization. By adding fiducial markers that specifically recognize either CALHM2 or CALHM4, the authors determine a cryo-EM density map of heterooligomeric CALHM2/CALHM4 from which they can determine how the channel is assembled. Surprisingly, the two orthologs segregate into two distinct segments of the channel. This segregation enables the interfacial subunits to ease the transition between the preferred conformations of each ortholog, which are similar to the confirmation that each ortholog adopts in homooligomeric channels.
Strengths:
Through the use of fiducial markers, the authors can clearly distinguish between the CALHM2 and CALHM4 promoters in the heterooligomeric channels, strengthening their assignment of most of the promoters. The authors take appropriate caution in identifying two subunits that are likely a mix of the two orthologs in the channel.
Weaknesses:
Despite the authors' efforts, no currents could be observed that corresponded to CALHM2/CALHM4 channels and thus the functional effect of their interaction is not known.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This paper shows that E. coli exhibits a chemotactic response to potassium by measuring both the motor response (using a bead assay) and the intracellular signaling response (CheY phosporylation level via FRET) to step changes in potassium concentration. They find increase in potassium concentration induces a considerable attractant response, with amplitude comparable to aspartate, and cells can quickly adapt (and generally over-adapt). The authors propose that the mechanism for potassium response is through modifying intracellular pH; they find both that potassium modifies pH and other pH modifiers induce similar attractant responses. It is also shown, using Tar- and Tsr-only mutants, that these two chemoreceptors respond to potassium differently. Tsr has a standard attractant response, while Tar has a biphasic response (repellent-like then attractant-like). Finally, the authors use computer simulations to study the swimming response of cells to a periodic potassium signal secreted from a biofilm and find a phase delay that depends on the period of oscillation.
Strengths:
The finding that E. coli can sense and adapt to potassium signals and the connection to intracellular pH is quite interesting and this work should stimulate future experimental and theoretical studies regarding the microscopic mechanisms governing this response. The evidence (from both the bead assay and FRET) that potassium induces an attractant response is convincing, as is the proposed mechanism involving modification of intracellular pH. The updated manuscript controls for the impact of pH on the fluorescent protein brightness that can bias the measured FRET signal. After correction the response amplitude and sharpness (hill coefficient) are comparable to conventional chemoattractants (e.g. aspartate), indicating the general mechanisms underlying the response may be similar. The authors suggest that the biphasic response of Tar mutants may be due to pH influencing the activity of other enzymes (CheA, CheR or CheB), which will be an interesting direction for future study.
Weaknesses:
The measured response may be biased by adaptation, especially for weak potassium signals. For other attractant stimuli, the response typically shows a low plateau before it recovers (adapts). In the case of potassium, the FRET signal does not have an obvious plateau following the stimuli of small potassium concentrations, perhaps due to the faster adaptation compared to other chemoattractants. It is possible cells have already partially adapted when the response reaches its minimum, so the measured response may be a slight underestimate of the true response. Mutants without adaptation enzymes appear to be sensitive to potassium only at much larger concentrations, where the pH significantly disrupts the FRET signal; more accurate measurements would require development of new mutants and/or measurement techniques.
-
Reviewer #2 (Public Review):
Zhang et al investigated the biophysical mechanism of potassium-mediated chemotactic behavior in E coli. Previously, it was reported by Humphries et al that the potassium waves from oscillating B subtilis biofilm attract P aeruginosa through chemotactic behavior of motile P aeruginosa cells. It was proposed that K+ waves alter PMF of P aeruginosa. However, the mechanism was this behaviour was not elusive. In this study, Zhang et al demonstrated that motile E coli cells accumulate in regions of high potassium levels. They found that this behavior is likely resulting from the chemotaxis signalling pathway, mediated by an elevation of intracellular pH. Overall, a solid body of evidence is provided to support the claims. However, the impacts of pH on the fluorescence proteins need to be better evaluated. In its current form, the evidence is insufficient to say that the fluoresce intensity ratio results from FRET. It may well be an artefact of pH change.
The authors now carefully evaluated the impact of pH on their FRET sensor by examining the YFP and CFP fluorescence with no-receptor mutant. The authors used this data to correct the impact of pH on their FRET sensor. This is an improvement, but the mathematical operation of this correction needs clarification. This is particularly important because, looking at the data, it is not fully convincing if the correction was done properly. For instance, 3mM KCl gives 0.98 FRET signal both in Fig3 and FigS4, but there is almost no difference between blue and red lines in Fig 3. FigS4 is very informative, but it does not address the concern raised by both reviewers that FRET reporter may not be a reliable tool here due to pH change.
The authors show the FRET data with both KCl and K2SO4, concluding that the chemotactic response mainly resulted from potassium ions. However, this was only measured by FRET. It would be more convincing if the motility assay in Fig1 is also performed with K2SO4. The authors did not address this point. In light of complications associated with the use of the FRET sensor, this experiment is more important.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This paper provides a straightforward mechanism of how mycobacterial cAMP level is increased under stressful conditions and shows that the increase is important for the survival of the bacterium in animal hosts. The cAMP level is increased by decreasing the expression of an enzyme that degrades cAMP.
Strengths:
The paper shows that under different stresses the response regulator PhoP represses a phosphodiesterase (PDE) that degrades cAMP specifically. Identification of<br /> PhoP as a regulator of cAMP is significant progress in understanding Mtb pathogenesis, as increase in cAMP apparently increases bacterial survival upon infection. On the practical side, reduction of cAMP by increasing PDE can be a means to attenuate the growth of the bacilli. The results have wider implications since PhoP is implicated in controlling diverse mycobacterial stress responses and many bacterial pathogens modulate host cell cAMP level. The results here are straightforward, internally consistent, and of both theoretical and applied interests. The results also open considerable future work, especially how increases in cAMP level help to increase survival of the pathogen.
Weaknesses:
It is not clear whether PhoP-PDE Rv0805 is the only pathway to regulate cAMP level under stress.
-
Reviewer #2 (Public Review):
Summary: In the manuscript, the authors have presented new mechanistic details to show how intracellular cAMP levels are maintained linked to the phosphodiesterase enzyme which in turn is controlled by PhoP. Later, they showed the physiological relevance linked to altered cAMP concentrations.
Strengths: Well thought out experiments. The authors carefully planned the experiments well to uncover the molecular aspects of it diligently.
Weaknesses: Some fresh queries were made based on the author's previous responses and hope to get satisfactory answers this time.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This work describes the mechanism of protein disaggregation by the ClpL AAA+ protein of Listeria monocytogenes. Using several model subtrate proteins the authors first show that ClpL possesses a robust disaggregase activity that does not further require the endogenous DnaK chaperone in vitro. In addition, they found that ClpL is more thermostable than the endogenous L. monocytogenes DnaK and has the capacity to unfold tightly folded protein domains. The mechanistic basis for the robust disaggregase activity of ClpL was also dissected in vitro and in some cases, supported by in vivo data performed in chaperone-deficient E. coli strains. The data presented show that the two AAA domains, the pore-2 site and the N-terminal domain (NTD) of ClpL are critical for its disaggregase activity. Remarkably, grafting the NTD of ClpL to ClpB converted ClpB into an autonomous disaggregase, highlighting the importance of such a domain in the DnaK-independent disaggregation of proteins. The role of the ClpL NTD domain was further dissected, identifying key residues and positions necessary for aggregates recognition and disaggregation. Finally, using sets of SEC and negative staining EM experiments combined with conditional covalent linkages and disaggregation assays the authors found that ClpL shows significant structural plasticity, forming dynamic hexameric and heptameric active single rings that can further form higher assembly states via their middle domains.
Strengths:
The manuscript is well written and the experimental work well executed. It contains a robust and complete set of in vitro data that push further our knowledge of such important disaggregases. It shows the importance of the atypical ClpL N-terminal domain in the disaggregation process as well as the structural malleability of such AAA+ proteins. More generally, this work expands our knowledge of heat resistance in bacterial pathogens.
Weaknesses:
There is no specific weakness in this work, although it would have helped to have a drawing model showing how ClpL performs protein disaggregation based on their new findings. The function of the higher assembly states of ClpL remains unresolved and will need further extensive research. Similarly, it will be interesting in the future to see whether the sole function of the plasmid encoded ClpL is to cope with general protein aggregates under heat stress.
-
Reviewer #2 (Public Review):
The manuscript by Bohl et al. is an interesting and carefully done study on the biochemical properties and mode of action of potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes. ClpL is encoded on plasmids. It shows high thermal stability and provides Listeria monocytogenes food-pathogen substantial increase in resistance to heat. The authors show that ClpL interacts with aggregated proteins through the aromatic residues present in its N-terminal domain and subsequently unfolds proteins from aggregates translocating polypeptide chains through the central pore in its oligomeric ring structure. The structure of ClpL oligomers was also investigated in the manuscript. The results suggest that mono-ring structure and not dimer or tetramer of rings, observed in addition to mono-ring structures under EM, is an active specie of disaggregase. In the revised version additional data is presented suggesting that dimer or tetramer of ClpL rings play a protective role in cell by restricting ClpL activity.
Presented experiments are conclusive and well controlled. I think the presentation and discussion of results are better in revised version.<br /> The study's strength lies in the direct comparison of ClpL biochemical properties with autonomous ClpG disaggregase present in selected Gram-negative bacteria and well-studied E. coli system consisting of ClpB disaggregase and DnaK and its cochaperones. This puts the results in a broader context.
-
Reviewer #3 (Public Review):
Summary:
This manuscript details the characterization of ClpL from L. monocytogenes as a potent and autonomous AAA+ disaggregase. The authors demonstrate that ClpL has potent and DnaK-independent disaggregase activity towards a variety of aggregated model substrates, and that this disaggregase activity appears to be greater than that observed with the canonical DnaK/ClpB co-chaperone. Furthermore, LmClpL appears to have greater thermostability as compared to LmDnaK, suggesting that ClpL-expressing cells may be able to withstand more severe heat stress conditions. Interestingly, LmClpL can provide thermotolerance to E. coli that have been genetically depleted of either ClpB or in cells expressing a mutant DnaK103. The authors further characterized the mechanisms by which ClpL interacts with protein aggregates, identifying that the N-terminal domain of ClpL is essential for disaggregase function. Lastly, by EM and mutagenesis analysis the authors report that ClpL can exist in a variety of larger macromolecular complexes, including dimer or trimers of hexamers/heptamers, and they provide evidence that the N-terminal domains of ClpL prevent dimer ring formation, thus promoting an active and substrate-binding ClpL complex. Throughout this manuscript the authors compare LmClpL to ClpG, another potent and autonomous disaggregase found in gram-negative bacteria that has been reported on previously, demonstrating that these two enzymes share homologous activity and qualities. Taken together this report clearly establishes ClpL as a novel and autonomous disaggregase.
Analysis:
The work presented in this report amounts to a significant body of novel and significant work that will be of interest to protein chaperone community. Furthermore, by providing examples of how ClpL can provide in vivo thermotolerance to both E. coli and L. gasseri the authors have expanded the significance of this work and provides novel insight into potential mechanisms responsible for thermotolerance in food-borne pathogens. The figures are clearly depicted, well-labeled, and easy to understand, and the manuscript is well-written. Experimentally the work was performed to a high standard with excellent controls, aiding in the ability for the audience to understand the major findings and conclusions. Additionally, the authors have effectively and efficiently expanded on their work through the peer review process, further increasing the understandability and significance of their work. Overall, the data presented, and analysis thereof, support the authors' conclusions, and thus this study represents an important addition to our understanding of molecular chaperone biochemistry. Lastly, this study establishes new avenues for research into autonomous disaggregates, their role in in vivo thermotolerance, and the mechanisms by which AAA+ chaperones recognize and interact with substrate proteins.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
Summary:
Previously, this group showed that Tgfbr1 regulates the reorganization of the epiblast and primitive streak into the chordo-neural hinge and tailbud during the trunk-to-tail transition. Gdf11 signaling plays a crucial role in orchestrating the transition from trunk to tail tissues in vertebrate embryos, including the reallocation of axial progenitors into the tailbud and Tgfbr1 plays a key role in mediating its signaling activity. Progenitors that contribute to the extension of the neural tube and paraxial mesoderm into the tail are located in this region. In this work, the authors show that Tgfbr1 also regulates the reorganization of the posterior primitive streak/base of allantois and the endoderm as well.
By analyzing the morphological phenotypes and marker gene expression in Tgfbr1 mutant mouse embryos, they show that it regulates the merger of somatic and splanchnic layers of the lateral plate mesoderm, the posterior streak derivative. They also present evidence suggesting that Tgfbr1 acts upstream of Isl1 (key effector of Gdf11 signaling for controlling differentiation of lateral mesoderm progenitors) and regulates the remodelling of the major blood vessels, the lateral plate mesoderm and endoderm associated with the trunk-to-tail transition. Through a detailed phenotypic analysis, the authors observed that, similarly to Isl1 mutants, the lack of Tgfbr1 in mouse embryos hinders the activation of hindlimb and external genitalia maker genes and results in a failure of lateral plate mesoderm layers to converge during tail development. As a result, they interpret that ventral lateral mesoderm, which generates the peri cloacal mesenchyme and genital tuberculum, fails to specify.
They also show defects in the morphogenesis of the dorsal aorta at the trunk/tail juncture, resulting in an aberrant embryonic/extraembryonic vascular connection. Endoderm reorganization defects following abnormal morphogenesis of the gut tube in the Tgfbr1 mutants cause failure of tailgut formation and cloacal enlargement. Thus, Tgfbr1 activity regulates the morphogenesis of the trunk/tail junction and the morphogenetic switch in all germ layers required for continuing post-anal tail development. Taken together with the previous studies, this work places Gdf11/8 - Tgfbr1 signaling at the pivot of trunk-to-tail transition and the authors speculate that critical signaling through Tgfbr1 occurs in the posterior-most part of the caudal epiblast, close to the allantois.
Strengths:
The data shown is solid with excellent embryology/developmental biology. This work demonstrates meticulous execution and is presented in a comprehensive and coherent manner. Although not completely novel, the results/conclusions add to the known function of Gdf11 signaling during the trunk-to-tail transition.
Weaknesses:
The authors rely on the expression of a small number of key regulatory genes to interpret the developmental defects. The alternative possibilities remain to be ruled out thoroughly. The manuscript is also quite descriptive and would benefit from more focused highlighting of the novelty regarding the absence of Tgfbr1 in the mouse embryo. They should also strengthen some of their conclusions with more details in the results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In the present study, Rincon-Torroella et al. developed ME3BP-7, a microencapsulated formulation of 3BP, as an agent to target MCT1 overexpressing PDACs. They provided evidence showing the specific killing of PDAC cells with MCT1 overexpressing in vitro, along with demonstrating the safety and anti-tumor efficacy of ME3BP-7 in PDAC orthotopic mouse models.
Strengths:<br /> * Developed a novel agent.<br /> * Well-designed experiments and an organized presentation of data that support the conclusions drawn.
Weaknesses:<br /> There are some minor issues that could enhance the clarity and completeness of the study:
(1) Statistical results should be visually presented in Figure 4 and Figure S1.
(2) Given the tumor heterogeneity and the identification of focal high expression of MCT1 in Figure 7 and Figure S5B, it is suggested that the authors include the results of immunohistochemical (IHC) analysis of MCT1 expression in both control and ME3BP-7 treated tumor tissues. This addition may offer insight into whether the remaining tumors are composed of PDAC cells with negative MCT1 expression, while the cells with relatively high levels of MCT1 expression were eliminated by ME3BP-7 treatment.
(3.)The authors are encouraged to discuss the future directions for improving the efficacy of this study. For example, exploring the combination of ME3BP-7 with a glutaminase-1 inhibitor (PMID 37891897) could be a valuable avenue for further research.
-
Reviewer #2 (Public Review):
Summary:<br /> In the manuscript by Rincon-Torroella et al, the authors evaluated the therapeutic potential of ME3BP-7, a microencapsulated formulation of 3BP which specifically targets MCT-1 high tumor cells, in pancreatic cancer models. The authors showed that, compared to 3BP, ME3BP-7 exhibited much-enhanced stability in serum. In addition, the authors confirmed the specificity of ME3BP-7 toward MCT-1 high tumor cells and demonstrated the in vivo anti-tumor effect of ME3BP-7 in orthotopic xenograft of human PDAC cell line and PDAC PDX model.
Strengths:<br /> (1) The study convincingly demonstrated the superior stability of ME3BP-7 in serum.<br /> (2) The specificity of ME3BP-7 and 3BP toward MCT-1 high PDAC cells was clearly demonstrated with CRISPR-mediated knockout experiments.
Weaknesses:<br /> The advantage of ME3BP-7 over 3BP under an in vivo situation was not fully established.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This work presents an in-depth characterization of the factors that influence the structural dynamics of the Clostridium botulinum guanidine-IV riboswitch (riboG). Using a single-molecule FRET, the authors demonstrate that riboG undergoes ligand and Mg2+ dependent conformational changes consistent with the dynamic formation of a kissing loop (KL) in the aptamer domain. Formation of the KL is attenuated by Mg2+ and Gua+ ligand at physiological concentrations as well as the length of the RNA. Interestingly, the KL is most stable in the context of just the aptamer domain compared to longer RNAs capable of forming the terminator stem. To attenuate transcription, binding of Gua+ and formation of the KL must occur rapidly after transcription of the aptamer domain but before transcription of the rest of the terminator stem.
Strengths:
(1) Single-molecule FRET microscopy is well suited to unveil the conformational dynamics of KL formation and the authors provide a wealth of data to examine the effect of the ligand and ions on riboswitch dynamics. The addition of complementary transcriptional readthrough assays provides further support for the author's proposed model of how the riboswitch dynamics contribute to function.
(2) The single-molecule data strongly support that the effect of Gua+ ligand and Mg2+ influence the RNA structure differently for varying lengths of the RNA. The authors also demonstrate that this is specific for Mg2+ as Na+ and K+ ions have little effect.
(3) The PLOR method utilized is clever and well adapted for both dual labeling of RNAs and examining RNA at various lengths to mimic co-transcriptional folding. Using PLOR, they demonstrate that a change in the structural dynamics and ligand binding can occur after the extension of the RNA transcript by a single nucleotide. Such a tight window of regulation has intriguing implications for kinetically controlled riboswitches.
Weaknesses:
(1) The authors use only one mutant to confirm that their FRET signal indicates the formation of the KL. Importantly, this mutation does not involve the nucleotides that are part of the KL interaction. It would be more convincing if the authors used mutations in both strands of the KL and performed compensatory mutations that restore base pairing. Experiments like this would solidify the structural interpretation of the work, particularly in the context of the full-length riboG RNA or in the co-transcriptional mimic experiments, which appear to have more conformational heterogeneity.
(2) The existence of the pre-folded state (intermediate FRET ~0.5) is not well supported in their data and could be explained by an acquisition artifact. The dwell times are very short often only a single frame indicating that there could be a very fast transition (< 0.1s) from low to high FRET that averages to a FRET efficiency of 0.5. To firmly demonstrate that this intermediate FRET state is metastable and not an artifact, the authors need to perform measurements with a faster frame rate and demonstrate that the state is still present.
(3) The PLOR method employs a non-biologically relevant polymerase (T7 RNAP) to mimic transcription elongation and folding near the elongation complex. T7 RNAP has a shorter exit channel than bacterial RNAPs and therefore, folding in the exit channel may be different between different RNAPs. Additionally, the nascent RNA may interact with bacterial RNAP differently. For these reasons, it is not clear how well the dynamics observed in the T7 ECs recapitulate riboswitch folding dynamics in bacterial ECs where they would occur in nature.
-
Reviewer #2 (Public Review):
Summary:
Gao et al. used single-molecule FRET and step-wise transcription methods to study the conformations of the recently reported guanidine-IV class of bacterial riboswitches that upregulate transcription in the presence of elevated guanidine. Using three riboswitch lengths, the authors analyzed the distributions and transitions between different conformers in response to different Mg2+ and guanidine concentrations. These data led to a three-state kinetic model for the structural switching of this novel class of riboswitches whose structures remain unavailable. Using the PLOR method that the authors previously invented, they further examined the conformations, ligand responses, and gene-regulatory outcomes at discrete transcript lengths along the path of vectorial transcription. These analyses uncover that the riboswitch exhibits differential sensitivity to ligand-induced conformational switching at different steps of transcription, and identify a short window where the regulatory outcome is most sensitive to ligand binding.
Strengths:
Dual internal labeling of long RNA transcripts remains technically very challenging but essential for smFRET analyses of RNA conformations. The authors should be commended for achieving very high quality and purity in their labelled RNA samples. The data are extensive, robust, thorough, and meticulously controlled. The interpretations are logical and conservative. The writing is reasonably clear and the illustrations are of high quality. The findings are significant because the paradigm uncovered here for this relatively simple riboswitch class is likely also employed in numerous other kinetically regulated riboswitches. The ability to quantitatively assess RNA conformations and ligand responses at multiple discrete points along the path towards the full transcript provides a rare and powerful glimpse into co-transcriptional RNA folding, ligand-binding, and conformational switching.
Weaknesses:
The use of T7 RNA polymerase instead of a near-cognate bacterial RNA polymerase in the termination/antitermination assays is a significant caveat. It is understandable as T7 RNA polymerase is much more robust than its bacterial counterparts, which probably will not survive the extensive washes required by the PLOR method. The major conclusions should still hold, as the RNA conformations are probed by smFRET at static, halted complexes instead of on the fly. However, potential effects of the cognate RNA polymerase cannot be discerned here, including transcriptional rates, pausing, and interactions between the nascent transcript and the RNA exit channel, if any. The authors should refrain from discussing potential effects from the DNA template or the T7 RNA polymerase, as these elements are not cognate with the riboswitch under study.
-
Reviewer #3 (Public Review):
Summary:
In this article, Gao et. al. uses single-molecule FRET (smFRET) and position-specific labelling of RNA (PLOR) to dissect the folding and behavioral ligand sensing of the Guanidine-IV riboswitch in the presence and absence of the ligand guanidine and the cation Mg2+. The results provided valuable information on the mechanistic aspects of the riboswitch, including the confirmation of the kissing loop present in the structure as essential for folding and riboswitch activity. Co-transcriptional investigations of the system provided key information on the ligand-sensing behavior and ligand-binding window of the riboswitch. A plausible folding model of the Guanidine-IV riboswitch was proposed as a final result. The evidence presented here sheds additional light on the mode of action of transcriptional riboswitches.
Strengths:
The investigations were very thorough, providing data that supports the conclusions. The use of smFRET and PLOR to investigate RNA folding has been shown to be a valuable tool for the understanding of folding and behavior properties of these structured RNA molecules. The co-transcriptional analysis brought important information on how the riboswitch works, including the ligand-sensing and the binding window that promotes the structural switch. The fact that investigations were done with the aptamer domain, aptamer domain + terminator/anti-terminator region, and the full-length riboswitch were essential to inform how each domain contributes to the final structural state if in the presence of the ligand and Mg2+.
Weaknesses:
The system has its own flaws when compared to physiological conditions. The RNA polymerase used (the study uses T7 RNA polymerase) is different from the bacterial RNA polymerase, not only in complexity, but also in transcriptional speed, which can directly interfere with folding and ligand-sensing. Additionally, rNTPs concentrations were much lower than physiological concentrations during transcription, likely causing a change in the polymerase transcriptional speed. These important aspects and how they could interfere with results are important to be addressed to the broad audience. Another point of consideration to be aware of is that the bulky fluorophores attached to the nucleotides can interfere with folding to some extent.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, Zeng and Staley provide a valuable analysis of the molecular requirements for the export of a reporter mRNA that contains a lariat structure at its 5' end in the budding yeast S. cerevisiae. The authors provide evidence that this is regulated by the main mRNA export machinery (Yra1, Mex67, Nab2, Npl3, Tom1, and Mlp1). Of note, Mlp1 has been mainly implicated in the nuclear retention of unspliced pre-mRNA (i.e. quality control), and relatively little has been done to investigate its role in mRNA export in budding yeast.
Strengths:
There is relatively little information in the current literature about the nuclear export of splicing intermediates. This paper provides one of the first analyses of this process and dissects the molecular components that promote this form of RNA export. Overall, the strength of the data presented in the manuscript is solid. The paper is well written and the message is clear and of general interest to the mRNA community.
Weaknesses:
There are three problems with the paper, although these are not major and likely would not affect the final model as most aspects of the molecular details are confirmed by multiple complementary assays.
(1) The brG reporter produces both unspliced pre-mRNA and a lariat-containing intermediate RNA. Based on the primer extension assay the authors claim that only 33% of the final product is in pre-mRNA form and that this "is insufficient to account for the magnitude of the cytoplasmic signal from the brG reporter (83%)". Nevertheless, it is possible that primer extension is incomplete or that the lariat-containing RNA is inaccessible for smFISH. The authors could easily perform a dual smFISH experiment (similar to Adivarahan et l., Molecular Cell 2018) where exon 1 is labelled with probes of one color, and the region that overlaps the lariat-containing intermediate is labelled with probes of a second color. If the authors are correct, then one-third of the smFISH foci should have both labels and the rest would have only the second label. This would also confirm that the latter (i.e. the lariat-containing RNAs) are exported to the cytoplasm. Using this approach, the authors could then show that MLP1-depletion (or depletion of any of the other factors) affect(s) one pool of RNAs (i.e. those that are lariat-containing) but not the other (i.e. pre-mRNA). Including these experiments would make the evidence for their model more convincing.
(2) In some cases, the number of smFISH foci appears to change drastically depending on the genetic background. This could either be due to the stochastic nature of mRNA expression between cells or reflect real differences between the genetic backgrounds that could alter the interpretation of the other observations.
(3) The authors state in the discussion that "the general mRNA export pathway transports discarded lariat intermediates into the cytoplasm". Although this appears to be the case for the reporters that are investigated in this paper, I don't think that the authors should make such a broad sweeping claim. It may be that some discarded lariat intermediates are exported to the cytoplasm while others are targeted for nuclear retention and/or decay.
-
Reviewer #2 (Public Review):
In this report, Zeng and Staley have used an elegant combination of RNA imaging approaches (single molecule FISH), RNA co-immunoprecipitations, and translation reporters to characterize the factors and pathways involved in the nuclear export of splicing intermediates in budding yeast. Their study notably involves the use of specific reporter genes, which lead to the accumulation of pre-mRNA and lariat species, in a battery of mutants impacting mRNA export and quality control.
The authors convincingly demonstrate that mRNA species expressed from such reporters are exported to the cytoplasm in a manner depending on the canonical mRNA export machinery (Mex67 and its adaptors) and the nuclear pore complex (NPC) basket (Mlp1). Interestingly, they provide evidence that the export of splicing intermediates requires docking and subsequent undocking at the nuclear basket, a step possibly more critical than for regular mRNAs.
However, their assays do not always allow us to define whether the impacted mRNA species correspond to lariats and/or pre-mRNAs. This is all the more critical since their findings apparently contradict previous reports that supported a role for the nuclear basket in pre-mRNA quality control. These earlier studies, which were similarly based on the use of dedicated yet distinct reporters, had found that the nuclear basket subunit Mlp1, together with different cofactors, prevents the export of unspliced mRNA species. It would be important to clarify experimentally and discuss the possible reasons for these discrepancies.
-
Reviewer #3 (Public Review):
Summary:
Zeng and Stanley show that in yeast, intron-lariat intermediates that accumulated due to defects in pre-mRNA splicing, are transported to the cytoplasm using the canonical mRNA export pathway. Moreover, they demonstrate that export requires the nuclear basket, a sub-structure of the nuclear pore complex previously implicated with the retention of immature mRNAs. These observations are important as they put into question a longstanding model that the main role of the nuclear basket is to ensure nuclear retention of immature or faulty mRNAs.
Strengths:
The authors elegantly combine genetic, biochemical, and single-molecule resolution microscopy approaches to identify the cellular pathway that mediates the cytoplasmic accumulation of lariat intermediates. Cytoplasmic accumulation of such splicing intermediates had been observed in various previous studies but how these RNAs reach the cytoplasm had not yet been investigated. By using smFISH, the authors present compelling, and, for the first time, direct evidence that these intermediates accumulate in the cytoplasm and that this requires the canonical mRNA export pathway, including the RNA export receptor Mex67 as well as various RNA-binding proteins including Yra1, Npl3 and Nab2. Moreover, they show that the export of lariat intermediates, but not mRNAs, requires the nuclear basket (Mlp1) and basket-associated proteins previously linked to the mRNP rearrangements at the nuclear pore. This is a surprising and important observation with respect to a possible function of the nuclear basket in mRNA export and quality control, as it challenges a longstanding model that the role of the basket in mRNA export is primarily to act as a gatekeeper to ensure that immature mRNAs are not exported. As discussed by the authors, their finding suggests a role for the basket in promoting the export of certain types of RNAs rather than retention, a model also supported by more recent studies in mammalian cells. Moreover, their findings also collaborate with a recent paper showing that in yeast, not all nuclear pores contain a basket (PMID: 36220102), an observation that also questioned the gatekeeper model of the basket, as it is difficult to imagine how the basket can serve as a gatekeeper if not all nuclear pore contain such a structure.
Weaknesses:
One weakness of this study is that all their experiments rely on using synthetic splicing reporter containing a lacZ gene that produces a relatively long transcript compared to the average yeast mRNA.
The rationale for using a reporter containing the brG (G branch point) resulting in more stable lariat intermediates due to them being inefficient substrates for the debranching enzyme Dbr1 could be described earlier in the manuscript, as this otherwise only becomes clear towards the end, what is confusing.
Discussion of their observation in the context that, in yeast, not all pores contain a basket would be useful.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Hippo pathway activity is required for pancreas morphogenesis, but its role in endocrine pancreas function remains elusive. The author aims to study the function of the TEAD1 gene in b-cells.
Strengths:
The authors generated TEAD1 conditional knockout animals by crossing the TEAD1f/f mice with three Cre strains (RIP-Cre, Ins1-Cre, and MIP-CreERT). In all of them, the KO animals showed progressive loss of insulin secretion with normal beta cell mass. Further characterization of the animals indicated glucose-induced insulin secretion defect and increased beta cell proliferation rate. RNA-Seq and ChIP-Seq experiments identified Pdx1, MafA, and Glut2, etc. as direct targets of TEAD1, which might be responsible for the insulin secretion defect in the animals. Of interest, the authors also uncovered the cell cycle-related gene p16 as a direct target of TEAD1. Reduction of p16 is likely to drive the beta cell proliferation in the TEAD1 knockout model. Thus, they proposed that TEAD1 is a regulator of the proliferative quiescence process in beta cells. Overall, the evidence provided by the authors is highly relevant and supports their conclusion.
Weaknesses:
(1) The authors don't explicitly mention that some results appeared in a previous publication (https://doi.org/10.1093/nar/gkac1063) from them.
(2) The authors begin their story by introducing TEAD1 as part of the Hippo pathway. They showed Taz expression data in Figure 1. Did they do any experiments to detect Taz in their TEAD1 model? Did the authors detect any expression changes in CTGF following TEAD1 knockout? I could not see this changed. The phenotype characterization data presented here contrasts with what has been shown in TAZ b-cell knockout mice (https://doi.org/10.1101/2022.05.31.494216). Based on the data presented here, Hippo is not involved, which should at least be discussed in length.
(3) Figure 1B - TAZ staining looks different in the three-month age group.
(4) TEAD ChIP-seq data doesn't look very convincing to me. It's hard to tell whether those highlighted regions in Figures 3A and 5J were signals or background noise. Although the authors also performed ChIP-qPCR in MIN6, it's unclear whether these binding events occur in vivo. The analysis of ChIP-seq dataset is limited as well. How many peaks called? What proportion of differentially expressed genes are bound by TEAD1? Was TEAD1 also detectable at NGN3 and NEUROD1 gene regions? If acquiring enough cells is not possible, the authors could try CUT&RUN or CUT&Tag to improve the data quality.
(5) The authors should perform RNA-seq or gene expression studies in MIP-CreERT to confirm, which could help narrow down the actual targets of TEAD1 as well.
(6) Figure 6 - the experiment lacks a control: Ezh2 beta cell KO. In addition to p16, Ezh2, and PRC2 have other targets in beta-cells, the authors could not rule out the contribution of those to the phenotype, so the implication of this experiment is vague.
-
Reviewer #2 (Public Review):
In this manuscript, Lee et al. assessed the role of Tead1 in mouse beta cells using three Cre-driver lines: Rip-Cre, Ins-Cre, and Mip-CreERT. The authors demonstrate that loss of TEAD1 during development and in mature beta cells leads to increased cell-autonomous beta cell proliferation and reduced insulin secretion. The phenotype of Tead1 knockout is not surprising, given that it is a key player in the Hippo pathway - a well-characterized pathway controlling cell proliferation. However, as the authors suggested, the phenotype observed in Tead1 might be through other non-Hippo pathway factors as well. The authors further convincingly established PDX1 and p16 as the target of Tead1 in controlling beta cell function and proliferation correspondingly. I have the following specific comments:
(1) As the authors mentioned, there are concerns over the usage of some Cre transgenic lines. Another useful control would be the naive Cre line that is not bred to floxed mutant, in addition to the floxed mice used by the authors in the manuscript here.
(2) The logic to rely on the deletion of Ezh2 to restore p16 in the Tead1 knockout mice is unclear. Ezh2 has so many more targets than p16. Why not a direct rescue experiment by overexpression of p16?
(3) The observed correlation of PDX1 and TEAD1 in expression in human islets is intriguing. But does this correlation translate to beta cell proliferation and function? Does TEAD1 knockout in human islets elicit a similar proliferation versus function response?
(4) The argument of Tead1 only controls maturation but not differentiation and that maturation function versus proliferation phenotype is independently controlled is weak. It appears that this conclusion is only based on that "many disallowed genes...were not altered in Tead1-deficient islets". Perhaps the authors can perform a formal comparison between the transcriptomic changes of Tead1 knockout and Myc overexpressing/Notch gain of function beta cells and show that these two processes are different. In addition, what are the signatures of genes that are upregulated in Tead1 knockout compared with controls?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Ewing sarcoma is an aggressive pediatric cancer driven by the EWS-FLI oncogene. Ewing sarcoma cells are addicted to this chimeric transcription factor, which represents a strong therapeutic vulnerability. Unfortunately, targeting EWS-FLI has proven to be very difficult, and a better understanding of how this chimeric transcription factor works is critical to achieving this goal. Towards this perspective, the group had previously identified a DBD-𝛼4 helix (DBD) in FLI that appears to be necessary to mediate EWS-FLI transcriptomic activity. Here, the authors used multi-omic approaches, including CUT&tag, RNAseq, and MicroC to investigate the impact of this DBD domain. Importantly, these experiments were performed in the A673 Ewing sarcoma model where endogenous EWS-FLI was silenced, and EWS-FLI-DBD proficient or deficient isoforms were re-expressed (isogenic context). They found that the DBD domain is key to mediating EWS-FLI cis activity (at msat) and to generating the formation of specific TADs. Furthermore, cells expressing DBD-deficient EWS-FLI display very poor colony-forming capacity, highlighting that targeting this domain may lead to therapeutic perspectives.
Strengths:
The group has strong expertise in Ewing sarcoma genetics and epigenetics and also in using and analyzing this model (Theisen et al., 2019; Boone et al., 2021; Showpnil et al., 2022).
They aim at better understanding how EWS-FLI mediated its oncogenic activity, which is critical to eventually identifying novel therapies against this aggressive cancer.
They use the most recent state-of-the-art omics methods to investigate transcriptome, epigenetics, and genome conformation methods. In particular, Micro-C enables achieving up to 1kb resolved 3D chromatin structures, making it possible to investigate a large number of TADs and sub-TADs structures where EWS-FLI1 mediates its oncogenic activity.
They performed all their experiments in an Ewing sarcoma genetic background (A673 cells) which circumvents bias from previously reported approaches when working in non-orthologous cell models using similar approaches.
Weaknesses:
The main weakness comes from the poor reproducibility of Micro-C data. Indeed, it appears that the distances/clustering observed between replicates are typically similar or even larger than between biological conditions. For instance, in Figure 1B, I do not see any clustering when considering DBD1, DBD2, DBD+1, DBD+2.
Lanes 80-83: "KD replicates clustered together with DBD replicate 1 on both axes and with DBD replicate 2 on the y-axis. DBD+ replicates, on the other hand, clustered away from both KD and DBD replicates. These observations suggest that the global chromatin structure of DBD replicates is more similar to KD than DBD+ replicates."
When replacing DBD replicate 1 with DBD replicate 2, their statement would not be true anymore.
Additional replicates to clarify this aspect seem absolutely necessary since those data are paving the way for the entire manuscript.
Similarly:<br /> - In Figure 1C, how would the result look when comparing DBD2/KD2/DBD+2? Same when comparing DBD 1 with KD1 and DBD+1. Would the difference go in the same direction?<br /> - Figure 1D-E. How would these plots look like when comparing each replicate to each other's? How much difference would be observed when comparing, for instance, DBD1/DBD2 ? or DBD1/DBD+1?<br /> - Figure 2: again, how would these analyses look like when performing the analysis with only DBD1/DBD+1/KD1 or DBD2/DBD+2/KD?
Another major question is the stability of EWS-FLI DBD vs EWS-FLI DBD+ proteins. Indeed, it seems that they have more FLAG (i.e., EWS-FLI) peaks in the DBD+ condition compared to the DBD condition (Figure 2B). In the WB, FLAG intensities seem also higher (2/3 replicates) in DBD+ condition compared to the DBD condition (Figure S1B).
Would it be possible that DBD+ is just more expressed or more stable than DBD? The higher stability of the re-expressed DBD+ could also partially explain their results independently of the 3D conformational change. In other words, can they exclude that DBD+ and DBD binding are not related to their respective protein stability or their global re-expression levels?
Surprisingly, WB FLI bands in DBD+ conditions are systematically (3/3 replicates) fainter than in DBD conditions (Figure S1B). How do the authors explain these opposite results between FLI and FALG in the WB?
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Bayanjargal et al. entitled "The DBD-alpha4 helix of EWS::FLI is required for GGAA microsatellite binding that underlies genome regulation in Ewing sarcoma" reports on the critical role of a small alpha helix in the DNA binding domain (DBD) of the FLI1 portion of EWS::FLI1 that is critical for binding to repetitive stretches of GGAA-motifs, i.e. GGAA microsatellites, which serve as potent neoenhancers in Ewing sarcoma.
Strengths:
The paper is generally well-written, and easy to follow and the data presented are of high quality, well-described and underpin the conclusions of the authors. The report sheds new light on how EWS::FLI1 mechanistically binds to and activates GGAA microsatellite enhancers, which is of importance to the field.
Weaknesses:
While there are no major weaknesses in this paper, there are a few minor issues that the authors may wish to address:
(1) While the official protein symbol for the gene EWSR1 is indeed EWS, the protein symbol for the gene FLI1 is identical, i.e. FLI1. The authors nominate the fusion oncoprotein EWS::FLI1 (even in the title) but it appears more adequate to use EWS::FLI1.
(2) The used cell lines should be spelled according to their official nomenclature (e.g. A-673 instead of A673).
(3) It appears as if the vast majority of results were generated in a single Ewing sarcoma cell line (A-673) which is an atypical Ewing sarcoma cell line harboring an activating BRAF mutation and may be genomically quite unstable as compared to other Ewing sarcoma cell lines (Kasan et al. 2023 preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2023.11.20.567802v1). Hence, it may be supportive for the paper to recapitulate/cross-validate a few key results in other Ewing sarcoma cell lines, e.g. by using EWS::ERG-positive cell lines. Perhaps the authors could make use of available published data.
(4) Figure 6 and Supplementary Figure 5 are very interesting but focus on two selected target genes of the fusion (FCGRT and CCND1). It would be interesting to see whether these findings also extend to common EWS::ETS transcriptional signatures that have been reported. The authors could explore their data and map established consensus EWS::ETS signatures to investigate which other hubs might be affected at relevant target genes.
(5) Table 1 is a bit hard to read. In my opinion, it is not necessary to display P-values with up to 8 decimal positions. The gene symbols should be displayed in italic font.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors provide strong evidence that the cell surface E3 ubiquitin ligases RNF43 and ZNRF3, which are well known for their role in regulating cell surface levels of WNT receptors encoded by FZD genes, also target EGFR for degradation. This is a newly identified function for these ubiquitin ligases beyond their role in regulating WNT signaling. Loss of RNF43/ZNRF3 expression leads to elevated EGFR levels and signaling, suggesting a potential new axis to drive tumorigenesis, whereas overexpression of RNF43 or ZNRF3 decreases EGFR levels and signaling. Furthermore, RNF43 and ZNRF3 directly interact with EGFR through their extracellular domains.
Strengths:
The data showing that RNF43 and ZNRF3 interact with EGFR and regulate its levels and activity are thorough and convincing, and the conclusions are largely supported.
Weaknesses:
While the data support that EGFR is a target for RNF43/ZNRF3, some of the authors' interpretations of the data on EGFR's role relative to WNT's roles downstream of RNF43/ZNRF3 are overstated. The authors, perhaps not intentionally, promote the effect of RNF43/ZNRF3 on EGFR while minimizing their role in WNT signaling. This is the case in most of the biological assays (cell and organoid growth and mouse tumor models). For example, the conclusion of "no substantial activation of Wnt signaling" (page 14) in the prostate cancer model is currently not supported by the data and requires further examination. In fact, examination of the data presented here indicates effects on WNT/b-catenin signaling, consistent with previous studies.<br /> Cancers in which RNF43 or ZNRF3 are deleted are often considered to be "WNT addicted", and inhibition of WNT signaling generally potently inhibits tumor growth. In particular, treatment of WNT-addicted tumors with Porcupine inhibitors leads to tumor regression. The authors should test to what extent PORCN inhibition affects tumor (and APC-min intestinal organoid) growth. If the biological effects of RNF43/ZNRF3 loss are mediated primarily or predominantly through EGFR, then PORCN inhibition should not affect tumor or organoid growth.
-
Reviewer #2 (Public Review):
Using proteogenomic analysis of human cancer datasets, Yu et al, found that EGFR protein levels negatively correlate with ZNFR3/RNF43 expression across multiple cancers. Interestingly, they found that CRC harbouring the frequent RNF43 G659Vfs*41 mutation exhibits higher levels of EGFR when compared to RNF43 wild-type tumors. This is highly interesting since this mutation is generally not thought to influence Frizzled levels and Wnt-bcatenin pathway activity. Using CRISPR knockouts and overexpression experiments, the authors show that EGFR levels are modulated by ZNRF3/RNF43. Supporting these findings, modulation of ZNRF3/RNF43 activity using Rspondin also leads to increased EGFR levels. Mechanistically, the authors, show that ZNRF3/RNF43 ubiquitinate EGFR and leads to degradation. Finally, the authors present functional evidence that loss of ZNRF3/RNF43 unleashes EGFR-mediated cell growth in 2D culture and organoids and promotes tumor growth in vivo.
Overall, the conclusions of the manuscript are well supported by the data presented, but some aspects of the mechanism presented need to be reinforced to fully support the claims made by the authors. Additionally, the title of the paper suggests that ZNRF3 and RNF43 loss leads to the hyperactivity of EGFR and that its signalling activity contributes to cancer initiation/progression. I don't think the authors convincingly showed this in their study.
Major points:
(1) EGFR ubiquitination. All of the experiments supporting that ZNFR3/RNF43 mediates EGFR ubiquitination are performed under overexpression conditions. A major caveat is also that none of the ubiquitination experiments are performed under denaturing conditions. Therefore, it is impossible to claim that the ubiquitin immunoreactivity observed on the western blots presented in Figure 4 corresponds to ubiquitinated-EGFR species.
Another issue is that in Figure 4A, the experiments suggest that the RNF43-dependent ubiquitination of EGFR is promoted by EGF. However, there is no control showing the ubiquitination of EGFR in the absence of EGF but under RNF43 overexpression. According to the other experiments presented in Figures 4B, 4C, and 4F, there seems to be a constitutive ubiquitination of EGFR upon overexpression. How do the authors reconcile the role of ZNRF3/RNF43 vs c-cbl ?
(2) EGFR degradation vs internalization. In Figure 3C, the authors show experiments that demonstrate that RNF43 KO increases steady-state levels of EGFR and prevents its EGF-dependent proteolysis. Using flow cytometry they then present evidence that the reduction in cell surface levels of EGFR mediated by EGF is inhibited in the absence of RNF43. The authors conclude that this is due to inhibition of EGF-induced internalization of surface EGF. However, the experiments are not designed to study internalization and rather merely examine steady-state levels of surface EGFR pre and post-treatment. These changes are an integration of many things (retrograde and anterograde transport mechanisms presumable modulated by EGF). What process(es) is/are specifically affected by ZNFR3/RNF43 ? Are these processes differently regulated by c-cbl ? If the authors are specifically interested in internalization/recycling, the use of cell surface biotinylation experiments and time courses are needed to examine the effect of EGF in the presence or absence of the E3 ligases.
(3) RNF43 G659fs*41. The authors make a point in Figure 1D that this mutant leads to elevated EGFR in cancers but do not present evidence that this mutant is ineffective in mediated ubiquitination and degradation of EGFR. As this mutant maintains its ability to promote Frizzled ubiquitination and degradation, it would be important to show side by side that it does not affect EGFR. This would perhaps imply differential mechanisms for these two substrates.
(4) "Unleashing EGFR activity". The title of the paper implies that ZNRF3/RNF43 loss leads to increased EGFR expression and hence increased activity that underlies cancer. However, I could find only one direct evidence showing that increased proliferation of the HT29 cell line mutant for RNF43 could be inhibited by the EGFR inhibitor Erlotinib. All the other evidence presented that I could find is correlative or indirect (e.g. RPPA showing increased phosphorylation of pathway members upon RNF43 KO, increased proliferation of a cell line upon ZNRF3/ RNF43 KO, decreased proliferation of a cell line upon ZNRF3/RNF43 OE in vitro or in xeno...). Importantly, the authors claim that cancer initiation/ progression in ZNRF3/RNF43 mutants may in some contexts be independent of their regulation of Wnt-bcatenin signaling and relying on EGFR activity upregulation. However, this has not been tested directly. Could the authors leverage their znrf3/RNF43 prostate cancer model to test whether EGFR inhibition could lead to reduced cancer burden whereas a Frizzled or Wnt inhibitor does not?
More broadly, if EGFR signaling were to be unleashed in cancer, then one prediction would be that these cells would be more sensitive to EGFR pathway inhibition. Could the authors provide evidence that this is the case? Perhaps using isogenic cell lines or a panel of patient-derived organoids (with known genotypes).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Wang and colleagues conducted a study to determine the neurotransmitter identity of all neurons in C. elegans hermaphrodites and males. They used CRISPR technology to introduce fluorescent gene expression reporters into the genomic loci of NT pathway genes. This approach is expected to better reflect in vivo gene expression compared to other methods like promoter- or fosmid-based transgenes, or available scRNA datasets. The study presents several noteworthy findings, including sexual dimorphisms, patterns of NT co-transmission, neuronal classes that likely use NTs without direct synthesis, and potential identification of unconventional NTs (e.g. betaine releasing neurons). The data is well-described and critically discussed, including a comparison with alternative methods. Although many of the observations and proposals have been previously discussed by the Hobert lab, the current study is particularly valuable due to its comprehensiveness. This NT atlas is the most complete and comprehensive of any nervous system that I am aware of, making it an extremely useful tool for the community.
-
Reviewer #2 (Public Review):
Summary:
Together with the known anatomical connectivity of C. elegans, a neurotransmitter atlas paves the way toward a functional connectivity map. This study refines the expression patterns of key genes for neurotransmission by analyzing the expression patterns from CRISPR-knocked-in GFP reporter strains using the color-coded Neuropal strain to identify neurons. Along with data from previous scRNA sequencing and other reporter strains, examining these expression patterns enhances our understanding of neurotransmitter identity for each neuron in hermaphrodites and the male nervous system. Beyond the known neurotransmitters (GABA, Acetylcholine, Glutamate, dopamine, serotonin, tyramine, octopamine), the atlas also identifies neurons likely using betaine and suggests sets of neurons employing new unknown monoaminergic transmission, or using exclusively peptidergic transmission.
Strengths:
The use of CRISPR reporter alleles and of the Neuropal strain to assign neurotransmitter usage to each neuron is much more rigorous than previous analysis and reveals intriguing differences between scRNA seq, fosmid reporter, and CRISPR knock-in approaches. Among other mechanisms, these differences between approaches could be attributed to 3'UTR regulatory mechanisms for scRNA vs. knockin or titration of rate-limited negative regulatory mechanisms for fosmid vs. knockin. It would be interesting to discuss this and highlight the occurrences of these potential phenomena for future studies.
Weaknesses:
For GABAergic transmission, one shortcoming arises from the lack of improved expression pattern by a knockin reporter strain for the GABA recapture symporter snf-11. In its absence, it is difficult to make a final conclusion on GABA recapture vs GABA clearance for all neurons expressing the vesicular GABA transporter neurons (unc-47+) but not expressing the GAD/UNC-25 gene e.g. SIA or R2A neurons. At minima, a comparison of the scRNA seq predictions versus the snf-11 fosmid reporter strain expression pattern would help to better judge the proposed role of each neuron in GABA clearance or recycling.
Considering the complexities of different tagging approaches, like T2A-GFP and SL2-GFP cassettes, in capturing post-translational and 3'UTR regulation is important. The current formulation is simplistic. e.g. after SL2 trans-splicing the GFP RNA lacks the 5' regulatory elements, T2A-GFP self-cleavage has its own issues, and the his-44-GFP reporter protein does certainly have a different post-translational life than vesicular transporters or cytoplasmic enzymes.
Do all splicing variants of neurotransmitter-related genes translate into functional proteins? The possibility that some neurons express a non-functional splice variant, leading to his-74-GFP reporter expression without functional neurotransmitter-related protein production is not addressed. Also, one tagged splice variant of unc-25 is expected to fail to produce a GFP reporter, can this cause trouble?
-
Reviewer #3 (Public Review):
Summary:
In this paper, Wang et al. provide the most comprehensive description and comparison of the expression of the different genes required to synthesize, transport, and recycle the most common neurotransmitters (Glutamate, Acetylcholine, GABA, Serotonin, Dopamine, Octopamine, and Tyramine) used by hermaphrodite and male C. elegans. This paper will be a seminal reference in the field. Building and contrasting observations from previous studies using fosmid, multicopy reporters, and single-cell sequencing, they now describe CRISPR/Cas-9-engineered reporter strains that, in combination with the multicolor pan-neuronal labeling of all C. elegans neurons (NeuroPAL), allows rigorous elucidation of neurotransmitter expression patterns. These novel reporters also illuminate previously unappreciated aspects of neurotransmitter biology in C. elegans, including sexual dimorphism of expression patterns, co-transmission, and the elucidation of cell-specific pathways that might represent new forms of neurotransmission.
Strengths:
The authors set out to establish neurotransmitter identities in C. elegans males and hermaphrodites via varying techniques, including integration of previous studies, examination of expression patterns, and generation of endogenous CRISPR-labeled alleles. Their study is comprehensive, detailed, and rigorous, and achieves the aims. It is an excellent reference for the field, particularly those interested in biosynthetic pathways of neurotransmission and their distribution in vivo, in neuronal and non-neuronal cells.
Weaknesses:
No weaknesses were noted. The authors do a great job linking their characterizations with other studies and techniques, giving credence to their findings. As the authors note, there are sexually dimorphic differences across animals and varying expression patterns of enzymes. While it is unlikely there will be huge differences in the reported patterns across individual animals, it is possible that these expression patterns could vary developmentally, or based on physiological or environmental conditions. It is unclear from the study how many animals were imaged for each condition, and if the authors noted changes across individuals during development (could be further acknowledged in the discussion?)
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Dong et al here have studied the impact of the small Ras-like GTPase Rab10 on the exocytosis of dense core vesicles (DVC), which are important mediators of neuropeptide signaling in the brain. They use optical imaging to show that lentiviral depletion of Rab10 in mouse hippocampal neurons in culture independent of the established defects in neurite outgrowth hamper DCV exocytosis. They further demonstrate that such defects are paralleled by changes in ER morphology and defective ER-based calcium buffering as well as reduced ribosomal protein expression in Rab10-depleted neurons. Re-expression of Rab10 or supplementation of exogenous L-leucine to restore defective neuronal protein synthesis rescues impaired DCV secretion. Based on these results they propose that Rab10 regulates DCV release by maintaining ER calcium homeostasis and neuronal protein synthesis.
Strengths:
This work provides interesting and potentially important new insights into the connection between ER function and the regulated secretion of neuropeptides via DCVs. The authors combine advanced optical imaging with light and electron microscopy, biochemistry, and proteomics approaches to thoroughly assess the effects of Rab10 knockdown at the cellular level in primary neurons. The proteomic dataset provided may be valuable in facilitating future studies regarding Rab10 function. This work will thus be of interest to neuroscientists and cell biologists.
Weaknesses:
While the main conclusions of this study are comparably well supported by the data, I see three major weaknesses:
(1) For some of the data the statistical basis for analysis remains unclear. I.e. is the statistical assessment based on N= number of experiments or n = number of synapses, images, fields of view etc.? As the latter cannot be considered independent biological replicates, they should not form the basis of statistical testing.
(2) As it stands the paper reports on three partially independent phenotypic observations, the causal interrelationship of which remains unclear. Based on prior studies (e.g. Mercan et al 2013 Mol Cell Biol; Graves et al JBC 1997) it is conceivable that defective ER-based calcium signaling and the observed reduction in protein synthesis are causally related. For example, ER calcium release is known to promote pS6K1 phosphorylation, a major upstream regulator of protein synthesis and ribosome biogenesis. Conversely, L-leucine supplementation is known to trigger calcium release from ER stores via IP3Rs. Given the reported impact of Rab10 on axonal transport of autophagosomes and, possibly, lysosomes via JIP3/4 or other mediators (see e.g. Cason and Holzbaur JCB 2023) and the fact that mTORC1, the alleged target of leucine supplementation, is located on lysosomes, which in turn form membrane contacts with the ER, it seems worth analyzing whether the various phenotypes observed are linked at the level of mTORC1 signaling.
(3) The claimed lack of effect of Rab10 depletion on SV exocytosis is solely based on very strong train stimulation with 200 Aps, a condition not very well suited to analyze defects in SV fusion. The conclusion that Rab10 loss does not impact SV fusion thus seems premature.
-
Reviewer #2 (Public Review):
Summary:
In this paper, the authors assess the function of Rab10 in dense core vesicle (DCV) exocytosis using RNAi and cultured neurons. The author provides evidence that their knockdown (KD) is effective and provides evidence that DCV is compromised. They also perform proteomic analysis to identify potential pathways that are affected upon KD of Rab10 that may be involved in DCV release. Upon focusing on ER morphology and protein synthesis, the authors conclude that defects in protein synthesis and ER Ca2+ homeostasis contributes to the DVC release defect upon Rab10 KD. The authors claim that Rab10 is not involved in synaptic vesicle (SV) release and membrane homeostasis in mature neurons.
Strengths:
The data related to Rab10's role in DCV release seems to be strong and carried out with rigor. While the paper lacks in vivo evidence that this gene is indeed involved in DCV in a living mammalian organism, I feel the cellular studies have value. The identification of ER defect in Rab10 manipulation is not truly novel but it is a good conformation of studies performed in other systems. The finding that DCV release defect and protein synthesis defect seen upon Rab10 KD can be significantly suppressed by Leucine supplementation is also a strength of this work.
Weaknesses:
The data showing Rab10 is NOT involved in SV exocytosis seems a bit weak to me. Since the proteomic analysis revealed so many proteins that are involved in SV exo/encodytosis to be affected upon Rab10, it is a bit strange that they didn't see an obvious defect. Perhaps this could have been because of the protocol that the authors used to trigger SV release (I am not an E-phys expert but perhaps this could have been a 'sledge-hammer' manipulation that may mask any subtle defects)? Perhaps the authors can claim that DCV is more sensitive to Rab10 KD than SV, but I am not sure whether the authors should make a strong claim about Rab10 not being important for SV exocytosis.
Also, the authors mention "Rab10 does not regulate membrane homeostasis in mature neurons" but I feel this is an overstatement. Since the authors only performed KD experiments, not knock-out (KO) experiments, I believe they should not make any conclusion about it not being required, especially since there is some level of Rab10 present in their cells. If they want to make these claims, I believe the authors will need to perform conditional KO experiments, which are not performed in this study.
Finally, the authors show that protein synthesis and ER Ca2+ defects seem to contribute to the defect but they do not discuss the relationship between the two defects. If the authors treat the Rab10 KD cells with both ionomycin and Leucine, do they get a full rescue? Or is one defect upstream of the other (e.g. can they see rescue of ER morphology upon Leucine treatment)? While this is not critical for the conclusions of the paper, several additional experiments could be performed to clarify their model, especially considering there is no clear model that explains how Rab10, protein synthesis, ER homeostasis, and Ca2+ are related to DCV (but not SV) exocytosis.
-
Reviewer #3 (Public Review):
In the submitted manuscript, Dong and colleagues set out to dissect the role of the Rab10 small GTPase on the intracellular trafficking and exocytosis of dense core vesicles (DCVs). While the authors have already shown that Rab3 plays a central role in the exocytosis of DVC in mammalian neurons, the roles of several other Rab-members have been identified genetically, but their precise mechanism of action in mammalian neurons remains unclear. In this study, the authors use a carefully designed and thoroughly executed series of experiments, including live-cell imaging, functional calcium-imaging, proteomics, and electron microscopy, to identify that DCV secretion upon Rab10 depletion in adult neurons is primarily a result of dysregulated protein synthesis and, to a lesser extent, disrupted intracellular calcium buffering. Given that the full deletion of Rab10 has a deleterious effect on neurons and that Rab10 has a major role in axonal development, the authors cautiously employed the knock-down strategy from 7 DIV, to focus on the functional impact of Rab10 in mature neurons. The experiments in this study were meticulously conducted, incorporating essential controls and thoughtful considerations, ensuring rigorous and comprehensive results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Zhang et al., investigated the relationship between monocular and binocular responses of V1 superficial-layer neurons using two-photon calcium imaging. They found a strong relationship in their data: neurons that exhibited a greater preference for one eye or the other (high ocular dominance) were more likely to be suppressed under binocular stimulation, whereas neurons that are more equivalently driven by each other (low ocular dominance) were more likely to be enhanced by binocular stimulation. This result chiefly demonstrates the relationship between ocular dominance and binocular responses in V1, corroborating what has been shown previously using electrophysiological techniques with now much finer spatial resolution. The binocular responses were well-fitted by a model that institutes divisive normalization between the eyes that accounts for both the suppression and enhancement phenomena observed in the subpopulation of binocular neurons. In so doing, the authors reify the importance of incorporating ocular dominance in computational models of binocular combination.
The conclusions of this paper are well supported by the data. The authors deftly contextualize these important findings in the literature while also acknowledging the limitations of the methodology employed. Future work would do well to combine the spatial power of 2P imaging with the temporal power of electrophysiology to assess ocular dominance-dependent binocular combination across the V1 laminar microcircuit.
Strengths:
The two-photon imaging technique used to resolve the activity of individual neurons within intact brain tissue grants a host of advantages. Foremost, two-photon imaging confers considerably high spatial resolution. As a result, the authors were able to sample and analyze the activity from thousands of verified superficial-layer V1 neurons. The animal model used, awake macaques, is also highly relevant for the study of binocular combination. Macaques, like humans, are binocular animals, meaning they have forward-facing eyes that confer overlapping visual fields. Importantly, macaque V1 is organized into cortical columns that process specific visual features from the separate eyes just like in humans. In combination with a powerful imaging technique, this allowed the authors to evaluate the monocular and binocular response profiles of V1 neurons that are situated within neighboring ocular dominance columns, a novel feat. To this aim, the approach was well-executed and should instill confidence in the notion that V1 neurons combine monocular information in a manner that is dependent on the strength of their ocular dominance.
Weaknesses:
This study suffers no major weaknesses. The authors address the limitations of the methodology and have calibrated the interpretations accordingly.
-
Reviewer #2 (Public Review):
Summary:
This study examines the pattern of responses produced by the combination of left-eye and right-eye signals in V1. For this, they used calcium imaging of neurons in V1 of awake, fixating monkeys. They take advantage of calcium imaging, which yields large populations of neurons in each field of view. With their data set, they observe how response magnitude relates to ocular dominance across the entire population. They analyze carefully how the relationship changed as the visual stimulus switched from contra-eye only, ipsi-eye only, and binocular. As expected, the contra-eye dominated neurons responded strongly with a contra-eye only stimulus. The ipsi-eye dominated neurons responded strongly with an ipsi-eye only stimulus. The surprise was responses to a binocular stimulus. The responses were similarly weak across the entire population, regardless of each neuron's ocular dominance. They conclude that this pattern of responses could be explained by interocular divisive normalization, followed by binocular summation.
Strengths:
A major strength of this work is that the model-fitting was done on a large population of simultaneously recorded neurons. This approach is an advancement over previous work, which did model-fitting on individual neurons. The fitted model in the manuscript represents the pattern observed across the large population in V1, and washes out any particular property of individual neurons. Given the large neuronal population from which the conclusion was drawn, the authors provide solid evidence supporting their conclusion. They also observed consistency across 5 field of views.
The experiments were designed and executed appropriately to test their hypothesis. Their data support their conclusion.
Weaknesses:
The nonlinear interocular suppression found in this study, could potentially be partially exaggerated by the nonlinear properties of calcium signals. One of the authors of this study has previously reported that the particular GCaMP used in this study has a nice proportional relationship with firing rate of a neuron. So the concern of exaggeration probably does not apply to this particular study. The concern would apply to others who try similar measurements with other versions of GCaMP.
The implication of their finding is that strong ocular dominance is the result of release from interocular suppression by a monocular stimulus, rather than the lack of binocular combination as many traditional studies have assumed. This could significantly advance our understanding of the binocular combination circuitry of V1. The entire population of neurons could be part of a binocular combination circuitry present in V1.
-
Reviewer #3 (Public Review):
Summary
The authors have made simultaneous recordings of the responses of large numbers of neurons from the primary visual cortex of macaque monkeys using optical two-photon imaging of calcium signals from the superficial layers of the cortex. Recordings were made to compare the responses of the cortical neurons under normal binocular viewing of a flat screen with both eyes open and monocular viewing of the same screen with one eye's view blocked by a translucent filter. The screen displayed visual stimuli comprising small contrast patches of Gabor function distributions of luminance, a stimulus that is known to excite cortical neurons.
Strengths
This is an important data set, given the large number of neurons recorded. The authors present a simple model to explain binocular combination of neuronal signals from the right and left eyes. The work advances the use of two-photon imaging in the cerebral neocortex. The research design adds valuable information to our understanding of the organization of binocular vision in macaque monkeys, which are the only realistic animal model of human vision for the study of binocular interactions.
Limitations and Weaknesses
(1) Given that these recordings are made optically, these results reflect primarily activations of neurons in the superficial layers of the cortex. This limitation arises from the usual constraints (depth of cortex, degree of myelination) on optical imaging in the macaque cortex. This means that the sample of neurons forming this data set is not fully representative of the population of binocular neurons within the visual cortex. This limitation is important in comparing the outcome of these experiments with the results from other studies of binocular combination, which have used single-electrode recording. Electrode recording will result in a sample of neurons that is drawn from many layers of the cortex, rather than just the superficial layers, noting that electrode recordings also carry different risks of sampling bias.
(2) Single neuron recording of binocular neurons in the primary visual cortex has shown that these neurons often have some spontaneous activity. Assessment of this spontaneous level of firing is important for accurate model fitting [1]. The present imaging approach works exclusively with differential measurements of neuronal signals, so assessment of the level of spontaneous activity is not feasible.
(3) The arrangements for visual stimulation and comparison of binocular and monocular responses mean that the stereoscopic disparity of the binocular stimuli is always at zero or close to zero. The consequence is that the experimental design does not test the cortical response over a range of different binocular depths.
The animal's fixation point is in the centre of a single display that is viewed binocularly. The fixation point is, by definition, at zero disparity.. Provided that the animals accurately converged their eyes on the binocular fixation point, then the disparity of the visual stimuli across the whole display will always be at or close to zero. However, we already know from earlier work that neurons in the visual cortex exhibit a range of selectivity for binocular disparity. Some neurons have their peak response at non-zero disparities, representing binocular depths nearer than the fixation depth or beyond it.
There are also other neurons whose response is maximally suppressed by disparities at the depth of the fixation point (so-called Tuned Inhibitory [TI] neurons). The simple model and analysis presented in the paper for the summation of monocular responses to predict binocular responses will perform adequately for neurons that are tuned to zero disparity, so-called tuned excitatory neurons [TE], but is necessarily compromised when applied to neurons that have other, different tuning profiles for binocular disparity. Specifically, when neurons are stimulated binocularly with a non-preferred disparity, the binocular response may be lower than the monocular response [2, 3]. The same limitation applies to another recent paper [4].
This more realistic view of binocular responses needs to be considered further to gain a full picture of the operation of the visual cortex in responding to binocular depth
Citations
1. Prince, S.J.D., Pointon, A.D., Cumming, B.G., and Parker, A.J., (2002). Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. Journal of Neurophysiology, 87: 191-208.
2. Prince, S.J.D., Cumming, B.G., and Parker, A.J., (2002). Range and mechanism of encoding of horizontal disparity in macaque V1. Journal of Neurophysiology, 87: 209-221.
3. Poggio, G.F. and Fischer, B., (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. Journal of Neurophysiology, 40: 1392-1405 doi 10.1152/jn.1977.40.6.1392.
4. B. A. Mitchell, K. Dougherty, J. A. Westerberg, B. M. Carlson, L. Daumail, A. Maier, et al. (2022) Stimulating both eyes with matching stimuli enhances V1 responses.<br /> iScience 2022 Vol. 25 Issue 5 DOI: 10.1016/j.isci.2022.104182
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study examines lipid profiles in cancer patients treated with the neurotoxic chemotherapy paclitaxel. Multiple methods, including machine learning as well as more conventional statistical modelling, were used to classify lipid patterns before and after paclitaxel treatment and in conjunction with neuropathy status. Lipid profiles before and after paclitaxel therapy were analysed from 31 patients. The study aimed to characterize from the lipid profile if plasma samples were collected pre-paclitaxel or post-paclitaxel and their relevance to neuropathy status. Sphingolipids including sphinganine-1-phosphate (SA1P) differed between patients with and without neuropathy. To examine the potential role of SA1P, it was applied to murine primary sensory neuron cultures, and produced calcium transients in a proportion of neurons. This response was abolished by the application of a TRPV1 antagonist. The number of neurons responding to SA1P was partially reduced by the sphingosine 1-phosphate receptor (S1PR1) modulator fingolimod.
Strengths:
The strengths of this study include the use of multiple methods to classify lipid patterns and the attempt to validate findings from the clinical cohort in a preclinical model using primary sensory neurons.
Weaknesses:
There are a number of weaknesses in the study. The small sample size is a significant limitation of the study. Out of 31 patients, only 17 patients were reported to develop neuropathy, with significant neuropathy (grade 2/3) in only 5 patients. The authors acknowledge this limitation in the results and discussion sections of the manuscript, but it limits the interpretation of the results. Also acknowledged is the limited method used to assess neuropathy.
Potentially due to this small number of patients with neuropathy, the machine learning algorithms could not distinguish between samples with and without neuropathy. Only selected univariate analyses identified differences in lipid profiles potentially related to neuropathy.
Three sphingolipid mediators including SA1P differed between patients with and without neuropathy at the end of treatment. These sphingolipids were elevated at the end of treatment in the cohort with neuropathy, relative to those without neuropathy. However, across all samples from pre to post-paclitaxel treatment, there was a significant reduction in SA1P levels. It is unclear from the data presented what the underlying mechanism for this result would be. If elevated SA1P is associated with neuropathy development, it would be expected to increase in those who develop neuropathy from pre to post-treatment time points.
Primary sensory neuron cultures were used to examine the effects of SA1P application. SA1P application produced calcium transients in a small proportion of sensory neurons. It is not clear how this experimental model assists in validating the role of SA1P in neuropathy development as there is no assessment of sensory neuron damage or other hallmarks of peripheral neuropathy. These results demonstrate that some sensory neurons respond to SA1P and that this activity is linked to TRPV1 receptors. However, further studies will be required to determine if this is mechanistically related to neuropathy.
Impact:
Taken in total, the data presented do not provide sufficient evidence to support the contention that SA1P has an important role in paclitaxel-induced peripheral neuropathy. Further, the results do not provide evidence to support the use of S1PR1 receptor antagonists as a therapeutic strategy. It is important to be careful with language use in the discussion, as the significance of the present results is overstated.
However, based on the results of previous studies, it is likely that sphingolipid metabolism plays a role in chemotherapy-induced peripheral neuropathy. Based on this existing evidence, the S1PR1 receptor antagonist fingolimod has already been examined in experimental models and clinical trials. Further work is needed to examine the links between lipid mediators and neuropathy development and identify additional strategies for intervention.
-
Reviewer #2 (Public Review):
Summary:
The study investigates the mechanisms underlying chemotherapy-induced peripheral neuropathy (CIPN), a notable side effect of commonly used anticancer drugs like paclitaxel. It aims to comprehend the putative mechanisms through lipidomics analysis of plasma samples from cancer patients pre and post-paclitaxel treatment, drawing inspiration from preclinical studies highlighting the role of sphingolipids. While the use of patient plasma samples stands out as a major strength, shortcomings in the result presentation undermine the study's significance. The introduction lacks a robust rationale, failing to articulate the utility of machine learning methods over conventional lipidomics analysis and the relevance of broader neuropathy in the context of the study's goal of investigating peripheral neuropathy. The failure to robustly link neuropathy to paclitaxel treatment, with only around 50% of patients developing neuropathy, mostly at Grade 1, with no or mild symptoms that require no intervention, weakens the study's impact. The presentation of results lacks clarity on sphingolipid dysregulation, leaving uncertainty regarding downregulation or upregulation. Furthermore, no clarity in validation for the machine learning-based analysis with conventional methods and an overall weakness in result representation weaken the study, despite addressing an important question in the field.
Strengths:
The study leverages patient plasma samples before and after paclitaxel treatment, enhancing the translatability of findings to patient impact. The attempt to employ machine learning (ML) methods for analyzing biological samples and classifying patient groups is commendable, pushing the biomedical sciences towards ML applications for handling complex data. The chosen topic of investigating chemotherapy-induced peripheral neuropathy (CIPN) is clinically important, offering potential benefits for cancer patients undergoing chemotherapy treatment.
Weaknesses:
The article is poorly written, hindering a clear understanding of core results. While the study's goals are apparent, the interpretation of sphingolipids, particularly SA1P, as key mediators of paclitaxel-induced neuropathy lacks robust evidence. The introduction fails to establish the significance of general neuropathy or peripheral neuropathy in anticancer drug-treated patients, and crucial details, such as the percentage of patients developing general neuropathy or peripheral neuropathy, are omitted. This omission is particularly relevant given that only around 50% of patients developed neuropathy in this study, primarily of mild Grade 1 severity with negligible symptoms, contradicting the study's assertion of CIPN as a significant side effect. The lack of clarity in distinguishing results obtained by lipidomics using machine learning methods and conventional methods adds to the confusion. The poorly written results section fails to specify SA1P's downregulation or upregulation, and the process of narrowing down to sphingolipids and SA1P is inadequately explained. Integrating a significant portion of the discussion section into the results section could enhance clarity. An explanation of the utility of machine learning in classifying patient groups over conventional methods and the citation of original research articles, rather than relying on review articles, may also add clarity to the usefulness of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Previous work has shown subjects can use a form of short-term sensory memory, known as 'iconic memory', to accurately remember stimuli over short periods of time (several hundred milliseconds). Working memory maintains representations for longer periods of time but is strictly limited in its capacity. While it has long been assumed that sensory information acts as the input to working memory, a process model of this transfer has been missing. To address this, Tomic and Bays present the Dynamic Neural Resource (DyNR) model. The DyNR model captures the dynamics of processing sensory stimuli, transferring that representation into working memory, the diffusion of representations within working memory, and the selection of a memory for report.
The DyNR model captures many of the effects observed in behavior. Most importantly, psychophysical experiments found the greater the delay between stimulus presentation and the selection of an item from working memory, the greater the error. This effect also depended on working memory load. In the model, these effects are captured by the exponential decay of sensory representations (i.e., iconic memory) following the offset of the stimulus. Once the selection cue is presented, residual information in iconic memory can be integrated into working memory, improving the strength of the representation and reducing error. This selection process takes time, and is slower for larger memory loads, explaining the observation that memory seems to decay instantly. The authors compare the DyNR model to several variants, demonstrating the importance of persistence of sensory information in iconic memory, normalization of representations with increasing memory load, and diffusion of memories over time.
Strengths:
The manuscript provides a convincing argument for the interaction of iconic memory and working memory, as captured by the DyNR model. The analyses are cutting-edge and the results are well captured by the DyNR model. In particular, a strength of the manuscript is the comparison of the DyNR model to several alternative variants.
The results provide a process model for interactions between iconic memory and working memory. This will be of interest to neuroscientists and psychologists studying working memory. I see this work as providing a foundation for understanding behavior in continuous working memory tasks, from either a mechanistic, neuroscience, perspective or as a high-water mark for comparison to other psychological process models.
Finally, the manuscript is well written. The DyNR model is nicely described and an intuition for the dynamics of the model are clearly shown in Figures 2 and 4.
Weaknesses:
The manuscript appropriately acknowledges and addresses several minor weaknesses that are due to the limited ability of the approach to disambiguate underlying neural mechanisms. Nevertheless, the manuscript adds significant value to the literature on working memory.
-
Reviewer #3 (Public Review):
Summary
The authors set out to formally contrast several theoretical models of working memory, being particularly interested in comparing the models regarding their ability to explain cueing effects at short cue durations. These benefits are traditionally attributed to the existence of a high capacity, rapidly decaying sensory storage which can be directly read out following short latency retro-cues. Based on the model fits, the authors alternatively suggest that cue-benefits arise from a freeing of working memory resources, which at short cue latencies can be utilized to encode additional sensory information into VWM.
A dynamic neural population model consisting of separate sensory and VWM populations was used to explain temporal VWM fidelity of human behavioral data collected during several working memory tasks. VWM fidelity was probed at several timepoints during encoding, while sensory information was available and maintenance, when sensory information was no longer available. Furthermore, set size and exposure durations were manipulated to disentangle contributions of sensory and visual working memory.
Overall, the model explained human memory fidelity well, accounting for set size, exposure time, retention time, error distributions and swap errors. Crucially the model suggests that recall at short delays is due to post-cue integration of sensory information into VWM as opposed to direct readout from sensory memory. The authors formally address several alternative theories, demonstrating that models with reduced sensory persistence, direct readout from sensory memory, no set-size dependent delays in cue processing and constant accumulation rate provide significantly worse fits to the data.
I congratulate the authors for this rigorous scientific work. All my remarks were thoroughly addressed.
-
-
-
Reviewer #1 (Public Review):
Summary:
This study assumes but also demonstrates that auditory rhythm processing is produced by internal oscillating systems and evaluates the properties of internal oscillators across individuals. The authors designed an experiment and performed analyses that address individuals' preferred rate and flexibility, with a special focus on how much past rhythms influence subsequent trials. They find evidence for such historical dependence and show that we adapt less well to new rhythms as we age. While I have some doubts about the entrainment-based interpretation of the results, this work offers a useful contribution to our understanding of individual differences in rhythm processing regardless.
Strengths:
The inclusion of two tasks -- a tapping and a listening task -- complement each other methodologically. By analysing both the production and tracking of rhythms, the authors emphasize the importance of the characteristics of the receiver, the external world, and their interplay. The relationship between the two tasks and components within tasks are explored using a range of analyses. The visual presentation of the results is very clear. The age-related changes in flexibility are useful and compelling.
The paper includes a discussion of the study assumptions, and it contextualizes itself more explicitly as taking entrainment frameworks as a starting point. As such, even if the entrainment of oscillators cannot be decisively shown, it is now clear that this is nevertheless adopted as a useful theoretical lens.
Weaknesses:
The newly included analyses that justify an entrainment or oscillator-based interpretation of the result could be presented in a clearer manner so that readers can parse their validity better. For example, in line with an entrainment interpretation, the regression lines in Figure 2B show accuracy increases as the IOI moves towards the preferred rate -- but then beyond the preferred rate, accuracy appears to increase further still. Furthermore, the additional analyses on harmonic relationships could be enriched with justification and explanation of each of its steps.
-
Reviewer #2 (Public Review):
Summary:
The current work describes a set of behavioral tasks to explore individual differences in the preferred perceptual and motor rhythms. Results show a consistent individual preference for a given perceptual and motor frequency across tasks and, while these were correlated, the latter is slower than the former one. Additionally, the adaptation accuracy to rate changes is proportional to the amount of rate variation and, crucially, the amount of adaptation decreases with age.
Strengths:
Experiments are carefully designed to measure individual preferred motor and perceptual tempo. Furthermore, the experimental design is validated by testing the consistency across tasks and test-retest, what makes the introduced paradigm a useful tool for future research.<br /> The obtained data is rigorously analyzed using a diverse set of tools, each adapted to the specificities across the different research questions and tasks.<br /> This study identifies several relevant behavioral features: (i) each individual shows a preferred and reliable motor and perceptual tempo and, while both are related, the motor is consistently slower than the pure perceptual one; (ii) the presence of hysteresis in the adaptation to rate variations; and (iii) the decrement of this adaptation with age. All these observations are valuable for the auditory-motor integration field of research, and they could potentially inform existing biophysical models to increase their descriptive power.
Weaknesses:
To get a better understanding of the mechanisms underlying the behavioral observations, it would have been useful to compare the observed pattern of results with simulations done with existing biophysical models. However, this point is addressed if the current study is read along with this other publication of the same research group: Kaya, E., & Henry, M. J. (2024, February 5). Modeling rhythm perception and temporal adaptation: top-down influences on a gradually decaying oscillator. https://doi.org/10.31234/osf.io/q9uvr
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The paper presents a nice study investigating the impairments of biological motion perception in individuals with ADHD in comparison with neurotypical controls. Motivated by the idea that there is a relationship between biological motion perception and social capabilities, the authors investigated the impairments of local and global (holistic) biological motion perception, the diagnosis status, and several additional behavioral variables that are affected in ADHS (IQ, social responsiveness, and attention / impulsivity). As well local as global biological motion perception is impaired in ADHD individuals. In addition, the study demonstrates a significant correlation between local biological motion perception skills and the social responsiveness score in the ADHD group, but not in controls. A path analysis in the ADHD group suggests that general performance in<br /> biological motion perception is influenced mainly by global biological motion perception performance and attentional and perceptual reasoning skills.
Strengths:
It is true that there exists not much work on biological motion perception and ADHD. Therefore, the presented study contributes an interesting new result to the biological motion literature, and adds potentially also new behavioral markers for this clinical group. The design of the study is straightforward and technically sound, and the drawn conclusions are supported by the presented results.
Weaknesses:
Some of the claims about the relationship between genetic factors and ADHD and the components of biological motion processing have to remain speculative at this point because genetic influences were not explicitly tested in this paper. Specifically, the hypothesis that the perception of human social interaction is critically based on a local mechanism for the detection of asymmetry in foot trajectories of walkers (this is what 'BL-local' really measures), or on the detection of live agents in cluttered scenes seems not very plausible.
Based on my last comments, now the discussion has been changed in a way that tries to justify the speculative claims by citing a lot of other speculative papers, which does not really address the problem. For example, the fact that chicks walk towards biological motion stimuli is interesting. To derive that this verifies a fundamental mechanism in human biological motion processing is extremely questionable, given that birds do not even have a cortex. Taking the argumentation of the authors serious, one would have to assume that the 'Local BM' mechanism is probably located in the mesencephalon in humans, and then would have to interact in some way with social perception differences of ADHD children. To me all this seems to make very strong (over-)claims. I suggest providing a much more modest interpretation of the interesting experimental result, based on what has been really experimentally shown by the authors and closely related other data, rather than providing lots of far-reaching speculations.
In the same direction, in my view, go claims like 'local BM is an intrinsic trait' (L. 448) , which is not only imprecise (maybe better 'mechanisms of processing of local BM cues') but also rather questionable. Likely, this' local processing of BM' is a lower level mechanisms, located probably in early and mid-levels of the visual cortex, with a possible influence of lower structures. It seems not really plausible that this is related to a classical trait variables in the sense of psychology, like personality, as seems to be suggested here. Also here I suggest a much more moderate and less speculative interpretation of the results.
-
Reviewer #2 (Public Review):
Summary:
Tian et al. aimed to assess differences in biological motion (BM) perception between children with and without ADHD, as well as relationships to indices of social functioning and possible predictors of BM perception (including demographics, reasoning ability and inattention). In their study, children with ADHD showed poorer performance relative to typically developing children in three tasks measuring local, global, and general BM perception. The authors further observed that across the whole sample, performance in all three BM tasks was negatively correlated with scores on the social responsiveness scale (SRS), whereas within groups a significant relationship to SRS scores was only observed in the ADHD group and for the local BM task. Local and global BM perception showed a dissociation in that global BM processing was predicted by age, while local BM perception was not. Finally, general (local & global combined) BM processing was predicted by age and global BM processing, while reasoning ability mediated the effect of inattention on BM processing.
Strengths:
Overall, the manuscript is presented in a clear fashion and methods and materials are presented with sufficient detail so the study could be reproduced by independent researchers. The study uses an innovative, albeit not novel, paradigm to investigate two independent processes underlying BM perception. The results are novel and have the potential to have wide-reaching impact on multiple fields.
Weaknesses:
The manuscript has greatly improved in clarity and methodological considerations in response to the review. There are only a few minor points which deserve the authors' attention:
When outlining the moviation for the current study, results from studies in ADHD and ASD are used too interchangeably. The authors use a lack of evidence for contributing (psychological/developmental) factors on BM processing in ASD to motivate the present study and refer to evidence for differences between typical and non-typical BM processing using studies in both ASD and ADHD. While there are certainly overlapping features between the two conditions/neurotypes, they are not to be considered identical and may have distinct etiologies, therefore the distinction between the two should be made clearer.
In the first/main analysis, is unclear to me why in the revised manuscript the authors changed the statistical method from ANOVA/ANCOVA to independent samples t-tests (unless the latter were only used for post-hoc comparisons, then this needs to be stated). Furthermore, although p-values look robust, for this analysis too it should be indicated whether and how multiple comparison problems were accounted for.
-
Reviewer #3 (Public Review):
Strengths:
The authors present differences between ADHD and TD children in biological motion processing, and this question has not received as much attention as equivalent processing capabilities in autism. They use a task that appears well controlled. They raise some interesting mechanistic possibilities for differences in local and global motion processing, which are distinctions worth exploring. The group differences will therefore be of interest to those studying ADHD, as well as other developmental conditions, and those examining biological motion processing mechanisms in general.
Weaknesses:
The data are not strong enough to support claims about differences between global and lobal processing wrt social communication skills and age. The mechanistic possibilities for why these abilities may dissociate in such a way are interesting, but the crucial tests of differences between correlations do not present a clear picture. Further empirical work would be needed to test the authors' claims. Specifics:
The authors state frequently that it was the local BM task that related to social communication skills (SRS) and not the global tasks. However, the results section shows a correlation between SRS and all three tasks. The only difference is that when looking specifically within the ADHD group, the correlation is only significant for the local task. The supplementary materials demonstrate that tests of differences between correlations present an incomplete picture. Currently they have small samples for correlations, so this is unsurprising.
Theoretical assumptions. The authors make some statements about local vs global biological motion processing that should still be made more tentatively. They assume that local processing is specifically genetically whereas global processing is a product of experience. These data in newborn chicks are controversial and confounded - I cannot remember the specifics but I think there an upper vs lower visual field complexity difference here.
Readability. The manuscript needs very careful proofreading and correction for grammar. There are grammatical errors throughout.
-
-
arxiv.org arxiv.org
-
Reviewer #1 (Public Review):
This paper presents a cognitive model of out-of-distribution generalisation, where the representational basis is grid-cell codes. In particular, the authors consider the tasks of analogies, addition, and multiplication, and the out-of-distribution tests are shifting or scaling the input domain. The authors utilise grid cell codes, which are multi-scale as well as translationally invariant due to their periodicity. To allow for domain adaptation, the authors use DPP-A which is, in this context, a mechanism of adapting to input scale changes. The authors present simulations results demonstrating this model can perform out-of-distribution generalisation to input translations and re-scaling, whereas other models fail.
This paper makes the point it sets out to - that there are some underlying representational bases, like grid cells, that when combined with a domain adaptation mechanism, like DPP-A, can facilitate out-of-generalisation. I don't have any issues with the technical details.
The paper nicely demonstrates how neural codes can be transformed into a common representational space so that analogies, and presumably other useful tasks/computations, can be performed.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
It is known that aberrant habit formation is a characteristic of obsessive-compulsive disorder (OCD). Habits can be defined according to the following features (Balleine and Dezfouli, 2019): rapid execution, invariant response topography, action 'chunking' and resistance to devaluation.
The extent to which OCD behavior is derived from enhanced habit formation relative to deficits in goal-directed behavior is a topic of debate in the current literature. This study examined habit-learning specifically (cf. deficits in goal-directed behavior) by regularly presenting, via smartphone, sequential learning tasks to patients with OCD and healthy controls. Participants engaged in the tasks every day over the course of a month. Automaticity, including the extent to which individual actions in the sequence become part of a unified 'chunk', was an important outcome variable. Following the 30 days of training, in-laboratory tasks were then administered to examine 1) if performing the learned sequences themselves had become rewarding 2) differences in goal-directed vs. habitual behavior.
Several hypotheses were tested, including:<br /> Patients would have impaired procedural learning vs. healthy volunteers (this was not supported, possibly because there were fewer demands on memory in the task used here)<br /> Once the task had been learned, patients would display automaticity faster (unexpectedly, patients were slower to display automaticity)<br /> Habits would form faster under a continuous (vs. variable) reinforcement schedule
Exploratory analyses were also conducted: an interesting finding was that OCD patients with higher self-reported symptoms voluntarily completed more sessions with the habit-training app and reported a reduction in symptoms.
Strengths
This paper is well situated theoretically within the habit learning/OCD literature.<br /> Daily training in a motor-learning task, delivered via smartphone, was innovative, ecologically valid and more likely to assay habitual behaviors specifically. Daily training is also more similar to studies with non-humans, making a better link with that literature. The use of a sequential-learning task (cf. tasks that require a single response) is also more ecologically valid.<br /> The in-laboratory tests (after the 1 month of training) allowed the researchers to test if the OCD group preferred familiar, but more difficult, sequences over newer, simpler sequences.
Weaknesses
The authors were not able to test one criterion of habits, namely resistance to devaluation, due to the nature of the task.<br /> The sample size was relatively small. Some potentially interesting individual differences within the OCD group could have been examined more thoroughly with a bigger sample (e.g., preference for familiar sequences). A larger sample may have allowed the statistical testing of any effects due to medication status.
The authors achieved their aims in that two groups of participants (patients with OCD and controls) engaged with the task over the course of 30 days. The repeated nature of the task meant that 'overtraining' was almost certainly established, and automaticity was demonstrated. This allowed the authors to test their hypotheses about habit learning. The results are supportive of the author's conclusions.
This article is likely to be impactful -- the delivery of a task across 30 days to a patient group is innovative and represents a new approach for the study of habit learning that is superior to an in-laboratory approach.
An interesting aspect of this manuscript is that it prompts a comparison with previous studies of goal-directed/habitual responding in OCD that used devaluation protocols, and which may have had their effects due to deficits in goal-directed behavior and not enhanced habit learning per se.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
This study aimed to investigate whether the development of functional connectivity (FC) is modulated by early physical growth and whether these might impact cognitive development in childhood. This question was investigated by studying a large group of infants (N=204) assessed in Gambia with fNIRS at 5 visits between 5 and 24 months of age. Given the complexity of data acquisition at these ages and following data processing, data could be analyzed for 53 to 97 infants per age group. FC was analyzed considering 6 ensembles of brain regions and thus 21 types of connections. Results suggested that: i) compared to previously studied groups, this group of Gambian infants have different FC trajectory, in particular with a change in frontal inter-hemispheric FC with age from positive to null values; ii) early physical growth, measured through weight-for-length z-scores from birth on, is associated with FC at 24 months. Some relationships were further observed between FC during the first two years and cognitive flexibility at 4-5 years of age, but results did not survive corrections for multiple comparisons.
Strengths:
The question investigated in this article is important for understanding the role of early growth and undernutrition on brain and behavioral development in infants and children. The longitudinal approach considered is highly relevant to investigate neurodevelopmental trajectories. Furthermore, this study targets a little-studied population from a low-/middle-income country, which was made possible by the use of fNIRS outside the lab environment. The collected dataset is thus impressive and it opens up a wide range of analytical possibilities.
Weaknesses:
- Analyzing such a huge amount of collected data at several ages is not an easy task to test developmental relationships between growth, FC, and behavioral capacities. In its present form, this study and the performed analyses lack clarity, unity and perhaps modeling, as it suggests that all possible associations were tested in an exploratory way without clear mechanistic hypotheses. Would it be possible to specify some hypotheses to reduce the number of tests performed? In particular, considering metrics at specific ages or changes in the metrics with age might allow us to test different hypotheses: the authors might clarify what they expect specifically for growth-FC-behaviour associations. Since some FC measures and changes might be related to one another, would it be reasonable to consider a dimensionality reduction approach (e.g., ICA) to select a few components for further correlation analyses?
- It seems that neurodevelopmental trajectories over the whole period (5-24 months) are little investigated, and considering more robust statistical analyses would be an important aspect to strengthen the results. The discussion mentions the potential use of structural equation modelling analyses, which would be a relevant way to better describe such complex data.
- Given the number of analyses performed, only describing results that survive correction for multiple comparisons is required. Unifying the correction approach (FDR / Bonferroni) is also recommended. For the association between cognitive flexibility and FC, results are not significant, and one might wonder why FC at specific ages was considered rather than the change in FC with age. One of the relevant questions of such a study would be whether early growth and later cognitive flexibility are related through FC development, but testing this would require a mediation analysis that was not performed.
- Growth is measured at different ages through different metrics. Justifying the use of weight-for-length z-scores would be welcome since weight-for-age z-scores might be a better marker of growth and possible undernutrition (this impacting potentially both weight and length). Showing the distributions of these z-scores at different ages would allow the reader to estimate the growth variability across infants.
- Regarding FC, clarifications about the long-range vs short-range connections would be welcome, as well as drawing a summary of what is expected in terms of FC "typical" trajectory, for the different brain regions and connections, as a marker of typical development. For instance, the authors suggest that an increase in long-range connectivity vs a decrease in short-range is expected based on previous fNIRS studies. However anatomical studies of white matter growth and maturation would suggest the reverse pattern (short-range connections developing mostly after birth, contrarily to long-range connections prenatally).
The authors test associations between FC and growth, but making sense of such modulation results is difficult without a clearer view of developmental changes per se (e.g., what does an early negative FC mean? Is it an increase in FC when the value gets close to 0? In particular, at 24m, it seems that most FC values are not significantly different from 0, Figure 2B). Observing positive vs negative association effects depending on age is quite puzzling. It is also questionable, for some correlation analyses with cognitive flexibility, to focus on FC that changes with age but to consider FC at a given age.
- The manuscript uses inappropriate terms "to predict", "prediction" whereas the conducted analyses are not prediction analyses but correlational.
-
Reviewer #1 (Public Review):
Summary:
Cognitive and brain development during the first two years of life is vast and determinant for later development. However, longitudinal infant studies are complicated and restricted to occidental high-income countries. This study uses fNIRS to investigate the developmental trajectories of functional connectivity networks in infants from a rural community in Gambia. In addition to resting-state data collected from 5 to 24 months, the authors collected growing measures from birth until 24 months and administrated an executive functioning task at 3 or 5 years old.
The results show left and right frontal-middle and right frontal-posterior negative connections at 5 months that increase with age (i.e., become less negative). Interestingly, contrary to previous findings in high-income countries, there was a decrease in frontal interhemispheric connectivity. Restricted growth during the first months of life was associated with stronger frontal interhemispheric connectivity and weaker right frontal-posterior connectivity at 24 months. Additionally, the study describes that some connectivity patterns related to better cognitive flexibility at pre-school age.
Strengths:
- The authors analyze data from 204 infants from a rural area of Gambia, already a big sample for most infant studies. The study might encourage more research on different underrepresented infant populations (i.e., infants not living in occidental high-income countries).
- The study shows that fNIRS is a feasible instrument to investigate cognitive development when access to fMRI is not possible or outside a lab setting.
- The fNIRS data preprocessing and analysis are well-planned, implemented, and carefully described. For example, the authors report how the choices in the parameters for the motion artifacts detection algorithm affect data rejection and show how connectivity stability varies with the length of the data segment to justify the threshold of at least 250 seconds free of artifacts for inclusion.
- The authors use proper statistical methods for analysis, considering the complexity of the dataset.
Weaknesses:
- No co-registration of the optodes is implemented. The authors checked for correct placement by looking at pictures taken during the testing session. However, head shape and size differences might affect the results, especially considering that the study involves infants from 5 months to 24 months and that the same fNIRS array was used at all ages.
- The authors regress the global signal to remove systemic physiological noise. While the authors also report the changes in connectivity without global signal regression, there are some critical differences. In particular, the apparent decrease in frontal inter-hemispheric connections is not present when global signal regression is omitted, even though it is present for deoxy-Hb. The authors use connectivity results obtained after applying global signal regression for further analysis. The choice of regressing the global signal is questionable since it has been shown to introduce anti-correlations in fMRI data (Murphy et al., 2009), and fNIRS in young infants does not seem to be highly affected by physiological noise (Emberson et al., 2016). Systemic physiological noise might change at different ages, which makes its remotion critical to investigate functional network development. However, global signal regression might also affect the data differently. The study would have benefited from having short separation channels to measure the systemic psychological component in the data.
- I believe the authors bypass a fundamental point in their framing. When discussing the results, the authors compare the developmental trajectories of the infants tested in a rural area of Gambia with the trajectories reported in previous studies on infants growing in occidental high-income countries (likely in urban contexts) and attribute the differences to adverse effects (i.e., nutritional deficits). Differences in developmental trajectories might also derive from other environmental and cultural differences that do not necessarily lead to poor cognitive development.
- While the study provides a solid description of the functional connectivity changes in the first two years of life at the group level, the evidence regarding the links between adverse situations, developmental trajectories, and later cognitive capacities is weaker. The authors find that early restricted growth predicts specific connectivity patterns at 24 months and that certain connectivity patterns at specific ages predict cognitive flexibility. However, the link between development trajectories (individual changes in connectivity) with growth and later cognitive capacities is missing. To address this question adequately, the study should have compared infants with different growing profiles or those who suffered or did not from undernutrition. However, as the authors discussed, they lacked statistical power.
-
Reviewer #2 (Public Review):
Summary and strengths:
The article pertains to a topic of importance, specifically early life growth faltering, a marker of undernutrition, and how it influences brain functional connectivity and cognitive development. In addition, the data collection was laborious, and data preprocessing was quite rigorous to ensure data quality, utilizing cutting-edge preprocessing methods.
Weaknesses:
However, the subsequent analysis and explanations were not very thorough, which made some results and conclusions less convincing. For example, corrections for multiple tests need to be consistently maintained; if the results do not survive multiple corrections, they should not be discussed as significant results. Additionally, alternative plans for analysis strategies could be worth exploring, e.g., using ΔFC in addition to FC at a certain age. Lastly, some analysis plans lacked a strong theoretical foundation, such as the relationship between functional connectivity (FC) between certain ROIs and the development of cognitive flexibility.
Thus, as much as I admire the advanced analysis of connectivity that was conducted and the uniqueness of longitudinal fNIRS data from these samples (even the sheer effort to collect fNIRS longitudinally in a low-income country at such a scale!), I have reservations about the importance of this paper's contribution to the field in its present form. Major revisions are needed, in my opinion, to enhance the paper's quality.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this study, participants completed two different tasks. A perceptual choice task in which they compared the sizes of pairs of items and a value-different task in which they identified the higher value option among pairs of items with the two tasks involving the same stimuli. Based on previous fMRI research, the authors sought to determine whether the superior frontal sulcus (SFS) is involved in both perceptual and value-based decisions or just one or the other. Initial fMRI analyses were devised to isolate brain regions that were activated for both types of choices and also regions that were unique to each. Transcranial magnetic stimulation was applied to the SFS in between fMRI sessions and it was found to lead to a significant decrease in accuracy and RT on the perceptual choice task but only a decrease in RT on the value-different task. Hierarchical drift-diffusion modelling of the data indicated that the TMS had led to a lowering of decision boundaries in the perceptual task and a lower of non-decision times on the value-based task. Additional analyses show that SFS covaries with model-derived estimates of cumulative evidence and that this relationship is weakened by TMS.
Strengths:
The paper has many strengths including the rigorous multi-pronged approach of causal manipulation, fMRI and computational modelling which offers a fresh perspective on the neural drivers of decision making. Some additional strengths include the careful paradigm design which ensured that the two types of tasks were matched for their perceptual content while orthogonalizing trial-to-trial variations in choice difficulty. The paper also lays out a number of specific hypotheses at the outset regarding the behavioural outcomes that are tied to decision model parameters and are well justified.
Weaknesses:
Unless I have missed it, the SFS does not actually appear in the list of brain areas significantly activated by the perceptual and value tasks in Supplementary Tables 1 and 2. Its presence or absence from the list of significant activations is not mentioned by the authors when outlining these results in the main text. What are we to make of the fact that it is not showing significant activation in these initial analyses?
The value difference task also requires identification of the stimuli, and therefore perceptual decision-making. In light of this, the initial fMRI analyses do not seem terribly informative for the present purposes as areas that are activated for both types of tasks could conceivably be specifically supporting perceptual decision-making only. I would have thought brain areas that are playing a particular role in evidence accumulation would be best identified based on whether their BOLD response scaled with evidence strength in each condition which would make it more likely that areas particular to each type of choice can be identified. The rationale for the authors' approach could be better justified.
TMS led to reductions in RT in the value-difference as well as the perceptual choice task. DDM modelling indicated that in the case of the value task, the effect was attributable to reduced non-decision time which the authors attribute to task learning. The reasoning here is a little unclear. If task learning is the cause, then why are similar non-decision time effects not observed in the perceptual choice task? Given that the value-task actually requires perceptual decision-making, is it not possible that SFS disruption impacted the speed with which the items could be identified, hence delaying the onset of the value-comparison choice?
The sample size is relatively small. The authors state that 20 subjects is 'in the acceptable range' but it is not clear what is meant by this.
-
Reviewer #3 (Public Review):
Summary:
Garcia et al., investigated whether the human left superior frontal sulcus (SFS) is involved in integrating evidence for decisions across either perceptual and/or value-based decision-making. Specifically, they had 20 participants perform two decision-making tasks (with matched stimuli and motor responses) in an fMRI scanner both before and after they received continuous theta burst transcranial magnetic stimulation (TMS) of the left SFS. The stimulation thought to decrease neural activity in the targeted region, led to reduced accuracy on the perceptual decision task only. The pattern of results across both model-free and model-based (Drift diffusion model) behavioural and fMRI analyses suggests that the left SLS plays a critical role in perceptual decisions only, with no equivalent effects found for value-based decisions. The DDM-based analyses revealed that the role of the left SLS in perceptual evidence accumulation is likely to be one of decision boundary setting. Hence the authors conclude that the left SFS plays a domain-specific causal role in the accumulation of evidence for perceptual decisions. These results are likely to add importance to the literature regarding the neural correlates of decision-making.
Strengths:
The use of TMS strengthens the evidence for the left SFS playing a causal role in the evidence accumulation process. By combining TMS with fMRI and advanced computational modelling of behaviour, the authors go beyond previous correlational studies in the field and provide converging behavioural, computational, and neural evidence of the specific role that the left SFS may play.
Sophisticated and rigorous analysis approaches are used throughout.
Weaknesses:
Though the stimuli and motor responses were equalised between the perception and value-based decision tasks, reaction times (according to Figure 1) and potential difficulty (Figure 2) were not matched. Hence, differences in task difficulty might represent an alternative explanation for the effects being specific to the perception task rather than domain-specificity per se.
No within- or between-participants sham/control TMS condition was employed. This would have strengthened the inference that the apparent TMS effects on behavioural and neural measures can truly be attributed to the left SFS stimulation and not to non-specific peripheral stimulation and/or time-on-task effects.
No a priori power analysis is presented.
-
Reviewer #2 (Public Review):
Summary:
The authors set out to test whether a TMS-induced reduction in excitability of the left Superior Frontal Sulcus influenced evidence integration in perceptual and value-based decisions. They directly compared behaviour - including fits to a computational decision process model - and fMRI pre and post-TMS in one of each type of decision-making task. Their goal was to test domain-specific theories of the prefrontal cortex by examining whether the proposed role of the SFS in evidence integration was selective for perceptual but not value-based evidence.
Strengths:
The paper presents multiple credible sources of evidence for the role of the left SFS in perceptual decision-making, finding similar mechanisms to prior literature and a nuanced discussion of where they diverge from prior findings. The value-based and perceptual decision-making tasks were carefully matched in terms of stimulus display and motor response, making their comparison credible.
Weaknesses:<br /> More information on the task and details of the behavioural modelling would be helpful for interpreting the results. I had the following concerns:
(1) The evidence for a choice and 'accuracy' of that choice in both tasks was determined by a rating task that was done in advance of the main testing blocks (twice for each stimulus). For the perceptual decisions, this involved asking participants to quantify a size metric for the stimuli, but the veracity of these ratings was not reported, nor was the consistency of the value-based ones. It is my understanding that the size ratings were used to define the amount of perceptual evidence in a trial, rather than the true size differences, and without seeing more data the reliability of this approach is unclear. More concerning was the effect of 'evidence level' on behaviour in the value-based task (Figure 3a). While the 'proportion correct' increases monotonically with the evidence level for the perceptual decisions, for the value-based task it increases from the lowest evidence level and then appears to plateau at just above 80%. This difference in behaviour between the two tasks brings into question the validity of the DDM which is used to fit the data, which assumes that the drift rate increases linearly in proportion to the level of evidence.
(2) The paper provides very little information on the model fits (no parameter estimates, goodness of fit values or simulated behavioural predictions). The paper finds that TMS reduced the decision bound for perceptual decisions but only affected non-decision time for value-based decisions. It would aid the interpretation of this finding if the relative reliability of the fits for the two tasks was presented.
(3) Behaviourally, the perceptual task produced decreased response times and accuracy post-TMS, consistent with a reduced bound and consistent with some prior literature. Based on the results of the computational modelling, the authors conclude that RT differences in the value-based task are due to task-related learning, while those in the perceptual task are 'decision relevant'. It is not fully clear why there would be such significantly greater task-related learning in the value-based task relative to the perceptual one. And if such learning is occurring, could it potentially also tend to increase the consistency of choices, thereby counteracting any possible TMS-induced reduction of consistency?
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #1 (Public Review):
Summary and strength:
The authors undertook to assemble and annotate the genome sequence of the Malabar grouper fish, with the aim of providing molecular resources for fundamental and applied research. Even though this is more mainstream, the task is still daunting and labor-intensive. Currently, high-quality and fully annotated genome sequences are of strategic importance in modern biology. The authors make use of the resource to address the endocrine control of an ecologically and developmentally relevant life cycle transition, metamorphosis. As opposed to amphibian and flat fish where body plan changes, fish metamorphosis is anatomically more subtle and much less known, although it is clear that thyroid hormone (TH) signaling is a key player. The authors thus provide a repertoire of TH-relevant gene expression changes during development and across metamorphosis and correlate developmental stages with changes in gene expression. Overall, this work has a strong potential to meet its target.
Weaknesses:
The manuscript needs proper editing and is not complete. Some wordings lack precision and make it difficult to follow (e.g. line 98 "we assembled a chromosome-scale genome of ..." should read instead "we assembled a chromsome-scla genome sequence of ...". Also, panel Figure 2E is missing.
The shortcomings of the manuscripts are not limited to the writing style, and important technical and technological information is missing or not clear enough, thereby preventing a proper evaluation of the resolution of the genomic resources provided:
- Several RNASeq libraries from different tissues have been built to help annotate the genome and identify transcribed regions. This is fine. But all along the manuscript, gene expression changes are summarized into a single panel where it is not clear at all which tissue this comes from (whole embryo or a specific tissue ?), or whether it is a cumulative expression level computed across several tissues (and how it was computed) etc. This is essential information needed for data interpretation.
- The bioinformatic processing, especially of the assemble and annotation, is very poorly described. This is also a sensitive topic, as illustrated by the numerous "assemblathon" and "annotathon" initiatives to evaluate tools and workflows. Importantly, providing configuration files and in-depth description of workflows and parameter settings is highly recommended. This can be made available through data store services and documents even benefit from DOIs. This provides others with more information to evaluate the resolution of this work. No doubt that it is well done,<br /> but especially in the field of genome assembly and annotation, high resolution is VERY cost and time-intensive. Not surprisingly, most projects are conditioned by trade-offs between cost, time, and labor. The authors should provide others with the information needed to evaluate this.
- Quantifications of T3 and T4 levels look fairly low and not so convincing. The work would clearly benefit from a discussion about why the signal is so low and what are the current technological limitations of these quantifications. This would really help (general) readers.
- Differential analysis highlights up to ~ 15,000 differentially expressed genes (DEG), out of a predicted 26k genes. This corresponds to more than half of all genes. ANOVA-based differential analysis relies on the simple fact that only a minority of genes are DEG. Having >50% DEG is well beyond the validity of the method. This should be addressed, or at least discussed.
-
Reviewer #3 (Public Review):
Summary:
The manuscript by Huerlimann et al. entitled "The transcriptional landscape underlying metamorphosis in the Malabar grouper (Epinephelus malabaricus)." describes the transcriptional landscape of the Malabar grouper during selected metamorphic stages. The authors find evidence of dynamic regulation of HPT axis genes, TH signalling genes, and HPA and metabolic-related genes during post-natal development. Finally, the authors argue that the HPA is involved in grouper metamorphosis, given the related genes' dynamic expression during this developmental time.
Strengths:
The work is technically very good, and the methodology applied is solid.
Weaknesses:
However, the authors make substantial considerations that are not proven by experimental or functional data. In fact, this is a descriptive study that does not provide any functional evidence to support the claims made.
The consideration that cortisol is involved in metamorphosis in teleosts has never been shown, and the only example cited by the authors (REF 20) clearly states that cortisol alone does not induce flatfish metamorphosis. In that work, the authors clearly state that in vivo cortisol treatment had no synergistic effect with TH in inducing metamorphosis. Moreover, in Senegalensis, the sole pre-otic CRH neuron number decreases during metamorphosis, further arguing that, at least in flatfish, cortisol is not involved in flatfish metamorphosis (PMID: 25575457). Furthermore, the authors need to recognise that the transcriptomic analysis is whole-body and that HPA axis genes are upregulated, which does not mean they are involved in regulating the HPT axis. The authors do not show that in thyrotrophs, any CRH receptor is expressed or in any other HPT axis-relevant cells and that changes in these genes correlate with changes in TSH expression. An in-situ hybridisation experiment showing co-expression on thyrotrophs of HPA genes and TSH could be a good start. However, the best scenario would be conducting cortisol treatment experiments to see if this hormone affects grouper metamorphosis.
High TSH and Tg levels usually parallel whole-body TH levels during teleost metamorphosis. However, in this study, high Tg expression levels are only achieved at the juvenile stage, whereas high TSH is achieved at D32, and at the juvenile stage, they are already at their lowest levels.
It is very difficult to conclude anything with the TH and cortisol levels measurements. The authors only measured up until D10, whereas they argue that metamorphosis occurs at D32. In this way, these measurements could be more helpful if they focus on the correct developmental time. The data is irrelevant to their hypothesis.
Moreover, as stated in the previous review, a classical sign of teleost metamorphosis is the upregulation of TSHb and Tg, which does not occur at D32 therefore, it is very hard for me to accept that this is the metamorphic stage. With the lack of TH measurements, I cannot agree with the authors. I think this has to be toned down and made clear in the manuscript that D32 might be a putative metamorphic climax but that several aspects of biology work against it. Moreover, in D10, the authors show the highest cortisol level and lowest T4 and T3 levels. These observations are irreconcilable, with cortisol enhancing or participating in TH-driven metamorphosis.
Given this, the authors should quantify whole-body TH levels throughout the entire developmental window considered to determine where the peak is observed and how it correlates with the other hormonal genes/systems in the analysis.
Even though this is a solid technical paper and the data obtained is excellent, the conclusions drawn by the authors are not supported by their data, and at least hormonal levels should be present in parallel to the transcriptomic data. Furthermore, toning down some affirmations or even considering the different hypotheses available that are different from the ones suggested would be very positive.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In their manuscript, "Nicotine enhances the stemness and tumorigenicity in intestinal stem cells via Hippo-YAP/TAZ and Notch signal pathway", authors Isotani et al claimed that this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggest the use of DBZ as a potential therapeutic strategy for treating intestinal tumors. However, the presented data do not support the primary claims.
Weaknesses:
My main reservation is that the quality of the results presented in the manuscript may not fully substantiate their conclusions. For instance, in Figure 2 A and B, it is challenging to discern a healthy organoid. This is significant, as the entirety of Figure 2 and several panels in Figures 3 - 5 are based on these organoid assays. Additionally, there seems to be a discrepancy in the quality of results from the western blot, as the lanes of actin do not align with other proteins (Figure 6B).
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Isotani et al characterizes the hyperproliferation of intestinal stem cells (ISCs) induced by nicotine treatment in vivo. Employing a range of small molecule inhibitors, the authors systematically investigated potential receptors and downstream pathways associated with nicotine-induced phenotypes through in vitro organoid experiments. Notably, the study specifically highlights a signaling cascade involving α7-nAChR/PKC/YAP/TAZ/Notch as a key driver of nicotine-induced stem cell hyperproliferation. Utilizing a Lgr5CreER Apcfl/fl mouse model, the authors extend their findings to propose a potential role of nicotine in stem cell tumorgenesis. The study posits that Notch signaling is essential during this process.
Strengths and Weaknesses:
One noteworthy research highlight in this study is the indication, as shown in Figure 2 and S2, that the trophic effect of nicotine on ISC expansion is independent of Paneth cells. In the Discussion section, the authors propose that this independence may be attributed to distinct expression patterns of nAChRs in different cell types. To further substantiate these findings, it is suggested that the authors perform tissue staining of various nAChRs in the small intestine and colon. This additional analysis would provide more conclusive evidence regarding how stem cells uniquely respond to nicotine. It is also recommended to present the staining of α7-nAChR from different intestinal regions. This will provide insights into the primary target sites of nicotine in the gut tract. Additionally, it is recommended that the authors consider rephrasing the conclusion in this section (lines 123-124). The current statement implies that nicotine does not affect Paneth cells, which may be inaccurate based on the suggestion in line 275 that nicotine might influence Paneth cells through α2β4-nAChR. Providing a more nuanced conclusion would better reflect the complexity of nicotine's potential impact on Paneth cells.
As shown in the same result section, the effect of nicotine on ISC organoid formation appears to be independent of CHIR99021, a Wnt activator. Despite this, the authors suggest a potential involvement of Wnt/β-catenin activation downstream of nicotine in Figure 4F. In the Lgr5CreER Apcfl/fl mouse model, it is known that APC loss results in a constitutive stabilization of β-catenin, thus the hyperproliferation of ISCs by nicotine treatment in this mouse model is likely beyond Wnt activation. Therefore, it is recommended that the authors reconsider the inclusion of Wnt/β-catenin as a crucial signaling pathway downstream of nicotine, given the experimental evidence provided in this study.
In Figure 4, the authors investigate ISC organoid formation with a pan-PKC inhibitor, revealing that PKC inhibition blocks nicotine-induced ISC expansion. It's noteworthy that PKC inhibitors have historically been used successfully to isolate and maintain stem cells by promoting self-renewal. Therefore, it is surprising to observe no effect or reversal effect on ISCs in this context. A previous study demonstrated that the loss of PKCζ leads to increased ISC activity both in vivo and in vitro (DOI: 10.1016/j.celrep.2015.01.007). Additionally, to strengthen this aspect of the study, it would be beneficial for the authors to present more evidence, possibly using different PKC inhibitors, to reproduce the observed results with Gö 6983. This could help address potential concerns or discrepancies and contribute to a more comprehensive understanding of the role of PKC in nicotine-induced ISC expansion.
An additional avenue that could enhance the clinical relevance of the study is the exploration of human datasets. Specifically, leveraging scRNA-seq datasets of the human intestinal epithelium (DOI: 10.1038/s41586-021-03852-1) could provide valuable insights. Analyzing the expression patterns of nAChRs across diverse regions and cell types in the human intestine may offer a potential clinical implication.
In summary, the results generally support the authors' conclusions that nicotine directly influences ISC growth, potentially contributing to tumorgenesis. The identification of the α7-nAChR/PKC/YAP/TAZ/Notch pathway adds significant mechanistic insight. However, certain aspects of the experimental evidence, such as the receptor expression pattern, PKC inhibition response, and the involvement of Wnt/β-catenin activation, may require further clarification and exploration, especially considering previous literature suggesting potential discrepancies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors sought to test whether anterior insular cortex neurons increase or decrease firing during fear behavior and freezing, bi-directionally control fear via separate, anatomically defined outputs. Using a fairly simple behavior where mice were exposed to tone-shock pairings, they found roughly equal populations that do indeed either increase or decrease firing during freezing. Next, they sought to test whether these distinct populations may also have distinct outputs. Using retrograde tracers they found that the anterior insular cortex contains non-overlapping neurons which project to the mediodorsal thalamus or amygdala. Mediodorsal thalamus-projecting neurons tended to cluster in deep cortical layers while amygdala-projecting neurons were primarily in more superficial layers. Stimulation of insula-thalamus projection decreased freezing behavior, and stimulation of insula-amygdala projections increased fear behavior. Given that the neurons that increased firing were located in deep layers, that thalamus projections occurred in deep layers, and that stimulation of insula-thalamus neurons decreased freezing, the authors concluded that the increased firing neurons may be thalamus projections. Similarly, given that decreased-firing neurons tended to occur in more superficial layers, that insula-amygdala projections were primarily superficial, and that insula-amygdala stimulation increased freezing behavior, authors concluded that the decreased firing cells may be amygdala projections. The study has several strengths though also some caveats.
Strengths:
The potential link between physiological activity, anatomy, and behavior is well laid out and is an interesting question. The activity contrast between the units that increase/decrease firing during freezing is clear.
It is nice to see the recording of extracellular spiking activity, which provides a clear measure of neural output, whereas similar studies often use bulk calcium imaging, a signal that rarely matches real neural activity even when anatomy suggests it might (see London et al 2018 J Neuro - there are increased/decreased spiking striatal populations, but both D1 and D2 striatal neurons increase bulk calcium).
Weaknesses:
The link between spiking, anatomy, and behavior requires assumptions/inferences: the anatomically/genetically defined neurons which had distinct outputs and opposite behavioral effects can only be assumed the increased/decreased spiking neurons, based on the rough area of the cortical layer they were recorded.
The behavior would require more control to fully support claims about the associative nature of the fear response (see Trott et al 2022 eLife) - freezing, in this case, could just as well be nonassociative. In a similar vein, fixed intertrial intervals, though common practice in the fear literature, pose a problem for neurophysiological studies. The first is that animals learn the timing of events, and the second is that neural activity is dynamic and changes over time. Thus it is very difficult to determine whether changes in neural activity are due to learning about the tone-shock contingency, timing of the task, simply occur because of time and independently of external events, or some combination of the above.
-
Reviewer #2 (Public Review):
In this study, the authors aim to understand how neurons in the anterior insular cortex (insula) modulate fear behaviors. They report that the activity of a subpopulation of insula neurons is positively correlated with freezing behaviors, while the activity of another subpopulation of neurons is negatively correlated to the same freezing episodes. They then used optogenetics and showed that activation of anterior insula excitatory neurons during tones predicting a footshock increases the amount of freezing outside the tone presentation, while optogenetic inhibition had no effect. Finally, they found that two neuronal projections of the anterior insula, one to the amygdala and another to the medial thalamus, are increasing and decreasing freezing behaviors respectively. While the study contains interesting and timely findings for our understanding of the mechanisms underlying fear, some points remain to be addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Cheong et al. use a synapse-resolution wiring map of the fruit fly nerve cord to comprehensively investigate circuitry between descending neurons (DNs) from the brain and motor neurons (MNs) that enact different behaviours. These neurons were painstakingly identified, categorised, and linked to existing genetic driver lines; this allows the investigation of circuitry to be informed by the extensive literature on how flights walk, fly, and escape from looming stimuli. New motifs and hypotheses of circuit function were presented. This work will be a lasting resource for those studying nerve cord function.
Strengths:
The authors present an impressive amount of work in reconstructing and categorising the neurons in the DN to MN pathways. There is always a strong link between the circuitry identified and what is known in the literature, making this an excellent resource for those interested in connectomics analysis or experimental circuits neuroscience. Because of this, there are many testable hypotheses presented with clear predictions, which I expect will result in many follow-up publications. Most MNs were mapped to the individual muscles that they innervate by linking this connectome to pre-existing light microscopy datasets. When combined with past fly brain connectome datasets (Hemibrain, FAFB) or future ones, there is now a tantalising possibility of following neural pathways from sensory inputs to motor neurons and muscle.
Weaknesses:
As with all connectome datasets, the sample size is low, limiting statistical analyses. Readers should keep this in mind, but note that this is the current state-of-the-art. Some figures are weakened by relying too much on depictions of wiring diagrams as evidence of circuit function, similarity between neuropils, etc. without additional quantitative justification.
-
Reviewer #2 (Public Review):
Summary:
In Cheong et al., the authors analyze a new motor system (ventral nerve cord) connectome of Drosophila. Through proofreading, cross-referencing with another female VNC connectome, they define key features of VNC circuits with a focus on descending neurons (DNs), motor neurons (MNs), and local interneuron circuits. They define DN tracts, MNs for limb and wing control, and their nerves (although their sample suffers for a subset of MNs). They establish connectivity between DNs and MNs (minimal). They perform topological analysis of all VNC neurons including interneurons. They focus specifically on identifying core features of flight circuits (control of wings and halteres), leg control circuits with a focus on walking rather than other limbed behaviors (grooming, reaching, etc.), and intermediate circuits like those for escape (GF). They put these features in the context of what is known or has been posited about these various circuits.
Strengths:
Some strengths of the manuscript include the matching of new DN and MN types to light microscopy, including the serial homology of leg motor neurons. This is a valuable contribution that will certainly open up future lines of experimental work.
Also, the analysis of conserved connectivity patterns within each leg neuromere and interconnecting connectivity patterns between neuromeres will be incredibly valuable. The standard leg connectome is very nice.
Finally, the finding of different connectivity statistics (degrees of feedback) in different neuropils is quite interesting and will stimulate future work aimed at determining its functional significance.
Weaknesses:
First, it seems like quite a limitation that the neurotransmitter predictions were based on training data from a fairly small set of cells, none of which were DNs. It's wonderful that the authors did the experimental work to map DN neurotransmitter identity using FISH, and great that the predictions were overall decently accurate for both ACh and Glu, but unfortunate that they were not accurate for GABA. I hope there are plans to retrain the neurotransmitter predictions using all of this additional ground truth experimental data that the authors collected for DNs, in order to provide more accurate neurotransmitter type predictions across more cell types.
Second, the degradation of many motor neurons is unfortunate. Figure 5 Supplement 1 shows that roughly 50% of the leg motor neurons have significantly compromised connectivity data, whereas, for non-leg motor neurons, few seem to be compromised. If that is the correct interpretation of this figure, perhaps a sentence like this that includes some percentages (~50% of leg MNs, ~5% of other MNs) could be added to the main text so that readers can get a sense of the impact more easily.
As well, Figure 5 Supplement 1 caption says "Note that MN groups where all members of the group have reconstruction issues may not be flagged" - could the authors comment on how common they think this is based on manual inspection? If it changes the estimate of the percentage of affected leg motor neurons from 50% to 75% for example, this caveat in the current analysis would need to be addressed more directly. Comparing with FANC motor neurons could perhaps be an alternative/additional approach for estimating the number of motor neurons that are compromised.
This analysis might benefit from some sort of control for true biological variability in the number of MN synapses between left and right or across segments. I assume the authors chose the threshold of 0.7 because it seemed to do a good job of separating degraded neurons from differences in counts that could just be due to biological variability or reconstruction imperfections, but perhaps there's some way to show this more explicitly. For example, perhaps show how much variability there is in synapse counts across all homologs for one or two specific MN types that are not degraded and are reconstructed extremely well, so any variability in input counts for those neurons is likely to be biologically real. Especially because the identification of serial homologs among motor neurons is a key new contribution of this paper, a more in-depth analysis of similarities and differences in homologous leg MNs across segments could be interesting to the field if the degradation doesn't preclude it.
Fourth, the infomap communities don't seem to be so well controlled/justified. Community detection can be run on any graph - why should I believe that the VNC graph is actually composed of discrete communities? Perhaps this comes from a lack of familiarity with the infomap algorithm, but I imagine most readers will be similarly unfamiliar with it, so more work should be done to demonstrate the degree to which these communities are really communities that connect more within than across communities.
I think the length of this manuscript reduces its potential for impact, as I suspect the reality is that many people won't read through all 140 pages and 21 main figures of (overall excellent) work and analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This paper reports the first results on the effects of a novel waveform for weak transcranial magnetic stimulation, which they refer to as "perturbation" (kTMP). The waveform is sinusoidal at kHz frequency with subthreshold intensities of 2V/m, instead of the suprathreshold pulses used in conventional TMS (~100V/m). The effect reported here concerns motor-evoked potentials (MEPs) elicited on the hand with single-pulse TMS. These MEPs are considered a marker of "corotico-spinal excitability. The manuscripts report that kTMP at 3.5kHz enhances MEPs with a medium effect size, and reports independent replications of this fining on 3 separate cohorts of subjects (N=16, 15, 16). This result is important for the field of non-invasive brain stimulation. The evidence in support of this claim is compelling.
Strengths:
• This is a novel modality for non-invasive brain stimulation.
• Knowing the history in this field, is likely to lead to a large number of follow-up studies in basic and clinical research.
• The modality cases practically no sensation which makes it perfectly suitable for control conditions. Indeed, the study itself used a persuasive double-blinding procedure.
• The replication of the main result in two subsequent experiments is very compelling.
• The effect size of Cohen's d=0.5 is very promising.
• It is nice the E-fields were actually measured on a phantom, not just modeled.
Weakness:
• The within-subject design may have carry-over effects, although a 2-day gap is probably enough for washout.
• It would have been nice to assess washout by comparing the per-conditions between days. Particularly problematic are the paired-pulse effects that are done within sessions in experiments 2 and 3 which could have carried over to the main metric of interest, which was the single pulse MEP.
• Statistical analysis combining Experiments 1, 2, and 3 is a little muddled.
• Related, the biorxiv version history of this work as experiments 1-3 came together to point to diverging results, and changing analysis methods. Specifically, an earlier version of the work claims that modulated kHz sinusoids are more effective than un-modulated sinusoids, yet the current version says that no differences were detected - which seems consistent with the data presented in this version. However, it does raise concerns about analytic methods, which seem to have shifted over time.
• While sensation has been documented nicely, it does not seem like blinding has been directly assessed, by asking participants at the end which group they thought to be in.
-
Reviewer #2 (Public Review):
Summary:
kTMP is a novel method of stimulating the brain using electromagnetic fields. It has potential benefits over existing technology because it is safe and easy. It explores a range of brain frequencies that have not been explored in depth before (2-5kHz) and thus offers new opportunities.
Strengths:
This work relied on standard methods and was carefully and conservatively performed.
Weaknesses:
The sham condition was prepared as well as could be done, but sham is always challenging in a treatment with sound and sensation and with knowledgeable operators. New technology, also, is very exciting to subjects and it is difficult to achieve a natural experiment. These difficulties are related to the technology, however, and not to the execution of these experiments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The work by Zeng et al. comprehensively explored the differences in the effects of leaf and soil microbes on the seed germination, seedling survival, and seedling growth of an invasive forb, Ageratina Adenophora, and found evidence of stronger effects of leaf microbes on Ageratina compared with soil microbes, which were negative for seed germination and seedling survival but positive for seedling growth. By further DNA sequencing and fungal strain cultivation, the authors were able to identify some of the key microbial guilds that may facilitate such negative and positive feedback.
Strengths:
(1) The theoretic framework is well-established.
(2) Relating the direction of plant-microbe feedback to certain microbial guilds is always hard, but the authors have done a great job of identifying and interpreting such relationships.
Weaknesses:
(1) In the G0 and G21 inoculation experiments, allelopathic effects from leaf litters had not been accounted for, while these two experiments happened to be the ones where negative feedback was detected.
(2) The authors did not compare the fungal strains accumulated in dead seedlings to those accumulated in live seedlings to prove that the live seedlings indeed accumulated lower abundances of the strains that were identified to increase seedling mortality.
(3) The data of seed germination and seedling mortality could have been analyzed in the same manner as that of seedling growth, which makes the whole result section more coherent. I don't understand why the authors had not calculated the response index (RI) for germination/mortality rate and conducted analyses on the correlation between these RIs with microbial compositions.
(4) The language of the manuscript could be improved to increase clarity.
-
Reviewer #2 (Public Review):
Summary:
The study provides strong evidence that leaf microbes mediate self-limitation at an early life stage. It highlights the importance of leaf microbes in population establishment and community dynamics.
The authors conducted three experiments to test their hypothesis, elucidating the effects of leaf and soil microbial communities on the seedling growth of A. adenophora at different stages, screening potential microbial sources associated with seed germination and seedling performance, and identifying the fungus related to seedling mortality. The conclusions are justified by their results. Overall, the paper is well-structured, providing clear and comprehensive information.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This finding shows a connection between cancer-associated beta-catenin mutations and extracellular vesicle secretion. A link between the beta-catenin mutation and expression of trafficking and exocytosis machinery. They used a multidisciplinary approach to explore expression levels of relevant proteins and single-particle imaging to directly explore the release of extracellular vesicles. These results suggest a role of extracellular vesicles in immune evasion in liver cancer with the role needing to be further explored in other forms of cancer. I find this work to be compelling and of strong significance.
Strengths:
This paper uses multidisciplinary methods to demonstrate the compelling role of beta-catenin mutations in suppressing EV secretion in tumors. The results and imaging are extremely convincing and compelling.
Weaknesses:
There is no major weakness in this work. There are only things that left me more intrigued about this work. While the role of Rab27 was strongly examined, the hits of the VAMP proteins were not explored in detail. I was wondering if the decrease in the presence of VAMPS directly suggests the final step of membrane fusion in the exocytosis of EVs is what is being impaired. Or if it is other trafficking steps along the EV secretion pathway.
-
Reviewer #2 (Public Review):
Summary:
Dantzer and colleagues are investigating the pivotal role of ß-catenin, a gene that undergoes mutation in various cancer cells, and its influence on promoting the evasion of immune cells. In their initial experiments, the authors developed a HepG2 mutated ß-catenin KD model, conducting transcriptional and proteomic analyses. The results revealed that the silencing of mutated ß-catenin in HepG2 cells led to an up-regulation in the expression of exosome biogenesis genes.
Furthermore, the researchers verified that these KD cells exhibited increased production of exosomes, with the mutant form of ß-catenin concurrently decreasing the expression of SDC4 and Rab27a. Intriguingly, applying a GSK inhibitor to the cells resulted in reduced expression of SDC4 and Rab27a. Subsequent findings indicated that mutated ß-catenin actively facilitates immune escape through exosomes, and silencing exosome biogenesis correlates with a decrease in immune cell infiltration.<br /> In a crucial clinical correlation, the study demonstrated that patients with ß-catenin mutations exhibited low levels of exosome biogenesis.
Strengths:
Overall, the data robustly supports the outlined conclusions, and the study is commendably designed and executed. However, there are a few suggestions for manuscript improvement.
Weaknesses:<br /> No weaknesses were identified by this reviewer.
-
Reviewer #3 (Public Review):
Summary:
In this very important study by Dantzer et al., 'Emerging role of oncogenic b-catenin in exosome biogenesis as a driver of immune escape in hepatocellular carcinoma' the authors define a role for oncogenic b-catenin on exosome biology and explore the link between reduce exosome secretion and tumor immune cell evasion. Using transcriptional and proteomic analysis of hepatocellular carcinoma cells with either oncogenic or wildtype b-catenin the authors find that oncogenic b-catenin negatively regulates exosome biogenesis.
The authors can provide compelling evidence that oncogenic b-catenin in different hepatocellular carcinoma cells negatively regulates exosome biogenesis and secretion, by downregulation of, amongst others, SDC4 and RAB27A, two proteins involved in exosome biogenesis. The authors corroborate these results by inducing b-catenin activation using CHIR99021 in a hepatocarcinoma cell line with non-oncogenic bCatenin (Huh7 cells). The authors can further demonstrate convincingly that a reduction in exosome release by hepatocarcinoma spheroids leads to a reduction in immune cell infiltration into the tumor spheroid.
Strengths:
This is a very important and well-conceived study, that appeals to a readership beyond the field of hepatocarcinoma. The authors demonstrate a compelling link between oncogenic bCatenin and exosome biogenesis. Their results are convincing and with well-designed control experiments. The authors included various complementary lines of investigation to verify their findings.
Weaknesses:
One limitation of this study is that the mechanistic relationship of exosome release and how they affect immune cells remains to be elucidated. In this context, the authors conclusions rest on the assumption that hepatocarcinoma immune evasion is based exclusively on the reduced number of exosomes. However, the authors do not analyze exosome composition between exosomes of wild type and oncogenic background, which could be different.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The present study's main aim is to investigate the mechanism of how VirR controls the magnitude of MEV release in Mtb. The authors used various techniques, including genetics, transcriptomics, proteomics, and ultrastructural and biochemical methods. Several observations were made to link VirR-mediated vesiculogenesis with PG metabolism, lipid metabolism, and cell wall permeability. Finally, the authors presented evidence of a direct physical interaction of VirR with the LCP proteins involved in linking PG with AG, providing clues that VirR might act as a scaffold for LCP proteins and remodel the cell wall of Mtb. Since the Mtb cell wall provides a formidable anatomical barrier for the entry of antibiotics, targeting VirR might weaken the permeability of the pathogen along with the stimulation of the immune system due to enhanced vesiculogenesis. Therefore, VirR could be an excellent drug target. Overall, the study is an essential area of TB biology.
Strengths:
The authors have done a commendable job of comprehensively examining the phenotypes associated with the VirR mutant using various techniques. Application of Cryo-EM technology confirmed increased thickness and altered arrangement of CM-L1 layer. The authors also confirmed that increased vesicle release in the mutant was not due to cell lysis, which contrasts with studies in other bacterial species.
Another strength of the manuscript is that biochemical experiments show altered permeability and PG turnover in the mutant, which fits with later experiments where authors provide evidence of a direct physical interaction of VirR with LCP proteins.
Transcriptomics and proteomics data were helpful in making connections with lipid metabolism, which the authors confirmed by analyzing the lipids and metabolites of the mutant.
Lastly, using three approaches, the authors confirm that VirR interacts with LCP proteins in Mtb via the LytR_C terminal domain.
Altogether, the work is comprehensive, experiments are designed well, and conclusions are made based on the data generated after verification using multiple complementary approaches.
Weaknesses:
The major weakness is that the mechanism of VirR-mediated EV release remains enigmatic. Most of the findings are observational and only associate enhanced vesiculogenesis observed in the VirR mutant with cell wall permeability and PG metabolism. The authors suggest that EV release occurs during cell division when PG is most fragile. However, this has yet to be tested in the manuscript - the AFM of the VirR mutant, which produces thicker PG with more pore density, displays enhanced vesiculogenesis. No evidence was presented to show that the PG of the mutant is fragile, and there are differences in cell division to explain increased vesiculogenesis. These observations, counterintuitive to the authors' hypothesis, need detailed experimental verification.
Transcriptomic data only adds a little substantial. Transcriptomic data do not correlate with the proteomics data. It remains unclear how VirR deregulates transcription. TLCs of lipids are not quantitative. For example, the TLC image of PDIM is poor; quantitative estimation needs metabolic labeling of lipids with radioactive precursors. Further, change in PDIMs is likely to affect other lipids (SL-1, PAT/DAT) that share a common precursor (propionyl- CoA).
The connection of cholesterol with cell wall permeability is tenuous. Cholesterol will serve as a carbon source and contribute to the biosynthesis of methyl-branched lipids such as PDIM, SL-1, and PAD/DAT. Carbon sources also affect other aspects of physiology (redox, respiration, ATP), which can directly affect permeability and import/export of drugs. Authors should investigate whether restoration of the normal level of permeability and EV release is not due to the maintenance of cell wall lipid balance upon cholesterol exposure of the VirR mutant.
Finally, protein interaction data is based on experiments done once without statistical analysis. If the interaction between VirR and LCP protein is expected on the mycobacterial membrane, how the SPLIT_GFP system expressed in the cytoplasm is physiologically relevant. No explanation was provided as to why VirR interacts with the truncated version of LCP proteins and not with the full-length proteins.
-
Reviewer #2 (Public Review):
Summary:
In this work, Vivian Salgueiro et al. have comprehensively investigated the role of VirR in the vesicle production process in Mtb using state-of-the-art omics, imaging, and several biochemical assays. From the present study, authors have drawn a positive correlation between cell membrane permeability and vasculogenesis and implicated VirR in affecting membrane permeability, thereby impacting vasculogenesis.
Strengths:
The authors have discovered a critical factor (i.e. membrane permeability) that affects vesicle production and release in Mycobacteria, which can broadly be applied to other bacteria and may be of significant interest to other scientists in the field. Through omics and multiple targeted assays such as targeted metabolomics, PG isolation, analysis of Diaminopimelic acid and glycosyl composition of the cell wall, and, importantly, molecular interactions with PG-AG ligating canonical LCP proteins, the authors have established that VirR is a central scaffold at the cell envelope remodelling process which is critical for MEV production.
Weaknesses:
Throughout the study, the authors have utilized a CRISPR knockout of VirR. VirR is a non-essential gene for the growth of Mtb; a null mutant of VirR would have been a better choice for the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this work, the authors provide a comprehensive description of transcriptional regulation in Pseudomonas syringae by investigating the binding characteristics of various transcription factors. They uncover the hierarchical network structure of the transcriptome by identifying top-, middle-, and bottom-level transcription factors that govern the flow of information in the network. Additionally, they assess the functional variability and conservation of transcription factors across different strains of P. syringae by studying DNA-binding characteristics. These findings notably expand our current knowledge of the P. syringae transcriptome.
The findings associated with crosstalk between transcription factors and pathways, and the diversity of transcription factor functions across strains provide valuable insights into the transcriptional regulatory network of P. syringae. However, these results are at times underwhelming as their significance is unclear. This study would benefit from a discussion of the implications of transcription factor crosstalk on the functioning of the organism as a whole. Additionally, the implications of variability in transcription factor functions on the phenotype of the strains studied would further this analysis.
Overall, this manuscript serves as a key resource for researchers studying the transcriptional regulatory network of P. syringae.
-
Reviewer #2 (Public Review):
Summary:
The phytopathogenic bacterium Pseudomonas syringae is comprised of many pathovars with different host plant species and has been used as a model organism to study bacterial pathogenesis in plants. Transcriptional regulation is key to plant infection and adaptation to host environments by this bacterium. However, researchers have focused on a limited number of transcription factors (TFs) that regulate virulence-related pathways. Thus, a comprehensive, systems-level understanding of regulatory interactions between transcription factors in P. syringae has not been achieved.
This study by Sun et al performed ChIP-seq analysis of 170 out of 301 TFs in P. syringae pv. syringae 1448A and used this unique dataset to infer transcriptional regulatory networks in this bacterium. The network analyses revealed hierarchical interactions between TFs, various network motifs, and co-regulation of target genes by TF pairs, which collectively mediate information flow. As discussed, the structure and properties of the P. syringae transcriptional regulatory networks are somewhat different from those identified in humans, yeast, and E. coli, highlighting the significance of this study. Further, the authors made use of the P. syringae transcriptional regulatory networks to find TFs of unknown functions to be involved in virulence-related pathways. For some of these TFs, their target specificity and biological functions, such as motility and biofilm formation, were experimentally validated. Of particular interest is the finding that despite conservation of TFs between P. syringae pv. syringae 1448A, P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, and P. syringae pv. actinidiae C48, some of the conserved TFs show different repertoires of target genes in these four P. syringae strains.
Strengths:
This study presents a systems-level analysis of transcriptional regulatory networks in relation to P. syringae virulence and metabolism, and highlights differences in transcriptional regulatory landscapes of conserved TFs between different P. syringae strains, and develops a user-friendly database for mining the ChIP-seq data generated in this study. These findings and resources will be valuable to researchers in the fields of systems biology, bacteriology, and plant-microbe interactions.
Weaknesses:
No major weaknesses were found, but some of the results may need to be interpreted with caution. ChIP-seq was performed with bacterial strains overexpressing TFs. This may cause artificial binding of TFs to promoters which may not occur when TFs are expressed at physiological levels. Another caution is applied to the interpretation of the biological functions of TFs. The biological roles of the tested TFs are based on in vitro experiments. Thus, functional relevance of the tested TFs during plant infection and/or survival under natural environmental conditions remains to be demonstrated.
-
Reviewer #3 (Public Review):
Summary:
This study aims to understand gene regulation of the plant bacterial pathogen Pseudomonas syringae. Although the function of some TFs has been characterized in this strain, a global picture of the gene regulatory network remains elusive. The authors conducted a large-scale ChIP-seq analysis, covering 170 out of 301 TFs of this strain, and revealed gene regulatory hierarchy with functional validation of some previously uncharacterized TFs.
Strengths:
- This study provides one of the largest ChIP-seq datasets for a single bacterial strain, covering more than half of its TFs. This impressive resource enabled comprehensive systems-level analysis of the TF hierarchy.
- This study identified novel gene regulation and function with validations through biochemical and genetic experiments.
- The authors attempted on broad analyses including comparisons between different bacterial strains, providing further insights into the diversity and conservation of gene regulatory mechanisms.
Weaknesses:
(1) Some conclusions are not backed by quantitative or statistical analyses, and they are sometimes overinterpreted.
(2) Some figures and analyses are not well explained, and I was not able to understand them.
(3) The Method section lacks depth, especially in data analyses. It is strongly recommended that the authors share their analysis codes so that others can reproduce the analyses.
-
-
arxiv.org arxiv.org
-
Reviewer #1 (Public Review):
Summary:
The article written by Kazdaghli et al. proposes a modification of imputation methods, to better account and exploit the variability of the data. The aim is to reduce the variability of the imputation results.<br /> The authors propose two methods, one that still includes some imputation variability, but accounts for the distribution of the data points to improve the imputation. The other one proposes a determinantal sampling, that presents no variation in the imputation data, but it seems to be, that they measure the variation in the classification task, instead. As these methods grow easily in computation requirements and time, they also propose an algorithm to run these methods in quantum processors.
Strengths:
The sampling method for imputing missing values that account for the variability of the data seems to be accurate.
Weaknesses:
The authors state "Ultimately, the quality and reliability of imputations can be measured by the performance of a downstream predictor, which is usually the AUC (area under the receiver operating curve) for a classification task." but there is no citation of other scientists doing this. I think the authors could have evaluated the imputations directly, as they mention in the introduction, I understand that the final goal in the task is to have a better classification. In a real situation, they would have data that would be used for training the algorithm, and then new data that needs to be imputed and classified. Is there any difference between imputing all the data together and training the algorithm, versus doing the imputation, training a classifier, then imputing new data (for the testing set), and then testing the classification?<br /> I wonder if there could be some spurious interaction between the imputation and the classification methods, that could bias the data in the sense of having a better classification, but not imputing the real values; in particular when the deterministic DPP is used.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
This papers performs fine-mapping of the silkworm mutants bd and its fertile allelic version, bdf, narrowing down the causal intervals to a small interval of a handful of genes. In this region, the gene orthologous to mamo is impaired by a large indel, and its function is later confirmed using expression profiling, RNAi, and CRISPR KO. All these experiments are convincingly showing that mamo is necessary for the suppression of melanic pigmentation in the silkworm larval integument.
The authors also use in silico and in vitro assays to probe the potential effector genes that mamo may regulate.
The genotype-to-phenotype workflow, combining forward (mapping) and reverse genetics (RNAi and CRISPR loss-of-function assays) linking mamo to pigmentation are extremely convincing.
Comments on latest version:
This second revision took into account all the reviewers' comments. The authors added an interesting analysis of nucleotide diversity at the Bm-mamo locus, using available sequence data from 51 wild silkworms and 171 domesticated silkworms.<br /> The last paragraph added to the discussion, starting with "It has often been believed that changes in CREs are caused by random mutations", is speculative. There is currently no evidence that the mutation rate is biased at the Bm-mamo locus.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors investigated how the presence of interspecific introgressions in the genome affects the recombination landscape. This research was intended to inform about genetic phenomena influencing the evolution of introgressed regions, although it should be noted that the research itself is based on examining only one generation, which limits the possibility of drawing far-reaching evolutionary conclusions. In this work, yeast hybrids with large (from several to several dozen percent of the chromosome length) introgressions from another yeast species were crossed. Then, the products of meiosis were isolated and sequenced, and on this basis, the genome-wide distribution of both crossovers (COs) and noncrossovers (NCOs) was examined. Carrying out the analysis at different levels of resolution, it was found that in the regions of introduction, there is a very significant reduction in the frequency of COs and a simultaneous increase in the frequency of NCOs. Moreover, it was confirmed that introgressions significantly limit the local shuffling of genetic information, and NCOs are only able to slightly contribute to the shuffling, thus they do not compensate for the loss of CO recombination.
Strengths:
- Previously, experiments examining the impact of SNP polymorphism on meiotic recombination were conducted either on the scale of single hotspots or the entire hybrid genome, but the impact of large introgressed regions from another species was not examined. Therefore, the strength of this work is its interesting research setup, which allows for providing data from a different perspective.
- Good quality genome-wide data on the distribution of CO and NCO were obtained, which could be related to local changes in the level of polymorphism.
Weaknesses:
- The research is based on examining only one generation, which limits the possibility of drawing far-reaching evolutionary conclusions. Moreover, meiosis is stimulated in hybrids in which introgressions occur in a heterozygous state, which is a very unlikely situation in nature. Therefore, I see the main value of the work in providing information on the CO/NCO decision in regions with high sequence diversification, but not in the context of evolution.
- The work requires greater care in preparing informative figures and, more importantly, re-analysis of some of the data (see comments below).
More specific comments:
- The authors themselves admit that the detection of NCO, due to the short size of conversion tracts, depends on the density of SNPs in a given region. Consequently, more NCOs will be detected in introgressed regions with a high density of polymorphisms compared to the rest of the genome. To investigate what impact this has on the analysis, the authors should demonstrate that the efficiency of detecting NCOs in introgressed regions is not significantly higher than the efficiency of detecting NCOs in the rest of the genome. If it turns out that this impact is significant, analyses should be presented proving that it does not entirely explain the increase in the frequency of NCOs in introgressed regions.
- CO and NCO analyses performed separately for individual regions rarely show statistical significance (Figures 3 and 4). I think that the authors, after dividing the introgressed regions into non-overlapping windows of 100 bp (I suggest also trying 200 bp, 500 bp, and 1kb windows), should combine the data for all regions and perform correlations to SNP density in each window for the whole set of data. Such an analysis has a greater chance of demonstrating statistically significant relationships. This could replace the analysis presented in Figure 3 (which can be moved to Supplement). Moreover, the analysis should also take into account indels.
- In Arabidopsis, it has been shown that crossover is stimulated in heterozygous regions that are adjacent to homozygous regions on the same chromosome (http://dx.doi.org/10.7554/eLife.03708.001, https://doi.org/10.1038/s41467- 022-35722-3). This effect applies only to class I crossovers, and is reversed for class II crossovers (https://doi.org/10.15252/embj.2020104858, https://doi.org/10.1038/s41467-023-42511-z). This research system is very similar to the system used by the authors, although it likely differs in the level of DNA sequence divergence. The authors could discuss their work in this context.
-
Reviewer #2 (Public Review):
Summary:
Schwartzkopf et al characterized the meiotic recombination impact of highly heterozygous introgressed regions within the budding yeast Saccharomyces uvarum, a close relative of the canonical model Saccharomyces cerevisiae. To do so, they took advantage of the naturally occurring Saccharomyces bayanus introgressions specifically within fermentation isolates of S. uvarum and compared their behavior to the syntenic regions of a cross between natural isolates that do not contain such introgressions. Analysis of crossover (CO) and noncrossover (NCO) recombination events shows both a depletion in CO frequency within highly heterozygous introgressed regions and an increase in NCO frequency. These results strongly support the hypothesis that DNA sequence polymorphism inhibits CO formation, and has no or much weaker effects on NCO formation. Eventually, the authors show that the presence of introgressions negatively impacts "r", the parameter that reflects the probability that a randomly chosen pair of loci shuffles their alleles in a gamete.
The authors chose a sound experimental setup that allowed them to directly compare recombination properties of orthologous syntenic regions in an otherwise intra-specific genetic background. The way the analyses have been performed looks right, although this reviewer is unable to judge the relevance of the statistical tests used. Eventually, most of their results which are elegant and of interest to the community are present in Figure 2.
Strengths:
Analysis of crossover (CO) and noncrossover (NCO) recombination events is compelling in showing both a depletion in CO frequency within highly heterozygous introgressed regions and an increase in NCO frequency.
Weaknesses:
The main weaknesses refer to a few text issues and a lack of discussion about the mechanistic implications of the present findings.
- Introduction
The introduction is rather long. I suggest specifically referring to "meiotic" recombination (line 71) and to "meiotic" DSBs (line 73) since recombination can occur outside of meiosis (ie somatic cells).
From lines 79 to 87: the description of recombination is unnecessarily complex and confusing. I suggest the authors simply remind that DSB repair through homologous recombination is inherently associated with a gene conversion tract (primarily as a result of the repair of heteroduplex DNA by the mismatch repair (MMR) machinery) that can be associated or not to a crossover. The former recombination product is a crossover (CO), the latter product is a noncrossover (NCO) or gene conversion. Limited markers may prevent the detection of gene conversions, which erase NCO but do not affect CO detection.
In addition, "resolution" in the recombination field refers to the processing of a double Holliday junction containing intermediates by structure-specific nucleases. To avoid any confusion, I suggest avoiding using "resolution" and simply sticking with "DSB repair" all along the text.
Note that there are several studies about S. cerevisiae meiotic recombination landscapes using different hybrids that show different CO counts. In the introduction, the authors refer to Mancera et al 2008, a reference paper in the field. In this paper, the hybrid used showed ca. 90 CO per meiosis, while their reference to Liu et al 2018 in Figure 2 shows less than 80 COs per meiosis for S. cerevisiae. This shows that it is not easy to come up with a definitive CO count per meiosis in a given species. This needs to be taken into account for the result section line 315-321.
In line 104, the authors refer to S. paradoxus and mention that its recombination rate is significantly different from that of S. cerevisiae. This is inaccurate since this paper claims that the CO landscape is even more conserved than the DSB landscape between these two species, and they even identify a strong role played by the subtelomeric regions. So, the discussion about this paper cannot stand as it is.
Line 150, when the authors refer to the anti-recombinogenic activity of the MMR, I suggest referring to the published work from Martini et al 2011 rather than the not-yet-published work from Copper et al 2021, or both, if needed.
Results
The clear depletion in CO and the concomitant increase in NCO within the introgressed regions strongly suggest that DNA sequence polymorphism triggers CO inhibition but does not affect NCO or to a much lower extent. Because most CO likely arises from the ZMM pathway (CO interference pathway mainly relying on Zip1, 2, 3, 4, Spo16, Msh4, 5, and Mer3) in S. uvarum as in S. cerevisiae, and because the effect of sequence polymorphism is likely mediated by the MMR machinery, this would imply that MMR specifically inhibits the ZMM pathway at some point in S. uvarum.
The weak effect or potential absence of the effect of sequence polymorphism on NCO formation suggests that heteroduplex DNA tracts, at least the way they form during NCO formation, escape the anti-recombinogenic effect of MMR in S. uvarum. A few comments about this could be added.
The same applies to the fact that the CO number is lower in the natural cross compared to the fermentation cross, while the NCO number is the same. This suggests that under similar initiating Spo11-DSB numbers in both crosses, the decrease in CO is likely compensated by a similar increase in inter-sister recombination.
Introgressions represent only 10% of the genome, while the decrease in CO is at least 20%. This is a bit surprising especially in light of CO regulation mechanisms such as CO homeostasis that tends to keep CO constant. Could the authors comment on that?
Finally, the frequency of NCOs in introgressed regions is about twice the frequency of CO in non-introgressed regions. Both CO and NCO result from Spo11-initiating DSBs. This suggests that more Spo11-DSBs are formed within introgressed regions and that such DSBs specifically give rise to NCO. Could this be related to the lack of homolog engagement which in turn shuts down Spo11-DSB formation as observed in ZMM mutants by the Keeney lab? Could this simply result from better detection of NCO in introgressed regions related to the increased marker density, although the authors claim that NCO counts are corrected for marker resolution?
What could be the explanation for chromosome 12 to have more shuffling in the natural cross compared to the fermentation cross which is deprived of the introgressed region?
Technical points:
- In line 248, the authors removed NCO with fewer than three associated markers.<br /> What is the rationale for this? Is the genotyping strategy not reliable enough to consider events with only one or two markers? NCO events can be rather small and even escape detection due to low local marker density.
- Line 270: The way homology is calculated looks odd to this reviewer, especially the meaning of 0.5 homology. A site is either identical (1 homology) or not (0 homology).
- Line 365: beware that the estimates are for mitotic mismatch repair (MMR). Meiotic MMR may work differently.
- Figure 1: there is no mention of potential 4:0 segregations. Did the authors find no such pattern? If not, how did they consider them?
-
Reviewer #3 (Public Review):
When members of two related but diverged species mate, the resulting hybrids can produce offspring where parts of one species' genome replace those of the other. These "introgressions" often create regions with a much greater density of sequence differences than are normally found between members of the same species. Previous studies have shown that increased sequence differences, when heterozygous, can reduce recombination during meiosis specifically in the region of increased difference. However, most of these studies have focused on crossover recombination, and have not measured noncrossovers. The current study uses a pair of Saccharomyces uvarum crosses: one between two natural isolates that, while exhibiting some divergence, do not contain introgressions; the other is between two fermentation strains that, when combined, are heterozygous for 9 large regions of introgression that have much greater divergence than the rest of the genome. The authors wished to determine if introgressions differently affected crossovers and noncrossovers, and, if so, what impact that would have on the gene shuffling that occurs during meiosis.
While both crossovers and noncrossovers were measured, assessing the true impact of increased heterology (inherent in heterozygous introgressions) is complicated by the fact that the increased marker density in heterozygous introgressions also increases the ability to detect noncrossovers. The authors used a relatively simple correction aimed at compensating for this difference, and based on that correction, conclude that, while as expected crossovers are decreased by increased sequence heterology, counter to expectations noncrossovers are substantially increased. They then show that, despite this, genetic shuffling overall is substantially reduced in regions of heterozygous introgression. However, it is likely that the correction used to compensate for the effect of increased sequence density is defective, and has not fully compensated for the ascertainment bias due to greater marker density. The simplest indication of this potential artifact is that, when crossover frequencies and "corrected" noncrossover frequencies are taken together, regions of introgression often appear to have greater levels of total recombination than flanking regions with much lower levels of heterology. This concern seriously undercuts virtually all of the novel conclusions of the study.
Until this methodological concern is addressed, the work will not be a useful contribution to the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
In this manuscript, Liu et al. identified an important pathway regulating the nuclear translocation of the key transcriptional factor FOG1 during human hematopoiesis. The authors show that heat shock cognate B (HSCB) can interact with and promote the proteasomal degradation of TACC3, and this function is independent of its role in iron-sulfur cluster (ISC) biogenesis. TACC3 represses the activity of FOG1 by sequestering it in the cytoplasm. Therefore, HSCB can promote the nuclear translocation of FOG1 through down-regulating TACC3. The authors further show that the phosphorylation of HSCB by PI3K downstream of the EPO signaling pathway is important for its role in regulating the nuclear translocation of FOG1. The data are solid and the manuscript is overall well written. The findings of this manuscript provide new knowledge to the fields of hematopoiesis and cell biology.
Strengths:
This study uses a multi-pronged approach that combines techniques from a number of fields to convincingly demonstrate the pathway regulating the nuclear translocation of FOG1 during hematopoiesis.
Weaknesses:
This study only uses cell models. The significance of this work may be broadened by further studies using animal models.
-
Reviewer #1 (Public Review):
Summary:
In the paper entitled "PI3K/HSCB axis facilitates FOG1 nuclear translocation to promote erythropoiesis and megakaryopoiesis", the authors sought to determine the role of HSCB, a known regulator of iron-sulfur cluster transfer, in the generation of erythrocytes and megakaryocytes. They utilized a human primary cell model of hematopoietic differentiation to identify a novel mechanism whereby HSCB is necessary for the activation of erythroid and megakaryocytic gene expression through regulation of the nuclear localization of FOG-1, an essential transcription co-regulator of the GATA transcription factors. Their work establishes this novel regulatory axis as a mechanism by which cytokine signaling through EPO-R and MPL drives the lineage-specification of hematopoietic progenitors to erythrocytes and megakaryocytes, respectively.
Impact:
The major impact of this work is in a greater understanding of how cytokine signaling through EPO/TPO functions to promote lineage specification of hematopoietic stem/progenitor cells. While the major kinase cascades downstream of the EPO/TPO receptors have been elucidated, how those cascades affect gene expression to promote a specific differentiation program is poorly understood. For this work, we now understand that nuclear localization of FOG is a critical regulatory node by which EPO/TPO signaling is required to launch FOG-dependent gene expression. However, these cytokine receptors have many overlapping and redundant targets, so it still remains to be elucidated how signaling through the different receptors promotes divergent gene expression programs. Perhaps similar regulatory mechanisms exist for other lineage-specifying transcription factors.
Strengths:
The authors use two different cellular models of erythroid differentiation (K562 and human primary CD34+ cells) to elucidate the multi-factorial mechanism controlling FOG-1 nuclear localization. The studies are well-controlled and rigorously establish their mechanism through complementary approaches. The differentiation effects are established through cell surface marker expression, protein expression, and gene expression analyses. Novel protein interactions discovered by proteomics analyses were validated through bi-directional co-IP experiments in multiple experimental systems. Protein cellular localization findings are supported by both immunofluorescence and cell fractionation immunoblot analyses. The robustness of their experimental findings gives great confidence in the likelihood that the methods and findings can be reproduced in future work based on their conclusions.
Weaknesses:
The one unexplained step in this intricately described mechanism is how HSCB functions to promote TACC3 degradation. It appears that the proteasome is involved since MG-132 reverses the effect of HSCB deficiency, but no other details are provided. Does HSCB target TACC3 for ubiquitination somehow? Future studies will be required to understand this portion of the mechanism.
One weakness of the study design is that no in vivo experiments are conducted. The authors comment that the HSCB mouse phenotype is too dramatic to permit studies of erythropoiesis in vivo; however, a conditional approach could have been pursued.
It should also be noted that a previous study had already shown that TACC3 regulates the nuclear localization of FOG-1, so this portion of the mechanism is not entirely novel. However, the role of HSCB and the proteasomal degradation of TACC3 is entirely novel to my knowledge.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
While I am not a specialist in this field, I do have some knowledge of the subject matter and the computational aspects involved.
The authors employ simple machine learning techniques (such as SVM) for the following purposes:
a. Prediction of aversive valence.<br /> b. Predicting anti-repellent chemicals.<br /> c. Predicting calcium mobilization.
The approach is commonplace in chemoinformatics literature.
Weaknesses:
- All the above models are presented discretely, making it difficult to discern experiment design principles and connectedness.<br /> - The ML work is rudimentary, lacking adequate details. Chemoinformatics has reached great heights, and SVM does not seem contemporary.<br /> - There is significant existing research on finding repellents.
Strengths:
- Authors attempt to make a case for calcium mobilization in the context of repellency. This aspect sounds interesting but is not surprising.<br /> - Behavioral profiling of repellents could be useful.
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors set up a pipeline to predict insect repellents that are pleasant and safe for humans. This is done by daisy-chaining a new classification model based on predicting repellents with a published model on predicting human perception. Models use a feature-engineered selection of chemical features to make their predictions. The predicted molecules are then validated against a proxy humanoid (heated brick) and its safety is tested by molecular assays of human cells. The humanistic approach to modeling these authors have taken (which considers cosmetic/aesthetic appeal and safety) is novel and a necessary step for consumer usage. However, the importance of pleasantness over effectiveness is still up for debate (DEET is unpleasant but still used often) and the generalization of safety tests is unknown and assumed. The effectiveness of the prediction models is also still warranted. They pass the authors' own behavioral tests, but their contribution to the field is unknown as both models (new and published) have not been rigorously benchmarked to previous models. Moreover, the author's breadth of literature in this field is sparse, ignoring directly related studies.
Strengths:
Humanistic approach to modeling considers pleasantness and safety. Chaining models can help limit the candidate odorants from the vastness of odor space.
Weaknesses:
The current models need to be bench-marked against leading models predicting similar outcomes. Similarly, many of these papers need to be addressed and discussed in the introduction. The authors might even consider their data sources for model training to increase performance and lexical categorization for interoperability. For instance, the Dravnikes data lexicon, currently used in the human perception lexicon, has been highly criticized for its overlapping and hard-to-interpret descriptive terms ("FRAGRANT", "AROMATIC").
Human Perception
Khan, R. M., Luk, C. H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., & Sobel, N. (2007). Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. Journal of Neuroscience, 27(37), 10015-10023.
Keller, A., Gerkin, R. C., Guan, Y., Dhurandhar, A., Turu, G., Szalai, B., ... & Meyer, P. (2017). Predicting human olfactory perception from chemical features of odor molecules. Science, 355(6327), 820-826.
Gutiérrez, E. D., Dhurandhar, A., Keller, A., Meyer, P., & Cecchi, G. A. (2018). Predicting natural language descriptions of mono-molecular odorants. Nature communications, 9(1), 4979.
Lee, B. K., Mayhew, E. J., Sanchez-Lengeling, B., Wei, J. N., Qian, W. W., Little, K. A., ... & Wiltschko, A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception. Science, 381(6661), 999-1006.<br /> Related cleaned data: https://github.com/BioMachineLearning/openpom
Insect Repellents:
Wright, R. H. (1956). Physical basis of insect repellency. Nature, 178(4534), 638-638.
Katritzky, A. R., Wang, Z., Slavov, S., Tsikolia, M., Dobchev, D., Akhmedov, N. G., ... & Linthicum, K. J. (2008). Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. Proceedings of the National Academy of Sciences, 105(21), 7359-7364.
Bernier, U. R., & Tsikolia, M. (2011). Development of Novel Repellents Using Structure− Activity Modeling of Compounds in the USDA Archival Database. In Recent Developments in Invertebrate Repellents (pp. 21-46). American Chemical Society.
Wei, J. N., Vlot, M., Sanchez-Lengeling, B., Lee, B. K., Berning, L., Vos, M. W., ... & Dechering, K. J. (2022). A deep learning and digital archaeology approach for mosquito repellent discovery. bioRxiv, 2022-09.
The current study assumes that insect repellents repel via their odor valence to the insect, but this is not accurate. Insect repellents also mask the body odor of humans making them hard to locate. The authors need to consult the literature to understand the localization and landing mechanisms of insects to their hosts. Here, they will understand that heat alone is not the attractant as their behavioral assay would have you believe. I suggest the authors test other behaviour assays to show more convincing evidence of effectiveness. See the following studies:
De Obaldia, M. E., Morita, T., Dedmon, L. C., Boehmler, D. J., Jiang, C. S., Zeledon, E. V., ... & Vosshall, L. B. (2022). Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell, 185(22), 4099-4116.
McBride, C. S., Baier, F., Omondi, A. B., Spitzer, S. A., Lutomiah, J., Sang, R., ... & Vosshall, L. B. (2014). Evolution of mosquito preference for humans linked to an odorant receptor. Nature, 515(7526), 222-227.
Wei, J. N., Vlot, M., Sanchez-Lengeling, B., Lee, B. K., Berning, L., Vos, M. W., ... & Dechering, K. J. (2022). A deep learning and digital archaeology approach for mosquito repellent discovery. bioRxiv, 2022-09.
-
Reviewer #2 (Public Review):
Summary:<br /> This is an interesting study that seeks to identify novel mosquito repellents that smell attractive to humans.
Strengths:<br /> The combination of standard machine learning methods with mosquito behavioral tests is a strength.
Weaknesses:<br /> The study would be strengthened by describing how other modern ML approaches (RF, decision trees) would classify and identify other potential repellents.
A comparison in the repellent activity between DEET and the top ten hits identified in this new study indicates little change in repellent activity (~3%), suggesting that DEET remains the gold standard. Without additional toxicity tests, the study is arguably incremental. The study's novelty should be better clarified.
The Methods in the repellency tests are sparse, and more information would be useful. Testing the top repellents at low doses (<<1%) and for long periods (2-12 h) would strengthen the manuscript. Without this information, the manuscript is lacking in depth.
Testing human subjects on their olfactory perceptions of the repellents would also increase the depth and utility of the manuscript. Without additional experiments, the authors' conclusions lack support and have limited impact on the state-of-the-art.
This manuscript is a mix of different approaches, which makes it lack cohesion. There is the ML method for classifying new repellents that smell good, but no testing of the repellents on human volunteers. The repellents are not tested at realistic concentrations and durations. And the calcium mobilization test is strange and makes little sense in the context of the other experiments and framing of the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The authors of this study developed a software application, which aims to identify images as either "friendly" or "unfriendly" for readers with deuteranopia, the most common color-vision deficiency. Using previously published algorithms that recolor images to approximate how they would appear to a deuteranope (someone with deuteranopia), authors first manually assessed a set of images from biology-oriented research articles published in eLife between 2012 and 2022. The researchers identified 636 out of 4964 images as difficult to interpret ("unfriendly") for deuteranopes. They claim that there was a decrease in "unfriendly" images over time and that articles from cell-oriented research fields were most likely to contain "unfriendly" images.<br /> The researchers used the manually classified images to develop, train, and validate an automated screening tool. They also created a user-friendly web application of the tool, where users can upload images and be informed about the status of each image as "friendly" or "unfriendly" for deuteranopes.
Strengths:<br /> The authors have identified an important accessibility issue in the scientific literature: the use of color combinations that make figures difficult to interpret for people with color-vision deficiency. The metrics proposed and evaluated in the study are a valuable theoretical contribution. The automated screening tool they provide is well-documented, open source, and relatively easy to install and use. It has the potential to provide a useful service to the scientists who want to make their figures more accessible. The data are open and freely accessible, well documented, and a valuable resource for further research. The manuscript is well written, logically structured, and easy to follow.
Weaknesses:<br /> (1) The authors themselves acknowledge the limitations that arise from the way they defined what constitutes an "unfriendly" image. There is a missed chance here to have engaged deuteranopes as stakeholders earlier in the experimental design. This would have allowed to determine to what extent spatial separation and labelling of problematic color combinations responds to their needs and whether setting the bar at a simulated severity of 80% is inclusive enough. A slightly lowered barrier is still a barrier to accessibility.
(2) The use of images from a single journal strongly limits the generalizability of the empirical findings as well as of the automated screening tool itself. Machine-learning algorithms are highly configurable but also notorious for their lack of transparency and for being easily biased by the training data set. A quick and unsystematic test of the web application shows that the classifier works well for electron microscopy images but fails at recognizing red-green scatter plots and even the classical diagnostic images for color-vision deficiency (Ishihara test images) as "unfriendly". A future iteration of the tool should be trained on a wider variety of images from different journals.
(3) Focusing the statistical analyses on individual images rather than articles (e.g. in figures 1 and 2) leads to pseudoreplication. Multiple images from the same article should not be treated as statistically independent measures, because they are produced by the same authors. A simple alternative is to instead use articles as the unit of analysis and score an article as "unfriendly" when it contains at least one "unfriendly" image. In addition, collapsing the counts of "unfriendly" images to proportions loses important information about the sample size. For example, the current analysis presented in Fig. 1 gives undue weight to the three images from 2012, two of which came from the same article. If we perform a logistic regression on articles coded as "friendly" and "unfriendly" (rather than the reported linear regression on the proportion of "unfriendly" images), there is still evidence for a decrease in the frequency of "unfriendly" eLife articles over time. Another issue concerns the large number of articles (>40%) that are classified as belonging to two subdisciplines, which further compounds the image pseudoreplication. Two alternatives are to either group articles with two subdisciplines into a "multidisciplinary" group or recode them to include both disciplines in the category name.
(4.)The low frequency of "unfriendly" images in the data (under 15%) calls for a different performance measure than the AUROC used by the authors. In such imbalanced classification cases the recommended performance measure is precision-recall area under the curve (PR AUC: https://doi.org/10.1371%2Fjournal.pone.0118432) that gives more weight to the classification of the rare class ("unfriendly" images).
-
Reviewer #2 (Public Review):
Summary:<br /> An analysis of images in the biology literature that are problematic for people with a color-vision deficiency (CVD) is presented, along with a machine learning-based model to identify such images and a web application that uses the model to flag problematic images. Their analysis reveals that about 13% of the images could be problematic for people with CVD and that the frequency of such images decreased over time. Their model yields 0.89 AUC score. It is proposed that their approach could help making biology literature accessible to diverse audiences.
Strengths:<br /> The manuscript focuses on an important yet mostly overlooked problem, and makes contributions both in expanding our understanding of the extent of the problem and in developing solutions to mitigate the problem. The paper is generally well-written and clearly organized. Their CVD simulation combines five different metrics. The dataset has been assessed by two researchers and is likely to be of high-quality. Machine learning algorithm used (convolutional neural network, CNN) is an appropriate choice for the problem. The evaluation of various hyperparameters for the CNN model is extensive.
Weaknesses:<br /> The focus seems to be on one type of CVD (deuteranopia) and it is unclear whether this would generalize to other types. The dataset consists of images from eLife articles. While this is a reasonable starting point, whether this can generalize to other biology/biomedical articles is not assessed. "Probably problematic" and "probably okay" classes are excluded from the analysis and classification, and the effect of this exclusion is not discussed. Machine learning aspects can be explained better, in a more standard way. The evaluation metrics used for validating the machine learning models seem lacking (e.g., precision, recall, F1 are not reported). The web application is not discussed in any depth.
-
Reviewer #3 (Public Review):
Summary:<br /> This work focuses on accessibility of scientific images for individuals with color vision deficiencies, particularly deuteranopia. The research involved an analysis of images from eLife published in 2012-2022. The authors manually reviewed nearly 5,000 images, comparing them with simulated versions representing the perspective of individuals with deuteranopia, and also evaluated several methods to automatically detect such images including training a machine-learning algorithm to do so, which performed the best. The authors found that nearly 13% of the images could be challenging for people with deuteranopia to interpret. There was a trend toward a decrease in problematic images over time, which is encouraging.
Strengths:<br /> The manuscript is well organized and written. It addresses inclusivity and accessibility in scientific communication, and reinforces that there is a problem and that in part technological solutions have potential to assist with this problem.
The number of manually assessed images for evaluation and training an algorithm is, to my knowledge, much larger than any existing survey. This is a valuable open source dataset beyond the work herein.
The sequential steps used to classify articles follow best practices for evaluation and training sets.
Weaknesses:<br /> I do not see any major issues with the methods. The authors were transparent with the limitations (the need to rely on simulations instead of what deuteranopes see), only capturing a subset of issues related to color vision deficiency, and the focus on one journal that may not be representative of images in other journals and disciplines.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors use prospective sorting and microarray analyses, extended by single-cell RNA sequencing, in the neural stem cell niche of the subventricular zone (SVZ) to identify and refine a series of states along the continuum from quiescent neural stem cells to mature progeny. Of note, changes in the levels and subgroups of RNA splicing regulators are detailed across this continuum. Using in vitro proliferation and differentiation assays, coupled with in vivo engraftment of some prospectively sorted subsets, the authors argue that a stage they define as immature neuroblasts (iNBs) retain proliferative and multilineage differentiation capacity that is not seen in the mature neuroblast population, and is unexpected based on prior models for lineage progression in this system. This iNB stage is accompanied by a change in RNA splicing regulator expression, which is of interest due to the emerging roles for RNA processing and preferential translation within this niche.
The central tension driving the discussion between authors and reviewers, in my view, is what is required to define cells as a "molecularly distinct population" in a lineage. Is it transcript expression, in vitro potential, or more? The authors argue that sorted immature neuroblasts are a defined, separate step in the neurogenic lineage. An alternative possibility is that this population is simply cycling transit-amplifying progenitors that have initiated a transcriptional program associated with neuroblast fates - that these cells are an intermediate point on a continuum between stem cells, transit-amplifying progeny, and commitment to a neuronal (or other) fate. Despite some additions in response to initial reviews, it is still the case that much of the data presented would be equally or more effective in supporting the second model. For example, the differentially spliced gene sets in Figure S4, which are put forward by the authors to support a different molecular identity for immature neuroblasts, show that the terms enriched for immature neuroblasts are largely also found in transit amplifying progenitors (generation of neurons, neurogenesis, cell projection organization, neuron development) and/or mature neuroblasts (cell projection organization, generation of neurons), suggesting that "immature neuroblasts" are transiting between these two states and that one of their most relevant features is that they are still cycling.
These data complement several additional sc-RNAseq studies of this stem cell niche, and use a different, but similar, sorting strategy to isolate and profile subpopulations of stem/progenitor cells and neuroblast progeny. The claim that immature neuroblasts retain multipotency - the ability to generate glia and neurons - is surprising and somewhat controversial given that this has largely not been reported before under homeostatic conditions. Some factors to consider when interpreting these data are that the "immature neuroblast" populations are studied in some experiments using a transcriptional signature and a functional assay, namely the timing of reappearance of these cells after use of agents that kill rapidly dividing cells (in this case, radiation), leading to reconstitution of the lineage by previously quiescent stem cells. In a separate set of experiments, a tamoxifen-inducible labeling system is used in combination with cell-surface markers to prospectively isolate and study the differentiation potential of neuroblast populations that are assumed to be equivalent to those found in transcriptional experiments. It would be of interest in the future to confirm that the exact sorted populations (using CD24/EGFR/DCX-CreERT2::CAG) have the same transcriptional profile as those studied in earlier experiments within the paper and to confirm the purity of the sorted populations. Finally, while use is made of engraftment of sorted populations to study the differentiation and lineage potential of these immature neuroblasts, a remaining question is the relative abundance of each lineage (neurons/astrocytes/oligodendrocytes) produced by the engrafted cells - is production of glia rare, or common? Could this be due to factors such as alteration of lineage potential due to culture conditions, a disconnect between transcript expression and protein expression, or an incompletely purified starter population?
Overall, this manuscript presents an intriguing possible refinement of models for SVZ neurogenesis, and highlights the role of RNA splicing at specific stages in the lineage. It will be of interest to see if additional groups confirm these findings and whether multiplexed immunostaining, highly multiplexed flow cytometry, or other approaches focused at the proteomic level extend these findings, particularly given recent data in the developing brain that suggest transcript and protein levels are relatively poorly correlated in stem/progenitor populations.
-
Reviewer #3 (Public Review):
Summary:
Bernou et al. propose the existence of a distinct neuroblast population with increased regenerative and differentiation potential. Their claims are based on the analysis of a sorted population identified as LeX-EGFR+CD24low, which they refer to as "immature NeuroBlasts, iNB". This population is defined by transcriptomics features that have been assessed through bulk microarray studies of sorted cells and single cell RNA sequencing of the whole SVZ- lineage. Analysis of these data sets leads to the identification of these iNBs as cycling cells with a specific expression pattern of RNA splicing machinery components. On these grounds, they propose that RNA splicing plays a key role in neuronal differentiation. Although the authors bring an innovative point to the table, their claims are not fully supported by their results.
Strengths:
Interesting Hypothesis
Weaknesses:
The comparison of their microarray data to published single-cell RNA sequencing datasets (scRNAseq) highlights the cycling nature of the iNB population. Moreover, their own cell cycle analysis on their scRNAseq data attributes G2M/S-phase stages to clusters classified as iNBs, while clusters identified as TAPs are assigned to a restricted G1/S-phase stage. However, it would be expected that TAPs, as cycling progenitors, would go through all cell cycle stages and not just the beginning of it. Thus, authors should consider the possibility that their iNB population entails a major fraction of transit amplifying progenitors (TAP) and a couple neuroblasts, as described in numerous previous studies.
Authors regard the iNB population as neuroblasts due to the capacity of their sorted population to proliferate and differentiate into diverse neural cell types (neurons, oligodendrocytes and astrocytes) in vitro. It cannot be discarded that the sorted population (LeX-EGFR+CD24low) may not be pure and may be composed of a mixture of cells in different stages, including TAPs. Such a mixture of different cell types is unavoidable in sorted populations analyzed as bulk and is precisely one of the issues solved by single cell transcriptomics. Thus, the analysis of single cells resolves transition states at higher resolution and should be preferred over bulk analysis to prevent biases in analysis.
To align the authors' findings with the existing body of literature and earlier characterizations of the SVZ niche, it is advisable to combine their single-cell RNA sequencing data with datasets that have already been published. Such integration will enable precise understanding of the identity of their iNB cells.
On another note, the role of RNA splicing on neurogenesis lacks experimental validation. Unless manipulation of RNA splicing factors is conducted, the key role of this machinery in adult neurogenesis cannot be claimed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, authors have performed extensive imaging analysis of six human histone H1 variants, their enrichment and localization, their differential dynamics during interphase and mitosis, and their association with lamina-associated domains (LADs) or nucleolus-associated domains. The manuscript is well-written with high-quality confocal and super-resolution images. Various interesting observations are made on distribution patterns of H1 variants. H1.2, H1.3, and H1.5 are shown to be universally enriched at the nuclear periphery whereas H1.4 and H1X are found to be distributed throughout the nucleus. Interestingly, H1X was the only H1 variant found to be abundant in nucleoli. Depletion of H1 variants has been shown to affect chromatin structure in a variant-specific manner, with H1.2 knock-down resulting in global chromatin decompaction. Overall, the study presents several interesting insights on H1 variants conducted in a large number of cell lines.
-
Reviewer #2 (Public Review):
Summary:
The manuscript by Salinas-Pena et. al examines the distribution of a subgroup of histone H1 variants primarily with the use of high-resolution microscopy. The authors find that while some H1s have a universal distribution pattern, some display a preference for discrete regions within the nuclear landscape namely, the periphery, the center, or the nucleolus. They also show using that the various H1s within a cell did not colocalize significantly with each other, rather, they occupy discrete 'nanodomains' throughout the nucleus which is visualized as a punctate signal.<br /> The authors present evidence towards a long-standing question in the field regarding the spatial distribution of the different H1 variants. Since reliable, specific antibodies toward the variants were unavailable, this question was unable to elicit a definitive answer. This study uses more recently available antibodies against endogenous H1s to put together a systematic and comprehensive view of a group of H1 variant distribution inside a nucleus and ties it with previously generated genome wide data to demonstrate localization and some functional heterogeneity.
Strengths of the study.
(1) First systematic, high-resolution view of H1 variants providing a significant advance towards the long hypothesized functional differences between H1 variants.
(2) The use of endogenous antibodies allows the authors to bypass the need to use tagged proteins or overexpression strategies to study H1 distribution.
(3) The availability of genome wide H1 distribution data for the variants using the endogenous H1 antibodies to strengthen the presented visual data.
Weakness of the study.
One of the major reasons for slow progress in deciphering variant specific function has been the dearth of quality, specific, antibodies. This study is heavily dependent on the antibody function and its ability to accurately report on the distribution. The authors have cited previous validations of the antibodies used using H1 knockdown, immunoblotting and ChIP-seq. For the scope of this study, the controls are adequate.
Impact:
This study sets the stage for an exciting avenue of H1 study where variant-specific cellular functions can be explored which has otherwise been severely understudied.
-
Reviewer #3 (Public Review):
Summary:
This paper uses indirect immunofluorescence, superresolution fluorescence microscopy, and X-ChIP to demonstrate radial distribution profiles of all histone H1 somatic variants with the exception of histone H1.1. The results support earlier work from chromatin immunoprecipitation experiments that revealed biases for active versus repressed states of chromatin. The previous studies provided some support for the subtle sequence variation found primarily within the C-terminus of histone H1 variants conferred preferences in the type of DNA (e.g. methylated DNA) or chromatin bound. The current study significantly strengthens that argument. Importantly, this was shown across multiple cell lines and reveals conserved properties of localization of histone H1 variants.
Strengths:
The strength of the manuscript is the combined use of quantitative analysis of indirect immunofluorescence and X-ChIP. The results generally support the polar organization of the genome and a corresponding distribution of histone H1 variants that reflect this polar organization. AT-rich chromatin is positioned near the lamina and is found to be enriched in H1.2, H1.3, and H1.5. H1.4 and H1.X were more biased towards the GC-rich intranuclear chromatin.
There is emerging functional evidence for variant-specific properties to histone H1 subtypes. This work provides an important building block in understanding how different histone H1 variants may have specific functional consequences. The histone H1 variant that is most abundant in most cell types, H1.2, was found to decrease the area of the immunofluorescent slice that was chromatin-free when depleted, suggesting a more important role in global chromatin organization.
Weaknesses:
While histone H1 variants may show biases in their distributions, it is unlikely that these are more than biases. That is, it is unlikely that specific H1 variants are unable to bind to nucleosomes in regions where they are depleted. Fluorescence recovery after photobleaching experiments have demonstrated differences in binding affinity but the capacity to bind a range of chromatin structures, including highly acetylated chromatin, for histone H1 variants. Thus, it is critical in assessing this data to have accurate quantitative information on the relative abundance of the different histone variants amongst the cell lines tested here. The paper relies upon quantification by immunoblotting.
Another uncertainty in both the ChIP and immunofluorescence datasets is the accessibility of the epitope. This weakness is highlighted by the apparent loss of H1.2 and H1.4 in mitotic chromosomes that is revealed to be false by the detection of the phosphorylated species. The distributions relative to the surface of chromosomes in mitosis and the depletion of H1.2, H1.3, and H1.5 from the central regions of interphase nuclei reveals an unusual dissipation of the staining that is suggestive of antibody accessibility problems. The overall image quality of the immunofluorescence images is poor, further complicating analysis.
-
-
-
Reviewer #1 (Public Review):
Summary:
The authors combined high-speed video tracking of the limbs of freely moving mice with in vivo electrophysiology to demonstrate how striatal neurons encode single-limb gait. They also examine encoding other well-known aspects of locomotion, such as movement velocity and the initiation/termination of movement. The authors show that striatal neurons exhibit firing phase-locked with mouse gait at the single limb but also multi-limb level. Moreover, they describe gait deficits induced by severe unilateral dopamine neuron degeneration, and associate these deficits with a relative strengthening of gait-modulation in the firing of D2-expressing MSNs. Although the source and function of this gait-modulation remain unclear, this manuscript uncovers an important physiological correlate of striatal activity with gait, which may have implications for gait deficits in Parkinson's Disease.
Strengths:
While some previous work has looked at the encoding of gait variables in the striatum and other basal ganglia nuclei, this paper uses more careful quantification of gait with video tracking, comparing healthy and 6-OHDA-treated mice in the open field. The authors have collected a relatively large dataset of optically-identified striatal recordings to shed light on similarities and differences in the encoding of gait by striatal direct and indirect pathway neurons
Weaknesses:
There are some caveats to the interpretation of the analyses presented here, including how to compare encoding of gait variables when animals have markedly different behaviors (eg comparing sham and unilaterally 6-OHDA treated mice). The authors now address this caveat in the Discussion.
In an effort to causally link striatal firing to gait, the authors have added data from N=4 mice in which D2-expressing MSNs are optogenetically activated, and measured the resulting changes in gait parameters. As the authors note, this experiment does not directly get at the question of whether gait modulation of firing in the striatum contributes to the kinematics of gait (an experiment in which they altered the pattern of firing, to reduce modulation, would likely be needed). Given that this experiment has very low N and there are no included controls (eg mice expressing a control construct with optical stimulation), I do not think this data should be included in the manuscript. I think commenting in the Discussion that causal experiments will be needed in the future is adequate.
Many of the examples, as well as the average firing rates shown, are higher than typical for MSNs as reported in the literature. This is true even of the optically identified units that are shown in Figure 4. This may reflect the inclusion of neurons with interneuron-type properties (the authors report that there were some optically identified units with interneuron properties), the inclusion of some multi-unit activity in some recordings, or differences in recording/spike sorting techniques.
-
Reviewer #2 (Public Review):
Yang et al. recorded the activity of D1- and D2-MSNs in the dorsal striatum and analyzed their firing activity in relation to single-limb gait in normal and 6-OHDA lesioned mice. The authors provided evidence that the striatal D1- and D2-MSNs were phase-locked to the walking gait cycles of individual limbs, and dopamine lesions led to enhanced phase-locking between D2-MSN activity and walking gait cycles.
Comments on revised version:
The authors addressed my largest concern, which questioned if D1 and D2 MSNs phase-locked to single limbs better than the global gait cycles.
As to my second major concern, which questioned the causal significance of single limb gait coding in D1 and D2 MSNs on gait control, they performed additional optogenetic experiments to establish evidence that D2 activity is causally relevant for gait pattern control. The additional experiments also closed the logic gap between dopamine lesion, D2 activity and gait control, supporting the hypothesis that dopamine affects gait control and global movement pattern via increasing D2 MSN activity.
-
Reviewer #3 (Public Review):
In this study, Yang et al. address a fundamental question of the role of dorsal striatum in neural coding of gait. The authors study the respective role of D1 and D2 MSNs by linking their balanced activity to detailed gait parameters. In addition, they put in parallel the striatal activity related to whole-body measures such as initiation/cessation of movement or body speed. They are using an elegant combination of high-resolution single-limb motion tracking, identification of bouts of movements and electrophysiological recordings of striatal neurons to correlate those different parameters. Subpopulations of striatal output neurons (D1 and D2 expressing neurons) are identified in neural recordings with optogenetic tagging. Those complementary approaches show that a subset of striatal neurons have phase-locked activity to individual limbs. In addition, more than a third of MSNs appear to encode all three aspects of motor behavior addressed here, initiation/cessation of movement, body speed and gait. This activity is balanced between D1 and D2 neurons, with a higher activity of D1 neurons only for movement initiation. Finally, alterations of gait, and the associated striatal activity, is studied in a mouse model of Parkinson's Disease, using 6-OHDA lesions in the medial forebrain bundle (MFB). In the 6OHDA mice, there is an imbalance toward D2 activity.
Strengths:
The study combines elegant approaches to correlate cell-specific striatal activity with specific aspects of motion and how it is affected in a PD model. The results are convincing, and the methodology supports the conclusions presented here.
Weaknesses:
All the data were not fully exploited or explained in the first version of the manuscript and the present version has been significantly improved.
There is a long-standing debate on the respective role of D1 and D2 MSNs on the control of movement. This study goes beyond prior work by providing detailed quantification of individual limb kinematics, in parallel of whole-body motion, and showing high proportion of MSNs to be phase-locked to precise gait cycle and also encoding whole-body motion. The temporal resolution used here highlights preferential activity of D1 MSN at the movement starts, where previous studies described a more balanced involvement. Finally they reveal neural mechanisms of dopamine depletion induced gait alterations, with a preponderant phase-locked activity of D2 neurons.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In their article, the authors delve into the therapeutic potential of a newly identified liver-specific lncRNA, FincoR, regulated by the Farnesoid X Receptor (FXR) and induced by the agonist tropifexor, in treating nonalcoholic steatohepatitis (NASH). They demonstrate that FincoR significantly enhances tropifexor's effectiveness in reducing liver fibrosis and inflammation in NASH, presenting it as a promising therapeutic target. The manuscript revisions broaden the study to include both mouse and human data, showing elevated FincoR levels in various mouse models of liver disease and identifying a similar lncRNA in humans, potentially indicating a conserved therapeutic mechanism. This research offers valuable insights into FincoR's role in NASH and suggests further exploration into its functions and mechanisms in liver disease treatment.
Strengths:
This study enhances our understanding of FincoR, a liver-specific lncRNA, and its therapeutic potential in treating NASH through a multifaceted research approach. The revised manuscript further strengthens this contribution by incorporating additional experiments and human relevance, summarized as follows: 1) The use of GRO-seq and RNA-seq technologies has provided an in-depth and unbiased view of the transcriptional alterations driven by the FXR agonist tropifexor, especially emphasizing FincoR's pivotal role. 2) The research expands on the original findings by including diverse mouse models of NAFLD/NASH and cholestatic liver injury. These models demonstrate significant increases in hepatic FincoR levels across various conditions, such as diets high in fat and fructose, chemical induction of liver cholestasis with ANIT, and surgical induction via bile duct ligation. This broadened scope underscores FincoR's involvement in liver disease mechanisms beyond the initial models of FXR knockout (KO) and FincoR liver-specific knockdown (FincoR-LKD). 3) Incorporation of tropifexor, an FDA-approved FXR agonist, alongside these experimental models bridges experimental findings to potential therapeutic applications for NASH patients. 2) The manuscript revision includes promising data on the sequence similarity between mouse FincoR and a human locus, identifying a partially conserved human lncRNA (XR_007061585.1) with elevated levels in NAFLD and PBC patients. This addition enhances the study's relevance to human health. 3) The study's design, with the inclusion of both negative and positive controls and now enriched with a wider array of mouse models and human data, ensures that the observed therapeutic effects can be confidently attributed to FincoR's modulation by tropifexor.
Weaknesses:
The authors acknowledge that certain questions remain unanswered within the scope of this study on FincoR, due to feasibility and technical challenges. While it's important to note that such limitations are rooted in the practical and technical complexities, these unresolved issues might limit the study's immediate impact. The decision to focus on the discovery and initial characterization of FincoR, is strategically but not scientifically justified.
-
Reviewer #2 (Public Review):
Summary:
Nonalcoholic fatty liver disease (NASH), recently renamed as metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of liver-related death. Farnesoid X receptor (FXR) is a promising drug target for treating NASH and several drugs targeting FXR is under clinical investigation for its efficacy in treating NASH. The authors intended to address whether FXR mediates its hepatic protective effects through regulation of lncRNAs, which would provide novel insights into the pharmacological targeting of FXR for NASH treatment. The authors went from an unbiased transcriptomics profiling to identify a novel enhancer-derived lncRNA FincoR enriched in the liver and showed that the knockdown of FincoR in a murine NASH model attenuated part of the effect of tropifexor, an FXR agonist, namely inflammation and fibrosis, but not steatosis. This study provides a framework how one can investigate the role of noncoding genes in pharmacological intervention targeting a known protein coding genes. Given that many disease-associated genetic variants are located in the non-coding regions, this study, together with others, may provide useful information for improved and individualized treatment for metabolic disorders.
Strengths:
The study leverages both transcriptional profile and epigenetic signatures to identify the top candidate eRNA for further study. The subsequent biochemical characterization of FincoR using FXR-KO mice combined with Gro-seq and Luciferase reporter assays convincingly demonstrates this eRNA as a FXR transcriptional targets sensitive to FXR agonists. The use of in vitro culture cells and the in vivo mouse model of NASH provide multi-level evaluation of the context-dependent importance of the FincoR downstream of FXR in regulation of functions related to liver dysfunction.
Weaknesses:
Future work to dissect the detailed mechanisms by which FincoR facilitates action of FXR and its agonists is warranted. A more direct approach to alter eRNA levels, e.g., overexpression of FincoR in the liver would provide important data to interpret its functional regulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
In their paper Li et al. investigate the transcriptome of satellite cells obtained from different muscle types including hindlimb, diaphragm and extraocular muscles (EOM) from wild type and G93A transgenic mice (end stage ALS) in order to identify potential factors involved in the maintenance of the neuromuscular junction. The underlying hypothesis being that since EOMs are largely spared from this debilitating disease, they may secrete NMJ-protective factors. The results of their transcriptome analysis identified several axon guidance molecules including the chemokine Cxcl12, which are particularly enriched in EOM-derived satellite cells. Transduction of hindlimb-derived satellite cells with AAV encoding Cxcl12 reverted hindlimb-derived myotubes from the G93A mice into myotubes sharing phenotypic characteristics similar to those of EOM-derived satellite cells. Additionally, the authors were able to demonstrate that EOM-derived satellite cell myotube cultures are capable of enhancing axon extensions and innervation in co-culture experiments.
Strengths:
The strength of the paper is that the authors successfully isolated and purified different populations of satellite cells, compared their transcriptomes, identified specific factors release by EOM-derived satellite cells, overexpressed one of these factors (the chemokine Cxcl12) by AAV-mediated transduction of hindlimb-derived satellite cells. The transduced cells were then able to support axon guidance and NMJ integrity. They also show that administration of Na butyrate to mice decreased NMJ denervation and satellite cell-depletion of hind limbs. Furthermore, addition of Na Butyrate to hindlimb derived satellite cell myotube cultures increased Cxcl12 expression. These are impressive results providing important insights for the development of therapeutic targets to slow the loss on neuromuscular function characterizing ALS.
Weaknesses:
Several important aspects have not been addressed by the authors, these include the following points which weaken the conclusions and interpretation of the results.<br /> (a) Na Butyrate was shown to extend the survival of G93A mice by Zhang et al. Na butyrate has a variety of biological effects. For example, anti-inflammatory effects, inhibits mitochondrial oxidative stress, positively influences mitochondrial function, is a class I / II HDAC inhibitor etc. What is the mechanism underlying its beneficial effects both in the context of mouse muscle function in the ALS G93A mice and in the in vitro myotube assay? Cytokine quantification as well as histone acetylation/methylation can be assessed experimentally and this is an important point that has not been appropriately investigated.<br /> (b) In the context of satellite cell characterization, on line 151-152 the authors state that soleus muscles were excluded from further studies since they have a higher content of slow twitch fibers and are more similar to diaphragm. This justification is not valid in the context of ALS as well as many other muscle disorders. Indeed, soleus and diaphragm muscles contain a high proportion of slow twitch fibers (up to 80% and 50% respectively) but soleus muscles are more spared than diaphragm muscles. What makes soleus muscles (and EOMs) more resistant to ALS NMJ injury? Satellite cells from soleus muscles need to be characterized in detail as well.<br /> Furthermore, EOMs are complex muscles, containing many types of fibers and expressing different myosin heavy chain isoforms and muscle proteins. The fact that in mouse both the globular layer and orbital layers of EOMs express slow myosin heavy chain isoform as well as myosin heavy chain 2X, 2A and 2B (Zhou et al., 2010 IOVIS 51:6355-6363) also indicates that the sparing is not directly linked to the fast or slow twitch nature of the muscle fiber. This needs to be considered.<br /> (c) In the context of myotube formation from cultured satellite cells on line 178-179 the authors stained the myotubes for myosin heavy chain. Because of the diversity of myosin heavy chain isoforms and different muscle origin of the satellite cells investigated, the isoform of myosin heavy chain expressed by the myotubes needs to be tested and described. It is not sufficient to state anti-MYH.<br /> (d) The original RNAseq results have not been deposited and while it is true that the authors have analyzed the results and described them in Figures 6 and 7 and relative supplements, the original data needs to be shown both as an xls list as a Volcano plots (q value versus log2 fold change). This will facilitate the independent interpretation of the results by the readers as some transcripts may not be listed. As presented it is rather difficult to identify which transcripts aside Cxcl12 are commonly upregulated. Can the data be presented in a more visual way?<br /> (e) There is no section describing the statistical analysis methods used. In many figures more than 2 groups are compared so the authors need to use an ANOVA followed by a post hoc test.
The authors have achieved their aim in showing that satellite cells derived from EOMs have a distinct transcriptome and that this may be the basis of their sparing in ALS. Furthermore, this work may help develop future therapeutic interventions for patients with ALS.
-
Reviewer #4 (Public Review):
Summary:
In this work, the authors have used a mouse model of familial Amyotrophic lateral sclerosis (ALS) that carries a G93A mutation in the Sod1 gen to understand how the extraocular muscles (EOM) are preserved in ALS while other muscles undergo degeneration. Interestingly, the authors demonstrate that the integrity of neuromuscular junctions (NMJ) is affected by ALS in the limb and diaphragm muscles of G93A mice, while EOM is mostly preserved. The authors also further demonstrate that NaBu treatment partially restores the integrity of NMJ in the limb and diaphragm muscles of G93A mice. The results also indicate that chemokine Cxcl12 is expressed at higher levels in EOM myoblasts, and transduction with AAV encoding Cxcl12 improved the phenotypic characteristics of hindlimb-derived satellite cells.
Strengths:
The authors have used both in vivo and cell culture models. The findings have a translational potential.
Weaknesses:
The use of NaBu could be an issue as it has multiple effects and targets in ALS.
The sample size of animal experiments still needs to be improved.
The molecular mechanism of how Cxcl12 improved the phenotypic characteristics of hindlimb-derived satellite cells is still being determined.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this report, the authors investigated the effects of reproductive secretions on sperm function in mice. The authors attempt to weave together an interesting mechanism whereby a testosterone-dependent shift in metabolic flux patterns in the seminal vesicle epithelium supports fatty acid synthesis, which they suggest is an essential component of seminal plasma that modulates sperm function by supporting linear motility patterns.
Strengths:
The topic is interesting and of general interest to the field. The study employs an impressive array of approaches to explore the relationship between mouse endocrine physiology and sperm function mediated by seminal components from various glandular secretions of the male reproductive tract.
Weaknesses:
Unfortunately, support for the proposed mechanism is not convincingly supported by the data, and the experimental design and methodology need more rigor and details, and the presence of numerous (uncontrolled) confounding variables in almost every experimental group significantly reduce confidence in the overall conclusions of the study.
The methodological detail as described is insufficient to support replication of the work. Many of the statistical analyses are not appropriate for the apparent designs (e.g. t-tests without corrections for multiple comparisons). This is important because the notion that different seminal secretions will affect sperm function would likely have a different conclusion if the correct controls were selected for post hoc comparison. In addition, the HTF condition was not adjusted to match the protein concentrations of the secretion-containing media, likely resulting in viscosity differences as a major confounding factor on sperm motility patterns.
There is ambiguity in many of the measurements due to the lack of normalization (e.g. all Seahorse Analyzer measurements are unnormalized, making cell mass and uniformity a major confounder in these measurements). This would be less of a concern if basal respiration rates were consistently similar across conditions and there were sufficient independent samples, but this was not the case in most of the experiments.
The observation that oleic acid is physiologically relevant to sperm function is not strongly supported. The cellular uptake of 10-100uM labeled oleic acid is presumably due to the detergent effects of the oleic acid, and the authors only show functional data for nM concentrations of exogenous oleic acid. In addition, the effect sizes in the supporting data were not large enough to provide a high degree of confidence given the small sample sizes and ambiguity of the design regarding the number of biological and technical replicates in the extracellular flux analysis experiments.
Overall, the most confident conclusion of the study was that testosterone affects the distribution of metabolic fluxes in a cultured human seminal vesicle epithelial cell line, although the physiological relevance of this observation is not clear.
In the introduction, the authors suggest that their analyses "reveal the pathways by which seminal vesicles synthesize seminal plasma, ensure sperm fertility, and provide new therapeutic and preventive strategies for male infertility." These conclusions need stronger or more complete data to support them.
-
Reviewer #2 (Public Review):
Summary:
Using a combination of in vivo studies with testosterone-inhibited and aged mice with lower testosterone levels, as well as isolated mouse and human seminal vesicle epithelial cells, the authors show that testosterone induces an increase in glucose uptake. They find that testosterone induces differential gene expression with a focus on metabolic enzymes. Specifically, they identify increased expression of enzymes that regulate cholesterol and fatty acid synthesis, leading to increased production of 18:1 oleic acid.
Strength:
Oleic acid is secreted by seminal vesicle epithelial cells and taken up by sperm, inducing an increase in mitochondrial respiration. The difference in sperm motility and in vivo fertilization in the presence of 18:1 oleic acid and the absence of testosterone is small but significant, suggesting that the authors have identified one of the fertilization-supporting factors in seminal plasma.
Weaknesses:
Further studies are required to investigate the effect of other seminal vesicle components on sperm capacitation to support the author's conclusions. The author's experiments focused on potential testosterone-induced changes in the rate of seminal vesicle epithelial cell glycolysis and oxphos, however, provide conflicting results and a potential correlation with seminal vesicle epithelial cell proliferation should be confirmed by additional experiments.
-
Reviewer #3 (Public Review):
Summary:
Male fertility depends on both sperm and seminal plasma, but the functional effect of seminal plasma on sperm has been relatively understudied. The authors investigate the testosterone-dependent synthesis of seminal plasma and identify oleic acid as a key factor in enhancing sperm fertility.
Strengths:
The evidence for changes in cell proliferation and metabolism of seminal vesicle epithelial cells and the identification of oleic acid as a key factor in seminal plasma is solid.
Weaknesses:
The evidence that oleic acids enhance sperm fertility in vivo needs more experimental support, as the main phenotypic effect in vitro provided by the authors remains simply as an increase in the linearity of sperm motility, which does not necessarily correlate with enhanced sperm fertility.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The manuscript investigates the role of membrane contact sites (MCSs) and sphingolipid metabolism in regulating vacuolar morphology in the yeast Saccharomyces cerevisiae. The authors show that tricalbin (1-3) deletion leads to vacuolar fragmentation and the accumulation of the sphingolipid phytosphingosine (PHS). They propose that PHS triggers vacuole division through MCSs and the nuclear-vacuolar junction (NVJ). The study presents some solid data and proposes potential mechanisms underlying vacuolar fragmentation driven by this pathway. Although the manuscript is clear in what the data indicates and what is more hypothetical, the story would benefit from providing more conclusive evidence to support these hypothesis. Overall, the study provides valuable insights into the connection between MCSs, lipid metabolism, and vacuole dynamics.
-
Reviewer #2 (Public Review):
This manuscript explores the mechanism underlying the accumulation of phytosphingosine (PHS) and its role in initiating vacuole fission. The study posits the involvement of membrane contact sites (MCSs) in two key stages of this process. Firstly, MCSs tethered by tricalbin between the endoplasmic reticulum (ER) and the plasma membrane (PM) or Golgi regulate the intracellular levels of PHS. Secondly, the amassed PHS triggers vacuole fission, most likely through the nuclear-vacuolar junction (NVJ). The authors propose that MCSs play a regulatory role in vacuole morphology via sphingolipid metabolism.
While some results in the manuscript are intriguing, certain broad conclusions occasionally surpass the available data. Despite the authors' efforts to enhance the manuscript, certain aspects remain unclear. It is still uncertain whether subtle changes in PHS levels could induce such effects on vacuolar fission. Additionally, it is regrettable that the lipid measurements are not comparable with previous studies by the authors. Future advancements in methods for determining intracellular lipid transport and levels are anticipated to shed light on the remaining uncertainties in this study.
-
Reviewer #3 (Public Review):
In this manuscript, the authors investigated the effects of deletion of the ER-plasma membrane/Golgi tethering proteins tricalbins (Tcb1-3) on vacuolar morphology to demonstrate the role of membrane contact sites (MCSs) in regulating vacuolar morphology in Saccharomyces cerevisiae. Their data show that tricalbin deletion causes vacuolar fragmentation possibly in parallel with TORC1 pathway. In addition, their data reveal that levels of various lipids including ceramides, long-chain base (LCB)-1P, and phytosphingosine (PHS) are increased in tricalbin-deleted cells. The authors find that exogenously added PHS can induce vacuole fragmentation and by performing analyses of genes involved in sphingolipid metabolism, they conclude that vacuolar fragmentation in tricalbin-deleted cells is due to the accumulated PHS in these cells. Importantly, exogenous PHS- or tricalbin deletion-induced vacuole fragmentation was suppressed by loss of the nucleus vacuole junction (NVJ), suggesting the possibility that PHS transported from the ER to vacuoles via the NVJ triggers vacuole fission. Of note, the authors find that hyperosmotic shock increases intracellular PHS levels, suggesting a general role of PHS in vacuole fission in response to physiological vacuolar division-inducing stimuli.
This work provides valuable insights into the relationship between MCS-mediated sphingolipid metabolism and vacuole morphology. The conclusions of this paper are mostly supported by their results, but inclusion of direct evidence indicating increased transport of PHS from the ER to vacuoles via NVJ in response to vacuolar division-inducing stimuli would have strengthened this study.
There is another weakness in their claim that the transmembrane domain of Tcb3 contributes to the formation of the tricalbin complex which is sufficient for tethering ER to the plasma membrane and the Golgi complex. Their claim is based only on the structural simulation, but not on by biochemical experiments such as co-immunoprecipitation and pull-down.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
The authors aimed to study the activation of gliogenesis and the role of newborn astrocytes in a post-ischemic scenario. Combining immunofluorescence, BrdU-tracing, and genetic cellular labelling, they tracked the migration of newborn astrocytes (expressing Thbs4) and found that Thbs4-positive astrocytes modulate the extracellular matrix at the lesion border by synthesis but also degradation of hyaluronan. Their results point to a relevant function of SVZ newborn astrocytes in the modulation of the glial scar after brain ischemia. This work's major strength is the fact that it is tackling the function of SVZ newborn astrocytes, whose role is undisclosed so far.
Strengths:
The article is innovative, of good quality, and clearly written, with properly described Materials and Methods, data analysis, and presentation. In general, the methods are designed properly to answer the main question of the authors, being a major strength. Interpretation of the data is also in general well done, with results supporting the main conclusions of this article.
Weaknesses:
However, there are some points of this article that still need clarification to further improve this work.
- As a first general comment, is it possible that the increase in Thbs4-positive astrocytes can also happen locally close to the glia scar, through the proliferation of local astrocytes or even from local astrocytes at the SVZ? As it was shown in published articles most of the newborn astrocytes in the adult brain actually derive from proliferating astrocytes, and a smaller percentage is derived from NSCs. How can the authors rule out a contribution of local astrocytes to the increase of Thbs4-positive astrocytes? The authors also observed that only about one-third of the astrocytes in the glial scar derived from the SVZ.
- It is known that the local, GFAP-reactive astrocytes at the scar can form the required ECM. The authors propose a role of Thbs4-positive astrocytes in the modulation, and perhaps maintenance, of the ECM at the scar, thus participating in scar formation likewise. So, this means that the function of newborn astrocytes is only to help the local astrocytes in the scar formation and thus contribute to tissue regeneration. Why do we need specifically the Thbs4-positive astrocytes migrating from the SVZ to help the local astrocytes? Can you discuss this further?
- The authors observed that the number of BrdU- and DCX-positive cells decreased 15 dpi in all OB layers (Fig. S5). They further suggest that ischemia-induced a change in the neuroblasts ectopic migratory pathway, depriving the OB layers of the SVZ newborn neurons. Are the authors suggesting that these BrdU/DCX-positive cells now migrate also to the ischemic scar, or do they die? In fact, they see an increase in caspase-3 positive cells in the SVZ after ischemia, but they do not analyse which type of cells are dying. Alternatively, is there a change in the fate of the cells, and astrogliogenesis is increased at the expense of neurogenesis? The authors should understand which cells are Cleaved-caspase-3 positive at the SVZ and clarify if there is a change in cell fate. Also please clarify what happens to the BrdU/DCX-positive cells that are born at the SVZ but do not migrate properly to the OB layers.
- The authors showed decreased Nestin protein levels at 15 dpi by western blot and immunostaining shows a decrease already at 7div (Figure 2). These results mean that there is at least a transient depletion of NSCs due to the promotion of astrogliogenesis. However, the authors show that at 30dpi there is an increase of slow proliferating NSCs (Figure 3). Does this mean, that there is a reestablishment of the SVZ cytogenic process? How does it happen, more specifically, how NSCs number is promoted at 30dpi? Please explain how are the NSCs modulated throughout time after ischemia induction and its impact on the cytogenic process.
- The authors performed a classification of Thbs4-positive cells in the SVZ according to their morphology. This should be confirmed with markers expressed by each of the cell subtypes.
- In Figure S6, the authors quantified HABP spots inside Thbs4-positive astrocytes. Please show a higher magnification picture to show how this quantification was done.
-
Reviewer #1 (Public Review):
Summary:
The authors show that SVZ-derived astrocytes respond to a middle carotid artery occlusion (MCAO) hypoxia lesion by secreting and modulating hyaluronan at the edge of the lesion (penumbra) and that hyaluronan is a chemoattractant to SVZ astrocytes. They use lineage tracing of SVZ cells to determine their origin. They also find that SVZ-derived astrocytes express Thbs-4 but astrocytes at the MCAO-induced scar do not. Also, they demonstrate that decreased HA in the SVZ is correlated with gliogenesis. While much of the paper is descriptive/correlative they do overexpress Hyaluronan synthase 2 via viral vectors and show this is sufficient to recruit astrocytes to the injury. Interestingly, astrocytes preferred to migrate to the MCAO than to the region of overexpressed HAS2.
Strengths:
The field has largely ignored the gliogenic response of the SVZ, especially with regard to astrocytic function. These cells and especially newborn cells may provide support for regeneration. Emigrated cells from the SVZ have been shown to be neuroprotective via creating pro-survival environments, but their expression and deposition of beneficial extracellular matrix molecules are poorly understood. Therefore, this study is timely and important. The paper is very well written and the flow of results is logical.
Weaknesses:
The main problem is that they do not show that Hyaluronan is necessary for SVZ astrogenesis and or migration to MCAO lesions. Such loss of function studies have been carried out by studies they cite (e.g. Girard et al., 2014 and Benner et al., 2013). Similar approaches seem to be necessary in this work.
Major points:
(1) How good of a marker for newborn astrocytes is Thbs4? Did you co-label with B cell markers like EGFr? Is the Thbs4 gene expressed in B cells? Do scRNAseq papers show it is expressed in B cells? Are they B1 or B2 cells?
(2) It is curious that there was no increase in Type C cells after MCAO - do the authors propose a direct NSC-astrocyte differentiation?
(3) The paper would be strengthened with orthogonal views of z projections to show co-localization.
(4) It is not clear why the dorsal SVZ is analysed and focused on in Figure 4. This region emanates from the developmental pallium (cerebral cortex anlagen). It generates some excitatory neurons early postnatally and is thought to have differential signalling such as Wnt (Raineteau group).
(5) Several of the images show the lesion and penumbra as being quite close to the SVZ. Did any of the lesions contact the SVZ? If so, I would strongly recommend excluding them from the analysis as such contact is known to hyperactivate the SVZ.
(6) The authors switch to a rat in vitro analysis towards the end of the study. This needs to be better justified. How similar are the molecules involved between mouse and rat?
(7) Similar comment for overexpression of naked mole rat HA.
-
Reviewer #2 (Public Review):
Summary:
In their manuscript, Ardaya et al have addressed the impact of ischemia-induced gliogenesis from the adult SVZ and their effect on the remodeling of the extracellular matrix (ECM) in the glial scar. They use Thbs4, a marker previously identified to be expressed in astrocytes of the SVZ, to understand its role in ischemia-induced gliogenesis. First, the authors show that Thbs4 is expressed in the SVZ and that its expression levels increase upon ischemia. Next, they claim that ischemia induces the generation of newborn astrocyte from SVZ neural stem cells (NSCs), which migrate toward the ischemic regions to accumulate at the glial scar. Thbs4-expressing astrocytes are recruited to the lesion by Hyaluronan where they modulate ECM homeostasis.
Strengths:
The findings of these studies are in principle interesting and the experiments are in principle good.
Weaknesses:
The manuscript suffers from an evident lack of clarity and precision in regard to their findings and their interpretation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This paper considers a challenging motor control task - the critical stability task (CST) - that can be performed equally well by humans and macaque monkeys. This task is of considerable interest since it is rich enough to potentially yield important novel insights into the neural basis of behavior in more complex tasks that point-to-point reaching. Yet it is also simple enough to allow parallel investigation in humans and monkeys, and is also easily amenable to computational modeling. The paper makes a compelling argument for the importance of this type of parallel investigation and the suitability of the CST for doing so.
Behavior in monkeys and in human subjects suggests that behavior seems to include two qualitatively different kinds of behavior - in some cases, the cursor oscillates about the center of the screen, and in other cases, it drifts more slowly in one direction. The authors argue that these two behavioral regimes can be reliably induced by instructing human participants to either maintain the cursor in the center of the screen (position control objective), or keep the cursor still anywhere in the screen (velocity control objective) - as opposed to the usual 'instruction' to just not let the cursor leave the screen. A computational model based on optimal feedback control can reproduce the different behaviors under these two instructions.
Overall, this is a creative study that leverages experiments in humans and computational modeling to gain insight into the nature of individual differences in behavior across monkeys (and people). The authors convincingly demonstrate that they can infer the control objectives from participants who were instructed how to perform the task to emphasize either position or velocity control, based on the RMS cursor position and RMS cursor velocity. The authors show that, while other behavioral metrics do contain similar information about the control objective, RMS position and velocity are sufficient, and their approach classifies control objectives for simulated data with high accuracy (~95%).
The authors also convincingly show that the range of behaviors observed in the CST task cannot be explained as emerging from variations in effort cost, motor execution noise, or sensorimotor delays.
One significant issue, however relates to framing the range of possible control objectives as a simple dichotomy between 'position' and 'velocity' objectives. The authors do clearly state that this is a deliberate choice made in order to simplify their first attempts at solving this challenging problem. However, I do think that the paper at times gives a false impression that this dichotomous view of the control objectives was something that emerged from the data, rather than resulting from a choice to simplify the modeling/inference problem. For instance, line 115: "An optimal control model was used to simulate different control objectives, through which we identified two different control objectives in the experimental data of humans and monkeys."
In the no-instruction condition - which is the starting point and which the ultimate goal of the paper is to understand - there is a lot of variability in behavior across trials (even within an individual) and generally no clear correspondence to either the position or velocity objective. This variability is largely interpreted as the monkeys (and people) switching between control objectives on a trial-to-trial basis. If the behavior were truly a bimodal mixture of these two different behaviors, this might be a convincing interpretation. However, there are a lot of trials that fall in-between the patterns of behavior expected under the position and velocity control objectives. The authors do mention this issue in the discussion. However, it's not clearly examined whether these are simply fringe trials that are ambiguous (like some trials generated by the model are), or whether they reflect a substantial proportion of trials that require some other explanation (whether that is blended position/velocity control, or something else). The existence of these 'in-between' trials (which possibly amount to more than a third of all trials) makes the switching hypothesis a lot less plausible.
Overall, while I think the paper introduces a promising approach and overall helps to improve our understanding of the behavior in this task, I'm not fully convinced that the core issue of explaining the variability in behavior in the no-instruction condition (in monkeys especially) has been resolved. The main explanation put forward is that the monkeys are switching between control objectives on a trial-by-trial basis, but there is no real evidence in the data for this, and I don't think there is yet a good explanation of what is occurring in the 'in-between' trials that aren't explained well by velocity or position objectives.
-
Reviewer #1 (Public Review):
The present study examines whether one can identify kinematic signatures of different motor strategies in both humans and non-human primates (NHP). The Critical Stability Task (CST) requires a participant to control a cursor with complex dynamics based on hand motion. The manuscript includes datasets on performance of NHPs collected from a previous study, as well as new data on humans performing the same task. Further human experiments and optimal control models highlight how different strategies lead to different patterns of hand motion. Finally, classifiers were developed to predict which strategy individuals were using on a given trial.
There are several strengths to this manuscript. I think the CST task provides a very useful behavioural task to explore the neural basis of voluntary control. While reaching is an important basic motor skill and commonly studied, there is much to learn by looking at other motor actions to address many fundamental issues on the neural basis of voluntary control.
I also think the comparison between human and NHP performance is important as there is a common concern that NHPs can be overtrained in performing motor tasks leading to differences in their performance as compared to humans. The present study highlights that there are clear similarities in motor strategies of humans and NHPs. While the results are promising, I would suggest that the actual use of these paradigms and techniques likely need some improvement/refinement. Notably, the threshold or technique to identify which strategy an individual is using on a given trial needs to be more stringent given the substantial overlap in hand kinematics between different strategies.
The most important goal of this study is to set up future studies to examine how changes in motor strategies impact neural processing. The revised manuscript has improved the technique for identifying which strategy appears to be performed by the individual. A pivotal assumption is that one can identify control strategies from differences in behaviour. As I'm sure the authors know, this inversion of the control problem is not trivial and so success requires that there are only a few 'reasonable' strategies to solve the control problem, and that these strategies lead to distinct patterns of behavior. Many of the concerns raised by myself and the other reviewers relate to this challenge. The revised manuscript now uses a more strict criteria which is good improvement.
One of the values of this paper is to start to develop the tools and approaches to address neural basis of control. The strength of the present manuscript is that it includes modelling, explicit strategy instructions in humans, and then analysis of free-form performance in humans and non-human primates. Given the novelty of this question and approach, there likely are many ways that the techniques and approaches could be improved, but I think they've done a great start. Their approach is quite clever and provides an important blueprint for future studies.
One weakness at this point is that there is still substantial overlap in behavoural performance predicted between strategies, as some human participants given an explicit strategy were almost equally categorized as reflecting the other strategy. I'm glad to see the addition of the model performance on perturbation trials as this additional figure clearly highlights much greater separation in performance than when observing natural behavior. While it is not reasonable to expand beyond this for the present manuscript, I think it is essential for this group to develop the perturbation paradigm (and potentially other approaches) that can better isolate behavioral signatures of different control strategies. I think future work will be strengthened by having multiple experimental angles to interpret the neural activity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors investigate the alpha chain t cell receptor landscape in conventional vs regulatory CD4 T cells. Overall I think it is a very well thought out and executed study with interesting conclusions. Findings are valuable and are supported by convincing evidence. This work will be of interest for immunologists studying T cells.
Strengths:
- One of a kind evidence and dataset.
- State of the art analyses using well accepted in the literature tools.
- Interesting conclusions on the breadth of immune response to challenges across different types of challenges (tumor, viral and parasitic).
-
Reviewer #3 (Public Review):
This study presents a valuable exploration of CD4+ T cell response in a fixed TCRβ chain FoxP3-GFP mouse model across stimuli and tissues through the analysis of their TCRα repertoires. This is an insightful paper for the community as it suggests several future directions of exploration.
The authors compare Treg and conventional CD4+ repertoires by looking at diversity measures and the relative overlap of shared clonotypes to characterize similarity across different tissues and antigen challenges. They find distinct yet convergent responses with occasional plasticity across subsets for some stimuli. The observed lack of a general behavior highlights the need for careful comparison of immune repertoires across cell subsets and tissues. Such comparisons are crucial in order to better understand the heterogeneity of the adaptive immune response. This mouse model demonstrates its utility for this task due to the reduced diversity of the TCRα repertoire and the ability to track a single chain.
The revised manuscript has significantly improved in terms of clarity of explanations and presentations of the results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Shimonty and colleagues study the effects of FNDC5/irisin deletion on osteocytes in a sex-specific manner using models of lactation induced bone loss and bone loss due to low calcium diet (LCD). Consistent with the previous findings of Kim et al. (2018), the authors report 'protective' effects of irisin deficiency in lactating female FNDC5-null mice due to reduced osteocytic osteolysis. Interestingly, FNDC5 null mice show distinct changes when placed on LCD, with mutant females showing some protection from hyperparathyroidism-induced bone loss, while mutant males (which have more cortical bone at baseline) show increased LCD-induced bone loss. Furthermore, new insights into irisin's role in osteocytes regarding cellular energetic metabolism were provided by sex and gene-dependent transcriptomic datasets. Strengths of the well-written manuscript include clear description of sex-dependent effects, strong transcriptomic datasets, and focus on cortical bone changes using microCT, histomorphometry, BSEM, and serum analysis. Despite these strengths, important weaknesses are noted (below) which could be addressed to improve the impact of the work for a broad audience.
Major comments:
(1) Overall, the magnitude of the effect size due to FNDC5 deficiency in both male and female mice is rather modest at the level of bone mass. Looking at the data from a qualitative perspective, it is clear that knockout females still lose bone during lactation and on the low calcium diet (LCD). It is difficult to assess the physiologic consequence of the modest quantitative 'protection' seen in FNDC5 mutants since the mutants still show clear and robust effects of lactation and LCD on all parameters measured. Similarly, the magnitude of the 'increased' cortical bone loss in FNDC5 mutant males is also modest, and perhaps could be related to the fact that these mice are starting with slightly more cortical bone. Since the authors do not provide a convincing molecular explanation for why FNDC5 deficiency causes these somewhat subtle changes, I would like to offer a suggestion for the authors to consider (below, point #2) which might de-emphasize the focus of the manuscript on FNDC5. If the authors chose not to follow this suggestion, the manuscript could be strengthened by addressing the consequences of the modest changes observed in WT versus FNDC5 KO mice. I understand that the effects of FNDC5 are more obvious at the level of osteocyte morphology, and it is reasonable to emphasize these findings here.
(2) The bone RNA-seq findings reported in Figures 4-6 are quite interesting. Although Youlten et al previously reported that the osteocyte transcriptome is sex-dependent, the work here certainly advances that notion to a considerable degree, and likely will be of high interest to investigators studying skeletal biology and sexual dimorphism in general. To this end, one direction for the authors to consider might be to refocus their manuscript towards sexually-dimorphic gene expression patterns in osteocytes and the different effects of LCD on male versus female mice. This would allow the authors to better emphasize these major findings, and then to use FNDC5 deficiency as an illustrative example of how sexually-dimorphic osteocytic gene expression patterns might be affected by deletion of an osteocyte-acting endocrine factor. Ideally, the authors would confirm RNA-seq data comparing male versus female mice in osteocytes using in situ hybridization or immunostaining. Of course, this point is only a suggestion for the authors to consider.
(3) It would be appreciated if the authors could provide additional serum parameters (if possible) to clarify incomplete data in both lactation and low-calcium diet models: RANKL/OPG ratio, Ctx, PTHrP, and 1,25-dihydroxyvitamin D levels. I understand that this may not be possible due to lack of available material.
-
Reviewer #2 (Public Review):
Summary:
The goal of this study was to examine the role of FNDC5 in the response of the murine skeleton to either lactation or a calcium-deficient diet. The authors find that female FNDC5 KO mice are somewhat protected from the bone loss and osteocyte lacunar enlargement caused by either lactation or a calcium-deficient diet. In contrast, male FNDC5 KO mice lose more bone and have a greater enlargement of osteocyte lacunae than their wild type controls. Based on these results, the authors conclude that in males irisin protects bone from calcium deficiency but that in females it promotes calcium removal from bone for lactation.
While some of the conclusions of this study are supported by the results, it is not clear that the modest effects of FNDC5 deletion have an impact on calcium homeostasis or milk production.
Specific comments.
(1) The authors sometimes refer to FNDC5 and other times to irisin when describing causes for a particular outcome. Because irisin was not measured in any of the experiments, the authors should not conclude that lack of irisin is responsible. Along these lines, is there any evidence that either lactation or a calcium-deficient diet increases production of irisin in mice?
(2) The results of the irisin-rescue experiment shown in figure 2G cannot be appropriately interpreted without normal diet controls. In addition, some evidence that the AAV8-irisin virus actually increased irisin levels in the mice would strengthen the conclusion.
(3) There is insufficient evidence to support the idea that the effect of FNDC5 on bone resorption and osteocytic osteolysis is important for the transfer of calcium from bone to milk. Previous studies by others have shown that bone resorption is not required to maintain milk or serum calcium when dietary calcium is sufficient but is critical if dietary calcium is low (Endo. 156:2762-73, 2015). To support the conclusions of the current study, it would be necessary to determine whether FNDC5 is required to maintain calcium levels when lactating mice lack sufficient dietary calcium.
(4) The amount of cortical bone loss due to lactation is very similar in both WT and FNDC5 KO mice. The results of the statistical analysis of the data presented in figure 1B are surprising given the very similar effect size of lactation. The key result from the 2-way ANOVA is whether there is an effect of genotype on the effect size of lactation (genotype-lactation interaction). The interaction terms were not provided. Similar concerns are noted for the results shown in figure 1G and H.
(5) It is not clear what justifies the term 'primed' or 'activated' for resorption. Is there evidence that a certain level of TRAP expression lowers the threshold for osteocytic osteolysis in response to a stimulus?
-
Reviewer #3 (Public Review):
Summary: Irisin has previously been demonstrated to be a muscle-secreted factor that affects skeletal homeostasis. Through the use of different experimental approaches, such as genetic knockout models, recombinant Irisin treatment, or different cell lines, the role of Irisin on skeletal homeostasis has been revealed to be more complex than previously thought and this warrants further examination of its role. Therefore, the current study sought to rigorously examine the effects of global Irisin knockout (KO) in male and female mouse bone. Authors demonstrated that in calcium-demanding settings, such as lactation or low-calcium diet, female Irisin KO mice lose less bone compared to wildtype (WT) female mice. Interestingly male Irisin KO mice exhibited worse skeletal deterioration compared to WT male mice when fed low-calcium diet. When examined for transcriptomic profiles of osteocyte-enriched cortical bone, authors found that Irisin KO altered the expression of osteocytic osteolysis genes as well as steroid and fatty acid metabolism genes in males but not in females. These data support authors' conclusion that Irisin regulates skeletal homeostasis in a sex-dependent manner.
Strengths:
The major strength of the study is rigorous examination of the effects of Irisin deletion in the settings of skeletal maturity and increased calcium demands in female and male mice. Since many of the common musculoskeletal disorders are dependent on sex, examining both sexes in the preclinical setting is crucial. Had the investigators only examined females or males in this study, the conclusion from each sex would have contradicted each other regarding the role of Irisin on bone. Also, the approaches are thorough and comprehensive that assess the functional (mechanical testing), morphological (microCT, BSEM, and histology), and cellular (RNA-seq) properties of bone. Transcriptomic data deposited to NCBI GEO data repository will be a valuable resource to musculoskeletal researchers who aim to further assess the affects of Irisin on skeleton.
Weaknesses:
One of the weaknesses of this study is a lack of detailed mechanistic analysis of why Irisin has sex-dependent role on skeletal homeostasis. However, the osteocyte transcriptome comparisons between LC females vs. LC males lay a foundation for such future mechanistic studies.
Another weakness is authors did not present data that convincingly demonstrate that Irisin secretion is altered in the skeletal muscle between female vs. male WT mice in response to calcium restriction. The supplement skeletal muscle data only present functional and electrophysiological outcomes. Since Itgav or Itgb5 were not different in any of the experimental groups, it is assumed that the changes in the level of Irisin is responsible for the phenotypes observed in WT mice. Assessing Irisin expression will further strengthen the conclusion based on observing skeletal changes that occur in Irisin KO male and female mice.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors present a number of deep learning models to analyse the dynamics of epithelia. In this way they want to overcome the time-consuming manual analysis of such data and also remove a potential operator bias. Specifically, they set up models for identifying cell division events and cell division orientation. They apply these tools to the epithelium of the developing Drosophila pupal wing. They confirm a linear decrease of the division density with time and identify a burst of cell division after healing of a wound that they had induced earlier. These division events happen a characteristic time after and a characteristic distance away from the wound. These characteristic quantities depend on the size of the wound.
Strengths:
The methods developed in this work achieve the goals set by the authors and are a very helpful addition to the toolbox of developmental biologists. They could potentially be used on various developing epithelia. The evidence for the impact of wounds on cell division is compelling.
The methods presented in this work should prove to be very helpful for quantifying cell proliferation in epithelial tissues.
-
Reviewer #2 (Public Review):
In this manuscript, the authors propose a computational method based on deep convolutional neural networks (CNNs) to automatically detect cell divisions in two-dimensional fluorescence microscopy timelapse images. Three deep learning models are proposed to detect the timing of division, predict the division axis, and enhance cell boundary images to segment cells before and after division. Using this computational pipeline, the authors analyze the dynamics of cell divisions in the epithelium of the Drosophila pupal wing and find that a wound first induces a reduction in the frequency of division followed by a synchronised burst of cell divisions about 100 minutes after its induction.
Comments on revised version:
Regarding the Reviewer's 1 comment on the architecture details, I have now understood that the precise architecture (number/type of layers, activation functions, pooling operations, skip connections, upsampling choice...) might have remained relatively hidden to the authors themselves, as the U-net is built automatically by the fast.ai library from a given classical choice of encoder architecture (ResNet34 and ResNet101 here) to generate the decoder part and skip connections.
Regarding the Major point 1, I raised the question of the generalisation potential of the method. I do not think, for instance, that the optimal number of frames to use, nor the optimal choice of their time-shift with respect to the division time (t-n, t+m) (not systematically studied here) may be generic hyperparameters that can be directly transferred to another setting. This implies that the method proposed will necessarily require re-labeling, re-training and re-optimizing the hyperparameters which directly influence the network architecture for each new dataset imaged differently. This limits the generalisation of the method to other datasets, and this may be seen as in contrast to other tools developed in the field for other tasks such as cellpose for segmentation, which has proven a true potential for generalisation on various data modalities. I was hoping that the authors would try themselves testing the robustness of their method by re-imaging the same tissue with slightly different acquisition rate for instance, to give more weight to their work.
In this regard, and because the authors claimed to provide clear instructions on how to reuse their method or adapt it to a different context, I delved deeper into the code and, to my surprise, felt that we are far from the coding practice of what a well-documented and accessible tool should be.
To start with, one has to be relatively accustomed with Napari to understand how the plugin must be installed, as the only thing given is a pip install command (that could be typed in any terminal without installing the plugin for Napari, but has to be typed inside the Napari terminal, which is mentioned nowhere). Surprisingly, the plugin was not uploaded on Napari hub, nor on PyPI by the authors, so it is not searchable/findable directly, one has to go to the Github repository and install it manually. In that regard, no description was provided in the copy-pasted templated files associated to the napari hub, so exporting it to the hub would actually leave it undocumented.
Regarding now the python notebooks, one can fairly say that the "clear instructions" that were supposed to enlighten the code are really minimal. Only one notebook "trainingUNetCellDivision10.ipynb" has actually some comments, the other have (almost) none nor title to help the unskilled programmer delving into the script to guess what it should do. I doubt that a biologist who does not have a strong computational background will manage adapting the method to its own dataset (which seems to me unavoidable for the reasons mentioned above).
Finally regarding the data, none is shared publicly along with this manuscript/code, such that if one doesn't have a similar type of dataset - that must be first annotated in a similar manner - one cannot even test the networks/plugin for its own information. A common and necessary practice in the field - and possibly a longer lasting contribution of this work - could have been to provide the complete and annotated dataset that was used to train and test the artificial neural network. The basic reason is that a more performant, or more generalisable deep-learning model may be developed very soon after this one and for its performance to be fairly compared, it requires to be compared on the same dataset. Benchmarking and comparison of methods performance is at the core of computer vision and deep-learning.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This is a clear account of some interesting work. The experiments and analyses seem well done and the data are useful. It is nice to see that VSDI results square well with those from prior extracellular recordings.
The authors have done a good job responding to the main points of my previous review. One important question remains, as stated in that review:
"My reading is that this is primarily a study of surround suppression with results that follow pretty directly from what we already know from that literature, and although they engage with some of the literature they do not directly mention surround suppression in the text. Their major effect - what they repeatedly describe as a "paradoxical" result in which the responses initially show a stronger response to matched targets and backgrounds and then reverse - seems to pretty clearly match the expected outcome of a stimulus that initially evokes additional excitation due to increased center contrast followed by slightly delayed surround suppression tuned to the same peak orientation. Their dynamics result seems entirely consistent with previous work, e.g. Henry at al 2020, particularly their Fig. 3 https://elifesciences.org/articles/54264, so it seems like a major oversight to not engage with that work at all, and to explain what exactly is new here."
Their rebuttal of my first review is not convincing -- I still believe that surround influences are important and perhaps predominant in determining the outcome of the experiments. This is particularly clear for the "paradoxical" dynamics that they observe, which seem exactly to reflect the behavior of the surround.
The authors' arguments to the contrary are based on three main points. First, their stimuli cover the center and surround, unlike those of many previous experiments, so they argue that this somehow diminishes the impact of the surround. But the argument is not accompanied by data showing the effects of center stimuli alone or surround stimuli alone. Second, their model -- a normalization model -- does not need surround influences to account for the masking effect. Third, they cite human psychophysical masking results from their collaborators (Sebastian et al 2017), but do not cite an equally convincing demonstration that surround contrast creates potent orientation selective masking when presented alone (Petrov et al 2005, https://doi.org/10.1523/JNEUROSCI.2871-05.2005).
At the end of the day, these issues will be resolved by further experiments, not argumentation. The paper stands as an excellent contribution, but it might be wise for the authors to be less doctrinaire in their interpretations.
-
Reviewer #2 (Public Review):
Summary
In this experiment, Voltage Sensitive Dye Imaging (VSDI) was used to measure neural activity in macaque primary visual cortex in monkeys trained to detect an oriented grating target that was presented either alone or against an oriented mask. Monkeys' ability to detect the target (indicated by a saccade to its location) was impaired by the mask, with the greatest impairment observed when the mask was matched in orientation to the target, as is also the case in human observers. VSDI signals were examined to test the hypothesis that the target-evoked response would be maximally suppressed by the mask when it matched the orientation of the target. In each recording session, fixation trials were used to map out the spatial response profile and orientation domains that would then be used to decode the responses on detection trials. VSDI signals were analyzed at two different scales: a coarse scale of the retinotopic response to the target and a finer scale of orientation domains within the stimulus-evoked response. Responses were recorded in three conditions: target alone, mask alone, and target presented with mask. Analyses were focused on the target evoked response in the presence of the mask, defined to be the difference in response evoked by the mask with target (target present) versus the mask alone (target absent). These were computed across five 50 msec bins (total, 250 msec, which was the duration of the mask (target present trials, 50% of trials) / mask + target (target present trials, 50% of trials). Analyses revealed that in an initial (transient) phase the target evoked response increased with similarity between target and mask orientation. As the authors note, this is surprising given that this was the condition where the mask maximally impaired detection of the target in behavior. Target evoked responses in a later ('sustained') phase fell off with orientation similarity, consistent with the behavioral effect. When analyzed at the coarser scale the target evoked response, integrated over the full 250 msec period showed a very modest dependence on mask orientation. The same pattern held when the data were analyzed on the finer orientation domain scale, with the effect of the mask in the transient phase running counter to the perceptual effect of the mask and the sustained response correlating the perceptual effect. The effect of the mask was more pronounced when analyzed at the scale.
Strengths
The work is on the whole very strong. The experiments are thoughtfully designed, the data collection methods are good, and the results are interesting. The separate analyses of data at a coarse scale that aggregates across orientation domains and a more local scale of orientation domains is a strength and it is reassuring that the effects at the more localized scale are more clearly related to behavior, as one would hope and expect. The results are strengthened by modeling work shown in Figure 8, which provides a sensible account of the population dynamics. The analyses of the relationship between VSDI data and behavior are well thought out and the apparent paradox of the anti-correlation between VSDI and behavior in the initial period of response, followed by a positive correlation in the sustained response period is intriguing.
-
-
-
Reviewer #1 (Public Review):
Summary:
In this work, the authors utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network's output are related from a geometrical point of view. The authors found that RNNs operate between two extremes: an 'aligned' regime in which the weights and the largest PCs are strongly correlated and an 'oblique' regime where the output weights and the largest PCs are poorly correlated. Large output weights led to oblique dynamics, and small output weights to aligned dynamics. This feature impacts whether networks are robust to perturbation along output directions. Results were linked to experimental data by showing that these different regimes can be identified in neural recordings from several experiments.
Strengths:
A diverse set of relevant tasks.
A well-chosen similarity measure.
Exploration of various hyperparameter settings.
Weaknesses:
One of the major connections found BCI data with neural variance aligned to the outputs. Maybe I was confused about something, but doesn't this have to be the case based on the design of the experiment? The outputs of the BCI are chosen to align with the largest principal components of the data.
Proposed experiments may have already been done (new neural activity patterns emerge with long-term learning, Oby et al. 2019). My understanding of these results is that activity moved to be aligned as the manifold changed, but more analyses could be done to more fully understand the relationship between those experiments and this work.
Analysis of networks was thorough, but connections to neural data were weak. I am thoroughly convinced of the reported effect of large or small output weights in networks. I also think this framing could aid in future studies of interactions between brain regions.
This is an interesting framing to consider the relationship between upstream activity and downstream outputs. As more labs record from several brain regions simultaneously, this work will provide an important theoretical framework for thinking about the relative geometries of neural representations between brain regions.
It will be interesting to compare the relationship between geometries of representations and neural dynamics across connected different brain areas that are closer to the periphery vs. more central.
It is exciting to think about the versatility of the oblique regime for shared representations and network dynamics across different computations.
The versatility of the oblique regime could lead to differences between subjects in neural data.
-
Reviewer #2 (Public Review):
Summary:
This paper tackles the problem of understanding when the dynamics of neural population activity do and do not align with some target output, such as an arm movement. The authors develop a theoretical framework based on RNNs showing that an alignment of neural dynamics to output can be simply controlled by the magnitude of the read-out weight vector while the RNN is being trained. Small magnitude vectors result in aligned dynamics, where low-dimensional neural activity recapitulates the target; large magnitude vectors result in "oblique" dynamics, where encoding is spread across many dimensions. The paper further explores how the aligned and oblique regimes differ, in particular, that the oblique regime allows degenerate solutions for the same target output.
Strengths:
- A really interesting new idea that different dynamics of neural circuits can arise simply from the initial magnitude of the output weight vector: once written out (Eq 3) it becomes obvious, which I take as the mark of a genuinely insightful idea.
- The offered framework potentially unifies a collection of separate experimental results and ideas, largely from studies of the motor cortex in primates: the idea that much of the ongoing dynamics do not encode movement parameters; the existence of the "null space" of preparatory activity; and that ongoing dynamics of the motor cortex can rotate in the same direction even when the arm movement is rotating in opposite directions.
- The main text is well written, with a wide-ranging set of key results synthesised and illustrated well and concisely.
- The study shows that the occurrence of the aligned and oblique regimes generalises across a range of simulated behavioural tasks.
- A deep analytical investigation of when the regimes occur and how they evolve over training.
- The study shows where the oblique regime may be advantageous: allows multiple solutions to the same problem; and differs in sensitivity to perturbation and noise.
- An insightful corollary result that noise in training is needed to obtain the oblique regime.
- Tests whether the aligned and oblique regimes can be seen in neural recordings from primate cortex in a range of motor control tasks.
Weaknesses:
- The magnitude of the output weights is initially discussed as being fixed, and as far as I can tell all analytical results (sections 4.6-4.9) also assume this. But in all trained models that make up the bulk of the results (Figures 3-6) all three weight vectors/matrices (input, recurrent, and output) are trained by gradient descent. It would be good to see an explanation or results offered in the main text as to why the training always ends up in the same mapping (small->aligned; large->oblique) when it could, for example, optimise the output weights instead, which is the usual target (e.g. Sussillo & Abbott 2009 Neuron).
- It is unclear what it means for neural activity to be "aligned" for target outputs that are not continuous time-series, such as the 1D or 2D oscillations used to illustrate most points here. Two of the modelled tasks have binary outputs; one has a 3-element binary vector.
- It is unclear what criteria are used to assign the analysed neural data to the oblique or aligned regimes of dynamics.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The pioneering work of Eve Marder on central pattern generators in the stomatogastric ganglion (STG) has made a strong case for redundancy as a biological mechanism for ensuring functional robustness, where multiple configurations of biophysical parameters are equivalent in terms of their ability to generate desired patterns of periodic circuit activity. In parallel, normative theories of synaptic plasticity have argued for functional equivalences between learning objectives and corresponding plasticity rules in implementing simple unsupervised learning (see Brito & Gerstner 2016, although similar arguments have been made long before e.g. in Aapo Hyvarinen's ICA book). This manuscript argues that similar notions of redundancy need to be taken into account in the study of synaptic plasticity rules in the brain, more specifically in the context of data-driven approaches to extract the "true" synaptic plasticity rule operating in a neural circuit from neural activity recordings. Concretely, the modeling approach takes a set of empirical measurements of the evolution of neural activity and trains a flexibly parametrized model to match that in statistical terms. Instead of being predefined by the experimenter, the features that determine this match are themselves extracted from data using a generative adversarial network framework (GAN). They show that the flexible models manage to reproduce the neural activity to a reasonable degree (though not perfectly), but lead to very different synaptic trajectories.
Strengths:
The idea of learning rule redundancy is a good one, and the use of GANs for the learning rule estimation is a good complement to other data-driven approaches to extract synaptic plasticity ruled from neural data.
Weaknesses:
(1) Numerics provide only partial support to the statements describing the results.
(2) Even if believing the results, I don't necessarily agree with the interpretation. First: unlike the Marder example where there is complementary evidence to argue that the parameter variations actually reflect across animal biophysical variations, here the statements are really about uncertainty that the experimenter has about what is going on in a circuit observed through a certain measurement lens. Second, while taking into account this uncertainty when using the outcomes of this analysis for subsequent scientific goals is certainly sensible, the biggest punchline for me is that simply observing neural activity in a simple and very restricted context does not provide enough information about the underlying learning mechanism, especially when the hypothesis space is very large (as is the case for the MLP). So it seems more useful to use this framework to think about how to enrich the experimental design/ learning paradigms/ or the measurements themselves to make the set of hypotheses more discriminable (in the spirit of the work by Jacob Portes et al, 2022 for instance). Conversely, one should perhaps think about other ways in which to use other forms of experimental data to reasonably constrain the hypothesis space in the first place.
-
Reviewer #2 (Public Review):
Summary:
This paper poses the interesting and important question of whether plasticity rules are mathematically degenerate, which would mean that multiple plasticity rules can give rise to the same changes in neural activity. They claim that the answer is "yes," which would have major implications for many researchers studying the biological mechanisms of learning and memory. Unfortunately, I found the evidence for the claim to be weak and confusing, and I don't think that readers can currently infer much beyond the results of the specific numerical experiments reported in the paper.
Strengths:
I love the premise of the paper. I agree with the authors that neuroscientists often under-emphasize the range of possible models that are consistent with empirical findings and/or theoretical demands. I like their proposal that the field is shifting its thinking towards characterizing the space of plasticity rules. I do not doubt the accuracy of most reported numerical results, just their meaning and interpretation. I therefore think that readers can safely use most of the the numerical results to revise their thinking about plasticity mechanisms and draw their own conclusions.
Weaknesses:
Unfortunately, I found many aspects of the paper to be problematic. As a result, I did not find the overarching conclusions drawn by the authors to be convincing.
First, the authors aren't consistent in how they mathematically define and conceptually interpret the "degeneracy" of plasticity mechanisms. In practice, they say that two plasticity mechanisms are "degenerate" if they can't build a neural network to distinguish between a set of neural trajectories generated by them. Their interpretation extrapolates far beyond this, and they seem to conclude that such plasticity rules are in principle indistinguishable. I think that this conclusion is wrong. Plasticity rules are simply mathematical functions that specify how the magnitude of a synaptic weight changes due to other factors, here presynaptic activity (x), postsynaptic activity (y), and the current value of the weight (w). Centuries-old mathematics proves that very broad classes of functions can be parameterized in a variety of non-degenerate ways (e.g., by their Taylor series or Fourier series). It seems unlikely to me that biology has developed plasticity rules that fall outside this broad class. Moreover, the paper's numerical results are all for Oja's plasticity rule, which is a third-order polynomial function of x, y, and w. That polynomial functions cannot be represented by any other Taylor series is a textbook result from calculus. One might wonder if this unique parameterization is somehow lost when many synapses combine to produce neural activity, but the neuron model used in this work is linear, so the function that specifies how the postsynaptic activity changes is simply a fourth-order polynomial in 3N+1 variables (i.e., the presynaptic activities of N neurons prior to the plasticity event, the weights of N synapses prior to the plasticity event, the postsynaptic activity prior to the plasticity event, the presynaptic activities of N neurons after the plasticity event). The same fundamental results from calculus apply to the weight trajectories and the activity trajectories, and a non-degenerate plasticity rule could in principle be inferred from either. What the authors instead show is that their simulated datasets, chosen parameterizations for the plasticity rule, and fitting procedures fail to reveal a non-degenerate representation of the plasticity rule. To what extent this failure is due to the nature of the simulated datasets (e.g., their limited size), the chosen parameterization (e.g., an overparameterized multi-layer perceptron), and their fitting procedure (e.g., their generative adversarial network framework) is unclear. I suspect that all three aspects contribute.
Second, I am concerned by the authors' decision to use a generative adversarial network (GAN) to fit the plasticity rule. Practically speaking, the quality of the fits shown in the figures seems unimpressive to me, and I am left wondering if the authors could have gotten better fits with other fitting routines. For example, other authors fit plasticity rules through gradient descent learning, and these authors claimed to accurately recover Oja's rule and other plasticity rules (Mehta et al., "Model-based inference of synaptic plasticity rules," bioRxiv, 2023). Whether this difference is one of author interpretation or method accuracy is not currently clear. The authors do include some panels in Figure 3A and Figure 8 that explore more standard gradient descent learning, but their networks don't seem to be well-trained. Theoretically speaking, Eqn. (7) in Section 4.4 indicates that the authors only try to match p(\vec y) between the data and generator network, rather than p(\vec x, \vec y). If this equation is an accurate representation of the authors' method, then the claimed "degeneracy" of the learning rule may simply mean that many different joint distributions for \vec x and \vec y can produce the same marginal distribution for \vec y. This is true, but then the "degeneracy" reported in the paper is due to hidden presynaptic variables. I don't think that most readers would expect that learning rules could be inferred by measuring postsynaptic activity alone.
Third, it's important for readers to note that the 2-dimensional dynamical systems representations shown in figures like Figures 2E are incomplete. Learning rules are N-dimensional nonlinear dynamical systems. The learning rule of any individual synapse depends only on the current presynaptic activity, the current postsynaptic activity, and the current weight magnitude, and slices through this function are shown in figures like Figure 2D. However, the postsynaptic activity is itself a dynamical variable that depends on all N synaptic weights. It's therefore unclear how one is supposed to interpret figures like Figure 2E, because the change in y is not a function of y and any single w. My best guess is that figures like Figure 2E are generated for the case of a single presynaptic neuron, but the degeneracies observed in this reduced system need not match those found when fitting the larger network.
-
Reviewer #3 (Public Review):
Summary:
The authors show that a GAN can learn to reproduce the distribution of outputs of a neuron endowed with Oja's plasticity rule throughout its learning process by learning a plasticity rule. The GAN does not, however, learn Oja's rule. Indeed, the plasticity dynamics it infers can differ dramatically from the true dynamics. The authors propose this approach as a way to uncover families of putative plasticity rules consistent with observed activity patterns in biological systems.
Oja's rule was a great choice for the comparison because it makes explicit, I think, the limitations of this approach. As is well known, Oja's rule allows a (linear) neuron to learn the first principal component of its inputs; the synaptic weights converge to the first eigenvector of the input covariance. After this learning process, the response of a neuron to a particular input sample measures the weighted angle between that input and that principal component.
The other, meta-learned plasticity rules that the authors' GAN uncovers notably do not learn the same computation as Oja's rule (Figure 2). This is, to me, the central finding of the paper and fleshed out nicely. It seems to me that this may be because the objective of the GAN is only to reproduce the marginal output statistics of the neuron. It is, if I understand correctly, blind to the input samples, the inputs' marginal statistics, and to correlations between the input and output. I wonder if a GAN that also had some knowledge of the correlation between input and outputs might be more successful at learning the underlying true dynamics.
The focus on reproducing output statistics has some similarity to some types of experiments (e.g., in vivo recordings) but also seems willfully blind to other aspects of these experiments. In my experience, experimentalists are well aware that the circuits they record receive external inputs. Those inputs are often recorded (perhaps in separate experiments or studies). The point being that I'm not sure that this is an entirely fair comparison to the field.
Finally, the plasticity models studied by theoreticians are not only constructed by intuition and hand-tuning. They also draw, often heavily, on biological data and principles. Oja's rule, for example, is simply the combination of Hebbian learning with a homeostatic constraint on the total synaptic weight amplitude (under the choice of a Euclidean norm).
To me, this study very nicely exposes the caveats and risks associated with a blind machine-learning approach to model specification in biology and highlights the need for understanding underlying biological mechanisms and principles. I agree with the authors that heterogeneity and degeneracy in plasticity rules deserve much more attention in the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This study from Bamgbose et al. identifies a new and important interaction between H4K20me and Parp1 that regulates inducible genes during development and heat stress. The authors present convincing experiments that form a mostly complete manuscript that significantly contributes to our understanding of how Parp1 associates with target genes to regulate their expression.
Strengths:
The authors present 3 compelling experiments to support the interaction between Parp1 and H4K20me, including:
(1) PR-Set7 mutants remove all K4K20me and phenocopy Parp mutant developmental arrest and defective heat shock protein induction.
(2) PR-Set7 mutants have dramatically reduced Parp1 association with chromatin and reduced poly-ADP ribosylation.
(3) Parp1 directly binds H4K20me in vitro.
Weaknesses:
(1) The RNAseq analysis of Parp1/PR-Set7 mutants is reasonable, but there is a caveat to the author's conclusion (Line 251): "our results indicate H4K20me1 may be required for PARP-1 binding to preferentially repress metabolic genes and activate genes involved in neuron development at co-enriched genes." An alternative possibility is that many of the gene expression changes are indirect consequences of altered development induced by Parp1 or PR-Set7 mutants. For example, Parp1 could activate a transcription factor that represses metabolic genes. The authors counter this model by stating that Parp1 directly binds to "repressed" metabolic genes. While this argument supports their model, it does not rule out the competing indirect transcription factor model. Therefore, they should still mention the competing model as a possibility.
(2) The section on inducibility of heat shock genes is interesting but missing an important control that might significantly alter the author's conclusions. Hsp23 and Hsp83 (group B genes) are transcribed without heat shock, which likely explains why they have H4K20me without heat shock. The authors made the reasonable hypothesis that this H4K20me would recruit Parp-1 upon heat shock (line 270). However, they observed a decrease of H4K20me upon heat shock, which led them to conclude that "H4K20me may not be necessary for Parp1 binding/activation" (line 275). However, their RNA expression data (Fig4A) argues that both Parp1 and H40K20me are important for activation. An alternative possibility is that group B genes indeed recruit Parp1 (through H4K20me) upon heat shock, but then Parp1 promotes H3/H4 dissociation from group B genes. If Parp1 depletes H4, it will also deplete H4K20me1. To address this possibility, the authors should also do a ChIP for total H4 and plot both the raw signal of H4K20me1 and total H4 as well as the ratio of these signals. The authors could also note that Group A genes may similarly recruit Parp1 and deplete H3/H4 but with different kinetics than Group B genes because their basal state lacks H4K20me/Parp1. To test this possibility, the authors could measure Parp association, H4K20methylation, and H4 depletion at more time points after heat shock at both classes of genes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Knudstrup et al. use two-photon calcium imaging to measure neural responses in the mouse primary visual cortex (V1) in response to image sequences. The authors presented mice with many repetitions of the same four-image sequence (ABCD) for four days. Then on the fifth day, they presented unexpected stimulus orderings where one stimulus was either omitted (ABBD) or substituted (ACBD). After analyzing trial-averaged responses of neurons pooled across multiple mice, they observed that stimulus omission (ABBD) caused a small, but significant, strengthening of neural responses but observed no significant change in the response to stimulus substitution (ACBD). Next, they performed population analyses of this dataset. They showed that there were changes in the correlation structure of activity and that many features of sequence ordering could be reliably decoded. This second set of analyses is interesting and exhibited larger effect sizes than the first results about predictive coding. However, concerns about the design of the experiment temper my enthusiasm.
Strengths:
(1) The topic of predictive coding in the visual cortex is exciting, and this task builds on previous important work by the senior author (Gavornik and Bear 2014) where unexpectedly shuffling sequence order caused changes in LFPs recorded from the visual cortex.
(2) Deconvolved calcium responses were used appropriately here to look at the timing of the neural responses.
(3) Neural decoding results showing that the context of the stimuli could be reliably decoded from trial-averaged responses were interesting. However I have concerns about how the data was formatted for performing these analyses.
Weaknesses:
(1) All analyses were performed on trial-averaged neural responses that were pooled across mice. Owing to differences between subjects in behavior, experimental preparation quality, and biological variability, it seems important to perform at least some analyses on individual analyses to assess how behavioral training might differently affect each animal.
(2) The correlation analyses presented in Figure 3 (labeled the second Figure 2 in the text) should be conducted on a single-animal basis. Studying population codes constructed by pooling across mice, particularly when there is no behavioral readout to assess whether learning has had similar effects on all animals, appears inappropriate to me. If the results in Figure 3 hold up on single animals, I think that is definitely an interesting result.
(3) On Day 0 and Day 5, the reordered stimuli are presented in trial blocks where each image sequence is shown 100 times. Why wasn't the trial ordering randomized as was done in previous studies (e.g. Gavornik and Bear 2014)? Given this lack of reordering, did neurons show reduced predictive responses because the unexpected sequence was shown so many times in quick succession? This might change the results seen in Figure 2, as well as the decoder results where there is a neural encoding of sequence order (Figure 4). It would be interesting if the Figure 4 decoder stopped working when the higher-order block structure of the task was disrupted.
(4) A primary advantage of using two-photon calcium imaging over other techniques like extracellular electrophysiology is that the same neurons can be tracked over many days. This is a standard approach that can be accomplished by using many software packages-including Suite2P (Pachitariu et al. 2017), which is what the authors already used for the rest of their data preprocessing. The authors of this paper did not appear to do this. Instead, it appears that different neurons were imaged on Day 0 (baseline) and Day 5 (test). This is a significant weakness of the current dataset.
-
Reviewer #2 (Public Review):
Knudstrup et al set out to probe prediction errors in the mouse visual cortex. They use a variant of an oddball paradigm and test how repeated passive exposure to a specific sequence of visual stimuli affects oddball responses in layer 2/3 neurons. Unfortunately, there are problems with the experimental design which make it difficult to interpret the results in light of the question the authors want to address. The conceptual framing, choice of block design structure, and not tracking the same cells over days, are just some of the reasons that make this work difficult to interpret. Specific comments are as follows:
(1) There appears to be some confusion regarding the conceptual framing of predictive coding. Assuming the mouse learns to expect the sequence ABCD, then ABBD does not probe just for negative prediction errors, and ACBD is not just for positive prediction errors. With ABBD, there is a combination of a negative prediction error for the missing C in the 3rd position, and a positive prediction error for B in the 3rd. Likewise, with ACBD, there is a negative prediction error for the missing B at 2nd and missing C at 3rd, and a positive prediction error for the C in 2nd and B in 3rd. Thus, the authors' experimental design does not have the power to isolate either negative or positive prediction errors. Moreover, looking at the raw data in Figure 2C, this does not look like an "omission" response to C, but more like a stronger response to a longer B. The pitch of the paper as investigating prediction error responses is probably not warranted - we see no way to align the authors' results with this interpretation.
(2) Related to the interpretation of the findings, just because something can be described as a prediction error does not mean it is computed in (or even is relevant to) the visual cortex. To the best of our knowledge, it is still unclear where in the visual stream the responses described here are computed. It is possible that this type of computation happens before the signals reach the visual cortex, similar to mechanisms predicting moving stimuli already in the retina (https://pubmed.ncbi.nlm.nih.gov/10192333/). This would also be consistent with the authors' finding (in previous work) that single-cell recordings in V1 exhibit weaker sequence violation responses than the author's earlier work using LFP recordings.
(3) Recording from the same neurons over the course of this paradigm is well within the technical standards of the field, and there is no reason not to do this. Given that the authors chose to record from different neurons, it is difficult to distinguish representational drift from drift in the population of neurons recorded.
(4) The block paradigm to test for prediction errors appears ill-chosen. Why not interleave oddball stimuli randomly in a sequence of normal stimuli? The concern is related to the question of how many repetitions it takes to learn a sequence. Can the mice not learn ACBD over 100x repetitions? The authors should definitely look at early vs. late responses in the oddball block. Also, the first few presentations after the block transition might be potentially interesting. The authors' analysis in the paper already strongly suggests that the mice learn rather rapidly. The authors conclude: "we expected ABCD would be more-or-less indistinguishable from ABBD and ACBD since A occurs first in each sequence and always preceded by a long (800 ms) gray period. This was not the case. Most often, the decoder correctly identified which sequence stimulus A came from." This would suggest that whatever learning/drift could happen within one block did indeed happen and responses to different sequences are harder to interpret.
(5) Throughout the manuscript, many of the claims are not statistically tested, and where they are the tests do not appear to be hierarchical (https://pubmed.ncbi.nlm.nih.gov/24671065/), even though the data are likely nested.
(6) The manuscript would greatly benefit from thorough proofreading (not just in regard to figure references).
(7) With a sequence of stimuli that are 250ms in length each, the use of GCaMP6s appears like a very poor choice.
(8) The data shown are unnecessarily selective. E.g. it would probably be interesting to see how the average population response evolves with days. The relevant question for most prediction error interpretations would be whether there are subpopulations of neurons that selectively respond to any of the oddballs. E.g. while the authors state they "did" not identify a separate population of omission-responsive neurons, they provide no evidence for this. However, it is unclear whether the block structure of the experiments allows the authors to analyze this.
-
Reviewer #3 (Public Review):
Summary:
This work provides insights into predictive coding models of visual cortex processing. These models predict that visual cortex neurons will show elevated responses when there are unexpected changes to learned sequential stimulus patterns. This model is currently controversial, with recent publications providing conflicting evidence. In this work, the authors test two types of unexpected pattern variations in layer 2/3 of the mouse visual cortex. They show that pattern omission evokes elevated responses, in favor of a predictive coding model, but find no evidence for prediction errors with substituted patterns, which conflicts with both prior results in L4, and with the expectations of a predictive coding model. They also report that with sequence training, responses sparsify and decorrelate, but surprisingly find no changes in the ability of an ideal observer to decode stimulus identity or timing.
These results are an important contribution to the understanding of how temporal sequences and expectations are encoded in the primary visual cortex. However, there are several methodological concerns with the study, and some of the authors' interpretations and conclusions are unsupported by data.
Major concerns:
(1) Experimental design using a block structure. The use of a block structure on test days (0 and 5) in which sequences were presented in 100 repetition blocks leads to several potential confounds. First, there is the potential for plasticity within blocks, which could alter the responses and induce learned expectations. The ability of the authors to clearly distinguish blocks 1 and 2 on Day 0 with a decoder suggests this change over time may be meaningful.
Repeating the experiments with fully interleaved sequences on test days would alleviate this concern. With the existing data, the authors should compare responses from the first trials in a block to the last trials in a block.
This block design likely also accounts for the ability of a decoder to readily distinguish stimulus A in ABCD from A in ABBD. As all ABCD sequences were run in a contiguous block separate from ABBD, the recent history of experience is different for A stimuli in ABCD versus ABBD. Running fully interleaved sequences would also address this point, and would also potentially mitigate the impact of drift over blocks (discussed below).
(2) The computation of prediction error differs significantly for omission as opposed to substitutions, in meaningful ways the authors do not address. For omission errors, PE compares the responses of B1 and B2 within ABBD blocks. These responses are measured from the same trial, within tens of milliseconds of each other. In contrast, substitution PE is computed by comparing C in ABCD to C in ACBD. As noted above, the block structure means that these C responses were recorded in different blocks, when the state of the brain could be different. This may account for the authors' detection of prediction error for omission but not substitution. To address this, the authors should calculate PE for omission using B responses from ABCD.
(3) The behavior of responses to B and C within the trained sequence ABCD differs considerably, yet is not addressed. Responses to B in ABCD potentiate from d0-> d5, yet responses to C in the same sequence go down. This suggests there may be some difference in either the representation of B vs C or position 2 vs 3 in the sequence that may also be contributing to the appearance of prediction errors in ABBD but not ACBD. The authors do not appear to consider this point, which could potentially impact their results. Presenting different stimuli for A,B,C,D across mice would help (in the current paper B is 75 deg and C is 165 deg in all cases). Additionally, other omissions or substitutions at different sequence positions should be tested (eg ABCC or ABDC).
(4) The authors' interpretation of their PCA results is flawed. The authors write "Experience simplifies activity in principal component space". This is untrue based on their data. The variance explained by the first set of PCs does not change with training, indicating that the data is not residing in a lower dimensional ("simpler") space. Instead, the authors show that the first 5 PCs better align with their a priori expectations of the stimulus structure, but that does not mean these PCs necessarily represent more information about the stimulus (and the fact that the authors fail to see an improvement in decoding performance argues against this case). Addressing such a question would be highly interesting, but is lacking in the current manuscript. Without such analysis, referring to the PCs after training as "highly discretized" and "untangled" are largely meaningless descriptions that lack analytical support.
(5) The authors report that activity sparsifies, yet provide only the fraction of stimulus-selective cells. Given that cell detection was automated in a manner that takes into account neural activity (using Suite2p), it is difficult to interpret these results as presented. If the authors wish to claim sparsification, they need to provide evidence that the total number of ROIs drawn on each day (the denominator for sparseness in their calculation) is unbiased. Including more (or less) ROIs can dramatically change the calculated sparseness.
The authors mention sparsification as contributing to coding efficiency but do not test this. Training a decoder on variously sized subsets of their data on days 0 and 5 would test whether redundant information is being eliminated in the network over training.
(6) The authors claim their results show representational drift, but this isn't supported in the data. Rather they show that there is some information in the structure of activity that allows a decoder to learn block ID. But this does not show whether the actual stimulus representations change, and could instead reflect an unrelated artifact that changes over time (responsivity, alertness, bleaching, etc). To actually assess representational drift, the authors should directly compare representations across blocks (one could train a decoder on block 1 and test on blocks 2-5). In the absence of this or other tests of representational drift over blocks, the authors should remove the statement that "These findings suggest that there is a measurable amount of representational drift".
(7) The authors allude to "temporal echoes" in a subheading. This term is never defined, or substantiated with analysis, and should be removed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors collected BALF samples from lung cancer patients newly diagnosed with PCP, DI-ILD or ICI-ILD. CyTOF was performed on these samples, using two different panels (T-cell and B-cell/myeloid cell panels). Results were collected, cleaned-up, manually gated and pre-processed prior to visualisation with manifold learning approaches t-SNE (in the form of viSNE) or UMAP, and analysed by CITRUS (hierarchical clustering followed by feature selection and regression) for population identification - all using Cytobank implementation - in an attempt to identify possible biomarkers for these disease states. By comparing cell abundances from CITRUS results and qualitative inspection of a small number of marker expressions, the authors claimed to have identified an expansion of CD16+ T-cell population in PCP cases and an increase in CD57+ CD8+ T-cells, FCRL5+ B-cells and CCR2+ CCR5+ CD14+ monocytes in ICI-ILD cases.
By the authors' own admission, there is an absence of healthy donor samples and, perhaps as a result of retrospective experimental design and practical clinical reasons, also an absence of pre-treatment samples. The entire analysis effectively compares three yet-established disease states with no common baseline - what really constitutes a "biomarker" in such cases? These are very limited comparisons among three, and only these three, states.
By including a new scRNA-Seq analysis using a publicly available dataset, the authors addressed this fundamental problem. Though a more thorough and numerical analysis would be appreciated for a deeper and more impactful analysis, this is adequate for the intended objectives of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In this manuscript, Fister et. al. investigate how amputational and burn wounds affect sensory axonal damage and regeneration in a zebrafish model system. The authors discovered that burn injury results in increased peripheral axon damage and impaired regeneration. Convincing experiments show altered axonal morphology and increased Ca2+ fluxes as a result of burn damage. Further experimental proof supports that early removal of the burnt tissue by amputation rescues axonal damage. Burn damage was also shown to markedly increase keratinocyte migration and increase localized ROS production as measured by the dye Pfbsf. These responses could be inhibited by Arp 2/3 inhibition and isotonic treatment.
Strengths:<br /> The authors use state-of-the-art methods to study and compare transection and burn-induced tissue damage. Multiple experimental approaches (morphology, Ca2+ fluxing, cell membrane labeling) confirm axonal damage and impaired regeneration time. Furthermore, the results are also accompanied by functional response tests of touch sensitivity. This is the first study to extend the role of tissue-damage-related osmotic exposure beyond wound closure and leukocyte migration to a novel layer of pathology: axonal damage and regeneration.
Weaknesses:<br /> The conclusions of the paper claiming a link between burn-induced epithelial cell migration, spatial redox signaling, and sensory axon regeneration are mainly based on correlative observations. Arp 2/3 inhibition impairs cell migration but has no significant effect on axon regeneration and restoration of touch sensitivity.
Pharmacological or genetic approaches should be used to prove the role of ROS production by directly targeting the known H2O2 source in the system: DUOX.
While the authors provide clear and compelling proof that osmotic responses lie at the heart of the burn-induced axonal damage responses, they did not consider the option of further exploring any biology related to osmotic cell swelling. Could osmotic ATP release maybe play a role through excitotoxicity? Could cPLA2 activation-dependent eicosanoid production relate to the process? Pharmacological tests using purinergic receptor inhibition or blockage of eicosanoid production could answer these questions.
The authors provide elegant experiments showing that early removal of the burnt tissue can rescue damage-induced axonal damage, which could also be interpreted in an osmotic manner: tail fin transections could close faster than burn wounds, allowing for lower hypotonic exposure time. Axonal damage and slow regeneration in tail fin burn wounds could be a direct consequence of extended exposure time to hypotonic water.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Peptidoglycan remodeling, particularly that carried out by enzymes known as amidases, is essential for the later stages of cell division including cell separation. In E. coli, amidases are generally activated by the periplasmic proteins EnvC (AmiA and AmiB) and NlpD (AmiC). The ABC family member, FtsEX, in turn, has been implicated as a modulator of amidase activity through interactions with EnvC. Specifically how FtsEX regulates EnvC activity in the context of cell division remains unclear.
Strengths:
Li et al. make two primary contributions to the study of FtsEX. The first, the finding that ATP binding stabilizes FtsEX in vitro, enables the second, structural resolution of full-length FtsEX both alone (Figure 2) and in combination with EnvC (Figure 3). Leveraging these findings, the authors demonstrate that EnvC binding stimulates FtsEX-mediated ATP hydrolysis approximately two-fold. The authors present structural data suggesting EnvC binding leads to a conformational change in the complex. Biochemical reconstitution experiments (Figure 5) provide compelling support for this idea.
Weaknesses:<br /> The potential impact of the study is curtailed by the lack of experiments testing the biochemical or physiological relevance of the model which is derived almost entirely from structural data.
Altogether the data support a model in which interaction with EnvC, results in a conformational change stimulating ATP hydrolysis by FtsEX and EnvC-mediated activation of the amidases, AmiA and AmiB. However, the study is limited in both approach and scope. The importance of interactions revealed in the structures to the function of FtsEX and its role in EnvC activation are not tested. Adding biochemical and/or in vivo experiments to fill in this gap would allow the authors to test the veracity of the model and increase the appeal of the study beyond the small number of researchers specifically interested in FtsEX.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript proposes a new bioinformatics approach identifying several hundreds of previously unknown inhibitory immunoreceptors. When expressed in immune cells (such as neutrophils, monocytes, CD8+, CD4+, and T-cells), such receptors inhibit the functional activity of these cells. Blocking inhibitory receptors represents a promising therapeutic strategy for cancer treatment.
As such, this is a high-quality and important bioinformatics study. One general concern is the absence of direct experimental validation of the results. In addition to the fact that the authors bioinformatically identified 51 known receptors, providing such experimental evaluation (of at least one, or better few identified receptors) would, in my opinion, significantly strengthen the presented evidence.
I will now briefly summarize the results and give my comments.
First, using sequence comparison analysis, the authors identify a large set of putative receptors based on the presence of immunoreceptor tyrosine-based inhibitory motifs (ITIMs), or immunoreceptor tyrosine-based switch motifs (ITSMs). They further filter the identified set of receptors for the presence of the ITIMs or ITSMs in an intracellular domain of the protein. Second, using AlphaFold structure modeling, the authors select only receptors containing ITIMs/ITSMs in structurally disordered regions. Third, the evaluation of gene expression profiles of known and putative receptors in several immune cell types was performed. Fourth, the authors classified putative receptors into functional categories, such as negative feedback receptors, threshold receptors, threshold disinhibition, and threshold-negative feedback. The latter classification was based on the available data from Nat Rev Immunol 2020. Fifth, using publicly available single-cell RNA sequencing data of tumor-infiltrating CD4+ and CD8+ cells from nearly twenty types of cancer, the authors demonstrate that a significant fraction of putative receptors are indeed expressed in these datasets.
In summary, in my opinion, this is an interesting, important, high-quality bioinformatics work. The manuscript is clearly written and all technical details are carefully explained.
One comment/suggestion regarding the methodology of evaluating gene expression profiles of putative receptors: perhaps it might be important to look at clusters of genes that are co-expressed with putative inhibitory receptors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Li et al. investigated the mechanism of action of an important herbicide, caprylic acid (CAP). The authors used untargeted metabolomics to find out differently expressed metabolites (DEM). It led to the identification of metabolites involved in amino acid metabolism, carbon fixation, carbon, glyoxylate, and dicarboxylate metabolism. Using previously published proteomics data and the newly conducted metabolomics data, the authors identified a serine hydroxymethyl transferase in Conyza canadensis (CcSHMT1) to be a likely candidate for CAP inhibition.
The authors conducted a series of in vitro and in vivo tests to elucidate the effect of CAP on SHMT1 inhibition. Plants overexpressing SHMT1 were used to analyze the effect of SHMT1 expression, activity, and inhibition, among others. Purified SHMT1 was used to elucidate enzyme kinetics in the presence or absence of inhibitors. CRISPR-based editing was a powerful method of investigating the effect of SHMT1 mutants on CAP application and complements the overexpression and in vitro studies. Finally, computational docking of CAP on SHMT1 was conducted to identify key interacting residues. The results are overall consistent with one another and present a unified framework for CAP activity as an herbicide. Unexpected variations in SHMT1 expression and activity levels upon CAP treatment suggest complex biological compensatory mechanisms in response to SHMT1 deficiency. Further studies are needed to understand the effect of these perturbations that will be required to successfully develop and deploy CAP-resistant crops for widespread use in agriculture. In conclusion, the authors did a commendable job of elucidating SHMT1 as a biologically relevant target for CAP.
Strengths:
- Combines computational docking, enzyme kinetics using purified proteins, and several different model plant species and two different methods of testing (overexpression and base editing) to establish plant response and survival.
- Sound experimental designs and the presence of controls validate the results and provide additional confidence in the authors' conclusions.
Weaknesses:
- Relied too heavily on the study of plants overexpressing SHMT1, which do not have native gene regulation, and this might limit the generalizability of their conclusions.
-The authors did not leverage computational docking analysis to validate or seek corroboration of the performance of plant alleles obtained from the base editing experiments.
-
Reviewer #1 (Public Review):
Caprylic acid (CAP), i.e., octanoic acid, is a saturated fatty acid. CAP is commonly used as a food contact surface sanitizer. In mammals, caprylic acid is related to hunger sensation (i.e., food consumption). serine hydroxymethyl transferase (SHMT) has been previously known as a potential herbicidal target. The present study involves a huge amount of work. The results are useful and contribute well to the literature. The data does support the conclusion. It does not seem that SHMT is the only target of CAP though (CAP may act on other proteins as well). A major deficiency of this manuscript is that there are many unclear, inaccurate, or unconcise descriptions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors developed a new viral 'gene drive' based on an alternate CRISPR Cas system: UNCas12f1. They show in HSV-1 that the gene drive virus can transmit as hypothesized and is superior to Cas9 in terms of evolutionary robustness.
Strengths:
No doubt this is an impressive technological achievement and UNCas12f1 does appear superior to Cas9 in terms of taking longer to develop resistance. This is a strong body of work and Fig 3B is the crux of the paper for me showing that resistance does take longer in terms of % of viruses that are wildtype versus UNCas12f1 gene drive. I applaud the authors and I think this is a nice technological contribution.
Weaknesses:
I will focus on major conceptual issues.
(1) Mechanism. It is not really that clear to me why the UNCas12f1 has a higher barrier to the evolution of resistance. Is this simply a temporal delay or is there something intrinsic about UNCas12f1 that does not allow resistance to arise? There is a some discussion about this but it is speculative and I could not understand why resistance would not develop.
(2) Evolution. Fig 3B is the crux of the paper for me showing that resistance does take longer in terms of % of viruses that are wildtype versus UNCas12f1 gene drive. The authors did a nice job, however, I think they need to temper the claims somewhat as longer studies (other studies typically go out to >40 days) might show resistance arising. Also, I think absolute viral titers need to be shown in addition to percentage of viruses.
(3) Therapeutic Utility. Is this proposed as a therapeutic strategy? If so, how would it work? Could it lower overall total viral burden (i.e., wt + gene drive)? Another issue that I think needs to be specifically addressed is the issue of MOI as typically HSV-1 is thought to be (i.e. shown to be) a low MOI infection in vivo and in patients, whereas this strategy appears to rely on high MOI. Overall, to me, this is probably the major weakness: i.e., whether this strategy has therapeutic potential.
(4) Title. I don't think the subordinate clause of the title "virus that 'infect' viruses" is quite correct. This needs to be be reworded. This strategy converts the viral population from wild type to a gene drive virus but "infect" does not seem accurate.
-
Reviewer #2 (Public Review):
Summary:
This article develops CRISPR-based gene drives designed to spread in viral populations. By targeting the gene drives to neutral loci, or at least loci where the presence of a gene drive is tolerated. This type of gene drive is designed to work by recognising the cognate target sequence of the CRISPR-Cas nuclease on a wild type virus genome, cutting it and then invoking the homology-directed DNA repair machinery to copy itself into the repaired genome, thereby increasing its frequency in the population. Two types of CRISPR nuclease are tested in this setup: Cas9 and Cas12. There have been a large number of studies describing Cas9- based gene drives, but very few using other Cas nucleases, such as Cas12 reported here. Other nucleases have different targeting ranges and different features of cleavage that may make them more attractive for several reasons, including propensity to generate mutations that may be undesirable for certain applications. For this reason the work reported here is an important step.
There are advantages to this system, in terms of its throughput and speed of testing, which could generate insights into the dynamics of gene drive mutation and repair events. However, its suitability as a proxy for probability of selection of resistant mutations in gene drives designed to work in higher organisms is overstated since this is in large part determined by the force of selection acting on those mutations in the genomes of those target organisms.
Strengths:
Overall I found the experiments to be well planned and executed, with sound rationale and logic. The paper is well structured and well written. The evidence for CRISP-HDR in placing transgenes in specific parts of the viral genome is solid. The experiments to measure frequency of gene drive genotypes invading in the context of convertible WT target sites, and non-convertible target sites, are largely well designed. The authors go further and show in subsequent experiments that there are converted genotypes that contain combinations of linked alleles that should only segregate together in the event of conversion to the gene drive allele (assuming this signal is not conflated by two separate genotypes covering each other). The description of the different types and rates of accumulation of mutations according to Cas architecture is valuable.
Figures are very clear and informative (but could be improved with clearer labelling of genotypes).
The paper is well referenced and captures the literature well.
Weaknesses:
It is not immediately clear to me how you can determine, in your experimental setup, that the three alleles (gD+, GFP+ and gE-) are on the same genome/haplotype rather than split across two or more genomes that infect a cell. Presumably this is because you make a clonal population that started from a dilution that ensure there was at most one genome to start the infection?
Some more discussion of the results, and some surprising observations therein, is warranted. For example: in the invasion experiments, which are generally well described, it is curious that when nearly all the WT target sites are depleted there should still be a further disappearance of the original gene drive allele to the expense of the new converted drive alelle - once WT target sites are exhausted (e.g. V10 in Fig 3B), there are no more opportunities to convert, one would expect ration of green:yellow to stay the same (assuming equal fitness between genotypes)? In fact, the yellow genotype, having both gene drive and Us8 deletion, is expected to be less fit, is it not? So this result is surprising, yet not discussed.
It is not clear why general levels of mutation increase across the whole amplicon, regardless of proximity to target site? e.g by Passage 7 in the Cas12 lines , Fig3D and 3E). Not discussed. This may be due to the fact that their ratio to WT target sequences is inflated due to the presence of the non-mapped sequences but again, the origin of the not mapped sequences is itself not explained.
Gene drives could theoretically increase their frequency by 'destroying' or disabling other genotypes, for example if Cas-induced cleavage removed the cut genome, rather than converting it. Presumably this is what motivated the authors to try and get a concrete signal of converted genotypes rather than just increase in frequency of the original gene drive genotype. This possibility is never discussed.
Line 140 re: the use of refractory target sites to show that gene drive genomes do not increase in frequency when there is no opportunity for genomes to convert; I like this control but it should be noted that there is the possibility, albeit unlikely, that general UL-3/4 deletions compete better than WT generally, and that has not been tested here.
In some places, the description of genotypes rather than arbitrary, non-informative strain names would really help.
It is not obvious to me either where the 'unmapped reads' come from - it is stated that "gene drive viruses took over and interefrered with PCR, causing many unmapped NGS reads". I am not sure what is meant here, and besides, this doesn't explain why reads would be unmapped. If the gene drive allele were too large to be amplified then it should not contribute to sequences in the amplicon.
Re: HSV1 viruses being multiploid - for people, like me, whose virology is not very good, some more explanation would be useful - are you proposing that this happens on 'loose' viral genomes circulating within nucleus or cytoplasm of host cell, or within virions? Can there be more than one genome per virion?
The suggestion that slow reproduction in insects (where many types of gene drive are proposed for control of pest populations) is a barrier to testing at scale is only true to an extent - rue to an extent but there are screens for resistance that are higher throughput and do not need selection experiments over time, but rather in a single generation (e.g KaramiNejadRanjbar et al PNAS 2018; Hammond et al PLoS Genetics 2021) and, for the reasons stated above, selection on an insect genome cannot be replicated in this HSV system.
In the intro, much is made of utility in viral engineering for therapeutic approaches but there is never any detail of this in the discussion other than vague contemplations on utility in 'studying horizontal gene transfer' and 'prevention and treatment of diseases'.<br /> I have other suggestions for improving clarity of text around experimental design but I have confined these to 'Recommendations for Authors'
-
Reviewer #3 (Public Review):
Summary:
The study by Yao, Dai and colleagues successfully describes the design of a viral gene drive against herpes simplex virus 1. Gene drives are genetic modifications designed to spread efficiently in a population. Most applications have been developed in insects to eradicate diseases such as malaria, and the design of gene drives in viruses is an exciting recent development. A viral gene drive system was first described with human cytomegalovirus, another virus of the herpesvirus family (PMID: 32985507), and the authors followed similar methods to design a gene drive against HSV-1. While some key experiments lack rigorous controls, overall the authors convincingly showed that an HSV-1 gene drive could spread efficiently in the target population in cell culture experiments. Cytomegalovirus and HSV-1 have very different infection dynamics, and these new findings suggest that viral gene drives could be developed in a wide variety of herpesviruses. This significantly expands the potential of the technology and will be of interest to readers interested in gene drives, viral engineering, or biotechnology in general.
The most novel and interesting part of the study is the comparison of gene drives relying on spCas9 and Un1Cas12f1 nuclease. Most gene drives developed to date have relied on Cas9 or similar nucleases. Cleavage and repair of the target site by non-homologous end-joining (NHEJ) can lead to the formation of drive-resistant sequences, and, depending on the selective pressure on the wild-type, gene drive and drive-resistant alleles, prevent successful gene drive propagation. By contrast to most RNA-guided nucleases, Un1Cas12f1 cleaves outside of the RNA-recognition site. The authors hypothesized that it could prevent the appearance of drive-resistant sequences, since the target sequence would be preserved after NHEJ repair. Indeed, the study convincingly showed that Un1Cas12f1 induced fewer drive-resistant mutations, which led to almost complete penetrance of the drive. However, the claim in the abstract that an "Un1Cas12f1 gene drive yielded a greater conversion" rate than Cas9 appears unsupported. Together with its smaller size, this positions Un1Cas12f1 as an interesting alternative to Cas9 for gene drives in any organism. This development will be of great interest to researchers interested in gene drives.
Strengths:
Overall, this study is well done and the main conclusions are supported by the data. The authors used flow cytometry to follow gene drive propagation, detecting either fluorescent or cell surface proteins expressed by the different viral populations. This represents an indirect but adequate way of measuring the proportion of the different viral populations, assuming that each of the target BHK cells is infected with only one virus.<br /> In particular, the results in Fig 3 showing that Un1Cas12f1 induces fewer drive-resistant mutations than Cas9 are convincing.
Weaknesses:
The manuscript presents several conceptual and methodological weaknesses that could be discussed or addressed experimentally, which would improve the overall rigor of the study.
(1) In the abstract and the text, the author claims that "HSV1 emerges as a dependable and swift platform for gene drive assessment". It is unclear if the author believes that the main interest of their work with HSV-1 is to provide a platform for testing gene drive for other organisms, or whether a gene drive for HSV-1 could be useful by itself. While their findings with Un1Cas12f1 certainly warrant investigation in other systems, the dynamics of DNA cleavage, recombination, and selection of drive-resistant alleles will be very different between a viral infection where hundreds or thousands of genome copies co-exist in a cell nucleus, and during sexual reproduction where only one gene drive and wild-type allele are present in a fertilized egg. As such, it is unsure whether gene drive dynamics in HSV-1 will be informative for other organisms besides other herpesviruses. On the other hand, the authors provide little perspectives on the potential usage of an HSV-1 gene drive, beyond concluding that "Our study opens new possibilities for using the HSV1 gene drive for the prevention and treatment of diseases". The authors designed a drive against the important viral protein gE in an attempt to limit infectivity, but it is unclear from the data presented whether this was successful. An extended discussion on the potential use case of an HSV-1 gene drive would be informative.
(2) Unfortunately, the experiments presented lack rigorous controls to unambiguously show that gene drive propagation is mediated by CRISPR-directed recombination into the target genome. Gene drive-mediated recombination converts wild-type viruses into new recombinant viruses and the population of recombinants is expected to increase in frequency, as observed with the yellow population in Fig 2G and 3G. However, a rigorous experimental design would show that this population of recombinant viruses does not appear with a non-functional CRISPR system (for example if Cas9 is deleted in the gene drive virus) or if the target site is absent in the recipient virus. The comparison of Fig 2B and 2D does show that gene drive viruses do not increase in frequency when the target site is absent in the V19 virus, but these experiments could not distinguish between original and recombinant gene drive viruses. Thus, it is unknown if the increase in gene drive frequency in Fig 2B is because wild-type viruses have been converted to gene drive viruses, or because the WT and v23 viruses replicate with different dynamics (one could imagine for example that CRISPR cleavage of the WT genomes impaired the replication of the WT virus without inducing recombination, thus giving an advantage to v23). In Fig 2G and 3B, the authors do follow the population of recombinant viruses, in yellow, which increase in frequency as expected. However, in these experiments, either the donor or recipient viruses are mutated for gE, and the different viral populations might replicate with different dynamics, which confounds the interpretation of the results (see point 4. below). Overall, while the data presented suggests that CRISPR-mediated gene drive propagation is happening, it does not conclusively rule out other explanations, especially if viruses have different fitness.
(3) In Fig 2F-G-H, the authors designed a gene drive knocking out an important viral gene, gE, in an attempt to build a drive that reduces infectivity. gE knockout viruses V10 and V15 had smaller plaques but replicated with similar titers (Fig 1B, 1C). The gene drive against gE spread efficiently in Fig 2G. However, gE-KO viruses did not appear to have a meaningful disadvantage in the experimental system used, since the high MOI used in the co-infection experiments allowed to bypass the cell-to-cell defect of gE mutants. It would have been interesting to characterize the final population composed primarily of original and recombinant viruses (at P3 in Fig 2G), and in particular measure the plaque size of these viruses. Recombinant viruses should have smaller plaque sizes, and showing that the gene drive was able to propagate an attenuating phenotype would be a meaningful result that hints at potential therapeutic applications.
(4) Experiments presented in Fig 3 compared the dynamics of Cas9 and Un1Cas12f1 gene drives, but the experimental system used is a bit puzzling and makes the interpretation of the results challenging. In particular, the authors chose to use gE-knockout virus v10 as the recipient for the gene drive, which allowed them to use gE in their flow cytometry assay. Unfortunately, this added a confounding factor to the experiments, since gE- viruses might replicate with different dynamics than gE+ viruses (for example v10 titers are one log higher than WT at 12h in Fig 1C). In Fig 3B, gD+ gE- viruses (in blue) disappear and are replaced by gD+ GFP+ gE- recombinants (in yellow), which is suggestive of efficient gene drive recombination, as pointed out by the authors. However, the population of gD+ GFP+ virus (in green) representing the original gene drive virus also disappeared over time. At the end of the experiments in Fig 3B, the population of gE+ viruses is gone. This is unexpected and suggests that the gD+ GFP+ gE- (yellow) has a replicative advantage over gD+ GFP+ (green), and that the gE- mutation is actually positively selected in these viral competition assays. So in these experiments, both gene drive-mediated recombination and competition between viral genotypes appear to be happening at the same time, which makes interpretation of the results challenging. However, despite these limitations, the results presented convincingly suggested that Un1Cas12f1 gene drives achieved higher penetrance than Cas9's, which is one of the most important findings of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Here the authors examine how increased temperature affects pollen production and fertility of Arabidopsis thaliana plants grown at selected temperature conditions ranging from 16C to 30C. They show that pollen production and fertility decline with increasing temperature. To identify the cause of reduced pollen and fertility, they resort to living cell imaging of male meiotic cells to identify that duration of meiosis increases with an increase in temperature. They also show that pollen sterility is associated with the increased presence of micronuclei likely originating from heat stress-induced impaired meiotic chromosome segregation. They correlate abnormal meiosis to weakened centromere caused by meiosis-specific defective loading of the centromere-specific histone H3 variant (CenH3) to the meiotic centromeres. Similar is the case with kinetochore-associated spindle assembly checkpoint(SAC) protein BMF1. Intriguingly, they observe a reverse trend of strong CENH3 presence in the somatic cells of the tapetum in contrast to reduced loading of CENH3 in male meiocytes with increasing temperature. In contrast to CENH3 and BMF1, the SAC protein BMF3 persists for longer periods than the WT control, based on which authors conclude that the heat stress prolongs the duration of SAC at metaphase I, which in turn extends the time of chromosome biorientation during meiosis I. This study provides insights onto the processes that affect plant reproduction with increasing temperatures which may be relevant to develop climate-resilient cultivars.
Strengths:
This study shows that the centromere function is affected under heat stress in meiotic cells by modulating the dynamics of the centromere specific histone H3 (CENH3) that in turn compromises the assembly of kinetochore complex proteins. This they have demonstrated by the way of live cell imaging of male meiocytes by tracking the loading dynamics and resident time of fluorescently tagged centromere/kinetochore proteins and spindle assembly checkpoint proteins.
Weaknesses:
Though the results presented here are interesting and solid, the current study lacks a deeper mechanistic understanding of what causes the defective loading of CenH3 to the centromeres, and why the SAC protein BMF3 persists only at meiotic centromeres to prolong the spindle assembly checkpoint, which will be interesting to delve further to completely understand the process.
Here the authors monitor one representative centromere protein CENH3, one kinetochore-associated SAC protein BMF1, and the SAC protein BMF3 to conclude that heat stress impairs centromere/kinetochore function and prolongs SAC with increased temperatures. Centromere and its associated protein complex the kinetochores and the SAC contains a multitude of proteins, some of which are well characterized in Arabidopsis thaliana. Hence the authors could have used additional such tagged proteins to further strengthen their claim.
-
Reviewer #3 (Public Review):
Summary:
Khaitova et al. report the formation of micronuclei during Arabidopsis meiosis under elevated temperature. Micronuclei form when chromosomes are not correctly collected to the cellular poles in dividing cells. This happens when whole chromosomes or fragments are not properly attached to the kinetochore microtubules. The incidence of micronuclei formation is shown to increase at elevated temperature in wild type and more so in the weak centromere histone mutant cenH3-4. The number micronuclei formation at high temperature in the recombination mutant spo11 is like that in wild type, indicating that the increased sensitivity of cenh3-4 is not related to the putative role of cenh3 in recombination. The abundance of CENH3-GFP at the centromere declines with higher temperature and correlates with a decline in spindle assembly checkpoint factor BMF1-GFP at the centromeres. The reduction in CENH3-GFP under heat is observed in meiocytes whereas CENH3-GFP abundance increases in the tapetum, suggesting there is a differential regulation of centromere loading in these two cell types. These observations are in line with previous reports on haploidization mutants and their hypersensitivity to heat stress.
Strength:
The paper shows that the kinetochore function during meiosis is sensitive to high temperature and this leads to inequivalent chromosome segregation during meiosis and reduced fertility.
Weakness:
The increased sensitivity to high temperature stress of the hypomorphic mutant cenh3-4 mutant not only reduces fertility but also growth, which is not accompanied with the formation of micronuclei as in meiosis. The impact on mitosis therefore seems to be different from that in meiosis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors aim to develop an easy-to-use image analysis tool for the mother machine that is used for single-cell time-lapse imaging. Compared with related software, they tried to make this software more user-friendly for non-experts with a design of "What You Put Is What You Get". This software is implemented as a plugin of Napari, which is an emerging microscopy image analysis platform. The users can interactively adjust the parameters in the pipeline with good visualization and interaction interface.
Strengths:
- Updated platform with great 2D/3D visualization and annotation support.<br /> - Integrated one-stop pipeline for mather machine image processing.<br /> - Interactive user-friendly interface.<br /> - The users can have a visualization of intermediate results and adjust the parameters.
Weaknesses:
- Based on the presentation of the manuscript, it is not clear that the goals are fully achieved.<br /> - Although there is great potential, there is little evidence that this tool has been adopted by other labs.<br /> - the diversity of datasets used in this study is limited.<br /> - Some paragraphs in the Discussion section are like blogs with general recommendations. Although the suggestions look pretty useful, it is not the focus of this manuscript. It might be more appropriate to put it in the GitHub repo or a documentation page. The discussion should still focus on the software, such as features, software maintenance, software development roadmap, and community adoption.
A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community.<br /> - The impact of this work depends on the adoption of the software MM3. Napari is a promising platform with an expanding community. With good software user experience and long-term support, there is a good chance that this tool could be widely adopted in the mother machine image analysis community.<br /> - The data analysis in this manuscript is used as a demo of MM3 features, rather than scientific research.
-
Reviewer #2 (Public Review):
The authors present an image-analysis pipeline for mother-machine data, i.e., for time-lapses of single bacterial cells growing for many generations in one-dimensional microfluidic channels. The pipeline is available as a plugin of the python-based image-analysis platform Napari. The tool comes with two different previously published methods to segment cells (classical image transformation and thresholding as well as UNet-based analysis), which compare qualitatively and quantitatively well with the results of widely accessible tools developed by others (BACNET, DelTA, Omnipose). The tool comes with a graphical user interface and example scripts, which should make it valuable for other mother-machine users, even if this has not been demonstrated yet.
The authors also add a practical overview of how to prepare and conduct mother-machine experiments, citing their previous work, referring to detailed instructions on their github page, and giving more advice on how to load cells using centrifugation.
Finally, the authors emphasize that machine-learning methods for image segmentation reproduce average quantities of training datasets, such as the length at birth or division. Therefore, differences in training can propagate to differences in measured average quantities. This result is not surprising but good to remember before interpreting absolute measurements of cell shape.
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Reviewer #1 (Public Review):
Zhang et al. investigate the hypothesis that tRNA methyl transferase 1 (TRMT1) is cleaved by NSP5 (nonstructural protein 5 or MPro), the SARS-CoV-2 main protease, during SARS-CoV-2 infection. They provide solid evidence that TRMT1 is a substrate of Nsp5, revealing an Nsp5 target consensus sequence and evidence of TRMT1 cleavage in cells. Their conclusions are exceptionally strong given the co-submission by D'Oliveira et al showing cleavage of TRMT1 in vitro by Nsp5. The detection of the N-terminal TRMT1 fragment by western blot is not robust; however, the authors provide corroborating assays and detailed densitometry methods, providing confidence to this reviewer that a TRMT1 fragment is produced under some conditions. Separately, the authors convincingly demonstrate widespread downregulation of RNA modifications during CoV-2 infection, including a requirement for TRMT1 in efficient viral replication. This finding is congruent with the authors' previous work defining the impact of TRMT1 and m2,2g on global translation, which is most likely necessary to support infection and virion production. Based on the data provided here, TRMT1 cleavage may be an act by CoV-2 to self-limit replication, as expression of a non-cleavable TRMT1 (versus wild type TRMT1) supports enhanced viral RNA expression at certain MOIs. The authors propose a few fascinating ideas to why this may be so in "Ideas and Speculation." Theoretically, TRMT1 cleavage should inactivate the modification activity of TRMT1, which the authors thoroughly and elegantly investigate with rigorous biochemical assays. However, only a minority of TRMT1 undergoes cleavage during infection at low MOIs and thus whether TRMT1 cleavage serves an important functional role during CoV-2 replication will be an important topic for future work. The authors fairly assess their work in this regard. In summary, this study demonstrates an important finding that the tRNA modification landscape is altered during CoV-2 infection, and that TRMT1 is an important host factor supporting CoV-2 replication. Their data pushes forward the idea that control of tRNA expression and functionality is an important and understudied area of host-pathogen interaction.
-
Reviewer #2 (Public Review):
Summary:<br /> The manuscript titled 'Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease' from K. Zhang et al., demonstrates that several RNA modifications are downregulated during SARS-CoV-2 infection including the widespread m2,2G methylation, which potentially contributes to changes in host translation. To understand the molecular basis behind this global hypomodification of RNA during infection, the authors focused on the human methyltransferase TRMT1 that catalyzes the m2,2G modification. They reveal that TRMT1 not only interacts with the main SARS-CoV-2 protease (Nsp5) in human cells but is also cleaved by Nsp5. To establish if TRMT1 cleavage by Nsp5 contributes to the reduction in m2,2G levels, the authors show compelling evidence that the TRMT1 fragments are incapable of methylating the RNA substrates due to loss of RNA binding by the catalytic domain. They further determine that expression of full-length TRMT1 is required for optimal SARS-CoV-2 replication in 293T cells. Nevertheless, the cleavage of TRMT1 was dispensable for SARS-CoV-2 replication hinting at the possibility that TRMT1 could be an off-target or fortuitous substrate of Nsp5. Overall, this study will be of interest to virologist and biologists studying the role of RNA modification and RNA modifying enzyme in viral infection.
Strengths:<br /> • The authors use state-of-the-art mass spectrometry approach to quantify RNA modifications in human cells infected with SARS-CoV-2.<br /> • The authors go to great lengths to demonstrate that SARS-CoV-2 main protease, Nsp5, interacts and cleaves TRMT1 in cells and perform important controls when needed. They use a series of overexpression with strategically placed tags on both TRMT1 and Nsp5 to strengthen their observations.<br /> • The use of an inactive Nsp5 mutant (C145A) strongly supports the claim of the authors that Nsp5 is solely responsible for TRMT1 cleavage in cells.<br /> • Although the direct cleavage was not experimentally determined, the authors convincingly show that TRMT1 Q530N is not cleaved by Nsp5 suggesting that the predicted cleavage site at this position is most likely the bona fide region processed by Nsp5 in cells.<br /> • To understand the impact of TRMT1 cleavage on its RNA methylation activity, the authors rigorously test four protein constructs for their capacity not only to bind RNA but also to introduce the m2,2G modification. They demonstrate that the fragments resulting from TRMT1 cleavage are inactive and cannot methylate RNA. They further establish that the C-terminal region of TRMT1 (containing a zinc-finger domain) is the main binding site for RNA.<br /> • While 293T cells are unlikely an ideal model system to study SARS-CoV-2 infection, the authors use two cell lines and well-designed rescue experiments to uncover that TRMT1 is required for optimal SARS-CoV-2 replication.
Weaknesses:<br /> • Immunoblotting is extensively used to probe for TRMT1 degradation by Nsp5 in this study. Regretfully, the polyclonal antibody used by the authors shows strong non-specific binding to other epitopes. This complicates the data interpretation and quantification since the cleaved TRMT1 band migrates very closely to a main non-specific band detected by the antibody (for instance Fig 3A). While this reviewer is concerned about the cross-contamination during quantification of the N-TRMT1, the loss of this faint cleaved band with the TRMT1 Q530N mutant is reassuring. Nevertheless, the poor behavior of this antibody for TRMT1 detection was already reported and the authors should have taken better precautions or designed a different strategy to circumvent the limitation of this antibody by relying on additional tags.<br /> • While 293T cells are convenient to use, it is not a well-suited model system to study SARS-CoV-2 infection and replication. Therefore, some of the conclusions from this study might not apply to better suited cell systems such as Vero E6 cells or might not be observed in patient infected cells.<br /> • The reduction of bulk TRMT1 levels is minor during infection of MRC5 cells with SARS-CoV-2 (Fig 1). This does not seem to agree with the more dramatic reduction in m2,2G modification levels. Cellular Localization experiments of TRMT1 would help clarify this. While TRMT1 is found in the cytoplasm and nucleus, it is possible that TRMT1 is more dramatically degraded in the cytoplasm due to easier access by Nsp5.<br /> • In fig 6, the authors show that TRMT1 is required for optimal SARS-CoV-2 replication. This can be rescued by expressing TRMT1 (fig 7). Nevertheless, it is unknown if the methylation activity of TRMT1 is required. The authors could have expressed an inactive TRMT1 mutant (by disrupting the SAM binding site) to establish if the RNA modification by TRMT1 is important for SARS-CoV-2 replication or if it is the protein backbone that might contribute to other processes.<br /> • Fig 7, the authors used the Q530N variant to rescue SARS-CoV-2 replication in TRMT1 KO cells. This is an important experiment and unexpectedly reveals that TRMT1 cleavage by Nsp5 is not required for viral replication. To strengthen the claim of the authors that TRMT1 is required to promote viral replication and that its cleavage inhibits RNA methylation, the authors could express the TRMT1 N-terminal construct in the TRMT1 KO cells to assess if viral replication is restored or not to similar levels as WT TRMT1. This will further validate the potential biological importance of TRMT1 cleavage by Nsp5.<br /> • Fig 7, shows that the TRMT1 Q530N variant rescues SARS-CoV-2 replication to greater levels then WT TRMT1. The authors should discuss this in greater detail and its possible implications with their proposed statement. For instance, are m2,2G levels higher in Q530N compared to WT? Does Q530N co-elute with Nsp5 or is the interaction disrupted in cells?
-
Reviewer #3 (Public Review):
Summary:<br /> In this manuscript, the authors have used biochemical approaches to provide compelling evidence for the cleavage of TRMT1 by SARS-CoV-2 Nsp5 protease.<br /> This work is of wide interest to biochemists, cell biologists, and structural biologists in the coronavirus (CoV) field. Furthermore, it substantially advances the understanding of how CoV's interact with host factors during infection and modify cellular metabolism.
Strengths:<br /> The authors provide multiple lines of biochemical evidence to report a TRMT1-Nsp5 interaction during SARS-CoV-2 infection. They show that the host enzyme TRMT1 is cleaved at a specific site, and that it generates fragments that are incapable of functioning properly. This is an important result because TRMT1 is a critical player in host protein synthesis. This also advances our understanding of virus-host interactions during SARS-CoV-2 infections. Furthermore, this revised submission attempts to address the mechanistic role of TRMT1-Nsp5 interaction.
Weaknesses:<br /> The discussion on the enhanced viral infectivity upon expression of the non-cleavable TRMT1 is unclear. As presented, this is a bit contradictory to the suggested function of the TRMT1-Nsp5 interaction in diverting the host tRNA pools towards viral propagation. If the authors' model were correct, then one would expect a non-cleavable TRMT1 to inhibit viral infectivity because the virus would be unable to divert the host tRNA pools towards its propagation. I think this section needs to be written more clearly. But other than this, I have no further questions/suggestions for the authors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The study by Vengayil et al. presented a role for Ubp3 for mediating inorganic phosphate (Pi) compartmentalization in cytosol and mitochondria, which regulates metabolic flux between cytosolic glycolysis and mitochondrial processes. Although the exact function of increased Pi in mitochondria is not investigated, findings have valuable implications for understanding the metabolic interplay between glycolysis and respiration under glucose-rich conditions. They showed that UBP3 KO cells regulated decreased glycolytic flux by reducing the key Pi-dependent-glycolytic enzyme abundances, consequently increasing Pi compartmentalization to mitochondria. Increased mitochondria Pi increases oxygen consumption and mitochondrial membrane potential, indicative of increased oxidative phosphorylation. In conclusion, the authors reported that the Pi utilization by cytosolic glycolytic enzymes is a key process for mitochondrial repression under glucose conditions.
Comments on revised version:
This reviewer appreciates the author's responses addressing some of the concerns.
However, the concern of reproducibility and experimental methods applied to the study is still valid, particularly considering that many conclusions were drawn from western blot analysis. The authors used separate gel loading controls for western blot analysis, which is not a valid method. Considering loading and other errors/discrepancies during the transfer phase of the assay, the direct control should be analyzing the membrane after transfer or using an internal control antibody on the same membrane. None of the western blots are indicated with marker sizes, and it isn't very clear how many repeats there are and whether those repeats are biological or technical repeats.
Concern regarding citing the Ouyang et al. paper is still valid. This paper is an essential implication in phosphate metabolism and is directly related to some of the findings associated with mitochondrial function, along with conflicting results, which should be discussed in the discussion section. As a reviewer, I do not request citing any paper from the authors in general; however, considering some of the conflicting results here, citing and discussing paper from Ouyang et al. will improve the interoperation/value of their findings.
Considering these factors, the presented results do not fully support the findings.
-
Reviewer #2 (Public Review):
Summary:
Cells cultured in high glucose tend to repress mitochondrial biogenesis and activity, a prevailing phenotype type called Crabree effect that observed in different cell types and cancer. Many signaling pathways have been put forward to explain this effect. Vengayil et al proposed a new mechanism involved in Ubp3/Ubp10 and phosphate that controls the glucose repression of mitochondria. The central hypothesis is that ∆ubp3 shift the glycolysis to trehalose synthesis, therefore lead to the increase of Pi availability in the cytosol, then mitochondrial received more Pi and therefore the glucose repression is reduced.
Strengths:
The strength is that the authors used an array of different assays to test their hypothesis. Most assays were well designed and controlled.
Weaknesses:
I think the main conclusions are not strongly supported by the current dataset. Here are my comments on authors' response and model.
(1) The authors addressed some of my concerns related to ∆ubp3. But based on the results they observed and discussed, the ∆ubp3 redirect some glycolytic flux to gluconeogenesis while the 0.1% glucose in WT does not. Similarly, the shift of glycolysis to trehalose synthesis is also not relevant to the WT cells cultured in low glucose situation. This should be discussed in the manuscript to make sure readers are not misled to think ∆ubp3 mimic low glucose. It is likely that ∆ubp3 induce proteostasis stress, which is known to activate respiration and trehalose synthesis.
(2) Pi flux: it is known that vacuole can compensate the reduction of Pi in the cytosol. The paper they cited in the response, especially the Van Heerden et al., 2014 showed that the pulse addition of glucose caused transient Pi reduction and then it came back to normal level after 10min or so. If the authors mean the transient change of glycolysis and respiration, they should point that out clearly in the abstract and introduction. If the authors are trying to put out a general model, then the model must be reconsidered.
The cytosol has ~50mM Pi (van Eunen et al., 2010 FEBSJ), while only 1-2mM of glycolysis metabolites, not sure why partial reduction of several glycolysis enzymes will cause significant changes in cytosolic Pi level and make Pi the limiting factor for mitochondrial respiration. In response to this comment, the authors explained the metabolic flux that the rapid, continuous glycolysis will drain the Pi pool even each glycolytic metabolite is only 1-2mM. However, the metabolic flux both consume and release Pi, that's why there is such measurement of overall free Pi concentration amid the active metabolism. One possibility is that the observed cytosolic Pi level changes was caused by the measurement fluctuation, as they showed in "Reviewer response image 3".
Importantly, the authors measured Pi inside mito for ethanol and glucose, but not the cytosolic Pi, which is the key hypothesis in their model. The model here is that the glycolysis competes with mito for free cytosolic Pi, so it needs to inhibit glycolysis to free up cytosolic Pi for mitochondrial import to increase respiration. I don't see measurement of cytosolic Pi upon different conditions, only the total Pi or mito Pi. The fact is that in Fig.3C they saw WT+Pi in the medium increase total free Pi more than the ∆ubc3, while WT decrease mito Pi compared to WT control and ∆ubc3 and therefore decrease basal OCR upon Pi supplement. A simple math of Pitotal = Pi cyto + Pi mito tells us that if WT has more Pitotal (Fig.3C) but less Pi mito (fig.5 supp 1C), then it has higher Pi cyto. This is contradictory to what the authors tried to rationalize. Furthermore, as I pointed out previously, the isolated mitochondria can import more Pi when supplemented, so if there is indeed higher Picyto, then the mito in WT should import more Pi. So, to address these contradictory points, the authors must measure Pi in the cytosol, which is a critical experiment not done for their model. For example, they hypothesized that adding 2-DG, or ∆ubp3, suppress glycolysis and thus increase the supply of cytosolic Pi for mito to import, but no cytosolic Pi was measured (need absolute value, not the relative fold changes). It is also important to specific how the experiments are done, was the measurement done shortly after adding 2-DG. Given that the cells response to glucose changes/pulses differently in transient vs stable state, the authors are encouraged to specify that.
The most likely model to me is that, which is also the consensus in the field, is that no matter 2-DG or ∆ubp3, the cells re-wiring metabolism in both cytosol and mitochondria, and it is the total network shift that cause the mitochondrial respiration increase, which requires the increase of mito import of Pi, ADP, O2, and substrates, but not caused/controlled by the Pi that singled out by the authors in their model.
(3) The explanation that cytosolic pH reduction upon glucose depletion/2DG is a mistake. There are a lot of data in the literature showing the opposite. If the authors do think this is true, then need to show the data. Again, it is important to distinguish transient vs stable state for pH changes.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study explores whether the extreme polygenicity of common traits (the fact that variation in such traits is explained by a very large number of genetic variants) could be explained in part by competition among genes for limiting molecular resources involved in gene regulation, which would cause the expression of most genes to be correlated. While the hypothesis is interesting, I still have some concerns about the analysis and interpretation.
As the authors say in their rebuttal, assuming extreme resource limitation, i.e., going from equation 2 to 5 essentially assumes assuming that 1/(gtot [G] ) <<1 and that terms that are order [ 1/(gtot [G] ) ] can neglected. However, then the authors derive so-called resource competition terms that are order (1/m) where m is the number of genes, so that gtot is proportional to m. My main criticism (which I am not sure was addressed) is thus: can we reliably derive small order (1/m) effects while neglecting order [ 1/(gtot [G] ) ] terms, when both are presumably similar in order of magnitude? Is this mathematically sound?
I do not think the supplement that the authors have added actually gets to this. For example, section 7.1 just gives the textbook derivation of Michelis-Menten kinetics, and does not address my earlier criticism that the terms neglected in going from eq. 16 to eq. 17 (or from eq. 2 to 3) may be similar in magnitude to the terms being derived and interpreted in eqs. 6 and 7.<br /> Similarly, it is unclear from section 7.2 how the authors are doing the simulations. Are these true Michelis-Menten simulations involving equation 2? If yes, then what is the value of [G] and [P_0] in the simulations? If these are not true Michelis-Menten simulations, but instead something that already uses equation 5, then this still does not address my earlier criticism.
-
Reviewer #2 (Public Review):
The question the authors pose is very simple, and yet very important. Does the fact that many genes compete for Pol II to be transcribed explain why so many trans-eQTL contribute to the heritability of complex traits? That is, if a gene uses up a proportion of Pol II, does that in turn affect the transcriptional output of other genes relevant or even irrelevant for the trait in a way that their effect will be captured in a genome-wide association study? If yes, then the large number of genetic effects associated with variation in complex traits can be explained but such trans-propagating effects on transcriptional output of many genes.
This is a very timely question given that we still don't understand how, mechanistically, so many genes can be involved in complex traits variation. Their approach to this question is very simple and it is framed in classic enzyme-substrate equations. The authors show that the trans-propagating effect is too small to explain the ~70% of heritability of complex traits that is associated with trans-effects. Their conclusion relies on the comparison of the order of magnitude of a) the quantifiable transcriptional effects due to Pol II competition, and b) the observed percentage of variance explained by trans effects (data coming from Liu et al 2019, from the same lab).
The results shown in this manuscript rule out that competition for limiting resources in the cell (not restricted to Pol II, but applicable to any other cellular resource like ribosomes, etc) could explain heritability of complex traits.
-
Reviewer #3 (Public Review):
Human complex traits including common diseases are highly polygenic (influenced by thousands of loci). This observation is in need of an explanation. The authors of this manuscript propose a model that a competition for a single global resource (such as RNA polymerase II) may lead to a highly polygenic architecture of traits. Following an analytical examination the authors reject their hypothesis. This work is of clear interest to the field. It remains to be seen if the model covers the variety of possible competition models.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Two early Cambrian taxa of linguliform brachiopods are assigned to the family Eoobolidae. The taxa exhibit a columnar shell structure and the phylogenetic implications of this shell structure in relation to other early Cambrian families is outlined.
Strengths:
Interesting idea regarding the evolution of shell structure.
Weaknesses:
The early record of shell structures of linguliform brachiopods is incomplete and partly contradictory. The authors maintain silence regarding contradictory information throughout the article to an extend that information is cited wrongly. The article is written under the assumption that all eoobolids have a columnar shell structure. Thus, the previously claimed columnar structure of Eoobolus incipiens which has been re-illustrated in the paper is not convincing and could be interpreted in other ways.
The article still needs a proper results section. The Discussion is mainly a review of published data. Other potential results are hidden in this "discussion". Large sections of the paper appear irrelevant and can be deleted.
A critical revision of the family Eoobolidae and Lingulellotretidae including a revision of the type species of Eoobolus and Lingulellotreta is needed first.
The potential evolutionary patterns that are presented towards the end (summarized in Fig 6) are interesting but rather unconvincing. The stated numbers of shell laminae, whose origin has now been clarified in a still rather short Methods section, represent a mix of data and are not comparable. Achieved numbers of laminae based on literature data include laminae from the secondary and tertiary shell layer, a distinction between the two would be crucial for the proposed claims.<br /> The obtained evolutionary patterns as presented in Fig. 6 must, after the second revision and clarification of the methods used, be regarded as misleading and reflects a limited understanding of shell growths in linguliform brachiopods (despite the extensive review of the literature).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study by Lee et al. is a direct follow-up on their previous study that described an evolutionary conservancy among placental mammals of two motifs (a transmembrane motif and a juxtamembrane palmitoylation site) in CD4, an antigen co-receptor, and showed their relevance for T-cell antigen signaling. In this study, they describe the contribution of these two motifs to the CD4-mediated antigen signaling in the absence of CD4-LCK binding. Their approach was the comparison of antigen-induced proximal TCR signaling and distal IL-2 production in 58-/- T-cell hybridoma expressing exogenous truncated version of CD4 (without the interaction with LCK), called T1 and T1 version with the mutations in either or both of the conserved motifs. They show that the T1 CD4 can support signaling to extend similar to WT CD4, but the mutation of the conserved motifs substantially reduced the signaling. The authors conclude that the role of these motifs is independent of the LCK-binding.
Strengths:
The authors convincingly show that CD4 is capable of contributing to TCR signaling in a manner independent of LCK, but dependent on the two studied motifs in CD4.
Weaknesses:
(1) Experiments in primary T cells are required to estimate the relative contribution of LCK-dependent and LCK-independent mechanisms of CD4 signaling.
(2) The mechanistic explanation (beyond the independence of LCK binding) of the role of these motifs is unclear at the moment.
-
Reviewer #2 (Public Review):
Summary:
The paper by Kuhn and colleagues follows upon a 2022 eLife paper in which they identified residues in CD4 constrained by evolutionary purifying selection in placental mammals, and then performed functional analyses of these conserved sequences. They showed that sequences distinct from the CXC "clamp" involved in recruitment of Lck have critical roles in TCR signaling, and these include a glycine-rich motif in the transmembrane (TM) domain and the cys-containing juxtamembrane (JM) motif that undergoes palmitylation, both of which promote TCR signaling, and a cytoplasmic domain helical motif, also involved in Lck binding, that constrains signaling. Mutations in the transmembrane and juxtamembrane sequences led to reduced proximal signaling and IL-2 production in a hybridoma's response to antigen presentation, despite retention of abundant CD4 association with Lck in the detergent-soluble membrane fraction, presumably mislocalized outside of lipid rafts and distal to the TCR. A major conclusion of that study was that CD4 sequences required for Lck association, including the CXC "clasp" motif, are not as consequential for CD4 co-receptor function in TCR signaling as the conserved TM and JM motifs. However, the experiments did not determine whether the functions of the TM and JM motifs are dependent on the Lck-binding properties of CD4 - the mutations in those motifs could result in free Lck redistributing to associate with CD4 in signaling-incompetent membrane domains or could function independently of CD4-Lck association. The current study addresses this specific question.
Using the same model system as in the earlier eLife paper (the entire methods section is a citation to the earlier paper), the authors show that truncation of the Lck-binding intracellular domain resulted in a moderate reduction in IL-2 response, as previously shown, but there was no apparent effect on proximal phosphorylation events (CD3z, Lck, ZAP70, PLCg1). They then evaluated a series of TM and JM motif mutations in the context of the truncated Lck-nonbinding molecule and showed that these had substantially impaired co-receptor function in the IL-2 assay and reduced proximal signaling. The proximal signaling could be observed at high ligand density even with a MHC non-binding mutation in CD4, although there was still impaired IL-2 production. This result additionally illustrates that phosphorylation of the proximal signaling molecules is not sufficient to activate IL-2 expression in the context of antigen presentation.
Strengths:
The strength of the paper is the further clear demonstration that the classical model of CD4 co-receptor function (MHCII-binding CD4 bringing Lck to the TCR complex, for phosphorylation of the CD3 chain ITAMs and of the ZAP70 kinase) is not sufficient to explain TCR activation. The data, combined with the earlier eLife paper, further implicate the gly-rich TM sequence and the palmitylation targets in the JM region as having critical roles in productive co-receptor-dependent TCR activation.
Weaknesses:
The major weakness of the paper is the lack of mechanistic insight into how the TM and JM motifs function. The new results are largely incremental in light of the earlier paper from this group as well as other literature, cited by the authors, that implicates "free" Lck, not associated with co-receptors, as having the major role in TCR activation. It is clear that the two motifs are important for CD4 function at low pMHCII ligand density. The proposal that they modulate interactions of TCR complex with cholesterol or other membrane lipids is an interesting one, and it would be worth further exploring by employing approaches that alter membrane lipid composition. The JM sequence presumably dictates localization within the membrane, by way of palmitylation, which may be critical to regulate avidity of the TCR:CD4 complex for pMHCII or TCR complex allosteric effects that influence the activation threshold. Experiments that explore the basis of the mutant phenotype could substantially enhance the impact of this study.
Additional comments:
- Is the "IL-2 sensitivity" measurement for the T1-TP (3C) meaningful (Table 3)? It is showing only a moderate reduction compared to T1 control, while TP (2C) or just the 3C palmitylation mutations essentially eliminate response.
- It is unclear how the pairs of control and mutant cells connected by lines in the figures are related. They are presumably cells from distinct biological experiments, with technical replicates for each, but are they paired because they were derived at the same time with different constructs? This should be explained in this paper, not in a reference.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors have addressed most of the concerns I had about the original version in this revised version.
-
Reviewer #2 (Public Review):
The authors have successfully addressed all of the concerns I had about the original version.
-
Reviewer #3 (Public Review):
The message conveyed by figure 1b is now clearer, but could still be improved. The authors explained the meaning of this figure well in their response to the reviewers: "For example, the results for CRISPR were obtained from 15 focus studies (original research) and 18 subsequent studies (papers citing focus articles). Those 15 studies identified 9,268 genes where loss-of-function changed phenotypes but, in their titles and abstracts, mentioned only 18 of those 9,268 genes. While the 9,268 hit genes have received similar research attention to the entirety of protein-coding genes, the 18 hit genes mentioned in the title or abstract are significantly more well studied. The articles citing the focus articles also only mentioned in their titles and abstracts 19 highly studied hit genes".<br /> The new Figure S8 is good.
-