1,466 Matching Annotations
  1. Last 7 days
    1. Our next goal was to define the molecular signatures of each TSC hamartomatous lesion type using genome-wide DNA methylation and transcript profiling. Unsupervised clustering of DNA methylation array data revealed lesion

      [Paragraph-level] PMCID: PMC5481739 Section: RESULTS PassageIndex: 12

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses the somatic DNMT3A-V716F mutation and its predicted effect on methyltransferase activity, indicating that the variant alters molecular function. Oncogenic: The mention of the somatic DNMT3A-V716F mutation in the context of a tumor suggests that it contributes to tumor development or progression.

      Gene→Variant (gene-first): 1788:V716F

      Genes: 1788

      Variants: V716F

    1. Next, we determined whether metformin had superior antitumor activity in KRAS-mutated CRC cell lines to those with KRAS wild type through a cell-viability test. As shown in SI Appendix, Fig. S2A, metformin inhibited the

      [Paragraph-level] PMCID: PMC7293710 Section: RESULTS PassageIndex: 7

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses how the KRASG12V mutation correlates with increased sensitivity to the antiproliferation therapy of metformin, indicating a predictive relationship between the variant and treatment response. Oncogenic: The KRASG12V mutation is implicated in tumor development as it is mentioned in the context of its effect on cell viability and sensitivity to therapy in colorectal cancer cell lines.

      Gene→Variant (gene-first): 3845:G12V

      Genes: 3845

      Variants: G12V

    1. To analyze the response of KB1(L1363P)P mammary tumors to HRR deficiency-targeted therapy, we performed orthotopic transplantations with spontaneous donor tumors as previously described. To capture the heterogeneity of K

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 15

      Evidence Type(s): Predictive, Oncogenic, Functional

      Justification: Predictive: The passage discusses the response of KB1(L1363P)P mammary tumors to targeted therapies, indicating that these tumors responded significantly better to cisplatin and the PARP inhibitor AZD2461, which correlates the variant with treatment response. Oncogenic: The variant is associated with tumor development and progression, as it is discussed in the context of mammary tumors and their response to therapies, suggesting a role in cancer biology. Functional: The passage describes how the variant affects the ability of tumor cells to induce RAD51 foci in response to gamma-radiation, indicating an alteration in molecular function related to DNA repair mechanisms.

      Gene→Variant (gene-first): 7158:L1363P 7158:p.L1363P

      Genes: 7158

      Variants: L1363P p.L1363P

    2. KB1(L1363P)P mammary tumors respond to cisplatin and PARP inhibition

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 14

      Evidence Type(s): Predictive

      Justification: Predictive: The variant L1363P is associated with a response to cisplatin and PARP inhibition, indicating its correlation with treatment sensitivity.

      Gene→Variant (gene-first): 7158:L1363P

      Genes: 7158

      Variants: L1363P

    3. KB1P mammary tumors are mainly adenocarcinomas, defined by their epithelial nature and solid growth pattern (Fig. 3D; Supplementary Fig. S4B). In contrast, KB1(L1363P)P mammary tumors are predominantly carcinosarcomas wi

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 13

      Evidence Type(s): Diagnostic, Oncogenic

      Justification: Diagnostic: The passage discusses how KB1(L1363P)P mammary tumors are classified as predominantly carcinosarcomas, indicating that the variant is used to define and classify a specific tumor subtype. Oncogenic: The variant L1363P is associated with the development of carcinosarcomas, suggesting that it contributes to tumor progression and development, which aligns with oncogenic behavior.

      Gene→Variant (gene-first): 7158:L1363P 7158:p.L1363P

      Genes: 7158

      Variants: L1363P p.L1363P

    4. KB1(L1363P)P mammary tumors show EMT-like phenotypes and limited genomic instability

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 12

      Evidence Type(s): Oncogenic

      Justification: Oncogenic: The passage indicates that the variant L1363P is associated with mammary tumors exhibiting EMT-like phenotypes, suggesting a role in tumor development or progression.

      Gene→Variant (gene-first): 7158:L1363P

      Genes: 7158

      Variants: L1363P

    5. The embryonic lethality of Brca1LP/LP mice indicates that an intact BRCA1 coiled-coil domain is functionally important in vivo, in line with its requirement for BRCA1-mediated HRR. To analyze whether the functional defec

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 11

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses how the Brca1 p.L1363P variant contributes to tumor formation and accelerates tumor development in a mouse model, indicating its role in tumor progression. Functional: The passage indicates that the Brca1 p.L1363P variant has a functional defect that compromises BRCA1-mediated homologous recombination repair (HRR), suggesting an alteration in molecular function.

      Gene→Variant (gene-first): 7158:L1363P 7158:p.L1363P

      Genes: 7158

      Variants: L1363P p.L1363P

    6. Brca1 p.L1363P shows a defect in mammary tumor suppression

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 10

      Evidence Type(s): Oncogenic

      Justification: Oncogenic: The variant p.L1363P is associated with a defect in mammary tumor suppression, indicating its contribution to tumor development or progression.

      Gene→Variant (gene-first): 7158:p.L1363P

      Genes: 7158

      Variants: p.L1363P

    7. To verify whether mouse Brca1 p.L1363P phenocopies human BRCA1 p.L1407P, we analyzed Brca1LP/LP;Trp53Delta/Delta (LP/LP) mutant and Brca1LP/+;Trp53Delta/Delta (LP/+) control MEFs for BRCA1-PALB2 interaction and HRR defec

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Predictive, Functional

      Justification: Predictive: The passage discusses increased sensitivity to cisplatin and PARP1 inhibition in the context of the Brca1 p.L1363P variant, indicating a correlation with treatment response. Functional: The variant p.L1363P is shown to severely attenuate BRCA1-PALB2 binding, which alters the molecular function related to homologous recombination repair (HRR).

      Gene→Variant (gene-first): 672:leucine to proline 7158:p.L1363P 672:p.L1407P

      Genes: 672 7158

      Variants: leucine to proline p.L1363P p.L1407P

    8. BRCA1 p.L1363P is unable to bind PALB2 and shows hypomorphic activity in HRR

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 8

      Evidence Type(s): Functional

      Justification: Functional: The passage indicates that the variant p.L1363P alters the binding ability of BRCA1 to PALB2 and affects its activity in homologous recombination repair (HRR), demonstrating a change in molecular function.

      Gene→Variant (gene-first): 7158:p.L1363P

      Genes: 7158

      Variants: p.L1363P

    9. In the complete absence of TP53, Brca1LP/LP mice developed apparently normal until at least E13.5, although no postnatal survival was observed upon compound heterozygous intercrosses (Table 3). This allowed us to isolate

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 7

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses the evaluation of the functional consequences of the Brca1 p.L1363P variant, indicating that it alters molecular or biochemical function.

      Gene→Variant (gene-first): 7158:p.L1363P

      Genes: 7158

      Variants: p.L1363P

    10. For a first functional analysis of Brca1 p.L1363P in vivo, heterozygous Brca1LP mice were intercrossed and their offspring was genotyped. No Brca1LP/LP mice were born; therefore, embryos were analyzed at different stages

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 5

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses a functional analysis of the Brca1 p.L1363P variant, indicating that it alters embryonic development and leads to growth defects in mice, which demonstrates its impact on molecular or biochemical function. Oncogenic: The analysis of the Brca1 p.L1363P variant in the context of embryonic development and its comparison to Brca1-null mice suggests that it may contribute to tumor development or progression, as it is associated with severe phenotypes similar to pathogenic mutations in Brca1.

      Gene→Variant (gene-first): 7158:p.L1363P

      Genes: 7158

      Variants: p.L1363P

    11. Homozygous Brca1 p.L1363P (FVB) mice die during embryonic development

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 4

      Evidence Type(s): Oncogenic

      Justification: Oncogenic: The passage indicates that the homozygous variant p.L1363P in Brca1 leads to embryonic lethality in mice, suggesting that it contributes to tumor development or progression.

      Gene→Variant (gene-first): 7158:p.L1363P

      Genes: 7158

      Variants: p.L1363P

    12. We used CRISPR/Cas9-mediated genome editing in FVB mouse zygotes to model the BRCA1 coiled-coil domain VUS c.4220T>C p.L1407P, which disrupts the interaction of BRCA1 with PALB2. The BRCA1 coiled-coil domain is well cons

      [Paragraph-level] PMCID: PMC7612117 Section: RESULTS PassageIndex: 3

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the variant p.L1407P disrupts the interaction of BRCA1 with PALB2 and predicts that it disables the alpha-helical structure of the coiled-coil domain, indicating an alteration in molecular function. Oncogenic: The use of CRISPR/Cas9 to model the BRCA1 variant in mice suggests that the variant contributes to tumor development or progression, as it is being studied in the context of a gene essential for embryonic development and cancer biology.

      Gene→Variant (gene-first): 672:4220T>C 7158:p.L1363P 672:p.L1407P

      Genes: 672 7158

      Variants: 4220T>C p.L1363P p.L1407P

    1. MIB-1 labeling indices correlated with the diagnosis and grade assigned prior to H3 K27M IHC testing (Table 1). For the adult cohort, 1 case met WHO criteria for diffuse astrocytoma, WHO grade II (MIB-1 < 1%), 7 cases me

      [Paragraph-level] PMCID: PMC5822176 Section: RESULTS PassageIndex: 6

      Evidence Type(s): Diagnostic

      Justification: Diagnostic: The passage discusses the correlation of MIB-1 labeling indices with the diagnosis and grade of tumors, indicating that the K27M variant is associated with specific tumor classifications.

      Gene→Variant (gene-first): 3417:K27M

      Genes: 3417

      Variants: K27M

    2. The known lower frequency of ATRX mutation/loss of ATRX nuclear immunostaining in only 10 - 15% of H3 K27M-mutant tumors makes this feature less amenable to comparisons between the 2 cohorts. However, of the 7 adult case

      [Paragraph-level] PMCID: PMC5822176 Section: RESULTS PassageIndex: 5

      Evidence Type(s): None

      Justification: Not enough information in this passage.

      Gene→Variant (gene-first): 3417:K27M

      Genes: 3417

      Variants: K27M

    3. Four cases had other morphologies at initial biopsy, including pure GG (n = 3, pediatric) and PA (n = 1, adult) histologies. One of the GGs was a 16-year-old girl with an original biopsy demonstrating a pure thalamic GG

      [Paragraph-level] PMCID: PMC5822176 Section: RESULTS PassageIndex: 4

      Evidence Type(s): Oncogenic

      Justification: Oncogenic: The passage discusses the transformation of tumors associated with the K27M variant, indicating its role in tumor development and progression, particularly in the context of glioblastoma transformation.

      Gene→Variant (gene-first): 3417:K27M

      Genes: 3417

      Variants: K27M

    4. Table 1 summarizes the ages, gender, anatomical location, initial histological diagnoses, and p53 IHC labeling indices discerned prior to H3 K27M IHC in the 28 H3 K27M-mutant tumors identified in our databases. There wer

      [Paragraph-level] PMCID: PMC5822176 Section: RESULTS PassageIndex: 2

      Evidence Type(s): Diagnostic, Oncogenic

      Justification: Diagnostic: The passage discusses the identification of H3 K27M-mutant tumors and provides demographic information, indicating that the variant is associated with specific histological diagnoses and patient characteristics. Oncogenic: The mention of H3 K27M in the context of tumors suggests that this somatic variant contributes to tumor development or progression, as it is identified in mutant tumors.

      Gene→Variant (gene-first): 3417:K27M

      Genes: 3417

      Variants: K27M

    5. Background: H3 K27M mutation was originally described in pediatric diffuse intrinsic pontine gliomas (DIPGs), but has been recently recognized to occur also in adult midline diffuse gliomas, as well as midline tumors wit

      [Paragraph-level] PMCID: PMC5822176 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Diagnostic, Prognostic, Oncogenic

      Justification: Diagnostic: The passage discusses the H3 K27M mutation's association with various tumor types, indicating its role in defining and classifying these tumors, particularly in pediatric and adult cohorts. Prognostic: The passage mentions survival outcomes for patients with H3 K27M-mutant tumors, comparing mean survival times between adults and pediatric patients, which indicates a correlation with disease outcome. Oncogenic: The H3 K27M mutation is described as contributing to tumor development in various glioma types, indicating its role as a somatic variant involved in tumor progression.

      Gene→Variant (gene-first): 3417:K27M

      Genes: 3417

      Variants: K27M

    1. To identify somatic mutations in paediatric diffuse intrinsic pontine gliomas (DIPGs), we performed whole genome sequencing of 7 DIPGs and matched germline DNA, and targeted sequencing of an additional 43 DIPGs and 36 no

      [Paragraph-level] PMCID: PMC3288377 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Diagnostic, Oncogenic

      Justification: Diagnostic: The passage discusses the frequency of the p.K27M mutation in DIPGs and its association with this specific subtype of brain tumors, indicating its role in defining or classifying the disease. Oncogenic: The p.K27M and p.G34R mutations are described as somatic mutations found in pediatric gliomas, suggesting their contribution to tumor development or progression.

      Gene→Variant (gene-first): 3021:p.G34R 3021:p.K27M

      Genes: 3021

      Variants: p.G34R p.K27M

    1. CDK4/6 inhibition with endocrine therapy is now a standard of care for advanced estrogen receptor positive breast cancer. Mechanisms of CDK4/6 inhibitor resistance have been described pre-clinically, with limited evidenc

      [Paragraph-level] PMCID: PMC6368247 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the emergence of the ESR1 Y537S mutation in the context of resistance to CDK4/6 inhibitors, indicating a correlation with treatment response and resistance. Oncogenic: The mention of the ESR1 Y537S mutation as a new driver mutation suggests that it contributes to tumor development or progression, particularly in the context of breast cancer.

      Gene→Variant (gene-first): 5728:Y537S

      Genes: 5728

      Variants: Y537S

    1. Twenty-seven patients with a median age of 49 years (range 23-82) were treated with BRAF inhibitors. Eleven patients received dabrafenib with trametinib, and 16 were treated with vemurafenib. Patients received 150 mg of

      [Paragraph-level] PMCID: PMC5122709 Section: RESULTS PassageIndex: 3

      Evidence Type(s): Predictive, Diagnostic, Oncogenic

      Justification: Predictive: The passage discusses patients treated with BRAF inhibitors, specifically mentioning the BRAF V600E mutation, which correlates with response to these therapies. Diagnostic: The passage states that all patients tested positive for the BRAF V600E mutation, indicating its use in defining or confirming the presence of a specific subtype of melanoma. Oncogenic: The BRAF V600E mutation is implicated in the development of melanoma, suggesting its role as a somatic variant contributing to tumor progression.

      Gene→Variant (gene-first): 673:V600E

      Genes: 673

      Variants: V600E

    1. Although activating mutations of FGFR3 are frequent in bladder tumors, little information is available on their specific effects in urothelial cells or the basis for the observed mutation spectrum. We investigated the ph

      [Paragraph-level] PMCID: PMC2789045 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the FGFR3 mutations (S249C, Y375C, and K652E) alter molecular signaling pathways, specifically the phosphorylation of various proteins, indicating a change in biochemical function. Oncogenic: The passage describes how the mutant FGFR3 variants induce morphological transformation, cell proliferation, and anchorage-independent growth, which are indicative of their role in tumor development and progression.

      Gene→Variant (gene-first): 2261:K652E 2261:S249C 2261:Y375C

      Genes: 2261

      Variants: K652E S249C Y375C

    1. Conclusion: Our findings suggested that the SNPs (rs16879870, rs2641256, rs2761591, rs854936) might play a crucial role in prognosis of HNSCC.

      [Paragraph-level] PMCID: PMC7099049 Section: ABSTRACT PassageIndex: 4

      Evidence Type(s): Prognostic

      Justification: Prognostic: The passage indicates that the SNPs are suggested to play a crucial role in the prognosis of HNSCC, which correlates with disease outcome.

      Gene→Variant (gene-first): NA:rs16879870 388325:rs2641256 341019:rs2761591 NA:rs854936

      Genes: NA 388325 341019

      Variants: rs16879870 rs2641256 rs2761591 rs854936

    2. Results: After combining the result of the two stages, 4 SNPs were significantly associated with HNSCC survival (rs16879870 at 6q14.3: adjusted HR = 2.02, 95%CI = 1.50-2.73, P = 3.88 x 10-6; rs2641256 at 17p13.2: adjuste

      [Paragraph-level] PMCID: PMC7099049 Section: ABSTRACT PassageIndex: 3

      Evidence Type(s): Prognostic, Functional

      Justification: Prognostic: The passage discusses the association of SNPs with HNSCC survival, indicating that these variants correlate with disease outcome, specifically overall survival, independent of therapy. Functional: The passage mentions that the genotype of rs16879870 and rs854936 is significantly associated with the expression of specific genes in cancer tissues, suggesting that these variants alter molecular function.

      Gene→Variant (gene-first): NA:rs16879870 388325:rs2641256 341019:rs2761591 NA:rs854936

      Genes: NA 388325 341019

      Variants: rs16879870 rs2641256 rs2761591 rs854936

    1. Mutations in SF3B1 have been identified across several cancer types. This key spliceosome component promotes the efficient mRNA splicing of thousands of genes including those with crucial roles in the cellular response t

      [Paragraph-level] PMCID: PMC7612475 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Predictive, Functional

      Justification: Predictive: The K700E mutation in SF3B1 increases cellular sensitivity to ionising radiation and various chemotherapeutic agents, including PARP inhibitors, indicating a correlation with treatment response. Functional: The K700E mutation alters HR efficiency and induces unscheduled R-loop formation, replication fork stalling, and defective replication fork restart, demonstrating an impact on molecular function.

      Gene→Variant (gene-first): 23451:K700E

      Genes: 23451

      Variants: K700E

    1. Mutations in the KRAS oncogene are found in more than 90% of patients with pancreatic ductal adenocarcinoma (PDAC), with Gly-to-Asp mutations (KRASG12D) being the most common. Here, we tested the efficacy of a small-mole

      [Paragraph-level] PMCID: PMC9900321 Section: ABSTRACT PassageIndex: 3

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the efficacy of a small-molecule KRASG12D inhibitor, MRTX1133, in treating pancreatic ductal adenocarcinoma, indicating a correlation between the Gly-to-Asp mutation and response to therapy. Oncogenic: The Gly-to-Asp mutation in the KRAS oncogene is described as contributing to tumor development in pancreatic ductal adenocarcinoma, as it is found in more than 90% of patients with this cancer type.

      Gene→Variant (gene-first): 3845:Gly-to-Asp

      Genes: 3845

      Variants: Gly-to-Asp

    1. Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a 'nerve territory'. The classic terminology for this condition is 'li

      [Paragraph-level] PMCID: PMC3542862 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses somatic mutations in PIK3CA (including R115P, E542K, H1047L, and H1047R) that contribute to the pathophysiology of macrodactyly, indicating their role in tumor development or progression through activation of the PI3K/AKT signaling pathway. Functional: The passage mentions that the identified mutations lead to AKT activation, which indicates that these variants alter molecular or biochemical function related to cell signaling pathways.

      Gene→Variant (gene-first): 5290:E542K 5290:H1047L 5290:H1047R 5163:R115P

      Genes: 5290 5163

      Variants: E542K H1047L H1047R R115P

    1. Mutations in KRAS and BRAF were associated with inferior PFS and OS of mCRC patients compared with patients with non-mutated tumors. KRAS exon 2 mutation variants were associated with heterogeneous outcome compared with

      [Paragraph-level] PMCID: PMC4999563 Section: ABSTRACT PassageIndex: 9

      Evidence Type(s): Prognostic, Diagnostic

      Justification: Prognostic: The passage indicates that KRAS G12C and G13D mutations are associated with inferior progression-free survival (PFS) and overall survival (OS) in mCRC patients, suggesting a correlation with disease outcome independent of therapy. Diagnostic: The mention of KRAS mutations being associated with heterogeneous outcomes compared to unmutated tumors implies that these variants can be used to classify or define a disease subtype in mCRC.

      Gene→Variant (gene-first): 3845:G12C 3845:G13D

      Genes: 3845

      Variants: G12C G13D

    2. In 664 tumors, no mutation was detected, 462 tumors were diagnosed with KRAS-, 39 patients with NRAS- and 74 patients with BRAF-mutation. Mutations in KRAS were associated with inferior progression-free survival (PFS) an

      [Paragraph-level] PMCID: PMC4999563 Section: ABSTRACT PassageIndex: 7

      Evidence Type(s): Prognostic, Diagnostic

      Justification: Prognostic: The passage discusses the correlation of KRAS mutations, including specific variants like G12C and G13D, with inferior overall survival (OS) and progression-free survival (PFS), indicating their impact on disease outcome independent of therapy. Diagnostic: The passage mentions that mutations in KRAS were diagnosed in tumors, indicating that these mutations are used to classify or define the disease.

      Gene→Variant (gene-first): 3845:G12C 3845:G12D 3845:G12V 3845:G13D

      Genes: 3845

      Variants: G12C G12D G12V G13D

    3. In this pooled analysis of metastatic colorectal cancer patients, mutations in KRAS, and BRAF were associated with inferior progression-free and overall survival compared with patients with non-mutated tumors. KRAS exon

      [Paragraph-level] PMCID: PMC4999563 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Prognostic, Diagnostic

      Justification: Prognostic: The passage discusses how KRAS G12C and G13D mutations correlate with inferior progression-free and overall survival in metastatic colorectal cancer patients, indicating their prognostic significance. Diagnostic: The mention of KRAS mutations being associated with tumor characteristics suggests their role in classifying or defining the disease subtype in colorectal cancer.

      Gene→Variant (gene-first): 3845:G12C 3845:G13D

      Genes: 3845

      Variants: G12C G13D

    1. PIK3CA encoding the phosphoinositide 3-kinase (PI3K) p110alpha catalytic subunit is frequently mutated in cancer, with mutations occurring widely throughout the primary sequence. The full set of mechanisms underlying how

      [Paragraph-level] PMCID: PMC9837058 Section: ABSTRACT PassageIndex: 1

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses how mutations in PIK3CA, including G1049R, H1047R, and M1043I/L, contribute to the activation of the PI3K pathway, indicating their role in tumor development or progression. Functional: The passage describes how specific mutations alter the conformation and binding properties of the p110alpha subunit, indicating that these variants affect molecular function related to PI3K activation.

      Gene→Variant (gene-first): 5290:G1049R 5290:H1047R 5290:M1043I/L

      Genes: 5290

      Variants: G1049R H1047R M1043I/L

    2. We also compared HDX-MS differences in full-length p110alpha-p85alpha between WT, H1047R and DeltaC in the presence and absence of pY (Supplementary Fig. 6). The binding of pY led to significant increases for all three c

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 19

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses how the H1047R variant alters the binding interactions and structural dynamics of the protein in response to pY binding, indicating a change in molecular function.

      Gene→Variant (gene-first): 5290:H1047R

      Genes: 5290

      Variants: H1047R

    3. The H1047R, G1049R, and the DeltaCter constructs showed similar significant increases compared to the WT in the kinase domain (Fig. 5A-C). These included regions covering 850-858 (hinge between the N and C lobes), the ac

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 18

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the H1047R and G1049R variants alter the molecular interactions and conformations within the kinase domain, indicating a change in biochemical function related to the protein's activity. Oncogenic: The evidence suggests that the H1047R and G1049R variants contribute to activation through disruption of the inhibitory conformation, which is indicative of their role in tumor development or progression.

      Gene→Variant (gene-first): 5290:G1049R 5290:H1047R 5290:M1043L 5290:N1068fs

      Genes: 5290

      Variants: G1049R H1047R M1043L N1068fs

    4. HDX-MS experiments were carried out for 4-5 timepoints of exchange (3 s at 1 C, 3, 30, 300, and 3000 s at 20 C) for each complex. The full set of all peptides analysed for both p110alpha and p85alpha are shown in the Sou

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 17

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses changes observed for the H1047R variant in the context of HDX-MS experiments, indicating that it alters molecular or biochemical function, specifically in terms of perturbations in conformation.

      Gene→Variant (gene-first): 5290:H1047R

      Genes: 5290

      Variants: H1047R

    5. To test if C-terminal mutations worked by disrupting the inhibitory interaction with the C-terminus, we carried out HDX-MS studies on six constructs of full-length p110alpha (WT, M1043L, H1047R, G1049R, N1068fs, and a co

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 16

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how C-terminal mutations, including M1043L, H1047R, G1049R, and N1068fs, affect the inhibitory interaction with the C-terminus, indicating an alteration in molecular function. Oncogenic: The mention of "oncogenic mutation" in relation to M1043L, H1047R, and G1049R suggests that these somatic variants contribute to tumor development or progression.

      Gene→Variant (gene-first): 5290:G1049R 5290:H1047R 5290:M1043L 5290:N1068fs

      Genes: 5290

      Variants: G1049R H1047R M1043L N1068fs

    6. For these mutants, we had difficulty in obtaining sufficient yield of the proteins for extensive biophysical analysis. To circumvent this, we used the kinase dead variants to characterise their membrane binding using pro

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 14

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the variants H1047R, G1049R, M1043L, and N1068fs alter membrane binding and ATPase activity, indicating changes in molecular function. Oncogenic: The variants are described in the context of their effects on membrane binding and ATPase activity, which suggests a role in tumor development or progression.

      Gene→Variant (gene-first): 5290:G1049R 5290:H1047R 5290:M1043L 5290:N1068fs

      Genes: 5290

      Variants: G1049R H1047R M1043L N1068fs

    7. We characterised the intrinsic ATPase activity of each p110alpha mutant (Fig. 4A + B), and while this assay does not measure biologically relevant PIP3 activity, it can measure intrinsic differences in PI3K activity inde

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 13

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses the intrinsic ATPase activity of the p110alpha mutants, indicating that the variants G1049R, H1047R, and M1043L alter molecular function by exhibiting significantly increased ATPase activity compared to wild type. Oncogenic: The context of the passage implies that the variants are somatic mutations in a cancer-related gene, contributing to tumor development or progression through their altered biochemical activity.

      Gene→Variant (gene-first): 5290:G1049R 5290:H1047R 5290:M1043L 5290:N1068fs

      Genes: 5290

      Variants: G1049R H1047R M1043L N1068fs

    8. To understand the regulatory mechanisms underlying the inhibitory interface with the C-terminus we analysed the most frequent oncogenic mutants that occur at or near this interface. While H1047R/L is the most frequent mu

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 12

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses frequent oncogenic mutants and their role in tumor samples, indicating that these variants contribute to tumor development or progression. Functional: The analysis of the mutants and their binding to full-length p85alpha suggests that these variants alter molecular or biochemical function, specifically in the context of their interaction with regulatory complexes.

      Gene→Variant (gene-first): 5290:G1049R 5290:H1047R 5290:H1047R/L 5290:M1043L 5290:M1043L/I 5290:N1044K 5290:N1068fs

      Genes: 5290

      Variants: G1049R H1047R H1047R/L M1043L M1043L/I N1044K N1068fs

    9. While the disengagement of the ABD and p85 being involved in membrane binding provides a molecular rationale for activation by oncogenic mutations in the ABD, C2, and helical domains, it does not fully explain the molecu

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 11

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses the H1047R mutation in the context of its role in activating the kinase domain and increasing membrane binding, indicating its contribution to tumor development or progression. Functional: The passage describes how the H1047R mutation alters the molecular interactions and structural organization of the kinase domain, affecting its binding properties and functionality.

      Gene→Variant (gene-first): 5290:H1047R 5290:His1047 5290:Met1043

      Genes: 5290

      Variants: H1047R His1047 Met1043

    10. When comparing our data to the full set of missense oncogenic mutations in the ABD, ABD-RBD linker, C2, helical and the N-lobe of the kinase domain we find that all mutations found in >30 tumours except one (E726K) are l

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses the E726K variant in the context of oncogenic mutations and its association with conformational changes that contribute to tumor development, indicating its role in cancer progression. Functional: The passage describes how the E726K variant leads to conformational changes affecting the interaction between the ABD and p85 with the catalytic core, suggesting an alteration in molecular function.

      Gene→Variant (gene-first): 5290:E726K

      Genes: 5290

      Variants: E726K

    11. We have extensively characterised the membrane binding of the p110alpha/p85alpha complex using HDX-MS, however, the disengagement of the ABD and p85 from the catalytic core has likely complicated the analysis of membrane

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 8

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses how the N345K variant affects the molecular interactions and binding of the p110alpha/p85alpha complex to membranes, indicating an alteration in biochemical function.

      Gene→Variant (gene-first): 5290:N345K

      Genes: 5290

      Variants: N345K

    12. This data comparing the full-length heterodimer vs p110alpha core allowed us to define the effect of ABD removal on the contact site at the ABD-RBD linker. This region still is protected from exchange at early time point

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 4

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage discusses oncogenic mutants (N345K, G106V, and G118D) and their expected role in promoting ABD/iSH2 disengagement, indicating their contribution to tumor development or progression. Functional: The data suggests that the variants alter the dynamics of the ABD-p85 complex and its interaction with the p110alpha catalytic core, indicating a change in molecular function related to binding and mobility.

      Gene→Variant (gene-first): 5290:G106V 5290:G118D 5290:N345K

      Genes: 5290

      Variants: G106V G118D N345K

    13. To investigate the role of the ABD domain/p85 regulatory subunit in controlling PI3K enzyme activity, we needed a construct that allowed us to interrogate the dynamic effects of full ABD disengagement. We engineered and

      [Paragraph-level] PMCID: PMC9837058 Section: RESULTS PassageIndex: 2

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses the D915N mutation in the context of its effect on protein conformation and membrane binding, indicating that it alters molecular function as assessed by HDX-MS experiments.

      Gene→Variant (gene-first): 5290:D915N

      Genes: 5290

      Variants: D915N

    1. Mutation of several genes, most notably TP53 or ASXL1 transcriptional regulator 1 (ASXL1), were shown to cause a broad pattern of drug resistance. Interestingly, a few drugs trended more sensitive to TP53 mutant cases, s

      [Paragraph-level] PMCID: PMC6280667 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Predictive

      Justification: Predictive: The passage discusses the correlation of mutations, including those in splicing components like ZRSR2, with sensitivity to various drugs, indicating a relationship between the variant and treatment response.

      Gene→Variant (gene-first): 8233:serine/arginine

      Genes: 8233

      Variants: serine/arginine

    1. To examine tumor forming capacity in vivo, we constructed H460 cells that stably express ERBB2 (Fig. 8a) and assessed tumor growth after subcutaneous inoculation of these cells into mice. On the 21st day after transplant

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 17

      Evidence Type(s): Oncogenic

      Justification: Oncogenic: The passage discusses the tumor forming capacity of cells expressing the ERBB2 E401G variant, indicating that this somatic variant contributes to tumor development as evidenced by increased tumor growth in vivo.

      Gene→Variant (gene-first): 2176:E401G

      Genes: 2176

      Variants: E401G

    2. To examine the biologic effects of ERBB2 E401G in cancer cells, we evaluated the proliferative and invasive capacities of H460 cells. We found that cells expressing ERBB2 S310F exhibited a significantly higher proliferat

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 16

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses the effects of the ERBB2 E401G and S310F variants on the proliferative and invasive capacities of cancer cells, indicating that these variants alter molecular or biochemical functions related to cell behavior. Oncogenic: The evaluation of the proliferative and invasive capacities of cells expressing the ERBB2 variants suggests that these somatic variants contribute to tumor development or progression.

      Gene→Variant (gene-first): 2176:E401G 2064:S310F

      Genes: 2176 2064

      Variants: E401G S310F

    3. Our simulation data showed that the activating mechanisms of ERBB2 E401G and S310F were related to the EGFR-HER2 heterodimer. The dimerization partner appears to be an important determinant of signaling activity. The two

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 14

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the variants E401G and S310F alter the phosphorylation of downstream signaling pathway proteins, indicating a change in molecular function related to the MAPK pathway. Oncogenic: The evidence suggests that the variants contribute to tumor development or progression by activating signaling pathways associated with cancer, specifically through the ERBB2 dimerization and its effects on downstream signaling.

      Gene→Variant (gene-first): 2176:E401G 2064:S310F

      Genes: 2176 2064

      Variants: E401G S310F

    4. In a previous simulation study, the dimer interfaces of both the EGFR homodimer and the EGFR-HER2 heterodimer were destabilized when the EGFR lost EGF (a specific ligand of EGFR). We therefore conducted MD simulations of

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 12

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses how the E401G and S310F mutations affect the dimer interface stability of the EGFR-HER2 complex, indicating that these variants alter molecular interactions and stability.

      Gene→Variant (gene-first): 2176:E401G 2064:S310F

      Genes: 2176 2064

      Variants: E401G S310F

    5. To confirm whether HER2 homodimers or EGFR-HER2 heterodimers are more relevant to the mechanisms of ERBB2 E401G and S310F activation, we analyzed HER-family dimers using microsecond-timescale MD simulations. With regard

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 11

      Evidence Type(s): None

      Justification: Not enough information in this passage.

      Gene→Variant (gene-first): 2176:E401G 2064:S310F

      Genes: 2176 2064

      Variants: E401G S310F

    6. HER2 p.(E401G) stabilizes ligand-free EGFR HER2 heterodimer

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 10

      Evidence Type(s): Functional

      Justification: Functional: The passage indicates that the variant p.(E401G) alters the stability of the ligand-free EGFR HER2 heterodimer, which suggests a change in molecular function.

      Gene→Variant (gene-first): 2176:p.(E401G)

      Genes: 2176

      Variants: p.(E401G)

    7. C-terminal phosphorylation of HER family proteins is caused by dimerization followed by trans-autophosphorylation, in which one receptor subunit of the dimer phosphorylates the other. Among the HER family proteins, EGFR,

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Functional, Oncogenic

      Justification: Functional: The passage discusses how the variants E401G and S310F lead to increased phosphorylation levels of HER2 and EGFR, indicating that these variants alter molecular function related to protein activity. Oncogenic: The context of the passage suggests that the variants E401G and S310F contribute to tumor development or progression by enhancing the phosphorylation of key HER family proteins involved in oncogenesis.

      Gene→Variant (gene-first): 2176:E401G 2064:S310F

      Genes: 2176 2064

      Variants: E401G S310F

    8. Identification of potential dimerization partners of HER2 E401G protein

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 8

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses the identification of potential dimerization partners of the HER2 E401G protein, indicating that the variant alters molecular interactions.

      Gene→Variant (gene-first): 2176:E401G

      Genes: 2176

      Variants: E401G

    9. Next, we analyzed C-terminal phosphorylation of HER2 using conventional SDS/PAGE and Western blotting. Compared with cells expressing ERBB2 WT, cells expressing ERBB2 S310F (a positive control variant elevating C-termina

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 7

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses how the variants S310F and E401G alter the C-terminal phosphorylation of HER2, indicating a change in molecular function.

      Gene→Variant (gene-first): 2176:E401G 2064:S310F

      Genes: 2176 2064

      Variants: E401G S310F

    10. First, we examined whether E401G can form disulfide-linked dimers using SDS/PAGE under non-reducing conditions (for preserving disulfide bonds) and Western blotting. Compared with cells expressing ERBB2 WT, H460 cells ex

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 6

      Evidence Type(s): Functional

      Justification: Functional: The passage discusses the ability of the variants E321G, E401G, and S310F to form disulfide-linked dimers, indicating that these variants alter molecular function related to protein interactions.

      Gene→Variant (gene-first): 7157:E321G 2176:E401G 2064:S310F

      Genes: 7157 2176 2064

      Variants: E321G E401G S310F

    11. To examine the functional properties of ERBB2 E401G, an ECD III variant, we evaluated two types of mechanisms of activation of ECD variants previously reported: formation of disulfide-linked dimers and elevation of C-ter

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 5

      Evidence Type(s): Functional

      Justification: Functional: The passage mentions the evaluation of mechanisms for multiple ERBB2 variants, including E321G, E401G, S310F, and D845A, which suggests that these variants are being assessed for their biochemical functions.

      Gene→Variant (gene-first): 2064:D845A 7157:E321G 2176:E401G 2064:S310F

      Genes: 2064 7157 2176

      Variants: D845A E321G E401G S310F

    12. ERBB2 E401G has functional properties similar to those of S310F

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 4

      Evidence Type(s): Functional

      Justification: Functional: The passage indicates that ERBB2 E401G has functional properties similar to S310F, suggesting that these variants alter molecular or biochemical function.

      Gene→Variant (gene-first): 2176:E401G 2064:S310F

      Genes: 2176 2064

      Variants: E401G S310F

    13. A 67-year-old Japanese woman, previous healthy, presented with right inguinal pain with no family history of cancer. Fluorodeoxyglucose (FDG)-positron emission tomography with CT showed increased FDG accumulation in the

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 3

      Evidence Type(s): Oncogenic, Functional

      Justification: Oncogenic: The passage describes the ERBB2 E401G variant as a somatic mutation that is associated with ERBB2 gene amplification, indicating its contribution to tumor development or progression. Functional: The passage mentions that multiple computational tools supported a deleterious effect of the ERBB2 E401G variant on the encoded gene product, suggesting that it alters molecular or biochemical function.

      Gene→Variant (gene-first): 2176:E401G

      Genes: 2176

      Variants: E401G

    14. Detection of ERBB2 E401G VUS in a patient with CUP

      [Paragraph-level] PMCID: PMC8881279 Section: RESULTS PassageIndex: 2

      Evidence Type(s): Diagnostic

      Justification: Diagnostic: The passage mentions the detection of the ERBB2 E401G variant of uncertain significance (VUS) in a patient, indicating its use in defining or classifying a disease context, specifically in a patient with cancer of unknown primary (CUP).

      Gene→Variant (gene-first): 2176:E401G

      Genes: 2176

      Variants: E401G

    1. After collapsing smMIPs with the same barcode, we achieved > 150-fold coverage for 85% of the protein coding sequences for KRAS, BRAF, HRAS, NRAS, and MAP2K1. Because KRAS codon p.12G and BRAF codon p.600V somatic mutati

      [Paragraph-level] PMCID: PMC6938308 Section: RESULTS PassageIndex: 2

      Evidence Type(s): Diagnostic, Oncogenic

      Justification: Diagnostic: The passage indicates that KRAS codon p.12G and BRAF codon p.600V somatic mutations have been linked to brain AVMs, suggesting their role in defining or classifying the disease. Oncogenic: The mention of likely somatic disease-causing mutations, including KRAS mutations (p.G12D and p.G12V) and BRAF mutations (p.V600E and p.Q636X), indicates that these variants contribute to tumor development or progression.

      Gene→Variant (gene-first): 3845:p.12G 673:p.600V 3845:p.G12D 3845:p.G12V 673:p.Q636X 673:p.V600E

      Genes: 3845 673

      Variants: p.12G p.600V p.G12D p.G12V p.Q636X p.V600E

    1. EGFR mutation analysis in non-small-cell lung cancer (NSCLC) patients is currently standard-of-care. We determined the uptake of EGFR testing, test results and survival of EGFR-mutant NSCLC patients in the Netherlands, w

      [Paragraph-level] PMCID: PMC8307492 Section: ABSTRACT PassageIndex: 4

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the association of the L858R variant with overall survival (OS) in patients treated with first-line EGFR inhibitors, indicating its relevance to treatment response. Oncogenic: The L858R variant is mentioned in the context of EGFR mutations in non-small-cell lung cancer (NSCLC), suggesting its role in tumor development or progression as part of the broader analysis of clinically actionable EGFR mutations.

      Gene→Variant (gene-first): 1956:L858R

      Genes: 1956

      Variants: L858R

    1. HOXC10 is overexpressed in 51% of primary KRAS-mutant tumors (Figure 3A; TCGA, >= 2SD over expression in normal lung), consistent with observations in cell lines (Figure 2B). By analyzing KRAS-mutant tumor/normal matched

      [Paragraph-level] PMCID: PMC10805385 Section: RESULTS PassageIndex: 17

      Evidence Type(s): Oncogenic, Predictive

      Justification: Oncogenic: The passage discusses the overexpression of HOXC10 in KRAS-mutant tumors, specifically mentioning the genotype KRAS G12C/TP53 G245V, indicating that these somatic variants contribute to tumor development or progression. Predictive: The passage mentions the efficacy of combined MEK/BET inhibitors causing tumor regression in KRAS-mutant patient-derived xenograft models, suggesting a correlation between the variants and response to therapy.

      Gene→Variant (gene-first): 3845:G12C 7157:G245V

      Genes: 3845 7157

      Variants: G12C G245V

    1. This drug combination was also tested on NCI "Rasless" MEFs carrying KRASG12C or KRASG12D mutations. KPT9274 synergized with MRTX849 at all dose combinations yielding suppressed growth of KRASG12C-mutant MEFs (Supplement

      [Paragraph-level] PMCID: PMC10690049 Section: RESULTS PassageIndex: 7

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the response of KRASG12D mutant MEFs to a drug combination, indicating that the variant is associated with resistance to growth inhibition by the therapies tested. Oncogenic: The KRASG12D variant is implicated in tumor behavior, as it is described in the context of MEFs (mouse embryonic fibroblasts) and their growth characteristics, suggesting a role in tumor development or progression.

      Gene→Variant (gene-first): 3845:G12D

      Genes: 3845

      Variants: G12D

    2. KRAS G12C-mutant MIA PaCa-2 (PDAC) and NCI-H358 (NSCLC) cells were exposed to MRTX849/AMG510 and KPT9274 at different dose combinations. As shown in Fig. 2A and B, all three dose combinations tested demonstrated synergis

      [Paragraph-level] PMCID: PMC10690049 Section: RESULTS PassageIndex: 6

      Evidence Type(s): Predictive, Oncogenic

      Justification: Predictive: The passage discusses the response of KRAS G12C-mutant cells to specific therapies, indicating a correlation between the variant and sensitivity to the drugs MRTX849/AMG510 and KPT9274. Oncogenic: The variant KRAS G12C is implicated in tumor development, as the passage describes its presence in cancer cell lines and their proliferation in response to treatment, suggesting a role in cancer progression.

      Gene→Variant (gene-first): 3845:G12C

      Genes: 3845

      Variants: G12C