Kreyszig, Erwin. Introductory Functional Analysis with Applications. John Wiley & Sons, Inc., 1978.
5 Matching Annotations
- Aug 2025
-
localhost localhost
-
en.wikipedia.org en.wikipedia.org
-
Proof:
The essense of the proof is to note that the open neighbourhood family of \(y\) form a cauchy and open filter base, the inverse of it is also cauchy and open, thus y is in the image of f(B(0,1))
-
- Mar 2025
-
Local file Local file泛函分析第二教程1
-
n 是 l² 中第 n个坐标为 1,其余坐标为 0 的元
\(l^2\)上的线性泛函若在一族无穷子基上每个向量都有\(f(v) \ge 1\), 则l不是有界的。考虑经典的\(\sum_n \frac{1}{n^2}\)
-
- Jan 2025
-
rawcdn.githack.com rawcdn.githack.com
- Apr 2020
-
psyarxiv.com psyarxiv.com
-
Hallford, D. J., & D'Argembeau, A. (2020, April 15). Why We Imagine Our Future: Introducing the Functions of Future Thinking Scale (FoFTS). https://doi.org/10.31234/osf.io/bez4u
-