2 Matching Annotations
- Jan 2019
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance.
-
- Dec 2017
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
A beneficial impact of the fat quality on insulin sensitivity is not seen in individuals with a high fat intake (> 37E%).
This is likely do to the reduced carbohydrate intake rather than increased fat intake. Since carbohydrates generally insulin sensitivity, it's likely that this additional insulin resistance is acting as a confounder (as well as, presumably, a standard deviation widener). Thus, I would expect similar results during hypocaloric carbohydrate restriction.
Tags
- research note
- saturated fatty acid fat LCSFAs unsaturated ceramide intramuscular triglycerides intramyocellular lipid
- diabetes / insulin sensitivity/resistance / blood sugar
- diet health lifestyle disease prevention and reversal food nutrients nutrition eat
- diabetes insulin sensitivity resistance blood sugar
- fatty acid / fat / LCSFA(s) /
Annotators
URL
-