3 Matching Annotations
  1. Jan 2022
    1. With regret and second thoughts, they were finally compelled to admit that the order of knowledge does not necessarily mirror the order of nature.

      I'll need some more research into this idea.


      Early modern scholars were forced to admit that the order of knowledge doesn't mirror the order of nature.

    Tags

    Annotators

  2. Dec 2021
    1. Order RelationsA relation C on a set A is called an order relation (or a simple order, or a linear order)if it has the following properties:(1) (Comparability) For every x and y in A for which x = y, either xCy or yCx.(2) (Nonreflexivity) For no x in A does the relation xCx hold.(3) (Transitivity) If xCy and yCz, then xCz.Note that property (1) does not by itself exclude the possibility that for some pair ofelements x and y of A, both the relations xCy and yCx hold (since “or” means “oneor the other, or both”). But properties (2) and (3) combined do exclude this possibil-ity; for if both xCy and yCx held, transitivity would imply that xCx, contradictingnonreflexivity.EXAMPLE 7. Consider the relation on the real line consisting of all pairs (x, y) of real

      Link to idea from The Dawn of Everything about comparative anthropology.

    1. ‘Noble’ savages are, ultimately, just as boring as savageones; more to the point, neither actually exist. Helena Valero washerself adamant on this point. The Yanomami were not devils, sheinsisted, neither were they angels. They were human, like the rest ofus.

      This is an interesting starting point for discussing the ills of comparative anthropology which will tend to put one culture or society over another in some sort of linear way and an expectation of equivalence relations (in a mathematical sense).

      Humans and their societies and cultures aren't always reflexive, symmetric, or transitive. There may not be an order relation (aka simple order or linear order) on humanity. We may not have comparability, nonreflexivity, or transitivity.

      (See page 24 on Set Theory and Logic in Topology by James R. Munkres for definition of "order relation")