Reviewer #1 (Public review):
Summary:
Alveolar macrophages (AMs) are key sentinel cells in the lungs, representing the first line of defense against infections. There is growing interest within the scientific community in the metabolic and epigenetic reprogramming of innate immune cells following an initial stress, which alters their response upon exposure to a heterologous challenge. In this study, the authors show that exposure to extracellular ATP can shape AM functions by activating the P2X7 receptor. This activation triggers the relocation of the potassium channel TWIK2 to the cell surface, placing macrophages in a heightened state of responsiveness. This leads to the activation of the NLRP3 inflammasome and, upon bacterial internalization, to the translocation of TWIK2 to the phagosomal membrane, enhancing bacterial killing through pH modulation. Through these findings, the authors propose a mechanism by which ATP acts as a danger signal to boost the antimicrobial capacity of AMs.
Strengths:
This is a fundamental study in a field of great interest to the scientific community. A growing body of evidence has highlighted the importance of metabolic and epigenetic reprogramming in innate immune cells, which can have long-term effects on their responses to various inflammatory contexts. Exploring the role of ATP in this process represents an important and timely question in basic research. The study combines both in vitro and in vivo investigations and proposes a mechanistic hypothesis to explain the observed phenotype.
Weaknesses:
The authors have revised the manuscript to address the comments raised during the first round of review. However, several figures, figure legends, and methodological sections still require additional adjustments and clarification.
The interpretation of CFU from lysates as 'killing' is unclear; lysate CFUs typically reflect intracellular surviving bacteria and are confounded by differences in uptake. Please include an uptake control (early time point) or time-course to distinguish phagocytosis from intracellular killing. Also, clarify how bacterial burden was calculated (supernatant vs cell-associated vs total). Supernatant alone may not capture adherent bacteria. The normalization as 'fold killing' (mean negative control / sample) is non-standard; please report absolute CFU (log scale) and specify the exact definition of killing/survival.
The Methods section is largely incomplete and requires substantial revision. For instance, the authors report quantification of cytokine concentrations, yet no information is provided regarding how these measurements were performed. It is unclear whether cytokines were measured in BALF by ELISA, or assessed at the mRNA level by qPCR from total lung lysates, or by another method. This information must be clearly specified. In addition, the rationale for selecting the measured cytokines should be justified. While the choice of IL-1β and IL-6 is relatively straightforward, the focus on IL-18 requires explicit justification.
Similarly, the methodology used to quantify immune cell populations presented in Figure 2 is not described. It is not stated how immune cells were isolated and identified (e.g. flow cytometry from lung tissue). No information is provided regarding tissue digestion, cell isolation procedures, or gating strategy (presumably by flow cytometry). These details are essential and should be included, together with the corresponding gating strategy and absolute cell numbers.
Moreover, immune cell quantification would be expected in the context of the challenge experiment as well. Reporting unchanged percentages of lung immune cells following ATP exposure does not support the conclusion of a training effect, particularly one that is specific to alveolar macrophages (AMs). In addition, AMs are not considered recruited immune cells; this should be corrected in the figure legend and throughout the manuscript where applicable.
There are inconsistencies throughout the manuscript. For example, the authors report n = 5 for the survival curves in the figure legend, whereas n = 7 is stated in the Methods section. This discrepancy is unclear and should be clarified.
Supplementary Fig. 1 contains major conceptual errors. The volcano plot represents ATAC-seq peaks (differentially accessible chromatin regions), yet the figure, legend, and color scale repeatedly refer to 'genes' and 'differentially expressed genes'. This conflates chromatin accessibility with gene expression and is misleading. Peaks are secondarily annotated to nearby genes, which should be clearly described as an annotation step rather than the unit of analysis. The figure should be revised to explicitly present peak-level statistics (DARs), with gene names shown only as optional annotations. Additionally, the use of simultaneous P < 0.05 and Q < 0.05 thresholds is non-standard, and the absence of down-regulated regions in the plot requires explanation.
In Figure 7, trained WT and Nlrp3⁻/⁻ mice display similar levels of bacterial clearance. How should this result be interpreted?
Overall, while the study addresses an interesting biological question, the manuscript would benefit from substantial revision prior to publication. In particular, clarifications and improvements regarding the methodology, data presentation, and interpretation are required to strengthen the rigor and reproducibility of the conclusions.