7,795 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public Review):

      The study by Prieto et al. faces the increasingly serious problem of bacterial resistance to antimicrobial agents. This work has an important element of novelty proposing a new approach to control antibiotic resistance spread by plasmids. Instead of targeting the resistance determinant, plasmid-borne proteins are used as antigens to be bound by specific nanobodies (Nbs). Once bound plasmid transfer was inhibited and Salmonella infection blocked. This in-depth study is quite detailed and complex, with many experiments (9 figures with multiple panels), rigorously carried out. Results fully support the authors' conclusions. Specifically, the authors investigated the role of two large molecular weight proteins (RSP and RSP2) encoded by the IncHI1 derivative-plasmid R27 of Salmonella. These proteins have bacterial Ig-like (Big) domains and are expressed on the cell surface, creating the opportunity for them to serve as immunostimulatory antigens. Using a mouse infection model, the authors showed that RSP proteins can properly function as antigens, in Salmonella strains harboring the IncHI1 plasmid. The authors clearly showed increased levels of specific IgG and IgA antibodies against these RSP proteins proteins in different tissues of immunized animals. In addition, non-immunized mice exhibited Salmonella colonization in the spleen and much more severe disease than immunized ones.

      However, the strength of this work is the selection and production of nanobodies (Nbs) that specifically interact with the extracellular domain of RSP proteins. The procedure to obtain Nbs is lengthy and complicated and includes the immunization of dromedaries with purified RPS and the construction of a VHH (H-chain antibody variable region) library in E. coli. As RSP is expressed on the surface of E. coli, specific Nbs were able to agglutinate Salmonella strains harboring the p27 plasmid encoding the RSP proteins.

      The authors demonstrated that Nbs-RSP reduced the conjugation frequency of p27 thus limiting the diffusion of the amp resistance harbored by the plasmid. This represents an innovative and promising strategy to fight antibiotic resistance, as it is not blocked by the mechanism that determines, in the specific case, the amp resistance of p27 but it targets an antigen associated with HincHI- derivative plasmids. Thus, RPS vaccination could be effective not only against Salmonella but also against other enteric bacteria. A possible criticism could be that Nbs against RSP proteins reduce the severity of the disease but do not completely prevent the infection by Salmonella.

    1. Joint Public Review:

      Chemokines are known to create chemotactic gradients and it is generally recognized that in order to create these gradients they need to bind to glycosaminoglycans (GAGs) on cells and in tissues. However, how the triplicate interaction between chemokines with both GAGs and G protein-coupled receptors (GPCR) works and how gradients are created and potentially maintained in vivo is poorly understood. In their manuscript, Yu et al investigated and showed in detail the ability of soluble and cell-bound GAGs to create gradients of the chemokine CCL5. They show in vitro in a modified leukocyte migration assay that soluble GAGs and GAGs on the tumor cell line THP-1 affect leukocyte migration. This useful work contributes to our in-depth understanding of the role of GAGs in chemokine gradient creation which is important for site-directed leukocyte and potentially tumor cell migration and as such is of potential interest for scientists studying immune responses in infection, inflammation, autoimmunity and tumor biology. In their reply to the comments of both reviewers they indicate that liquid-liquid phase separation (LLPS) was not detected at lower CCL5 concentrations. This is important information since, together with the tendency of CCL5 to form oligomers, it may indicate that oligomerization is crucial for LLPS. This info should at least be added to the discussion of the manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      Huang and Luo investigated whether regularities between stimulus features can be exploited to facilitate the encoding of each set of stimuli in visual working memory, improving performance. They recorded both behavioural and neural (EEG) data from human participants during a sequential delayed response task involving three items with two properties: location and colour. In the key condition ('aligned trajectory'), the distance between locations of successively presented stimuli was identical to their 'distance' in colour space, permitting a compression strategy of encoding only the location and colour of the first stimulus and the relative distance of the second and third stimulus (as opposed to remembering 3 locations and 3 colours, this would only require remembering 1 location, 1 colour, and 2 distances). Participants recalled the location and colour of each item after a delay.

      Consistent with the compression account, participants' location and colour recall errors were correlated and overall lower compared to a non-compressible condition ('misaligned trajectory'). Multivariate analysis of the neural data permitted decoding of the locations and colours during encoding. Crucially, the relative distance could also be decoded - a necessary ingredient for the compression strategy.

      Strengths:

      The main strength of this study is a novel experimental design that elegantly demonstrates how we exploit stimulus structure to overcome working memory capacity limits. The behavioural results are robust and support the main hypothesis of compressed encoding across a number of analyses. The simple and well-controlled design is suited to neuroimaging studies and paves the way for investigating the neural basis of how environmental structure is detected and represented in memory. Prior studies on this topic have primarily studied behaviour only (e.g., Brady & Tenenbaum, 2013).

      Weaknesses:

      The main weakness of the study is that the EEG results could make a clearer case for compression. There is some evidence that distance decoding is present in alpha-band activity in the maintenance delay, but the strongest evidence for this occurs only briefly in the late encoding phase (the re-activation of decoding of the distance between items 1 and 2, Fig. 5A). The link to behaviour (Fig. 5D) seems fairly weak and based on a potentially circular analysis. During location recall, colour decoding re-emerges and is reactivated in sequence, but this finding is consistent both with compression-based and conventional rehearsal mechanisms. Nevertheless, the balance of evidence appears to favour the compression account.

      Impact:

      This important study elegantly demonstrates that the use of shared structure can improve capacity-limited visual working memory. The paradigm and approach explicitly link this field to recent findings on the role of replay in structure learning and will therefore be of interest to neuroscientists studying both topics.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors intended to prove that gut GLP-1 expression and secretion can be regulated by Piezo1, and hence by mechanistic/stretching regulation. For this purpose, they have assessed Piezo1 expression in STC-1 cell line (a mouse GLP-1 producing cell line) and mouse gut, showing the correlation between Piezo1 level and Gcg levels (Figure S1). They then aimed to generate gut L cell-specific Piezo1 KO mice, and claimed the mice show impaired glucose tolerance and GLP-1 production, which can be mitigated by Ex-4 treatment (Figures 1-2). Pharmacological agents (Yoda1 and GsMTx4) and mechanic activation (intestinal bead implantation) were then utilized to prove the existence of ileal Piezo1-regulated GLP-1 synthesis (Figure 3). This was followed by testing such mechanism in a limited amount of primary L cells and mainly in the STC-1 cell line (Figures 4-7).

      While the novelty of the study is somehow appreciable, the bio-medical significance is not well demonstrated in the manuscript. The authors stated (in lines between lines 78-83) a number of potential side effects of GLP-1 analogs, how can the mechanistic study of GLP-1 production on its own be essential for the development of new drug targets for the treatment of diabetes. Furthermore, the study does not provide a clear mechanistic insight on how the claimed CaMKKbeta/CaMKIV-mTORC1 signaling pathway upregulated both GLP-1 production and secretion. This reviewer also has concerns about the experimental design and data presented in the current manuscript, including the issue of how proglucagon expression can be assessed by Western blotting.

      Strengths:

      The novelty of the concept.

      Weaknesses:

      Experimental design and key experiment information.

    1. Reviewer #1 (Public Review):

      Summary<br /> This is an interesting paper that concludes that hiring more women will do more to improve the gender balance of (US) academia than improving the attrition rates of women (which are usually higher than men's). Other groups have reported similar findings, i.e. that improving hiring rates does more for women's representation than reducing attrition, but this study uses a larger than usual dataset that spans many fields and institutions so it is a good contribution to the field.

      The paper is much improved and far more convincing as a result of the revisions made by the authors.

      Strengths<br /> A large data set with many individuals, many institutions and fields of research.<br /> A good sensitivity analysis to test for potential model weaknesses.

      Weaknesses<br /> Only a single country with a very specific culture and academic system.<br /> Complex model fitting with many steps and possible places for model bias.

    1. Reviewer #3 (Public Review):

      In this study, Ruan et al. investigate the role of the IQCH gene in spermatogenesis, focusing on its interaction with calmodulin and its regulation of RNA-binding proteins. The authors examined sperm from a male infertility patient with an inherited IQCH mutation as well as Iqch CRISPR knockout mice. The authors found that both human and mouse sperm exhibited structural and morphogenetic defects in multiple structures, leading to reduced fertility in Ichq-knockout male mice. Molecular analyses such as mass spectrometry and immunoprecipitation indicated that RNA-binding proteins are likely targets of IQCH, with the authors focusing on the RNA-binding protein HNRPAB as a critical regulator of testicular mRNAs. The authors used in vitro cell culture models to demonstrate an interaction between IQCH and calmodulin, in addition to showing that this interaction via the IQ motif of IQCH is required for IQCH's function in promoting HNRPAB expression. In sum, the authors concluded that IQCH promotes male fertility by binding to calmodulin and controlling HNRPAB expression to regulate the expression of essential mRNAs for spermatogenesis. These findings provide new insight into molecular mechanisms underlying spermatogenesis and how important factors for sperm morphogenesis and function are regulated.

      The strengths of the study include the use of mouse and human samples, which demonstrate a likely relevance of the mouse model to humans; the use of multiple biochemical techniques to address the molecular mechanisms involved; the development of a new CRISPR mouse model; ample controls; and clearly displayed results. Assays are done rigorously and in a quantitative manner. Overall, the claims made by the authors in this manuscript are well-supported by the data provided.

    1. Reviewer #1 (Public Review):

      The role of enteric glial cells in regulating intestinal mucosal functions at a steady state has been a matter of debate in recent years. Enteric glial cell heterogeneity and related methodological differences likely underlie the contrasting findings obtained by different laboratories. Here, Prochera and colleagues used Plp1-CreERT2 driver mice to deplete the majority of enteric glia from the gut. They found that glial loss has very limited effects on the transcriptome of gut cells 11 days after tamoxifen treatment (used to induce DTA expression), and by extension - more specifically, has only minimal impact on cells of the intestinal mucosa. Interestingly, in the colon (where Paneth cells are not present) they did observe transcriptomic changes related to Paneth cell biology. Although no overt gene expression alterations were found in the small intestine - also not in Paneth cells - morphological, ultrastructural, and functional changes were detected in the Paneth cells of enteric glia-depleted mice. In addition, and possibly related to Paneth cell dysfunction, enteric glia-depleted mice also show alterations in intestinal microbiota composition.

      In their analyses of enteric glia from existing single-cell transcriptomic data sets, it is stated that these come from 'non-diseased' humans. However, the data on the small intestine is obtained from children with functional gastrointestinal disorders (Zheng 2023). Data on colonic enteric glia was obtained from colorectal cancer patients (Lee 2020). Although here the cells were isolated from non-malignant regions, saying that the large intestines of these patients are non-diseased is probably an overstatement. Another existing dataset including human mucosal enteric glia of healthy subjects is presented in Smillie et al (2019). It would be interesting to see how the current findings relate to the data from Smillie et al.

      The time between enteric glia depletion and analyses (mouse sacrifice) must be a crucial determinant of the type of effects, and the timing thereof. In the current study 11 days after tamoxifen treatment was chosen as the time point for analyses, which is consistent with earlier work by the lab using the same model (Rao et al 2017). What would happen when they wait longer than 11 days after tamoxifen treatment? Data, not necessarily for all parameters, on later time points would strengthen the manuscript significantly.

      The authors found transcriptional dysregulation related to Paneth cell biology in the colon, where Paneth cells are normally not present. Given the bulk RNA sequencing approach, the cellular identity in which this shift is taking place cannot be determined. However, it would be useful if the authors could speculate on which colonic cell type they reckon this is happening in. On the other hand, enteric glia depletion was found to affect Paneth cells structurally and functionally in the small intestine, where transcriptional changes were initially not identified. Only when performing GSEA with the in silico help of cell type-specific gene profiles, differences in Paneth cell transcriptional programs in the small intestine were uncovered. A comment on this discrepancy would be helpful, especially for the non-bioinformatician readers among us.

      From looking at Figure 3B it is clear that Paneth cells are not the only epithelial cell type affected (after less stringent in silico analyses) by enteric glial cell depletion. Although the authors show that this does not translate into ultrastructural or numerical changes of most of these cell types, this makes one wonder how specific the enteric glia - Paneth cell link is. Besides possible indirect crosstalk (via neurons), it is not clear if enteric glia more closely associate with Paneth cells as compared to these other cell types. Immunofluorescence stainings of some of these cells in the Plp1-GFP mice would be informative here. The authors mention IL-22 as a possible link, but do Paneth cells express receptors for transmitters commonly released by enteric glia? Maybe they can have a look at putative cell-cell interactions by mapping ligand-receptor pairs in the scRNAseq datasets they used.

      Previously the authors showed that enteric glia regulation of intestinal motility is sex-dependent (Rao et al 2017). While enteric glia depletion caused dysmotility in female mice, it did not affect motility in males. For this reason, most experiments in the current study were conducted in male mice only. However, for the experiments focusing on the effect of enteric glia depletion on host-microbiome interactions and intestinal microbiota composition both male and female mice were used. In Figure 8A male and female mice are distinctly depicted but this was not done for Figure 8C. Separate characterization of the microbiome of male and female mice would have helped to figure out how much intestinal dysmotility (in females) contributes to the effect on gut microbial composition. This is an important exercise to confirm that the effect on the microbiome is indeed a consequence of altered Paneth cell function, as suggested by the authors (in the results and discussion, and in the abstract). In this context, it would also be interesting to compare the bulk sequencing data after enteric glia depletion between female and male mice.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a very nice paper in which the authors addressed the potential for NK cell cellular therapy to treat and potentially eliminate previously established metastases after surgical resections, which are a major cause of death in human cancer patients. To do so they developed a model using the EO771 breast cancer cell line, in which they establish and then resect tumors and the draining lymph node, after which the majority of mice eventually succumb to metastatic disease. They found that when the initiating tumors were resected when still relatively small, adoptive transfers of IL-15/12-conditioned NK cells substantially enhanced the survival of tumor-bearing animals. They then delved into the cellular mechanisms involved. Interestingly and somewhat unexpectedly, the therapeutic effect of the transferred NK cells was dependent on the host's CD8+ T cells. Accordingly, the NK cell therapy contributed to the formation of tumor-specific CD8+ T cells, which protected the recipient animals against tumor re-challenge and were effective in protecting mice from tumor formation when transferred to naive mice. Mechanistically, they used Ifng knockout NK cells to provide evidence that IFNgamma produced by the transferred NK cells was crucial for the accumulation and activation of DCs in the metastatic lung, including expression of CD86, CD40, and MHC genes. In turn, IFNgamma production by NK cells was essential for the induced accumulation of activated CD8 effector T cells and stem cell-like CD8 T cells in the metastatic lung. The authors then expanded their findings from the mouse model to a small clinical trial. They found that inoculations of IL-15/12-conditioned autologous NK cells in patients with various malignancies after resection were safe and showed signs of efficacy.

      Strengths:

      - Monitoring of long-term metastatic disease and survival after resection used in this paper is a physiological model that closely resembles clinical scenarios more than the animal models usually used, a great strength of the approach.

      - Previous literature focused on the notion that NK cells clear metastatic lesions directly, within a short period. The authors' use of a more relevant model and time frame revealed the previously unexplored T cell-dependent mechanism of action of infused NK cells for long-term control of metastatic diseases.

      - Also important, the paper provides solid evidence for the contribution of IFNgamma produced by NK cells for activation of dendritic cells and T cells. This is an interesting finding that provokes additional questions concerning the action of the interferon-gamma in this context.

      - The results from the clinical trial in cancer patients based on the same type of IL-15/12-conditioned NK cell infusions, were encouraging with respect to safety and showed signals of efficacy, which support the translatability of the author's findings.

      Weaknesses:

      - Having demonstrated that NK cell IFNgamma is important for recruiting and activating DCs and T cells in their model, one is left to wonder whether it is important for the therapeutic effect, which was not tested.

      - Relatedly, previous studies, cited by the authors, reported that NK cells promote T cell activation by producing the chemokines CCL5 and XCL1, and FLT3 ligand, which respectively recruit and activate dendritic cells that can subsequently mobilize a T cell response. The present study demonstrates an important role for NK cell-produced IFNgamma in these processes. One is left wondering whether the model used by the authors is also dependent on CCL5, XCL1, and FLT3 production by NK cells, and if so whether IFNgamma plays a role in that or acts in parallel. The issue could be discussed by the authors, even if they cannot easily resolve it.

      - The authors do not address whether the IL-12 in their cocktail is essential for the effects they see. Relatedly, it was of interest that despite the effectiveness of the transferred IL-15/IL-12 cultured NK cells, the cells failed to persist very long after transfer. Published studies have reported that so-called memory-like NK cells, which are pre-activated with a cocktail of IL-12, IL-18 and IL-15, persist much longer in lympho-depleted mice and patients than IL-2 cultured NK cells. It would be illuminating to compare these two types of NK cell products in the author's model system, and with, or without, lymphodepletion, to identify the critical parameters. If greater persistence occurred with the memory-like NK cell product, it is possible that the NK cells might provide greater benefit, including by directly targeting the tumor.

      - It was somewhat difficult to gauge the clinical trial results because the trial was early stage and therefore not controlled. Evaluation of the results therefore relies on historical comparisons. To evaluate how encouraging the results are, it would be valuable for the authors to provide some context on the prognoses and likely disease progression of these patients at the time of treatment.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors addressed how long-range interactions between boundary elements are established and influence their function in enhancer specificity. Briefly, the authors placed two different reporters separated by a boundary element. They inserted this construct ectopically ~140 kb away from an endogenous locus that contains the same boundary element. The authors used expression patterns driven by nearby enhancers as an output to determine which enhancers the reporters interact with. They complemented this analysis with 3D DNA contact mapping. The authors found that the orientation of the boundary element determined which enhancers each reporter interacted with. They proposed that the 3D interaction topology, whether being circular or stem configuration, distinguished whether the interaction was cohesin mediated or through an independent mechanism termed pairing.

      Strengths:

      The transgene expression assays are built upon prior knowledge of the enhancer activities. The 3D DNA contacts confirm that transgene expression correlates with the contacts. Using 4 different orientations covers all combinations of the reporter genes and the boundary placement.

      Weaknesses:

      The interpretation of the data as a refusal of loop extrusion playing a role in TAD formation is not warranted, as the authors did not deplete the loop extruders to show that what they measure is independent. As the authors show, the single long DNA loop mediated by cohesin loop extrusion connecting the ectopic and endogenous boundary is clearly inconsistent with the results, therefore the main conclusion of the paper that the 3D topology of the boundary elements a consequence of pairing is strong. However, the loop extrusion and pairing are not mutually exclusive models for the formation of TADs. Loop-extruding cohesin complexes need not make a 140 kb loop, multiple smaller loops could bring together the two boundary elements, which are then held together by pairing proteins that can make circular topologies.

    1. Reviewer #2 (Public Review):

      Summary:

      The tubulin subunits that make up microtubules can be posttranslationally modified and these PTMs are proposed to regulate microtubule dynamics and the proteins that can interact with microtubules in many contexts. However, most studies investigating the roles of tubulin PTMs have been conducted in vitro either with purified components or in cultured cells. Lu et al. use CRISPR/Cas9 genome editing to mutate tubulin genes in C. elegans, testing the role of specific tubulin residues on neuronal development. This study is a real tour de force, tackling multiple proposed tubulin modifications and following the resulting phenotypes with respect to neurite outgrowth in vivo. There is a ton of data that experts in the field will likely reference for years to come as this is one of the most comprehensive in vivo analyses of tubulin PTMs in vivo.

      This paper will be very important to the field, however, it would be strengthened if: 1) the authors demonstrated that the mutations they introduced had the intended consequences on microtubule PTMs, 2) the authors explored how the various tubulin mutations directly affect microtubules, and 3) the findings are made generally more accessible to non C. elegans neurobiologist.

      (1) The authors introduce several mutations to perturb tubulin PTMs, However, it is unclear to what extent the engineered mutations affecting tubulin in the intended way. i.e. are the authors sure that the PTMs they want to perturb are actually present in C. elegans. Many of the antibodies used did not appear to be specific and antibody staining was not always impacted in the mutant cases as expected. For example, is there any evidence that S172 is phosphorylated in C. elegans, e.g. from available phosphor-proteomic data? Given the significant amount of staining left in the S172A mutant, the antibody seems non-specific in this context and therefore not a reliable readout of whether MTs are actually phosphorylated at this residue. As another example, there is no evidence presented that K252 is acetylated in C. elegans. At the very least, the authors should consider demonstrating the conservation of these residues and the surrounding residues with other organisms where studies have demonstrated PTMs exist.

      (2) Given that the authors have the mutants in hand, it would be incredibly valuable to assess the impact of these mutations on microtubules directly in all cases. MT phenotypes are inferred from neurite outgrowth phenotypes in several cases, the authors should look directly at microtubules and/or microtubule dynamics via EBP-2 when possible OR show evidence that the only way to derive the neurite phenotypes shown is through the inferred microtubule phenotypes. For example, the effect of the acetylation or detyrosination mutants on MTs was not assessed.

      (3) There is a ton of data here that will be important for experts working in this field to dig into, however, for the more general cell biologist, some of the data are quite inaccessible. More cartoons and better labeling will be helpful as will consistent comparisons to control worms in each experiment. A good example of this issue is demonstrated in Figure 2 and Figure 4:

      - Fig. 2: Please label images with what is being probed in each panel<br /> - Fig 2G is very hard to interpret-cartoon diagramming what is being observed would be helpful.<br /> - Line 182-185: is this referring to your data or to Wu et al? It is not clear in this paragraph when the authors are describing published work versus their own data presented here.<br /> - Fig 2!-2K is not well described. What experiment is being done here? What is dlk-1 and why did you look at this mutant?<br /> - Figure 4C: this phenotype is hard to interpret. Where is the wt control? Where is the quantification?<br /> - There are no WT comparison images in Figure 4I, making the quantification difficult to interpret

      (4) In addition, I am left unconvinced of the negative data demonstrating that MBK does not phosphorylate tubulin. First, the data described in lines 207-211 does not appear to be presented anywhere. Second, RNAi is notoriously finicky in neurons, thus necessitating tissue specific degradation using either the ZF/ZIF-1 or AID/TIR1 systems which both work extremely well in C. elegans. Third, there appears to be increasing S172 phosphorylation in Figure 3 supplement 2 with added MBK-2, but there is no anti-tubulin blot to show equal loading, so this experiment is hard to interpret.

    1. Reviewer #1 (Public Review):

      Summary:

      The paper measures the prevalence and mortality of stroke and its comorbidities across geographic regions in order to find differences in risks that may lead to more effective guidance for these subpopulations. It also does a genetic analysis to look for variants that may drive these phenotypic variations.

      Strengths:

      The data provided here will provide a foundation for a lot of future research into the causes of the observed correlations as well as whether the observed differences in comorbidities across regions have clinically relevant effects on risk management.

      The use of data from before COVID-19 is both a strength and a weakness. Because COVID had effects on vascular health and had higher death rates for groups with the comorbidities of interest here, it has likely shifted the demographics in ways that would shift the results in unpredictable ways if the analysis were repeated with current data. This can be a strength in providing a reference point for studying those changes as well as allowing researchers to study differences between regions without the complication of different public health responses adding extra variation to the data. On the other hand, it limits the usefulness of the data in research concerned with the current status of the various populations.

    1. Reviewer #1 (Public Review):

      Summary:

      The use of a multi-omics approach to elucidate the regulatory mechanism underlying parturition and myometrial quiescence adds novelty to the study. The identification of myometrial cis-acting elements and their association with gene expression, particularly the regulation of the PLCL2 gene by PGR opens the door to further investigate the impact of PGR and other regulators.

      Strengths:

      (1) Multi-Omic Approach: The paper employs a comprehensive multi-omic approach, combining ChIP-Seq, RNA-Seq, and CRISPRa-based Perturb-Seq assays, which allow for a thorough investigation of the regulatory mechanisms underlying myometrial gene expression.

      (2) Clinical Relevance: Investigating human myometrial specimens provides direct clinical relevance, as understanding the molecular mechanisms governing parturition and myometrial quiescence can have significant implications for the management of pregnancy-related disorders.

      (3) Functional work: For functional screening, They have used CRISPRa-based screening of PLCL2 gene regulation using immortalized human cell-line hTERT-HM and T-hESC to add more dimension to the work which strengthens their finding of PGR-dependent regulation of the PLCL2 gene in the human myometrial cells.

      Weaknesses:<br /> (1) Variability in epigenomic mapping: The significant variations in the number and location of H3K27ac-positive intervals across different samples and studies suggest potential challenges in accurately mapping the myometrial epigenome. This variability may introduce uncertainty and complicate the interpretation of results.

      (2) Sample specificity: The study focuses on term pregnant nonlabor myometrial specimens, limiting the generalizability of the findings to other stages of pregnancy or labor.

      (3) Limited Understanding of Regulatory Mechanisms: While the study identifies potential regulatory programs within super-enhancers, the exact mechanisms by which these enhancers regulate gene expression and cellular functions in the myometrium remain unclear. Further mechanistic studies are needed to elucidate these processes.

      (4) Discordant analysis: Why are regular enhancers being understood in terms of motif enrichment of transcription factors and super-enhancers in terms of pathways enriched for active genes? This needs a clear reason.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors sought to investigate the associations of age at breast cancer onset with the incidence of myocardial infarction (MI) and heart failure (HF). They employed a secondary data analysis of the UK Biobank. They used descriptive and inferential analysis including Cox proportional hazards models to investigate the associations. Propensity score matching was also used. They found that Among participants with breast cancer, younger onset age was significantly associated with elevated risks of MI (HR=1.36, 95%CI: 1.19 to 1.56, P<0.001) and HF (HR=1.31, 95% CI: 1.18 to 1.46, P<0.001). the reported similar findings after propensity matching.

      Strengths:

      The use of a large dataset is a strength of the study as the study is well-powered to detect differences. Reporting both the unmatched and the propensity-matched estimates was also important for statistical inference.

      Weaknesses:

      Despite the merits of the paper, readers may get confused as to whether authors are referring to "age at breast cancer onset" or "age at breast cancer diagnosis". I suppose the title refers to the latter, in which case it will be best to be consistent in using "age at breast cancer diagnosis" throughout the manuscripts. I would recommend a revision to the title to make it explicit that the authors are referring to, "age at breast cancer diagnosis".

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Raices et al., provides novel insights into the role and interactions between SPO-11 accessory proteins in C. elegans. The authors propose a model of meiotic DSBs regulation, critical to our understanding of DSB formation and ultimately crossover regulation and accurate chromosome segregation. The work also emphasizes the commonalities and species-specific aspects of DSB regulation.

      Strengths:

      This study capitalizes on the strengths of the C. elegans system to uncover genetic interactions between a large number of SPO-11 accessory proteins. In combination with physical interactions, the authors synthesize their findings into a model, which will serve as the basis for future work, to determine mechanisms of DSB regulation.

      Weaknesses:

      The methodology, although standard, lacks quantification. This includes the mass spectrometry data, along with the cytology. The work would also benefit from clarifying the role of the DSB machinery on the X chromosome versus the autosomes.

    1. Reviewer #1 (Public Review):

      Summary and Strengths:

      The ability of Wolbachia to be transmitted horizontally during parasitoid wasp infections is supported by phylogenetic data here and elsewhere. Experimental analyses have shown evidence of wasp-to-wasp transmission during coinfection (eg Huigins et al), host to wasp transmission (eg Heath et al), and mechanical ('dirty needle') transmission from host to host (Ahmed et al). To my knowledge this manuscript provides the first experimental evidence of wasp to host transmission. Given the strong phylogenetic pattern of host-parasitoid Wolbachia sharing, this may be of general importance in explaining the distribution of Wolbachia across arthropods. This is of interest as Wolbachia is extremely common in the natural world and influences many aspects of host biology.

      Weaknesses:

      The first observation of the manuscript is that the Wolbachia strains in hosts are more closely related to those in their parasitoids. This has been reported on multiple occasions before, dating back to the late 1990s. The introduction cites five such papers (the observation is made in other studies too that could be cited) but then dismisses them by stating "However, without quantitative tests, this observation could simply reflect a bias in research focus." As these studies include carefully collected datasets that were analysed appropriately, I felt this claim of novelty was rather strong. It is unclear why downloading every sequence in GenBank avoids any perceived biases, when presumably the authors are reanalysing the data in these papers.

      I do not doubt the observation that host-parasitoid pairs tend to share related Wolbachia, as it is corroborated by other studies, the effect size is large, and the case study of whitefly is clearcut. It is also novel to do this analysis on such a large dataset. However, the statistical analysis used is incorrect as the observations are pseudo-replicated due to phylogenetic non-independence. When analysing comparative data like this it is essential to correct for the confounding effects of related species tending to be similar due to common ancestry. In this case, it is well-known that this is an issue as it is a repeated observation that related hosts are infected by related Wolbachia. However, the authors treat every pairwise combination of species (nearly a million pairs) as an independent observation. Addressing this issue is made more complex because there are both the host and symbiont trees to consider. The additional analysis in lines 123-124 (including shuffling species pairs) does not explicitly address this issue.

      The sharing of Wolbachia between whitefly and their parasitoids is very striking, although this has been reported before (eg the authors recently published a paper entitled "Diversity and Phylogenetic Analyses Reveal Horizontal Transmission of Endosymbionts Between Whiteflies and Their Parasitoids"). In Lines 154-164 it is suggested that from the tree the direction of transfer between host and parasitoid can be inferred from the data. This is not obvious to me given the poor resolution of the tree due to low sequence divergence. There are established statistical approaches to test the direction of trait changes on a tree that could have been used (a common approach is to use the software BEAST).

    1. Public Review:

      Summary:

      In this manuscript, Chen et al. investigate the statistical structure of social interactions among mice living together in the ECO-Hab. They use maximum entropy models (MEM) from statistical physics that include individual preferences and pair-wise interactions among mice to describe their collective behavior. They also use this model to track the evolution of these preferences and interactions across time and in one group of mice injected with TIMP-1, an enzyme regulating synaptic plasticity. The main result is that they can explain group behavior (the probability of being together in one compartment) by a MEM that only includes pair-wise interactions. Moreover, the impact of TIMP-1 is to increase the variance of the couplings J_ij, the preference for the compartment containing food, as well as the dissatisfaction triplet index (DTI).

      Strengths:

      The ECO-Hab is a really nice system to ask questions about the sociability of mice and to tease apart sociability from individual preference. Moreover, combining the ECO-Hab with the use of MEM is a powerful and elegant approach that can help statistically characterize complex interactions between groups of mice -- an important question that requires fine quantitative analysis.

      Weaknesses:

      However, there is a risk in interpreting these models. In my view, several of the comparisons established in the current study would require finer and more in-depth analysis to be able to establish firmer conclusions (see below). Also, the current study, which closely resembles previous work by Shemesh et al., finds a different result but does not provide the same quantitative model comparison included there, nor a conclusive explanation of why their results are different. In total, I felt that some of the results required more solid statistical testing and that some of the conclusions of the paper were not entirely justified. In particular, the results from TIMP-1 require proper interaction tests (group x drug) which I couldn't find. This is particularly important when the control group has a smaller N than the drug groups.

    1. Reviewer #1 (Public Review):

      Summary:

      In "Changes in wing morphology..." Roy et al investigate the potential allometric scaling in wing morphology and wing kinematics in 8 different hoverfly species. Their study nicely combines different new and classic techniques, investigating flight in an important, yet understudied alternative pollinator. I want to emphasize that I have been asked to review this from a hoverfly biology perspective, as I do not work on flight kinematics. I will thus not review that part of the work.

      Strengths:

      The paper is well-written and the figures are well laid out. The methods are easy to follow, and the rationale and logic for each experiment are easy to follow. The introduction sets the scene well, and the discussion is appropriate. The summary sentences throughout the text help the reader.

      Weaknesses:

      The ability to hover is described as useful for either feeding or mating. However, several of the North European species studied here would not use hovering for feeding, as they tend to land on the flowers that they feed from. I would therefore argue that the main selection pressure for hovering ability could be courtship and mating. If the authors disagree with this, they could back up their claims with the literature. On that note, a weakness of this paper is that the data for both sexes are merged. If we agree that hovering may be a sexually dimorphic behaviour, then merging flight dynamics from males and females could be an issue in the interpretation. I understand that separating males from females in the movies is difficult, but this could be addressed in the Discussion, to explain why you do not (or do) think that this could cause an issue in the interpretation.

      The flight arena is not very big. In my experience, it is very difficult to get hoverflies to fly properly in smaller spaces, and definitely almost impossible to get proper hovering. Do you have evidence that they were flying "normally" and not just bouncing between the walls? How long was each 'flight sequence'? You selected the parts with the slowest flight speed, presumably to get as close to hovering as possible, but how sure are you that this represented proper hovering and not a brief slowdown of thrust?

      Your 8 species are evolutionarily well-spaced, but as they were all selected from a similar habitat (your campus), their ecology is presumably very similar. Can this affect your interpretation of your data? I don't think all 6000 species of hoverflies could be said to have similar ecology - they live across too many different habitats. For example, on line 541 you say that wingbeat kinematics were stable across hoverfly species. Could this be caused by their similar habitat?

    1. Reviewer #1 (Public Review):

      Summary:

      This technical report by Kugler at al., expands the application of a fluorescence-based reporter to study the conformational state of various kinases. This reporter, named KinCon (Kinase Conformation), interrogates the conformational state of a kinase (i.e., active vs. inactive) based on engineering complementary fusion proteins that fluoresce upon interaction. This assay has several advantages as it allows studying full-length kinases, that is, the kinase domain and regulatory domains, inside the cell and under various experimental conditions such as the presence of inhibitors or activator proteins, and in wildtype and mutants involved in disease states.

      Strengths:

      One major strength of this study is that it is quite comprehensive. The authors use KinCon for four different kinases, BRAF, LKB1, RIP and CDK4/6. These kinases have very different regulatory elements and associated proteins, which the authors explore to study their conformational state. Moreover, they use small molecule inhibitors or mutations to further dissect how the conformational state of the kinase in disease states. The collective set of results strongly suggests that KinCon is a versatile tool that can be used to study many kinases of biomedical and fundamental importance. Given that kinases are extensively studied by researchers in academia or industry, KinCon could have a broad impact as well.

      Weaknesses:

      This manuscript, however, also has several weaknesses that I outline below. These weaknesses decrease the overall level of impact on the manuscript, as is.<br /> • The manuscript is exceedingly long. For instance, the introduction provides background information for each kinase that is further expanded in the results section. I think the background information for each kinase in the Introduction and Results sections can be significantly reduced to highlight the major points. Otherwise, not only does the manuscript become too long, but also the main points get diluted.

      • Similarly, the figure legends are very long, providing information that is already in the main text or in Methods. The authors should provide the essential information to understand the figure.

      • A major concern throughout the manuscript is the use of the word "dynamics," which is used in the text in various contexts. The authors should clarify what they understand for dynamics of conformation. Are they measuring how the time-dependent process by which the kinase is interconverting between active and inactive states? It seems to me that the assays in this report evaluate a population of kinases that are in an open or close conformation (i.e., a particular state in each experimental condition) but there is not direct information how the kinase goes from one state to the other. In that sense, the use of dynamics is unclear. Also, the use of dynamics in different sentences in ambiguous. Here are a few examples but this should be revised throughout the manuscript:<br /> - Line 27: dynamics of full-length protein kinases. Is this referred to dynamics of conformational interconversion between inactive and active states?<br /> - Line 138: dynamic functioning of kinases. No clear what that means.<br /> - Line 276: ... alters KinCon dynamics. Not clear if they are measuring time-dependent process or a single point.<br /> - Figure legend 4F: dynamics of CDK4/6 reporters. Again, not clear how the assay is measuring dynamics.<br /> Nonetheless, in my opinion the authors use proper terminology that describes their assay in which the term dynamics is not used: Title (... impact of protein and small molecule interactions on kinase conformations) and Line 89 (... reporter can be used to track conformational changes of kinases...)

      • The authors use the phrase that KinCon has predictive capabilities (abstract and line 142). What do the authors refer to this?

      • The authors indicate that KinCon is a highly sensitive assay. Can the authors elaborate on what high sensitivity means? For example, can they discuss how other fluorescence-based approaches that are less sensitive would not be able to accomplish the same type of results or derive similar conclusions? Can they provide a resolution metric both in space and time? Given that the authors state that this is a technical report, this information is of relevance.

      • The authors nicely describe how KinCon works in Figure 1B and part of 1C. I do think that the bottom of panel 1C needs to be revised, as well as the text describing the potential scenarios of potency, efficacy and synergism.<br /> - One issue with this part of Figure 1C is that it is not clear what the x-axis in the 3 plots refer to. Is this time? Is this concentration of a small molecule, inhibitor or binding partner? This was confusing also in the context of the term dynamics used throughout the text. The terms potency, efficacy and synergism should be subtitles or the panels and the x-axis should be better defined, especially for a non-specialized reader.<br /> - Related to this part of Figure 1C is the text. The authors mention potency, effectiveness and synergy (Line 195). Can the authors use more fundamental terminology related to these three scenarios, for example, changes in activation constant, percent of protein activates? Also, why synergy is only related to effectiveness? Can synergy also be associated to potency?<br /> - Lastly, the use of these three cartoons gives the impression that the experimental results to come will follow a similar representation. Instead, the results are presented in bar plots for many different conditions. I think this will lead to confusion for a broad audience.

      • For a non-expert reader, can the authors clarify the use of tracking basal conformations vs. transient over-expression of the various KinCon constructs? Moreover, the authors use the term transient over-expression for 10, 16, 24 and 48 h (Line 203). This, to a non-expert reader, seems not transient.

      • Regarding Figure 1E and similar graphical representations: Why is the signal (RLU) non-linear with time? If the fluorescence of the KinCon construct is linearly related with its expression or concentration inside the cell, one would expect a linear increase. Have the authors plotted RLU/Expression band intensity to account for changes in protein concentration? For instance, some of the results within Figure 3 are normalized to concentration on the reporter expression level.

      • For the results with LKB1, the authors claim that intermediate fold change in fluorescence (Figure 2E) is due to a partially closed intermediate state (Line 262). Can the authors discard the possibility by which there is a change in populations of active and inactive that on average give intermediate values?

      • The authors claim in Line 274 that mutations located at the interface of the LKB1/STRADalkpha complex affect interactions and hypothesize that allosteric communication between LKB1 and STRADalpha is essential for function. Given that this mutations are at the interaction interface, why would the authors postulate an allosteric mechanism that evokes an effect distant to the interaction/active site? Could it be that function requires surface contacts alone that are disrupted by the mutations?

      • I was unable to find text to explain the following: Figure 2I shows the mutation R74A as n.s., but in the text only W308C is mentioned to not change fluorescence. Could the authors clarify why R74A is not discussed in the text? Maybe this reviewer missed the text in which it was discussed. Similarly, the author states in line 326 that the study included an analysis of RIPK2. However, I was unable to find results, graphs or additional text discussing RIPK2.

      • Some figures of RLU use absolute values, percentages and fold change. Is there a reason why the authors use different Y-axis values? These should be explained and justified in Methods. Similarly, bars for wt in Figures 3D, G, or 4D, E,F show no errors. How are the authors normalizing the data and repeats so that there is no error, and are they treating the rest of the data (i.e., mutants and/or treated with small molecules) in the same way?

      • Lastly, the section starting in Line 472 reads more like a discussion of results from different type of inhibitors used in this study that results on its own. The authors should consider a new subtitle as results or make this section a discussion.

    1. Reviewer #2 (Public Review):

      In this study, Zhenbang Ye and colleagues investigate the links between microenvironment signatures, gene expression profiles, and prognosis in diffuse large B-cell lymphoma (DLBCL). They show that increased tumor purity (ie, a higher proportion of tumor cells relative to surrounding stromal components) is associated with worse prognosis. They then show that three genes associated with tumor purity (VCAN, CD3G, and C1QB) correlate with patterns of immune cell infiltration and can be used to create a risk scoring system that predicts prognosis, which can be replicated by immunohistochemistry (IHC), and response to some therapies.

      (1) The two strengths of the study are its relatively large sample size (n = 190) and the strong prognostic significance of the risk scoring system. It is worth noting that the validation of this scoring with IHC, a simple technique already routinely used for the diagnosis and classification of DLBCL, increases the potential for clinical translation. However, the correlative nature of the study limits the conclusions that can be drawn in regards to links between the risk scoring system, the tumor microenvironment, and the biology of DLBCL.

      (2) The tumor microenvironment has been extensively studied in DLBCL and a prognostic implication has already been established (for instance, Steen et al., Cancer Cell, 2021). In addition, associations have already been established in non-Hodgkin lymphoma between prognosis and expression of C1QB (Rapier-Sharman et al., Journal of Bioinformatics and Systems Biology, 2022), VCAN (S. Hu et al., Blood, 2013), and CD3G (Chen et al., Medical Oncology, 2022). Nevertheless, one of the strengths and novelty aspect of the study is the combination of these 3 genes into a risk score that is also valid by immunohistochemistry (IHC), which substantially facilitates a potential clinical translation.

      (3) Figures 1A-B: tumor purity is calculated using the ESTIMATE (Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data) algorithm (Yoshihara et al., Nature Communications, 2013). The ESTIMATE algorithm is based on two gene signatures ("stromal" and "immune"). It is therefore expected that tumor purity measured by the ESTIMATE algorithm will correlate with the expression of multiple genes. Importantly, C1QB is included in the stromal signature of the ESTIMATE algorithm meaning that, by definition, it will be correlated with tumor purity in that setting.

      (4) Figure 2A: as established in figure 1C, high tumor purity is associated with worse prognosis. Later in the manuscript, it is also shown that C1QB expression is associated with worse prognosis. However, figure 2A shows that C1QB is associated with decreased tumor purity. It therefore makes it less likely that the prognostic role of C1QB expression is related to its impact on tumor purity. The prognostic impact could be related to different patterns of immune cell infiltration, as shown later. However, the evidence presented in the study is correlative and nature and not sufficient to draw this conclusion.

      (5) Figure 3G: although there is a strong prognostic implication of the risk score on prognosis, the correlation between the risk score and tumor purity is significant but not very strong (R = 0.376). It is therefore likely that other important biological factors explain the correlation between the risk score and prognosis, as suggested in the gene set enrichment analysis that is later performed.

      (6) Figure 6: the drug sensitivity analysis includes a wide range of established and investigational drugs with varied mechanisms of action. Although the difference in sensitivity between tumors with low and high risk scores show statistical significance for certain drugs, the absolute difference appears small in most cases and is of unclear biological significance. In addition, even though the risk score is statistically related to drug sensitivity, there is no direct evidence that the differences in drug sensitivity are directly related to tumor purity.

    1. Reviewer #1 (Public Review):

      The authors describe a framework for working with genotype data and associated metadata, specifically geared towards ancient DNA. The Poseidon framework aims to address long-standing data coordination issues in ancient population genomics research. These issues can usefully be thought of as two primary, separate problems:

      (1) The genotype merging problem. Often, genotype calls made by a new study are not made publicly available, or they are only made available in an ad-hoc fashion without consistency in formatting between studies. Other users will typically want to combine genotypes from many previously published studies with their own newly produced genotypes, but a lack of coordination and standards means that this is challenging and time-consuming.

      (2) The metadata problem. All genomes need informative metadata to be usable in analyses, and this is even more true for ancient genomes which have temporal and often cultural dimensions to them. In the ancient DNA literature, metadata is often only made available in inconsistently formatted supplementary tables, such that reuse requires painstakingly digging through these to compile, curate and harmonise metadata across many studies.

      Poseidon aims to solve both of these problems at the same time, and additionally provide a bit of population genetics analysis functionality. The framework is a quite impressive effort, that clearly has taken a lot of work and thought. It displays a great deal of attention to important aspects of software engineering and reproducibility. How much usage it will receive beyond the authors themselves remains to be seen, as there is always a barrier to entry for any new sophisticated framework. But in any case, it clearly represents a useful contribution to the human ancient genomics community.

      The paper is quite straightforward in that it mainly describes the various features of the framework, both the way in which data and metadata are organised, and the various little software tools provided to interact with the data. This is all well-described and should serve as a useful introduction for any users of the framework, and I have no concerns with the presentation of the paper. Perhaps it gets a bit too detailed for my taste at times, but it's up to the authors how they want to write the paper.

      I thus have no serious concerns with the paper. I do have some thoughts and comments on the various choices made in the design of the framework, and how these fit into the broader ecosystem of genomics data. I wouldn't necessarily describe much of what follows as criticism of what the authors have done - the authors are of course free to design the framework and software that they want and think will be useful. And the authors clearly have done more than basically anyone else in the field to tackle these issues. But I still put forth the points below to provide some kind of wider discussion within the context of ancient genomics data management and its future.

      * * *

      The authors state that there is no existing archive for genotype data. This is not quite true. There is the European Variation Archive (EVA, https://www.ebi.ac.uk/eva/), which allows archiving of VCFs and is interlinked to raw data in the ENA/SRA/DDBJ. If appropriately used, the EVA and associated mainstream infrastructure could in principle be put to good use by the ancient genomics community. In practice, it's basically not used at all by the ancient genomics community, and partly this is because EVA doesn't quite provide exactly what's needed (in particular with regards to metadata fields). Poseidon aims to provide a much more custom-tailored solution for the most common use cases within the human ancient DNA field, but it could be argued that such a solution is only needed because the ancient genomics community has largely neglected the mainstream infrastructure. In some sense, by providing such a custom-tailored solution that is largely independent of the mainstream infrastructure, I feel like efforts such as Poseidon (and AADR) - while certainly very useful - might risk contributing to further misaligning the ancient genomics community from the rest of the genomics community, rather than bringing it closer. But the authors cannot really be blamed for that - they are simply providing a resource that will be useful to people given the current state of things.

      The BioSamples database (https://www.ebi.ac.uk/biosamples/) is an attempt to provide universal sample IDs across the life sciences and is used by the archives for sequence reads (ENA/SRA/DDBJ). Essentially every published ancient sample already has a BioSample accession, because this is required for the submission of sequence reads to ENA/SRA/DDBJ. It would thus have seemed natural to make BioSamples IDs a central component of Poseidon metadata, so as to anchor Poseidon to the mainstream infrastructure, but this is not really done. There are some links being made to ENA in the .ssf "sequence source" files used by the Poseidon package, including sample accessions, but this seems more ad-hoc.

      The package uses PLINK and EIGENSTRAT file formats to represent genotypes, which in my view are not particularly good formats for long-term and rigorous data management in genomics. These file formats cannot appropriately represent multiallelic loci, haplotype phase, or store information on genotype qualities, coverage, etc. The standard in the rest of genomics is VCF, a much more robust and flexible format with better software built around it. Insisting on keeping using these arguably outdated formats is one way in which the ancient genomics community risks disaligning itself from the mainstream.

      I could not find any discussion of reference genomes: knowing the reference genome coordinate system is essential to using any genotype file. For comparison, in the EVA archive, every VCF dataset has a "Genome Assembly" metadata field specifying the accession number of the reference genome used. It would seem to me like a reference genome field should be part of a Poseidon package too. In practice, the authors likely use some variant of the hg19 / GRCh37 human reference, which is still widely used in ancient genomics despite being over a decade out of date. Insisting on using an outdated reference genome is one way in which the ancient genomics community is disaligning itself from the mainstream, and it complicates comparisons to data from other sub-fields of genomics.

      A fundamental issue contributing to the genome merging problem, not unique to ancient DNA, is that genotype files are typically filtered to remove sites that are not polymorphic within the given study - this means that files from two different studies will often contain different and not fully overlapping sets of sites, greatly complicating systematic merging. I don't see any discussion of how Poseidon deals with this. In practice, it seems the authors are primarily concerned with data on the commonly used 1240k array set, such that the set of SNPs is always well-defined. But does Poseidon deal with the more general problem of non-overlapping sites between studies, or is this issue simply left to the user to worry about? This would be of relevance to whole-genome sequencing data, and there are certainly plenty of whole-genome datasets of great interest to the research community (including archaic human genomes, etc).

      In principle, it seems the framework could be species-agnostic and thus be useful more generally beyond humans (perhaps it would be enough to add just one more "species" metadata field?). It is of course up to the authors to decide how broadly they want to cater.

    1. Reviewer #1 (Public Review):

      This study presents an investigation into the physiological functions of RIPK1 within the context of liver physiology, particularly during short-term fasting. Through the use of hepatocyte-specific Ripk1-deficient mice (Ripk1Δhep), the authors embarked on an examination of the consequences of Ripk1 deficiency in hepatocytes under fasting conditions. They discovered that the absence of RIPK1 sensitized the liver to acute injury and hepatocyte apoptosis during fasting, a finding of significant interest given the crucial role of the liver in metabolic adaptation. Employing a combination of transcriptomic profiling and single-cell RNA sequencing techniques, the authors uncovered intricate molecular mechanisms underlying the exacerbated proinflammatory response observed in Ripk1Δhep mice during fasting. While the investigation offers valuable insights into the consequences of Ripk1 deficiency in hepatocytes during fasting conditions, there appears to be a primarily descriptive nature to the study with a lack of clear connection between the experiments. Thus, a stronger focus is warranted, particularly on understanding the dialogue between hepatocytes and macrophages. Moreover, the data would benefit from reinforcement through additional experiments such as Western blotting, flow cytometry, and rescue experiments, which would offer a more quantitative aspect to the findings. By incorporating these enhancements, the study could achieve a more comprehensive understanding of the underlying mechanisms and ultimately strengthen the overall impact of the research.

      Detailed major concerns:

      Related to Figure 1.<br /> It is imperative to ensure consistency in the number of animals analyzed across the different graphs. The current resolution of the images appears to be low, resulting in unsharp visuals that hinder the interpretation of data beyond the presence of "white dots". To address this issue, it is recommended to enhance the resolution of the images and consider incorporating zoom-in features to facilitate a clearer visualization of the observed differences. Moreover, it would be beneficial to include a complete WB analysis for the cell death pathways analyzed. These adjustments will significantly improve the clarity and interpretability of Figure 1.

      Related to Figure 2.<br /> It is essential to ensure consistency in the number of animals analyzed across the different graphs, as indicated by n=6 in the figure legend (similar to Figure 1). Additionally, it is crucial to distinguish between male and female subjects in the dot plots to assess any potential gender-based differences, which should be consistent throughout the paper. To achieve this, the dots plot should be harmonized to clearly differentiate between males and females and investigate if there are any disparities between the genders. Moreover, it is imperative to correlate hepatic inflammation with the activation of Kupffer cells, infiltrating monocytes, and/or hepatic stellate cells (HSCs). Therefore, conducting flow cytometry would be instrumental in achieving this correlation. Additionally, the staining for Ki67 appears to be non-specific, showing a granular pattern reminiscent of bile crystals rather than the expected nuclear staining of hepatocytes or immune cells. It is crucial to ensure specific staining for Ki67, and conducting in vitro experiments on primary hepatocytes could further elucidate the proliferation process. These experiments are relatively straightforward to implement and would provide valuable insights into the mechanisms underlying hepatic inflammation and proliferation.

      Related to Figure 3 & related to Figure 4.<br /> The immunofluorescence data presented are not entirely convincing and are insufficient to conclusively demonstrate the recruitment of monocytes. Previous suggestions for flow cytometry studies remain pertinent and are indeed necessary to bolster the robustness of the data and conclusions. Conducting flow cytometry analyses would provide more accurate and quantitative assessments of monocyte recruitment, ensuring the reliability of the findings and strengthening the overall conclusions of the study. Regarding the single-cell RNA sequencing analysis presented in the manuscript, it's worth questioning its relevance and depth of information provided. While it successfully identifies a quantitative difference in the cellular composition of the liver between control and knockout mice, it may fall short in elucidating the intricate interactions between different cell populations, which are crucial for understanding the underlying mechanisms of hepatic inflammation. Therefore, I propose considering alternative bioinformatic analyses, such as CellPhone-CellChat, which could potentially provide a more comprehensive understanding of the cellular dynamics and interactions within the liver microenvironment. By examining the dialogue between different cell clusters, these analyses could offer deeper insights into the functional consequences of Ripk1 deficiency in hepatocytes and its impact on hepatic inflammation during fasting.

      Related to Figure 5.<br /> What additional insights do the data from Figure 5 provide compared to the study published in Nat Comms, which demonstrated that RIPK1 regulates starvation resistance by modulating aspartate catabolism (PMID: 34686667)?

      Related to Figure 6.<br /> The data presented in Figure 7 are complementary and do not introduce new mechanistic insights.

      Related to Figure 7.<br /> The data from Figure 7 suggest that RIPK1 in hepatocytes is responsible for the observed damage. However, it has been previously demonstrated that inhibition of RIPK1 activity in macrophages protects against the development of MASLD (PMID: 33208891). One possible explanation for these findings could be that the overreaction of macrophages to fasting, coupled with the absence of RIPK1 in hepatocytes (an indirect effect), contributes to the observed damage. Considering this, complementing hepatocytes with a kinase-dead version of RIPK1 could be a valuable approach to further refine the molecular aspect of the study. This would allow for a more precise investigation into the specific role of RIPK1's scaffolding or kinase function in response to starvation in hepatocytes. Such experiments could provide additional insights into the mechanisms underlying the observed effects and help delineate the contributions of RIPK1 in different cell types to metabolic stress responses.

    1. Reviewer 1 (Public Review):

      Multiple sclerosis (MS) is a debilitating autoimmune disease that causes loss of myelin in neurons of the central nervous system. MS is characterized by the presence of inflammatory immune cells in several brain regions as well as the brain barriers (meninges). This study aims to understand the local immune hallmarks in regions of the brain parenchyma that are adjacent to the leptomeninges in a mouse model of MS. The leptomeninges are known to be a foci of inflammation in MS and perhaps "bleed" inflammatory cells and molecules to adjacent brain parenchyma regions. To do so, they use novel technology called spatial transcriptomics so that the spatial relationships between the two regions remain intact. The study identifies canonical inflammatory genes and gene sets such as complement and B cells enriched in the parenchyma in close proximity to the leptomeninges in the mouse model of MS but not control. The manuscript is very well written and easy to follow. The results will become a useful resource to others working in the field and can be followed by time series experiments where the same technology can be applied to the different stages of the disease.

      Comments on revised version:

      I agree that the authors successfully addressed most of my comments/critiques.<br /> However, the fact that the control mice were not injected with CFA is somewhat concerning, because it will be hard to interpret the cause of the transcriptomic readouts described in this study. Some of the described effects might be due to CFA (which was used in the EAE but not the "naive" group), and not necessarily to the relapsing-remitting EAE immune features recapitulated in this mouse model. Moreover, this caveat associated with the "naive" control group is not being clearly stated throughout the manuscript and might go unnoticed to readers.<br /> The authors should clearly state, in the methods section (in the section "Induction of SJL EAE"), that the naive control group was not injected with CFA.<br /> Additionally, this potential confounder, of not using a control group injected with the same CFA regimen of the EAE group, should be mentioned in paragraph two of the discussion alongside the other limitations of the study already highlighted by the authors (or in another section of the discussion).

    1. Reviewer #1 (Public Review):

      In the manuscript by Su et al., the authors present a massively parallel reporter assay (MPRA) measuring the stability of in vitro transcribed mRNAs carrying wild-type or mutant 5' or 3' UTRs transfected into two different human cell lines. The goal presented at the beginning of the manuscript was to screen for effects of disease-associated point mutations on the stability of the reporter RNAs carrying partial human 5' or 3' UTRs. However, the majority of the manuscript is dedicated to identifying sequence components underlying the differential stability of reporter constructs. This shows that TA dinucleotides are the most predictive feature of RNA stability in both cell lines and both UTRs.<br /> The effect of AU rich elements (AREs) on RNA stability is well established in multiple systems, and the present study confirms this general trend but points out variability in the consequence of seemingly similar motifs on RNA stability. For example, the authors report that a long stretch of Us has extreme opposite effects on RNA stability depending on whether it is preceded by an A (strongly destabilizing) or followed by an A (strongly stabilizing). While the authors interpretation of a context-dependence of the effect is certainly well-founded, it seems counterintuitive that the preceding or following A would be the (only) determining factor. This points to a generally reductionist approach taken by the authors in the analysis of the data and in their attempt to dissect the contribution of "AU rich sequences" to RNA stability, with a general tendency to reduce the size and complexity of the features (e.g. to dinucleotides). While this certainly increases the statistical power of the analysis due to the number of occurrences of these motifs, it limits the interpretability of the results. How do TA dinucleotides per se contribute to destabilizing the RNA, both in 5' and 3' UTRs, but (according to limited data presented) not in coding sequences? What is the mechanism? RBPs binding to TA dinucleotide containing sequences are suggested to "mask" the destabilizing effect, thereby leading to a more stable RNA. Gain of TA dinucleotides is reported to have a destabilizing effect, but again no hypothesis is provided as to the underlying molecular mechanism. In addition to reducing the motif length to dinucleotides, the notion of "context dependence" is used in a very narrow sense; especially when focusing on simple and short motifs, a more extensive analysis of the interdependence of these features (beyond the existing analysis of the relationship between TA-diNTs and GC content) could potentially reveal more of the context dependence underlying the seemingly opposite behavior of very similar motifs.

      The present MPRAs measures the effect of UTR sequences in one specific reporter context and using one experimental approach (following the decay of in vitro transcribed and transfected RNAs). While this approach certainly has its merits compared to other approaches, it also comes with some caveats: RNA is delivered naked, without bound RBPs and no nuclear history, e.g. of splicing (no EJCs), editing and modifications. One way to assess the generalizability of the results as well as the context dependence of the effects is to perform the same analysis on existing datasets of RNA stability measurements obtained through other methods (e.g. transcription inhibition). Are TA dinucleotides universally the most predictive feature of RNA half-lives?

      The authors conclude their study with a meta-analysis of genes with increased TA dinucleotides in 5' and 3'UTRs, showing that specific functional groups are overrepresented among these genes. In addition, they provide evidence for an effect of disease-associated UTR mutations on endogenous RNA stability. While these elements link back to the original motivation of the study (screening for effects of point mutations in 5' and 3' UTRs), they provide only a limited amount of additional insights.

      In summary, this manuscript presents an interesting addition to the long-standing attempts at dissecting the sequence basis of RNA stability in human cells. The analysis is in general very comprehensive and sound; however, at times the goal of the authors to find novelty and specificity in the data overshadows some analyses. One example is the case where the authors try to show that TA-dinucleotides and GC content are decoupled and not merely two sides of the same coin. They claim that the effect of TA dinucleotides is different between high- and low-GC content contexts but do not control for the fact that low GC-content regions naturally will contain more TA dinucleotides and therefore the effect sizes and the resulting correlation between TA-diNT rate and stability will be stronger (Fig. 5A). A more thorough analysis and greater caution in some of the claims could further improve the credibility of the conclusions.

    1. Reviewer #1 (Public Review):

      Summary:

      This study offers a new perspective. ACTL7A and ACTL7B play roles in epigenetic regulation in spermiogenesis. Actin-like 7 A (ACTL7A) is essential for acrosome formation, fertilization, and early embryo development. ACTL7A variants cause acrosome detachment responsible for male infertility and early embryonic arrest. It has been reported that ACTL7A is localized on the acrosome in mouse sperms (Boëda et al., 2011). Previous studies have identified ACTL7A mutations (c.1118G>A:p.R373H; c.1204G>A:p.G402S, c.1117C>T:p.R373C), All these variants were located in the actin domain and were predicted to be pathogenic, affecting the number of hydrogen bonds or the arrangement of nearby protein structures (Wang et al., 2023; Xin et al., 2020; Zhao et al., 2023; Zhou et al., 2023). This work used AI to model the role of ACTL7A/B in the nucleosome remodeling complex and proposed a testis-specific conformation of SCRAP complex. This is different from previous studies.

      Strengths:

      This study provides a new perspective to reveal the additional roles of these proteins.

      Weaknesses:

      The results section contains a substantial background description. However, the results and discussion sections require streamlining. There is a lack of mutual support for data between the sections, and direct data to support the authors' conclusions are missing.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Bimbard et al., a new method to perform stable recordings over long periods of time with neuropixels, as well as the technical details on how the electrodes can be explanted for follow-up reuse, is provided. I think the description of all parts of the method is very clear, and the validation analyses (n of units per day over time, RMS over recording days...) are very convincing. I however missed a stronger emphasis on why this could provide a big impact on the ephys community, by enabling new analyses, new behavior correlation studies, or neurophysiological mechanisms across temporal scales that were previously inaccessible with high temporal resolution (i.e. not with imaging).

      Strengths:

      Open source method. Validation across laboratories. Across species (mice and rats) demonstration of its use and in different behavioral conditions (head-fixed and freely moving).

      Weaknesses:

      Weak emphasis on what can be enabled with this new method that didn't exist before.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper presents a mechanistic study of rDNA origin regulation in yeast by SIR2. Each of the ~180 tandemly repeated rDNA gene copies contains a potential replication origin. Early-efficient initiation of these origins is suppressed by Sir2, reducing competition with origins distributed throughout the genome for rate-limiting initiation factors. Previous studies by these authors showed that SIR2 deletion advances replication timing of rDNA origins by a complex mechanism of transcriptional de-repression of a local PolII promoter causing licensed origin proteins (MCMcomplexes) to re-localize (slide along the DNA) to a different (and altered) chromatin environment. In this study, they identify a chromatin remodeler, FUN30, that suppresses the sir2∆ effect, and remarkably, results in a contraction of the rDNA to about one-quarter it's normal length/number of repeats, implicating replication defects of the rDNA. Through examination of replication timing, MCM occupancy and nucleosome occupancy on the chromatin in sir2, fun30, and double mutants, they propose a model where nucleosome position relative to the licensed origin (MCM complexes) intrinsically determines origin timing/efficiency. While their interpretations of the data are largely reasonable and can be interpreted to support their model, a key weakness is the connection between Mcm ChEC signal disappearance and origin firing. While the cyclical chromatin association-dissociation of MCM proteins with potential origin sequences may be generally interpreted as licensing followed by firing, dissociation may also result from passive replication and as shown here, displacement by transcription and/or chromatin remodeling. Moreover, linking its disappearance from chromatin in the ChEC method with such precise resolution needs to be validated against an independent method to determine the initiation site(s). Differences in rDNA copy number and relative transcription levels also are not directly accounted for, obscuring a clearer interpretation of the results. Nevertheless, this paper makes a valuable advance with the finding of Fun30 involvement, which substantially reduces rDNA repeat number in sir2∆ background. The model they develop is compelling and I am inclined to agree, but I think the evidence on this specific point is purely correlative and a better method is needed to address the initiation site question. The authors deserve credit for their efforts to elucidate our obscure understanding of the intricacies of chromatin regulation. At a minimum, I suggest their conclusions on these points of concern should be softened and caveats discussed. Statistical analysis is lacking for some claims.

      Strengths are the identification of FUN30 as suppressor, examination of specific mutants of FUN30 to distinguish likely functional involvement. Use of multiple methods to analyze replication and protein occupancies on chromatin. Development of a coherent model.

      Weaknesses are failure to address copy number as a variable; insufficient validation of ChEC method relationship to exact initiation locus; lack of statistical analysis in some cases.

      Additional background and discussion for public review:

      This paper broadly addresses the mechanism(s) that regulate replication origin firing in different chromatin contexts. The rDNA origin is present in each of ~180 tandem repeats of the rDNA sequence, representing a high potential origin density per length of DNA (9.1kb repeat unit). However, the average origin efficiency of rDNA origins is relatively low (~20% in wild-type cells), which reduces the replication load on the overall genome by reducing competition with origins throughout the genome for limiting replication initiation factors. Deletion of histone deacetylase SIR2, which silences PolII transcription within the rDNA, results in increased early activation or the rDNA origins (and reduced rate of overall genome replication). Previous work by the authors showed that MCM complexes loaded onto the rDNA origins (origin licensing) were laterally displaced (sliding) along the rDNA, away from a well-positioned nucleosome on one side. The authors' major hypothesis throughout this work is that the new MCM location(s) are intrinsically more efficient configurations for origin firing. The authors identify a chromatin remodeling enzyme, FUN30, whose deletion appears to suppress the earlier activation of rDNA origins in sir2∆ cells. Indeed, it appears that the reduction of rDNA origin activity in sir2∆ fun30∆ cells is severe enough to results in a substantial reduction in the rDNA array repeat length (number of repeats); the reduced rDNA length presumably facilitates it's more stable replication and maintenance.

      Analysis of replication by 2D gels is marginally convincing, using 2D gels for this purpose is very challenging and tricky to quantify. The more quantitative analysis by EdU incorporation is more convincing of the suppression of the earlier replication caused by SIR2 deletion.

      To address the mechanism of suppression, they analyze MCM positioning using ChEC, which in G1 cells shows partial displacement of MCM from normal position A to positions B and C in sir2∆ cells and similar but more complete displacement away from A to positions B and C in sir2fun30 cells. During S-phase in the presence of hydroxyurea, which slows replication progression considerably (and blocks later origin firing) MCM signals redistribute, which is interpreted to represent origin firing and bidirectional movement of MCMs (only one direction is shown), some of which accumulate near the replication fork barrier, consistent with their interpretation. They observe that MCMs displaced (in G1) to sites B or C in sir2∆ cells, disappear more rapidly during S-phase, whereas the similar dynamic is not observed in sir2∆fun30∆. This is the main basis for their conclusion that the B and C sites are more permissive than A. While this may be the simplest interpretation, there are limitations with this assay that undermine a rigorous conclusion (additional points below). The main problem is that we know the MCM complexes are mobile so disappearance may reflect displacement by other means including transcription which is high is the sir2∆ background. Indeed, the double mutant has greater level of transcription per repeat unit which might explain more displaced from A in G1. Thus, displacement might not always represent origin firing. Because the sir2 background profoundly changes transcription, and the double mutant has a much smaller array length associated with higher transcription, how can we rule out greater accessibility at site A, for example in sir2∆, leading to more firing, which is suppressed in sir2 fun30 due to greater MCM displacement away from A?

      I think the critical missing data to solidly support their conclusions is a definitive determination of the site(s) of initiation using a more direct method, such as strand specific sequencing of EdU or nascent strand analysis. More direct comparisons of the strains with lower copy number to rule out this facet. As discussed in detail below, copy number reduction is known to suppress at least part of the sir2∆ effect so this looms over the interpretations. I think they are probably correct in their overall model based on the simplest interpretation of the data but I think it remains to be rigorously established. I think they should soften their conclusions in this respect.

    1. Reviewer #2 (Public Review):

      The authors examine the impact of optogenetic inhibition of hippocampal axon terminals in the retrosplenial cortex (RSP) during the performance of a working memory T-maze task. Performance on a delayed non-match-to-place task was impaired by such inhibition. The authors also report that inhibition is associated with faster decision-making and that the effects of inhibition can be observed over several subsequent trials. The work seems reasonably well done and the role of hippocampal projections to retrosplenial cortex in memory and decision-making is very relevant to multiple fields. However, the work should be expanded in several ways before one can make firm conclusions on the role of this projection in memory and behavior.

      Comments on revised version:

      The authors have provided their comments on the concerns voiced in my first review. I remain of the opinion that the experiments do not extend beyond determining whether disruption of hippocampal to retrosplenial cortex connections impacts spatial working memory. Given the restricted level of inquiry and the very moderate effect of the manipulation on memory, the work, in my opinion, does not provide significant insight into the processes of spatial working memory nor the function of the hippocampal to retrosplenial cortex connection.

    1. Reviewer #1 (Public Review):

      Summary: In this study, the authors address whether the dorsal nucleus of the inferior colliculus (DCIC) in mice encodes sound source location within the front horizontal plane (i.e., azimuth). They do this using volumetric two-photon Ca2+ imaging and high-density silicon probes (Neuropixels) to collect single-unit data. Such recordings are beneficial because they allow large populations of simultaneous neural data to be collected. Their main results and the claims about those results are the following:

      1) DCIC single-unit responses have high trial-to-trial variability (i.e., neural noise);

      2) approximately 32% to 40% of DCIC single units have responses that are sensitive to sound source azimuth;

      3) single-trial population responses (i.e., the joint response across all sampled single units in an animal) encode sound source azimuth "effectively" (as stated in title) in that localization decoding error matches average mouse discrimination thresholds;

      4) DCIC can encode sound source azimuth in a similar format to that in the central nucleus of the inferior colliculus (as stated in Abstract);

      5) evidence of noise correlation between pairs of neurons exists;

      and 6) noise correlations between responses of neurons help reduce population decoding error.

      While simultaneous recordings are not necessary to demonstrate results #1, #2, and #4, they are necessary to demonstrate results #3, #5, and #6.

      Strengths:<br /> - Important research question to all researchers interested in sensory coding in the nervous system.<br /> - State-of-the-art data collection: volumetric two-photon Ca2+ imaging and extracellular recording using high-density probes. Large neuronal data sets.<br /> - Confirmation of imaging results (lower temporal resolution) with more traditional microelectrode results (higher temporal resolution).<br /> - Clear and appropriate explanation of surgical and electrophysiological methods. I cannot comment on the appropriateness of the imaging methods.

      Strength of evidence for claims of the study:

      1) DCIC single-unit responses have high trial-to-trial variability -<br /> The authors' data clearly shows this.

      2) Approximately 32% to 40% of DCIC single units have responses that are sensitive to sound source azimuth -<br /> The sensitivity of each neuron's response to sound source azimuth was tested with a Kruskal-Wallis test, which is appropriate since response distributions were not normal. Using this statistical test, only 8% of neurons (median for imaging data) were found to be sensitive to azimuth, and the authors noted this was not significantly different than the false positive rate. The Kruskal-Wallis test was not performed on electrophysiological data. The authors suggested that low numbers of azimuth-sensitive units resulting from the statistical analysis may be due to the combination of high neural noise and relatively low number of trials, which would reduce statistical power of the test. This may be true, but if single-unit responses were moderately or strongly sensitive to azimuth, one would expect them to pass the test even with relatively low statistical power. At best, if their statistical test missed some azimuth-sensitive units, they were likely only weakly sensitive to azimuth. The authors went on to perform a second test of azimuth sensitivity-a chi-squared test-and found 32% (imaging) and 40% (e-phys) of single units to have statistically significant sensitivity. This feels a bit like fishing for a lower p-value. The Kruskal-Wallis test should have been left as the only analysis. Moreover, the use of a chi-squared test is questionable because it is meant to be used between two categorical variables, and neural response had to be binned before applying the test.

      3) Single-trial population responses encode sound source azimuth "effectively" in that localization decoding error matches average mouse discrimination thresholds -<br /> If only one neuron in a population had responses that were sensitive to azimuth, we would expect that decoding azimuth from observation of that one neuron's response would perform better than chance. By observing the responses of more than one neuron (if more than one were sensitive to azimuth), we would expect performance to increase. The authors found that decoding from the whole population response was no better than chance. They argue (reasonably) that this is because of overfitting of the decoder model-too few trials used to fit too many parameters-and provide evidence from decoding combined with principal components analysis which suggests that overfitting is occurring. What is troubling is the performance of the decoder when using only a handful of "top-ranked" neurons (in terms of azimuth sensitivity) (Fig. 4F and G). Decoder performance seems to increase when going from one to two neurons, then decreases when going from two to three neurons, and doesn't get much better for more neurons than for one neuron alone. It seems likely there is more information about azimuth in the population response, but decoder performance is not able to capture it because spike count distributions in the decoder model are not being accurately estimated due to too few stimulus trials (14, on average). In other words, it seems likely that decoder performance is underestimating the ability of the DCIC population to encode sound source azimuth.<br /> To get a sense of how effective a neural population is at coding a particular stimulus parameter, it is useful to compare population decoder performance to psychophysical performance. Unfortunately, mouse behavioral localization data do not exist. Therefore, the authors compare decoder error to mouse left-right discrimination thresholds published previously by a different lab. However, this comparison is inappropriate because the decoder and the mice were performing different perceptual tasks. The decoder is classifying sound sources to 1 of 13 locations from left to right, whereas the mice were discriminating between left or right sources centered around zero degrees. The errors in these two tasks represent different things. The two data sets may potentially be more accurately compared by extracting information from the confusion matrices of population decoder performance. For example, when the stimulus was at -30 deg, how often did the decoder classify the stimulus to a lefthand azimuth? Likewise, when the stimulus was +30 deg, how often did the decoder classify the stimulus to a righthand azimuth?

      4) DCIC can encode sound source azimuth in a similar format to that in the central nucleus of the inferior colliculus -<br /> It is unclear what exactly the authors mean by this statement in the Abstract. There are major differences in the encoding of azimuth between the two neighboring brain areas: a large majority of neurons in the CNIC are sensitive to azimuth (and strongly so), whereas the present study shows a minority of azimuth-sensitive neurons in the DCIC. Furthermore, CNIC neurons fire reliably to sound stimuli (low neural noise), whereas the present study shows that DCIC neurons fire more erratically (high neural noise).

      5) Evidence of noise correlation between pairs of neurons exists -<br /> The authors' data and analyses seem appropriate and sufficient to justify this claim.

      6) Noise correlations between responses of neurons help reduce population decoding error -<br /> The authors show convincing analysis that performance of their decoder increased when simultaneously measured responses were tested (which include noise correlation) than when scrambled-trial responses were tested (eliminating noise correlation). This makes it seem likely that noise correlation in the responses improved decoder performance. The authors mention that the naïve Bayesian classifier was used as their decoder for computational efficiency, presumably because it assumes no noise correlation and, therefore, assumes responses of individual neurons are independent of each other across trials to the same stimulus. The use of decoder that assumes independence seems key here in testing the hypothesis that noise correlation contains information about sound source azimuth. The logic of using this decoder could be more clearly spelled out to the reader. For example, if the null hypothesis is that noise correlations do not carry azimuth information, then a decoder that assumes independence should perform the same whether population responses are simultaneous or scrambled. The authors' analysis showing a difference in performance between these two cases provides evidence against this null hypothesis.

      Minor weakness:<br /> - Most studies of neural encoding of sound source azimuth are done in a noise-free environment, but the experimental setup in the present study had substantial background noise. This complicates comparison of the azimuth tuning results in this study to those of other studies. One is left wondering if azimuth sensitivity would have been greater in the absence of background noise, particularly for the imaging data where the signal was only about 12 dB above the noise. The description of the noise level and signal + noise level in the Methods should be made clearer. Mice hear from about 2.5 - 80 kHz, so it is important to know the noise level within this band as well as specifically within the band overlapping with the signal.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aim at dissecting the relationship between hair-cell directional mechanosensation and orientation-linked synaptic selectivity, using mice and the zebrafish. They find that Gpr156 mutant animals homogenize the orientation of hair cells without affecting the selectivity of afferent neurons, suggesting that hair-cell orientation is not the feature that determines synaptic selectivity. Therefore, the process of Emx2-dependent synaptic selectivity bifurcates downstream of Gpr156.

      Strengths:

      This is an interesting and solid paper. It solves an interesting problem and establishes a framework for the following studies. That is, to ask what are the putative targets of Emx2 that affect synaptic selectivity.<br /> The quality of the data is generally excellent.

      Weaknesses:

      The feeling is that the advance derived from the results is very limited.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Napoli et al, the authors study the intracellular function of Cytosolic S100A8/A9 a myeloid cell soluble protein that operates extracellularly as an alarmin, whose intracellular function is not well characterized. Here, the authors utilize state-of-the-art intravital microscopy to demonstrate that adhesion defects observed in cells lacking S100A8/A9 (Mrp14-/-) are not rescued by exogenous S100A8/A9, thus highlighting an intrinsic defect. Based on this result subsequent efforts were employed to characterize the nature of those adhesion defects.

      Strengths:

      The authors convincingly show that Mrp14-/- neutrophils have normal rolling but defective adhesion caused by impaired CD11b activation (deficient ICAM1 binding). Analysis of cellular spreading (defective in Mrp14-/- cells) is also sound. The manuscript then focuses on selective signaling pathways and calcium measurements. Overall, this is a straightforward study of biologically important proteins and mechanisms.

      Weaknesses:

      Some suggestions are included below to improve this manuscript.

    1. Reviewer #1 (Public Review):

      I appreciate the normative approach of the PEA model and am eager to examine this model in the future. However, two minor issues remain:

      (1) Clarification on the PReMo Model:

      The authors state, "The PReMo model proposes that this drift comprises two phases: initial proprioceptive recalibration and subsequent visual recalibration." This description could misinterpret the intent of PReMo. According to PReMo, the time course of the reported hand position is merely a read-out of the *perceived hand position* (x_hat in your paper). Early in adaptation, the perceived hand position is biased by the visual cursor (x_hat in the direction of the cursor); towards the end, due to implicit adaptation, x_hat reduces to zero. This is the same as PEA. I recommend that the authors clarify PReMo's intent to avoid confusion.

      Note, however, the observed overshoot of 1 degree in the reported hand position. In the PReMo paper, we hypothesized that this effect is due to the recalibration of the perceived visual target location (inspired by studies showing that vision is also recalibrated by proprioception, but in the opposite direction). If the goal of implicit adaptation is to align the perceived hand position (x_hat) with the perceived target position (t_hat), then there would be an overshoot of x_hat over the actual target position.

      PEA posits a different account for the overshoot. It currently suggests that the reported hand position combines x_hat (which takes x_p as input) with x_p itself. What is reasoning underlying the *double occurrence* of x_p?

      There seem to be three alternatives that seem more plausible (and could lead to the same overshooting): 1) increasing x_p's contribution (assuming visual uncertainty increases when the visual cursor is absent during the hand report phase), 2) decreasing sigma_p (assuming that participants pay more attention to the hand during the report phase), 3) it could be that the perceived target position undergoes recalibration in the opposite direction to proprioceptive recalibration. All these options, at least to me, seem equally plausible and testable in the future.

      (2) Effect of Visual Uncertainty on Error Size:

      I appreciate the authors' response about methodological differences between the cursor cloud used in previous studies and the Gaussian blob used in the current study. However, it is still not clear to me how the authors reconcile previous studies showing that visual uncertainty reduced implicit adaptation for small but not large errors (Tsay et al, 2021; Makino, et al 2023) with the current findings, where visual uncertainty reduced implicit adaptation for large but not small errors.

      Could the authors connect the dots here: I could see that the cursor cloud increases potential overlap with the visual target when the visual error is small, resulting in intrinsic reward-like mechanisms (Kim et al, 2019), which could potentially explain attenuated implicit adaptation for small visual errors. However, why would implicit adaptation in response to large visual errors remain unaffected by the cursor cloud? Note that we did verify that sigma_v is increased in (Tsay et al. 2021), so it is unlikely due to the cloud simply failing as a manipulation of visual uncertainty.

      In addition, we also reasoned that testing individuals with low vision could offer a different test of visual uncertainty (Tsay et al, 2023). The advantage here is that both control and patients with low vision are provided with the same visual input-a single cursor. Our findings suggest that uncertainty due to low vision also shows reduced implicit adaptation in response to small but not large errors, contrary to the findings in the current paper. Missing in the manuscript is a discussion related to why the authors' current findings contradict those of previous results.

    1. Reviewer #1 (Public Review):

      This is a very interesting paper which addresses how auditory cortex represents sound while an animal is performing an auditory task. The study involves psychometric and neurophysiological measurements from ferrets engaged in a challenging tone in noise discrimination task, and relates these measurements using neurometric analysis. A novel neural decoding technique (decoding-based dimensionality reduction or dDR, introduced in a previous paper by two of the authors) is used to reduce bias so that stimulus parameters can be read out from neuronal responses.

      The central finding of the study is that, when an animal is engaged in a task, non-primary auditory cortex represents task-relevant sound features in a categorical way. In primary cortex, task engagement also affects representations, but in a different way - the decoding is improved (suggesting that representations have been enhanced), but is not categorical in nature. The authors argue that these results are compatible with a model where early sensory representations form an overcomplete representation of the world, and downstream neurons flexibly read out behaviourally relevant information from these representations.

      I find the concept and execution of the study very interesting and elegant. The paper is also commendably clear and readable. The differences between primary and higher cortex are compelling and I am largely convinced by the authors' claim that they have found evidence that broadly supports a mixed selectivity model of neural disentanglement along the lines of Rigotti et al (2013). I think that the increasing body of evidence for these kinds of representations is a significant development in our understanding of higher sensory representations. I also think that the dDR method is likely to be useful to researchers in a variety of fields who are looking to perform similar types of neural decoding analysis.

    1. Reviewer #1 (Public Review):

      The main focus of the current study is to identify the anatomical core of an expiratory oscillator in the medulla using pharmacological disinhibition. Although expiration is passive in normal eupneic conditions, activation of the parafacial (pFL) region is believed to evoke active expiration in conditions of elevated ventilatory demands. The authors and others in the field have previously attempted to map this region using pharmacological, optogenetic and chemogenetic approaches, which present with their own challenges.

      In the present study, the authors take a systematic approach to determine the precise anatomical location within the ventral medulla's rostro-caudal axis where the expiratory oscillator is located. The authors used a bicuculline (a GABA-A receptor antagonist) and fluorobeads solution at 5 distinct anatomical locations to study the effects on neuronal excitability and functional circuitry in the pFL. The effects of bicuculline on different phases of the respiratory cycle were characterized using a multidimensional cycle-by-cycle analysis. This analysis involved measuring the differences in airflow, diaphragm electromyography (EMG), and abdominal EMG signals, as well as using a phase-plane analysis to analyze the combined differences of these respiratory signals. Anatomical immunostaining techniques were also used to complement the functional mapping of the pFL.

      Major strengths of this work include a robust study design, complementary neurophysiological and immunohistochemical methods and the use of a novel phase-plane analysis. The authors construct a comprehensive functional map revealing functional nuances in respiratory responses to bicuculline along the rostrocaudal axis of the parafacial region. They convincingly show that although bicuculline injections at all coordinates of the pFL generated an expiratory response, the most rostral locations in the lateral parafacial region play the strongest role in generating active expiration. These were characterized by a strong impact on the duration and strength of ABD activation, and a robust change in tidal volume and minute ventilation. The authors also confirmed histologically that none of the injection sites overlapped grossly with PHOX2B+ neurons, thus confirming the specificity of the injections in the pFL and not the neighboring RTN.

      Although a caveat of the approach is that bicuculine injections have indiscriminate effects on other neuronal populations in the region (GABAergic, glycinergic, and glutamatergic), the results can largely be interpreted as modulation of neuronal populations in different regions of the pFL have differential effects on expiratory output. This limitation of the pharmacological approach has also been aptly discussed by the authors.

      Collectively, these findings advance our understanding of the presumed expiratory oscillator, the pFL, and highlight the functional heterogeneity in the functional response of this anatomical structure.

    1. Reviewer #1 (Public Review):

      Summary :

      This study presents valuable data on diurnal patterns in aphid (Rhopalosiphum padi) feeding behavior and transcriptome profiles. The authors measured honeydew production by the aphids on plants and artificial diet during the day and night and conducted a comprehensive feeding behavior study using EPG with many biological replicates at 6 time-points in 24 hours. They also conducted transcriptome analyses of three samples of each 30 aphids at these time points. Differentially expressed transcripts were grouped into four clusters with distinct expression patterns. The expression of two genes found to be diurnally rhythmic was knocked down with RNAi and these aphids did less well, especially at night. They also analyzed the differential expression of candidate effector genes and found rhythmic ones to be enriched for more expression in aphid heads versus bodies - this pattern is expected given that effectors are most likely expressed in the salivary glands. Knockdown of a known effector (C002) that is diurnally rhythmic, and a novel effector gene, was found to alter aphid feeding dynamics and performance.

      Strengths:

      The manuscript was highly accessible, with clear writing, and the figures provided were both comprehensive and of good quality. The datasets generated from this research are valuable to the research field, especially the findings for honeydew secretion, EPG analysis, and transcriptome experiments.

      The datasets generated in this study will be useful to scientists working on aphids and aphid-plant interactions and will inform similar studies on other insect species.

      Weaknesses:

      The weaknesses mainly relate to the (depth of) analyses and interpretation of the data. Also, some methods require more explanation, as follows:

      In Figure 1, data show that aphids produce more honeydew at night than during the day. This suggests that the aphids ingest more phloem (E2 phase). However, in Figure 1d the duration of the E2 phase does not show obvious differences among the time points in the 24 hours. The authors contribute the explanation that the aphids may osmoregulate more during the night, leading to more honeydew secretion at night. This may be the case, but there could be other explanations. For example, the physiology, including regulation of water transport, of plants is known to change during night/day. The authors may focus this section more on the differences in the E1 phase, as this involves the delivery of aphid saliva and effectors into the plant phloem.

      Transcriptome data shown in Figure 2 (and the experimental procedure of Figure 5b) appears to be based on three biological replicates. However, these replicates appear to have been harvested at the same time in the experiment, and this makes them technical replicates, not biological replicates. The inclusion of true biological replicates that include samples from time series experiments done on different days should be considered.

      The authors conducted knockdown experiments targeting aquaporin 1 and gut sucrase 1 in aphids, resulting in reduced nymph production and decreased honeydew secretion. It is concluded that these results indicate significant roles of aquaporin 1 and gut sucrase 1 in diurnal regulation. However, it is essential to consider that these genes likely play crucial roles in aphid physiology beyond diurnal rhythms. Consequently, reduced expression would naturally impair aphid performance. The dsAQP1 and dsSUC1 aphids consistently produced less honeydew, regardless of the time of day, indicating a broader impact of gene knockdown. The observed increase of the phenotype at night may not be attributable to the specific roles of these genes in diurnal regulation but rather due to heightened aphid activity during that time (as evidenced by increased honeydew secretion) that could magnify the impact of the knockdown effect, making it easier to observe. Therefore, the knockdown of aquaporin 1 and gut sucrase 1 may exert a general negative influence on aphid fitness, independently of diurnal factors.

      To analyze the roles of genes in diurnal regulation, additional controls should be incorporated. This could involve the knockdown of genes with essential functions that are not influenced by diurnal rhythms, providing a baseline comparison. Furthermore, consider including genes known to be involved in diurnal regulation in other insects, as documented in the existing literature, in the experimental design.

      The same arguments as for aquaporin 1 and gut sucrase 1 above may be made for knockdown of effector genes (Figure 4). It has already been shown that knockdown of C002 impacts aphid performance, and the data herein may be explained by a general lower performance of aphids rather than a specific function of these effectors in diurnal regulation. It is also expected that knockdown of the effectors has less impact on aphids feeding from artificial diets. This does not necessarily indicate the role of the effectors in diurnal regulation.

      In the abstract and elsewhere, the authors assert priority by stating, "...the first evidence of...". However, it's important to note that priority claims are often challenging to verify across many fields. Instead of relying solely on claims of precedence, the evidence presented in the research could stand on its own merit.

      Conclusion:

      The study presents intriguing new findings, particularly in the realms of honeydew analysis, EPG, and transcriptome analysis. However, the interpretation of subsequent studies employing gene knockdowns needs further consideration.

    1. Reviewer #1 (Public Review):

      The authors perform RNA-seq on FACS isolated neurons from adult worms at days 1 and 8 of adulthood to profile the gene expression changes that occur with cognitive decline. Supporting data are included indicating that by day 7 of adulthood, learning and memory are reduced, indicating that this timepoint or after represents cognitively aged worms. Neuronal identity genes are reduced in expression within the cognitively aged worms, whereas genes involved in proteostasis, transcription/chromatin, and the stress response are elevated. A number of specific examples are provided, representing markers of specific neuronal subtypes, and correlating expression changes to the erosion of particular functions (e.g. motor neurons, chemosensory neurons, aversive learning neurons, etc).

      To investigate whether upregulation of genes in neurons with age is compensatory or deleterious, the authors reduced expression of a set of three significantly upregulated genes and performed behavioral assays in young adults. In each case, reduction of expression improved memory, consistent with a model in which age-associated increases impair neuronal function.

      The authors then characterize learning and memory in wild type, daf-2, and daf-2/daf-16 worms with age and find that daf-2 worms have an extended ability to learn for approximately 10 days longer that wild types. This was daf-16 dependent. Memory was extended in daf-2 as well, and strikingly, daf-2;daf-16 had no short term memory even at day 1. Transcriptomic analysis of FACS-sorted neurons was performed on the three groups at day 8. The authors focus their analysis on daf-2 vs. daf-2;daf-16 and present evidence that daf-2 neurons express a stress-resistance gene program. They also find small differences between the N2 and daf-2;daf-16 neurons, which correlate with the observed behavioral differences, though these differences are modest.

      The authors tested eight candidate genes that were more highly expressed in daf-2 neurons vs. daf-2;daf-16 and showed that reduction of 2 and 5 of these genes impaired learning and memory, respectively, in daf-2 worms. This finding implicates specific neuronal transcriptional targets of IIS in maintaining cognitive ability in daf-2 with age, which, importantly, are distinct from those in young wild type worms.

      Overall, this is a strong study with rigorously performed experiments. The authors achieved their aim of identifying transcriptional changes in neurons that underlie loss of learning and memory in C. elegans, and how cognition is maintained in insulin/IGF-1-like signaling mutants.

    1. Reviewer #1 (Public Review):

      Summary:

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The authors construct a detailed biophysical and morphological model of a single striatal medium spiny neuron, and endow excitatory and inhibitory synapses with dynamic synaptic plasticity mechanisms that are sensitive to (1) the presence or absence of a dopamine reward signal, and (2) spatiotemporal coincidence of synaptic activity in single dendritic branches. The latter coincidence is detected by voltage-dependent NMDA-type glutamate receptors, which can generate a type of dendritic spike referred to as a "plateau potential." The proposed mechanisms result in moderate performance on a nonlinear classification task when specific input features are segregated and clustered onto individual branches, but reduced performance when input features are randomly distributed across branches. Given the high level of complexity of all components of the model, it is not clear which features of which components are most important for its performance. There is also room for improvement in the narrative structure of the manuscript and the organization of concepts and data.

      Strengths:

      The integrative aspect of this study is its major strength. It is challenging to relate low-level details such as electrical spine compartmentalization, extrasynaptic neurotransmitter concentrations, dendritic nonlinearities, spatial clustering of correlated inputs, and plasticity of excitatory and inhibitory synapses to high-level computations such as nonlinear feature classification. Due to high simulation costs, it is rare to see highly biophysical and morphological models used for learning studies that require repeated stimulus presentations over the course of a training procedure. The study aspires to prove the principle that experimentally-supported biological mechanisms can explain complex learning.

      Weaknesses:

      The high level of complexity of each component of the model makes it difficult to gain an intuition for which aspects of the model are essential for its performance, or responsible for its poor performance under certain conditions. Stripping down some of the biophysical detail and comparing it to a simpler model may help better understand each component in isolation. That said, the fundamental concepts behind nonlinear feature binding in neurons with compartmentalized dendrites have been explored in previous work, so it is not clear how this study represents a significant conceptual advance. Finally, the presentation of the model, the motivation and justification of each design choice, and the interpretation of each result could be restructured for clarity to be better received by a wider audience.

    1. Reviewer #1 (Public Review):

      Summary:

      Schweibenz et al are investigating how cells with lower levels of Tai are out-competed by neighboring wild-type (WT) cells. They show that clones homozygous for a tai hypomorphic mutation are disadvantaged and are killed by apoptosis. But tai-low clones are partially rescued when generated in a background that is heterozygous for mutations in apoptotic genes, in the Hippo pathway component warts, or for the Wg/Wnt pathway negative regulator Apc. They then follow up in the link between tai LOF and Wg. The story then shifts away from clones and into experiments that have Tai RNAi depletion or Tai over-expression in the posterior compartment of the wing disc, using the anterior compartment as a control. These non-clonal experiments show that depletion of Tai in the posterior compartment of wing discs results in less Wg in this compartment. This is shown to be due to a reduction in the glypican Dally-like protein (Dlp). The fact that long-range Wg is reduced in tai-depleted discs that also show a reduction in Dlp, suggests that Tai somehow positively promotes Wg distribution. There is some data in the supplementary materials suggesting that Tai promotes dlp mRNA expression but this was not compelling. In fact, the compelling data was that Dlp protein in tai mutant clones is not abundantly on the cell surface, but instead somehow retained in the mutant cell. The authors don't further examine Dlp protein in tai clones. The final figure (Figure 8) shows that there is less Wg at the DV margin in wing discs when tai is depleted from wg-producing cells. In sum, the authors have uncovered some interesting results, but the story has some unresolved issues that, if addressed, could boost its impact. Additionally, the preprint seems to have 2 stories, one about tai and cell competition and the other about tai and Wg distribution. It would be helpful to reorder the figures and improve the narrative so that these are better integrated with each other.

      Strengths:

      The authors are studying competition between tai-low clones and their fitter WT neighbors, and have uncovered an interesting connection to Wg.

      Weaknesses:

      (1) It would be good to know whether the authors can rescue tai-low clones by over-expression UAS-Dlp.

      (2) The data about tai-promoting dlp (Figure S4) is not compelling as there are no biological replicates and no statistical analyses.

      (3) The data on Wg distribution seems disjointed from the data about cell competition. The authors could refocus the paper to emphasize the cell competition story. The role of Dlp in Wg distribution is well established, so the authors could remove or condense these results. The story really could be Figsured 1, 2, 3 and 7 and keep the paper focused on cell competition. The authors could then discuss Dlp as needed for Wg signaling transduction, which is already established in the literature.

      (4) The model of tai controlling dlp mRNA and Dlp protein distribution is confusing. In fact, the data for the former is weak, while the data for the latter is strong. I suggest that the authors focus on the altered Dlp protein distribution on tai-low clones. It would also be helpful to prove the Wg signaling is impeded in tai clones (see #5 below).

      (5) I don't know if the Fz3-RFP reported for Wg signaling works in imaginal discs, but if it does then the authors could make clones in this background to prove that cell-autonomous Wg signaling is reduced in tai-low clones.

    1. Reviewer #1 (Public Review):

      In this revised manuscript, authors have conducted epigenetic and transcriptomic profiling to understand how environmental chemicals such as BPS can cause epimutations that can propagate to future generations. They used isolated somatic cells from mice (Sertoli, granulosa), pluripotent cells to model preimplantation embryos (iPSCs) and cells to model the germline (PGCLCs). This enabled them to model sequential steps in germline development, and when/how epimutations occur. The major findings were that BPS induced unique epimutations in each cell type, albeit with qualitative and quantitative cell-specific differences; that these epimutations are prevalent in regions associated with estrogen-response elements (EREs); and that epimutations induced in iPSCs are corrected as they differentiate into PGCLCs, concomitant with the emergence of de novo epimutations. This study will be useful in understanding multigenerational effects of EDCs, and underlying mechanisms.

      Strengths include:

      (1) Using different cell types representing life stages of epigenetic programming and during which exposures to EDCs have different effects. This progression revealed information both about correction of epimutations and the emergence of new ones in PGCLCs.<br /> (2) Work conducted by exposing iPSCs to BPS or vehicle, then differentiating to PGCLCs, revealed that novel epimutations emerged.<br /> (3) Relating epimutations to promoter and enhancer regions

      A few weaknesses remain: Authors need to discuss the limitations of the small sample size. The supplemental data, while extremely helpful, requires better organization.

    1. Reviewer #1 (Public Review):

      This manuscript by Bai et al concerns the expression of Scleraxis (Scx) by muscle satellite cells (SCs) and the role of that gene in regenerative myogenesis. The authors report the expression of this gene associated with tendon development in satellite cells. Genetic deletion of Scx in SCs impairs muscle regeneration, and the authors provide evidence that SCs deficient in Scx are impaired in terms of population growth and cellular differentiation. Overall, this report provides evidence of the role of this gene, unexpectedly, in SC function and adult regenerative myogenesis.

      There are a few minor points of concern.

      (1) From the data in Figure 1, it appears that all of the SCs, assessed both in vitro and in vivo, express Scx. The authors refer to a scRNA-seq dataset from their lab and one report from mdx mouse muscle that also reveals this unexpected gene expression pattern. Has this been observed in many other scRNA-seq datasets? If not, it would be important to discuss potential explanations as to why this has not been reported previously.

      (2) A major point of the paper, as illustrated in Fig. 3, is that Scx-neg SCs fail to produce normal myofibers and renewed SCs following injury/regeneration. They mention in the text that there was no increased PCD by Caspase staining at 5 DPI. A failure of cell survival during the process of SC activation, proliferation, and cell fate determination (differentiation versus self-renewal) would explain most of the in vivo data. As such, this conclusion would seem to warrant a more detailed analysis in terms of at least one or two other time points and an independent method for detecting dead/dying cells (the in vitro data in Fig. 4F is also based on an assessment of activated Caspase to assess cell death). The in vitro data presented later in Fig. S4G, H do suggest an increase in cell loss during proliferative expansion of Scx-neg SCs. To what extent does cell loss (by whatever mechanism of cell death) explain both the in vivo findings of impaired regeneration and even the in vitro studies showing slower population expansion in the absence of Scx?

      (3) I'm not sure I understand the description of the data or the conclusions in the section titled "Basement membrane-myofiber interaction in control and Scx cKO mice". Is there something specific to the regeneration from Scx-neg myogenic progenitors, or would these findings be expected in any experimental condition in which myogenesis was significantly delayed, with much smaller fibers in the experimental group at 5 DPI?

      (4) The data presented in Fig. 4B showing differences in the purity of SC populations isolated by FACS depending on the reporter used are interesting and important for the field. The authors offer the explanation of exosomal transfer of Tdt from SCs to non-SCs. The data are consistent with this explanation, but no data are presented to support this. Are there any other explanations that the authors have considered and that could be readily tested?

      (5) The Cut&Run data of Fig. 6 certainly provide evidence of direct Scx targets, especially since the authors used a novel knock-in strain for analyses. The enrichment of E-box motifs provides support for the 207 intersecting genes (scRNA-seq and Cut&Run) being direct targets. However, the rationale elaborated in the final paragraph of the Results section proposing how 4 of these genes account for the phenotypes on the Scx-neg cells and tissues is just speculation, however reasonable. These are not data, and these considerations would be more appropriate in the Discussion in the absence of any validation studies.

    1. Reviewer #1 (Public Review):

      Tleiss et al. demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. This effect induces muscular muscle contraction, which is marked by the formation of TARM structures (thoracic ary-related muscles). This muscle contraction-related blocking happens early after infection (15mins). On the other side, the clearance of bacteria is done by the IMD pathway possibly through antimicrobial peptide production while it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense.

      This important work substantially advances our understanding of the process of pathogen clearance by identifying a new mode of pathogen eradication from the insect gut. The evidence supporting the authors' claims is solid and would benefit from more rigorous experiments.

      (1) The authors performed the experiments on Drosophila larvae. I wonder whether this model could extend to adult flies since they have shown that the ROS/TRPA1/Dh31 axis is important for gut muscle contraction in adult flies. If not, how would the authors explain the discrepancy between larvae and adults?

      (2) The authors performed their experiments and proposed the models based on two pathogenic bacteria and one commensal bacterial at a relatively high bacterial dose. They showed that feeding Bt at 2X1010 or Ecc15 at 4X108 did not induce a blockage phenotype. I wonder whether larvae die under conditions of enteric infection with low concentrations of pathogenic bacteria. If larvae do not show mortality, what is the mechanism for resisting low concentrations of pathogenic bacteria? Why is this model only applied to high-dose infections?

      (3) The authors claim that the lock of bacteria happens at 15 minutes while killing by AMPs happens 6-8 hours later. What happened during this period? More importantly, is IMD activity induced in the anterior region of the larval gut in both Ecc15 and Bt infection at 6 hours after infection? Are they mostly expressed in the anterior midgut in both bacterial infections? Several papers have shown quite different IMD activity patterns in the Drosophila gut. Zhai et al. have shown that in adult Drosophila, IMD activity was mostly absent in the R2 region as indicated by dpt-lacZ. Vodovar et al. have shown that the expression of dpt-lacZ is observable in proventriculus while Pe is not in the same region. Tzou et al. showed that Ecc15 infection induced IMD activity in the anterior midgut 24 hours after infection. Using TrpA1 and Dh31 mutant, the authors found both Ecc15 and Bt in the posterior midgut. Why are they not evenly distributed along the gut? Last but not least, does the ROS/TrpA1/Dh31 axis affect AMP expression?

      (4) The TARM structure part is quite interesting. However, the authors did not show its relevance in their model. Is this structure the key-driven force for the blocking phenotype and killing phenotype? Is the ROS/TrpA1/Dh31 axis required to form this structure?

    1. Reviewer #1 (Public Review):

      Summary:

      Sammons, Masserini et al. examine the connectivity of different types of CA3 pyramidal cells ("thorny" and "athorny"), and how their connectivity putatively contributes to their relative timing in sharp-wave-like activity. First, using patch-clamp recordings, they characterize the degree of connectivity within and between athorny and thorny cells. Based upon these experimental results, they compute a synaptic product matrix, and use this to inform a computational model of CA3 activity. This model finds that this differential connectivity between these populations, augmented by two different types of inhibitory neurons, can account for the relative timing of activity observed in sharp waves in vivo.

      Strengths:

      The patch-clamp experiments are exceptionally thorough and well done. These are very challenging experiments and the authors should be commended for their in-depth characterization of CA3 connectivity.

      Weaknesses:

      (1) The computational elements of this study feel underdeveloped. Whereas the authors do a thorough job experimentally characterizing connections between excitatory neurons, the inhibitory neurons used in the model seem to be effectivity "fit neurons" and appear to have been tuned to produce the emergent properties of CA3 sharp wave-like activity. Although I appreciate the goal was to implicate CA3 connectivity contributions to activity timing, a stronger relationship seems like it could be examined. For example, did the authors try to "break" their model? It would be informative if they attempted different synaptic product matrices (say, the juxtaposition of their experimental product matrix) and see whether experimentally-derived sequential activity could not be elicited. It seems as though this spirit of analysis was examined in Figure 4C, but only insofar as individual connectivity parameters were changed in isolation.

      (2) Additional explanations of how parameters for interneurons were incorporated in the model would be very helpful. As it stands, it is difficult to understand the degree to which the parameters of these neurons are biologically constrained versus used as fit parameters to produce different time windows of activity in types of CA3 pyramidal cells.

    1. 44,576

      DOI: 10.1186/s13024-022-00585-1

      Resource: BDSC_44576

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_44576


      What is this?

    2. 27,567

      DOI: 10.1186/s13024-022-00585-1

      Resource: (BDSC Cat# 27567,RRID:BDSC_27567)

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_27567


      What is this?

    3. 41,845

      DOI: 10.1186/s13024-022-00585-1

      Resource: BDSC_41845

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_41845


      What is this?

    4. BDSC:31242

      DOI: 10.1186/s13024-022-00585-1

      Resource: (BDSC Cat# 31242,RRID:BDSC_31242)

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_31242


      What is this?

    5. Bloomington Drosophila Stock Center

      DOI: 10.1186/s13024-022-00585-1

      Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)

      Curator: @DavidDeutsch

      SciCrunch record: RRID:SCR_006457


      What is this?

    1. Reviewer #1 (Public Review):

      The authors have performed all-atom MD simulations to study the working mechanism of hsPepT2. It is widely accepted that conformational transitions of proton-coupled oligopeptide transporters (POTs) are linked with gating hydrogen bonds and salt bridges involving protonatable residues, whose protonation triggers gate openings. Through unbiased MD simulations, the authors identified extra-cellular (H87 and D342) and intra-cellular (E53 and E622) triggers. The authors then validated these triggers using free energy calculations (FECs) and assessed the engagement of the substrate (Ala-Phe dipeptide). The linkage of substrate release with the protonation of the ExxER motif (E53 and E56) was confirmed using constant-pH molecular dynamics (CpHMD) simulations and cell-based transport assays. An alternating-access mechanism was proposed. The study was largely conducted properly, and the paper was well-organized. However, I have a couple of concerns for the authors to consider addressing.

      (1) As a proton-coupled membrane protein, the conformational dynamics of hsPepT2 is closely coupled to protonation events of gating residues. Instead of using semi-reactive methods like CpHMD or reactive methods such as reactive MD, where the coupling is accounted for, the authors opted for extensive non-reactive regular MD simulations to explore this coupling. Note that I am not criticizing the choice of methods, and I think those regular MD simulations were well designed and conducted. But I do have two concerns.<br /> (a) Ideally, proton-coupled conformational transitions should be modelled using a free energy landscape with two or more reaction coordinates (or CVs), with one describing the protonation event and the others describing the conformational transitions. The minimum free energy path then illustrates the reaction progress, such as OCC/H87D342- ↔ OCC/H87HD342H ↔ OF/H87HD342H as displayed in Figure 3. Without including the protonation as a CV, the authors tried to model the free energy changes from multiple FECs using different charge states of H87 and D342. This is a practical workaround, and the conclusion drawn (the OCC↔OF transition is downhill with protonated H87 and D342) seems valid. However, I don't think the OF states with different charge states (OF/H87D342-, OF/H87HD342-, OF/H87D342H, and OF/H87HD342H) are equally stable, as plotted in Figure 3b. The concern extends to other cases like Figures 4b, S7, S10, S12, S15, and S16. While it may be appropriate to match all four OF states in the free energy plot for comparison purposes, the authors should clarify this to ensure readers are not misled.<br /> (b) Regarding the substrate impact, it appears that the authors assumed fixed protonation states. I am afraid this is not necessarily the case. Variations in PepT2 stoichiometry suggests that substrates likely participate in proton transport, like the Phe-Ala (2:1) and Phe-Gln (1:1) dipeptides mentioned in the introduction. And it is not rigorous to assume that the N- and C-termini of a peptide do not protonate/deprotonate when transported. I think the authors should explicitly state that the current work and the proposed mechanism (Figure 8) are based on the assumption that the substrates do not uptake/release proton(s).

      (2) I have more serious concerns about the CpHMD employed in the study.<br /> (a) The CpHMD in AMBER is not rigorous for membrane simulations. The underlying generalized Born model fails to consider the membrane environment when updating charge states. In other words, the CpHMD places a membrane protein in a water environment to judge if changes in charge states are energetically favorable. While this might not be a big issue for peripheral residues of membrane proteins, it is likely unphysical for internal residues like the ExxER motif. As I recall, the developers have never used the method to study membrane proteins themselves. The only CpHMD variant suitable for membrane proteins is the membrane-enabled hybrid-solvent CpHMD in CHARMM. While I do not expect the authors to redo their CpHMD simulations, I do hope the authors recognize the limitation of their method.<br /> (b) It appears that the authors did not make the substrate (Ala-Phe dipeptide) protonatable in holo-simulations. This oversight prevents a complete representation of ligand-induced protonation events, particularly given that the substrate ion-pairs with hsPepT2 through its N- & C-termini. I believe it would be valuable for the authors to acknowledge this potential limitation.

    1. Reviewer #1 (Public Review):

      Summary:

      TMC7 knockout mice were generated by the authors and the phenotype was analyzed. They found that Tmc7 is localized to Golgi and is needed for acrosome biogenesis.

      Strengths:

      The phenotype of infertility is clear, and the results of TMC7 localization and the failed acrosome formation are highly reliable. In this respect, they made a significant discovery regarding spermatogenesis.

      In the original version, I pointed out the gap between their pH/calcium imaging data and the hypothesis of ion channel function of TMC7 in the Golgi. Now the author agrees and has changed the description to be reasonable. Additional experiments were also performed, and I can say that they have answered my concern adequately.

      I would say it is good to add any presumed mechanism for the observed changes in pH and calcium concentration in the cytoplasm this time.

    1. Reviewer #1 (Public Review):

      Overall, the data presented in this manuscript is of good quality. Understanding how cells control RPA loading on ssDNA is crucial to understanding DNA damage responses and genome maintenance mechanisms. The authors used genetic approaches to show that disrupting PCNA binding and SUMOylation of Srs2 can rescue the CPT sensitivity of rfa1 mutants with reduced affinity for ssDNA. In addition, the authors find that SUMOylation of Srs2 depends on binding to PCNA and the presence of Mec1.

      Noted weaknesses include the lack of evidence supporting that Srs2 binding to PCNA and its SUMOylation occur at ssDNA gaps, as proposed by the authors. Also, the mutants of Srs2 with impaired binding to PCNA or impaired SUMOylation showed no clear defects in checkpoint dampening, and in some contexts, even resulted in decreased Rad53 activation. Therefore, key parts of the paper would benefit from further experimentation and/or clarification.

      Major Comments

      (1) The central model proposed by the authors relies on the loading of PCNA at the 3' junction of an ssDNA gap, which then mediates Srs2 recruitment and RPA removal. While several aspects of the model are consistent with the data, the evidence that it is occurring at ssDNA gaps is not strong. The experiments mainly used CPT, which generates mostly DSBs. The few experiments using MMS, which mostly generates ssDNA gaps, show that Srs2 mutants lead to weaker rescue in this context (Figure S1). How do the authors explain this discrepancy? In the context of DSBs, are the authors proposing that Srs2 is engaging at later steps of HR-driven DSB repair where PCNA gets loaded to promote fill-in synthesis? If so, is RPA removal at that step important for checkpoint dampening? These issues need to be addressed and the final model adjusted.

      (2) The data in Figure 3 showing that Srs2 mutants reduce Rad53 activation in the rfa1-zm2 mutant are confusing, especially given the claim of an anti-checkpoint function for Srs2 (in which case Srs2 mutants should result in increased Rad53 activation). The authors propose that Rad53 is hyperactivated in rfa1-zm2 mutant because of compromised ssDNA protection and consequential DNA lesions, however, the effects sharply contrast with the central model. Are the authors proposing that in the rfa1-zm2 mutant, the compromised protection of ssDNA supersedes the checkpoint-dampening effect? Perhaps a schematic should be included in Figure 3 to depict these complexities and help the reader. The schematic could also include the compensatory dampening mechanisms like Slx4 (on that note, why not move Figure S2 to a main figure?... and even expand experiments to better characterize the compensatory mechanisms, which seem important to help understand the lack of checkpoint dampening effect in the Srs2 mutants)

      (3) The authors should demarcate the region used for quantifying the G1 population in Figure 3B and explain the following discrepancy: By inspection of the cell cycle graph, all mutants have lower G1 peak height compared to WT (CPT 2h). However, in the quantification bar graph at the bottom, ΔPIM has higher G1 population than the WT.

    1. Reviewer #2 (Public Review):

      Summary:

      Tian et al. aimed to assess differences in biological motion (BM) perception between children with and without ADHD, as well as relationships to indices of social functioning and possible predictors of BM perception (including demographics, reasoning ability and inattention). In their study, children with ADHD showed poorer performance relative to typically developing children in three tasks measuring local, global, and general BM perception. The authors further observed that across the whole sample, performance in all three BM tasks was negatively correlated with scores on the social responsiveness scale (SRS), whereas within groups a significant relationship to SRS scores was only observed in the ADHD group and for the local BM task. Local and global BM perception showed a dissociation in that global BM processing was predicted by age, while local BM perception was not. Finally, general (local & global combined) BM processing was predicted by age and global BM processing, while reasoning ability mediated the effect of inattention on BM processing.

      Strengths:

      Overall, the manuscript is presented in a clear fashion and methods and materials are presented with sufficient detail so the study could be reproduced by independent researchers. The study uses an innovative, albeit not novel, paradigm to investigate two independent processes underlying BM perception. The results are novel and have the potential to have wide-reaching impact on multiple fields.

      Weaknesses:

      The manuscript has improved in clarity and conceptual and methodological considerations in response to the last review. However, the reported results still provide incomplete support for the claims the authors make in the paper, due to differences between correlations not passing significance thresholds.

    1. Reviewer #1 (Public Review):

      This study seeks to understand how selective mRNA translation informs cellular identity using the Drosophila brain as a model. Using drivers specific for either neurons or glia, the authors express a tagged large ribosomal subunit protein, which they then use as a handle for isolating total mRNA and ribosome footprints. Throughout the study, they compare these data sets to transcriptional and ribosome profiles from the whole fly head, which contains multiple cell types including fat tissue, pigment cells and others, in addition to neurons and glia. Using GO term analyses, they demonstrate the specificity of their cell-type-based ribosome profiling: known glial mRNAs are efficiently translated in glia and likewise in neurons as well. In further examining their RNAseq data set, they find that "neuronal" mRNAs, such as ion channels, are expressed in both neurons and glia, but are translated at higher rates in neurons. Based on this, they hypothesize that neuronal mRNAs are actively suppressed in glia, and next seek to determine the underlying mechanism. By meta-analysis of all mapped ribosome footprints, they find that glia have higher ribosome occupancies in the 5' leader of neuronal mRNAs. This is corroborated by individual ribosome occupancy profiles for several neuronal mRNAs. In 5'leaders containing upstream AUG codons, they find that the glial data sets show an enrichment of ribosomes at these upstream start sites. They thus conclude that that 5' leaders containing upstream AUGs confer translational suppression in glia.

      Overall, the sequencing data sets generated in this study and their subsequent bioinformatic analyses seem robust and reliable. Their data echo the trends of cell-type specific translational profiles seen in previous studies (e.g. 27380875, 30650354), and making their data sets and analyses accessible to the broader scientific community would be quite helpful. The findings are presented in a logical and methodical manner, and the data are depicted clearly. The authors' results that 5' leaders facilitate translation suppression is well-supported in literature. However, they overinterpret their data by claiming that such suppression is key for maintaining glial/neuronal identity (it is even featured in their title), but do not present any evidence that loss of such regulation has any impact on cellular identity. In many places, the authors do not acknowledge possible biases in their analytical methods, or consider alternate explanations for their data. These weaken the manuscript in its current form, but many of these issues which I describe below, are rectifiable with modest effort.

      (1) The authors' data in Fig. 2-S1A-B shows substantial cell-to-cell variation in RpL3::FLAG expression. The authors do not consider that this variation may cause certain neuronal/glial types to be overrepresented in their datasets. In related, the authors do not discuss whether RpL3::FLAG only present in the cell body or if it is also trafficked to the neuronal/glial processes where localized translation is known to occur (reviewed in 31270476).

      (2) The RNA-seq data set that they use to calculate translation efficiency (TE) only represents mRNAs associated with RpL3::FLAG, which is part of the large ribosome subunit. As the authors are likely aware, there are mRNAs on which the full ribosome moiety does not assemble and these are effectively excluded from this data set. Ideally, a more complete picture of the mRNA landscape can be obtained by 40S subunit profiling but I appreciate that this is technically very challenging. At minimum, this caveat needs to be acknowledged.

      How does the TPM of differentially regulated transcripts (such as those in Fig. 2H) compare between whole heads, neurons and glia? Since the whole head RNA-seq data was not from an enriched sample, this might serve as a decent proxy for showing that the neuron/glia RNA-seq data sets are representative of RNA abundance.

      (3) The analysis in Fig. 2F shows that low abundance mRNAs in glia are further translationally suppressed, which the authors point out in lines 151-152. However, this data also shows that mRNAs with a 1:1 ration in neuron:glia (which fall in the 0.5-1 and 1-2 bin) have a TE-1; this suggests that on average, mRNAs that are equally abundant are translated equally efficiently. This is the opposite of the thesis presented in Fig. 2G-H where many mRNAs of equal abundance in neurons and glia are actually poorly translated in glia. How do the authors reconcile these observations?

      It is also unclear from the manuscript whether all mRNAs were considered for the analysis in Fig. 2F or if some cutoff was employed.

      (4) Throughout the manuscript the authors favor a "translation suppression" model wherein glia (for example) actively suppress neuronal mRNAs, and this is substantiated in Fig. 3C showing higher ribosome occupancy on 5' leaders than in coding regions. However, they show no evidence that glial mRNAs (such as those indicated in Fig. 2B and 2-S2B) present a different pattern, say that of higher ribosome occupancy in CDS vs. 5' leaders. This type of a positive control is a glaring omission from many of their analyses, including ribosome occupancy at upstream AUG codons (Fig. 4).

      In related, to make a broad case (as they do in the title) that differential translation regulation specifies multiple cell types, it is necessary to show the corollary: that glial mRNAs (repo, bnb, pnt, etc) are suppressed in neurons. There is an inkling of this evidence in Fig. 3-S1 where fat body mRNAs in neurons are shown to have low ribosome occupancy in the CDS regions and enhanced occupancy in the 5' leader region. This data is not quantified, nor is a control neuron mRNA shown as a reference for what the ribosome occupancy profile of an actively translated mRNA looks like in a neuron.

      (5) The cell-type specific ribosome profiling data sets in the manuscript are from mRNAs associated with 80s subunits that have been treated with cycloheximide during sample preparation. Cycloheximide, and many other translation inhibitors, are known to non-uniformly bias reads towards start codons (PMID: 22056041,22927429). This important caveat and its implications on the start-codon occupancy analysis in Fig. 4 are not acknowledged in the manuscript.<br /> Again, the ideal resolution would be ribosome profiling data set from 40S footprinting or harringtonine-treated samples (PMIDs: 32589966, 27487212, 32589964) to show true accumulation of ribosomes at AUG codons. In the absence of such a data set, a comparative meta-analysis of the ribosome distribution around upstream and initiation AUG codons of differentially translated transcripts from neurons would be a useful control.

      (6) The authors chose Rhodopsin 1 (Rh1) as a model mRNA which is translated efficiently in neurons but suppressed in glia. Though the data in Fig. 2-S3B shows higher TE for Rh1 in neurons, the data in 5A show lower ribosome occupancy in the Rh1 CDS in neuron samples (at least in the fragment of the CDS visible). These data are somewhat contradictory.<br /> Further, given that the neuron data are from all nsyb-positive cells but that Rh1 is expressed only in R1-R6 photoreceptors, it is unclear what motivated them to chose Rh1 as opposed to an mRNA that is more broadly expressed in neurons.

      (7) Similar to the heterogeneity in nsyb- and repo-GAL4 expression in Fig. 2-S1A-B, Fig. 5C shows substantial variation in the expression of the UAS-GFP reporter driven by tub-GAL4. This variable GAL4 activity makes the mRNA abundance data difficult to interpret. Also, since the authors presume that Rh1 mRNA is expressed in glia (it is not annotated in the RNA-seq analysis in Fig. 2-S2B), would Rh1-GAL4 not be a more apt driver?<br /> These issues are further compounded by the lack of a cellular compartment marker (repo marks glial nuclei) which makes it impossible to determine which cell the mRNA signal is in. There are also no negative controls are presented for the mRNA probes.

      Most confoundingly though, the control reporter itself seems to show variable translation efficiencies from one cell to another, with high-GFP protein cells showing lower GFP mRNA and vice versa.<br /> The mRNA:protein ratio may be easier to examine by using repo-GAL4 to specifically drive the Rh1-reporter expression in glia (such as in Fig. 5-S1A) rather than simultaneous expression in both neurons and glia using tub-GAL4.

      Comments post revision: The authors have satisfactorily addressed most of my concerns with the study. I appreciate their patient clarification of many of my points, and the revision to text+figures appending more controls. My only minor gripe remains that while their data beautifully show that there is differential regulation of transcripts across neurons and glia, they do not provide evidence that such regulation is required for cell identity. However, I appreciate this is a large experimental ask worthy of another study in and of itself. Overall, I peg this an excellent study that adds substantially to the field of cell-type specific mRNA translation regulation.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript focuses on the role of the deubiquitinating enzyme UPS-50/USP8 in endosome maturation. The authors aimed to clarify how this enzyme drives the conversion of early endosomes into late endosomes. Overall, they did achieve their aims in shedding light on the precise mechanisms by which UPS-50/USP8 regulates endosome maturation. The results support their conclusions that UPS-50 acts by disassociating RABX-5 from early endosomes to deactivate RAB-5 and by recruiting SAND-1/Mon1 to activate RAB-7. This work is commendable and will have a significant impact on the field. The methods and data presented here will be useful to the community in advancing our understanding of endosome maturation and identifying potential therapeutic targets for diseases related to endosomal dysfunction. It is worth noting that further investigation is required to fully understand the complexities of endosome maturation. However, the findings presented in this manuscript provide a solid foundation for future studies.

      Strengths:

      The major strengths of this work lie in the well-designed experiments used to examine the effects of UPS-50 loss. The authors employed confocal imaging to obtain a picture of the aftermath of USP-50 loss. Their findings indicated enlarged early endosomes and MVB-like structures in cells deficient in USP-50/USP8.

      Weaknesses:

      Specifically, there is a need for further investigation to accurately characterize the anomalous structures detected in the ups-50 mutant. Also, the correlation between the presence of these abnormal structures and ESCRT-0 is yet to be addressed, and the current working model needs to be revised to prevent any confusion between enlarged early endosomes and MVBs.

    1. Reviewer #1 (Public Review):

      This study makes an interesting finding: a polyunsaturated fatty acid, Lin-Glycine, increases the conductance of KCNQ1/KCNE1 channels by stabilizing a state of the selectivity filter that allows K+ conduction. The stabilization of a conducting state appears well supported by single channel analysis, though some technical details are missing and presentations confusing. The linkage to PUFA action through the selectivity filter is supported by disruption of PUFA effects by mutation of residues which change conformation in two KCNQ1 structures from the literature. A definitive functional experiment is conducted by single channel recordings with selectivity filter domain mutation Y315F which ablates the Lin-Glycine effect on Gmax. The computational exploration of two selectivity filter structures proposed to interact distinctly with Lin-Glycine is informative, however the relation of the closed selectivity filter structures to the [K+] concentration in which it was obtained and inactivation in other channels is ignored. Overall, the major claim of the abstract is well-supported: "... that the selectivity filter in KCNQ1 is normally unstable ... and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state."

    1. Reviewer #1 (Public Review):

      Summary:

      The current manuscript provides strong evidence that the molecular function of SLC35G1, an orphan human SLC transporter, is citrate export at the basolateral membrane of intestinal epithelial cells. Multiple lines of evidence, including radioactive transport experiments, immunohistochemical staining, gene expression analysis, and siRNA knockdown are combined to deduce a model of the physiological role of this transporter.

      Strengths:

      The experimental approaches are comprehensive, and together establish a strong model for the role of SLC35G1 in citrate uptake. The observation that chloride inhibits uptake suggests an interesting mechanism that exploits the difference in chloride concentration across the basolateral membrane.

      Weaknesses:

      Some aspects of the results would benefit from a more thorough discussion of the conclusions and/or model.

      For example, the authors find that SLC35G1 prefers the dianionic (singly protonated) form of citrate, and rationalize this finding by comparison with the substrate selectivity of the citrate importer NaDC1. However, this comparison has weaknesses when considering the physiological pH for SLC35G1 and NaDC1. NaDC1 binds citrate at a pH of ~5.4 (the pKa of citrate is 5.4, so there is a lot of dianionic citrate present under physiological circumstances). SLC35G1 binds citrate under pH conditions of ~7.5, where a very small amount of dianionic citrate is present. The data clearly show a pH dependence of transport, and the authors rule out proton coupling, but the discrepancy between the pH dependence and the physiological expectations should be addressed/commented on.

      The rationale for the series of compounds tested in Figure 1F, which includes metabolites with carboxylate groups, a selection of drugs including anion channel inhibitors and statins, and bile acids, is not described. Moreover, the lessons drawn from this experiment are vague and should be expanded upon. It is not clear what, if anything, the compounds that reduce citrate uptake have in common.

      The transporter is described as a facilitative transporter, but this is not established definitively. For example, another possibility could involve coupling citrate transport to another substrate, possibly even chloride ion.

    1. Reviewer #1 (Public Review):

      The study identifies the epigenetic reader SntB as a crucial transcriptional regulator of growth, development, and secondary metabolite synthesis in Aspergillus flavus, although the precise molecular mechanisms remain elusive. Using homologous recombination, researchers constructed sntB gene deletion (ΔsntB), complementary (Com-sntB), and HA tag-fused sntB (sntB-HA) strains. Results indicated that deletion of the sntB gene impaired mycelial growth, conidial production, sclerotia formation, aflatoxin synthesis, and host colonization compared to the wild type (WT). The defects in the ΔsntB strain were reversible in the Com-sntB strain.

      Further experiments involving ChIP-seq and RNA-seq analyses of sntB-HA and WT, as well as ΔsntB and WT strains, highlighted SntB's significant role in the oxidative stress response. Analysis of the catalase-encoding catC gene, which was upregulated in the ΔsntB strain, and a secretory lipase gene, which was downregulated, underpinned the functional disruptions observed. Under oxidative stress induced by menadione sodium bisulfite (MSB), the deletion of sntB reduced catC expression significantly. Additionally, deleting the catC gene curtailed mycelial growth, conidial production, and sclerotia formation, but elevated reactive oxygen species (ROS) levels and aflatoxin production. The ΔcatC strain also showed reduced susceptibility to MSB and decreased aflatoxin production compared to the WT.

      This study outlines a pathway by which SntB regulates fungal morphogenesis, mycotoxin synthesis, and virulence through a sequence of H3K36me3 modification to peroxisomes and lipid hydrolysis, impacting fungal virulence and mycotoxin biosynthesis.

      The authors have achieved majority of their aims at the beginning of the study, finding target genes, which led to catC mediated regulation of development, growth and aflatoxin metabolism. Overall most parts of the study is solid and clear.

    1. Reviewer #1 (Public Review):

      By using a series of biochemical methods based on proteomic and metabolomic approaches, this study aims at: (1) validating the specific targeting of a biologically active molecule (MIPS2673) towards a defined (and unique?) protein target within a parasite, and (2) exploring whether it is possible to extrapolate which metabolic pathway has been disrupted.

      Strength/Weaknesses

      -The chemoproteomic approach, convincingly shows that MIPS2673 more significantly "protects" the putative target (PfA-M1) against thermal degradation or against enzymatic attack (by proteinase K). Proteomic studies are carried using parasite extracts enriched in late trophozoites (30-38 h pi), and are restricted to the soluble proteins fraction.<br /> -The metabolomic approach, documents the ability of MIPS2673 to selectively increase the number of non-hydrolyzed dipeptides in treated versus untreated parasites, further arguing for selective targeting of PfA-M1 and impairment of hemoglobin breakdown by the parasite.<br /> -The revised version now also considers and further studies the additional putative targets identified by one proteomic approach (but not the other one), which is both more critical of the results obtained and more realistic.<br /> The work as a whole is highly interesting, both for the specific topic of PfA-M1's role in parasite biology and for the method, applicable to other malarial drug contexts.

    1. Reviewer #1 (Public Review):

      Summary:

      Khan et. al., investigated the functional redundancy of the non-canonical L-cysteine synthases of M. tuberculosis, CysM and CysK2, focussing on their role in mitigating the effects of host-derived stress. They found that while deletion mutants of the two synthases (Rv∆cysM, Rv∆cysK2) have similar transcriptomes under standard conditions, their transcriptional response to oxidative stress is distinct. The impact of deleting the synthases also differentially affected the pools of L-cysteine-derived metabolites. They show that the mutants (Rv∆cysM, Rv∆cysK2) have impaired survival in peritoneal macrophages and in a mouse model of infection. Importantly, they show that the survival of the mutants increases when the host are defective in producing reactive oxygen and nitrogen species, linking the phenotype to a defect in combating host-derived stress. Finally, they show that compounds inhibiting L-cysteine synthases reduces intracellular survival of M. tuberculosis.

      Strengths:

      (1) The distinct transcriptome of the Rv∆cysM and Rv∆cysK2 mutants in the presence of oxidative stress provides solid evidence that these mutants are distinct in their response to oxidative stress, and suggests that they are not functionally redundant.<br /> (2) The use of macrophages from phox-/- and INF-/- mice and an iNOS inhibitor for the intracellular survival assays provides solid evidence that the survival defect seen for the Rv∆cysM and Rv∆cysK2 mutants is related to their reduced ability to combat host-derive oxidative and nitrosative stress. This is further supported by the infection studies in phox-/- and INF-/- mice.

      Weaknesses:

      Inclusion of the complemented strains in the metabolite study would strengthen the data. Furthermore, using an alternate method to quantify the MSH:MSSM ratio would provide insight into the redox homoeostasis in mutants in the presence and absence of CHP to support the statement that "deletion or inhibition of CysM or CysK2 perturbs redox homeostasis of Mtb".

      The authors sought to investigate the functional redundancy of the non-canonical L-cysteine synthases CysM and CysK2. While their distinct transcriptional response to oxidative stress suggests distinct physiological roles, the study did not explore these differences, and therefore provides only preliminary insight into the underlying reasons for this observation. In the context of drug development, this work suggests that while L-cysteine synthases inhibitors do not have high potency for killing intracellular M. tuberculosis, they have potential for decreasing the pathogen's survival in the presence of host-derive stress.

    1. Reviewer #3 (Public Review):

      The manuscript by Bimai et al describes a structural and functional characterization of an anaerobic ribonucleotide reductase (RNR) enzyme from the human microbe, P. copri. More specifically, the authors aimed to characterize the mechanism by how (d)ATP modulates nucleotide reduction in this anaerobic RNR, using a combination of enzyme kinetics, binding thermodynamics, and cryo-EM structural determination, complemented by hydrogen-deuterium exchange (HDX). One of the principal findings of this paper is the ordering of a NxN 'flap' in the presence of ATP that promotes RNR catalysis and the disordering (or increased protein dynamics) of both this flap and the glycyl radical domain (GRD) when the inhibitory effector, dATP, binds. The latter is correlated with a loss of substrate binding, which is the likely mechanism for dATP inhibition. It is important to note that the GRD is remote (>30 Ang) from the binding site of the dATP molecule, suggesting long-range communication of the structural (dis)ordering. The authors also present evidence for a shift in oligomerization in the presence of dATP. The work does provide evidence for new insights/views into the subtle differences of nucleotide modulation (allostery) of RNR, in a class III system, through long-range interactions.

      The strengths of the work are the impressive, in-depth structural analysis of the various regulated forms of PcRNR by (d)ATP using cryo-EM. The authors present seven different models in total, with striking differences in oligomerization and (dis)ordering of select structural features, including the GRD that is integral to catalysis. The authors present several, complementary biochemical experiments (ITC, MST, EPR, kinetics) aimed at resolving the binding and regulatory mechanism of the enzyme by various nucleotides. The authors present a good breadth of the literature in which the focus of allosteric regulation of RNRs has been on the aerobic orthologues.

      The addition of hydrogen-deuterium exchange mass spectrometry (HDX-MS) complements the results originating from cryo-EM data. Most notable, is the observation of the enhanced exchange (albeit quite subtle) of the GRD domain in the presence of dATP that matches the loss of structural information in this region in the cryo-EM data. The most pronounced and compelling HDX results are seen in the form of dATP-induced protection of peptides immediately adjacent to the b-hairpin at the s-site, where dATP is expected to bind based on cryo-EM. It is clear that the presence of dATP increases the rigidity of this region.

    1. Reviewer #1 (Public Review):

      Valk and Engert et al. examined the potential relations between three different mental training modules, hippocampal structure and functional connectivity, and cortisol levels (stress) over a 9-month period. They found that among the three types of mental training: Presence (attention and introspective awareness), Affect (socio-emotional - compassion and prosocial motivation), and Perspective (socio-cognitive - metacognition and perspective taking) modules; Affect training most robustly related to changes in hippocampal structure and function - specifically, CA1-3 subfields of the hippocampus. Moreover, change in intrinsic functional connectivity related to changes in diurnal cortisol release and long-term cortisol exposure. These changes are proposed to result from a combination of factors, which is supported by multivariate analyses showing changes across subfields and training content relate to cortisol changes.

      The authors demonstrate that mindfulness training programs are a potential avenue for stress interventions that impact hippocampal structure and cortisol, providing a promising approach to improve health. The data contribute to the literature on plasticity of hippocampal subfields during adulthood, the impact of mental training interventions on the brain, and the link between CA1-3 and both short- and long-term stress changes.

      The authors thoughtfully approached the study of hippocampal subfields, utilizing a method designed for T1w images that outperformed Freesurfer 5.3 and that produced comparable results to an earlier version of ASHS. The authors note the limitations of their approaches and provide detailed information on the data used and analyses conducted. The results provide a strong basis from which future studies can expand using computational approaches or more fine-grained investigations of the impact of mindfulness training on cortisol levels and the hippocampus.

    1. Reviewer #1 (Public Review):

      In this manuscript, Leikina et al. investigate the role of redox changes in the ubiquitous protein La in the promotion of osteoclast fusion. In a recently published manuscript, the investigators found that osteoclast multinucleation and resorptive activity are regulated by a de-phosphorylated and proteolytically cleaved form of the La protein that is present on the cell surface of differentiating osteoclasts. In the present work, the authors build upon these findings to determine the physiologic signals that regulate La trafficking to the cell membrane and ultimately, the ability of this protein to promote fusion. Building upon other published studies that show (1) that intracellular redox signaling can elicit changes in the confirmation and localization of La, and (2) that osteoclast formation is dependent on ROS signaling, the authors hypothesize that oxidation of La in response to intracellular ROS underlies the re-localization of La to the cell membrane and that this is necessary for its pro-fusion activity. The authors test this hypothesis in a rigorous manner using antioxidant treatments, recombinant La protein, and modification of cysteine residues predicted to be key sites of oxidation. Osteoclast fusion is then monitored in each condition using fluorescence microscopy. These data strongly support the conclusion that oxidized La is de-phosphorylated, increases in abundance at the cell surface of differentiating osteoclasts, and promotes cell-cell fusion. A strength of this manuscript is the use of multiple complementary approaches to test the hypothesis, especially the use of Cys mutant forms of La to directly tie the observed phenotypes to changes in residues that are key targets for oxidation. The manuscript is also well-written and describes a clearly articulated hypothesis based on a precise summation of the existing literature. The findings of this manuscript will be of interest to researchers in the field of bone biology, but also more generally to cell biologists. The data in this manuscript may also lead to future studies that target La for bone diseases in which there is increased osteoclast activity. The weaknesses of the manuscript are minor and predominantly relate to data presentation choices. These weaknesses do not detract from the overall conclusions of the study.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Beardslee and Schmitz, the authors undertook a screen for potential degrons - short peptide sequences at the C-terminus that would target the toxin VapC for degradation. The authors randomly mutagenized 5 amino acids appended to the C-terminus of VapC and transformed this library into E. coli to look for surviving cells when the VapC gene was expressed. The authors found an enrichment for tags ending Ala-Ala, and found that this enrichment was dependent on the presence of the ClpXP protease, since this sequence was not similarly enriched in a mutant lacking this protease. Moreover, the authors identify the sequence FKLVA as the tag with the highest fold enrichment in the screen and confirm that GFP tagged with this sequence is degraded by ClpXP with similar kinetics to GFP tagged with the ssrA-derived tag.

      Strengths:

      This study has two major implications for understanding the nature of degrons in E. coli. First, peptides ending Ala-Ala, and especially degrons resembling the ssrA degron are likely the most degradation-promoting sequences in E. coli. Second, these findings suggest that ClpXP is the most central protease, at least for this particular protein with a randomized C-terminus under the particular conditions of this screen. It is also notable that the ribosome quality control protein RqcH tags truncated proteins with an alanine tag in a template-free manner when the large ribosomal subunit is obstructed. Although E. coli doesn't encode RqcH, the utility of alanine-tagging for protein degradation likely extends to other organisms.

      Weaknesses:

      The authors remark and show that mutations that inactivate the VapC protein are enriched potentially more than the proteolysis tags. This is a limitation of the study and the authors have done well to describe this as it will inform future screens. Perhaps using a protein with more intermediate toxicity in future screens would help to prioritize C-terminal mutations instead of toxin-inactivating mutations.

      For clarity, the authors should explain why the NNK structure of the random codons was used. Why is it important that the codon end with a G or T?

      Authors state on page 7 that by determining enrichment of individual tags they can rank the relative Km for proteolysis of the individual tags. This statement is not accurate since the tag could variously impact its association with any of the proteases in the cell. Since Km is specific to each particular protease, these can't be ranked in vivo when all proteases are present.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript is dedicated heavily to cell type mapping and identification of sub-type markers in the human testis but does not present enough results from cross-investigation between NOA cases versus control. Their findings are mostly based on transcriptome and the authors do not make enough use of the scATAC-seq data in their analyses as they put forward in the title. Overall, the authors should do more to include the differential profile of NOA cases at the molecular level - specific gene expression, chromatin accessibility, TF binding, pathway, and signaling that are perturbed in NOA patients that may be associated with azoospermia.

      Strengths:

      (1) The establishment of single-cell data (both RNA and ATAC) from the human testicular tissues is noteworthy.

      (2) The manuscript includes extensive mapping of sub-cell populations with some claimed as novel, and reports marker gene expression.

      (3) The authors present inter-cellular cross-talks in human testicular tissues that may be important in adequate sperm cell differentiation.

      Weaknesses:

      (1) A low sample size (2 OA and 3 NOA cases). There are no control samples from healthy individuals.

      (2) Their argument about interactions between germ and Sertoli cells is not based on statistical testing.

      (3) Rationale/logic of the study. This study, in its present form, seems to be more about the role of sub-Sertoli population interactions in sperm cell development and does not provide enough insights about NOA.

      (4) The authors do not make full use of the scATAC-seq data.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript addresses the temporal patterns in how cholinergic signaling to the gut affects the lifespan of the worm C. elegans, which should make the manuscript of wide interest to those who study aging, as well as those who study the brain-gut axis in health and disease. The authors show that early acetylcholine (ACh) signaling to the intestine via the ACR-6 receptor shortens worm lifespan, which depends on the DAF-16/FOXO transcription factor. However, later ACh signaling to the intestine via the GAR-3 receptor extends lifespan, which in turn depends on the heat shock factor HSF-1. The authors also show a potential mechanism through which these two temporal patterns of ACh signaling might be coordinated to influence longevity in the worm, and possibly in other animals.

      Strengths:

      The authors observed that the functional ablation of acr-2-expressing cholinergic neurons in C. elegans (Pacr-2::TeTx) produced a lifespan curve that intersects the lifespan curve of a wild-type population. The first quartile of Pacr-2::TeTx worms shows a longer lifespan than the first quartile of wild-type worms, whereas the last quartile of Pacr-2::TeTx worms exhibits a shorter lifespan than wild-type. These observations raised the hypothesis that cholinergic neurons have two opposing effects on longevity: an early longevity-inhibiting effect and a later longevity-promoting effect. Much of the data supports the authors' conclusions.

      Weaknesses:

      While the authors have proved their hypothesis by temporally increasing the activity of cholinergic neurons at different life stages through the auxin-inducible degron system, their work raises two major concerns. First, they might want to discuss the conflicting data from Zullo et al (Nature 2019, vol 574, pp 359-364). For example, the authors show that increasing the activity of acr-2-expressing neurons after the 7th day of adulthood increases lifespan. However, Zullo et al (2019) show that the reciprocal experiment, inhibiting cholinergic neuron activity on the 1st day or the 8th day of adulthood, also increases lifespan. Is this because the two studies are using different promoters, that of the acr-2 ACh receptor (this work) versus that of the unc-17 vesicular ACh transporter (Zullo et al., 2019)? The two genes are expressed in different subsets of cells that do not completely overlap. CeNGEN shows that acr-2 is expressed in motor and non-motor neurons, but some of these neurons are also different from those that express unc-17. Is it possible that different cholinergic neurons also have opposite lifespan effects during adulthood? Or is it because both lack of signaling and hypersignaling can lead to a long-life phenotype? Leinwand et al (eLife 2015, vol 4, e10181) previously suggested that disturbing the balance in neurotransmission alone can extend lifespan. A simple discussion of these possibilities in the Discussion section is likely sufficient. Or can the auxin treatment and removal be confounding factors? Loose and Ghazi (Biol Open 2021, vol 10, bio058703) show that auxin IAA alone can affect lifespan and that this effect can depend on the time the animal is exposed to the auxin.

      Second, the daf-16-dependence of the early longevity-inhibiting effect of ACh signaling needs clarification and further experimentation. The authors present a model in Figure 6D, where DAF-16 inhibits longevity. This contradicts published literature. Libina et al (Cell 2003, vol 115, pp 489-502) have shown that intestinal DAF-16 increases lifespan. From the authors' data, it is possible that ACh signaling inhibits DAF-16, not promotes it as they have drawn in Figure 6D. In Figure 3F, the authors used Pacr-2::TeTx, which inhibits cholinergic neuron activity, to show an increase in the expression of DAF-16 targets. Why did the authors not use the worms that express the transgene Pacr-2::syntaxin(T254I), which increases cholinergic neuron activity? What happens to the expression of DAF-16 targets in these animals? Do their expression go down? What happens if intestinal daf-16 is knocked down in animals with increased cholinergic neuron activity, instead of reduced cholinergic neuron activity?

    1. Reviewer #1 (Public Review):

      Summary:

      The work provides more evidence of the importance of data quality and representation for ligand-based virtual screening approaches. The authors have applied different machine learning (ML) algorithms and data representation using a new dataset of BRAF ligands. First, the authors evaluate the ML algorithms and demonstrate that independently of the ML algorithm, predictive and robust models can be obtained in this BRAF dataset. Second, the authors investigate how the molecular representations can modify the prediction of the ML algorithm. They found that in this highly curated dataset the different molecule representations are adequate for the ML algorithms since almost all of them obtain high accuracy values, with Estate fingerprints obtaining the worst-performing predictive models and ECFP6 fingerprints producing the best classificatory models. Third, the authors evaluate the performance of the models on subsets of different composition and size of the BRAF dataset. They found that given a finite number of active compounds, increasing the number of inactive compounds worsens the recall and accuracy. Finally, the authors analyze if the use of "less active" molecules affect the model's predictive performance using "less active" molecules taken from ChEMBl Database or using decoys from DUD-E. As results, they found that the accuracy of the model falls as the number of "less active" examples in the training dataset increases while the implementation of decoys in the training set generates results as good as the original models or even better in some cases. However, the use of decoys in the training set worsens the predictive power in the test sets that contain active and inactive molecules.

      Strengths:

      It is a very interesting topic in medicinal chemistry and drug discovery. This work is very well written and contains up-to-date references. The general structure of the work is adequate, allowing easy reading. The hypotheses are clear and were explored correctly. This work provides new evidence about the importance of inferring models from high-quality data and that, if such a condition is met, it is not necessary to use complex computational methods to obtain predictive models. The generated BRAF dataset is also a valuable benchmark dataset for medicinal chemists working in ligand based virtual screening.

      Weaknesses:

      Leaving aside the new curated BRAF dataset, the work lacks novelty since it is a topic widely studied in chemoinformatics and medicinal chemistry. Furthermore, the conclusions drawn here correspond to the analysis of only one high-quality dataset where the similarity between the molecules is not quantitatively assessed (maybe active and inactive molecules are very dissimilar and any ML algorithm and fingerprint could obtain good results). To generalize the conclusions, it would be fundamental to repeat the analysis with other high-quality datasets.

      Some key tasks are not clearly described, for example, there is no information about the new BRAF dataset (e.g., where the molecules were obtained from or why the inactive molecules provide better results than the "less active" from ChEMBL... what differentiates them?). The defintion of an "inactive" compound is not clear. It is not described if global or balanced accuracy was used in the imbalanced datasets. When using decoys to evaluate the models it is important to consider that decoys were generated to be topologically different from active compounds by the comparison of the ECFP4 fingerprints using the Tanimoto coefficient. Therefore, it is quite obvious that when fingerprints are used to characterize molecules, the models will be able to easily discriminate them. It is important to note that this is not necessarily true for models based on other molecular descriptors, since they are not used in the generation of the decoys. In some cases, the differences between accuracies are very small and there are no statistical analyzes to demonstrate whether they are statistically different or not.

    1. Reviewer #1 (Public Review):

      Using a knock-out mutant strain, the authors tried to decipher the role of the last gene in the mycofactocin operon, mftG. They found that MftG was essential for growth in the presence of ethanol as the sole carbon source, but not for the metabolism of ethanol, evidenced by the equal production of acetaldehyde in the mutant and wild type strains when grown with ethanol (Fig 3). The phenotypic characterization of ΔmftG cells revealed a growth-arrest phenotype in ethanol, reminiscent of starvation conditions (Fig 4). Investigation of cofactor metabolism revealed that MftG was not required to maintain redox balance via NADH/NAD+, but was important for energy production (ATP) in ethanol. Since mycobacteria cannot grow via substrate-level phosphorylation alone, this pointed to a role of MftG in respiration during ethanol metabolism. The accumulation of reduced mycofactocin points to impaired cofactor cycling in the absence of MftG, which would impact the availability of reducing equivalents to feed into the electron transport chain for respiration (Fig 5). This was confirmed when looking at oxygen consumption in membrane preparations from the mutant and would type strains with reduced mycofactocin electron donors (Fig 7). The transcriptional analysis supported the starvation phenotype, as well as perturbations in energy metabolism, and may be beneficial if described prior to respiratory activity data.

      While the data and conclusions do support the role of MftG in ethanol metabolism, the title of the publication may be misleading as the mutant was able to grow in the presence of other alcohols (Supp Fig S2). Furthermore, the authors propose that MftG could not be involved in acetate assimilation based on the detection of acetate in the supernatant and the ability to grow in the presence of acetate. The minimal amount of acetate detected in the supernatant but a comparative amount of acetaldehyde could point to disruption of an aldehyde dehydrogenase.

      The link between mycofactocin oxidation and respiration is shown, however the mutant has an intact respiratory chain in the presence of ethanol (oxygen consumption with NADH and succinate in Fig 7C) and the NADH/NAD+ ratios are comparable to growth in glucose. Could the lack of growth of the mutant in ethanol be linked to factors other than respiration? To this end, bioinformatic investigation or other evidence to identify the membrane-bound respiratory partner would strengthen the conclusions.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors set out to measure the diffusion of small drug molecules inside live cells. To do this, they selected a range of flourescent drugs, as well as some commonly used dyes, and used FRAP to quantify their diffusion. The authors find that drugs diffuse and localize within the cell in a way that is weakly correalted with their charge, with positively charged molecules displaying dramatically slower diffusion and a high degree of subcellular localization.<br /> The study is important because it points at an important issue related to the way drugs behave inside cells beyond the simple "IC50" metric (a decidedly mesoscopic/systemic value). The authors conclude, and I agree, that their results point to nuanced effects that are governed by drug chemistry that could be optimized to make them more effective.

      Strengths:

      The work examines an understudied aspect of drug delivery.<br /> The work uses well-established methodologies to measure diffusion in cells<br /> The work provides an extensive dataset, covering a range of chemistries that are common in small molecule drug design<br /> The authors consider several explanations as to the origin of changes in cellular diffusion

      Weaknesses:

      The results are described qualitatively, despite quantitative data that can be used to infer the strength of the proposed correlations.<br /> The statistical treatment of the data is not rigorous and not visualized according to best practices, making it difficult for readers to assess the significance of the findings.<br /> Some important aspects of drug behavior are not discussed quantitatively, such as the cell-to-cell or subcellular variability in concentration.<br /> It is unclear if the observed behavior of each drug in the cell actually relates to its efficacy - though this is clearly beyond the scope of this specific work.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors have developed a zebrafish model of glioblastoma and characterized this, with a particular focus on the role of recruited myeloid cells in the tumours. Microglia/macrophages in the tumours are proposed to have an inflammatory phenotype and are engaged in phagocytosis. Knockout of Irf7 and Irf8 genes enhanced tumour initiation. Depleting mature myeloid cell types with chlodronate also enhanced tumour initiation. It is proposed that in early stage tumours, microglia/macrophages have tumour suppressive activity.

      Strengths:

      The authors have generated a novel glioblastoma model in zebrafish. Two key strengths of the zebrafish model are that early stage tumours can be studied and in vivo visualization can be readily performed. The authors show video of microglia/macrophages adopting the ameboid phenotype in tumours (as is observed in human tumours) and engaging in phagocytosis. Video 1 was very impressive in my opinion and shows the model is a very useful tool to study microglia/macrophage:glioblastoma cell interactions. The irf7/irf8 knockdown and the chlodronate experiments are consistent with a role for mature myeloid cells in suppressing tumour initiation, suggesting that the model may also be very valuable in understanding immune surveillance in glioblastoma initiation.

      Weaknesses:

      EGFRvIII is mainly associated with the classical subtype, so the mesenchymal subtype might be unexpected here. This could be commented on. Some more histologic characterization of the tumours would be helpful. Are they invasive, do larger tumours show necrosis and microvascular proliferation? This would help with understanding the full potential of the new model. Current thinking in established human glioblastoma is that the M1/M2 designations for macrophages are not relevant, with microglia macrophage populations showing a mixture of pre- and anti-inflammatory features. Ideally there would be a much more detailed characterization of the intratumoral microglia/macrophage population here, as single markers can't be relied upon. Phagocytosis could have antitumour effects through removal of live cancer cells, or could be cancer promoting if apoptotic cancer cells are being rapidly cleared with concomitant activation of an immunosuppressive phenotype in the phagocytes (i.e. efferocytosis). It may be possible to distinguish between these two types of phagocytosis experimentally. Do the irf7/8 and chlodronate experiments distinguish between effects on microglia/macrophages and dendritic cells?

      Update: The more detailed description of the tumour histology is very interesting and the authors have addressed my previous concerns nicely.

    1. Reviewer #2 (Public Review):

      In the manuscript by Maio et al, the authors examined the bioenergetic mechanisms involved in the delayed migration of DC's during Mtb infection. The authors performed a series of in vitro infection experiments including bioenergetic experiments using the Agilent Seahorse XF, and glucose uptake and lactate production experiments. Also, data from SCENITH is included in the revised manuscript as well as some clinical data. This is a well written manuscript and addresses an important question in the TB field.

    1. Reviewer #1 (Public Review):

      Summary

      The authors use an elegant but somewhat artificial heterodimerisation approach to activate the isolated cytoplasmic domains of different receptor kinases (RKs) including the receptor kinase BRI1 and EFR. The developmental RK BRI1 is known to be activated by the co-receptor BAK1. Active BRI1 is then able to phosphorylate downstream substrates. The immune receptor EFR is also an active protein kinase also activated by the co-receptor BAK1. EFR however appears to have little or no kinase activity but seems to use an allosteric mechanism to in turn enable BAK1 to phosphorylate the substrate kinase BIK1. EFR tyrosine phosphorylation by BAK1 appears to trigger a conformational change in EFR, activating the receptor. Likewise, kinase activating mutations can cause similar conformational transitions in EFR and also in BAK1 in vitro and in planta.

      Strengths:

      I particularly liked The HDX experiments coupled with mutational analysis (Fig. 2) and the design and testing of the kinase activating mutations (Fig. 3), as they provide novel mechanistic insights into the activation mechanisms of EFR and of BAK1. These findings are nicely extended by the large-scale identification of EFR-related RKs from different species with potentially similar activation mechanisms (Fig. 5).

      Overall this is an interesting study that aims to advance our understanding of the activation mechanisms of different plant receptor kinases with important functions in plant immunity.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Jiayun Li and colleagues aims to provide insight into adipokinetic hormone signaling that mediates the fecundity of Diaphorina citri infected by 'Candidatus Liberibacter asiaticus'. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Using FISH, qRT-PCR, WB, RNAi, and miRNA-related methods, authors found that knockdown of DcAKH and DcAKHR not only resulted in triacylglycerol accumulation and a decline of glycogen but also significantly decreased fecundity and CLas titer in ovaries. miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes.

    1. Reviewer #1 (Public Review):

      Here, using an organoid system, Wong et al aimed to establish new models of hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS), with which they wanted to understand how CSF1R-mutaions affect the phenotypes of microglia/macrophages. They found metabolic changes in microglia/macrophages with mutations, which were associated with a proinflammatory phenotype. In general, the authors tackle important issues and provide valuable tools to investigate the underlying mechanisms for HDLS.

      Strength:

      The authors establish two HDLS patient-derived iPS cells with their isogeneic controls and provide possible mechanistic insights into the disease mechanisms.

      Weakness:

      It is unclear how nicely the organoid system in this study can recapitulate the condition in patients with HDLS (e.g. reduced microglia density, downregulated expression of P2YR12, pathological alterations).

      The authors generated two different models with distinct mutations that produce different readouts in CSF1R-mediated cellular responses. It is unclear if the different outcomes between HD1 and HD2 are generated simply through different mutations or due to different differentiation efficiency from iMacs.

      Suggestions:

      (1) This paper would benefit from additional histological analyses to characterize iMac & iMicro at least histologically, which would be helpful for readers to know how nicely the organoid system recapitulates the condition in patients with HDLS.

      (2) In addition, in Fig.5E-J the authors could highlight microglia core genes that would be upregulated if iMacs are successfully differentiated into iMicro.

      (3) Since there are no direct evidence to confirm that "microglial dysregulation and IL1b signalling contribute to the degenerative neuro-environment in HDLS", the authors should tone down their argument and rephrase the Abstract.

    1. Reviewer #1 (Public Review):

      Summary:

      Shi and colleagues report the use of modified Cre lines in which the coding region of Cre is disrupted by rox-STOP-rox or lox-STOP-lox sequences to prevent the expression of functional protein in the absence of Dre or Cre activity, respectively. The main purpose of these tools is to enable intersectional or tamoxifen-induced Cre activity with minimal or no leaky activity from the second, Cre-expressing allele. It is a nice study but lacks some functional data required to determine how useful these alleles will be in practice, especially in comparison with the figure line that stimulated their creation.

      Strengths:

      The new tools can reduce Cre leak in vivo.

      Weaknesses:

      (1) Activity of R26-loxCre line. As the authors point out, the greatest value of this approach is to accomplish a more complete Cre-mediated gene deletion using CreER transgenes that are combined with low-efficiency floxed alleles using their R26-loxCre line that is similar to the iSure Cre reported by Benedito and colleagues. The data in Figure 5 show strong activity at the Confetti locus, but the design of the newly reported R26-loxCre line lacks a WPRE sequence that was included in the iSure-Cre line to drive very robust protein expression. Thus while the line appears to have minimal leak, as the design would predict, the question of how much of a deletion increase is obtained over simple use of the CreER transgene alone is a key question for use by investigators. This is further addressed in Figure 6 where it is compared with Alb-CreER alone to recombine the Ctnnb1 floxed allele. They demonstrate that recombination frequency is clearly improved, but the western blot in Figure 6E does not look like there was a large amount of remaining b-catenin to remove. These data are certainly promising, but the most valuable experiment for such a new tool would be a head-to-head comparison with iSure (or the latest iSure version from the Benedito lab) using the same CreER and target floxed allele. At the very least a comparision of Cre protein expression between the two lines using identical CreER activators is needed.

      (2) In vivo analysis of mCre activities. Why did the authors not use the same driver to compare mCre 1, 4, 7, and 10? The study in Figure 2 uses Alb-roxCre for 1 and 7 and Cdh5-roxCre for 4 and 10, with clearly different levels of activity driven by the two alleles in vivo. Thus whether mCre1 is really better than mCre4 or 10 is not clear.

      (3) Technical details are lacking. The authors provide little specific information regarding the precise way that the new alleles were generated, i.e. exactly what nucleotide sites were used and what the sequence of the introduced transgenes is. Such valuable information must be gleaned from schematic diagrams that are insufficient to fully explain the approach.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript explores the importance of food type on virus infection dynamics using a nematode virus as a model system. The authors demonstrate that susceptibility to viral infection can change by several orders of magnitude based on the type of bacterial food that potential hosts consume. They go on to show that, for the bacterial food source that reduces susceptibility, the effect is modulated by quorum sensing molecules that the bacteria produce.

      Strengths:

      This manuscript shows convincingly that nematode susceptibility to viral infection changes by several orders of magnitude (i.e. doses must be increased by several orders of magnitude to infect the same fraction of the population) depending on the bacterial food source on which hosts are reared. The authors then focus on the bacteria that reduce host susceptibility to viral infection and demonstrate that certain bacterial quorum-sensing compounds are required to see this effect of reduced susceptibility. Overall, sample sizes are large, methods are generally rigorous, experiments are repeated, and patterns are clear.

      Comments on revised version:

      The authors have now addressed all of my previous concerns.

    1. Reviewer #1 (Public Review):

      The manuscript addresses a fundamental question about how different types of communication signals differentially affect brain state and neurochemistry. In addition, their manuscript highlights the various processes that modulate brain responses to communication signals, including prior experience, sex, and hormonal status. Overall, the manuscript is well-written and the research is appropriately contextualized.

    1. Reviewer #1 (Public Review):

      Summary:

      van der Heijden et al perform an ambitious analysis of single unit activity in the interposed nuclei of multiple mouse models of cerebellar dysfunction. Based on these recordings, they develop a classifier to predict the behavioral phenotype (ataxic, dystonic, or tremor) of each model, suggesting that highly regular spiking is associated with ataxia, irregular spiking is associated with dystonia, and rhythmic spiking is associated with tremor. Interestingly, the "dystonic" and "tremor" patterns appeared to be specific to those disorders, while ataxia could result from at least two different interposed nucleus firing patterns. After developing this classifier, they show that activating Purkinje neurons in different patterns that evoke interposed nuclear activity similar to their "ataxic", "dystonic", and "tremor" firing patterns induce similar behaviors in healthy mice. These results show convincingly that specific patterns of cerebellar output are sufficient to cause specific movement abnormalities. The extent to which cerebellar nuclear firing patterns are solely responsible for phenotypes in human disease remains to be established, however.

      Strengths:

      Major strengths are the recordings across multiple phenotypic models including genetic and pharmacologic manipulations, and the robust phenotypes elicited by Purkinje neuron stimulation.

      Weaknesses:

      The number of units recorded was small for each model (on the order of 20), limiting conclusions that can be drawn from the recording/classifier experiments.

    1. Reviewer #1 (Public Review):

      Summary:

      The work by Combrisson and colleagues investigates the degree to which reward and punishment learning signals overlap in the human brain using intracranial EEG recordings. The authors used information theory approaches to show that local field potential signals in the anterior insula and the three sub regions of the prefrontal cortex encode both reward and punishment prediction errors, albeit to different degrees. Specifically, the authors found that all four regions have electrodes that can selectively encode either the reward or the punishment prediction errors. Additionally, the authors analyzed the neural dynamics across pairs of brain regions and found that the anterior insula to dorsolateral prefrontal cortex neural interactions were specific for punishment prediction errors whereas the ventromedial prefrontal cortex to lateral orbitofrontal cortex interactions were specific to reward prediction errors. This work contributes to the ongoing efforts in both systems neuroscience and learning theory by demonstrating how two differing behavioral signals can be differentiated to a greater extent by analyzing neural interactions between regions as opposed to studying neural signals within one region.

      Strengths:

      The experimental paradigm incorporates both a reward and punishment component that enables investigating both types of learning in the same group of subjects allowing direct comparisons.

      The use of intracranial EEG signals provides much needed insight into the timing of when reward and punishment prediction errors signals emerge in the studied brain regions.

      Information theory methods provide important insight into the interregional dynamics associated with reward and punishment learning and allows the authors to assess that reward versus punishment learning can be better dissociated based on interregional dynamics over local activity alone.

      Weaknesses:

      The analysis presented in the manuscript focuses on gamma band activity. Studying slow oscillations could provide additional insights into the interregional dynamics.

    1. Reviewer #1 (Public Review):

      Summary:

      The study used the sci-Plex system to perform in vitro screen of chemicals and found that 2 compounds improved the reprogramming efficiency in Ascl1-overexpressed MG (Muller glia), and in addition, administration of the identified compounds in the previously established in vivo model (Ascl1, NMDA, TSA) showed that DBZ and metformin increased Otx2+ cells for improved neurogenesis.

      Strengths:

      The overall study was straightforward and well-designed. The method in the study could be potentially useful for large-scale in vitro screens for compounds to further improve reprogramming efficiency. The data and results of the study are of good quality.

      Weaknesses:

      Future studies may help provide more in-depth mechanistic examinations of the reprogramming process such as whether the compound treatment indeed affects the corresponding signaling pathways.

    1. Reviewer #1 (Public Review):

      Summary:

      Using concurrent in vivo whole-cell patch clamp and dendritic calcium imaging, the authors characterized how functional synaptic inputs across dendritic arborizations of mouse primary visual cortex layer 2/3 neurons emerge during the second postnatal week. They were able to identify spatially and functionally separated domains of clustered synapses in these neurons even before eye-opening and characterize how the clustering changes from P8 to P13.

      Strengths:

      The work is technically challenging and the findings are novel. The results support previous EM and immunostaining studies but really provide in vivo evidence on the time course and the trajectory of how functional synaptic input develop.

      Weaknesses:

      The authors have provided additional details about the analyses and have adequately addressed all my concerns.

    1. Reviewer #1 (Public Review):

      This is an interesting and well-written paper reporting on a novel approach to studying cerebellar function based on the idea of selective recruitment using fMRI. The study is well-designed and executed. Analyses are sound and results are properly discussed. The paper makes a significant contribution to broadening our understanding of the role of cerebellum in human behavior.

      In the revision, the authors did an excellent job in addressing my concerns.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper introduces a new approach to modeling human behavioral responses using image-computable models. They create a model (VAM) that is a combination of a standard CNN coupled with a standard evidence accumulation model (EAM). The combined model is then trained directly on image-level data using human behavioral responses. This approach is original and can have wide applicability. However, many of the specific findings reported are less compelling.

      Strengths:

      (1) The manuscript presents an original approach to fitting an image-computable model to human behavioral data. This type of approach is sorely needed in the field.<br /> (2) The analyses are very technically sophisticated.<br /> (3) The behavioral data are large both in terms of sample size (N=75) and in terms of trials per subject.

      Weaknesses:

      Major

      (1) The manuscript appears to suggest that it is the first to combine CNNs with evidence accumulation models (EAMs). However, this was done in a 2022 preprint (https://www.biorxiv.org/content/10.1101/2022.08.23.505015v1) that introduced a network called RTNet. This preprint is cited here, but never really discussed. Further, the two unique features of the current approach discussed in lines 55-60 are both present to some extent in RTNet. Given the strong conceptual similarity in approach, it seems that a detailed discussion of similarities and differences (of which there are many) should feature in the Introduction.

      (2) In the approach here, a given stimulus is always processed in the same way through the core CNN to produce activations v_k. These v_k's are then corrupted by Gaussian noise to produce drift rates d_k, which can differ from trial to trial even for the same stimulus. In other words, the assumption built into VAM appears to be that the drift rate variability stems entirely from post-sensory (decisional) noise. In contrast, the typical interpretation of EAMs is that the variability in drift rates is sensory. This is also the assumption built into RTNet where the core CNN produces noisy evidence. Can the authors comment on the plausibility of VAM's assumption that the noise is post-sensory?

      (3) Figure 2 plots how well VAM explains different behavioral features. It would be very useful if the authors could also fit simple EAMs to the data to clarify which of these features are explainable by EAMs only and which are not.

      (4) VAM is tested in two different ways behaviorally. First, it is tested to what extent it captures individual differences (Figure 2B-E). Second, it is tested to what extent it captures average subject data (Figure 2F-J). It wasn't clear to me why for some metrics only individual differences are examined and for other metrics only average human data is examined. I think that it will be much more informative if separate figures examine average human data and individual difference data. I think that it's especially important to clarify whether VAM can capture individual differences for the quantities plotted in Figures 2F-J.

      (5) The authors look inside VAM and perform many exploratory analyses. I found many of these difficult to follow since there was little guidance about why each analysis was conducted. This also made it difficult to assess the likelihood that any given result is robust and replicable. More importantly, it was unclear which results are hypothesized to depend on the VAM architecture and training, and which results would be expected in performance-optimized CNNs. The authors train and examine performance-optimized CNNs later, but it would be useful to compare those results to the VAM results immediately when each VAM result is first introduced.

      (6) The authors don't examine how the task-optimized models would produce RTs. They say in lines 371-2 that they "could not examine the RT congruency effect since the task-optimized models do not generate RTs." CNNs alone don't generate RTs, but RTs can easily be generated from them using the same EAM add-on that is part of VAM. Given that the CNNs are already trained, I can't see a reason why the authors can't train EAMs on top of the already trained CNNs and generate RTs, so these can provide a better comparison to VAM.

      (7) The Discussion felt very long and mostly a summary of the Results. I also couldn't shake the feeling that it had many just-so stories related to the variety of findings reported. I think that the section should be condensed and the authors should be clearer about which explanations are speculations and which are air-tight arguments based on the data.

      (8) In one of the control analyses, the authors train different VAMs on each RT quantile. I don't understand how it can be claimed that this approach can serve as a model of an individual's sensory processing. Which of the 5 sets of weights (5 VAMs) captures a given subject's visual processing? Are the authors saying that the visual system of a given subject changes based on the expected RT for a stimulus? I feel like I'm missing something about how the authors think about these results.

    1. Reviewer #1 (Public Review):

      Summary:

      Wang, Y. et al. used a silicone wire embolus to definitively and acutely clot the pterygopalatine ophthalmic artery in addition to carotid artery ligation to completely block the blood supply to the mouse inner retina, which mimics clinical acute retinal artery occlusion. A detailed characterization of this mouse model determined the time course of inner retina degeneration and associated functional deficits, which closely mimic human patients. Whole retina transcriptome profiling and comparison revealed distinct features associated with ischemia, reperfusion, and different model mechanisms. Interestingly and importantly, this team found a sequential event including reperfusion-induced leukocyte infiltration from blood vessels, residual microglial activation, and neuroinflammation that may lead to neuronal cell death.

      Strengths:

      Clear demonstration of the surgery procedure with informative illustrations, images, and superb surgical videos.

      Two-time points of ischemia and reperfusion were studied with convincing histological and in vivo data to demonstrate the time course of various changes in retinal neuronal cell survivals, ERG functions, and inner/outer retina thickness.

      The transcriptome comparison among different retinal artery occlusion models provides informative evidence to differentiate these models.

      The potential applications of the in vivo retinal ischemia-reperfusion model and relevant readouts demonstrated by this study will certainly inspire further investigation of the dynamic morphological and functional changes of retinal neurons and glial cell responses during disease progression and before and after treatments.

      Weaknesses:

      It would be beneficial to the manuscript and the readers if the authors could improve the English of this manuscript by correcting obvious grammar errors, eliminating many of the acronyms that are not commonly used by the field, and providing a reason why this complicated but clever surgery procedure was designed and a summary table with the time course of all the morphological, functional, cellular, and transcriptome changes associated with this model.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Aybar-Torres et al investigated the effect of common human STING1 variants on STING-mediated T cell phenotypes in mice. The authors previously made knock-in mice expressing human STING1 alleles HAQ or AQ, and here they established a new knock-in line Q293. The authors stimulated cells isolated from these mice with STING agonists and found that all three human mutant alleles resist cell death, leading to the conclusion that R293 residue is essential for STING-mediated cell death (there are several caveats with this conclusion, more below). The authors also bred HAQ and AQ alleles to the mouse Sting1-N153S SAVI mouse and observed varying levels of rescue of disease phenotypes with the AQ allele showing more complete rescue than the HAQ allele. The Q293 allele was not tested in the SAVI model. They conclude that the human common variants such as HAQ and AQ have a dominant negative effect over the gain-of-function SAVI mutants.

      Strengths:

      The authors and Dr. Jin's group previously made important observations of common human STING1 variants, and these knock-in mouse models are essential for understanding the physiological function of these alleles.

      Weaknesses:

      However, although some of the observations reported here are interesting, the data collectively does not support a unified model. The authors seem to be drawing two sets of conclusions from in vitro and in vivo experiments, and neither mechanism is clear. Several experiments need better controls, and these knock-in mice need more comprehensive functional characterization.

      (1) In Figure 1, the authors are trying to show that STING agonist-induced splenocytes cell death is blocked by HAQ, AQ and Q alleles. The conclusion at line 134 should be splenocytes, not lymphocytes. Most experiments in this figure were done with mixed population that may involve cell-to-cell communication. Although TBK1-dependence is likely, a single inhibitor treatment of a mixed population is not sufficient to reach this conclusion.<br /> (2) Q293 knock-in mouse needs to be characterized and compared to HAQ and AQ. Is this mutant expressed in tissues? Does this mutant still produce IFN and other STING activities? Does the protein expression level altered on Western blot? Is the mutant protein trafficking affected? In the authors' previous publications and some of the Western blot here, expression levels of each of these human STING1 protein in mice are drastically different. HAQ and AQ also have different effects on metabolism (pmid: 36261171), which could complicate interoperation of the T cell phenotypes.<br /> (3) HAQ/WT and AQ/WT splenocytes are protected from STING agonist-induced cell death equally well (Figure 1G). HAQ/SAVI shows less rescue compared to AQ/SAVI. These are interesting observations, but mechanism is unclear and not clearly discussed. E.g., how does AQ protect disease pathology better than HAQ (that contains AQ)? Does Q293 allele also fully rescue SAVI?<br /> (4) Figure 2 feels out of place. First of all, why are the authors using human explant lung tissues? PBMCs should be a better source for lymphocytes. In untreated conditions, both CD4 and B cells show ~30% dying cells, but CD8 cells show 0% dying cells. This calls for technical concerns on the CD8 T cell property or gating strategy because in the mouse experiment (Figure 1A) all primary lymphocytes show ~30% cell death at steady-state. Second, Figure 2C, these type of partial effect needs multiple human donors to confirm. Three, the reconstitution of THP1 cells seems out of place. STING-mediated cell death mechanism in myeloid and lymphoid cells are likely different. If the authors want to demonstrate cell death in myeloid cells using THP1, then these reconstituted cell lines need to be better validated. Expression, IFN signaling, etc. The parental THP1 cells is HAQ/HAQ, how does that compare to the reconstitutions? There are published studies showing THP1-STING-KO cells reconstituted with human variants do not respond to STING agonists as expected. The authors need to be scientifically rigorous on validation and caution on their interpretations.<br /> (5) Figure 2G, H, I are confusing. AQ is more active in producing IFN signaling than HAQ and Q is the least active. How to explain this?<br /> (6) The overall model is unclear. If HAQ, AQ and Q are loss-of-function alleles and Q is the key residue for STING-mediated cell death, then why AQ is the most active in producing IFN signaling and AQ/SAVI rescues disease most completely? If these human variants act as dominant negatives, which would be consistent with the WT/het data, then how do you explain AQ is more dominant negative than HAQ?<br /> (7) As a general note, SAVI disease phenotypes involve multiple cell types. Lymphocyte cell death is only one of them. The authors' characterization of SAVI pathology is limited and did not analyze immunopathology of the lung.<br /> (8) Line 281, the discussion on HIV T cell death mechanism is not relevant and over-stretching. This study did not evaluate viral infection in T cells at all. The original finding of HAQ/HAQ enrichment in HIV/AIDS was 2/11 in LTNP vs 0/11 in control, arguably not the strongest statistics.

    1. Reviewer #1 (Public Review):

      Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effector that cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants.

      Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

      Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

      Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo. and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al., found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

      The authors present evidence supporting the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions) that have been provided, since Agrobacterium as a closely rhizobia-related bacterium, might increase defense related proteolytic activity in the plant host cells.

      Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells the authors build largely on western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). It is not quite clear how the authors explain the loss of NFR5 function (loss of cell death, impact on symbiosis), as a vast excess of the tested target remains intact. It is also not clear why a large proportion of NFR5 is unaffected by the proteolytic activity of NopT. This is particularly interesting in Nicotiana in the absence of Nod factor that could trigger NFR1 kinase activity.

      It is also difficult to evaluate how the ratios of cleaved and full-length protein change when different versions of NopT are present without a quantification of band strengths normalized to loading controls (Figure 3C, 3D, 3F). The same is true for the blots supporting NFR1 phosphorylation of NopT (Figure 4A).

      It is clear that mutation of nopT results in a quantitative infection phenotype. Nodule primordia and infection threads are still formed when L. japonicus plants are inoculated with ∆nopT mutant bacteria, but it is not clear if these primordia are infected or develop into fully functional nodules (Figure 5). A quantification of the ratio of infected and non-infected nodules and primordia would reveal whether NopT is only active at the transition from infection focus to thread or perhaps also later in the bacterial infection process of the developing root nodule.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors study the effects of myelin alterations in working memory via the complementary use of two computational approaches: one based on the de- and re-myelination in multicompartmental models of pyramidal neurons, and one based on synaptic changes in a spiking bump attractor model for spatial working memory. The first model provides the most precise angle (biophysically speaking) of the different effects (loss of myelin lamella or segments, remyelination with thinner and shorter nodes, etc), while the second model allows to infer the consequences of myelin alterations in working memory performance, including memory stability, duration, and bump diffusion, while also exploring the case of myeling alterations in a novel silent working memory model. The results indicate (i) a slowing down and failure of propagation of spikes with demyelination and partial recovery with remyelination, with detailed predictions on the role of nodes and myelina lamella, and (ii) a decrease in memory duration and an increase in memory drift as a function of the demyelination, in agreement with multiple experimental studies.

      Strengths:

      Overall, the work offers a very interesting approach of a topic which is hard to accomplish experimentally --therefore the computational take is entirely justified and extremely useful. The authors carefully designed the computational experiments to shed light into the demyelination effects on working memory from multiple levels of description, increasing the reliability of their conclusions. I think this work provides now convincing evidence and has the potential to be influential in future studies of myelin alterations (and related disorders such as multiple sclerosis).

      Weaknesses:

      In its current form, the authors have improved the clarity of the results and the model details, and have provided a new set of simulations to complement and reinforce the original ones (including the development of a new spatial working memory model based on silent working memory principles). I do not appreciate any significant weaknesses at this point.

    1. Reviewer #1 (Public Review):

      Carignano et al propose an extension of the self-returning random walk (SRRW) model for chromatin to include excluded volume aspects and use it to investigate generic local and global properties of the chromosome 3D organization inside eukaryotic nuclei. In particular, they focus on chromatin volumic density, contact probability, and domain size and suggest that their framework can recapitulate several experimental observations and predict the effect of some perturbations.

      Strengths:

      • The developed methodology is convincing and may offer an alternative - less computationally demanding - framework to investigate the single-cell and population structural properties of 3D genome organization at multiple scales.

      • Compared to the previous SRRW model, it allows for investigation of the role of excluded volume locally.

      • They perform some experiments to compare with model predictions and show consistency between the two.

      Weaknesses:

      • The model is a homopolymer model and currently cannot fully account for specific mechanisms that may shape the heterogeneous, complex organization of chromosomes (TAD at specific positions, A/B compartmentalization, promoter-enhancer loops, etc.).

      • By construction of their framework, the effect of excluded volume is only local and larger-scale properties for which excluded volume could be a main actor (formation of chromosome territories [Rosa & Everaers, PLoS CB 2009], bottle-brush effects due to loop extrusion [Polovnikov et al, PRX 2023], etc.) cannot be captured.

      • Apart from being a computationally interesting approach to generating realistic 3D chromosome organization, the method offers fewer possibilities than standard polymer models (eg, MD simulations) of chromatin (no dynamics, no specific mechanisms, etc.) with likely the same predictive power under the same hypotheses. In particular, authors often claim the superiority of their approach to describing the local chromatin compaction compared to previous polymer models without showing it or citing any relevant references that would show it.

      • Comparisons with experiments are solid but are not quantified.

      Impact:

      Building on the presented framework in the future to incorporate TAD and compartments may offer an interesting model to study the single-cell heterogeneity of chromatin organization. But currently, in this reviewer's opinion, standard polymer modeling frameworks may offer more possibilities.

    1. Reviewer #1 (Public Review):

      The manuscript describes a GAN-based approach that generates parameters for HH-like channels for multiple C. Elengans neurons. The network is trained on generated data to produce parameter sets that, on the one hand, reproduce voltage responses and IV curves, and on the other hand, are indistinguishable from the ground truth parameters, as tested by the discriminator. It is then shown that these generated parameter sets lead to reasonable reproductions of the recorded responses (but see the section "weaknesses" below for some reservations).

      Strengths:

      In itself, I find the methodology of high interest, particularly in that it can generate parameter sets to construct models of new recordings at a very low computational cost.

      Weaknesses:

      Nevertheless, I believe there are some weaknesses in the evaluation of the models that should be addressed before the quality of the methodology can be fully assessed. Firstly, at the methodological level, the authors should provide more clarity on the inverse gradient operation they use, as opposed to just simulating the models, as such an inversion depends not only on the parameters but also on the state of the model. How the state is obtained remains unclear here. Secondly, in the evaluation of their models, the authors could provided more information such as IV curves, as whether these would be accurate is difficult to visually infer from their figures. Thirdly, the authors do not address the question of whether all obtained parameter sets are stable when simulated over longer times, while their figures do include hints that this might not be the case for at least some of their models (e.g. voltage traces that do not converge back to the equilibrium after the stimulus, but rather seem to diverge).

    1. Reviewer #1 (Public Review):

      Summary:

      This valuable study by Wu and Zhou combined neurophysiological recordings and computational modelling to investigate the neural mechanisms that underpin the interaction between sensory evaluation and action selection. The neurophysiological results suggest non-linear modulation of decision-related LIP activity by action selection, but some further analysis would be helpful in order to understand whether these results can be generalised to LIP circuitry or might be dependent on specific spatial task configurations. The authors present solid computational evidence that this might be due to projections from choice target representations. These results are of interest for neuroscientists investigating decision-making.

      Strengths:

      Wu and Zhou combine awake behaving neurophysiology for a sophisticated, flexible visual-motion discrimination task and a recurrent network model to disentangle the contribution of sensory evaluation and action selection to LIP firing patterns. The correct saccade response direction for preferred motion direction choices is randomly interleaved between contralateral and ipsilateral response targets, which allows the dissociation of perceptual choice from saccade direction.<br /> The neurophysiological recordings from area LIP indicate non-linear interaction between motion categorisation decisions and saccade choice direction.

      The careful investigation of a recurrent network model suggests that feedback from choice target representations to an earlier sensory evaluation stage might be the source for this non-linear modulation and that it is an important circuit component for behavioural performance.

      The paper presents a possible solution to a central controversy about the role of LIP in perceptual decision-making, but see below.

      Weaknesses:

      The paper presents a possible solution to a central controversy about the role of LIP in perceptual decision-making. However, the authors could be more clear and upfront about their interpretational framework and potential alternative interpretations.<br /> Centrally, the authors' model and experimental data appears to test only that LIP carries out sensory evaluation in its RFs. The model explicitly parks the representation of choice targets outside the "LIP" module receiving sensory input. The feedback from this separate target representation provides then the non-linear modulation that matches the neurophysiology. However, they ignore the neurophysiological results that LIP neurons can also represent motor planning to a saccade target.<br /> The neurophysiological results with a modulation of the direction tuning by choice direction (contralateral vs ipsilateral) are intriguing. However, the evaluation of the neurophysiological results are difficult, because some of the necessary information is missing to exclude alternative explanations. It would be good to see the actual distributions and sizes of the RF, which were determined based on visual responses not with a delayed saccade task. There might be for example a simple spatial configuration, for example, RF and preferred choice target in the same (contralateral) hemifield, for which there is an increase in firing. It is a shame that we do not see what these neurons would do if only a choice target would be put in the RF, as has been done in so many previous LIP experiments. The authors exclude also some spatial task configurations (vertical direction decisions), which makes it difficult to judge whether these data and models can be generalised. The whole section is difficult to follow, partly also because it appears to mix reporting results with interpretation (e.g. "feedback").

      The model and its investigation is very interesting and thorough, but given the neurophysiological literature on LIP, it is not clear that the target module would need to be in a separate brain area, but could be local circuitry within LIP between different neuron types.

    1. Reviewer #1 (Public Review):

      Summary:

      Two important factors in visual performance are the resolving power of the lens and the signal-to-noise ratio of the photoreceptors. These both compete for space: a larger lens has improved resolving power over a smaller one, and longer photoreceptors capture more photons and hence generate responses with lower noise. The current paper explores the tradeoff of these two factors, asking how space should be allocated to maximize eye performance (measured as encoded information).

      Strengths:

      The topic of the paper is interesting and not well studied. The approach is clearly described and seems appropriate (with a few exceptions - see weaknesses below). In most cases, the parameter space of the models are well explored and tradeoffs are clear.

      Weaknesses:

      - Light level<br /> The calculations in the paper assume high light levels (which reduces the number of parameters that need to be considered). The impact of this assumption is not clear. A concern is that the optimization may be quite different at lower light levels. Such a dependence on light level could explain why the model predictions and experiment are not in particularly good agreement. The paper would benefit from exploring this issue.

      - Discontinuities<br /> The discontinuities and non-monotonicity of the optimal parameters plotted in Figure 4 are concerning. Are these a numerical artifact? Some discussion of their origin would be quite helpful.

      - Discrepancies between predictions and experiment<br /> As the authors clearly describe, experimental measurements of eye parameters differ systematically from those predicted. This makes it difficult to know what to take away from the paper. The qualitative arguments about how resources should be allocated are pretty general, and the full model seems a complex way to arrive at those arguments. Could this reflect a failure of one of the assumptions that the model rests on - e.g. high light levels, or that the cost of space for photoreceptors and optics is similar? Given these discrepancies between model and experiment, it is also hard to evaluate conclusions about the competition between optics and photoreceptors (e.g. at the end of the abstract) and about the importance for evolution (end of introduction).

    1. Reviewer #1 (Public Review):

      Summary:

      This study uses an online cognitive task to assess how reward and effort are integrated in a motivated decision-making task. In particular the authors were looking to explore how neuropsychiatric symptoms, in particular apathy and anhedonia, and circadian rhythms affect behavior in this task. Amongst many results, they found that choice bias (the degree to which integrated reward and effort affects decisions) is reduced in individuals with greater neuropsychiatric symptoms, and late chronotypes (being an 'evening person').

      Strengths:

      The authors recruited participants to perform the cognitive task both in and out of sync with their chronotypes, allowing for the important insight that individuals with late chronotypes show a more reduced choice bias when tested in the morning.<br /> Overall, this is a well-designed and controlled online experimental study. The modelling approach is robust, with care being taken to both perform and explain to the readers the various tests used to ensure the models allow the authors to sufficiently test their hypotheses.

      Weaknesses:

      This study was not designed to test the interactions of neuropsychiatric symptoms and chronotypes on decision making, and thus can only make preliminary suggestions regarding how symptoms, chronotypes and time-of-assessment interact.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Shea and Villeda furnishes the field with a valuable scRNAseq data set detailing microglial aging in the mouse hippocampus. They provide clear evidence that changes in microglial attributes begin in mid-life, well before time points when mice are traditionally considered to be "aging." It also adds to a growing body of data in the field demonstrating that there is substantial heterogeneity in microglial responses to aging. Using in vitro experiments and transgenic manipulations in mice, the authors show that transforming growth factor beta (TGFb1)-based signaling can potently impact microglial state, consistent with previous findings in the field. They also demonstrate that manipulation of microglial TGFb1-based signaling can impact hippocampus-dependent behaviors.

      Limitations of the study lie primarily in reaching too far with interpretations of the data. The authors argue that changes in microglial transcriptome during midlife represent a type of "checkpoint," after which microglial aging can progress along distinct trajectories depending on the status of TGFb1 signaling. They also posit that a specific intermediate "stress response" state in midlife is mechanistically linked to a translational burst that drives the subsequent progression of microglia to an "inflammatory state." Unequivocal data to support these causal links is lacking, however. similarly, key additional experiments would be needed to demonstrate that TGFb1 signaling and microglial progression through these identified intermediate states are causally linked to cognitive decline.

      Guidance for readers along with study strengths and caveats:

      The present manuscript provides valuable strengthening and expansion to a growing body of data showing prominent changes in the microglial state during aging. Microarray(1), bulkRNAseq(2-5), scRNAseq(6,7), snRNAseq(8,9), and spatial transcriptomic(10) approaches have been leveraged to map changes in microglial transcriptome during aging in rodents, non-human primates, and humans. A number of these studies include the hippocampus (1,8,9,11) and have highlighted variation across brain regions in microglial transcriptomic changes during aging (1,11). They have also revealed differences across sex (7) as well as increased cell-to-cell heterogeneity (6-10), consistent with the idea that individual microglia can follow distinct aging trajectories. Several of these studies revealed that changes in microglial attributes begin in middle age (1,7,11), supporting similar observations from studies that did not use omics (12-14). The present manuscript utilizes scRNAseq of hippocampal microglia at adulthood (6mo), middle age (12mo), late middle age (18mo) and aging (24mo) to show that aging-induced changes in microglia begin in middle age and that microglia exhibit ample phenotypic heterogeneity during the progression of aging.

      To gain further insight into the dynamics of microglial aging in the hippocampus, the authors used a bioinformatics method known as "pseudotime" or "trajectory inference" to understand how cells may progress through different functional states, as defined by cellular transcriptome (15,16). These bioinformatics approaches can reveal key patterns in scRNAseq / snRNAseq datasets and, in the present study, the authors conclude that a "stress response" module characterized by expression of TGFb1 represents a key "checkpoint" in microglial aging in midlife, after which the cells can move along distinct transcriptional trajectories as aging progresses. This is an intriguing possibility. However, pseudotime analyses need to be validated via additional bioinformatics as well as follow-up experiments. Indeed, Heumos et al, in their Nature Genetics "Expert Guidelines" Review, emphasize that "inferred trajectories might not necessarily have biological meaning." They recommend that "when the expected topology is unknown, trajectories and downstream hypotheses should be confirmed by multiple trajectory inference methods using different underlying assumptions."(15) Numerous algorithms are available for trajectory inference (e.g. Monocle, PAGA, Sligshot, RaceID/StemID, among many others) and their performance and suitability depends on the individual dataset and nature of the trajectories that are to be inferred. It is recommended to use dynGuidelines(16) for the selection of optimal pseudotime analysis methods. In the present manuscript, the authors do not provide any justification for their use of Monocle 3 over other trajectory inference approaches, nor do they employ a secondary trajectory inference method to confirm observations made with Monocle 3. Finally, follow-up validation experiments that the authors carry out have their own limitations and caveats (see below). Hence, while the microglial aging trajectories identified by this study are intriguing, they remain hypothetical trajectories that need to be proven with additional follow-up experiments.

      To follow up on the idea that TGFb1 signaling in microglia plays a key role in determining microglial aging trajectories, the authors use RNAscope to show that TGFb1 levels in microglia peak in middle age. They also treat primary LPS-activated microglia with TGFb1 and show that this restores expression of microglial homeostatic gene expression and dampens expression of stress response and, potentially, inflammatory genes. Finally, they utilize transgenic approaches to delete TGFb1 from microglia around 8-10mo of age and scRNAseq to show that homeostatic signatures are lost and inflammatory signatures are gained. Hence, findings in this study support the idea that TGFb1 can strongly regulate microglial phenotype. Loss of TGFb1 signaling to microglia in adulthood has already been shown to cause decreased microglial morphological complexity and upregulation of genes typically associated with microglial responses to CNS insults(17-19). TGFb1 signaling to microglia has also been implicated in microglial responses to disease and manipulations to increase this signaling can improve disease progression in some cases(19). In this light, the findings in the present study are largely confirmatory of previous findings in the literature. They also fall short of unequivocally demonstrating that TGFb1 signaling acts as a "checkpoint" for determining subsequent microglial aging trajectory. To show this clearly, one would need to perturb TGFb1 signaling around 12mo of age and carry out sequencing (bulkRNAseq or scRNAseq) of microglia at 18mo and 24mo. Such experiments could directly demonstrate whether the whole microglial population has been diverted to the TGFb1-low aging trajectory (that progresses through a translational burst state to an inflammation state as proposed). Future development of tools to tag TGFb1 high or low microglia could also enable fate tracing type experiments to directly show whether the TGFb1 state in middle age predicts cell state at later phases of aging.

      The present study would also like to draw links between features of microglial aging in the hippocampus and a decline in hippocampal-dependent cognition during aging. To this end, they carry out behavioral testing in 8-10mo old mice that have undergone microglial-specific TGFb1 deletion and find deficits in novel object recognition and contextual fear conditioning. While this provides compelling evidence that TGFb1 signaling in microglia can impact hippocampus-dependent cognition in midlife, it does not demonstrate that this signaling accelerates or modulates cognitive decline (see below). Age-associated cognitive decline refers to cognitive deficits that emerge as a result of the normative brain aging process(20-21). For a cognitive deficit to be considered age-associated cognitive decline, it must be shown that the cognitive operation under study was intact at some point earlier in the adult lifespan. This requires longitudinal study designs that determine whether a manipulation impacts the relationship between brain status and cognition as animals age (22-24). Alternatively, cross-sectional studies with adequate sample sizes can be used to sample the variability in cognitive outcomes at different points of the adult lifespan(22-24) and show that this is altered by a particular manipulation. For this specific study, one would ideally demonstrate that hippocampal-based learning/memory was intact at some point in the lifespan of mice with microglial TGFb1 KO but that this manipulation accelerated or exacerbated the emergence of deficits in hippocampal-dependent learning/memory during aging. In the absence of these types of data, the authors should tone down their claims that they have identified a cellular and molecular mechanism that contributes to cognitive decline.

      A final point of clarification for the reader pertains to the mining of previously generated data sets within this study. The language in the results section, methods, and figure legends causes confusion about which experiments were actually carried out in this study versus previous studies. Some of the language makes it sound as though parabiosis experiments and experiments using mouse models of Alzheimer's Disease were carried out in this study. However, parabiosis and AD mouse model experiments were executed in previous studies (25,26), and in the present study, RNAseq datasets were accessed for targeted data mining. It is fantastic to see further mining of datasets that already exist in the field. However, descriptions in the results and methods sections need to make it crystal clear that this is what was done.

      References:

      (1) Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. (2016). doi:10.1038/nn.4222<br /> (2) Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. (2013). doi:10.1038/nn.3554<br /> (3) Deczkowska, A. et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun. (2017). doi:10.1038/s41467-017-00769-0<br /> (4) O'Neil, S. M., Witcher, K. G., McKim, D. B. & Godbout, J. P. Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge. Acta Neuropathol. Commun. (2018). doi:10.1186/s40478-018-0636-8<br /> (5) Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. (2018). doi:10.1038/s41467-018-02926-5<br /> (6) Hammond, T. R. et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity 50, 253-271 (2019).<br /> (7) Li, X. et al. Transcriptional and epigenetic decoding of the microglial aging process. Nat. aging 3, 1288-1311 (2023).<br /> (8) Zhang, H. et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 12, 695-716 (2021).<br /> (9) Su, Y. et al. A single-cell transcriptome atlas of glial diversity in the human hippocampus across the postnatal lifespan. Cell Stem Cell 29, 1594-1610.e8 (2022).<br /> (10) Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194-208.e18 (2023).<br /> (11) Soreq, L. et al. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging. Cell Rep. 18, 557-570 (2017).<br /> (12) Hefendehl, J. K. et al. Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell (2014). doi:10.1111/acel.12149<br /> (13) Nikodemova, M. et al. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J. Neuroimmunol. 0, 280-288 (2015).<br /> (14) Moca, E. N. et al. Microglia Drive Pockets of Neuroinflammation in Middle Age. J. Neurosci. 42, 3896-3918 (2022).<br /> (15) Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550-572 (2023).<br /> (16) Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods: towards more accurate and robust tools. (2018). doi:10.1101/276907<br /> (17) Zöller, T. et al. Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat. Commun. 9, (2018).<br /> (18) Bedolla, A. et al. Microglia-derived TGF-β1 ligand maintains microglia homeostasis via autocrine mechanism and is critical for normal cognitive function in adult mouse brain. bioRxiv Prepr. Serv. Biol. (2023). doi:10.1101/2023.07.05.547814<br /> (19) Spittau, B., Dokalis, N. & Prinz, M. The Role of TGFβ Signaling in Microglia Maturation and Activation. Trends Immunol. 41, 836-848 (2020).<br /> (20) L. Nyberg, M. Lövdén, K. Riklund, U. Lindenberger, L. Bäckman, Memory aging and brain maintenance. Trends Cogn. Sci. 16, 292-305 (2012).<br /> (21) L. Luo, F. I. M. Craik, Aging and memory: A cognitive approach. Can. J. Psychiatry 53, 346-353 (2008).<br /> (22) Y. Stern, M. Albert, C. Barnes, R. Cabeza, A. Pascual-Leone, P. Rapp.<br /> A framework for concepts of reserve and resilience in aging. Neurobiol. Aging, 124 (2022), pp. 100-103, 10.1016/j.neurobiolaging.2022.10.015<br /> (23) Y. Stern, C.A. Barnes, C. Grady, R.N. Jones, N. Raz. Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience. Neurobiol. Aging, 83 (2019), pp. 124-129, 10.1016/j.neurobiolaging.2019.03.022<br /> (24) R. Cabeza, M. Albert, S. Belleville, F.I.M. Craik, A. Duarte, C.L. Grady, U. Lindenberger, L. Nyberg, D.C. Park, P.A. Reuter-Lorenz, M.D. Rugg, J. Steffener, M.N. Rajah. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci., 19 (11) (2018), Article 11, 10.1038/s41583-018-0068-2<br /> (25) Palovics, R. et al molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature 603, 309-314 (2022)<br /> (26) Sala Frigerio, C. et al. The major risk factors for Alzheimer's Disease: age, sex, and genes modulate the microglial response to Abeta plaques. Cell Rep, 27, 1293-1306 (2019)

    1. Reviewer #1 (Public Review):

      Summary:

      Yang, Hu et al. examined the molecular mechanisms underlying astrocyte activation and its implications for multiple sclerosis. This study shows that the glycolytic enzyme PKM2 relocates to astrocyte nuclei upon activation in EAE mice. Inhibiting PKM2's nuclear import reduces astrocyte activation, as evidenced by decreased proliferation, glycolysis, and inflammatory cytokine release. Crucially, the study identifies TRIM21 as pivotal in regulating PKM2 nuclear import via ubiquitination. TRIM21 interacts with PKM2, promoting its nuclear translocation and enhancing its activity, affecting multiple signaling pathways. Confirmatory analyses using single-cell RNA sequencing and immunofluorescence demonstrate TRIM21 upregulation in EAE astrocytes. Modulating TRIM21 expression in primary astrocytes impacts PKM2-dependent glycolysis and proliferation. In vivo experiments targeting this mechanism effectively mitigate disease severity, CNS inflammation, and demyelination in EAE.

      The authors supported their claims with various experimental approaches, however, some results should be supported with higher-quality images clearly depicting the conclusions and additional quantitative analyses of Western blots.

      Strength:

      This study presents a comprehensive investigation into the function and molecular mechanism of metabolic reprogramming in the activation of astrocytes, a critical aspect of various neurological diseases, especially multiple sclerosis. The study uses the EAE mouse model, which closely resembles MS. This makes the results relevant and potentially translational. The research clarifies how TRIM21 regulates the nuclear import of PKM2 through ubiquitination by integrating advanced techniques. Targeting this axis may have therapeutic benefits since lentiviral vector-mediated knockdown of TRIM21 in vivo significantly reduces disease severity, CNS inflammation, and demyelination in EAE animals.

      Weaknesses:

      The authors reported that PKM2 levels are elevated in the nucleus of astrocytes at different EAE phases compared to cytoplasmic localization. However, Figure 1 also shows elevated cytoplasmic expression of PKM2. The authors should clarify the nuclear localization of PKM2 by providing zoomed-in images. An explanation for the increased cytoplasmic PKM2 expression should provided. Similarly, while PKM2 translocation is inhibited by DASA-58, in addition to its nuclear localization, a decrease in the cytoplasmic localization of PKM2 is also observed. This situation brings to mind the possibility of a degradation mechanism being involved when its nuclear translocation of PKM2 is inhibited.

      In Figure 3D, the authors claim that PKM2 expression causes nuclear retention of STAT3, p65, and p50, and inhibiting PKM2 localization with DASA-58 suppresses this retention. The western blot results for the MOG-stimulated group show high levels of STAT3, p50, and p65 in nuclear localization. However, in the MOG and DASA-58 treated group, one would expect high levels of p50, p65, and STAT3 proteins in the cytoplasm, while their levels decrease in the nucleus. These western blot results could be expanded. Additionally, intensity quantification for these results would be beneficial to see the statistical difference in their expressions, especially to observe the nuclear localization of PKM2.

      The discrepancy between Figure 7A and its explaining text is confusing. The expectation from the knocking down of TRIM21 is the amelioration of activated astrocytes, leading to a decrease in inflammation and the disease state. The presented results support these expectations, while the images showing demyelination in EAE animals are not highly supportive. Clearly labeling demyelinated areas would enhance readers' understanding of the important impact of TRIM21 knockdown on reducing the disease severity.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Vogt et al examines how the synaptic composition of AMPA and NMDA receptors changes over sleep and wake states. The authors perform whole-cell patch clamp recordings to quantify changes in silent synapse numbers across conditions of spontaneous sleep, sleep deprivation, and recovery sleep after deprivation. They also perform single nucleus RNAseq to identify transcriptional changes related to AMPA/NMDA receptor composition following spontaneous sleep and sleep deprivation. The findings of this study are consistent with a decrease in silent synapse number during wakefulness and an increase during sleep. However, these changes cannot be conclusively linked to sleep/wake states. Measurements were performed in the motor cortex, and sleep deprivation was achieved by forced locomotion, raising the possibility that recent levels of neuronal activity/induction of plasticity, rather than sleep/wake states, are responsible for the observed results.

      Strengths:

      This study examines an important question. Glutamatergic synaptic transmission has been a focus of studies in the sleep field, but AMPA receptor function has been the primary target of these studies. Silent synapses, which contain NMDA receptors but lack AMPA receptors, have important functional consequences for the brain. Exploring the role of sleep in regulating silent synapse numbers is important to understanding the role of sleep in brain function. The electrophysiological approach of measuring the failure rate ratio, supported by AMPA/NMDA ratio measurements, is a rigorous tool to evaluate silent synapse numbers.

      The authors also perform snRNAseq to identify genes differentially expressed in the spontaneous sleep and sleep deprivation groups. This analysis reveals an intriguing pattern of upregulated genes controlled by HDAC4 and Mef2c, along with synaptic shaping component genes and genes associated with autism spectrum disorder, across cell types in the sleep deprivation group. This unbiased approach identifies candidate genes for follow-up studies.

      Weaknesses:

      A major weakness of this study is the experimental design. Measurements are made from the motor cortex, and sleep deprivation was achieved using forced locomotion on a treadmill. Therefore, the effects observed could be due to recent high levels of activity or plasticity induction in the motor cortex from locomotion, rather than lack of sleep per se. In support of this interpretation, other groups have failed to find a difference in AMPA/NMDA ratio in mice with different spontaneous sleep/wake histories, although sleep deprivation was not performed (Bridi et al., Neuron 2020).

      The electrophysiological measurements are problematic in several ways. First, the methods lack crucial details such as inclusion/exclusion criteria for each cell based on input and series resistance, stability of input/series resistance, polysynaptic responses, etc. that make it difficult to interpret the data. The holding potential (-90mV) used for AMPA receptor current recordings is much more hyperpolarized than typically used for these measurements. The statistical analysis of these experiments is also problematic. The number of mice used is low (3/group) and more should be added to account for inter-animal variability. Comparing the raw data with the statistical tests in supplementary table 1 (FR ratio), it appears that a data point has been dropped from the analysis, but it is unclear why. In addition, a false discovery rate (FDR) correction for multiple comparisons is used to evaluate group differences following the ANOVAs. Correcting for the FDR is less stringent and is typically used when a large number of hypotheses are tested and false positives are more acceptable. In this analysis, few comparisons are made, and the standard approach of correcting for the family-wise error rate is more appropriate.

      The snRNAseq data are intriguing, but a more thorough discussion of the candidate genes and pathways that are upregulated during sleep deprivation is warranted. Several genes relevant to the AMPA/NMDA ratio are mentioned, but upregulation of most of these genes would not be expected to increase the AMPA/NMDA ratio based on the literature cited. The model presented in Figure 4C is not consistent with the data (e.g. many candidate genes could alter NMDAR function without receptor insertion/removal), and it is unclear how the current study fits into the model presented in 4D.

    1. Reviewer #1 (Public Review):

      The study reports that STN neurons recorded while monkeys performed a random-dot motion task show diverse activation timecourses relative to task events and dependencies on coherence, reaction time, and saccade-choice direction. Different neuron types could be grouped into functional subpopulations, e.g., coherence sensitivity emerging early only in choice-coding neurons. Clustering techniques identified three functionally defined neuron clusters whose dynamic activity profiles related to computational predictions of different decision models in the literature. Microstimulation at different STN recording sites affected behavioral performance in varying but well-conceptualized ways that were captured by the parameters of drift-diffusion models and related to the presence of STN functional clusters at recording sites. The authors conclude that their results validate key aspects of decision models and identify novel aspects of decision-related STN activity.

      This is an interesting and high-quality paper that will be of interest across computational and decision neuroscience fields. The recordings and data analyses seem carefully conducted. The study has an attractive theoretical starting point of three specific computational signals that are then mapped onto identified neuron clusters. The combination of single-cell recordings, microstimulation, and computational modelling is a distinct strength of the paper. I only have a few questions and suggestions for clarification.

      (1) It would be helpful to explain the criteria for choosing a given number of clusters and for accepting the final clustering solution more clearly. The quantitative results (silhouette plots, Rand index) in Supplementary Figure 2 should perhaps be included in the main figure to justify the parameter choices and acceptance of specific clustering solutions.

      (2) It would be helpful to show how the activity profiles in Figure 3 would look like for 3 or 5 (or 6) clusters, to give the reader an impression of how activity profiles recovered using different numbers of clusters would differ.

      (3) The authors attempt to link the microstimulation effects to the presence of functional neuron clusters at the stimulation site. How can you rule out that there were other, session-specific factors (e.g., related to the animal's motivation) that affected both neuronal activity and behavior? For example, could you incorporate aspects of the monkey's baseline performance (mean reaction time, fixation breaks, error trials) into the analysis?

      (4) Line 84: What was the rationale for not including both coherence and reaction time in one multiple regression model?

    1. Reviewer #1 (Public Review):

      What neurophysiological changes support the learning of new sensorimotor transformations is a key question in neuroscience. Many studies have attempted to answer this question at the neuronal population level - with varying degrees of success - but few, if any, have studied the change in activity of the apical dendrites of layer 5 cortical neurons. Neurons in layer 5 of the sensory cortex appear to play a key role in sensorimotor transformations, showing important decision and reward-related signals, and being the main source of cortical and subcortical projections from the cortex. In particular, pyramidal track (PT) neurons project directly to subcortical regions related to motor activity, such as the striatum and brainstem, and could initiate rapid motor action in response to given sensory inputs. Additionally, layer 5 cortical neurons have large apical dendrites that extend to layer 1 where different neuromodulatory and long-range inputs converge, providing motor and contextual information that could be used to modulate layer 5 neurons output and/or to establish the synaptic plasticity required for learning a new association.

      In this study, the authors aimed to test whether the learning of a new sensorimotor transformation could be supported by a change in the evoked response of the apical dendrites of layer 5 neurons in the mouse whisker primary somatosensory cortex. To do this, they performed longitudinal functional calcium imaging of the apical dendrites of layer 5 neurons while mice learned to discriminate between two multi-whisker stimuli. The authors used a simple conditioning task in which one whisker stimulus (upward or backward air puff, CS+) is associated with a reward after a short delay, while the other whisker stimulus (CS-) is not. They found that task learning (measured by the probability of anticipatory licking just after the CS+) was not associated with a significant change in the average population response evoked by the CS+ or the CS-, nor a change in the average population selectivity. However, when considering individual dendritic tufts, they found interesting changes in selectivity, with approximately equal numbers of dendrites becoming more selective for CS+ and dendrites becoming more selective for CS-.

      One of the major challenges when assessing changes in neural representation during the learning of such Go/NoGo tasks is that the movements and rewards themselves may elicit strong neural responses that may be a confounding factor, that is, inexperienced mice do not lick in response to the CS+, while trained mice do. In this study, the authors addressed this issue in three ways: first, they carefully monitored the orofacial movements of mice and showed that task learning is not associated with changes in evoked whisker movements. Second, they show that whisking or licking evokes very little activity in the dendritic tufts compared to whisker stimuli (CS+ and CS-). Finally, the authors introduced into the design of their task a post-conditioning session after the last conditioning session during which the CS+ and the CS- are presented but no reward is delivered. During this post-session, the mice gradually stopped licking in response to the CS+. A better design might have been to perform the pre-conditioning and post-conditioning sessions in non-water-restricted, unmotivated mice to completely exclude any lick response, but the fact that the change in selectivity persists after the mice stopped licking in the last blocks of the post-conditioning session (in mice relying only on their whiskers to perform the task) is convincing.

      The clever task design and careful data analysis provide compelling evidence that learning this whisker discrimination task does not result in a massive change in sensory representation in the apical dendritic tufts of layer 5 neurons in the primary somatosensory cortex on average. Nevertheless, individual dendritic tufts do increase their selectivity for one or the other sensory stimulus, likely enhancing the ability of S1 neurons to accurately discriminate the two stimuli and trigger the appropriate motor response (to lick or not to lick).

      One limitation of the present study is the lack of evidence for the necessity of the primary somatosensory cortex in the learning and execution of the task. As the authors have strongly emphasized in their previous publications, the primary somatosensory cortex may not be necessary for the learning and execution of simple whisker detection tasks, especially when the stimulus is very salient. Although this new task requires the discrimination between two whisker stimuli, the simplicity and salience of the whisker stimuli used could make this task cortex-independent. Especially when considering that some mice seem to not rely entirely on their whiskers to execute the task.

      Nevertheless, this is an important result that shows for the first time changes in the selectivity to sensory stimuli at the level of individual apical dendritic tufts in correlation with the learning of a discrimination task. This study sheds new light on the cortical cellular substrates of reward-based learning and opens interesting perspectives for future research in this area. In future studies, it will be important to determine whether the change in selectivity of dendritic calcium spikes is causally involved in the learning of the task or whether it simply correlates with learning, as a consequence of changes in synaptic inputs caused by reward. The dendritic calcium spikes may be involved in the establishment of synaptic plasticity required for learning and impact the output of layer 5 pyramidal neurons to trigger the appropriate motor response. It would be important also to study the changes in selectivity in the apical dendrite of the identified projection neurons.

    1. Reviewer #1 (Public Review):

      Summary:

      This study focuses on metabolic changes in the paraventricular hypothalamic (PVH) region of the brain during acute periods of cold exposure. The authors point out that in comparison to the extensive literature on the effects of cold exposure in peripheral tissues, we know relatively little about its effects on the brain. They specifically focus on the hypothalamus, and identify the PVH as having changes in Atgl and Hsl gene expression changes during cold exposure. They then go on to show accumulation of lipid droplets, increased Fos expression, and increased lipid peroxidation during cold exposure. Further, they show that neuronal activation is required for the formation of lipid droplets and lipid peroxidation.

      Strengths:

      A strength of the study is trying to better understand how metabolism in the brain is a dynamic process, much like how it has been viewed in other organs. The authors also use a creative approach to measuring in vivo lipid peroxidation via delivery of a BD-C11 sensor through a cannula to the region in conjunction with fiber photometry to measure fluorescence changes deep in the brain.

      Weaknesses:

      Although the topic and findings are of interest, there are a few key weaknesses in the study that would improve the work if addressed. One weakness was many of the experiments were done in a manner that could not distinguish between the contributions of neurons and glial cells, limiting the extent of conclusions that could be made. While this is not easily doable for all experiments, it can be done for some. For example, the Fos experiments in Figure 3 would be more conclusive if done with the labeling of neuronal nuclei with NeuN, as glial cells can also express Fos. To similarly show more conclusively that neurons are being activated during cold exposure, the calcium imaging experiments in Figure S3 can be done with cold exposure. Additionally, many experiments are only done with the minimal three animals required for statistics and could be more robust with additional animals included. Another weakness is that the authors do not address whether manipulating lipid droplet accumulation or lipid peroxidation has any effect on PVH function (e.g. does it change neuronal activity in the region?).

    1. Reviewer #1 (Public Review):

      Little is known about the local circuit mechanisms in the preoptic area (POA) that regulate body temperature. This carefully executed study investigates the role of GABAergic interneurons in the POA that express neurotensin (NTS). The principal finding is that GABA-release from these cells inhibits neighboring neurons, including warm-activated PACAP neurons, thereby promoting hyperthermia, whereas NTS released from these cells has the opposite effect, causing a delayed activation and hypothermia. This is shown through an elegant series of experiments that include slice recordings alongside matched in vivo functional manipulations. The roles of the two neurotransmitters are distinguished using a cell-type-specific knockout of Vgat as well as pharmacology to block GABA and NTS receptors. Overall, this is an excellent study that is noteworthy for revealing local circuit mechanisms in the POA that control body temperature and also for highlighting how amino acid neurotransmitters and neuropeptides released from the same cell can have opposing physiologic effects. I have only minor suggestions for revision.

    1. Reviewer #1 (Public Review):

      Summary:

      In this technical paper, the authors introduce a useful variation on the fully automated multi-electrode patch-clamp recording technique for probing synaptic connections that they term "patch-walking". The patch-walking approach involves coordinated pipette route-planning and automated pipette cleaning procedures for pipette reuse to improve recording throughput efficiency, which the authors argue can theoretically yield almost twice the number of connections to be probed by paired recordings on a multi-patch electrophysiology setup for a given number of cells compared to conventional manual patch-clamping approaches used in brain slices in vitro. The authors show solid results from recordings in mouse in vitro cortical slices, demonstrating the efficient recording of dozens of paired neurons with a two-patch pipette configuration for paired recordings and detection of synaptic connections. This approach will be of interest and valuable to neuroscientists conducting automated multi-patch in vitro electrophysiology experiments and seeking to increase the efficiency of neuron connectivity detection while avoiding the more complex recording configurations (e.g., 8-10 pipette multi-patch recording configurations) used by several laboratories that are not readily implementable by most of the neuroscience community.

      Strengths:

      (1) The authors introduce the theory and methods and show experimental results for a fully automated electrophysiology dual patch-clamp recording approach, which uses coordinated patch-clamp pipette route-planning and automated pipette cleaning procedures to "patch-walk" across an in vitro brain slice.

      (2) The patch-walking approach improves throughput efficiency over manual patch clamp recording approaches, especially for investigators looking to utilize paired patch electrode recordings in electrophysiology experiments in vitro.

      (3) Experimental results are presented from in vitro mouse cortical slices demonstrating the efficiency of recording dozens of paired neurons with a two-patch pipette configuration for paired recordings and detecting synaptic connections, demonstrating the feasibility and efficiency of the patch-walking approach.

      (4) The authors suggest extensions of their technique while keeping the number of recording pipettes employed and recording rig complexity low, which are important practical technical considerations for investigators wanting to avoid the more complex recording configurations (e.g., 8-10 pipette multi-patch recording configurations) used by several laboratories that are not readily implementable by most of the neuroscience community.

    1. Reviewer #1 (Public Review):

      Cheng, Yu-Ting, et al. demonstrate the capabilities of three-photon excited fluorescence (3PEF) microscopy for in vivo imaging of the mouse spinal cord. It enables imaging up to ~550 µm in depth, overcoming the limitations of two-photon excited fluorescence (2PEF) microscopy. The authors used 3PEF to visualize and quantify blood flow across different vessel types within the spinal cord and observed the cellular responses following venule occlusion. They showed depth-dependent structural changes in neurites and the behavior of microglia with a high contrast. The findings show that 3PEF can provide high-resolution, multicolor imaging of dynamic cellular interactions and vascular architecture, helping studies of spinal cord physiology and pathology.

      The experiments are well done and supported by data but some points need to be clarified:

      (1) For the two vs three-photon comparison, the authors should provide more information about how they performed the 2PEF: power and pulse duration. This comparison is primarily focused on imaging depth and signal-to-background ratio (SBR), but imaging speed should also be discussed.

      (2) A comparison with state-of-the-art 2PEF would have been more convincing. For instance, the use of adaptive optics, or red-shifted fluorophores allowing better 2PEF SBR, or deeper imaging.

      (3) The study focuses on structural imaging and does not provide extensive data on real-time dynamic processes, which could be crucial for understanding rapid cellular responses in the spinal cord.<br /> By addressing these weaknesses, future studies could enhance the applicability and reliability of 3PEF microscopy for spinal cord research.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Meissner and colleagues described a novel take on a classic social cognition paradigm developed for marmosets. The classic pull task is a powerful paradigm that has been used for many years across numerous species, but its analog approach has several key limitations. As such, it has not been feasible to adopt the task for neuroscience experiments. Here the authors capture the spirit of the classic task but provide several fundamental innovations that modernize the paradigm - technically and conceptually. By developing the paradigm for marmosets, the authors leverage the many advantages of this primate model for studies of social brain functions and their particular amenability to freely-moving naturalistic approaches.

      Strengths:

      The current manuscript describes one of the most exciting paradigms in primate social cognition to be developed in many years. By allowing for freely-moving marmosets to engage in high numbers of trials, while precisely quantifying their visual behavior (e.g. gaze) and recording neural activity this paradigm has the potential to usher in a new wave of research on the cognitive and neural mechanisms underlying primate social cognition and decision-making. This paradigm is an elegant illustration of how naturalistic questions can be adapted to more rigorous experimental paradigms. Overall, I thought the manuscript was well written and provided sufficient details for others to adopt this paradigm. I did have a handful of questions and requests about topics and information that could help to further accelerate its adoption across the field.

      Weaknesses:

      LN 107 - Otters have also been successful at the classic pull task (https://link.springer.com/article/10.1007/s10071-017-1126-2)

      LN 151 - Can you provide a more precise quantification of timing accuracy than the 'sub-second level'. This helps determine synchronization with other devices.

      Using this paradigm, the marmosets achieved more trials than in the conventional task (146 vs 10). While this is impressive, given that only ~50 are successful Mutual Cooperation trials it does present some challenges for potential neurophysiology experiments and particular cognitive questions. The marmosets are only performing the task for 20 minutes, presumably because they become sated and are no longer motivated. This seems a limitation of the task and is something worth discussing in the manuscript. Did the authors try other food rewards, reduce the amount of reward, food/water restrict the animals for more than the stated 1-3 hours? How might this paradigm be incorporated into in-cage approaches that have been successful in marmosets? Any details on this would help guide others seeking to extend the number of trials performed each day.

      Can you provide more details on the DLC/Anipose procedure? How were the cameras synchronized? What percentage of trials needed to be annotated before the model could be generalized? Did each monkey require its own model, or was a single one applied to all animals?

      Will the schematics and more instructions on building this system be made publicly available? A number of the components listed in Table 1 are custom-designed. Although it is stated that CAD files will be made available upon request, sharing a link to these files in an accessible folder would significantly add to the potential impact of this paradigm by making it easier for others to adopt.

      In the Discussion, it would be helpful to have some discussion of how this paradigm might be used more broadly. The classic pulling paradigm typically allows one to ask a specific question about social cognition, but this task has the potential to be more widely applied to other social decision-making questions. For example, how might this task be adopted to ask some of the game-theory-type approaches common in this literature? Given the authors' expertise in this area, this discussion could serve to provide a roadmap for the broader field to adopt.

      Although this paradigm was developed specifically for marmosets, it seems to me that it could readily be adopted in other species with some modifications. Could the authors speak to this and their thoughts on what may need to be changed to be used in other species? This is particularly important because one of the advantages of the classic paradigm is that it has been used in so many species, providing the opportunity to compare how different species approach the same challenge. For example, though both chimps and bonobos are successful, their differences are notably illuminating about the nuances of their respective social cognitive faculties.

  2. Jun 2024
    1. Reviewer #1 (Public Review):

      The manuscript by Yu et al seeks to investigate the role of neuritin (Nrn1), identified as a marker of anergic cells, in the biology of regulatory (Tregs) and conventional (Tconv) T cells. Although the role of Nrn1 expressed by Tregs has already been explored (Gonzalez-Figueroa 2021 cited in the manuscript), this manuscript shows original new data suggesting that this molecule would be important in promoting Treg function and inhibiting Tconv effector function by acting at the level of membrane potential and molecule transport across the plasma membrane. However, it is disappointing that reading this manuscript leaves an impression of incomplete work done too quickly. Multiple models have been used, but none has been studied thoroughly enough to provide really conclusive and unambiguous data. For example, 5 different models were used to study T cells in vivo. It would have been preferable to use fewer, but to go further in the study of mechanisms. In the absence of a more in-depth study, the conclusions drawn by the authors are often open to question. Major points concern the fact that there are enough biological replicates for most experiments, some critical controls and data are lacking, and the authors have used iTregs rather than nTregs for many experiments (see below). This is unfortunate because the role of neuritin in T cell biology studied here is new and interesting.

      Major points (in the order in which they appear in the text):

      (1) A real weakness of this work is the fact that in most of the results shown, there are few biological replicates with differences that are often small between Ctrl and Nrn1 -/-. The systematic use of student's t-test may lead to thinking that the differences are significant, which is often misleading given the small number of samples, which makes it impossible to know whether the distributions are Gaussian and whether a parametric test can be used. RNAseq bulk data are based on biological duplicates, which is open to criticism.

      (2) The authors use Nrn1+/+ and Nrn1+/- cells indiscriminately as control cells on the basis of similar biology between Nrn1+/+ and Nrn1+/- cells at homeostasis. However, it is quite possible that the Nrn1+/- cells have a phenotype in situations of in vitro activation or in vivo inflammation (cancer, EAE). It would be important to discriminate Nrn1+/- and Nrn1+/+ cells in the data or to show that both cell types have the same phenotype in these conditions too.

      (3) Figure 1A-D. Since the authors are using the Nrp1 KO mice, it would be important to confirm the specificity of the anti-Nrn1 mAb by FACS. Once verified, it would be important to add FACS results with this mAb in Figures 1A-C to have single-cell and quantitative data as well.

      (4) Figure 1E-H. The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this. It would be useful to show that T cells are indeed anergic in this model, especially those that are OVA-specific. The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVA-specific cells, rather than by an anergic status.

      (5) Figure 2A-C and Figure 3. The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance. In any case, they are different from pTreg cells generated in vivo. Working with pTreg may be challenging, that is why I would suggest generating data with purified nTreg. Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript. Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.

      (6) Figure 2D-L. The model is designed to study the role of Nrn1 in nTreg. However, the % of Foxp3+ among CD45.2 nTreg cells fell to 5-15% of CD4+ cells (Figure 2F). Since we do not know what is the % of Foxp3 among the injected cells, we do not know whether this very low % is due to very high Treg instability or to preferential expansion of contaminating Tconvs. It is possible that the % of Tconv contaminant is high since Treg was sorted using beads and not FACS in some experiments. As it is very likely that there are Tconv contaminants that would be Nrn1-/- in the group transferred with Nrn1-/- "nTreg", the higher tumor rejection could be due to an overactivation of Nrn1-/- Tconvs (rather than a defect in Nrn1-/- Treg function).

    1. Joint Public Review:

      In this paper Hui and colleagues investigate how the predictive accuracy of a polygenic score (PGS) for body mass index (BMI) changes when individuals are stratified by 62 different covariates. After showing that the PGS has different predictive power across strata for 18 out of 62 covariates, they turn to understanding why these differences and seeing if predictive performance could be improved. First they investigated which types of covariates result in the largest differences in PGS predictive power, finding that covariates with with larger "main effects" on the trait and covariates with larger interaction effects (interacting with the PGS to affect the trait) tend to better stratify individuals by PGS performance. The authors then see if including interactions between the PGS and covariates improves predictive accuracy, finding that linear models only result in modest increases in performance but nonlinear models result in more substantial performance gains.

      Overall, the results are interesting and well-supported. The results will be broadly interesting to people using and developing PGS methods, as well as the broader statistical genetics community.

      A few of the important points of the paper are:

      A major impediment to the clinical use of PGS is the interaction between the PGS and various other routinely measure covariates, and this work provides a very interesting empirical study along these lines. The problem is interesting, and the work presented here is a convincing empirical study of the problem.

      The result that PGS accuracy differs across covariates, but in a way that is not well-captured by linear models with interactions is important for PGS method development.

      The quantile regression analysis is an interesting approach to explore how and why PGS may differ in accuracy across different strata of individuals.

    1. Reviewer #1 (Public Review):

      Summary:

      This work seeks to isolate the specific effects of phosphoinositide 3-kinase (PI3K) on the trafficking of the ion channel TRPV1, distinct from other receptor tyrosine kinase-activated effectors. It builds on earlier studies by the same group (Stein et al. 2006; Stratiievska et al. 2018), which described the regulatory relationship between PI3K, nerve growth factor (NGF), and TRPV1 trafficking. A central theme of this study is the development of methods that precisely measure the influence of PI3K on TRPV1 trafficking and vice versa. The authors employ a range of innovative methodologies to explore the dynamics between TRPV1 and PI3K trafficking.

      Strengths:

      A major strength of this study is the application of innovative methods to understand the interaction between PI3K and TRPV1 trafficking. The key techniques presented include:

      (1) The optogenetic trafficking system based on phytochrome B, introduced in this research. Its interaction mechanism, dependent on reversible light activation, is comprehensively explained in Figures 1 and 2, with the system's efficacy demonstrated in Figure 3.

      (2) An extracellular labeling method using click chemistry, which although not exclusive to this study, introduces specific reagents engineered for membrane impermeability.

      The central biological insight presented here is the sufficiency of PI3K activation to guide TRPV1 trafficking to the plasma membrane. An additional notable discovery is the potential regulation of insulin receptors via this mechanism.

      The paper's strengths are anchored in its innovative methodologies and the valuable collaboration between groups specializing in distinct areas of research.

      Weaknesses:

      The paper might benefit from a more streamlined structure and a clearer emphasis on its findings. A possible way to enhance its impact might be to focus more on its methodological aspects. The methodological facets stand out as both innovative and impactful. These experiments are well-executed and align with biological expectations. It's evident how these techniques could be tailored for many protein trafficking studies, a sentiment echoed in the manuscript (lines 287-288). When seen through a purely biological lens, some findings, like those concerning the PI3K-TRPV1 interaction, are very similar to previous work (Stratiievska et al. 2018). A biological focus demands further characterization of this interaction through mutagenesis. Also, the incorporation of insights on the insulin receptor feels somewhat tangential. A cohesive approach could be to reshape the manuscript with a primary focus on methodology, using TRPV1 and InsR as illustrative examples.

    1. Reviewer #1 (Public Review):

      Summary:

      Their findings elucidate the mechanisms underlying 2-AA-mediated reduction of pyruvate transport into mitochondria, which impairs the interaction between ERRα and PGC1α, consequently suppressing MPC1 expression and reducing ATP production in tolerized macrophages. While the data presented is intriguing and the paper is well-written, there are several points that warrant consideration. The authors should enhance the clarity, relevance, and impact of their study.

      Strengths:

      This paper presents a novel discovery regarding the mechanisms through which PA regulates the bioenergetics of tolerized macrophages.

      Weaknesses:

      The relevance of the in vivo model to support the conclusions is questionable. Further clarification is needed on this point.

    1. Reviewer #1 (Public Review):

      Cheng et al explore the utility of analyte ratios instead of relative abundance alone for biological interpretation of tissue in a MALDI MSI workflow. Utilizing the ratio of metabolites and lipids that have complimentary value in metabolic pathways, they show the ratio as a heat map which enhances the understanding of how multiple analytes relate to each other spatially. Normally, this is done by projecting each analyte as a unique color but using a ratio can help clarify visualization and add to biological interpretability. However, existing tools to perform this task are available in open-source repositories, and fundamental limitations inherent to MALDI MSI need to be made clear to the reader. The study lacks rigor and controls, i.e. without quantitative data from a variety of standards (internal isotopic or tissue mimetic models for example), the potential delta in ionization efficiencies of different species subtracts from the utility of pathway analysis using metabolite ratios.

    1. Reviewer #1 (Public Review):

      This important study uses a wide variety of convincing, state-of-the-art neuroimaging analyses to characterize whole-brain networks and relate them to reward-based motor learning. During early learning, the authors found increased covariance between the sensorimotor and dorsal attention networks, coupled with reduced covariance between the sensorimotor and default mode networks. During late learning, they observed the opposite pattern. It remains to be seen whether these changes reflect generic changes in task engagement during learning or are specific to reward-based motor learning. This study is highly relevant for researchers interested in reward-based motor learning and decision-making.

    1. Reviewer #1 (Public Review):

      The authors investigated how global brain activity varied during reward-based motor learning. During early learning, they found increased covariance between the sensorimotor and dorsal attention networks, coupled with reduced covariance between the sensorimotor and default mode networks; during late learning, they found the opposite pattern. Individual learning performance varied only with changes in the dorsal attention network. The authors certainly used a wide variety of valuable, state-of-the-art techniques to interrogate whole-brain networks and extract the key components of learning behavior. However, the findings are incomplete, tempered by potential confounds in the experimental design. As such, the underlying claim regarding how these networks jointly support reward-based motor learning is unclear.

    1. Reviewer #1 (Public Review):

      Fang Huang et al found that RBM7 deficiency promotes metastasis by coordinating MFGE8 splicing switch and NF-kB pathway in breast cancer by utilizing clinical samples as well as cell and tail vein injection models.

      This study uncovers a previously uncharacterized role of MFGE8 splicing alteration in breast cancer metastasis, and provides evidence supporting RBM7 function in splicing regulation. These findings facilitate the mechanistic understanding of how splicing dysregulation contributes to metastasis in cancer, a direction that has increasingly drawn attention recently, and provides a potentially new prognostic and therapeutic target for breast cancer.

    1. Reviewer #1 (Public Review):

      This paper reports the useful discovery of the roles and signaling components of the TOR pathway in vegetative growth, sexual development, stress response, and aflatoxin production in Aspergillus flavus.

      While I acknowledge the authors' effort in conducting Southern blot analysis to address my prior concern regarding the presence of dual copies of torA and tapA, I find their current resolution inadequate. Specifically, the simple deletion of the respective result sections for torA and tapA significantly impacts the overall significance of this study. The repeated unsuccessful attempts to generate correct mutants only offer circumstantial evidence, as technical issues may have been a contributing factor. Therefore, instead of merely removing these sections, it is essential for the authors to present more compelling experimental data demonstrating that torA and tapA are indeed vital for the viability of A. flavus. Such data would enhance the overall significance of this study.

    1. Reviewer #1 (Public Review):

      Summary:

      The study investigates parafoveal processing during natural reading, combining eye-tracking and MEG techniques, building upon the RIFT paradigm previously introduced by Pan et al. (2021).

      The manuscript is well-written with a clear structure, and the data analysis and experimental results are presented in a lucid manner.

      Comments on revised version:

      I am satisfied with the revisions made by the authors. I believe the study introduces a new research paradigm to the field.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors study the variability of patient response of NSCLC patients on immune checkpoint inhibitors using single-cell RNA sequencing in a cohort of 26 patients and 33 samples (primary and metastatic sites), mainly focusing on 11 patients and 14 samples for association analyses, to understand the variability of patient response based on immune cell fractions and tumor cell expression patterns. The authors find immune cell fraction, clonal expansion differences, and tumor expression differences between responders and non-responders. Integrating immune and tumor sources of signal the authors claim to improve prediction of response markedly, albeit in a small cohort.

      Strengths:

      - The problem of studying the tumor microenvironment, as well as the interplay between tumor and immune features is important and interesting and needed to explain the heterogeneity of patient response and be able to predict it.

      - Extensive analysis of the scRNAseq data with respect to immune and tumor features on different axes of hypothesis relating to immune response and tumor immune evasion using state-of-the-art methods.

      - The authors provide an interesting scRNAseq data set linked to outcomes data.

      - Integration of TCRseq to confirm subtype of T-cell annotation and clonality analysis.

      - Interesting analysis of cell programs/states of the (predicted) tumor cells and characterization thereof.

      Weaknesses:

      - Generally, a very heterogeneous and small cohort where adjustments for confounding are hard. Additionally, there are many tests for association with outcome, where necessary multiple testing adjustments would negate signal and confirmation bias likely, so biological takeaways have to be questioned.

      - RNAseq is heavily influenced by the tissue of origin (both cell type and expression), so the association with the outcome can be confounded. The authors try to argue that lymph node T-cell and NK content are similar, but a quantitative test on that would be helpful.

      - The authors claim a very high "accuracy" performance, however, given the small cohort and lack of information on the exact evaluation it is not clear if this just amounts to overfitting the data.

      - Especially for tumor cell program/state analysis the specificity to the setting of ICIs is not clear and could be prognostic.

      - Due to the small cohort with a lot of variability, more external validation is needed to be convincingly reproducible, especially when talking about AUC/accuracy of a predictor.

    1. Reviewer #2 (Public Review):

      Summary:

      Singh and colleagues employ a methodic approach to reveal the function of the transcription factors Rela and Stat3 in the regulation of the inflammatory response in the intestine.

      Strengths of the manuscript include the focus on the function of these transcription factors in hepatocytes and the discovery of their role in the systemic response to experimental colitis. While the systemic response to induce colitis is appreciated, the cellular and molecular mechanisms that drive such systemic response, especially those involving other organs beyond the intestine are an active area of research. As such, this study contributes to this conceptual advance. Additional strengths are the complementary biochemical and metabolomics approaches to describe the activation of these transcription factors in the liver and their requirement - specifically in hepatocytes - for the production of bile acids in response to colitis.

      In this revised version, the authors have addressed previously raised questions.

    1. Reviewer #2 (Public Review):

      This manuscript describes new methodology to study low water potential (drought) stress responses in agar plates. They devote considerable effort in comparing transcriptome data among various previously published experimental systems, examining how different approaches of reducing water potential impact the Arabidopsis root and shoot transcriptome. Each method purported to reduce water potential in plate-grown seedlings has a different effect on Arabidopsis root transcriptome responses, which is problematic for the field. In this reviewer's view, differences in transcriptome are not as important, and often not as informative as measurement of physiological parameters, which they do very little of in their study.

      The focus on transcriptome data to the almost complete exclusion of other types of data is a symptom of a broader over-emphasis on the transcriptome that is quite prevalent in plant science now. We measure transcriptomes because we can, not because it is inherently the most informative thing to do. The important thing is protein amount, and even more so protein activity/function, which we know has an imperfect, at best, correlation with transcript level. This reviewer acknowledges that using Arabidopsis transcriptomics is a commonly employed method, and as such, the outcomes of this study will hold value for a broad audience, even if largely as a cautionary tale. If transcriptomics is used to identify candidate genes for future investigations, an approach that has had some success, then appropriate cautions should be taken in translating expectations about gene, protein, and phenotypic responses in field conditions.

    1. Reviewer #1 (Public Review):

      Summary:

      The paper begins with phenotyping the DGRP for post-diapause fecundity, which is used to map genes and variants associated with fecundity. There are overlaps with genes mapped in other studies and also functional enrichment of pathways including most surprisingly neuronal pathways. This somewhat explains the strong overlap with traits such as olfactory behaviors and circadian rhythm. The authors then go on to test genes by knocking them down effectively at 10 degrees. Two genes, Dip-gamma and sbb, are identified as significantly associated with post-diapause fecundity, and they also find the effects to be specific to neurons. They further show that the neurons in the antenna but not the arista are required for the effects of Dip-gamma and sbb. They show that removing the antenna has a diapause-specific lifespan-extending effect, which is quite interesting. Finally, ionotropic receptor neurons are shown to be required for the diapause-associated effects.

      Strengths and Weaknesses:

      Overall I find the experiments rigorously done and interpretations sound. I have no further suggestions except an ANOVA to estimate the heritability of the post-diapause fecundity trait, which is routinely done in the DGRP and offers a global parameter regarding how reliable phenotyping is. A minor point is I cannot find how many DGRP lines are used.

    1. Reviewer #1 (Public Review):

      Summary:

      The study presented by Atsumi et al. is about using smartphone-driven, community-sourced data to enhance biodiversity monitoring. The idea is to leverage the widespread use of smartphones to gather data from the community quickly, contributing to a more comprehensive understanding of biodiversity. The authors discuss the importance of ecosystem services linked to biodiversity and the threats posed by human activities. It emphasizes the need for comprehensive biodiversity data to implement the Kunming-Montreal Global Biodiversity Framework. The 'Biome' mobile app, launched in Japan, uses species identification algorithms and gamification to gather over 6 million observations since 2019. While community-sourced data may have biases, incorporating it into Species Distribution Models (SDMs) improves accuracy, especially for endangered species. The app covers urban-natural gradients uniformly, enhancing traditional survey data biased towards natural areas. Combining these sources provides valuable insights into species distributions for conservation, protected area designation, and ecosystem service assessment.

      Strengths:

      The use of a smartphone app ('Biome') for community-driven species occurrence data collection represents an innovative and inclusive approach to biodiversity monitoring, leveraging the widespread use of smartphones. The app has successfully accumulated a large volume of species occurrence data since its launch in 2019, showcasing its effectiveness in rapidly gathering information from diverse locations. Despite challenges with certain taxa, the study highlights high species identification accuracy, especially for birds, reptiles, mammals, and amphibians, making the 'Biome' app a reliable tool for species observation. The integration of community-sourced data into Species Distribution Models (SDMs) improves the accuracy of predicting species distributions. This has implications for conservation planning, including the designation of protected areas and assessment of ecosystem services. The rapid accumulation of data and advancements in machine learning methods open up opportunities for conducting time-series analyses, contributing to the understanding of ecosystem stability and interaction strength over time. The study emphasizes the collaborative nature of the platform, fostering collaboration among diverse stakeholders, including local communities, private companies, and government agencies. This inclusive approach is essential for effective biodiversity assessment and decision-making. The platform's engagement with various stakeholders, including local communities, supports biodiversity assessment, management planning, and informed decision-making. Additionally, the app's role in fostering nature-positive awareness in society is highlighted as a significant contribution to creating a sustainable society.

      Weaknesses:

      While the studies make significant contributions to biodiversity monitoring, they also have some weaknesses. Firstly, relying on smartphone-driven, community-sourced data may introduce spatial and taxonomic biases. The 'Biome' app, for example, showed lower accuracy for certain taxa like seed plants, molluscs, and fishes, potentially impacting the reliability of the gathered data. Furthermore, the effectiveness of Species Distribution Models (SDMs) relies on the assumption that biases in community-sourced data can be adequately accounted for. The unique distribution patterns of the 'Biome' data, covering urban-natural gradients uniformly, might not fully represent the diversity of certain ecosystems, potentially leading to inaccuracies in the models. Moreover, the divergence in data distribution patterns along environmental gradients between 'Biome' data and traditional survey data raises concerns. The app data shows a more uniform distribution across natural-urban gradients, while traditional data is biased towards natural areas. This discrepancy may impact the representation of certain ecosystems and influence the accuracy of Species Distribution Models (SDMs). While the integration of 'Biome' data into SDMs improves accuracy, the study notes that controlling the sampling efforts is crucial. Spatially-biased sampling efforts in community-sourced data need careful consideration, and efforts to control biases are essential for reliable predictions.

    1. Reviewer #1 (Public Review):

      Summary:

      Debeuf et al. introduce a new, fast method for the selection of suitable T cell clones to generate TCR transgenic mice, a method claimed to outperform traditional hybridoma-based approaches. Clone selection is based on the assessment of the expansion and phenotype of cells specific for a known epitope following immune stimulation. The analysis is facilitated by a new software tool for TCR repertoire and function analysis termed DALI. This work also introduces a potentially invaluable TCR transgenic mouse line specific for SARS-CoV-2.

      Strengths:

      The newly introduced method proved successful in the quick generation of a TCR transgenic mouse line. Clone selection is based on more comprehensive phenotypical information than traditional methods, providing the opportunity for a more rational T cell clone selection.

      The study provides a software tool for TCR repertoire analysis and its linkage with function.

      The findings entail general practical implications in the preclinical study of a potentially very broad range of infectious diseases or vaccination.

      A novel SARS-CoV-2 spike-specific TCR transgenic mouse line was generated.

      Weaknesses:

      The authors attempt to compare their novel method with a more conventional approach to developing TCR transgenic mice. In this reviewer's opinion, this comparison appears imperfect in several ways:

      • Work presenting the "traditional" method was inadequate to justify the selection of a suitable clone. It is therefore not surprising that it yielded negative results. More evidence would have been necessary to select clone 47 for further development of the TCR transgenic line, especially considering the significant time and investment required to create such a line.

      • The comparison is somewhat unfair, because the methods start at different points: while the traditional method was attempted using a pool of peptides whose immunogenicity does not appear to have been established, the new method starts by utilising tetramers to select T cells specific for a well-established epitope.

      • Given the costs and time involved, only a single clone could be tested for either method, intrinsically making a proper comparison unfeasible. Even for their new method, the authors' ability to demonstrate that the selected clone is ideal is limited unless they made different clones with varying profiles to show that a particular profile was superior to others.

      In my view, there was no absolute need to compare this method with existing ones, as the proposed method holds intrinsic value.

      While having more data to decide on clone selection is certainly beneficial, given the additional cost, it remains unclear whether knowing the expression profiles of different proteins in Figure 2 aids in selecting a candidate. Is a cell expressing more CD69 preferable to a cell expressing less of this marker? Would either have been effective? Are there any transcriptional differences between clonotype 1 and 2 (red colour in Figure 2G) that justify selecting clone 1, or was the decision to select the latter merely based on their different frequency? If all major clones (i.e. by clonotype count) present similar expression profiles, would it have been necessary to know much more about their expression profiles? Would TCR sequencing and an enumeration of clones have sufficed, and been a more cost-effective approach?

      Lastly, it appears that several of the experiments presented were conducted only once. This information should have been explicitly stated in the figure legends.

    1. Reviewer #1 (Public Review):

      In their manuscript, Gerlevik et al. performed an integrative analysis of clinical, genetic and transcriptomic data to identify MDS subgroups with distinct outcomes. The study was based on the building of an "immunoscore" and then combined with genotype and clinical data to analyze patient outcomes using multi-omics factor analysis.

      Strengths: Integrative analysis of RNA-seq, genotyping and clinical data

      Weaknesses: Validation of the bioinformatic pipeline is incomplete

      Major comments:

      (1) This study considered two RNA-seq data sets publicly available and generated in two distinct laboratories. Are they comparable in terms of RNA-seq technique: polyA versus rRNA depletion, paired-end sequencing, fragment length?

      (2) Data quality control (figure 1): the authors must show in a graph whether the features (dimensions) of factor 1 were available for each BMMNC and CD34+ samples.

      (3) How to validate the importance of "immunoscore"? If GSEA of RNA-seq data was performed in the entire cohort, in the SF3B1-mutated samples or SRSF2-mutated samples (instead of patients having a high versus low level of factor 1 shown in Sup Fig. 4), what would be the ranking of Hallmarks or Reactome inflammatory terms among the others?

      (4) To decipher cell-type composition of BMMNC and CD34+ samples, the authors used van Galen's data (2019; supplementary table 3). Cell composition is expressed as the proportion of each cell population among the others. Surprisingly, the authors found that the promonocyte-like score was increased in SF3B1-mutated samples and not in SRSF2-mutated samples, which are frequently co-mutated with TET2 and associated with a CMML-like phenotype. Is there a risk of bias if bone marrow subpopulations such as megakaryocytic-erythroid progenitors or early erythroid precursors are not considered?

      (5) Figures 2a and 2b indicated that the nature of retrotransposons identified in BMMNC and CD34+ was different. ERVs were not detected in CD34+ cells. Are ERVs not reactivated in CD34+ cells? Is there a bias in the sequencing or bioinformatic method?

      (6) What is the impact of factor 1 on survival? Is it different between BMMNC and CD34+ cells considering the distinct composition of factor 1 in CD34+ and BMMNC?

      (7) In Figure 1e, genotype contributed to the variance of in the CD34+ cell analyses more importantly than in the BMMNC. Because the patients are different in the two cohorts, differences in the variance could be explained either by a greater variability of the type of mutations in CD34 or an increased frequency of poor prognosis mutations in CD34+ compared to BMMNC. The genotyping data must be shown.

      (8) Fig. 2a-b: Features with high weight are shown for each factor. For factor 9, features seemed to have a low weight (Fig. 1b and 1c). However, factor 9 was predictive of EFS and OS in the BMMNC cohort. What are the features driving the prognostic value of factor 9?

      (9) The authors also provided microarray analyses of CD34+ cell. It could be interesting to test more broadly the correlation between features identified by RNA-seq or microarrays.

      (10) The authors should discuss the relevance of immunosenescence features in the context of SRSF2 mutation and extend the discussion to the interest of their pipeline for patient diagnosis and follow up under treatments.

    1. Reviewer #1 (Public Review):

      Summary:

      Mao and colleagues re-analysed published spatial, bulk and single-cell transcriptomic datasets from primary colorectal cancers and colorectal-cancer-derived liver metastases. The analyses of paired cancer and non-cancer tissue samples showed that T cells are enriched in tumour tissue, accompanied by a reduction in the fraction of NK cells in the cancer tissue transcriptional datasets. Furthermore, authors claim that tumour tissue has a higher fraction of GZMK+ (resting) NK cells and suggest a correlation between the presence of these cells and poorer prognosis for cancer patients. In contrast, the increased frequency of KIR2DL4+ (activated) NK cells correlates with improved survival of cancer patients.

      Strengths:

      The authors performed a comprehensive analysis of published datasets, integrating spatial and single-cell transcriptomic data, which allowed them to discover the enrichment of GZMK+ NK cells in cancer tissues.

      Weaknesses:

      Despite their thorough analysis, the authors did not provide sufficient experimental evidence to support their claim that GZMK+ NK cells contribute to a worse prognosis for cancer patients or promote cancer progression. The terms resting and activated NK cells are used without properly defining the characteristics of these populations other than the gene expression of a handful of genes. Furthermore, the criteria used to quantify the NK cell population in spatial data is not entirely clear. While one can visually observe an increased fraction of GZMK+ NK cells compared to KIR2DL4+ NK cells in cancer tissues, no quantification is shown. They did not present any preclinical (animal model) or clinical data suggesting a causal relationship between NK cells and tumour growth. Thus, while a correlation may exist between the presence of GZMK+ NK cells and poorer tumour prognosis, causation cannot be claimed based on the available evidence. Furthermore, the in vitro data provided is limited to a single NK cell line derived from a lymphoma patient, which does not fully represent the diversity and functionality of human NK cells. Moreover, the in vitro experiments suffer from a lack of required controls and inadequate methodology.

    1. Reviewer #1 (Public Review):

      The detection sensitivity and accuracy are unclear.

      In this manuscript, Zhou et al describe a deaminase and reader protein-assisted RNA m5C sequencing method. The general strategy is similar to DART-seq for m6A sequencing, but the difference is that in DART-seq, m6A sites are always followed by C which can be deaminated by fused APOBEC1 to provide a high resolution of m6A sites, while in the case of m5C, no such obvious conserved motifs for m5C sites exist, therefore, the detection resolution is much lower. In addition, the authors used two known m5C binding proteins ALYREF and YBX1 to guide the fused deaminases, but it is not clear whether these two binding proteins can bind most m5C sites and compete with other m5C binding proteins.

      It is well known that two highly modified m5C sites exist in 28S RNA and many m5C sites exist in tRNA, the authors should validate their methods first by detecting these known m5C sites and evaluate the possible false positives in rRNA and tRNA. In mRNA, it is not clear what is the overlap between the technical replicates. In Figures 4A and 4C, they detected more than 10K m5C sites, and most of them did not overlap with sites uncovered by other methods. These numbers are much larger than expected and possibly most of them are false positives. Besides, it is not clear what is the detection sensitivity and accuracy since the method is neither single base resolution nor quantitative. There are no experiments to show that the detected m5C sites are responsive to the writer proteins such as NSUN2 and NSUN6, and the determination of the motifs of these writer proteins.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, "PAbFold: Linear Antibody Epitope Prediction using AlphaFold2", the authors generate a python wrapper for the screening of antibody-peptide interactions using AlphaFold, and test the performance of AlphaFold on 3 antibody-peptide complexes. In line with previous observations regarding the ability of AlphaFold to predict antibody structures and antigen binding, the results are mixed. While the authors are able to use AlphaFold to identify and experimentally validate a previously characterized broad binding epitope with impressive precision, they are unable to consistently identify the proper binding registers for their control [Myc-tag, HA-tag] peptides. Further, it appears that the reproducibility and generality of these results are low, with new versions of AlphaFold negatively impacting the predictive power. However, if this reproducibility issue is solved, and the test set is greatly increased, this manuscript could contribute strongly towards our ability to predict antibody-antigen interactions.

      Strengths:

      Due to the high significance, but difficulty, of the prediction of antibody-antigen interactions, any attempts to break down these predictions into more tractable problems should be applauded. The authors' approach of focusing on linear epitopes (peptides) is clever, reducing some of the complexities inherent to antibody binding. Further, the ability of AlphaFold to narrow down a previously broadly identified experimental epitope is impressive. The subsequent experimental validation of this more precisely identified epitope makes for a nice data point in the assessment of AlphaFold's ability to predict antibody-antigen interactions.

      Weaknesses:

      Without a larger set of test antibody-peptide interactions, it is unclear whether or not AlphaFold can precisely identify the binding register of a given antibody to a given peptide antigen. Even within the small test set of 3 antibody-peptide complexes, performance is variable and depends upon the scFv scaffold used for unclear reasons. Lastly, the apparent poor reproducibility is concerning, and it is not clear why the results should rely so strongly on which multi-sequence alignment (MSA) version is used, when neither the antibody CDR loops nor the peptide are likely to strongly rely on these MSAs for contact prediction.

      Major Point-by-Point Comments:

      (1) The central concern for this manuscript is the apparent lack of reproducibility. The way the authors discuss the issue (lines 523-554) it sounds as though they are unable to reproduce their initial results (which are reported in the main text), even when previous versions of AlphaFold2 are used. If this is the case, it does not seem that AlphaFold can be a reliable tool for predicting antibody-peptide interactions.

      (2) Aside from the fundamental issue of reproducibility, the number of validating tests is insufficient to assess the ability of AlphaFold to predict antibody-peptide interactions. Given the authors' use of AlphaFold to identify antibody binding to a linear epitope within a whole protein (in the mBG17:SARS-Cov-2 nucleocapsid protein interaction), they should expand their test set well beyond Myc- and HA-tags using antibody-antigen interactions from existing large structural databases.

      (3) As discussed in lines 358-361, the authors are unsure if their primary control tests (antibody binding to Myc-tag and HA-tag) are included in the training data. Lines 324-330 suggest that even if the peptides are not included in the AlphaFold training data because they contain fewer than 10 amino acids, the antibody structures may very well be included, with an obvious "void" that would be best filled by a peptide. The authors must confirm that their tests are not included in the AlphaFold training data, or re-run the analysis with these templates removed.

      (4) The ability of AlphaFold to refine the linear epitope of antibody mBG17 is quite impressive and robust to the reproducibility issues the authors have run into. However, Figure 4 seems to suggest that the target epitope adopts an alpha-helical structure. This may be why the score is so high and the prediction is so robust. It would be very useful to see along with the pLDDT by residue plots a structure prediction by residue plot. This would help to see if the high confidence pLDDT is coming more from confidence in the docking of the peptide or confidence in the structure of the peptide.

      (5) Related to the above comment, pLDDT is insufficient as a metric for assessing antibody-antigen interactions. There is a chance (as is nicely shown in Figure S3C) that AlphaFold can be confident and wrong. Here we see two orange-yellow dots (fairly high confidence) that place the peptide COM far from the true binding region. While running the recommended larger validation above, the authors should also include a peptide RMSD or COM distance metric, to show that the peptide identity is confident, and the peptide placement is roughly correct. These predictions are not nearly as valuable if AlphaFold is getting the right answer for the wrong reasons (i.e. high pLDDT but peptide binding to a non-CDR loop region). Eventual users of the software will likely want to make point mutations or perturb the binding regions identified by the structural predictions (as the authors do in Figure 4).

    1. Reviewer #1 (Public Review):

      Metabotropic glutamate receptors (mGLuRs) play a key role in regulating neuronal activity and related behaviors. In different brain regions these receptors can be expressed presynaptically and postsynaptically in different classes of neurons. Therefore, it is difficult to predict the effects of systemically applied drugs that act on these receptors. Here, the authors harness the power of photopharmacology, applying modulators that can be activated or inactivated by light with spatial precision, to address this problem. Their stated goal is to determine the role of mGluRs in regulating pain behaviors, and the circuit mechanisms driving this regulation. Their findings suggest that mGluRs acting in medial prefrontal cortex and thalamus drive antinociception in animals with neuropathic pain, whereas these receptors drive pronociception when acting in the amygdala. Their circuit analysis suggests that, in the amygdala, mGluRs act by decreasing feedforward inhibition of the output neurons. These findings have the potential to affect the development of targeted treatment for pain and related disorders. The elegant photopharmacological approaches will likely inform future studies attempting to distinguish the action of neuroactive drugs in different brain regions.

      Reducing the impact of these studies are several methodological, analytical, and interpretation issues.

      - The authors report that "the effect of optical manipulations of photosensitive mGlu5 NAMs in individual brain regions in pain models has been studied before". It is, therefore, not immediately clear what is novel in the present study.<br /> - The reliance only on reflexive measures of pain, especially in a study that examines the role of "affective and cognitive aspects of pain and pain modulation".<br /> - The inclusion of only males is unfortunate because of known, significant sex differences in neuronal circuits driving pain conditions, in both preclinical models (including form work by the authors) and in clinical populations.<br /> - The elegant slice experiments (especially Fig. 3) were designed to probe circuit mechanisms through which mGluRs act in different brain regions. These experiments also provide a control to assess whether the photopharmacological compounds act as advertised. Surprisingly, the effect size produced by these compounds on neuronal activity are rather small (and, at times, seems driven by outliers). How this small effect affects the interpretation of the behavioral findings is not clear.<br /> - These small effect sizes should also be considered when interpreting the circuit actions studied here.<br /> - Some of the sample sizes are as small as n=3. Without an a priori power analysis, it is difficult to assess the validity of the analyses.<br /> - The authors present intriguing data on changes in InsP levels in some (but not all) animals after injury, but not in sham animals. They also report an increase in the expression of mGLuRs expression in some, but not all brain regions. These findings are not discussed. It is not clear how these selective changes in mGluR expression and activity might affect the interpretation of the photopharmacological results.<br /> - The behavioral data seem to represent discrete, and not continuous variables. The statistical tests applied are likely inappropriate for these analyses.<br /> - The authors assume (and state in the abstract) that they can selectively stimulate BLA afferents to the neocortex. This is technically highly unlikely.<br /> - The results from the experiment on rostroventral medulla (RVM) neurons are less than convincing because only a "trend" towards decreased excitation is reported. As above, without consideration of effect size, it is hard to appreciate the significance of these findings. The absence of a demonstration of a classical ON Cell firing pattern is also unfortunate.

    1. Reviewer #1 (Public Review):

      How does the brain respond to the input of different complexity, and does this ability to respond change with age?

      The study by Lalwani et al. tried to address this question by pulling together a number of neuroscientific methodologies (fMRI, MRS, drug challenge, perceptual psychophysics). A major strength of the paper is that it is backed up by robust sample sizes and careful choices in data analysis, translating into a more rigorous understanding of the sensory input as well as the neural metric. The authors apply a novel analysis method developed in human resting-state MRI data on task-based data in the visual cortex, specifically investigating the variability of neural response to stimuli of different levels of visual complexity. A subset of participants took part in a placebo-controlled drug challenge and functional neuroimaging. This experiment showed that increases in GABA have differential effects on participants with different baseline levels of GABA in the visual cortex, possibly modulating the perceptual performance in those with lower baseline GABA. A caveat is that no single cohort has taken part in all study elements, ie visual discrimination with drug challenge and neuroimaging. Hence the causal relationship is limited to the neural variability measure and does not extend to visual performance. Nevertheless, the consistent use of visual stimuli across approaches permits an exceptionally high level of comparability across (computational, behavioural, and fMRI are drawing from the same set of images) modalities. The conclusions that can be made on such a coherent data set are strong.

      The community will benefit from the technical advances, esp. the calculation of BOLD variability, in the study when described appropriately, encouraging further linkage between complementary measures of brain activity, neurochemistry, and signal processing.

    1. Reviewer #1 (Public Review):

      The study is thorough and systematic, and in comparing three well-separated hypotheses about the mechanism leading from grid cells to hexasymmetry it takes a neutral stand above the fray which is to be particularly appreciated. Further, alternative models are considered for the most important additional factor, the type of trajectory taken by the agent whose neural activity is being recorded. Different sets of values, including both "ideal" and "realistic" ones, are considered for the parameters most relevant to each hypothesis. Each of the three hypotheses is found to be viable under some conditions, and less so in others. Having thus given a fair chance to each hypothesis, nevertheless, the study reaches the clear conclusion that the first one, based on conjunctive grid-by-head-direction cells, is much more plausible overall; the hypothesis based on firing rate adaptation has intermediate but rather weak plausibility; and the one based on clustering of cells with similar spatial phases in practice would not really work. I find this conclusion convincing, and the procedure to reach it, a fair comparison, to be the major strength of the study.

      What I find less convincing is the implicit a priori discarding of a fourth hypothesis, that is, that the hexasymmetry is unrelated to the presence of grid cells. Full disclosure: we have tried unsuccessfully to detect hexasymmetry in the EEG signal from vowel space and did not find any (Kaya, Soltanipour and Treves, 2020), so I may be ranting off my disappointment, here. I feel, however, that this fourth hypothesis should be at least aired, for a number of reasons. One is that a hexasymmetry signal has been reported also from several other cortical areas, beyond entorhinal cortex (Constantinescu et al, 2016); true, also grid cells in rodents have been reported in other cortical areas as well (Long and Zhang, 2021; Long et al, bioRxiv, 2021), but the exact phenomenology remains to be confirmed. Second, as the authors note, the conjunctive mechanism is based on the tight coupling of a narrow head direction selectivity to one of the grid axes. They compare "ideal" with "Doeller" parameters, but to me the "Doeller" ones appear rather narrower than commonly observed and, crucially, they are applied to all cells in the simulations, whereas in reality only a proportion of cells in mEC are reported to be grid cells, only a proportion of them to be conjunctive, and only some of these to be narrowly conjunctive. Further, Gerlei et al (2020) find that conjunctive grid cells may have each of their fields modulated by different head directions, a truly surprising phenomenon that, if extensive, seems to me to cast doubts on the relation between mass activity hexasymmetry and single grid cells.

      Finally, a variant of the fourth hypothesis is that the hexasymmetry might be produced by a clustering of head direction preferences across head direction cells similar to that hypothesized in the first hypothesis, but without such cells having to fire in grid patterns. If head direction selectivity is so clustered, who needs the grids? This would explain why hexasymmetry is ubiquitous, and could easily be explored computationally by, in fact, a simplification of the models considered in this study.

    1. Reviewer #1 (Public Review):

      In this work, Plaza-Alonso et al. present a collection of volume electron microscopy (EM) reconstructions of human postmortem medial entorhinal cortex (MEC), and they measure properties of MEC cytoarchitecture and synapses as a function of neuroanatomical subdivision. The authors generate a sampling of 9 smaller (≲10 µm/side) EM reconstructions per subdivision to avoid prohibitively large (petabyte) EM volumes, using 3 reconstructions for each of 3 brain donors to control for inter-individual variability. Conducting in-depth analyses for 7 subdivisions (63 reconstructions total), the authors find little significant inter-subdivision variability in structural composition (volume fractions of cell bodies vs. neuropil vs. blood vessels) and multiple synapse properties (spatial distribution, density, area, shape, excitatory/inhibitory type, and postsynaptic cell compartment). They conclude that human MEC connectivity is largely homogeneous, with synapses arranged in a generally random spatial distribution and a large fraction of synapses being asymmetric (putatively excitatory). Their other findings include that asymmetric synapses are larger than symmetric/putatively inhibitory synapses; that asymmetric synapses prefer dendritic spines whereas symmetric synapses prefer dendritic shafts; and that a small fraction of synapses have larger, complex shapes that may suggest increased synaptic efficacy. They note that inhomogeneities may include inter-subdivision variation in asymmetric synapse area and complex-shaped synapse prevalence, and for some reconstructions (12/63), possible substructure in synapse distributions.

      Strengths:<br /> The authors have carefully conducted this work, using reasonable methods and comparing their findings with previous volume EM reconstructions where possible. It represents a substantial effort, given the challenges of producing and annotating volume EM data and of collecting human postmortem tissue. They have thus contributed a brain-region-specific characterization of human postmortem tissue with value as both a data resource and an examination of postmortem EM reconstruction quality, given that postmortem tissue is less-studied with volume EM but could be an important source of human brain samples (for example in regions that are surgically inaccessible). Further, some of the authors' measurements may be of added value, as they suggest functional correlates for less-studied synapse structures (such as the differing sizes of complex and simple "macular" synapses formed onto dendritic spines vs. shafts).

      Weaknesses:<br /> Despite these strengths, the analysis in this work may be impacted by multiple sources of experimental variability that may have contributed to the observed lack of structural variability, and the potential contributions of these should be addressed in making their claims.

      (1) The authors' approach to tissue sampling may have resulted in under-sampling, which may have reduced the detection power of their tests. More specifically, each reconstructed EM volume measured ~10 µm x 7 µm x 6 µm (360 - 502 µm^3) and contained ~300-400 synapses (Lines 211-212, 772-773). Per donor, this amounts to a sampling volume of ~1500 µm^3 for each MEC subdivision or ~1x104 µm^3 total. By contrast, the volume of the adult human MEC is ~1x10^12 µm^3, roughly 1x10^8 times larger [1]. Thus, while these EM reconstructions reflect a substantial effort, it is likely that they represent an under-sampling of MEC structure, especially since multiple excitatory and inhibitory neuron types are likely interspersed throughout (the authors also note this possibility in Lines 640-659).

      (2) The authors' measurements are combined across three donors who are biologically diverse (Table S11), including in terms of characteristics that themselves may impact neuronal connectivity. Without controlling for these variables, the possible reduction in stochastic, biological inter-individual variability that could be achieved by combining data across donors may be offset by increases in phenotype-related variability, which could reduce the detectability of true, conserved connectivity variations across MEC subdivisions. Specifically, these donors represent a mix of males and females; a mix of ages (40, 53, and 66 years) that suggest differing degrees of aging-related changes in neuronal connectivity (according to previous work, a majority of people >55 years of age are estimated to have Alzheimer's-associated neurofibrillary tangles, regardless of whether they have dementia symptomatology; see for instance [1]); and one death from metastatic cancer, indicating that for one donor cellular/neuronal abnormalities associated either with cancer itself or related therapies could be present.

      These two factors could substantially increase the dispersion of the authors' measurements in each MEC subdivision and lead to a situation with no detectable differences between subdivisions. It would be important to address these impacts when determining whether to interpret a lack of significant differences as true biological homogeneity for human MEC.

      One helpful approach would be to explicitly show the variance of each measurement obtained for each EM reconstruction. For example, error bars showing the interquartile range could be added to each data point in Fig. 3C, to show how much synapse areas vary per reconstruction and to allow some comparison across donors and MEC subdivisions.

      (3) A third potential source of variability relates to the authors' approach for synapse annotation. They appear to annotate active zones and postsynaptic densities by thresholding synapse images at some user-defined pixel intensity value, taking only pixels darker than that threshold as their annotations (Lines 806 - 812). This technique seems like it could be prone to producing noisy annotations, particularly since in the EM images provided (Figs. S11-16) the pixel intensities of active zones/postsynaptic densities and surrounding neuropil do not appear to be highly distinct.

      It would be important for the authors to support their findings by quantifying the variability that may be associated with this technique.

      [1] Price, C.C. et al., J. Int. Neuropsychol. Soc., (2010), doi: 10.1017/S135561771000072X.

    1. Reviewer #1 (Public Review):

      Article strengths:

      (1) Detailed data: The authors provided a large amount of clinical data as support, making the analysis results more persuasive and credible.<br /> (2) Scientific method: Appropriate statistical methods were used to analyze the data, which can accurately reflect the internal laws and trends of the data.<br /> (3) Clear conclusions: The conclusions drawn in the article are clear and explicit, easy for readers to understand and accept.<br /> (4) High practicality: The research results have important guiding significance for obstetrics and gynecology clinical practice, helping to improve patient treatment outcomes and quality of life.

      Article weaknesses:

      Limitations of research methods: Although the authors used statistical methods to analyze the data, they may be limited by factors such as data sources and sample size, leading to some limitations in the research results. It is recommended that the authors further expand the data sources and increase the sample size in subsequent studies to improve the accuracy and reliability of the research.

    1. Reviewer #1 (Public Review):

      The current manuscript investigates the role of microRNA cluster 221/222 (miR221/222) in rheumatoid arthritis synovial fibroblasts (RA SFs) prompted by previous evidence that this cluster is upregulated in these cells. The authors employed multiple genetic mouse models and genomic approaches demonstrating that global overexpression of miR221/222 in huTNFtg polyarthritic mice further expanded SF proliferation and exacerbated RA, whereas global deletion reduced SF proliferation and dampened RA. Mechanistically, the authors provide sufficient evidence that these effects are mediated through the regulation of cell cycle inhibitors (p27 and p57) and the epigenetic regulator Smarca1. In general, these studies offer strong evidence that miR221/222 contributes to the pathogenic mechanisms underlying SF function in RA and provide new critical information to advance the understanding of RA pathology. However, certain important aspects are not addressed. Specifically, limited information related to the immune and inflammatory nature of this mechanism is offered, which is further complicated by limitations of using global overexpression and knockout. For example, it remains unknown to what is the extent of contribution by immune and inflammatory cells as well as what are the SF-derived effectors that propagate tissue damage and erosion

    1. Reviewer #1 (Public Review):

      The authors tested the hypothesis that protein consumption decreases with decreasing mass-specific growth during development. This hypothesis is firmly grounded in the logical premise that as animals progress from periods of reduced activity and rapid growth to phases of increased activity and reduced mass-specific growth during their development, they are likely to adjust their nutrient intake, reducing protein and increasing carbohydrate consumption accordingly. The authors tested their hypothesis using the South American locust Schistocerca cancellata, combining field observations with laboratory experiments. This approach allowed them to discern how variations in activity history and metabolism between field- and laboratory-raised locusts influenced their nutrient requirements.<br /> Their findings, indeed reveal the predicted shift from high protein: carbohydrate consumption to lower protein: carbohydrate intake from the first instar to adult locust - a decline that strongly correlated with a decrease in mass-specific growth rate. Their comparison between field- and laboratory-raised locusts, showed that protein demand was not different, however, carbohydrate consumption rate was >50% higher in the field locusts. These results add depth and significance to the study, shedding light on how environmental factors influence nutrient requirements.<br /> What truly amplifies the strength and novelty of the authors' hypothesis is their anticipation that this observed trend in Schistocerca cancellata could extend to all animals. This anticipation is rooted in the expectation that growth rates scale hypometrically across various body sizes and developmental stages, introducing a universal dimension to their findings that holds great promise for broader ecological and evolutionary understanding.<br /> However, while the study is commendable in its methodology and core findings, there is room for improvement in clarifying the implications of the results. The current lack of clarity is evident in the somewhat shallow questions outlined in lines 358 to 363. For instance, the practice of administering age-specific diets has been commonplace in human and livestock management for ages. Thus, its continued utility may not be the most stimulating question. Instead, a more thought-provoking inquiry might delve into whether variations in global protein availability play a pivotal role in driving niche specialization and the biogeography of animal body sizes and ontogeny, especially considering the potential impacts of climate change. Such inquiries would further elevate the significance of the author's work and its broader implications in the field.

    1. Reviewer #1 (Public Review):

      Summary:

      Marshall and coworkers describe the effects of altering metabotropic glutamate receptor 5 activity on locomotion and related activity of D1 receptor expressing spiny projection neurons in dorsolateral striatum. The authors also examine effects of dSPN-specific constitutive mGlu5 deletion in several motor tests. Effects of inhibiting the degradation of the endocannabinoid 2-arachidonoyl glycerol are also examined. Overall, this study provides intriguing new information with relevance to movement disorders and possibly psychosis. However, there are questions about the interpretation of dSPN activity in relation to movement, as well as the analysis approach. Some aspects of the study are also incomplete.

      Strengths:

      A nice combination of in vivo cellular calcium imaging, pharmacology, receptor knockout and sophisticated movement analysis are used. The authors conclude that mGlu5 expressed in dSPNs contributes to movement through effects on clustered spatial coactivity of dSPNs. Some data suggesting the story may be different in the other major SPN subpopulation (iSPNs) are also presented. The authors also suggest that mGlu5 stimulation of endocannabinoid signaling may play a role in the receptor effects. Overall, this study provides intriguing new information with relevance to movement disorders and possibly psychosis

      Weaknesses:

      Major Comments:

      (1) The relationship between coactivity and movement in this and the previous study from this group is intriguing. Can the authors offer a hypothesis as to how decreased coactivity promotes increased movement velocity (e.g. as indicated by Figures 2l and 3m, and in the previous study)? Is coactivity during rest part of a "movement preparation" SPN program, or is it simply the case that the actual activity of individual dSPNs starts to contribute to different aspects of movement as velocity increases (given that the majority of neurons appear to show increased event rate during movement).

      (2) The authors focus on dSPNs until very late in the study and then provide a little intriguing data suggesting that iSPNs show no difference in coactivity in the mGlu5 cKO mice. However, the basic characterization of the relationship between iSPN coactivity and movement is missing, although Figure 5g does seem to suggest a relationship between coactivity and proximity similar to dSPNs. It would be helpful to include the type of analysis shown in Figure 1 for iMSNs.

      (3) The use of the Jaccard similarity index in this study is not intuitive and not fully explained by the methods or the diagram in Figure 1. The more detailed explanations in the previous papers from this group seem to indicate cells are listed as "coactive" if they both show an above-threshold fluorescence increase during a one second time frame after converting signals to a binary "on" or "off" status. However, it seems unlikely that the activity of the neurons would be perfectly or even strongly correlated, as there is bound to be variability in the exact traces from cell to cell. Furthermore, it doesn't seem clear how many frames need to show suprathreshold signals for two neurons to be considered coactive (or does this determine the magnitude of the normalized coactivity y-axis, e.g. in Figure 1i). Thus, while the technique appears to capture some index of coactivity, it does not appear to reveal the true temporal correlations in activity that could be obtained with techniques that use all data points to assess correlations. While this technique may be well suited to determining coactivity based on action potentials, or another all-or-none type biological event, it may not be as optimal for relating calcium transients that have more nuanced features.<br /> Another question is how the one second time frame was chosen. Did the authors run a sensitivity analysis to determine the effect of changing the frame duration on coactivity estimates. This might help determine if the analysis was too conservative in identifying coactive neurons.<br /> These comments may reflect a lack of understanding of the approach on the part of this reviewer. Perhaps a more detailed explanation of the method, maybe including examples of the types of calcium transients that are listed as reflecting coactivity or lack thereof, would clarify the suitability of this technique.

      (4) The analysis of a possible 2-AG role in the mGlu5 mediated processes is incomplete and does not add much to the story. As the authors admit, inhibiting MGL globally will have widespread effects on many striatal synapses. Perhaps a dSPN-targeted approach, such as knocking out DAG lipase in dSPNs, would be more informative. For example, one might expect that this knockout would prevent the effects of the JNJ mGlu5 PAM on both movement and dSPN activity. The authors also do not provide any evidence of 2-AG involvement in the synaptic changes they report, although admittedly the role of endocannabinoids in DHPG-induced synaptic depression has been reported in several previous studies.

      (5) It would seem to be a simple experiment to examine effects of the mGlu5 NAM in the dSPN mGlu5 cKO mice. If effects of the two manipulations occluded one another this would certainly support the hypothesis that the drug effects are mediated by receptors expressed in dSPNs. A similar argument can be made for examining effects of the JNJ PAM in the cKO mice.

      Minor Comments:

      (i) The use of CsF-based whole-cell internal solutions has caused concern in some past studies due to possible interference with G-protein, phosphatase and channel function (https://www.sciencedirect.com/science/article/abs/pii/S1044743104000296, https://www.jneurosci.org/content/jneuro/6/10/2915.full.pdf). It is reassuring the DHPG-induced LTD was still observable with this solution. However, it might be worth examining this plasticity with a different internal to ensure that the magnitude of the agonist effect is not altered by this manipulation.

      (ii) The Kreitzer and Malenka 2007 paper may not be the best to cite in the context of dSPN-related synaptic plasticity, as these authors claimed that DHPG-induced LTD was restricted to iSPNs (an observation that has not generally been supported by subsequent work in several laboratories).

    1. for - paper

      paper - title: Carbon Consumption Patterns of Emerging Middle Class - year: 2020 - authors: Never et al.

      summary - This is an important paper that shows the pathological and powerful impact of the consumer story to produce a continuous stream of consumers demanding a high carbon lifestyle - By defining success in terms of having more stuff and more luxurious stuff, it sets the class transition up for higher carbon consumption - The story is socially conditioned into every class, ensuring a constant stream of high carbon emitters. - It provides the motivation to - escape poverty into the lower middle class - escape the lower middle class into the middle class - escape the middle class into the middle-upper class - escape the middle-upper class into the upper class - With each transition, average carbon emissions rise - Unless we change this fundamental story that measures success by higher and higher levels of material consumption, along with their respectively higher carbon footprint, we will not be able to stay within planetary boundaries in any adequate measure - The famous Oxfam graphs that show that - 10% of the wealthiest citizens are responsible for 50% of all emissions - 1% of the wealthiest citizens are responsible for 16% of all emissions, equivalent to the bottom 66% of emissions - but it does not point out that the consumer story will continue to create this stratification distribution

      from - search - google - research which classes aspire to a high carbon lifestyle? - https://www.google.com/search?q=research+which+classes+aspire+to+a+high+carbon+lifestyle%3F&oq=&gs_lcrp=EgZjaHJvbWUqCQgGECMYJxjqAjIJCAAQIxgnGOoCMgkIARAjGCcY6gIyCQgCECMYJxjqAjIJCAMQIxgnGOoCMgkIBBAjGCcY6gIyCQgFECMYJxjqAjIJCAYQIxgnGOoCMgkIBxAjGCcY6gLSAQk4OTE5ajBqMTWoAgiwAgE&sourceid=chrome&ie=UTF-8 - search results returned of salience - Carbon Consumption Patterns of Emerging Middle Classes- This discussion paper aims to help close this research gap by shedding light on the lifestyle choices of the emerging middle classes in three middle-income ... - https://www.idos-research.de/uploads/media/DP_13.2020.pdf

    1. Reviewer #1 (Public Review):

      The authors design an automated 24-well Barnes maze with 2 orienting cues inside the maze, then model what strategies the mice use to reach the goal location across multiple days of learning. They consider a set of models and conclude that the animals begin with a large proportion of random choices (choices irrespective of the goal location), which over days of experience becomes a combination of spatial choices (choices targeted around the goal location) and serial choices (successive stepwise choices in a given direction). Moreover, the authors show that after the animal has many days of experience in the maze, they still often began each trial with a random choice, followed by spatial or serial choices.

      This study is written concisely and the results are presented concisely. The best fit model provides valuable insight into how the animals solve this task, and therefore offers a quantitative foundation upon which tests of neural mechanisms of the components of the behavioral strategy can be performed. These tests will also benefit from the automated nature of the task.

    1. Reviewer #1 (Public Review):

      Summary:

      The evolution of transporter specificity is currently unclear. Did solute carrier systems evolve independently in response to a cellular need to transport a specific metabolite in combination with a specific ion or counter metabolite, or did they evolve specificity from an ancestral protein that could transport and counter transport most metabolites. The present study addresses this question by applying selective pressure to Saccharomyces cerevisiae and studying the mutational landscape of two well characterised amino acid transporters. The data suggest that AA transporters likely evolved from an ancestral transporter and then specific sub families evolved specificity depending on specific evolutionary pressure.

      Strengths:

      The work is based on sound logic and the experimental methodology is well thought through. The data appear accurate, and where ambiguity is observed (as in the case of citruline uptake by AGP1), in vitro transport assays are carried out. to verify transport function.

      Weaknesses:

      The revisions have substantially strengthened the conclusions based on the results of this study. Follow up studies will no doubt try to rationalise/identify if specific mutational hot-spots exist within the APC fold that explain the specialisation observed in mammals (neurotransmitter vs. metabolic) for example.

    1. Reviewer #1 (Public Review):

      Summary:

      Nitric oxide (NO) has been implicated as a neuromodulator in the retina. Specific types of amacrine cells (ACs) produce and release NO in a light-dependent manner. NO diffuses freely through the retina and can modulate intracellular levels of cGMP, or directly modify and modulate proteins via S-nitrosylation, leading to changes in gap-junction coupling, synaptic gain, and adaptation. Although these system-wide effects have been documented, it is not well understood how the physiological function of specific neuronal types is affected by NO. This study aims to address this gap in our knowledge.

      Strengths:

      NO was expected to produce small effects, and considerable effort was expended in validating the system to ensure that any effects of NO would not be confounded by changes in the state of the preparation. The authors used a paired stimulus protocol to control for changes in the sensitivity of the retina during the extended recording periods. The approach potentially increases the sensitivity of the measurements and allows more subtle effects to be observed.

      Neural activity was initially measured by Ca-imaging. Responsive ganglion cells were grouped into 32 types using a clustering analysis. Initial control experiments demonstrated that the cell-types revealed here largely recapitulate those from their earlier landmark study using the same approach (Fig. 2).

      Application of NO to the retina strongly modulated responses of a single cluster of cells, labeled G32, while having little effect on the remaining 31 clusters. This result is evident in Fig. 3e.

      Separate experiments measured ganglion cell spiking activity on a multi-electrode array (MEA). Clustering analysis of the peri-stimulus spike-time histograms (PSTHs) obtained from the MEA data also revealed 32 clusters. The PSTHs for each cluster were aligned to the Ca-imaging data using a convolution approach. The higher temporal resolution of the MEA recordings indicated that NO increased the speed of sub-cluster 2 responses but had no effect on receptive field size. The physiological significance of the small change in kinetics remains unclear.

      Weaknesses:

      The G32 cluster was further divided into three sub-types using Bayesian Information Criterion (BIC) based on the temporal properties of the Ca-responses. This sub-clustering result seems questionable due to the small difference in the BIC parameter between 2 and 3 clusters. Three sub-clusters of the G32 cluster were also revealed for the PSTH data, however, the BIC analysis was not applied to further validate this result.

      The alignment of sub-clusters 1, 2, and 3 identified in the Ca-imaging and the MEA recordings seemed questionable, because the temporal properties of clusters did not align well, nor did the effects of NO.

      The title of the paper indicates that nitric oxide modulates contrast suppression in a subset of mouse retinal ganglion cells, however, this result appears to be inferred from previous results showing that G32 is identified as a "suppressed-by-contrast" cell. The present study does not explicitly evaluate the amount of contrast-suppression in G32 cells.

      In its current form, the work is likely to have limited impact, since the morphological and functional properties of the affected sub-cluster remain unknown. The finding that there can be cell-specific adaptation effects during experiments on in vitro retina is important new information for the field.

    1. Reviewer #1 (Public Review):

      Previous studies have used a randomly induced label to estimate the number of hematopoietic precursors that contribute to hematopoiesis. In particular, the McKinney-Freeman lab established a measurable range of precursors of 50-2500 cells using random induction of one of the 4 fluorescent proteins (FPs) of a Confetti reporter in the fetal liver to show that hundreds of precursors establish lifelong hematopoiesis. In the presented work, Liu and colleagues aim to extend the measurable range of precursor numbers previously established and enable measurement in a variety of contexts beyond embryonic development. To this end, the authors investigated whether the random induction of a given Confetti FP follows the principles of binomial distribution such that the variance inversely correlates with the precursor number. They tested their hypothesis using a simplified 2-color in vitro system, paying particular attention to minimizing sources of experimental error (elimination of outliers, sample size, events recorded, etc.) that may obscure the measurement of variance. As a result, the data generated are robust and show that the measurable range of precursors can be extended up to 105 cells. They use tamoxifen-inducible Scl-CreER, which is active in hematopoietic stem and progenitor cells (HSPCs) to induce Confetti labeling, and investigated whether they could extend their model to cell numbers below 50 with in vivo transplantation of high versus low numbers of Confetti total bone marrow (BM) cells. The premise of binomial distribution requires that the number of precursors remains constant within a group of mice. The rare frequency of HSPCs in the BM means that the experimentally generated "low" number recipient animals showed some small variability of seeding number, which does not follow the requirement for binomial distribution. While variance due to differences in precursor numbers still dominates, it is unclear how accurate estimated numbers are when precursor numbers are low (<10).

      The authors then apply their model to estimate the number of hematopoietic precursors that contribute to hematopoiesis in a variety of contexts including adult steady state, fetal liver, following myeloablation, and a genetic model of Fanconi anemia. Their modeling shows:

      -thousands of precursors (~2400-2600) contribute to adult myelopoiesis, which is in line with results from a previous study (Sun et al, 2014).<br /> -myeloablation (single dose 5-FU), while reducing precursor numbers of myeloid progenitors and HSPCs, was not associated with a reduction in precursor numbers of LT-HSCs.<br /> -no major expansion of precursor number in the fetal liver derived from labeling at E11.5 versus E14.5, consistent with recent findings from Ganuza et al, 2022.<br /> -normal precursor numbers in Fancc-/- mice at steady state and from competitive transplantation of young Fancc-/- BM cells, suggesting that reduced Fancc-/- cell proliferation may underlie the reduced chimerism upon transplantation.<br /> -reduced number of lymphoid precursors following transplantation of BM cells from 9-month-old Fancc-/- animals (beyond this age animals have decreased survival).

      Although this system does not permit the tracing of individual clones, the modeling presented allows measurements of clonal activity covering nearly the entire HSPC population (as recently estimated by Cosgrove et al, 2021) and can be applied to a wide range of in vivo contexts with relative ease. The conclusions are generally sound and based on high-quality data. Nevertheless, some results could benefit from further explanation or discussion:

      -The estimated number of LT-HSCs that contribute to myelopoiesis is not specifically provided, but from the text, it would be calculated to be 1958/5 = ~391. Data from Busch et al, 2015 suggest that the number of differentiation-active HSCs is 5.2x103, which is considered the maximum limit. There is nevertheless a more than 10-fold difference between these two estimates, and it is unclear how this discrepancy arises.<br /> -Similarly, in Figure 3E, the estimated number of precursors is highest in MPP4, a population typically associated with lymphoid potential and transient myeloid potential, whereas the numbers of MPP3, traditionally associated with myeloid potential, tend to be higher but are not significantly different than those found in HSCs.<br /> -The requirement for estimating precursor numbers at stable levels of Confetti labeling is not well explained. As a result, it is unclear how accurate the estimates of B cell precursors upon transplantation of Fancc-/- cells are. In previous experiments on normal Confetti mice (Figure 3B), the authors do not estimate precursors of lymphopoiesis because Confetti labeling of B cells is not saturated, and this appears to be the case in Fanc-/- animals as well (Fig. 5B).<br /> -Do 9-month-old Fanc-/- animals have reduced lymphoid precursors as well?

    1. Reviewer #1 (Public Review):

      Freas et al. investigated if the exceedingly dim polarization pattern produced by the moon can be used by animals to guide a genuine navigational task. The sun and moon have long been celestial beacons for directional information, but they can be obscured by clouds, canopy, or the horizon. However, even when hidden from view, these celestial bodies provide directional information through the polarized light patterns in the sky. While the sun's polarization pattern is famously used by many animals for compass orientation, until now it has never been shown that the extremely dim polarization pattern of the moon can be used for navigation. To test this, Freas et al. studied nocturnal bull ants, by placing a linear polarizer in the homing path on freely navigating ants 45 degrees shifted to the moon's natural polarization pattern. They recorded the homing direction of an ant before entering the polarizer, under the polarizer, and again after leaving the area covered by the polarizer. The results very clearly show, that ants walking under the linear polarizer change their homing direction by about 45 degrees in comparison to the homing direction under the natural polarization pattern and change it back after leaving the area covered by the polarizer again. These results can be repeated throughout the lunar month, showing that bull ants can use the moon's polarization pattern even under crescent moon conditions. Finally, the authors show, that the degree in which the ants change their homing direction is dependent on the length of their home vector, just as it is for the solar polarization pattern.

      The behavioral experiments are very well designed, and the statistical analyses are appropriate for the data presented. The authors' conclusions are nicely supported by the data and clearly show that nocturnal bull ants use the dim polarization pattern of the moon for homing, in the same way many animals use the sun's polarization pattern during the day. This is the first proof of the use of the lunar polarization pattern in any animal.

    1. Bạn đang muốn tìm địa chỉ một cửa hàng Vape Pod Quận 1 uy tín? Việc có quá nhiều địa chỉ cung cấp vape quận 1 khiến cho nhiều người bối rối khi chọn mua thuốc lá điện tử. Vape Pod 365 là shop vape pod quận 1 được rất nhiều khách hàng tin tưởng. Ở Quận 1 Mua Vape Pod ở đâu uy tín? Vape Pod 365 là shop vape pod quận 1 uy tín hàng đầu, chuyên bán lẻ các loại vape, phụ kiện vape như cuộn dây coil, bông, pin vape, buồng đốt… và luôn cập nhật các sản phẩm mới trên thị trường. Cửa hàng thường xuyên đổi mới để phù hợp với xu hướng và nhu cầu của các bạn trẻ. Các dòng sản phẩm của  Pod tại Sài Gòn - Vape Pod 365 là hàng chính hãng được nhập từ các thương hiệu lớn với kiểu dáng và nhiều màu sắc khác nhau. Một chiếc vape chất lượng sẽ cho bạn cảm nhận đúng và đỉnh nhất từng hương vị của khói thuốc. Bạn có thể tự lựa chọn theo ý mình hoặc liên hệ với chúng tôi để được tư vấn để chọn vape, tinh dầu…chuẩn nhất

      Có quá nhiều cửa hàng Vape Pod quận 1 để anh em lựa chọn. Tuy nhiên, làm thế nào để lựa chọn được một cửa hàng uy tín chính hãng? Vape Pod 365 hướng dẫn chi tiết cho anh em cách lựa chọn đơn vị vape quận 1 chất lượng, giá tốt. Xem ngay ở link dưới: https://vapepod365.net/vape-pod-quan-1

      vapepodquan1 #vapquan1 #podquan1 #podsystemquan1 #phukienvapequan1 #tinhdauvapequan1 #vapepod365

    1. Reviewer #1 (Public Review):

      Summary:

      Hartman and Satija's manuscript constitutes a significant contribution to the field of imaging-based spatial transcriptomics (ST) through their comprehensive comparative analysis of six multiplexed in situ gene expression profiling technologies. Their findings provide invaluable insights into the practical considerations and performance of these methods, offering robust evidence for researchers seeking optimal ST technologies. However, given the simultaneous availability of similar preprints, readers should exercise caution when comparing findings to ensure reliable information. Therefore, the authors should revise their manuscript to ensure consistency among all ST technologies compared, considering findings from other preprints as well if possible.

      Strengths:

      (1) The manuscript offers a comprehensive and systematic comparison of six in situ gene expression profiling technologies, including both commercially available and academically developed methods, which is the most extensive study in this field.

      (2) Novel metrics have been proposed by the authors to mitigate molecular artifacts and off-target signals, enhancing the accuracy of sensitivity and specificity comparisons across datasets. By emphasizing the significance of evaluating both sensitivity and specificity, the study addresses the challenge of comparing standard metrics like the number of unique molecules detected per cell, given variations in panel composition and off-target molecular artifacts. This feature is directly connected to their development of novel cell segmentation methods to improve the specificity.

      (3) As a result of the analysis performed earlier, the authors illustrate how molecular false positives can distort spatially-aware differential expression analysis, underscoring the necessity for caution in interpreting downstream results.

      (4) Offering guidance for the selection, processing, and interpretation of in situ spatial technologies, the study equips researchers in the field with valuable insights.

      Weaknesses:

      (1) Although focusing on mouse brain datasets broadens the comparison of technologies, it confines the study to a single biological context. Discussing the potential limitations of this approach and advocating for future studies in diverse tissue types would enrich the manuscript, especially for clinical FFPE applications.

      (2) Providing more explicit details on the criteria used to select datasets for each technology would ensure a fair and unbiased comparison. Otherwise, it may look like the Hall of Fame for champion data sets to advertise a certain commercial product.

      (3) Improving the discussion part by discussing the origins of non-specific signals and molecular artifacts, alongside the challenges related to cell segmentation across different tissue types and cell morphologies, would enrich its content. Note that all of these experimental sets have been obtained from thin mouse brain slices, which are actually 3D although they are thin like 10-20 um. As a result, there might be a chance to have partial cell overlap in the z-axis, potentially leading to transcript mixing. Additionally, many cells are probably cut so their actual transcriptomes are inherently partial information, which makes direct comparison to scRNA-seq unfair. These aspects should be included for fair comparison issues.

      (4) Expanding on the potential implications of the findings for developing new computational methods to address non-specific biases in downstream analyses would augment the manuscript's impact and relevance.

    1. Reviewer #3 (Public Review):

      This paper concerns whether synaptic scaling (or homeostatic synaptic plasticity; HSP) occurs similarly at GABA and Glu synapses and comes to the surprising conclusion that these can be regulated independently. In fact, under the conditions used in this study, only the GABAergic synapses show HSP and the glutamatergic synapses don't change. This is surprising because these were thought to be co-regulated during HSP and in fact, the major mechanisms thought to underlie downscaling (TTX or CNQX driven), retinoic acid and TNF, have been shown to regulate both GABARs and AMPARs directly. Thus, the main result, that GABA HSP is dissociable from Glu HSP, is novel and exciting. This suggests either different mechanisms underlie the two processes, or that under certain conditions, another mechanism is engaged that scales one type of synapse and not the other. Given that glutamatergic synapses are unchanged in their conditions, that later seems more likely - a novel form of HSP exists that only scale GABAergic synapses. Whether glutamatergic and GABAergic synapses scale independently during HSP affecting both types of synapses remains to be addressed. It would be necessary to demonstrate the dissociation in the same system, under conditions where both types of synapses are changing. But because the form of HSP studied here appears different than that studied in Fong et al., the authors should be careful when comparing the two results. There seems to be an implicit underlying assumption that there is a simple form of HSP, when the overall literature (and the two studies from this lab) supports the idea of many forms of HSP.

      The homeostatic changes at GABAergic synapses do seem to be more consistent in amplitude across the bulk of the synapses, which does suggest that true scaling (a proportional change to all synapses on a cell) is occurring. This may represent a major difference in how homeostatic changes occur at the two types of synapses.

      The second finding is that this form of HSP seems more regulated by action potential firing than conventional HSP - previous work from this lab had shown that restoring AP firing during AMPA receptor blockade did not prevent scaling of glutamatergic synapses (it should be noted these experiments were done in rat cultures, not mouse, used a higher concentration of CNQX, and used a different optogenetic stimulation paradigm). Restoring AP firing rates under the conditions used here (and thus the form of HSP only affecting GABA synapses), on the other hand, did prevent the homeostatic response. This suggests that this GABA-only form of HSP is more attuned to spiking rates than other forms.

      However, details in the data may suggest that spiking is not the (or the only) homeostat, as TTX and CNQX causes identical changes in mIPSC amplitude but have different effects on spiking (although TTX may be driving a different form of HSP). Further, in Fig 5, CTZ had a minimal effect on spiking but a large effect on mIPSCs. Similar issues appear in Fig 6, where the induction of increased spiking is highly variable, with many cells showing control levels or lower spiking rates. Yet the synaptic changes are robust, across all cells. Overall, more will need to be done to conclude that spiking is the homeostat for GABA synapses.

      The paper also suggests that the GABA changes are leading to the recovery of the spiking rates, but while they have the time course of the spiking changes and recovery, they only have the 24h time point for synaptic changes. It is not yet possible to conclude how the time courses align without more data, nor can we assume that cells that did not recover to control firing rates would do so eventually.

    1. Reviewer #1 (Public Review):

      The inferior colliculus (IC) is the central auditory system's major hub. It integrates ascending brainstem signals to provide acoustic information to the auditory thalamus. The superficial layers of the IC ("shell" IC regions as defined in the current manuscript) also receive a massive descending projection from the auditory cortex. This auditory cortico-collicular pathway has long fascinated the hearing field, as it may provide a route to funnel "high-level" cortical signals and impart behavioral salience upon an otherwise behaviorally agnostic midbrain circuit.

      Accordingly, IC neurons can respond differently to the same sound depending on whether animals engage in a behavioral task (Ryan and Miller 1977; Ryan et al., 1984; Slee & David, 2015; Saderi et al., 2021; De Franceschi & Barkat, 2021). Many studies also report a rich variety of non-auditory responses in the IC, far beyond the simple acoustic responses one expects to find in a "low-level" region (Sakurai, 1990; Metzger et al., 2006; Porter et al., 2007). A tacit assumption is that the behaviorally relevant activity of IC neurons is inherited from the auditory cortico-collicular pathway. However, this assumption has never been tested, owing to two main limitations of past studies:

      (1) Prior studies could not confirm if data were obtained from IC neurons that receive monosynaptic input from the auditory cortex.

      (2) Many studies have tested how auditory cortical inactivation impacts IC neuron activity; the consequence of cortical silencing is sometimes quite modest. However, all prior inactivation studies were conducted in anesthetized or passively listening animals. These conditions may not fully engage the auditory cortico-collicular pathway. Moreover, the extent of cortical inactivation in prior studies was sometimes ambiguous, which complicates interpreting modest or negative results.

      Here, the authors' goal is to directly test if the auditory cortex is necessary for behaviorally relevant activity in IC neurons. They conclude that surprisingly, task relevant activity in cortico-recipient IC neuron persists in absence of auditory cortico-collicular transmission. To this end, a major strength of the paper is that the authors combine a sound-detection behavior with clever approaches that unambiguously overcome the limitations of past studies.

      First the authors inject a transsynaptic virus into the auditory cortex, thereby expressing a genetically encoded calcium indicator in the auditory cortex's postsynaptic targets in the IC. This powerful approach enables 2-photon Ca2+ imaging from IC neurons that unambiguously receive monosynaptic input from auditory cortex. Thus, any effect of cortical silencing should be maximally observable in this neuronal population. Second, they abrogate auditory cortico-collicular transmission using lesions of auditory cortex. This "sledgehammer" approach is arguably the most direct test of whether cortico-recipient IC neurons will continue to encode task-relevant information in absence of descending feedback. Indeed, their method circumvents the known limitations of more modern optogenetic or chemogenetic silencing, e.g. variable efficacy.

      The authors have revised their manuscript and adequately addressed the major concerns. Although more in depth analyses of these rich datasets are definitely possible, the current results nevertheless stand on their own. Indeed, the work serves as a beacon to move away from the idea that cortico-collicular projections function primarily to impart behavioral relevance upon auditory midbrain neurons. This knowledge inspires a search for alternative explanations as to the role of auditory cortico-collicular synapses in behavior.

    1. Reviewer #1 (Public Review):

      Summary:

      Through an unbiased genomewide KO screen, the authors identified loss of DBT to suppress MG132-mediated death of cultured RPE cells. Further analyses suggested that DBT reduces ubiquitinated proteins by promoting autophagy. Mechanistic studies indicated that DBT loss promotes autophagy via AMPK and its downstream ULK and mTOR signaling. Furthermore, loss of DBT suppresses polyglutamine- or TDP-43-mediated cytotoxicity and/or neurodegeneration in fly models. Finally, the authors showed that DBT proteins are increased in ALS patient tissues, compared to non-neurological controls.

      Strengths:

      The idea is novel, the evidence is convincing, and the data are clean. The findings have implications for human diseases.

      Weaknesses:

      None.

    1. Reviewer #1 (Public Review):

      Summary:

      The study introduces and validates the Cyclic Homogeneous Oscillation (CHO) detection method to precisely determine the duration, location, and fundamental frequency of non-sinusoidal neural oscillations. Traditional spectral analysis methods face challenges in distinguishing the fundamental frequency of non-sinusoidal oscillations from their harmonics, leading to potential inaccuracies. The authors implement an underexplored approach, using the auto-correlation structure to identify the characteristic frequency of an oscillation. By combining this strategy with existing time-frequency tools to identify when oscillations occur, the authors strive to solve outstanding challenges involving spurious harmonic peaks detected in time-frequency representations. Empirical tests using electrocorticographic (ECoG) and electroencephalographic (EEG) signals further support the efficacy of CHO in detecting neural oscillations.

      Strengths:

      The paper puts important emphasis on the 'identity' question of oscillatory identification. The field primarily identifies oscillations through frequency, space (brain region), and time (length, and relative to task or rest). However, more tools that claim to further characterize oscillations by their defining/identifying traits are needed, in addition to data-driven studies about what the identifiable traits of neural oscillations are beyond frequency, location, and time. Such tools are useful for potentially distinguishing between circuit mechanistic generators underlying signals that may not otherwise be distinguished. This paper states this problem well and puts forth a new type of objective for neural signal processing methods.

      The paper uses synthetic data and multimodal recordings at multiple scales to validate the tool, suggesting CHO's robustness and applicability in various real-data scenarios. The figures illustratively demonstrate how CHO works on such synthetic and real examples, depicting in both time and frequency domains. The synthetic data are well-designed, and capable of producing transient oscillatory bursts with non-sinusoidal characteristics within 1/f noise. Using both non-invasive and invasive signals exposes CHO to conditions which may differ in the extent and quality of harmonic signal structure. An interesting follow-up question is whether the utility demonstrated here holds for MEG signals, as well as source-reconstructed signals from non-invasive recordings.

      This study is accompanied by open-source code and data for use by the community.

      Weaknesses:

      The criteria that the authors use for neural oscillations embody some operating assumptions underlying their characteristics, perhaps informed by immediate use cases intended by the authors (e.g., hippocampal bursts). The extent to which these assumptions hold in all circumstances should be investigated. For instance, the notion of consistent auto-correlation breaks down in scenarios where instantaneous frequency fluctuates significantly at the scale of a few cycles. Imagine an alpha-beta complex without harmonics (Jones 2009). If oscillations change phase position within a timeframe of a few cycles, it would be difficult for a single peak in the auto-correlation structure to elucidate the complex time-varying peak frequency in a dynamic fashion. Likewise, it is unclear whether bounding boxes with a pre-specified overlap can capture complexes that manoeuvre across peak frequencies.

      This method appears to lack the implementation of statistical inferential techniques for estimating and interpreting auto-correlation and spectral structure. In standard practice, auto-correlation functions and spectral measures can be subjected to statistical inference to establish confidence intervals, often helping to determine the significance of the estimates. Doing so would be useful for expressing the likelihood that an oscillation and its harmonic has the same auto-correlation structure and fundamental frequency, or more robustly identifying harmonic peaks in the presence of spectral noise. Here, the authors appear to use auto-correlation and time-frequency decomposition more as a deterministic tool rather than an inferential one. Overall, an inferential approach would help differentiate between true effects and those that might spuriously occur due to the nature of the data. Ultimately, a more statistically principled approach might estimate harmonic structure in the presence of noise in a unified manner transmitted throughout the methodological steps.

    1. Reviewer #1 (Public Review):

      In this work, Ligneul and coauthors implemented diffusion-weighted MRS in young rats to follow longitudinally and in vivo the microstructural changes occurring during brain development. Diffusion-weighted MRS is here instrumental in assessing microstructure in a cell-specific manner, as opposed to the claimed gold-standard (manganese-enhanced MRI) that can only probe changes in brain volume. Differential microstructure and complexification of the cerebellum and the thalamus during rat brain development were observed non-invasively. In particular, lower metabolite ADC with increasing age were measured in both brain regions, reflecting increasing cellular restriction with brain maturation. Higher sphere (representing cell bodies) fraction for neuronal metabolites (total NAA, glutamate) and total creatine and taurine in the cerebellum compared to the thalamus were estimated, reflecting the unique structure of the cerebellar granular layer with a high density of cell bodies. Decreasing sphere fraction with age was observed in the cerebellum, reflecting the development of the dendritic tree of Purkinje cells and Bergmann glia. From morphometric analyses, the authors could probe non-monotonic branching evolution in the cerebellum, matching 3D representations of Purkinje cells expansion and complexification with age. Finally, the authors highlighted taurine as a potential new marker of cerebellar development.

      From a technical standpoint, this work clearly demonstrates the potential of diffusion-weighted MRS at probing microstructure changes of the developing brain non-invasively, paving the way for its application in pathological cases. Ligneul and coauthors also show that diffusion-weighted MRS acquisitions in neonates are feasible, despite the known technical challenges of such measurements, even in adult rats. They also provide all necessary resources to reproduce and build upon their work, which is highly valuable for the community.

      From a biological standpoint, claims are well supported by the microstructure parameters derived from advanced biophysical modelling of the diffusion MRS data. The assumption of metabolite compartmentation, forming the basis of cell-specific microstructure interpretation of dMRS data, remains debated and should be considered with care (Rae, Neurochem Res, 2014, https://doi.org/10.1007/s11064-013-1199-5). External cross-validation of some of the authors' claims, in particular taurine in the thalamus switching from neurons to astrocytes during brain development, would be a highly valuable addition to this study.

      Specific strengths:

      (1) The interpretation of dMRS data in terms of cell-specific microstructure through advanced biophysical modelling (e.g. the sphere fraction, modelling the fraction of cell bodies versus neuronal or astrocytic processes) is a strong asset of the study, going beyond the more commonly used signal representation metrics such as the apparent diffusion coefficient, which lacks specificity to biological phenomena.<br /> (2) The fairly good data quality despite the complexity of the experimental framework should be praised: diffusion-weighted MRS was acquired in two brain regions (although not in the same animals) and longitudinally, in neonates, including data at high b-values and multiple diffusion times, which altogether constitutes a large-scale dataset of high value for the diffusion-weighted MRS community.<br /> (3) The authors have shared publicly data and codes used for processing and fitting, which will allow one to reproduce or extend the scope of this work to disease populations, and which goes in line with the current effort of the MR(S) community for data sharing.

      Specific weaknesses:

      (1) This work lacks an introduction and a discussion about diffusion MRI, which is already a validated technique to assess brain development non-invasively. Although water lacks cell-specificity compared to metabolites, several studies have reported a decrease in water ADC and increased fractional anisotropy with brain maturation, associated with the myelination process and decreased water content (overview in Hüppi, Chapt. 30 of "Diffusion MRI: Theory, Methods, and Applications", Oxford University Press, 2010). Interestingly, the same observations are found in this work (decreased ADC with age for most metabolites in both brain regions), which should have been commented on. Moreover, the authors could have reported water diffusion properties in addition to metabolites', as I believe the water signal, used for coil combination and/or Eddy currents corrections, is usually naturally acquired during diffusion-weighted MRS scans.<br /> (2) It is unclear why the authors have normalized metabolite concentrations (measured from low b-values diffusion-weighted MRS spectra) to the macromolecule concentrations. First, it is not specified whether in vivo macromolecules were acquired at each age or just at one time point. Second, such ratios are not standard practice in the MRS community so this choice should have been explained. Third, the macromolecule content was reported to change with age (Tkac et al., Magn Reson Med, 2003), therefore a change in metabolite to macromolecule ratio with age cannot be interpreted unequivocally.<br /> (3) Some discussion is missing about the choice of the analytical biophysical model (although a few are compared in Supplementary Materials), in particular: is a model of macroscopic anisotropy relevant in cerebellum, made of a large fraction of oriented white matter tracks, and does the model remain valid at different ages given white matter maturation and the ongoing myelination process?

    1. Joint Public Review:

      Summary:

      The authors of the study investigated the generalization capabilities of a deep learning brain age model across different age groups within the Singaporean population, encompassing both elderly individuals aged 55 to 88 years and children aged 4 to 11 years. The model, originally trained on a dataset primarily consisting of Caucasian adults, demonstrated a varying degree of adaptability across these age groups. For the elderly, the authors observed that the model could be applied with minimal modifications, whereas for children, significant fine-tuning was necessary to achieve accurate predictions. Through their analysis, the authors established a correlation between changes in the brain age gap and future executive function performance across both demographics. Additionally, they identified distinct neuroanatomical predictors for brain age in each group: lateral ventricles and frontal areas were key in elderly participants, while white matter and posterior brain regions played a crucial role in children. These findings underscore the authors' conclusion that brain age models hold the potential for generalization across diverse populations, further emphasizing the significance of brain age progression as an indicator of cognitive development and aging processes.

      Strengths:

      (1) The study tackles a crucial research gap by exploring the adaptability of a brain age model across Asian demographics (Chinese, Malay, and Indian Singaporeans), enriching our knowledge of brain aging beyond Western populations.<br /> (2) It uncovers distinct anatomical predictors of brain aging between elderly and younger individuals, highlighting a significant finding in the understanding of age-related changes and ethnic differences.

      Weaknesses:

      (1) Clarity in describing the fine-tuning process is essential for improved comprehension.<br /> (2) The analysis often limits its findings to p-values, omitting the effect sizes crucial for understanding the relationship with cognition.<br /> (3) Employing a predictive framework for cognition using brain age could offer more insight than mere statistical correlations.<br /> (4) Expanding the study's scope to evaluate the model's generalisability to unseen Caucasian samples is vital for establishing a comparative baseline.

      In summary, this paper underscores the critical need to include diverse ethnicities in model testing and estimation.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors attempt to reconstitute some active zone properties by introducing synaptic ribbon proteins into HEK cells. This "ground-up" approach can be valuable for assessing the necessity of specific proteins in synaptic function. Here, the authors co-transfect a membrane-targeted bassoon, RBP2, calcium channel subunits and Ribeye to generate what they call "synthetic ribbons". The resultant structures show an ability to cluster calcium channels (Figure 4B) and a modest ability to concentrate calcium entry locations (figure 7J). At the light level, the ribeye aggregates look spherical and localize to the membrane through its interaction with the membrane-targeted bassoon. It is a nice proof-of-principle in establishing a useful experimental system for studying calcium channel localization. However, the impact of the study is modest. No new biology is discovered and to call these structures "synthetic ribbons" is an overstatement in the absence of an ultrastructural analysis.

      Strengths:

      (1) The authors establish a new experimental system for the study of calcium channel localization to active zones.<br /> (2) The clustering of calcium channels to bassoon via RBP2 is a nice confirmation of a previously described interaction between bassoon and calcium channels in a cell-based system<br /> (3) The "ground-up" approach is an attractive one and theoretically allows one to learn a lot about the essential interactions for building a ribbon structure.

      Weaknesses:

      (1) Are these truly "synthetic ribbons". The ribbon synapse is traditionally defined by its morphology at the EM level. To what extent these structures recapitulate ribbons is not shown. It has been previously shown that Ribeye forms aggregates on its own. Do these structures look any more ribbon-like than ribeye aggregates in the absence of its binding partners?<br /> (2) No new biology is discovered here. The clustering of channels is accomplished by taking advantage of previously described interactions between RBP2, Ca channels and bassoon. The localization of Ribeye to bassoon takes advantage of a previously described interaction between the two. Even the membrane localization of the complexes required the introduction of a membrane-anchoring motif.<br /> (3) The only thing ribbon-specific about these "syn-ribbons" is the expression of ribeye and ribeye does not seem to participate in the localization of other proteins in these complexes. Bsn, Cav1.3 and RBP2 can be found in other neurons.<br /> (4) As the authors point out, RBP2 is not necessary for some Ca channel clustering in hair cells, yet seems to be essential for clustering to bassoon here.<br /> (5) The difference in Ca imaging between SyRibbons and other locations is extremely subtle.<br /> (6) The effect of the expression of palm-Bsn, RBP2 and the combination of the two on Ca-current is ambiguous. It appears that while the combination is larger than the control, it probably isn't significantly different from either of the other two alone (Fig 5). Moreover, expression of Ribeye + the other two showed no effect on Ca current (Figure 7). Also, why is the IV curve right shifted in Figure 7 vs Figure 5?<br /> (7) While some of the IHC is quantified, some of it is simply shown as single images. EV2, EV3 and Figure 4a in particular (4b looks convincing enough on its own, but could also benefit from a larger sample size and quantification)

    1. Reviewer #1 (Public Review):

      Summary:

      Protein conformational changes are often critical to protein function, but obtaining structural information about conformational ensembles is a challenge. Over a number of years, the authors of the current manuscript have developed and improved an algorithm, qFit protein, that models multiple conformations into high resolution electron density maps in an automated way. The current manuscript describes the latest improvements to the program, and analyzes the performance of qFit protein in a number of test cases, including classical statistical metrics of data fit like Rfree and the gap between Rwork and Rfree, model geometry, and global and case-by-case assessment of qFit performance at different data resolution cutoffs. The authors have also updated qFit to handle cryo-EM datasets, although the analysis of its performance is more limited due to a limited number of high-resolution test cases and less standardization of deposited/processed data.

      Strengths:

      The strengths of the manuscript are the careful and extensive analysis of qFit's performance over a variety of metrics and a diversity of test cases, as well as careful discussion of the limitations of qFit. This manuscript also serves as a very useful guide for users in evaluating if and when qFit should be applied during structural refinement.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors try to use a gene therapy approach to cure urofacial symptoms in an HSPE2 mutant mouse model.

      Strengths:

      The authors have convincingly shown the expression of AAV9/HSPE2 in pelvic ganglion and liver tissues. They have also shown the defects in urethra relaxation and bladder muscle contraction in response to EFS in mutant mice, which were reversed in treated mice.

      Weaknesses:

      It is easy to understand that high expression levels of HPSE2 in the bladder tissue lead to bladder dysfunction in human patients, however, the undetectable level of HPSE2 in AAV9 transfected mice bladders is a big question for the functional correction in those HPSE2 mutated mice.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper suggests to apply intrinsically-motivated exploration for the discovery of robust goal states in gene regulatory networks.

      Strengths:

      The paper is well written. The biological motivation and the need for such methods are formulated extraordinarily well. The battery of experimental models is impressive.

      Weaknesses:

      (1) The proposed method is compared to the random search. That says little about the performance with regard to the true steady-state goal sets. The latter could be calculated at least for a few simple ODE (e.g., BIOMD0000000454, `Metabolic Control Analysis: Rereading Reder'). The experiment with 'oscillator circuits' may not be directly interpolated to the other models.

      The lack of comparison to the ground truth goal set (attractors of ODE) from arbitrary initial conditions makes it hard to evaluate the true performance/contribution of the method. A part of the used models can be analyzed numerically using JAX, while there are models that can be analyzed analytically.

      "...The true versatility of the GRN is unknown and can only be inferred through empirical exploration and proxy metrics....": one could perform a sensitivity analysis of the ODEs, identifying stable equilibria. That could provide a proxy for the ground truth 'versatility'.

      (2) The proposed method is based on `Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning', which assumes state action trajectories [s_{t_0:t}, a_{t_0:t}], (2.1 Notations and Assumptions' in the IMGEP paper). However, the models used in the current work do not include external control actions, but rather only the initial conditions can be set. It is not clear from the methods whether IMGEP was adapted to this setting, and how the exploration policy was designed w/o actual time-dependent actions. What does "...generates candidate intervention parameters to achieve the current goal...."<br /> mean considering that interventions 'Sets the initial state...' as explained in Table 2?

      (3) Fig 2 shows the phase space for (ERK, RKIPP_RP) without mentioning the typical full scale of ERK, RKIPP_RP. It is unclear whether the path from (0, 0) to (~0.575, ~3.75) at t=1000 is significant on the typical scale of this phase space. is it significant on the typical scale of this phase space?

      (4) Table 2:<br /> (a) Where is 'effective intervention' used in the method?<br /> (b) In my opinion 'controllability', 'trainability', and 'versatility' are different terms. If there correspondence is important I would suggest to extend/enhance the column "Proposed Isomorphism". otherwise, it may be confusing. I don't see how this table generalizes generalizes "concepts from dynamical complex systems and behavioral sciences under a common navigation task perspective".

    1. Reviewer #1 (Public Review):

      The mechanisms underlying the generation and maintenance of LLPCs have been one of the unresolved issues. In the last few years, several groups have independently generated new genetic tools or models and addressed how LLPCs are generated or maintained in homeostatic conditions or upon immunization or infection. Here, Jing et al. have also established a new PC time stamping system and tried to address the issues above. The authors have found that LLPCs accumulated in the BM PC pool, along with aging, and that LLPCs had unique sufacetome, transcriptome, and BCR clonality. These observations have already been made by other groups (Xu et al. 2020, Robinson et al. 2022, Liu et al. 2022, Koike et al. 2023, Robinson et al. 2023, plus Tellier et al., 2024), therefore it is hard to find significant conceptual advances there. In my opinion, however, genetic analysis of the role of CXCR4 on PC localization or survival in BM (Figure 4 and 5) provided new aspects which have not been addressed in previous studies. Importantly, CXCR4 was required for the maintenance of plasma cells in bone marrow survival niches, conditional loss of which led to rapid mobilization from the bone marrow, reduced plasma cell survival, and reduced antibody titer. Thus, these data suggest that CXCR4-CXCL12 axis is not only important for plasma cell recruitment to the bone marrow but also essential for their lodging on the niches. I think the study is of high quality and the findings should be widely shared in the field.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, a chromosome-level genome of the rose-grain aphid M. dirhodum was assembled with high quality, and A-to-I RNA-editing sites were systematically identified. The authors then demonstrated that: 1) Wing dimorphism induced by crowding in M. dirhodum is regulated by 20E (ecdysone signaling pathway); 2) an A-to-I RNA editing prevents the binding of miR-3036-5p to CYP18A1 (the enzyme required for 20E degradation), thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring.

      Strengths:

      The authors present both genome and A-to-I RNA editing data. An interesting finding is that a A-to-I RNA editing site in CYP18A1 ruin the miRNA binding site of miR-3036-5p. And loss of miR-3036-5p regulation lead to less 20E and winged offspring.

      Weaknesses:

      How crowding represses the miR-3036-5p is still unclear.

    1. Reviewer #2 (Public Review):

      Summary:

      The dominant paradigm in the past decade for modeling the ventral visual stream's response to images has been to train deep neural networks on object classification tasks and regress neural responses from units of these networks. While object classification performance is correlated to variance explained in the neural data, this approach has recently hit a plateau of variance explained, beyond which increases in classification performance do not yield improvements in neural predictivity. This suggests that classification performance may not be a sufficient objective for building better models of the ventral stream. Lindsey & Issa study the role of factorization in predicting neural responses to images, where factorization is the degree to which variables such as object pose and lighting are represented independently in orthogonal subspaces. They propose factorization as a candidate objective for breaking through the plateau suffered by models trained only on object classification. They show the degree of factorization in a model captures aspects of neural variance that classification accuracy alone does not capture, hence factorization may be an objective that could lead to better models of ventral stream. I think the most important figure for a reader to see is Fig. 6.

      Strengths:

      This paper challenges the dominant approach to modeling neural responses in the ventral stream, which itself is valuable for diversifying the space of ideas.

      This paper uses a wide variety of datasets, spanning multiple brain areas and species. The results are consistent across the datasets, which is a great sign of robustness.

      The paper uses a large set of models from many prior works. This is impressively thorough and rigorous.

      The authors are very transparent, particularly in the supplementary material, showing results on all datasets. This is excellent practice.

      Weaknesses:

      The authors have addressed many of the weaknesses in the original review. The weaknesses that remain are limitations of the work that cannot be easily addressed. In addition to the limitations stated at the end of the discussion, I'll add two:

      (1) This work shows that factorization is correlated with neural similarity, and notably explains some variance in neural similarity that classification accuracy does not explain. This suggests that factorization could be used as an objective (along with classification accuracy) to build better models of the brain. However, this paper does not do that - using factorization to build better models of the brain is left to future work.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors of the study are trying to show that RNAseq can be used for neoantigen prediction and that the machine learning approach to the prediction can reveal very useful information for the selection of neoantigens for personalized antitumor vaccination.

      Strengths:

      The authors demonstrated that RNA expression of a neoantigen is a very important factor in the selection of peptides for the creation of personalized vaccines. They proved in vivo that in silico-predicted neoantigens can trigger an antitumor response in mice.

      Weaknesses:

      The selection of the peptides for vaccination is not clear. Some peptides were selected before and some after processing. What processing is also not clear. The authors didn't provide the full list of peptides before and after processing, please add those. And it wasn't clear that these peptides were previously published. Looking at the previously published table with peptide from B16 F10 (https://www.nature.com/articles/s41598-021-89927-5/tables/3), there are other genes with high expression, e.g. Tab2, Tm9sf3 that have higher expression than Herc6, please clarify the choice.

      It's not clear how many mice were used for each group in each experiment, please add this information to the text and figures. It would be good to add this, to aid the understanding of a broader audience.

      Please provide information about what software was used for statistical analysis.

    1. Reviewer #1 (Public Review):

      In this paper, Wu et al. investigated the physiological roles of CCDC113 in sperm flagellum and HTCA stabilization by using CRISPR/Cas knockouts mouse models, co-IP, and single sperm imaging. They find that CCDC113 localizes in the linker region among radial spokes, the nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) RS, N-DRC, and DMTs and interacts with axoneme-associated proteins CFAP57 and CFAP91, acting as an adaptor protein that facilitates the linkage between RS, N-DRC, and DMTs within the sperm axoneme. They show the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and CFAP91, DRC2 could not colocalize with DMTs in Ccdc113-/- spermatozoa. Interestingly, the data also indicate that CCDC113 could localize on the HTCA region, and interact with HTCA-associated proteins. The knockout of Ccdc113 could also produce acephalic spermatozoa. By using Sun5 and Centlein knockout mouse models, the authors further find SUN5 and CENTLEIN are indispensable for the docking of CCDC113 to the implantation site on the sperm head. Overall, the experiments were designed properly and performed well to support the authors' observation in each part. Furthermore, the study's findings offer valuable insights into the physiological and developmental roles of CCDC113 in the male germ line, which can provide insight into impaired sperm development and male infertility. The conclusions of this paper are mostly well supported by data, but some points need to be clarified and discussed.<br /> (1) In Figure 1, a sperm flagellum protein, which is far away from CCDC113, should be selected as a negative control to exclude artificial effects in co-IP experiments.<br /> (2) Whether the detachment of sperm head and tail in Ccdc113-/- mice is a secondary effect of the sperm flagellum defects? The author should discuss this point.<br /> (3) Given that some cytoplasm materials could be observed in Ccdc113-/- spermatozoa (Fig. 5A), whether CCDC113 is also essential for cytoplasmic removal?<br /> (4) Although CCDC113 could not bind to PMFBP1, the localization of CCDC113 in Pmfbp1-/- spermatozoa should be also detected to clarify the relationship between CCDC113 and SUN5-CENTLEIN-PMFBP1.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors provide a genome annotation resource of 33 insects using a motif-blind prediction method for tissue-specific cis-regulatory modules. This is a welcome addition that may facilitate further research in new laboratory systems, and the approach seems to be relatively accurate, although it should be combined with other sources of evidence to be practical.

      Strengths:

      The paper clearly presents the resource, including the testing of candidate enhancers identified from various insects in Drosophila. This cross-species analysis, and the inherent suggestion that training datasets generated in flies can predict a cis-regulatory activity in distant insects, is interesting. While I can not be sure this approach will prevail in the future, for example with approaches that leverage the prediction of TF binding motifs, the SCRMShaw tool is certainly useful and worth consideration for the large community of genome scientists working on insects.

      Weaknesses:

      While the authors made the effort to provide access to the SCRMShaw annotations via the RedFly database, the usefulness of this resource is somewhat limited at the moment. First, it is possible to generate tables of annotated elements with coordinates, but it would be more useful to allow downloads of the 33 genome annotations in GFF (or equivalent) format, with SCRMshaw predictions appearing as a new feature. Also, I should note that unlike most species some annotations seem to have issues in the current RedFly implementation. For example, Vcar and Jcoen turn empty.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper describes some experiments addressing 3' exonuclease and 3' trimming activity of bacterial exonuclease III. The quantitative activity is in fact very low, despite claims to the contrary. The work is of low interest with regard to biology, but possibly of use for methods development. Thus the paper seems better suited to a methods forum.

      Strengths:

      Technical approaches.

      Comments on revised version:

      All concerns have been addressed.

    1. Reviewer #1 (Public Review):

      Summary:

      Ciliary rootlet is a structure associated with the ciliary basal body (centriole) with beautiful striation observed by electron microscopy. It has been known for more than a century, but its function and protein arrangement is still unknown. This work reconstructed near-atomic resolution 3D structure of the rootlet using cryo-electron tomography, discovered a number of interesting filamentous structures inside and built molecular model of the rootlet.

      Strengths:

      The authors exploited the current possible ability of cryo-ET and used it appropriately to describe 3D structure of the rootlet. They carefully conducted subtomogram averaging and classification, which enabled an unprecedented detailed view of this structure. The dual use of (nearly) intact rootlet from cilia and extracted (demembraned) rootlet enabled them to describe with confidence how D1/D2/A bands form periodic structures and cross with longitudinal filaments, which are likely coiled-coil.

      Weaknesses:

      Some more clarifications in the method and indications in figures were needed in the original version. The authors addressed them in the revision.

    1. Reviewer #1 (Public Review):

      Summary:

      This finding shows a connection between cancer associated beta-catenin mutations extracellular vesicle secretion. A link between the beta-catenin mutation and expression of trafficking and exocytosis machinery. They used a multidisciplinary approach to explore expression levels of relevant proteins and single particle imaging to directly explore the release of extracellular vesicles. These results suggest a role of extracellular vesicles in immune evasion in liver cancer with the role needing to be further explored in other forms of cancer. I find this work to be compelling and of strong significance.

      Strengths:

      This paper uses multidisciplinary methods to demonstrate a compelling role of beta-catenin mutations in suppressing EV secretion in tumors. The results and imaging are extremely convincing and compelling.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript authored by Stockner and colleagues delves into the molecular simulations of Na+ binding pathway and the ionic interactions at the two known sodium binding sites site 1 and site 2. They further identify a patch of two acidic residues in TM6 that seemingly populate the Na+ ions prior to entry into the vestibule. These results highlight the importance of studying the ion-entry pathways through computational approaches and the authors also validate some of their findings through experimental work. They observe that sodium site 1 binding is stabilized by the presence of the substrate in the s1 site and this is particularly vital as the GABA carboxylate is involved in coordinating the Na+ ion unlike other monoamine transporters and binding of sodium to the Na2 site stabilizes the conformation of the GAT1 by reducing flexibility among the helical bundles involved in alternating access.

      Strengths:

      The study displays results that are generally consistent with available information from experiments on SLC6 transporters particularly GAT1 and puts forth the importance of this added patch of residues in the extracellular vestibule that could be of importance to the ion permeation in SLC6 transporters. This is a nicely performed study and could be improved if the authors could comment on and fix the following queries.

      Comments on revised version:

      The authors have satisfactorily addressed my comments and this has significantly improved the clarity of the manuscript.

      The only point that I would like to inquire about is the role of EL4 in modulating Na+ entry. In the simulations do the authors see no role of EL4 in controlling Na+ entry. It is particularly intriguing as some studies in the recent past displayed charged mutations in EL4 of dDAT, SERT and GAT1 as being detrimental for substrate entry/uptake. It would therefore be nice to add a small discussion if there is any role for EL4 in Na+ entry.

    1. Reviewer #1 (Public Review):

      Summary:

      This study investigated the phosphoryl transfer mechanism of the enzyme adenylate kinase, using SCC-DFTB quantum mechanical/molecular mechanical (QM/MM) simulations, along with kinetic studies exploring the temperature and pH dependence of the enzyme's activity, as well as the effects of various active site mutants. Based on a broad free energy landscape near the transition state, the authors proposed the existence of wide transition states (TS), characterized by the transferring phosphoryl group adopting a meta-phosphate-like geometry with asymmetric bond distances to the nucleophilic and leaving oxygens. In support of this finding, kinetic experiments were conducted with Ca2+ ions at different temperatures and pH, which revealed a reduced entropy of activation and unique pH-dependence of the catalyzed reaction.

      Strengths:

      A combined application of simulation and experiments is a strength.

      Weaknesses:

      The conclusion that the enzyme-catalyzed reaction involves a wide transition state is not sufficiently clarified with some concerns about the determined free energy profiles compared to the experimental estimate. (See Recommendations for the authors.)

    1. Reviewer #1 (Public Review):

      Continuous attractor networks endowed with some sort of adaptation in the dynamics, whether that be through synaptic depression or firing rate adaptation, are fast becoming the leading candidate models to explain many aspects of hippocampal place cell dynamics, from hippocampal replay during immobility to theta sequences during run. Here, the authors show that a continuous attractor network endowed with spike frequency adaptation and subject to feedforward external inputs is able to account for several previously unaccounted aspects of theta sequences, including (1) sequences that move both forwards and backwards, (2) sequences that alternate between two arms of a T-maze, (3) speed modulation of place cell firing frequency, and (4) the persistence of phase information across hippocampal inactivations.

      I think the main result of the paper (findings (1) and (2)) are likely to be of interest to the hippocampal community, as well as to the wider community interested in mechanisms of neural sequences. In addition, the manuscript is generally well written and the analytics are impressive. However, several issues should be addressed, which I outline below.

      Major comments:

      In real data, population firing rate is strongly modulated by theta (i.e., cells collectively prefer a certain phase of theta - see review paper Buzsaki, 2002) and largely oscillates at theta frequency during run. With respect to this cyclical firing rate, theta sweeps resemble "Nike" check marks, with the sweep backwards preceding the sweep forwards within each cycle before the activity is quenched at the end of the cycle. I am concerned that (1) the summed population firing rate of the model does not oscillate at theta frequency, and (2) as the authors state, the oscillatory tracking state must begin with a forward sweep. With regards to (1), can the authors show theta phase spike preference plots for the population to see if they match data? With regards to (2), can the authors show what happens if the bump is made to sweep backwards first, as it appears to do within each cycle?

      I could not find the width of the external input mentioned anywhere in the text or in the table of parameters. The implication is that it is unclear to me whether, during the oscillatory tracking state, the external input is large compared to the size of the bump, so that the bump lives within a window circumscribed by the external input and so bounces off the interior walls of the input during the oscillatory tracking phase, or whether the bump is continuously pulled back and forth by the external input, in which case it could be comparable to the size of the bump. My guess based on Fig 2c is that it is the latter. Please clarify and comment.

      I would argue that the "constant cycling" of theta sweeps down the arms of a T-maze was roughly predicted by Romani & Tsodyks, 2015, Figure 7. While their cycling spans several theta cycles, it nonetheless alternates by a similar mechanism, in that adaptation (in this case synaptic depression) prevents the subsequent sweep of activity from taking the same arm as the previous sweep. I believe the authors should cite this model in this context and consider the fact that both synaptic depression and spike frequency adaptation are both possible mechanisms for this phenomenon. But I certainly give the authors credit for showing how this constant cycling can occur across individual theta cycles.

      The authors make an unsubstantiated claim in the paragraph beginning with line 413 that the Tsodyks and Romani (2015) model could not account for forwards and backwards sweeps. Both the firing rate adaptation and synaptic depression are symmetry breaking models that should in theory be able to push sweeps of activity in both directions, so it is far from obvious to me that both forward and backward sweeps are not possible in the Tsodyks and Romani model. The authors should either prove that this is the case (with theory or simulation) or excise this statement from the manuscript.

      The section on the speed dependence of theta (starting with line 327) was very hard to understand. Can the authors show a more graphical explanation of the phenomenon? Perhaps a version of Fig 2f for slow and fast speeds, and point out that cells in the latter case fire with higher frequency than in the former?

      I had a hard time understanding how the Zugaro et al., (2005) hippocampal inactivation experiment was accounted for by the model. My intuition is that while the bump position is determined partially by the location of the external input, it is also determined by the immediate history of the bump dynamics as computed via the local dynamics within the hippocampus (recurrent dynamics and spike rate adaptation). So that if the hippocampus is inactivated for an arbitrary length of time, there is nothing to keep track of where the bump should be when the activity comes back on line. Can the authors please explain more how the model accounts for this?

      Can the authors comment on why the sweep lengths oscillate in the bottom panel of Fig 5b during starting at time 0.5 seconds before crossing the choice point of the T-maze? Is this oscillation in sweep length another prediction of the model? If so, it should definitely be remarked upon and included in the discussion section.

      Perhaps I missed this, but I'm curious whether the authors have considered what factors might modulate the adaptation strength. In particular, might rat speed modulate adaptation strength? If so, would have interesting predictions for theta sequences at low vs high speeds.

      I think the paper has a number of predictions that would be especially interesting to experimentalists but are sort of scattered throughout the manuscript. It would be beneficial to have them listed more prominently in a separate section in the discussion. This should include (1) a prediction that the bump height in the forward direction should be higher than in the backward direction, (2) predictions about bimodal and unimodal cells starting with line 366, (3) prediction of another possible kind of theta cycling, this time in the form of sweep length (see comment above), etc.

    1. Reviewer #1 (Public Review):

      This study exploits novel agent (IMT) that inhibits mitochondrial activity in combination with venetoclax. While the concept is not novel, the agent is novel (inhibitor of the mitochondrial RNA polymerase, described in Nature in other tumor models), and quest for safe mitochondrial inhibitors is highly warranted. The strength is in vivo activity data shown in CLDX and in one of the two AML PDX models tested, and the apparent safety of the combination. However, the impact on survival is impressive in CLDX but not in PDX, and unclear why Ven-sensitive PDX is resistant to combination (opposite what cell line data show). The paper is lacking mechanistic data beyond Seahorse and standard apoptosis assays, and even transcriptome analysis from PDX cells is poorly analyzed. There is no real evidence that this agent overcome Ven resistance, which could be done for example in primary AML cells. Finally, no on-target pharmacodynamic endpoints are measured in vivo to support the activity of the compound on mitochondrial activity at the doses used (which are safe). These multiple weaknesses significantly reduce my enthusiasm for this manuscript.

      The cell line data show additive/synergistic effects of IMT and Ven on cell viability in p53-WT cells. However, no mechanisms of synergy beyond OCR are shown, which is a missed opportunity.

      No data are shown in primary AML cells in vitro. This could address venetoclax-resistant AML cells with distinct genomic profiles.

      The in vivo CLDX model (MV4;11) data is quite impressive, showing reduction of tumor burden and meaningful extension of survival in combination cohort. It is unclear why venetoclax used at highest dose normally sued in vivo (100mg/kg) did not show any impact on survival in this Ven-sensitive model. It is disappointing that no biomarkers of mitochondrial activity (for example, simple pAMPK, or levels of mitochondrial subunits) are shown to support on-target pharmacodynamic activity. However, efficacy in human PDX is less impressive, for example in Fig 6C the combination has extended survival from 96 to 112 days, possibly due to early stopping of treatment (around day 30); and no extension of survival is seen in another PDX in Fig 7. Still, this is indicative of combinatorial activity in TP53-mutant PDX. There is however discrepancy with in vitro studies that show no impact of combination in TP53 mutant cells and synergy in TP53-wt cells, and the opposite findings in vivo, which is not explained. Overall, the activity of the combination is modest. The safety is encouraging, but again, no pharmacodynamic measurements are shown to support that IMT at least partially inhibited mitochondrial activity in AML cells.

      In Discussion the statement that inhibition of POLRMT can overcome venetoclax resistance is not supported by the data, as no additive effects are seen in vitro in TP53 mutant cells, and no other resistant models (such as primary AML cells) are tested. In vivo as stated above there is some activity in TP53 mutant PDX but this alone cannot be sued to justify this strong statement. Also, the sentence that "...we were able to reduce the tumor burden in all (cell- and patient-derived) xenografted mice treated with a combination of IMT and venetoclax" is not supported by data in Fig 7.

    1. Reviewer #1 (Public Review):

      Rebecca R.G. et al. set to determine the function of grid cells. They present an interesting case claiming that the spatial periodicity seen in the grid pattern provides a parsimonious solution to the task of coding 2D trajectories using sequential cell activation. Thus, this work defines a probable function grid cells may serve (here, the function is coding 2D trajectories), and proves that the grid pattern is a solution to that function. This approach is somewhat reminiscent in concept to previous works that defined a probable function of grid cells (e.g., path integration) and constructed normative models for that function that yield a grid pattern. However, the model presented here gives clear geometric reasoning to its case.

      Stemming from 4 axioms, the authors present a concise demonstration of the mathematical reasoning underlying their case. The argument is interesting and the reasoning is valid, and this work is a valuable addition to the ongoing body of work discussing the function of grid cells.

      However, the case uses several assumptions that need to be clearly stated as assumptions, clarified, and elaborated on: Most importantly, the choice of grid function is grounded in two assumptions:<br /> (1) that the grid function relies on the activation of cell sequences, and<br /> (2) that the grid function is related to the coding of trajectories. While these are interesting and valid suggestions, since they are used as the basis of the argument, the current justification could be strengthened (references 28-30 deal with the hippocampus, reference 31 is interesting but cannot hold the whole case).

      The work further leans on the assumption that sequences in the same direction should be similar regardless of their position in space, it is not clear why that should necessarily be the case, and how the position is extracted for similar sequences in different positions. The authors also strengthen their model with the requirement that grid cells should code for infinite space. However, the grid pattern anchors to borders and might be used to code navigated areas locally. Finally, referencing ref. 14, the authors claim that no existing theory for the emergence of grid cell firing that unifies the experimental observations on periodic firing patterns and their distortions under a single framework. However, that same reference presents exactly that - a mathematical model of pairwise interactions that unifies experimental observations. The authors should clarify this point.

    1. Joint Public Review:

      The overall goal of this manuscript is to understand how Notch signaling is activated in specific regions of the endocardium, including the OFT and AVC, that undergo EMT to form the endocardial cushions. Using dofetilide to transiently block circulation in E9.5 mice, the authors show that Notch receptor cleavage still occurs in the valve-forming regions due to mechanical sheer stress as Notch ligand expression and oxygen levels are unaffected. The authors go on to show that changes in lipid membrane structure activate mTOR signaling, which causes phosphorylation of PKC and Notch receptor cleavage.

      The strengths of the manuscript include the dual pharmacological and genetic approaches to block blood flow in the mouse, the inclusion of many controls including those for hypoxia, the quality of the imaging, and the clarity of the text. However, several weaknesses were noted surrounding the main claims where the supporting data are incomplete.

      PKC - Notch1 activation:

      (1) Does deletion of Prkce and Prkch affect blood flow, and if so, might that be suppressing Notch1 activation indirectly?

      (2) It would be helpful to visualize the expression of prkce and prkch by in situ hybridization in E9.5 embryos.

      (3) PMA experiments: Line 223-224: A major concern is related to the conclusion that "blood flow activates Notch in the cushion endocardium via the mTORC2-PKC signaling pathway". To make that claim, the authors show that a pharmacological activation with a potent PKC activator, PMA, rescues NICD levels in the AVC in dofetilide-treated embryos. This claim would also need proof that a lack of blood flow alters the activity of mTORC2 to phosphorylate the targets of PKC phosphorylation. Also, this observation does not explain the link between PKC activity and Notch activation.

      (4) In addition, the authors hypothesise that shear stress lies upstream of PKC and Notch activation, and that because shear stress is highest at the valve-forming regions, PKC and Notch activity is localised to the valve-forming regions. Since PMA treatment affects the entire endocardium which expresses Notch1, NICD should be seen in areas outside of the AVC in the PMA+dofetilide condition. Please clarify.

      Lipid Membrane:

      (1) It is not clear how the authors think that the addition of cholesterol changes the lipid membrane structure or alters Cav-1 distribution. Can this be addressed? Does adding cholesterol make the membrane more stiff? Does increased stiffness result from higher shear stress?

      (2) The loss of blood flow apparently affects Cav1 membrane localization and causes a redistribution from the luminal compartment to lateral cell adhesion sites. Cholesterol treatment of dofetilide-treated hearts (lacking blood flow) rescued Cav1 localization to luminal membrane microdomains and rescued NICD expression. It remains unclear how the general addition of cholesterol would result in a rescue of regionalized membrane distribution within the AVC and in high-shear stress areas.

      (3) The authors do not show the entire heart in that rescue treatment condition (cholesterol in dofetilide-treated hearts). Also, there is no quantification of that rescue in Figure 4B. Currently, only overview images of the heart are shown but high-resolution images on a subcellular scale (such as electron microscopy) are needed to resolve and show membrane microdomains of caveolae with Cav1 distribution. This is important because Cav-1could have functions independent of caveolae (eg. Lolo et al., https://doi.org/10.1038/s41556-022-01034-3).

      Figure Legends, missing data, and clarity:

      (1) The number of embryos used in each experiment is not clear in the text or figure legends. In general, figure legends are incomplete (for instance in Figure 1).

      (2) Line 204: The authors refer to unpublished endocardial RNAseq data from E9.5 embryos. These data must be provided with this manuscript if it is referred to in any way in the text.

      (3) Figure 1 shows Dll4 transcript levels, which do not necessarily correlate with protein levels. It would be important to show quantifications of these patterns as Notch/Dll4 levels are cycling and may vary with time and between different hearts.

      (4) Line 212-214: The authors describe cardiac cushion defects due to the loss of blood flow and refer to some quantifications that are not completely shown in Figure 3. For instance, quantifications for cushion cellularity and cardiac defects at three hours (after the start of treatment?) are missing.

      (5) Related to Figure 5. The work would be strengthened by quantification of the effects of dofetilide and verapamil on heartbeat at the doses applied. Is the verapamil dosage used here similar to the dose used in the clinic?

      Overstated Claims:

      (1) The authors claim that the lipid microstructure/mTORC2/PKC/Notch pathway is responsive to shear stress, rather than other mechanical forces or myocardial function. Their conclusions seem to be extrapolated from various in vitro studies using non-endocardial cells. To solidify this claim, the authors would need additional biomechanical data, which could be obtained via theoretical modelling or using mouse heart valve explants. This issue could also be addressed by the authors simply softening their conclusions.

      (2) Line 263-264: In the discussion, the authors conclude that "Strong fluid shear stress in the AVC and OFT promotes the formation of caveolae on the luminal surface of the endocardial cells, which enhances PKCε phosphorylation by mTORC2." This link was shown rather indirectly, rather than by direct evidence, and therefore the conclusion should be softened. For example, the authors could state that their data are consistent with this model.

      (3) In the Discussion, it says: "Mammalian embryonic endocardium undergoes extensive EMT to form valve primordia while zebrafish valves are primarily the product of endocardial infolding (Duchemin et al., 2019)." In the paper cited, Duchemin and colleagues described the formation of the zebrafish outflow tract valve. The zebrafish atrioventricular valve primordia is formed via partial EMT through Dll-Notch signaling (Paolini et al. Cell Reports 2021) and the collective cell migration of endocardial cells into the cardiac jelly. Then, a small subset of cells that have migrated into the cardiac jelly give rise to the valve interstitial cells, while the remainder undergo mesenchymal-to-endothelial transition and become endothelial cells that line the sinus of the atrioventricular valve (Chow et al., doi: 10.1371/journal.pbio.3001505). The authors should modify this part of the Discussion and cite the relevant zebrafish literature.

    1. Joint Public Review:

      Chartampila et al. describe the effect of early-life choline supplementation on cognitive functions and epileptic activity in a mouse model of Alzheimer's disease. The cognitive abilities were assessed by the novel object recognition test and the novel object location test, performed in the same cohort of mice at 3 months and 6 months of age. Neuronal loss was tested using NeuN immunoreactivity, and neuronal hyperexcitability was examined using deltaFosB and video-EEG recordings, providing multi-level correlations between these different parameters.

      The study was designed as a 6-month follow-up, with repeated behavioral and EEG measurements through disease development and multilevel correlations providing valuable and interesting findings on AD progression and the effect of early-life choline supplementation. Moreover, the behavioral data that suggest an adverse effect of low choline in WT mice are interesting and important also beyond the context of AD, highlighting the dramatic effect of diet on the phenotypes of animal.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors propose a new method to quantitatively assess morphogenetic processes during organismal development. They apply their method to ascidian morphogenesis and thus find that gastrulation is a two-step process.

      The method applies to morphogenetic changes of surfaces. It consists of the following steps: first, surface deformations are quantified based on microscopy images without requiring cellular segmentation and tracking. This is achieved by mapping, at each time point, a polygonal mesh initially defined on a sphere to the surface of the embryo. The mapped vertices of this polygonal mesh then serve as (Lagrangian) markers for the embryonic surface. From these, one can infer the deformation of the surface, which can be expressed in terms of the strain tensor at each point of the surface. Changes in the strain tensor give the strain rate, which captures the morphogenetic processes. Second, at each time point, the strain rate field is decomposed in terms of spherical harmonics. Finally, the evolution of the weights of the various spherical harmonics in the decomposition is analysed via wavelet analysis. The authors apply their workflow to ascidian development between 4 and 8.7 hpf. From their analysis, they find clear indications for gastrulation and neurulation and identify two sub-phases of gastrulation, namely, endoderm invagination and 'blastophore closure'.

      Strengths:

      The combination of various tools allows the authors to obtain a quantitative description of the developing embryo without the necessity of identifying fiducial markers. Visual inspection shows that their method works well. Furthermore, this quantification then allows for an unbiased identification of different morphogenetic phases.

      Weaknesses:

      At times, the explanation of the method is hard to follow, unless the reader is already familiar with concepts like level-set methods or wavelet transforms. Furthermore, the software for performing the determination of Lagrangian markers or the subsequent spectral analysis does not seem to be available to the readers.

    1. Reviewer #1 (Public Review):

      Summary:

      In this human neuroimaging and electrophysiology study, the authors aimed to characterize the effects of a period of visual deprivation in the sensitive period on excitatory and inhibitory balance in the visual cortex. They attempted to do so by comparing neurochemistry conditions ('eyes open', 'eyes closed') and resting state, and visually evoked EEG activity between ten congenital cataract patients with recovered sight (CC), and ten age-matched control participants (SC) with normal sight.

      First, they used magnetic resonance spectroscopy to measure in vivo neurochemistry from two locations, the primary location of interest in the visual cortex, and a control location in the frontal cortex. Such voxels are used to provide a control for the spatial specificity of any effects because the single-voxel MRS method provides a single sampling location. Using MR-visible proxies of excitatory and inhibitory neurotransmission, Glx and GABA+ respectively, the authors report no group effects in GABA+ or Glx, no difference in the functional conditions 'eyes closed' and 'eyes open'. They found an effect of the group in the ratio of Glx/GABA+ and no similar effect in the control voxel location. They then performed multiple exploratory correlations between MRS measures and visual acuity, and reported a weak positive correlation between the 'eyes open' condition and visual acuity in CC participants.

      The same participants then took part in an EEG experiment. The authors selected only two electrodes placed in the visual cortex for analysis and reported a group difference in an EEG index of neural activity, the aperiodic intercept, as well as the aperiodic slope, considered a proxy for cortical inhibition. They report an exploratory correlation between the aperiodic intercept and Glx in one out of three EEG conditions.

      The authors report the difference in E/I ratio, and interpret the lower E/I ratio as representing an adaptation to visual deprivation, which would have initially caused a higher E/I ratio. Although intriguing, the strength of evidence in support of this view is not strong. Amongst the limitations are the low sample size, a critical control cohort that could provide evidence for a higher E/I ratio in CC patients without recovered sight for example, and lower data quality in the control voxel.

      Strengths of study:

      How sensitive period experience shapes the developing brain is an enduring and important question in neuroscience. This question has been particularly difficult to investigate in humans. The authors recruited a small number of sight-recovered participants with bilateral congenital cataracts to investigate the effect of sensitive period deprivation on the balance of excitation and inhibition in the visual brain using measures of brain chemistry and brain electrophysiology. The research is novel, and the paper was interesting and well-written.

      Limitations:

      - Low sample size. Ten for CC and ten for SC, and a further two SC participants were rejected due to a lack of frontal control voxel data. The sample size limits the statistical power of the dataset and increases the likelihood of effect inflation.

      - Lack of specific control cohort. The control cohort has normal vision. The control cohort is not specific enough to distinguish between people with sight loss due to different causes and patients with congenital cataracts with co-morbidities. Further data from more specific populations, such as patients whose cataracts have not been removed, with developmental cataracts, or congenitally blind participants, would greatly improve the interpretability of the main finding. The lack of a more specific control cohort is a major caveat that limits a conclusive interpretation of the results.

      - MRS data quality differences. Data quality in the control voxel appears worse than in the visual cortex voxel. The frontal cortex MRS spectrum shows far broader linewidth than the visual cortex (Supplementary Figures). Compared to the visual voxel, the frontal cortex voxel has less defined Glx and GABA+ peaks; lower GABA+ and Glx concentrations, lower NAA SNR values; lower NAA concentrations. If the data quality is a lot worse in the FC, then small effects may not be detectable.

      - Because of the direction of the difference in E/I, the authors interpret their findings as representing signatures of sight improvement after surgery without further evidence, either within the study or from the literature. However, the literature suggests that plasticity and visual deprivation drive the E/I index up rather than down. Decreasing GABA+ is thought to facilitate experience-dependent remodelling. What evidence is there that cortical inhibition increases in response to a visual cortex that is over-sensitised due to congenital cataracts? Without further experimental or literature support this interpretation remains very speculative.

      - Heterogeneity in the patient group. Congenital cataract (CC) patients experienced a variety of duration of visual impairment and were of different ages. They presented with co-morbidities (absorbed lens, strabismus, nystagmus). Strabismus has been associated with abnormalities in GABAergic inhibition in the visual cortex. The possible interactions with residual vision and confounds of co-morbidities are not experimentally controlled for in the correlations, and not discussed.

      - Multiple exploratory correlations were performed to relate MRS measures to visual acuity (shown in Supplementary Materials), and only specific ones were shown in the main document. The authors describe the analysis as exploratory in the 'Methods' section. Furthermore, the correlation between visual acuity and E/I metric is weak, and not corrected for multiple comparisons. The results should be presented as preliminary, as no strong conclusions can be made from them. They can provide a hypothesis to test in a future study.

      - P.16 Given the correlation of the aperiodic intercept with age ("Age negatively correlated with the aperiodic intercept across CC and SC individuals, that is, a flattening of the intercept was observed with age"), age needs to be controlled for in the correlation between neurochemistry and the aperiodic intercept. Glx has also been shown to negatively correlate with age.

      - Multiple exploratory correlations were performed to relate MRS to EEG measures (shown in Supplementary Materials), and only specific ones were shown in the main document. Given the multiple measures from the MRS, the correlations with the EEG measures were exploratory, as stated in the text, p.16, and in Figure 4. Yet the introduction said that there was a prior hypothesis "We further hypothesized that neurotransmitter changes would relate to changes in the slope and intercept of the EEG aperiodic activity in the same subjects." It would be great if the text could be revised for consistency and the analysis described as exploratory.

      - The analysis for the EEG needs to take more advantage of the available data. As far as I understand, only two electrodes were used, yet far more were available as seen in their previous study (Ossandon et al., 2023). The spatial specificity is not established. The authors could use the frontal cortex electrode (FP1, FP2) signals as a control for spatial specificity in the group effects, or even better, all available electrodes and correct for multiple comparisons. Furthermore, they could use the aperiodic intercept vs Glx in SC to evaluate the specificity of the correlation to CC.

    1. Reviewer #1 (Public Review):

      This study identifies two behavioral processes that underlie learned pathogen avoidance behavior in C. elegans: exiting and re-entry of pathogenic bacterial lawns. Long-term behavioral tracking indicates that animals increase the prevalence of both behaviors over long-term exposure to the pathogen Pseudomonas aeruginosa. Using an optogenetic silencing screen, the authors identify groups of neurons, whose activity regulates lawn occupancy. Surprisingly, they find that optogenetic inhibition of neurons during only the first two hours of pathogen exposure can establish subsequent long-term changes in pathogen aversion. By leveraging a compressed sensing approach, the authors define a set of neurons involved in either lawn exit or lawn re-entry behavior using a constrained set of transgenic lines that drive Arch-3 expression in overlapping groups of neurons. They then measure the calcium activity of the candidate neurons involved in lawn re-entry in freely moving animals using GCaMP, and observe a reduction in their neural activity after exposure to a pathogen. Optogenetic inhibition of AIY and SIA neurons during acute pathogen exposure in naïve animals delays lawn entry whereas activating these neurons in animals previously exposed to pathogen enhances lawn entry, albeit transiently.

      This work is missing several controls that are necessary to substantiate their claims. My most important concern is that the optogenetic screen for neurons that alter pathogenic lawn occupancy does not have an accompanying control on non-pathogenic OP50 bacteria. Hence, it remains unclear whether these neuronal inhibition experiments lead to pathogen-specific or generalized lawn-leaving alterations. For strains that show statistical differences between - and + ATR conditions, the authors should perform follow-up validation experiments on non-pathogenic OP50 lawns to ensure that the observed effect is PA14-specific. Similarly, neuronal inhibition experiments in Figures 5E and H are only performed with naïve animals on PA14 - we need to see the latency to re-entry on OP50 as well, to make general conclusions about these neurons' role in pathogen-specific avoidance.

      My second major concern is regarding the calcium imaging experiments of candidate neurons involved in lawn re-entry behavior. Although the data shows that AIY, AVK, and SIA/SIB neurons all show reduced activity following pathogen exposure, the authors do not relate these activity changes to changes in behavior. Given the well-established links between these cells and forward locomotion, it is essential to not only report differences in activity but also in the relationship between this activity and locomotory behavior. If animals are paused outside of the pathogen lawn, these neurons may show low activity simply because the animals are not moving forward. Other forward-modulated neurons may also show this pattern of reduced activity if the animals remain paused. Given that the authors have recorded neural activity before and after contact with pathogenic bacteria in freely moving animals, they should also provide an analysis of the relationship between proximity to the lawn and the activity of these neurons.

      This work is missing methodological descriptions that are necessary for the correct interpretation of the results shown here. Figure 2 suggests that the determination of statistical significance across the optogenetic inhibition screen will be found in the Methods, but this information is not to be found there. At various points in the text, authors refer to "exit rate", "rate constant", and "entry rate". These metrics seem derived from an averaged measurement across many individual animals in one lawn evacuation assay plate. However "latency to re-entry" is only defined on a per-animal basis in the lawn re-exposure assay. These differences should be clearly stated in the methods section to avoid confusion and to ensure that statistics are computed correctly.

      This work also contains mislabeled graphs and incorrect correspondence with the text, which make it difficult to follow the authors 'claims. The text suggests that Pdop-2::Arch3 and Pmpz-1::Arch3 show increased exit rates, whereas Figure 2 shows that Pflp-4::Arch3 but not Pmpz-1::Arch3 has increased exit rate. The authors should also make a greater effort to correctly and clearly label which type of behavioral experiment is used to generate each figure and describe the differences in experimental design in the main text, figure legends, and methods. Figure 2E depicts trajectories of animals leaving a lawn over a 2.5-minute interval but it is unclear when this time window occurs within the 18-hour lawn leaving assay. Likewise, Figure 2H depicts a 30-minute time window which has an unclear relationship to the overall time course of lawn leaving. This figure legend is also mislabeled as "Infected/Healthy", whereas it should be labeled "-/+ ATR".

      This work raises the interesting possibility that different sets of neurons control lawn exit and lawn re-entry behaviors following pathogen exposure. However, the authors never directly test this claim. To rigorously show this, the authors would need to show that lawn-exit-promoting neurons (CEPs, HSNs, RIAs, RIDs, SIAs) are dispensable for lawn re-entry behavior and that lawn re-entry promoting neurons (AVK, SIA, AIY, MI) are dispensable for lawn exit behavior in pathogen-exposed animals. The authors identify AVK neurons as important for modulating lawn re-entry behavior by brief inhibition at the start of pathogen exposure but fail to find that these neurons are required for increased latency to re-entry in naïve animals (Figure 5D). Recent work from Marquina-Solis et al (2024) shows that chronic silencing of these neurons delays pathogen lawn leaving, due to impaired release of flp-1 neuropeptide. Authors may wish to connect their work more closely with the existing literature by investigating the behavioral process by which AVK contributes to lawn evacuation.

      If the authors work through these criticisms, this work can become an important contribution to the field of pathogen learning in C. elegans. However, in its current form, this work remains incomplete.

    1. Reviewer #1 (Public Review):

      Summary:

      The study characterized the cellular and molecular mechanisms of spike timing-dependent long-term depression (t-LTD) at the synapses between excitatory afferents from lateral (LPP) and medial (MPP) perforant pathways to granule cells (GC) of the dentate gyrus (DG) in mice.

      Strengths:

      The electrophysiological experiments are thorough. The experiments are systematically reported and support the conclusions drawn.<br /> This study extends current knowledge by elucidating additional plasticity mechanisms at PP-GC synapses, complementing existing literature.

      Weaknesses:

      To more conclusively define the pivotal role of astrocytes in modulating t-LTD at MPP and LPP GC synapses through SNARE protein-dependent glutamate release, as posited in this study, the authors could adopt additional methods, such as alternative mouse models designed to regulate SNARE-dependent exocytosis, as well as optogenetic or chemogenetic strategies for precise astrocyte manipulation during t-LTD induction. This would provide more direct evidence of the influence of astrocytic activity on synaptic plasticity.

    1. nd you’re basically scrambling to come toterms with something, which, unbeknownst to you, has been brewing forweeks under your very nose and bears all the symptoms of what you’reforced to call I want.

      "Forced to call I want", implies societal pressure to put labels on feelings... What does Elio think of this? Assigning definitions based on symptoms. Based on others telling you -- this is the transition that Elio takes to become Oliver.

      Will he eventually not want him? And how does this prove identity is contradictory!?

    2. soles, of his throat, of the bottom of his forearms, which hadn’t really beenexposed to much sun. Almost a light pink, as glistening and smooth as theunderside of a lizard’s belly. Private, chaste, unfledged, like a blush on anathlete’s face or an instance of dawn on a stormy night. It told me thingsabout him I never knew to ask

      Motif of skin introduced in CMBYN, where Oliver's duality of skin, tanned, and pink and untouched represents the multidimensionality of identity, and the contradictions that exist within him -- which is what fascinates Elio. The coexistence of both contradictions in such a beautiful, whole, masterpiece who has affinities leaping out of him is enlightening for Elio. Elio may see Oliver as an Elio who he wishes to mature into.

    3. I could grow to like him, though. From rounded chin to rounded heel.Then, within days, I would learn to hate him.

      Does this foreshadow the duality and complexity of their relationship? Because there is a period of time when Elio is in an internal conflict with his desire and lack of desire for Oliver.

  3. www.researchsquare.com www.researchsquare.com
    1. Reviewer #1 (Public Review):

      Summary:

      The authors provide solid evidence with a mouse model as well as supporting in vitro and analysis of clinical samples that loss of Fak increases the development of BRAF V600E-induced dysplastic lesions and carcinomas in the cecum via downregulation of Egfr-mediated Erk phosphorylation. This fine-tuning of Erk phosphorylation increases the expression of Lrg4 mRNA expression and promotes Lrg4 stability through downregulation of the E3 ubiquitin ligase Nedd4. The high Lrg4 expression correlates with an increased intestinal stem cell transcriptional signature that the authors suggest drives higher rates of transformation. This provides important insight that factors such as FAK may be able to modulate MAPK-driven tumorigenesis in specific circumstances. The data presented here are largely specific to the cecum. While these specific findings may ultimately have practical implications for human CRC outside the cecum and even therapeutic implications, these remain unexplored and will be a point for future investigations.

      Strengths:

      The authors use a mouse model (intestinal specific BRAF V600E +/- Fak knockout) as well as supporting in vitro analyses and clinical sample characterization to support their model. For both in vitro and in vivo studies, the authors use a combination of genetic and pharmacologic (including EGFR, FAK, and MEK inhibitors) tools to modulate the MAPK pathway. They also use a combination of transcriptional (RNA-Seq) and protein (IHC and Western blotting) readouts to support their proposed model. Importantly, they use a distinct mouse model (mutant Kras) to demonstrate their findings with Fak loss are specific to instances where EGFR can modulate ERK activation, providing strong evidence for their model. Finally, they also correlate their findings in the murine model with patient samples and with trends in the TCGA database. Collectively, these create a solid and convincing basis for their proposed model.

      Weaknesses:

      (1) The murine data is largely confined to the cecum. While the analysis of the cecum is appropriate based on the cecum specificity of their phenotype, they often use these findings to make broader generalizations about the nature of tumorigenesis in the intestinal epithelia and in CRC more generally. In my opinion, there was insufficient evidence presented supporting the extension of the proposed model beyond the cecum. While this is a weakness, it could be part of a growing effort to characterize left and right-sided malignancies as related but separate disease processes.

      (2) The authors generally do a good job of focusing their analysis on the cecum and supporting their model. For example, Figure 5A examines different colon compartments, including the cecum. However, the authors fail to demonstrate that Fak loss only promotes Lrg4 upregulation in the cecum, where they observe an increase in BRAF V600E dysplasia and carcinoma. This is again seen in Figure 6A, where they only characterize Nedd4 expression in the cecum and not other compartments of the colon.

      (3) The authors evaluate a broad range of tissues, including normal colonic mucosa, polyps, pre-cancerous dysplastic lesions, adenocarcinomas, and adenocarcinoma cell lines. While this breadth is a strength of the paper, the authors, at times, equate experimental observations in each of these conditions, despite the difference in the biology of these tissues/cells. For example, in their mouse model, they equate the development of dysplastic lesions and carcinoma lesions. This makes it difficult to accurately interpret their data and conclusions.

      (4) In Figure 5i, this experiment was only completed in one cell line (HT29), despite the conclusion that Lrg4 expression is increased by decreased ERK phosphorylation due to protein stabilization. HT29 cells are a transformed human CRC cell line, quite different than a pre-malignant cecum intestinal epithelial cell. While convincing, the authors could have performed this key experiment in non-transformed murine cecal organoids (as they did for other experiments in Figure 5E), which would better recapitulate the mouse and pre-malignant setting to explain their mouse phenotype.

      (5) While a large portion of the discussion focusses on the therapeutic implications of these findings, the authors only really investigate tumorigenesis. They likely have additional investigations planned for future manuscripts.

    1. Reviewer #2 (Public Review):

      Summary:

      This interesting study challenges the dogma regarding the link between bacterial metabolism decrease and tolerance to aminoglycosides (AG). The authors demonstrate that mutants well-known for being tolerant to AG, such as those of complexes I and II, are not so due to a decrease in the proton motive force (PMF) and thus antibiotic uptake, as previously reported in the literature.

      Strengths:

      This is a complete study that employs several read-outs.

      In this revised version, the authors have carefully addressed all the reviewers' comments. I appreciate the effort made in this new version to clarify that this study does not refute the PMF-dependent mechanism of aminoglycoside uptake (in the discussion_ lines 731-734_).

      The addition of the requested experiments using lower concentrations of aminoglycosides is a considerable improvement as it allows for comparison with previously published results.

    1. Reviewer #1 (Public Review):

      Summary:

      Wang and colleagues presented an investigation of pig-origin bacteria Bacillus velezensis HBXN2020, for its released genome sequence, in vivo safety issue, probiotic effects in vitro, and protection against Salmonella infection in a murine model. Various techniques and assays are performed; the main results are all descriptive, without new insight advancing the field or a mechanistic understanding of the observed protection.

      Strengths:

      An extensive study on probiotic property of the Bacillus velezensis strain HBXN2020

      Weaknesses:

      The main results are descriptive without mechanistic insight. Additionally, most of the results and analysis parts are separated without a link or a story-telling way to deliver a concise message.

    1. Reviewer #1 (Public Review):

      Summary:

      Duan et al analyzed brain imaging data in UKBK and found a pattern in brain structure changes by aging. They identified two patterns and found links that can be differentiated by the categorization.

      Strengths:

      This discovery harbors substantial impacts in aging and brain structure and function.

      Weaknesses:

      Therefore, the study requires more validation efforts. Most importantly, data underlying the stratification of two groups are not obvious and lack further details. Can they also stratified by different method? i.e. PCA?

      Any external data can be used for validation?

      Other previous discoveries or claims supporting the results of the study should be explored to support the conclusion.

      Sex was merely used as a covariate. Were there sex-differences during brain aging? Sex ratio difference in group 1 and 2?

      Although statistically significant, Fig 3 shows minimal differences. LTL and phenoAge is displayed in adjusted values but what is the actual values that differ between pattern 1 and 2?

      It is not intuitive to link gene expression result shown in Fig 8 and brain structure and functional differences between pattern 1 and 2. Any overlap of genes identified from analyses shown in Fig 6 (GWAS) and 8 (gene expression)?

    1. Reviewer #1 (Public Review):

      Summary:

      In previous work the Elias group has shown that leptin sensing PMv neurons make connections with the neuroendocrine reproductive axis and are involved in reproductive function/s. Sáenz de Miera et al. build on this body of work to investigate the sufficiency of leptin sensing PMv neurons to evoke the release of luteinizing hormone. The team further investigates how glutamate signaling from leptin-sensing neurons can influence pubertal timing in females, along with mature estrous cycles. Genetic ablation of Slc17a6 (Vglut2) from LepRb-expressing cells resulted in a delay of the first estrus cycle post pubertal transition, along with a significantly lengthened estrous cycle in mature females. However, this deficit did not lengthen the latency to birth of the first litter in experimental dams. Restoration of leptin signaling in LepRb PMv neurons that was previously shown to induce puberty and instate reproductive function in LepRb knock-out female mice (Mahany et al., 2018). Here, Sáenz de Miera et al. use a combined genetic and viral strategy to demonstrate that glutamate signaling in LepRb PMv neurons is required for sexual maturation in LepRb knock-out female mice.

      Strengths:

      Most of the experiments performed in this manuscript are well justified and rigorously tested. The genetic method to simultaneously remove glutamate signaling and restore the leptin receptor in LepRb PMv neurons was well executed and showed that glutamate signaling in LepRb PMv neurons is necessary for leptin-dependent fertility.

      Weaknesses:

      Analysis of experimentally induced luteinizing hormone release could be confounded by spontaneous pulses of luteinizing hormone that are independent of LepRb PMv neurons.

    1. Reviewer #2 (Public Review):

      In this study, Sekulovski and colleagues report refinements to an in vitro model of human amnion formation. Working with 3D cultures and BMP4 to induce differentiation, the authors chart the time course of amnion induction in human pluripotent stem cells in their system using immunofluorescence and RNA-seq. They carry out validation through comparison of their data to existing embryo datasets, and through immunostaining of post-implantation marmoset embryos. Functional experiments show that the transcription factor TFAP2C drives the amnion differentiation program once it has been initiated.

      There is currently great interest in the development of in vitro models of human embryonic development. While it is known that the amnion plays an important structural supporting role for the embryo, its other functions, such as morphogen production and differentiation potential, are not fully understood. Since a number of aspects of amnion development are specific to primates, models of amniogenesis will be valuable for the study of human development. Advantages of this model include its efficiency and the purity of the cell populations produced, a significant degree of synchrony in the differentiation process, benchmarking with single-cell data and immunocytochemistry from primate embryos, and identification of key markers of specific phases of differentiation. Weaknesses are the absence of other embryonic tissues in the model, and overinterpretation of certain findings, in particular relating bulk RNA-seq results to scRNA-seq data from published analyses of primate embryos and results from limited (though high quality) embryo immunostainings.

    1. Reviewer #1 (Public Review):

      Summary:

      The work by Zeng et al. comprehensively explored the differences in the effects of leaf and soil microbes on the seed germination, seedling survival and seedling growth of an invasive forb, Ageratina Adenophora, and found evidence of stronger adverse effects of leaf microbes on Ageratina compared with soil microbes. By further DNA sequencing and fungal strain cultivation, the authors were able to identify some of the key microbial guilds that may facilitate such negative and positive feedbacks.

      Strengths:

      (1) The theoretic framework is well-established;<br /> (2) Relating the direction of plant-microbe feedback to certain microbial guild is always hard, but the authors had done a great job in identifying and interpreting such relationships.

      Weaknesses:

      (1) Allelopathic effects can't be directly accounted for;<br /> (2) The fungal strains accumulated in dead seedlings may also accumulate in live seedlings, thus more evidence is needed to validate the claim by the authors that Allophoma and Alternaria can increase seedling mortality.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors addressed the influence of DKK2 on colorectal cancer (CRC) metastasis to the liver using an orthotopic model transferring AKP-mutant organoids into the spleens of wild-type animals. They found that DKK2 expression in tumor cells led to enhanced liver metastasis and poor survival in mice. Mechanistically, they associate Dkk2-deficiency in donor AKP tumor organoids with reduced Paneth-like cell properties, particularly Lz1 and Lyz2, and defects in glycolysis. Quantitative gene expression analysis showed no significant changes in Hnf4a1 expression upon Dkk2 deletion. Ingenuity Pathway Analysis of RNA-Seq data and ATAC-seq data point to a Hnf4a1 motif as a potential target. They also show that HNF4a binds to the promoter region of Sox9, which leads to LYZ expression and upregulation of Paneth-like properties. By analyzing available scRNA data from human CRC data, the authors found higher expression of LYZ in metastatic and primary tumor samples compared to normal colonic tissue; reinforcing their proposed link, HNF4a was highly expressed in LYZ+ cancer cells compared to LYZ- cancer cells.

      Strengths:

      Overall, this study contributes a novel mechanistic pathway that may be related to metastatic progression in CRC.

      Weaknesses:

      The main concerns are related to incremental gains, missing in vivo support for several of their conclusions in murine models, and missing human data analyses. Additionally, methods and statistical analyses require further clarification.

      Main comments:

      (1) Novelty<br /> The authors previously described the role of DKK2 in primary CRC, correlating increased DKK2 levels to higher Src phosphorylation and HNF4a1 degradation, which in turn enhances LGR5 expression and "stemness" of cancer cells, resulting in tumor progression (PMID: 33997693). A role for DKK2 in metastasis has also been previously described (sarcoma, PMID: 23204234).

      (2) Mouse data<br /> a) The authors analyzed liver mets, but the main differences between AKT and AKP/Dkk2 KO organoids could arise during the initial tumor cell egress from the intestinal tissue (which cannot be addressed in their splenic injection model), or during pre-liver stages, such as endothelial attachment. While the analysis of liver mets is interesting, given that Paneths cells play a role in the intestinal stem cell niche, it is questionable whether a study that does not involve the intestine can appropriately address this pathway in CRC metastasis.<br /> b) The overall number of Paneth cells found in the scRNA-seq analysis of liver mets was strikingly low (17 cells, Figure 3), and assuming that these cells are driving the differences seems somewhat far-fetched. Adding to this concern is inappropriate gating in the flow plot shown in Figure 6. This should be addressed experimentally and in the interpretation of data.<br /> c) Figures 3, 5, and 6 show the individual gene analyses with unclear statistical data. It seems that the p-values were not adjusted, and it is unclear how they reached significance in several graphs. Additionally, it was not stated how many animals per group and cells per animal/group were included in the analyses.<br /> d) Figure 6 suggests a signaling cascade in which the absence of DKK2 leads to enhanced HNF4A expression, which in turn results in reduced Sox9 expression and hence reduced expression of Paneth cell properties. It is therefore crucial that the authors perform in vivo (splenic organoid injection) loss-of-function experiments, knockdown of Sox9 expression in AKP organoids, and Sox9 overexpression experiments in AKP/Dkk2 KO organoids to demonstrate Sox9 as the central downstream transcription factor regulating liver CRC metastasis.<br /> e) Given the previous description of the role of DKK2 in primary CRC, it is important to define the step of liver metastasis affected by Dkk2 deficiency in the metastasis model. Does it affect extravasation, liver survival, etc.?

      (3) Human data<br /> Can the authors address whether the expression of Dkk2 changes in human CRC and whether mutations in Dkk2 as correlated with metastatic disease or CRC stage?

      (4) Bioinformatic analysis<br /> The authors did not provide sufficient information on bioinformatic analyses. The authors did not include information about the software, cutoffs, or scripts used to make their analyses or output those figures in the manuscript, which challenges the interpretation and assessment of the results. Terms like "Quantitative gene expression analyses" (line 136) "visualized in a Uniform Approximation and Projection" (line 178) do not explain what was inputted and the analyses that were executed. There are multiple forms to align, preprocess, and visualize bulk, single cell, ATAC, and ChIP-seq data, and depending on which was used, the results vary greatly. For example, in the single-cell data, the authors did not inform how many cells were sequenced, nor how many cells had after alignment and quality filtering (RNA count, mt count, etc.), so the result on Paneth+ to Goblet+ percent in lines 184 and 185 cannot be reached because it depends on this information. The absence of a clustering cutoff for the single-cell data is concerning since this greatly affects the resulting cluster number (https://www.nature.com/articles/s41592-023-01933-9). The authors should provide a comprehensive explanation of all the data analyses and the steps used to obtain those results.

      (5) Clarity of methods and experimental approaches<br /> The methods were incomplete and they require clarification.

    1. Reviewer #1 (Public Review):

      This study by Popli et al. evaluated the function of Atg14, an autophagy protein, in reproductive function using a conditional knockout mouse model. The authors showed that female mice lacking Atg14 were infertile partly due to defective embryo transport function of the oviduct and faulty uterine receptivity and decidualization using PgrCre/+;Atg14f/f mice. The findings from this work are exciting and novel. The authors demonstrated that a loss of Atg14 led to an excessive pyroptosis in the oviductal epithelial cells that compromises cellular integrity and structure, impeding the transport function of the oviduct. In addition, the authors use both genetic and pharmacological approaches to test the hypothesis. Therefore, the findings from this study are high-impact and likely reproducible. However, there are multiple major concerns that need to be addressed to improve the quality of the work.

    1. Reviewer #1 (Public Review):

      This paper discusses the identification of viral genes in publicly available DNA and RNA sequencing datasets. In many cases, these datasets have been assembled into contigs. Many viral genes were identified and contigs containing genes from more than one type of virus were more common than expected. The analysis appears to be sound and the results presented will be of great interest to the community.

      The strengths of the paper are in the analysis itself, which is detailed, complex, and on a very large scale. To my knowledge, the identification of DNA viral proteins in sequencing datasets not deliberately infected with viruses has not previously been performed on this scale. Many proteins were identified which are at the limit of our current capacity to detect divergent proteins. I think the use of multiple methodologies strengthens the study, as it increases the depth of the results. The authors are also clear about the limitations of their study and give many caveats about their results, which is excellent.

      I have two major concerns about the study. The first is the presentation, which in places makes it difficult to tell exactly how and why the analysis has been performed. I do not think it would be possible to reproduce this analysis based only on the information presented in the Materials and Methods section. This makes it difficult to assess the exact details of the method and whether they are appropriate. I would appreciate something like a flow chart to show, for each SRA dataset and each assembled contig, the exact steps taken for classification and the hierarchy of tools, plus the threshold values, applied to the results. An overview of the results at the beginning of the results section would also be helpful - how many proteins were identified, what were their host species, how many contigs were assembled and how many of these were chimeric, etc.

      My second concern is that it is not clear how each protein was determined to be either viral or non-viral or how contigs were assigned as chimeric or non-chimeric. Positive and negative controls are not mentioned and false positive or negative rates are not calculated. Given that many of the identified proteins are highly divergent from known viral proteins, it would be good to see how likely it is that a random protein would be assigned as viral, or a viral protein as non-viral. Chimeric contigs could occur due to misassembly or endogenous viral elements, it seems like viruses in these categories may have been filtered using Cenote Taker but no checks are described to confirm that the filtering was successful.

      Overall, I think that the study is useful and of interest, but I think more clarity in the presentation of the results would increase the value of the paper for many readers.

    1. Reviewer #1 (Public Review):

      Summary of the work: In this work, Fruchard et. al. study the enzyme Tgt and how it modifies guanine in tRNAs to queuosine (Q), essential for Vibrio cholerae's growth under aminoglycoside stress. Q's role in codon decoding efficiency and its proteomic effects during antibiotic exposure is examined, revealing Q modification impacts tyrosine codon decoding and influences RsxA translation, affecting the SoxR oxidative stress response. The research proposes Q modification's regulation under environmental cues reprograms the translation of genes with tyrosine codon bias, including DNA repair factors, crucial for bacterial antibiotic response.

      The experiments are well-designed and conducted and the conclusions, for the most part, are well supported by the data. However, a few clarifications will significantly strengthen the manuscript.

      Major:<br /> Figure S4 A-D. These growth curves are important data and should be presented in the main figures. Moreover, given that it is not possible to make a rsxA mutant, I wonder if it would be possible to connect rsx and tgt using the following experiment: expression of tgt results in resistance to TOB (in B), while expression of only rsx lower resistance to TOB (in D). Then simultaneous overexpression of both tgt/rsx in the WT strain should have either no effect on TOB resistance or increased resistance, relative to the WT. Perhaps the authors have done this, and if so, the data should be included as it will significantly strengthen their model.

      Figure S4 - Is there a rationale for why it is possible to make rsx mutants in E. coli, but not in V. cholerae? For example, does E. coli have a second gene/protein that is redundant in function to rsxA, while V. cholerae does not? I think your data hint at this, since in the right panel growth data, your double mutant does not fully rescue back to rsx single mutant levels, suggesting another factor in tgt mutant also acts to lower resistance to TOB. If so, perhaps a line or two in text will be helpful for readers.

      -For growth curves in Figure 2 and relative comparisons like in Figure 5D and Figure S4 (and others in the paper), statistics and error bars, along with replicate information should be provided.

      -Figure 6A - Is the transcript fold change in linear or log? If linear, then tgt expression should not be classified as being upregulated in TOB. It is barely up by ~2-fold with TOB- 0.6....which is a mild phenotype, at best.

      -Line 779- 780: "This indicates that sub-MIC TOB possibly induces tgt expression through the stringent response activation." To me, the data presented in this figure, do not support this statement. The experiment is indirect.

      -Figure 3B and D. - These samples only have tobramycin, correct? The legend says both carbenicillin and tobramycin.

      -Figure 5. The color schemes in bars do not match up with the color scheme in cartoons below panels B and C. That makes it confusing to read. Please fix.

      -A lot of abbreviations have been used. This makes reading a bit cumbersome. Ideally, less abbreviations will be used.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, the researchers aimed to address whether bees causally understand string-pulling through a series of experiments. I first briefly summarize what they did:

      - In experiment 1, the researchers trained bees without string and then presented them with flowers in the test phase that either had connected or disconnected strings, to determine what their preference was without any training. Bees did not show any preference.

      - In experiment 2, bees were trained to have experience with string and then tested on their choice between connected vs. disconnected string.

      - experiment 3 was similar except that instead of having one option which was an attached string broken in the middle, the string was completely disconnected from the flower.

      - In experiment 4, bees were trained on green strings and tested on white strings to determine if they generalize across color.

      - In experiment 5, bees were trained on blue strings and tested on white strings.

      - In experiment 6, bees were trained where black tape covered the area between the string and the flower (i.e. so they would not be able to see/ learn whether it was connected or disconnected).

      - In experiments 2-6, bees chose the connected string in the test phase.

      - In experiment 7, bees were trained as in experiment 3 and then tested where the string was either disconnected or coiled i.e. still being 'functional' but appearing different.

      - In experiment 8, bees were trained as before and then tested on a string that was in a different coiled orientation, either connected or disconnected.

      - In experiments 7 and 8 the bees showed no preference.

      Strengths:

      I appreciate the amount of work that has gone into this study and think it contains a nice, thorough set of experiments. I enjoyed reading the paper and felt that overall it was well-written and clear. I think experiment 1 shows that bees do not have an untrained understanding of the function of the string in this context. The rest of the experiments indicate that with training, bees have a preference for unbroken over broken string and likely use visual cues learned during training to make this choice. They also show that as in other contexts, bees readily generalize across different colors.

      Weaknesses:

      (1) I think there are 2 key pieces of information that can be taken from the test phase - the bees' first choice and then their behavior across the whole test. I think the first choice is critical in terms of what the bee has learned from the training phase - then their behavior from this point is informed by the feedback they obtain during the test phase. I think both pieces of information are worth considering, but their behavior across the entire test phase is giving different information than their first choice, and this distinction could be made more explicit.

      In addition, while the bees' first choice is reported, no statistics are presented for their preferences.

      (2) It seemed to me that the bees might not only be using visual feedback but also motor feedback. This would not explain their behavior in the first test choice, but could explain some of their subsequent behavior. For example, bees might learn during training that there is some friction/weight associated with pulling the string, but in cases where the string is separated from the flower, this would presumably feel different to the bee in terms of the physical feedback it is receiving. I'd be interested to see some of these test videos (perhaps these could be shared as supplementary material, in addition to the training videos already uploaded), to see what the bees' behavior looks like after they attempt to pull a disconnected string.

      (3) I think the statistics section needs to be made clearer (more in private comments).

      (4) I think the paper would be made stronger by considering the natural context in which the bee performs this behavior. Bees manipulate flowers in all kinds of contexts and scrabble with their legs to achieve nectar rewards. Rather than thinking that it is pulling a string, my guess would be that the bee learns that a particular motor pattern within their usual foraging repertoire (scrabbling with legs), leads to a reward. I don't think this makes the behavior any less interesting - in fact, I think considering the behavior through an ecological lens can help make better sense of it.

    1. Reviewer #1 (Public Review):

      Syngnathid fishes (seahorses, pipefishes, and seadragons) present very particular and elaborated features among teleosts and a major challenge is to understand the cellular and molecular mechanisms that permitted such innovations and adaptations. The study provides a valuable new resource to investigate the morphogenetic basis of four main traits characterizing syngnathids, including the elongated snout, toothlessness, dermal armor, and male pregnancy. More particularly, the authors have focused on a late stage of pipefish organogenesis to perform single-cell RNA-sequencing (scRNA-seq) completed by in situ hybridization analyses to identify molecular pathways implicated in the formation of the different specific traits.

      The first set of data explores the scRNA-seq atlas composed of 35,785 cells from two samples of gulf pipefish embryos that authors have been able to classify into major cell types characterizing vertebrate organogenesis, including epithelial, connective, neural, and muscle progenitors. To affirm identities and discover potential properties of clusters, authors primarily use KEGG analysis that reveals enriched genetic pathways in each cell types. While the analysis is informative and could be useful for the community, some interpretations appear superficial and data must be completed to confirm identities and properties. Notably, supplementary information should be provided to show quality control data corresponding to the final cell atlas including the UMAP showing the sample source of the cells, violin plots of gene count, UMI count, and mitochondrial fraction for the overall dataset and by cluster, and expression profiles on UMAP of selected markers characterizing cluster identities.

      The second set of data aims to correlate the scRNA-seq analysis with in situ hybridizations (ISH) in two different pipefish (gulf and bay) species to identify and characterize markers spatially, and validate cell types and signaling pathways active in them. While the approach is rational, the authors must complete the data and optimize labeling protocols to support their statements. One major concern is the quality of ISH stainings and images; embryos show a high degree of pigmentation that could hide part of the expression profile, and only subparts and hardly detectable tissues/stainings are presented. The authors should provide clear and good-quality images of ISH labeling on whole-mount specimens, highlighting the magnification regions and all other organs/structures (positive controls) expressing the marker of interest along the axis. Moreover, ISH probes have been designed and produced on gulf pipefish genome and cDNA respectively, while ISH labeling has been performed indifferently on bay or gulf pipefish embryos and larvae. The authors should specify stages and species on figure panels and should ensure sequence alignment of the probe-targeted sequences in the two species to validate ISH stainings in the bay pipefish. Moreover, spatiotemporal gene expression being a very dynamic process during embryogenesis, interpretations based on undefined embryonic and larval stages of pipefish development and compared to 3dpf zebrafish are insufficient to hypothesize on developmental specificities of pipefish features, such as on the absence of tooth primordia that could represent a very discrete and transient cell population. The ISH analyses would require a clean and precise spatiotemporal expression comparison of markers at the level of the entire pipefish and zebrafish specimens at well-defined stages, otherwise, the arguments proposed on teleost innovations and adaptations turn out to be very speculative.

      To conclude, whereas the scRNA-seq dataset in this unconventional model organism will be useful for the community, the spatiotemporal and comparative expression analyses have to be thoroughly pushed forward to support the claims. Addressing these points is absolutely necessary to validate the data and to give new insights to understand the extraordinary evolution of the Syngnathidae family.

    1. RRID:ZFIN_ZDB-GENO-070316-1

      DOI: 10.7554/eLife.89516

      Resource: (ZFIN Cat# ZDB-GENO-070316-1,RRID:ZFIN_ZDB-GENO-070316-1)

      Curator: @scibot

      SciCrunch record: RRID:ZFIN_ZDB-GENO-070316-1


      What is this?

  4. May 2024
    1. Reviewer #1 (Public Review):

      Summary:

      Given the cost of producing action potentials and transmitting them along axons, it has always seemed a bit strange that there are synaptic failures: when a spike arrives at a synapse, about half the time nothing happens. This paper proposes a perfectly reasonable explanation: reducing failures (or, more generally, reducing noise) is costly. Four possible mechanisms are proposed, each associated with a different cost, with costs of the form 1/sigma_i^rho where sigma_i is the failure-induced variability at synapse i and rho is an exponent. The four different mechanisms produce four different values of rho.

      What is interesting about the study is that the model makes experimental predictions about the relationship between learning rate, variability and presynaptic firing rate. Those predictions are consistent with experimental data, making it a strong candidate model. The fact that the predictions come from reasonable biological mechanisms make it a very strong candidate model and suggest several experiments to test it further.

      Interestingly, the predictions made by this model are nearly indistinguishable from the predictions made by a normative model (Synaptic plasticity as Bayesian inference. Aitchison it al., Nature Neurosci. 24:565-571 (2021). As pointed out by the authors, working out whether the brain is using Bayesian inference to tune learning rules, or it just looks like it's Bayesian inference but the root cause is cost minimization, will be an interesting avenue for future research.

      Finally, the authors relate their cost of reliability to the cost used in variational Bayesian inference. Intriguingly, the biophysical cost provides an upper bound on the variational cost. This is intellectually satisfying, as it answers a "why" question: why would evolution evolve to produce the kind of costs seen in the brain?

      Strengths:

      This paper provides a strong mix of theoretical analysis, simulations and comparison to experiments. And the extended appendices, which are very easy to read, provide additional mathematical insight.

      Weaknesses:

      None.

    1. Reviewer #1 (Public Review):

      This study conducted a series of experiments to comprehensively support the allocentric rather than egocentric visual spatial reference updating for the path-integration mechanism in the control of target-oriented locomotion. Authors firstly manipulated the waiting time before walking to tease apart the influence from spatial working memory in guiding locomotion. They demonstrated that the intrinsic bias in perceiving distance remained constant during walking and that the establishment of a new spatial layout in the brain took a relatively longer time beyond the visual-spatial working memory. In the following experiments, the authors then uncovered that the strength of the intrinsic bias in distance perception along the horizontal direction is reduced when participants' attention is distracted, implying that world-centered path integration requires attentional effort. This study also revealed horizontal-vertical asymmetry in a spatial coding scheme that bears a resemblance to the locomotion control in other animal species such as desert ants.

      The revised version of the study effectively situates the research within the broader context of terrestrial navigation, focusing on the movement of land-based creatures and offers a clearer explanation for the potential neurological basis of the human brain's allocentric odometer. Previous feedback has been thoroughly considered, and additional details have been incorporated into the presentation of the results.

    1. Reviewer #1 (Public Review):

      Summary:

      This study applied pattern similarity analyses to intracranial EEG recordings to determine how neural drift is related to memory performance in a free recall task. The authors compared neural similarity within and across lists, in order to contrast signals related to contextual drift vs. the onset of event boundaries. They find that within-list neural differentiation in the lateral temporal cortex correlates with probability of word recall; in contrast, across-list pattern similarity in the medial parietal lobe correlates with recall for items near event boundaries (early-list serial positions). This primacy effect persists for the first three items of a list. Medial parietal similarity is also enhanced across lists for end-of-list items, however this effect then predicts forgetting. The authors do not find that within- or across-list pattern similarity in the hippocampus is related to recall probability.

      Strengths:

      The authors use a large dataset of human intracranial electrophysiological recordings, which gives them high statistical power to compare neural activity and memory across three important memory encoding regions. In so doing, the authors seek to address a timely and important question about the neural mechanisms that underlie the formation of memories for events.

      The use of both within and across event pattern similarity analyses, combined with linear mixed effects modeling, is a marriage of techniques that is novel and translatable in principle to other types of data.

      Weaknesses:

      In several instances the paper does not address apparent inconsistencies between the prior literature and the findings. For example, the first main finding is that recalled items have more differentiated lateral temporal cortex representations within lists than not recalled items. This seems to be the opposite of the prediction from temporal context models that are used to motivate the paper-context models would predict that greater contextual similarity within a list should lead to greater memory through enhanced temporal clustering in recall. This is what El-Kalliny et al (2019) found, using a highly similar design (free recall, intracranial recordings from the lateral temporal lobe). The authors never address this contradiction in any depth in order to reconcile it with the previous literature and with the motivating theoretical model.

      The way that the authors conduct the analysis of medial parietal neural similarity at boundaries leads to results that cannot be conclusively interpreted. The authors report enhanced similarity across lists for the first item in each list, which they interpret as reflecting a qualitatively distinct boundary signal. However, this finding can readily be explained by contextual drift if one assumes that whatever happens at the start of each list is similar or identical across lists (for example, a get ready prompt or reminder of instructions). In other words, this is analogous to presenting the same item at the start of every single list, in which case it is not surprising that the parietal (or any neural) representation would be similar to itself at the start of every list. So, a qualitatively unique boundary representation would not be necessary to explain this result. The authors do not include analyses to rule this out, which makes it difficult to interpret a key finding.

      There is a similar absence of interpretation with respect to the previous literature for the data showing enhanced boundary-related similarity in the medial parietal cortex. The authors' interpretation seems to be that they have identified a boundary-specific signal that reflects a large and abrupt change in context, however another plausible interpretation is that enhanced similarity in the medial parietal cortex is related to a representation of a schema for the task structure that has been acquired across repeated instances.

      The authors do not directly compare their model to other models that could explain how variability in neural activity predicts memory. One example is the neural fatigue hypothesis, which the authors mention, however there are no analyses or data to suggest that their data is better fit by a boundary/contextual drift mechanism as opposed to neural fatigue.

    1. Reviewer #1 (Public Review):

      Padamsey et al. followed up on their previous study in which they found that male mice sacrifice visual cortex computation precision to save energy in periods of food restriction (Padamsey et al. 2021, Neuron). In the present study, the authors find that female mice show much lower levels of adaptation in response to food restriction on the level of metabolic signaling and visual cortex computation. This is an important finding for understanding sex differences in adaptation to food scarcity and also impacts the interpretation of studies employing food restriction in behavioral analyses and learning paradigms.

      Strengths:

      The manuscript is, in general, very clear and the conclusions are straightforward. The experiments are performed in the same conditions for males and females and the authors did not find differences in the behavioral states of male and female mice that could explain differences in energy consumption. Moreover, they show that visual cortex in both males and females does not change its baseline energy consumption in the dark, therefore the adjustment of energy budget in males only targets visual processing.

      Weaknesses:

      The number of experiments is insufficient to compare the effects of food restriction in males and females directly, which is discussed by the authors: to address this point they use Bayes factor analysis to provide an estimate of the likelihood that females and males indeed differ in terms of energy metabolism and sensory processing adaptions during food restriction.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors examined the extent to which processing of speech and music depends on neural networks that are either specific to a domain or general in nature. They conducted comprehensive intracranial EEG recordings on 18 epilepsy patients as they listened to natural, continuous forms of speech and music. This enabled an exploration of brain activity at both the frequency-specific and network levels across a broad spectrum. Utilizing statistical methods, the researchers classified neural responses to auditory stimuli into categories of shared, preferred, and domain-selective types. It was observed that a significant portion of both focal and network-level brain activity is commonly shared between the processing of speech and music. However, neural responses that are selectively responsive to speech or music are confined to distributed, frequency-specific areas. The authors highlight the crucial role of using natural auditory stimuli in research and the need to explore the extensive spectral characteristics inherent in the processing of speech and music.

      Strengths:

      The study's strengths include its high-quality sEEG data from a substantial number of patients, covering a majority of brain regions. This extensive cortical coverage grants the authors the ability to address their research questions with high spatial resolution, marking an advantage over previous studies. They performed thorough analyses across the entire cortical coverage and a wide frequency range of neural signals. The primary analyses, including spectral analysis, temporal response function calculation, and connectivity analysis, are presented straightforwardly. These analyses, as well as figures, innovatively display how neural responses, in each frequency band and region/electrode, are 'selective' (according to the authors' definition) to speech or music stimuli. The findings are summarized in a manner that efficiently communicates information to readers. This research offers valuable insights into the cortical selectivity of speech and music processing, making it a noteworthy reference for those interested in this field. Overall, this research offers a valuable dataset and carries out extensive yet clear analyses, amounting to an impressive empirical investigation into the cortical selectivity of speech and music. It is recommended for readers who are keen on understanding the nuances of selectivity and generality in the processing of speech and music to refer to this study's data and its summarized findings.

      Weaknesses:

      (1) The study employed longer speech and music stimuli, thereby promising improved ecological validity as compared to prior research, a point emphasized by the authors. However, it failed to differentiate between neural responses to the diverse content or local structures within speech and music. The authors considered the potential limitation of treating these extensive speech and music stimuli as stationary signals, neglecting their complex musical or linguistic structural details and temporal variations across local structures such as sentences and phrases. This balanced perspective offered by the authors aids readers in better understanding the context of the study and highlights potential areas for expansion and further considerations.

      (2) In contrast to previous studies that employed short stimulus segments along with various control stimuli to ensure that observed selectivity for speech or music was not merely due to low-level acoustic properties, this study used longer, ecological stimuli. However, the control stimuli used in this study, such as tone or syllable sequences, do not align with the low-level acoustic properties of the speech and music stimuli. This mismatch raises concerns that the differences or selectivity between speech and music observed in this study might be attributable to these basic acoustic characteristics rather than to more complex processing factors specific to speech or music. However, this should not deter readers from recognizing the study's strengths, namely, the use of iEEG recordings that offer high spatial resolution and extensive cortical coverage.

      (3) The concept of selectivity - shared, preferred, and domain-selective - may not present sufficient theoretical accuracy. It is appreciated that the authors put effort into clearly defining their operational measurement on 'selectivity'. Later, the authors further mentioned the specific indication of their analyses. However, the authors' categorization of neural sites/regions as shared, preferred, or domain-selective regarding speech and music processing essentially resembles a traditional ANOVA test with posthoc analysis. While this categorization gives meaningful context to the results, the mere presence of significant differences among control stimuli, a segment of speech, and a piece of music does not present a strong case that a region is specifically selective to a type of stimulus like speech. The narrative of the manuscript could potentially lead to an overgeneralized interpretation of their findings as being broadly applicable to speech or music, if a reader does not delve into the details.

      (4) The authors' approach, akin to mapping a 'receptive field' by correlating stimulus properties with neural responses to ascertain functional selectivity for speech and music, presents potential issues. If cortical regions exhibit heightened responses to one type of stimulus over another, it doesn't automatically imply selectivity or preference for that stimulus. The explanation could lie in functional aspects, such as a region's sensitivity to temporal units of a specific duration, be it music, speech, or even movie segments, and its role in chunking such units (e.g., around 500 ms), which might be more prevalent in music than in speech, or vice versa in the current study. This study does not delve into the functional mechanisms of how speech and music are processed across different musical or linguistic hierarchical levels but merely demonstrates differences in neural responses to various stimuli over a 10-minute span.

    1. Reviewer #1 (Public Review):

      Summary:

      In this article, the authors investigate whether the connectivity of the hippocampus is altered in individuals with aphantasia ¬- people who have reduced mental imagery abilities and where some describe having no imagery, and others describe having vague and dim imagery. The study investigated this question using a fMRI paradigm, where 14 people with aphantasia and 14 controls were tested, and the researchers were particularly interested in the key regions of the hippocampus and the visual-perceptual cortices. Participants were interviewed using the Autobiographical Interview regarding their autobiographical memories (AMs), and internal and external details were scored. In addition, participants were queried on their perceived difficulty in recalling memories, imagining, and spatial navigation, and their confidence regarding autobiographical memories was also measured. Results showed that participants with aphantasia reported significantly fewer internal details (but not external details) compared to controls; that they had lower confidence in their AMs; and that they reported finding remembering and imagining in general more difficult than controls. Results from the fMRI section showed that people with aphantasia displayed decreased hippocampal and increased visual-perceptual cortex activation during AM retrieval compared to controls. In contrast, controls showed strong negative functional connectivity between hippocampus and the visual cortex. Moreover, resting state connectivity between the hippocampus and visual cortex predicted better visualisation skills. The authors conclude that their study provides evidence for the important role of visual imagery in detail-rich vivid AM, and that this function is supported by the connectivity between the hippocampus and visual cortex. This study extends previous findings of reduced episodic memory details in people with aphantasia, and enables us to start theorising about the neural underpinnings of this finding.

      The data provided good support for the conclusion that the authors draw, namely that there is a 'tight link between visual imagery and our ability to retrieve vivid and detail-rich personal past events'. However, as the authors also point out, the exact nature of this relationship is difficult to infer from this study alone, as the slow temporal resolution of fMRI cannot establish the directionality between the hippocampus and the visual-perceptual cortex. This is an exciting future avenue to explore.

      Strengths:

      A great strength of this study is that it introduces a fMRI paradigm in addition to the autobiographical interview, paralleling work done on episodic memory in cognitive science (e.g. Addis and Schacter, 2007, https://doi.org/10.1016%2Fj.neuropsychologia.2006.10.016 ), which has examined episodic and semantic memory in relation to imagination (future simulation) in non-aphantasic participants as well as clinical populations. Future work could build on this study, and for example use the recombination paradigm (Addis et al. 2009, 10.1016/j.neuropsychologia.2008.10.026 ), which would shed further light on the ability of people with aphantasia to both remember and imagine events. Future work could also build on the interesting findings regarding spatial navigation, which together with previous findings in aphantasia (e.g. Bainbridge et al., 2021, https://doi.org/10.1016/j.cortex.2020.11.014 ) strongly suggests that spatial abilities in people with aphantasia are unaffected. This can shed further light on the different neural pathways of spatial and object memory in general. In general, this study opens up a multitude of new avenues to explore and is likely to have a great impact on the field of aphantasia research.

      Weaknesses:

      A weakness of the study is that some of the questions used are a bit vague, and no objective measure is used, which could have been more informative. For example, the spatial navigation question (reported as 'How difficult is it typically for you to orient you spatially?' could have been more nuanced to tap into whether participants relied mostly on cognitive maps (likely supported by the hippocampus) or landmarks. It would also have been interesting to conduct a spatial navigation task, as participants do not necessarily have insight to their spatial navigation abilities (they could have been overconfident or underconfident in their abilities). Secondly, the question 'how difficult is it typically for you to use your imagination?' could also be more nuanced, as imagination is used in a variety of ways, and we only have reason to hypothesise that people with aphantasia might have difficulties in some cases (i.e. sensory imagination involving perceptual details). It is unlikely that people with aphantasia would have more difficulty than controls to use their imagination to imagine counterfactual situations and engage in counterfactual thought (de Brigard et al., 2013, https://doi.org/10.1016%2Fj.neuropsychologia.2013.01.015) due to its non-sensory nature, but the question used does not distinguish between these types of imagination. Again, this is a ripe area for future research. The general phrasing of 'how difficult is [x]' could also potentially bias participants towards more negative answers, something which ought to be controlled for in future research.

    1. Reviewer #1 (Public Review):

      Summary:

      This is an experimentally soundly designed work and a very well-written manuscript. There is a very clear logic that drives the reader from one experiment to the next, the experimental design is clearly explained throughout and the relevance of the acquired data is well analyzed and supports the claims made by the authors. The authors made an evident effort to combine imaging, genetic, and molecular data to describe previously unknown early embryonic movement patterns and to identify regulatory mechanisms that control several aspects of it.

      Strengths:

      The authors develop a new method to analyze, quantitatively, the onset of movement during the latter embryonic stages of Drosophila development. This setup allows for a high throughput analysis of general movement dynamics based on the capture of variations of light intensity reflected by the embryo. This setup is capable of imaging several embryos simultaneously and provides a detailed measure of movement over time, which proves to be very useful for further discoveries in the manuscript. This setup already provides a thorough and quantifiable description of a process that is little known and identifies two different phases during late embryonic movements: a myogenic phase and a neurogenic phase, which they elegantly prove is dependent on neuronal activity by knocking down action potentials across the nervous system.

      However, in this system, movement is detected as a whole, and no further description of the type of movement is provided beyond frequency and amplitude; it would be interesting to know from the authors if a more precise description of the movements that take place at this stage can be achieved with this method (e.g. motion patterns across the A-P body axis).

      Importantly, this highly quantitative experimental setup is an excellent system for performing screenings of motion regulators during late embryonic development, and its use could be extended to search for different modulators of the process, beyond miRNAs (genetic mutants, drugs, etc.).

      Using their newly established motion detection pipeline, the authors identify miR-2b-1 as required for proper larval and embryonic motion, and identify an overall reduction in the quantity of both myogenic and neurogenic movements, as well as an increased frequency in neurogenic movement "pulses".

      Focusing on the neurogenic movement phenotype the authors use in situ probes and perform RT-PCR on FACS-sorted CNS cells to unambiguously detect miR-2b-1 expression in the embryonic nervous system. The neurogenic motion defects observed in miR-2b-1 mutant embryos and early larvae can be completely rescued by the expression of ectopic miR-2b-1 specifically in the nervous system, providing solid evidence of the requirement and sufficiency of miR-2b-1 expressed in the nervous system to regulate these phases of movement.

      To explore the mechanism through which miR-2b-1 impacts embryonic movement, the authors use a state-of-the-art bioinformatic approach to identify potential targets of miR-2b-1, and find that the expression levels of an uncharacterized gene, CG3638, are indeed regulated by miR-2b-1. Furthermore, they prove that by knocking down the expression of CG3638 in a miR-2b-1 mutant background, the neurogenic embryonic movement defects are rescued, pointing that the repression of CG3638 by miR-2b-1 is necessary for correct motion patterns in wild-type embryos. Therefore, this paper provides the first functional characterization of CG3638, and names this gene Motor.

      Finally, the authors aim to discriminate which elements of the embryonic motor system miR-2b-1/Motor are required. Using directed overexpression of miR-2b-1 and Motor knockdown in the motor neurons and the chordotonal (sensory) organs, they prove that the miR-2b-1/Motor regulatory axis is specifically required in the sensory organs to promote normal embryonic and larval movement.

      Weaknesses:

      The initial screening to identify miRNAs involved in motion behaviors is performed in early larval movement. The logic presented by the authors is clear - it is assumed that early larval movement cannot proceed normally in the absence of previous embryonic motion - and ultimately helped them identify a miRNA required for modulation of embryonic movement. However, it is possible that certain miRNAs play a role in the modulation of embryonic movement while being dispensable for early L1 behaviors. Such regulators might have been missed with the current screening setup.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors in this manuscript performed scRNA-seq on a cohort of 15 early-stage cervical cancer patients with a mixture of adeno- and squamous cell carcinoma, HPV status, and several samples that were upstaged at the time of surgery. From their analyses they identified differential cell populations in both immune and tumour subsets related to stage, HPV status, and whether a sample was adenocarcinoma or squamous cell. Putative microenvironmental signaling was explored as a potential explanation for their differential cell populations. Through these analyses the authors also identified SLC26A3 as a potential biomarker for later stage/lymph node metastasis which was verified by IHC and IF. The dataset is likely useful for the community, however, the strong claims made are not adequately supported by the data and would require additional functional validation.

      Strengths:

      The dataset could be useful for the community.<br /> SLC26A3 could potentially be a useful marker to predict lymph node metastasis with further study.

      Weaknesses:

      The link between the background in the introduction and the actual study and findings is often tenuous or not clearly explained. A re-working of the intro to better set up and link to the study questions would be beneficial.

      For the sequencing, which kit was used on the Novaseq6000?

      Additional details are needed for the analysis pipeline. How were batch effects identified/dealt with, what were the precise functions and settings for each step of the analysis, how was clustering performed and how were clusters validated etc. Currently, all that is given is software and sometimes function names which are entirely inadequate to be able to assess the validity of the analysis pipeline. This could alternatively be answered by providing annotated copies of the scripts used for analysis as a supplement.

      For Cell type annotation, please provide the complete list of "selected gene markers" that were used for annotation.

      No statistics are given for the claims on cell proportion differences throughout the paper (for cell types early, epithelial sub-clusters later, and immune cell subsets further on). This should be a multivariate analysis to account for ADC/SCC, HPV+/- and Early/Late stage.

      The Y-axis label is missing from the proportion histograms in Figure 2D. In these same panels, the bars change widths on the right side. If these are exclusively in ADC, show it with a 0 bar for SCC, not doubling the width which visually makes them appear more important by taking up more area on the plot.

      Throughout the manuscript, informatic predictions (differentiation potential, malignancy score, stemness, and trajectory) are presented as though they're concrete facts rather than the predictions they are. Strong conclusions are drawn on the basis of these predictions which do not have adequate data to support. These conclusions which touch on essentially all of the major claims made in the manuscript would need functional data to validate, or the claims need to be very substantially softened as they lack concrete support. Indeed, the fact that most of the genes examined that were characteristic of a given cluster did not show the expected expression patterns in IHC highlights the fact that such predictions require validation to be able to draw proper inferences.

      The cluster Epi_10_CYSTM1 which is the basis for much of the paper is present in a single individual (with a single cell coming from another person), and heavily unconnected from the rest of the epithelial populations. If so much emphasis is placed on it, the existence of this cluster as a true subset of cells requires validation.

      Claims based on survival analysis of TCGA for Epi_10_CYSTM1 are based on a non-significant p-value, though there is a slight trend in that direction.

      The claim "The identification of Epi_10_CYSTM1 as the only cell cluster found in patients with stage IIICp raises the possibility that this cluster may be a potential marker to diagnose patients with lymph node metastasis." This is incorrect according to the sample distributions which clearly show cells from the patient who has EPI_10_CYSTM1 in multiple other clusters. This is then used as justification for SLC26A3 which appears to be associated with associated with late stage, however, in the images SLC26A3 appears to be broadly expressed in later tumours rather than restricted to a minor subset as it should be if it were actually related to the EPI_10_CYSTM1 cluster.

      The authors claim that cytotoxic T cells express KRT17, and KRT19. This likely represents a mis-clustering of epithelial cells.

      Multiple claims are made for specific activities based on GO term biological process analysis which while not contradictory to the data, certainly are by no means the only explanation for it, nor directly supported.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript from Clayton and co-authors, entitled "Mechanism of dimer selectivity and binding cooperativity of BRAF inhibitors", aims at clarifying the molecular mechanism of BRAF dimer selectivity. Indeed, first generation BRAF inhibitors, targeting monomeric BRAFV600E, are ineffective in treating resistant dimeric BRAF isoforms. Here, the authors employed molecular dynamics simulations to study the conformational dynamics of monomeric and dimeric BRAF, in the presence and absence of inhibitors. Multi-microseconds MD simulations showed an inward shift of the αC helix in the BRAFV600E mutant dimer. This helped identify a hydrogen bond between the inhibitors and the BRAF residue Glu501 as critical for dimer compatibility. The stability of the aforementioned interaction seems to be important to distinguish between dimer-selective and equipotent inhibitors.

      Strengths:

      The study is overall valuable and robust. The authors used the recently developed particle mesh Ewald constant pH molecular dynamics, a state-of-the-art method, to investigate the correct histidines protonation considering the dynamics of the protein. Then, multi-microsecond simulations showed differences in the flexibility of the αC helix and DFG motif. The dimerization restricts the αC position in the inward conformation, in agreement with the result that dimer-compatible inhibitors are able to stabilize the αC-in state. Noteworthy, the MD simulations were used to study the interactions between the inhibitors and the protein, suggesting a critical role for a hydrogen bond with Glu501. Finally, simulations of a mixed state of BRAF (one protomer bound to the inhibitor and the other apo) indicate that the ability to stabilize the inward αC state of the apo protomer could be at the basis of the positive cooperativity of PHI1.

      Weaknesses:

      Regarding the analyses of the mixed state simulations, the DFG dihedral probability densities for the apo protomer (Fig. 5a right) are highly overlapping. It is not convincing that a slight shift can support the conclusion that the binding in one protomer is enough to shift the DFG motif outward allosterically. Moreover, the DFG dihedral time-series for the apo protomer (Supplementary Figure 9) clearly shows that the measured quantities are affected by significant fluctuations and poor consistency between the three replicates. The apo protomer of the mixed state simulations could be affected by the same problem that the authors pointed out in the case of the apo dimer simulations, where the amount of sampling is insufficient to model the DFG-out/-in transition properly. There is similar concern with the Lys483-Glu501 salt bridge measured for the apo protomers of the mixed simulations. As it can be observed from the probabilities bar plot (Fig. 5a middle), the standard deviation is too high to support a significant role for this interaction in the allosteric modulation of the apo protomer.

    1. Reviewer #1 (Public Review):

      Summary:

      In the manuscript by Tie et.al., the authors couple the methodology which they have developed to measure LQ (localization quotient) of proteins within the Golgi apparatus along with RUSH based cargo release to quantify the speed of different cargos traveling through Golgi stacks in nocodazole induced Golgi ministacks to differentiate between cisternal progression vs stable compartment model of the Golgi apparatus. The debate between cisternal progression model and stable compartment model has been intense and going on for decades and important to understand the basic way of function/organization of the Golgi apparatus. As per the stable compartment model, cisterna are stable structures and cargo moves along the Golgi apparatus in vesicular carriers. While as per cisternal progression model, Golgi cisterna themselves mature acquiring new identity from the cis face to the trans face and act as transport carriers themselves. In this work, authors provide a missing part regarding intra-Golgi speed for transport of different cargoes as well as the speed of TGN exit and based on the differences in the transport velocities for different cargoes tested favor a stable compartment model. The argument which authors make is that if there is cisternal progression, all the cargoes should have a similar intra-Golgi transport speed which is essentially the rate at which the Golgi cisterna mature. Furthermore, using a combination of BFA and Nocodazole treatments authors show that the compartments remain stable in cells for at least 30-60 minutes after BFA treatment.

      Strengths:

      The method to accurately measure localization of a protein within the Golgi stack is rigorously tested in the previous publications from the same authors and in combination with pulse chase approaches has been used to quantify transport velocities of cargoes through the Golgi. This is a novel aspect in this paper and differences in intra-Golgi velocities for different cargoes tested makes a case for a stable compartment model.

      Weaknesses:

      Experiments are only tested in one cell line (HeLa cells) and predominantly derived from experimental paradigm using RUSH assays where a secretory cargo is released in a wave (not the most physiological condition) and therefore additional approaches would make a more compelling case for the model.

    1. Reviewer #1 (Public Review):

      Summary:

      This work presents an in-depth characterization of the factors that influence the structural dynamics of the Clostridium botulinum guanidine-IV riboswitch (riboG). Using a single-molecule FRET, the authors demonstrate that riboG undergoes ligand and Mg2+ dependent conformational changes consistent with dynamic formation of a kissing loop (KL) in the aptamer domain. Formation of the KL is attenuated by Mg2+ and Gua+ ligand at physiological concentrations as well as the length of the RNA. Interestingly, the KL is most stable in the context of just the aptamer domain compared to longer RNAs capable of forming the terminator stem. To attenuate transcription, binding of Gua+ and formation of the KL must occur rapidly after transcription of the aptamer domain but before transcription of the rest of the terminator stem.

      Strengths:

      (1) Single molecule FRET microscopy is well suited to unveil the conformational dynamics of KL formation and the authors provide a wealth of data to examine the effect of the ligand and ions on riboswitch dynamics. The addition of complementary transcriptional readthrough assays provides further support the author's proposed model of how the riboswitch dynamics contribute to function.<br /> (2) The single-molecule data strongly support that the effect of Gua+ ligand and Mg2+ influence the RNA structure differently for varying lengths of the RNA. The authors also demonstrate that this is specific for Mg2+ as Na+ and K+ ions have little effect.<br /> (3) The PLOR method utilized is clever and well adapted for both dual labeling of RNAs and examining RNA at various lengths to mimic co-transcriptional folding. Using PLOR, they demonstrate that a change in the structural dynamics and ligand binding can occur after extension of the RNA transcript by a single nucleotide. Such a tight window of regulation has intriguing implications for kinetically controlled riboswitches.<br /> (4) In the revised version, the authors utilized multiple destabilizing and compensatory mutations to strengthen their structural interpretation of the KL structure and dynamics and cementing their conclusions.

    1. Reviewer #1 (Public Review):

      This study explored the relationship between sustained attention and substance use from ages 14 to 23 in a large longitudinal dataset. They found behaviour and brain connectivity associated with poorer sustained attention at age 14 predicted subsequent increase in cannabis and cigarette smoking from ages 14-23. They concluded that the brain network of sustained attention is a robust biomarker for vulnerability to substance use. The big strength of the study is a substantial sample size and validation of the generalization to an external dataset. In addition, various methods/models were used to prove the relationship between sustained attention and substance use over time.

    1. Reviewer #1 (Public Review):

      In this manuscript, Yoo et al describe the role of a specialized cell type found in muscle, Fibro-adipogenic progenitors (FAPs), in promoting regeneration following sciatic nerve injury. Using single-cell transcriptomics, they characterize the expression profiles of FAPs at various times after nerve crush or denervation. Their results reveal that a population of these muscle-resident mesenchymal progenitors up-regulate the receptors for GDNF, which is secreted by Schwann cells following crush injury, suggesting that FAPs respond to this growth factor. They also find that FAPs increase expression of BDNF, which promotes nerve regeneration. The authors demonstrate FAP production of BDNF in vivo is upregulated in response to injection of GDNF and that conditional deletion of BDNF in FAPs results in delayed nerve regeneration after crush injury, primarily due to lagging remyelination. Finally, they also find reduced BDNF expression following crush injury in aged mice, suggesting a potential mechanism to explain the decrease in peripheral nerve regenerative capability in aged animals. These results are very interesting and novel and provide important insights into the mechanisms regulating peripheral nerve regeneration, which has important clinical implications for understanding and treating nerve injuries. However, there are a few concerns that the authors need to address.

      Given that only a fraction of the FAPs express BDNF after injury, the authors need to demonstrate the specificity of the Prrx1-Cre for FAPs. This is particularly important because muscle stem cell also express GDNF receptors (Fig. 3C & D) and myogenic progenitors/satellite cells produce BDNF after nerve injury (Griesbeck et al., 1995 (PMID 8531223); Omura et al., 2005 (PMID 16221288)). Moreover, as the authors point out, there are multipotent mesenchymal precursor cells in the nerve that migrate into the surrounding tissue following nerve injury and contribute to regeneration (Carr et al, PMID 30503141). Therefore, there are multiple possible sources of BDNF, highlighting the need to clearly demonstrate that FAP-derived BDNF is essential.

      Similarly, the authors should provide some evidence that BDNF protein is produced by FAPs. All of their data for BDNF expression is based on mRNA expression and that appears to only be increased in a small subset of FAPs. Perhaps an immunostaining could be done to demonstrate up-regulation of BDNF in FAPs after injury.

      The suggestion that Schwann cell-derived GDNF is responsible for up-regulation of BDNF in the FAPs is indirect, based largely on the data showing that injection of GDNF into the muscle is sufficient to up-regulate BDNF (Fig. 4F & G). However, to more directly connect the 2 observations in a causal way, the authors should inject a Ret/GDNF antagonist, such as a Ret-Fc construct, then measure the BDNF levels.

      In assessing the regeneration after nerve crush, the authors focus on remyelination, for example, assessing CMAP and g-ratios. However, they should also quantify axon regeneration, which can be done distal to the crush injury at earlier time points, before the 6 weeks scored in their study. Evaluating axon regeneration, which occurs prior to remyelination, would be especially useful because BDNF can act on both Schwann cells, to promote myelination, and axons, enhancing survival and growth. They could also evaluate the stability of the neuromuscular junctions, particularly if a denervation was done with the conditional knock outs, although that may be a bit beyond the scope of this study.

    1. Reviewer #1 (Public Review):

      Summary:

      Using a mouse model of head and neck cancer, Barr et al show that tumor-infiltrating nerves connect to brain regions via the ipsilateral trigeminal ganglion, and they demonstrate the effect this has on behavior. The authors show that there are neurites surrounding the tumors using a WGA assay and show that the brain regions that are involved in this tumor-containing circuit have elevated Fos and FosB expression and increased calcium response. Behaviorally, tumor-bearing mice have decreased nest building and wheel running and increased anhedonia. The behavior, Fos expression, and heightened calcium activity were all decreased in tumor-bearing mice following nociceptor neuron elimination.

      Strengths:

      This paper establishes that sensory neurons innervate head and neck cancers and that these tumors impact select brain areas. This paper also establishes that behavior is altered following these tumors and that drugs to treat pain restore some but not all of the behavior. The results from the experiments (predominantly gene and protein expression assays, cFos expression, and calcium imaging) support their behavioral findings both with and without drug treatment.

      Weaknesses:

      Study suggests that the effects of their tumor models of mouse behavioral are largely non-specific to the tumor as most behaviors are rescued by analgesic treatment. So, most of the changes were likely due to site-specific pain and not a unique signal from the tumor.