3 Matching Annotations
  1. May 2023
    1. each S-NSSAI may contain a Subscribed DNN

      Subscription for one S-NSSAI: 1. a list of Subscribed DNN 1. one default DNN

    2. The expectation is that the URSP in the UE is always up to date

      Use URSP to sync DNN to UE.

  2. Sep 2018
    1. 简单记忆训练 DNN 的技巧:

      对于坏习惯, 早弃则自活

      前三个针对训练误差小测试误差大的情况;

      后两个针对训练误差就很大的情况;

      tips for good training but bad testing

      1. (早)Early Stopping
      2. (弃)Dropout
      3. (则)Regularization

      tips for bad training

      1. (自)Adaptive learning rate(optimizer)
      2. (活)New activation function

      dropout

      • 训练的时候

      每一次更新参数之前(我们一般一个 mini-batch 更新一次参数,也就是每个 mini-batch 都对神经元做一次随机丢弃),对每一个神经元(包括input layer,这点要注意)做丢弃

      1 mini-batch -> 1 dorpout -> 1 thin-network

      每一个神经元都有 p% 几率被丢弃,所有与被丢弃的神经元相连的权重 w 也都会被丢弃,这样整个网络的结构就变了,深度不变宽度变窄。

      dropout 毫无疑问会让训练结果变差,因为整体模型复杂度降低了。

      • 测试的时候

      需要注意两点:

      1. 测试的时候不对神经元做丢弃
      2. 测试的时候每个权重都乘以 (1-p%): w * (1-p%)

      为什么 dropout 测试机权重需要乘以 (1-p%)

      假设 dropout rate 设为 50%, 在训练的时候我们得到的某个神经元的输出 \(z\) ,是丢弃了输入层一半的神经元及权重得到的:

      \(z=f([x1,x2,x3,x4])\) --> \(z=f([x1,x4])\)

      在测试的时候这个由于不做任何丢弃:

      \(z=f([x1,x2,x3,x4])\))

      该神经元的输出大约会是原来的两倍:

      \(f(\vec{x}) = w * x + b\)

      \(f([x1,x2,x3,x4]) \approx 2 * f([x1,x4])\)

      \(w_{new} = 0.5 * w_{old}\) ,这样:

      \(f([x1,x2,x3,x4]) \approx f([x1,x4])\)